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Abstract

In this work, we explore Hypothesis Transfer

Learning (HTL) under adversarial attacks. In this

setting, a learner has access to a training dataset of

size n from an underlying distribution D and a set

of auxiliary hypotheses. These auxiliary hypothe-

ses, which can be viewed as prior information

originating either from expert knowledge or as

pre-trained foundation models, are employed as

an initialization for the learning process. Our goal

is to develop an adversarially robust model for D.

We begin by examining an adversarial variant of

the regularized empirical risk minimization learn-

ing rule that we term A-RERM. Assuming a non-

negative smooth loss function with a strongly con-

vex regularizer, we establish a bound on the robust

generalization error of the hypothesis returned by

A-RERM in terms of the robust empirical loss

and the quality of the initialization. If the ini-

tialization is good, i.e., there exists a weighted

combination of auxiliary hypotheses with a small

robust population loss, the bound exhibits a fast

rate of O(1/n). Otherwise, we get the standard

rate of O(1/
√
n). Additionally, we provide a

bound on the robust excess risk which is similar

in nature, albeit with a slightly worse rate.

We also consider solving the problem using a prac-

tical variant, namely proximal stochastic adver-

sarial training, and present a bound that depends

on the initialization. This bound has the same

dependence on the sample size as the ARERM

bound, except for an additional term that depends

on the size of the adversarial perturbation.
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1. Introduction

Despite the incredible success of machine learning on real-

world problems and its widespread adoption, several studies

over the years have shown that models trained using ma-

chine learning can be highly susceptible to adversarial at-

tacks (Goodfellow et al., 2014; Kurakin et al., 2018). These

attacks involve intentionally designing imperceptible pertur-

bations of the input data that cause the deployed (trained)

model to predict unreliably. A popular defense against such

inference-time attacks is adversarial training wherein the

learner is presented with simulated adversarial corruptions

of clean training data. Empirical studies have consistently

demonstrated that the use of adversarial training (Madry

et al., 2018) and its variants (Cai et al., 2018; Zhang et al.,

2019; Wang et al., 2020) result in models that exhibit greater

resilience to perturbations in the input space.

However, we rarely train models from scratch in real-world

scenarios, irrespective of whether we use adversarial train-

ing or standard training. One of the primary reasons is the

substantial increase in the size of available training data –

training from scratch demands not only the storage of co-

pious amounts of data but also significant computational

expense (e.g., parameter tuning). It may also be the case that

the underlying data distribution is not aligned with the distri-

bution of training data. Finally, in many scenarios, training

data might not be accessible due to privacy concerns.

A compelling solution in such large-scale, real-world set-

tings is to consider transferring knowledge from a source

domain to a target domain using an auxiliary set of hypothe-

ses; in prior work, this is referred to as hypothesis transfer

learning (HTL) (Kuzborskij & Orabona, 2013; 2017; Du

et al., 2017; Aghbalou & Staerman, 2023). These auxiliary

hypotheses can be viewed as prior information, originating

either from expert knowledge or as pre-trained foundation

models (trained on various related source tasks), and are

employed as an initialization for the learning process. Given

a hypothesis class, H, we linearly combine any candidate

predictor hw ∈ H with a weighted combination of the auxil-

iary hypotheses, f aux
1 , . . . , f aux

k , to construct the following

model for the target task:

hw,β(·) := hw(·) +
k∑

j=1

βjf
aux
j (·),
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where β = [β1, . . . , βk] ∈ R
k can be interpreted as the

effectiveness of the jth auxiliary hypothesis towards solving

the target task. Typically, we consider H to be a simple

hypothesis class (e.g., linear predictors) or a reproducing

kernel Hilbert space (RKHS), whereas the auxiliary hypothe-

ses f aux
j are fairly complex (e.g., deep neural networks). We

train the weight parameters while keeping auxiliary hypothe-

ses fixed during the training process.

The HTL setup is related, yet distinct, from popular frame-

works of transfer learning and domain adaptation, where the

learner has access to data from one or more source domains.

Instead, in HTL, we assume that all the knowledge from

the source domains has been distilled into a set of auxil-

iary hypotheses presented to the learner as side information.

Therefore, The HTL framework is also an excellent model

for studying phenomena such as fine-tuning. Indeed, with

the advent of foundation models such as the Vision Trans-

former (ViT) (Dosovitskiy et al., 2020) and large language

models (LLM) (Floridi & Chiriatti, 2020), we can view such

pre-trained models as auxiliary hypotheses. This paradigm

shift not only offers efficiency but also provides flexibility

in adapting models to diverse tasks by building upon the

foundational knowledge embedded in pre-trained models.

In this work, we study the theoretical aspects of hypothesis

transfer learning while ensuring adversarial robustness. We

make the following contributions.

In Section 3, we begin by exploring Adversarial Regular-

ized Empirical Risk Minimization framework (A-RERM)

for non-negative smooth loss functions with a strongly con-

vex regularizer. We establish a data-dependent bound on

robust generalization error of A-RERM that depends on the

utility of the auxilliary hypotheses. In particular, assum-

ing that there exists a hypothesis in the RKHS, H, which

in conjunction with a linear combination of auxiliary hy-

potheses can achieve a small robust loss on the target task,

then the generalization error of A-RERM converges at a fast

rate of O(1/n). Otherwise, the error decays at the standard

rate of O(1/
√
n). We also give an optimistic bound on

excess robust risk with an O(1/n) rate, but a worse rate of

O(1/n1/4) when near robust-realizability does not hold.

In Section 4, we explore a practical algorithm based on

proximal stochastic gradient descent algorithm. We show

a bound of O( 1n + α) on the generalization gap (w.r.t. the

robust loss). Unlike prior work, nowhere in our analysis we

assume convexity.

1.1. Related Work

Hypothesis Transfer Learning (HTL). In an early work,

Kuzborskij & Orabona (2013) analyze the generalization

ability of hypothesis transfer learning by leveraging the sta-

bility of regularized least squares regression. Their frame-

work was subsequently extended to a metric learning setting

by Perrot & Habrard (2015) wherein the auxiliary hypoth-

esis is a PSD matrix defining a (Mahalanobis) distance on

input features. For smooth non-negative loss functions,

Kuzborskij & Orabona (2017) give an optimistic guarantee

that exhibits a fast rate if the auxilliary hypotheses prove

beneficial for the (target) task. Du et al. (2017) establish

a similar fast rate for kernel smoothing and kernel ridge

regression for the setting when the source and target tasks

are related by a transformation. More recently, Aghbalou

& Staerman (2023) study HTL for surrogate losses for the

binary classification problem.

Robust Generalization Guarantees. Several works give

generalization guarantees for adversarially robust empiri-

cal risk minimization using uniform convergence, i.e., by

bounding the difference between the expected and the em-

pirical errors on an i.i.d. sample, simultaneously for all

hypotheses in the hypothesis class. These yield guaran-

tees based on various complexity measures of the hypoth-

esis class, including Rademacher complexity (Yin et al.,

2019; Khim & Loh, 2018; Awasthi et al., 2020), VC di-

mension (Cullina et al., 2018; Montasser et al., 2020), the

covering number (Balda et al., 2019; Mustafa et al., 2022;

Li & Telgarsky, 2023), or utilizing PAC Bayesian analy-

sis (Viallard et al., 2021; Xiao et al., 2023) or margin theory

(Farnia et al., 2018). Another line of work focuses on analyz-

ing robust generalization guarantees of adversarial training

(Madry et al., 2018) for linear predictors (Zou et al., 2021)

or shallow neural networks (Allen-Zhu & Li, 2022; Mianjy

& Arora, 2023; Li & Telgarsky, 2023; Wang et al., 2024), al-

beit under somewhat restrictive distributional assumptions.

Algorithmic Stability Analysis. The stability-based anal-

ysis, introduced by Bousquet & Elisseeff (2002), offers an

alternative approach for obtaining generalization bounds

in scenarios where uniform convergence-based guarantees

prove inadequate. Significant recent breakthroughs from

Feldman & Vondrak (2018; 2019); Bousquet et al. (2020);

Klochkov & Zhivotovskiy (2021) strengthen the nature of

these guarantees by improving high-probability bounds for

uniformly-stable learning algorithms. Relatedly, Hardt et al.

(2016) provide stability-based analysis of stochastic gradi-

ent descent (SGD) for stochastic convex optimization with

smooth loss functions. Kuzborskij & Lampert (2018) in-

troduce a data-dependent notion of algorithmic stability to

give novel generalization bounds. More recently, Zhang

et al. (2022) show that the stability analysis of Hardt et al.

(2016) is tight for convex and strongly convex functions

while improving upon the results of Hardt et al. (2016) for

non-convex loss functions and of Kuzborskij & Lampert

(2018) to give a tighter bound for the data-dependent aver-

age stability of SGD for non-convex smooth loss functions.

Complementing these advances, the smoothness assumption
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in the stability analysis of SGD is relaxed in Lei & Ying

(2020) to loss functions with Hölder continuous subgradi-

ents and Bassily et al. (2020) extend the analysis to nons-

mooth loss functions. Zhou et al. (2022) characterize the

stability of SGD for non-convex smooth functions in terms

of on-average variance of the stochastic gradients and Lei

(2023) extends the analysis to weakly convex problems with

non-convex and nonsmooth objective functions.

Compared to the standard setting, there has been limited

work applying stability-based analysis to study the general-

ization gap in adversarial learning. While Xing et al. (2021)

examine the algorithmic stability of a generic adversarial

training algorithm by leveraging the non-smooth nature of

adversarial loss, Xiao et al. (2022b) introduce a notion of

approximate smoothness to characterize adversarial loss.

However, all prior works assume that the adversarial loss

function is convex, which is unrealistic. In this work, we

forgo such unrealistic assumptions and focus on the general

setting where the adversarial loss is non-convex.

2. Problem Setup

Notation. Let X ⊆ R
d and Y denote the input feature

space and the output label space, respectively; for regression,

Y ⊆ [−1, 1] and for binary classification, Y = {±1}. Write

Z = X × Y . Let H ⊆ {h : X → Y} denote a hypothesis

class parameterized by some vector space W . The uncertain

relationship between inputs and outputs is modeled using

an (unknown) distribution D over X × Y . We are given a

training data S = {zi := (xi, yi)}ni=1, a sample of size n
drawn i.i.d. from D. Let ℓ : H×(X × Y) → R+ denote the

loss function. Given a hypothesis hw parameterized by w ∈
W and a random example z = (x, y) ∼ D, the loss function

can be written as ℓ(hw, (x, y)) = ϕ(yhw(x)), where ϕ :
R → R+. We also write ℓ(hw, (x, y)) as ℓ(w, z). Define

the population and empirical loss, respectively, as L(h) :=

E(x,y)∼D[ℓ(h, (x, y))] and L̂(h) := 1
n

∑n
i=1 [ℓ(h, (xi, yi))].

We make the following assumptions on the loss function.

Assumption 1. For all z ∼ D, we assume that the loss

function satisfies the following: (1) ℓ(·, z) is continuously

differentiable; (2) ℓ(·, z) is non-negative, monotonically de-

creasing, and |ℓ(·, z)| is uniformly bounded by M ; (3) ϕ(·)
is H-smooth.

Adversarial Attacks. We consider ℓp-norm-bounded ad-

versarial attacks with a perturbation budget of α > 0. For an

input example x ∈ X , the set of all such perturbations is an

ℓp-ball of size α centered at x, i.e., Bp(x, α) ⊆ X . Given the

threat model, it is natural to consider the following robust

(or, adversarial) loss function:

ℓ̃α(h, (x, y)) := sup
x̃∈Bp(x,α)

ℓ(h, (x̃, y)).

We refer to the population and empirical loss w.r.t. the

robust loss as robust population loss and robust empirical

loss, respectively:

Lα
adv(h) := E(x,y)∼D

[
sup

x̃∈Bp(x,α)

ℓ(h, (x̃, y))

]
,

L̂α
adv(h) :=

1

n

n∑

i=1

sup
x̃i∈Bp(xi,α)

ℓ(h, (x̃i, yi)).

To simplify notation, we often suppress the superscript α in

Lα
adv, L̂

α
adv, ℓ̃

α. We emphasize that, unlike some prior works,

we do not assume that the robust loss function ℓ̃ is convex.

2.1. Robust Transfer from Auxiliary Hypotheses

In this setup, the learner has access to a set of models or hy-

potheses F aux =
{
f aux
j : X → Y

}k
j=1

. These hypotheses,

serving as prior information, are provided by experts with

express domain knowledge or as a result of pre-training on

source distributions possibly distinct from the underlying

(target) distribution D. The learner’s ultimate goal is to

identify a classifier h that has a small robust population loss,

i.e., find h∗ = argminh∈H Ladv(h). The learner incorpo-

rates the auxiliary prior information F aux by augmenting its

hypothesis class and considering a combination classifier,

denoted hw,β , of the following form:

hw,β(·) :=hw(·)+f aux
β (·), with f aux

β (·)=
k∑

j=1

βjf
aux
j (·).

Here, the weight βj is a parameter that encodes the relevance

of the jth auxiliary hypothesis for the target task. While in

practice, β would be learned on training data for the target

task, for simplicity, we assume that β is fixed throughout the

training process. Nonetheless, it offers a form of capacity

control as we combine different, potentially very complex,

hypotheses, e.g., deep neural networks. Naturally, we find

that a bound on the size of β offers a useful tradeoff between

the ability of the auxiliary hypotheses to fit the training

data versus generalizing to the unseen data. We use Ψ :
R

k → R+ to measure the size of weights on the auxiliary

hypotheses.

Since f aux
j are kept fixed throughout the training process,

we can also interpret f aux
β as a (warm) initialization for the

learning algorithm which then refines the initial model akin

to fine-tuning, albeit by additively incorporating a simple

hypothesis hw from H into the model. The expanded hy-

pothesis set, which we denote as H̃, is essentially the direct

sum H̃ = H⊕ span{f aux
1 , · · · , f aux

k }. Formally,

H̃ = {h̃ = h+
k∑

j=1

βjf
aux
j | h ∈ H, βj ∈ R, j = 1, . . . , k}.

We formulate learning as solving an Adversarial Regu-

larized Empirical Risk Minimization (A-RERM) problem.
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Given a regularizer function Ω : H 7→ R+ and parameter

λ ∈ R+, let AA-RERM : Zn × F aux → H̃ denote the learn-

ing algorithm that given an i.i.d. sample S ∼ Dn, returns

hŵ,β = hŵ + f aux
β , where

hŵ = argmin
h∈H

(
L̂adv(h+ f aux

β ) + λΩ(h)
)
. (1)

Note that the weights β ∈ R
k are fixed and we only optimize

over h ∈ H. For suitable choices of the regularizer, we can

argue that the larger the regularization parameter λ, the

closer the final model hŵ,β to f aux
β . More concretely, we

can make the following connection between a special case

of Problem (1) and ERM with a biased regularizer. To

that end, consider the setting where the hypothesis class is

that of linear predictors, i.e., hw(x) = w⊤x, the auxiliary

model f aux
β (x) = u⊤x is linear, and the regularizer Ω(·) =

∥·∥2. Then, for squared loss ϕ(z) = (1 − z)2, write the

optimization Problem (1) as

ŵ = argmin
w∈Rd

1

n

n∑

i=1

max
x̃i∈Bp(xi,α)

(
w⊤x̃i+u⊤x̃i−yi

)2
+λ ∥w∥2

= argmin
w∈Rd

1

n

n∑

i=1

(
(w+u)⊤(xi+εi)−yi

)2
+λ ∥w∥2, (2)

where εij = −αyisign(wj + uj) |wj+uj |q−1
/∥w+u∥q−1

q

is the j-th component of the optimal adversarial perturbation

εi of the training example xi given the combined model

w + u; note that q is the Hölder conjugate to p, i.e., 1/p+
1/q = 1. Replace w′ := ŵ+u, and let ε′i denote the optimal

adversarial perturbation of xi given the model w′. Then,

ε′ij = −αyisign(w′
j)
∣∣w′

j

∣∣q−1
/ ∥w′∥q−1

q , and Problem (2)

is equivalent to

ŵ
′=argmin

w′∈Rd

1

n

n∑

i=1

(
w′⊤(xi+ε

′
i)−yi

)2
+λ ∥w′−u∥2

=argmin
w′∈Rd

1

n

n∑

i=1

max
x̃i∈Bp(xi,α)

(
w′⊤x̃i−yi

)2
+λ ∥w′−u∥2 .

In the standard (non-robust) setting, several works study

biased regularization for both transfer learning (Tommasi

& Caputo, 2009; Tommasi et al., 2012; Balcan et al., 2019;

Denevi et al., 2019; Takada & Fujisawa, 2020; Denevi et al.,

2020) as well as hypothesis transfer learning Kuzborskij &

Orabona (2013; 2017).

2.2. Algorithmic Stability

Following Kuzborskij (2018), we consider the following

two notions of algorithmic stability.

Definition (On-Average Stability). Given training data S =
{zi}ni=1 ∼ Dn, let S(i) denote a copy of S with the i-th

example replaced by z ∼ D, where i ∼ Uniform[n] is

sampled according to uniform distribution over {1, . . . , n}.

We say that

1. An algorithm A is µ1-on-average stable with respect to

loss ℓ(·) if the following holds:

sup
z′

ES,z,i

[
ℓ(A(S), z′)− ℓ(A(S(i)), z′)

]
≤ µ1,

2. An algorithm A is µ2-second-order-on-average stable

with respect to loss ℓ(·) if the following holds:

sup
z′

ES,z,i

[(
ℓ(A(S), z′)− ℓ(A(S(i)), z′)

)2]
≤ µ2.

While the notion of on-average-stability (the first notion

above) is milder than uniform stability (Bousquet & Elisse-

eff, 2002), it is slightly stronger than on-average-replace-one

stability (Shalev-Shwartz et al., 2010). The following result

bounds the generalization gap of an algorithm in terms of

its on-average-stability parameters.

Theorem 2.1 (Theorem 8 of Kuzborskij (2018)). Let Al-

gorithm A be µ1-on-average-stable and µ2-second-order-

on-average stable. Let δ > 0. Then, given a training set

S ∼ Dn of size n, we have the following for the hypothesis

A(S), with probability at least 1− δ

L(A(S))−L̂(A(S))≤ µ1+

√
4 log

(1
δ

)
µ2 +

3M log
(
1
δ

)

2n
.

3. Robust Generalization Guarantees

In this section, we first consider H to be a reproducing

kernel Hilbert space (RKHS) endowed with a symmetric

positive semidefinite kernel function k : Rd × R
d → R,

an inner product ⟨·, ·⟩ and a norm ∥·∥k. For any x ∈ R
d,

the function x 7→ k(x, ·) is contained in H. We study Prob-

lem (1) with Ω(h) = ∥h∥2k. We assume that Ω(·) is strongly

convex w.r.t. ∥ · ∥k and that the kernel and the auxiliary

hypotheses are all bounded.

Assumption 2. We make the following boundedness as-

sumptions on the hypotheses.

(1) Auxiliary hypotheses in F aux are bounded point-wise

by C, i.e., supj∈[k],x∈X
∣∣f aux

j (x)
∣∣=C<∞.

(2) Hypotheses in the RKHS H are bounded, i.e., the kernel

k is bounded by κ ∈ R: supx1,x2∈Xk(x1, x2)=κ<∞.

Further, we assume that the regularizers Ω,Ψ are strongly

convex w.r.t. corresponding norms.

(3) Ω(·) = ∥·∥2k is σ-strongly convex w.r.t. RKHS norm.

(4) Ψ(·) is 1-strongly convex w.r.t. the Euclidean norm.

4



Adversarially Robust Hypothesis Transfer Learning

3.1. Bounding Robust Generalization Gap

First, we provide an upper bound on the robust generaliza-

tion gap for A-RERM.

Theorem 3.1. Assume that the learner is given a weighted

linear combination f aux
β (·) =∑k

j=1 βjf
aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k such that Ψ(β) ≤ ρ. Fix

any δ > 0, and say Assumptions 1 and 2 hold. Then, given

an i.i.d. sample S ∼ Dn of size n, for any λ > 0, the A-

RERM rule returns hŵ,β such that with probability at least

1− δ,∣∣∣Ladv(hŵ,β)− L̂adv(hŵ,β)
∣∣∣

≤Õ
(

1√
n

((
1+

1√
λ

)(
Laux

adv√
λ
+
√
Laux

advρ

)
+
√
Laux

adv

))

+ Õ
(
1

n

((
1+

1√
λ

)(√
Laux

adv

λ
+
√
ρ

)))
,

where Laux
adv = Lα

adv(f
aux
β ).

Some remarks are in order.

In the bound above, we use the Õ(·) notation to hide

log (1/δ) terms as well as dependence on constants H , κ,

C, σ, M ; please see Appendix A for a detailed statement

and proof.

Not surprisingly, the bound in Theorem 3.1 depends on

the robust error of the auxiliary model f aux
β . Indeed, our

bound is optimistic in nature. For settings where Laux
adv ≈ 0

is small or in small sample regimes where n = O(1/Laux
adv),

the bound above decays at a fast rate of O(1/n).

If we view the auxiliary model as a warm initialization and

A-RERM as performing fine-tuning, then our result is an

affirmation of the empirical finding of Hua et al. (2023) that

initialization is important for adversarial transfer learning.

We can also view Laux
adv as characterizing transferability to the

new domain, playing a role similar to domain divergence in

transfer learning (Ben-David et al., 2010) and robust domain

adaptation (Deng et al., 2023).

We remark that our proof of Theorem 3.1 allows for general

adversarial attacks, wherein the set of perturbations for any

input example can be arbitrary, including a discrete set of

large-norm perturbations or (image) transformations.

The robust loss of the auxiliary model f aux
β depends on the

weights β. While Theorem 3.1 holds for any β ∈ R
k, it

is fixed prior to learning. In practice, we can treat β as

a hyperparameter and use cross-validation to pick a good

model. An alternate approach would be to optimize over h
and β simultaneously and consider the following learning

rule instead,

(hŵ, β̂) = argmin
h∈H,β∈Rk

(
L̂adv(h+ f aux

β ) + λΩ(h) + νΨ(β)
)
.

Two-layer ReLU Networks Next, we extend our re-

sult to two-layer ReLU networks of width m. A hypoth-

esis hw ∈ H is parametrized using top-layer weights

a = (a1, . . . , am) ∈ R
m, bottom layer weights ws ∈ W ,

into each of the hidden neurons, s ∈ {1, . . . ,m}, with

∥ws∥ ≤ B. For any input x ∈ X := {x ∈ R
d |

∥x∥ ≤ κ}, the output of the model hw(·) is given as

hW(x) =
∑m

s=1 asψ(⟨ws, x⟩), where ψ(x) = max(0, x)
is the ReLU activation function. The top-layer weights are

set by sampling them uniformly as ∼ Unif
{
± 1

m

}
and are

kept fixed while training {ws}ms=1. Slightly abusing the no-

tation, we write Ω(hW) =
∑m

s=1 Ω(ws). We assume that Ω
is σ-strongly convex w.r.t. ∥·∥ and that Ω(0) = 0. As before,

we assume Ψ(·) is 1-strongly convex w.r.t. the Euclidean

norm. With the setup above we obtain that Theorem 3.1

holds for two-layer ReLU networks as well.

3.2. Excess Robust Risk

The bound in the previous section is post hoc in nature,

stating that if we find a model with a small training loss,

then it will generalize well. Here, we give a bound on the

excess robust risk that holds a priori, i.e., before the learner

even sees any training data.

Theorem 3.2. Assume that the learner is given a weighted

linear combination f aux
β (·) =∑k

j=1 βjf
aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k such that Ψ(β) ≤ ρ. Fix

any δ > 0, and say Assumptions 1 and 2 hold. Let τ > 0 be

such that suph∈H Ω(h) ≤ τ. Then, given an i.i.d. sample

S ∼ Dn of size n, and setting λ as

λ=Õ





√√√√ 1

τ

√
Laux

adv

n

(√
Laux

adv+
√
ρ
)
+

√
1

τ2n

√
Laux

adv

n

(√
Laux

adv+
√
ρ
)




the A-RERM rule returns hŵ,β such that with probability at

least 1− δ,

Ladv(hŵ,β)− min
hw:Ω(hw)≤τ

Ladv(hw,β)≤Õ
(
1

n
+

√
Laux

adv

n1/2

+

√
Laux

adv+
4
√
Laux

advρ

n1/4
√
τ+

4
√
Laux

adv+
8
√
Laux

advρ

n3/8

√
τ

)
.

Akin to the bound in the previous section, the bound above

is optimistic in nature. If Laux
adv ≈ 0, the excess robust risk

decays as Õ(1/n). However, owing to the non-convexity

of the adversarial loss function we obtain a worse rate of

Õ(1/n1/4) in general. We note that both of our results (The-

orem 3.1 and 3.2) recover the results in the standard (non-

robust) setting (Kuzborskij & Orabona, 2017) for α = 0.
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4. Robust Generalization Bounds via Proximal

Stochastic Adversarial Training

Thus far, we focused on the A-RERM learning rule for

adversarial hypothesis transfer. While the A-RERM rule

exhibits an optimistic statistical learning rate, it is often com-

putationally hard to implement even in a standard setting

without robustness constraints. This motivates a more prac-

tical approach to learning based on proximal SGD which

we refer to as Proximal Stochastic Adversarial Training

(PSAT). Proximal algorithms are standard tool for solving

nonsmooth convex optimization problems; see Schmidt

et al. (2011); Xiao & Zhang (2014); Ghadimi et al. (2016);

Asi & Duchi (2019) for a good introduction.

The setup is the same as in the previous section. We are

given training data S = {zi = (xi, yi)}ni=1 ∼ Dn, an ad-

versarial loss function ℓ̃(·) : H×Z → R, and a hypothesis

class parameterized by w ∈ W . We consider a possibly

nonsmooth regularizer function Ω(·). Then, at each round

t of the PSAT algorithm, we sample an example uniformly

randomly from the given dataset S , i.e., sample ξt uniformly

over [n] without replacement, and perform the following

update:

wt+1 = proxγt,λΩ

(
wt − γt∇ℓ̃(wt, zξt)

)
,

where the proximal map with parameter γ > 0 is defined

as:

proxγ,Ω(w) := argmin
u

Ω(u) +
1

2γ
∥u − w∥2 .

We initialize PSAT with the auxiliary model, w0 = f aux
β . For

any λ > 0, we define the regularized adversarial population

and empirical loss, respectively, as follows

Φadv(w) := Ladv(w) + λΩ(w), and

Φ̂adv(w) := L̂adv(w) + λΩ(w).

For simplicity, we assume Ω(·) to be 1-strongly convex

function, not necessarily differentiable.

Since we work in a stochastic setting, we also assume that

the variance of the stochastic gradients is bounded, an as-

sumption that is rather standard in analysis of stochastic

gradient-based algorithms for optimization.

Assumption 3. Given any sample S = {z1, . . . , zn} ∼ Dn,

there exists a constant νS > 0 such that ∀w ∈ W , we have

Eξ∼Uniform[n]

∥∥∥∥∥∇ℓ̃(w; zξ)−
1

n

n∑

i=1

∇ℓ̃(w; zi)

∥∥∥∥∥

2

≤ ν2S .

Assumption 4. We assume that the loss function is Lips-

chitz and satisfies certain smoothness conditions:

(1) ∥ℓ(w1, z)− ℓ(w2, z)∥ ≤ L ∥w1 − w2∥ ,
(2) ∥∇wℓ(w1, z)−∇wℓ(w2, z)∥ ≤ H ∥w1 − w2∥ ,
(3) ∥∇wℓ(w, (x1, y))−∇wℓ(w, (x2, y))∥≤Hz ∥x1 − x2∥ .

The assumption above is mild and rather standard in sev-

eral works studying adversarial training (Sinha et al., 2017;

Wang et al., 2021; Farnia & Ozdaglar, 2021; Xing et al.,

2021; Xiao et al., 2022a). Note that we do not assume that

the loss function is convex.

Next, we establish generalization guarantees for PSAT by

showing that it is a stable rule. First, we show that if PSAT is

fed two datasets that are similar, then it produces models that

are close to each other. Formally, given a training data S ∼
Dn, let S(i) denote the training data obtained by replacing

the i-th example zi ∈ S by another example z′ ∼ D drawn

independently; we refer to S,S(i) as neighboring datasets.

Lemma 4.1. Say Assumptions 1, 3 and 4 hold. Let wT and

w′
T denote the outputs on two neighboring datasets S,S ′,

respectively, after running PSAT for T iterations on each

of the datasets using γt =
c

t+1 with 0 < c < 1
H . Then, for

λ > H , we have that:

Eξ∼Uniform[n],S,S(i) ∥wT − w′
T ∥ ≤ 4(1 + λ)Hzα

λ−H

+
2(1+λ)

√
2HΦadv(w0)+(4ES[ν2S ]+4H2

zα
2) log (T )

n(λ−H)
.

Further, for λ > 2H + 1, we have

Eξ∼Uniform[n],S,S(i)∥wT − w′
T ∥

2≤ 8(H+2)2(1+λ)2H2
zα

2

(2λ− 3H − 2)HT

+
(1+λ)2

(
32HΦadv(w0)+

(
64ES

[
ν2S
]
+16H2

zα
2
)
log (T )

)

(2λ− 3H − 2)HTn
.

Using Lemma 4.1 in Theorem 2.1 gives the following bound

on the robust generalization error of PSAT.

Theorem 4.2. Say Assumptions 1, 3 and 4 hold. Let wT
denote the output on a sample S ∼ Dn of size n after
running PSAT for T iterations with γt =

c
t+1 for 0 < c <

1
H , and let λ > 2H + 1. Then, ∀δ > 0, w.p. at least 1− δ,
we have that

Ladv(wT )− L̂adv(w
′

T ) ≤
1.5M log (1/δ)

n

+

(

8

√
2L2(HΦadv(w0)+(4ES [ν2

S
]+H2

zα2) log (T )) log (1/δ)

nTH(2λ− 3H − 2)

+
2L

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2

S
] + 4H2

zα2) log (T )

+
4LHzα

λ−H
+

√
32(H+2)2L2H2

zα2 log (1/δ)

(2λ− 3H − 2)HT

)

(1 + λ)

Ignoring the constants and higher order terms, to better

understand the result above, we see that the bound scales as

Õ(
√
Φadv(w0) + ES [ν2S ] log (T )

(
1√
nT

+ 1
n

)
+ 1

n + α).

The results above hold for sufficiently large regularization

parameter. Next, we present generalization bound for the

setting when λ is relatively small.

Theorem 4.3. Say Assumptions 1, 3 and 4 hold. Let wT
denote the output on a sample S ∼ Dn of size n after

6
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running PSAT for T = O(n) iterations with γt =
c

t+1 for

0 < c < 1
H , and 0 < λ < H , we have that

Eξ,S

[
Ladv(wT )−L̂adv(wT )

]
≤O
(

max

{
T q

nq+1

L (Q+nHzα)

H(1−q)
,

T
q

q+1

n

(
Eξ,SL̂adv(wT )

) q
q+1

[
L (Q+nHzα)

H(1− q)

] 1
q+1

})

,

where Q =
√
2HΦadv(w0)+(4ES [ν2S ]+4H2

zα
2) log (T ),

q = 1− λ
H .

The bound above depends on the initialization as well as

the expected adversarial empirical loss; i.e. Eξ,SL̂adv(wT ).

For settings where Eξ,SL̂adv(wT,S) = O( T q

n1+q ), the bound

scales as O
(

1
1−q

(
T
n

)q
(Qn + α)

)
. Again, setting T = n, it

simplifies to O
(

1
1−q (

Q
n + α)

)
.

5. Conclusion and Discussion

In this paper, we studied the problem of learning adversar-

ially robust models using auxiliary hypotheses. Given a

smooth loss and a strongly convex regularizer, we estab-

lish robust generalization guarantees for two learning algo-

rithms – adversarial regularized empirical risk minimiza-

tion (A-RERM) and proximal stochastic adversarial train-

ing (PSAT). Our results highlight the importance of a good

initialization for achieving fast generalization. There are a

several promising directions for future research. Our theoret-

ical analysis highlights the importance of the regularization

parameter in achieving fast generalization guarantees. It

would be interesting to explore principled approaches such

as recursive regularization for controlling the regularizer

strength. Further, developing a practical algorithm that miti-

gates the dependence of the robust generalization gap on the

perturbation size would help advance the state-of-the-art.
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A. Missing Proofs in Section 3

Before presenting the proof, we first give the definition of a smooth function and Rademacher complexity that will be used

later.

Definition (Smoothness). A differentiable function f : Rd → R is H-smooth if its gradient is H-Lipschitz; i.e., for all

w1,w2, ∥∇f(w1)−∇f(w2)∥ ≤ H ∥w1 − w2∥.

Definition (Rademacher complexity (Bartlett & Mendelson, 2002)). Given distribution D, let S = {(xi.yi)}i=1 drawn i.i.d.

from D. Let H be a class of functions h : Z → R. We define the empirical Rademacher complexity of H measured on S as

R̂S(H) = Eσi,i∈[n]

[
sup
h∈H

(
1

n

n∑

i=1

σih(xi)

)]
.

where σi is Rademacher random variable such that P(σi = 1) = P(σi = −1) = 0.5. The Rademacher complexity of H is

defined as

R(H) = ED [RS(H)] .

Theorem A.1 presents a Rademacher complexity-based generalization bound, which is the basis of the proof of Theorem 3.1.

The proof of Theorem A.1 follows from Kuzborskij & Orabona (2017, Proof of Theorem 4) by replacing the standard loss

to its adversarial counterpart.

Theorem A.1. Under Assumption 1, let the training set S of size n be sampled i.i.d. from D. For any r ≥ 0, define the

adversarial loss class w.r.t. the hypothesis class H as

L̃ :=

{
(x, y) 7→ sup

x̃∈Bp(x,α)

ℓ(h; (x̃, y)) : h ∈ H ∧ Ladv(h) ≤ r

}
.

Fix any δ > 0, for any h ∈ H and any training set S of size n, with probability at least 1− δ,

Ladv(h)− L̂adv(h) ≤ 2R(L̃) + 3M log (1/δ)

n log
(
1 +

√
2M log(1/δ)

(4R(L̃)+r)n

)

≤ 2R(L̃) + 3

√
(4R(L̃) + r)M log (1/δ)

2n
+

1.5M log (1/δ)

n
.

We will use the following findings from Kakade et al. (2012) on strongly convex regularizers in a general setting.

Lemma A.2 (Corollary 4 in (Kakade et al., 2012)). If Ω is σ-strongly convex w.r.t. ∥·∥ and Ω∗(0) = 0 (Ω∗ is the Fenchel

conjugate of Ω), then, denoting the partial sum
∑

j≤i vj by v1:i, we have for any sequence v1, . . . , vm and for any u,

m∑

i=1

⟨vi, u⟩ − Ω(u) ≤ Ω∗(v1:m) ≤
m∑

i=1

⟨∇Ω∗(v1:i−1), vi⟩+
1

2σ

m∑

i=1

∥vi∥2∗

We also leverage the following lemma, which demonstrates that the solution to the optimization problem (1) has a bounded

radius associated with the given auxiliary hypotheses.

Lemma A.3. Under Assumption 2, the solution of Equation (1) lies in the set

{
h ∈ H, ∥h∥∞ ≤

√
κ
λ L̂adv(f

aux
β )

}
.

Proof of Lemma A.3. By the definition of hŵ, Ladv(hŵ + f aux
β ,S) + λ ∥hŵ∥2k ≤ L̂adv(f

aux
β ), which gives us that ∥hŵ∥k ≤√

1
λ L̂adv(f

aux
β ). Therefore,

∥hŵ∥∞ = sup
x

|⟨hŵ, k(x, ·)⟩| ≤ ∥hŵ∥k sup
x

√
k(x, x) ≤

√
κ ∥hŵ∥k ≤

√
κ

λ
L̂adv(f

aux
β ).

We now study the Rademacher complexity of the adversarial loss function class.

Lemma A.4. Under Assumption 1, define the adversarial loss class w.r.t. the expanded hypothesis class H̃ as
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L̃ :=
{
(x, y) 7→ ℓ̃(h, (x, y)) : h ∈ H̃

}
.

Then given an i.i.d. sample S ∼ Dn of size n and the following set{
τi : τi ≥ ℓ̃(h, (xi, yi)), ∀(xi, yi) ∈ S ∧ ∀h ∈ H̃

}
,

we have that

R̂S(L̃) ≤ Eσi,i∈[n]

[
sup
h∈H̃

{
2
√
3H

n

n∑

i=1

σi
√
τi min

x̃i∈B(xi,α)
yih(x̃i)

}]

Proof of Lemma A.4. Recall from (Srebro et al., 2010) that for any H-smooth non-negative function ϕ : R 7→ R+ and

any z1, z2 ∈ R, |ϕ(z1)− ϕ(z2)| ≤
√
6H(ϕ(z1) + ϕ(z2)) |z1 − z2|. Here we define x̃1 = argmaxx̃∈B(x1,α) ℓ(h1, (x̃, y)),

x̃2 = argmaxx̃∈B(x2,α) ℓ(h2, (x̃, y)). Then choose z1 = yh1(x̃1), z2 = yh2(x̃2), we have that

|ℓ(h1, (x̃1, y))− ℓ(h2, (x̃2, y))| ≤
√

6H (ℓ(h1, (x̃1, y)) + ℓ(h2, (x̃2, y))) |yh1(x̃1)− yh2(x̃2)| .
Apply adversarial loss gives us that

∣∣∣ℓ̃(h1, (x, y))− ℓ̃(h2, (x, y))
∣∣∣ ≤

√
6H
(
ℓ̃(h1, (x, y)) + ℓ̃(h2, (x, y))

) ∣∣∣∣ min
x̃1∈B(x,α)

yh1(x̃
1)− min

x̃2∈B(x,α)
yh2(x̃

2)

∣∣∣∣ .

Fix the training set S , by the definition of empirical Rademacher complexity, we have that

R̂S(L̃) =
1

n
Eσi,i∈[n]

[
sup
h∈H̃

{
n∑

i=1

σiℓ̃(h, (xi, yi))

}]

=
1

n
Eσ1,...,σn−1

[
Eσn

[
sup
h∈H̃

{
un−1(h) + σnℓ̃(h, (xn, yn))

}]]

where un−1(h) =
∑n−1

i=1 σiℓ̃(h, (xi, yi)). By the definition of supremum, for any γ > 0, there exist h1, h2 ∈ H̃ such that

un−1(h1) + ℓ̃(h1, (xn, yn)) ≥ (1− γ)

(
sup
h∈H̃

{
un−1(h) + ℓ̃(h, (xn, yn))

})

un−1(h2)− ℓ̃(h2, (xn, yn)) ≥ (1− γ)

(
sup
h∈H̃

{
un−1(h)− ℓ̃(h, (xn, yn))

})

Thus for any γ > 0, we have

(1− γ)Eσn

[
sup
h∈H̃

{
un−1(h) + σnℓ̃(h, (xn, yn))

}]

=
1− γ

2

(
sup
h∈H̃

{
un−1(h) + ℓ̃(h, (xn, yn))

}
+ sup

h∈H̃

{
un−1(h)− ℓ̃(h, (xn, yn))

})

≤ 1

2

(
un−1(h1) + ℓ̃(h1, (xn, yn)) + un−1(h2)− ℓ̃(h2, (xn, yn))

)

(Define h1 = arg suph∈H̃

{
un−1(h) + ℓ̃(h, (xn, yn))

}
, h2 = arg suph∈H̃

{
un−1(h)− ℓ̃(h, (xn, yn))

}
)

≤ 1

2

(
un−1(h1)+un−1(h2)+

√
6H
(
ℓ̃(h1; (xn, yn))+ℓ̃(h2; (xn, yn))

) ∣∣∣∣ min
x̃1n∈B(xn,α)

ynh1(x̃
1
n)− min

x̃2n∈B(xn,α)
ynh2(x̃

2
n)

∣∣∣∣

)

≤ 1

2

(
un−1(h1) + un−1(h2) +

√
12Hτn

∣∣∣∣ min
x̃1n∈B(xn,α)

ynh1(x̃
1
n)− min

x̃2n∈B(xn,α)
ynh2(x̃

2
n)

∣∣∣∣
)

(Define sn = sign
(
minx̃1n∈B(xn,α) ynh1(x̃

1
n)−minx̃2n∈B(xn,α) ynh2(x̃

2
n)
)

)

≤ 1

2
sup
h∈H̃

{
un−1(h) + sn

√
12Hτn min

x̃n∈B(xn,α)
ynh(x̃n)

}
+

1

2
sup
h∈H̃

{
un−1(h)− sn

√
12Hτn min

x̃n∈B(xn,α)
ynh(x̃n)

}

11
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= Eσn

[
sup
h∈H̃

{
un−1(h) + σn

√
12Hτn min

x̃n∈B(xn,α)
ynh(x̃n)

}]

Induction in the same way for σi with i ̸= n proves the result.

Theorem A.5. Assume that the learner is given a weighted linear combination f aux
β (·) =

∑k
j=1 βjf

aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k. Given a scalar λ > 0, for any i.i.d. sample S ∼ Dn of size n, define classes

H =

{
h ∈ H : ∥h∥∞ ≤

√
κ

λ
L̂adv(f

aux
β )

}
, V = {β : Ψ(β) ≤ ρ} ,

and the adversarial loss class

L̃ =
{
(x, y) 7→ ℓ̃(h(x) + f aux

β (x), y) : h ∈ H ∧ β ∈ V
}
.

Under Assumptions 1 and 2, for the adversarial loss class L̃, we have that

R(L̃) ≤ 4
√
3H(κ+ σC)

(
1 +

√
Hκ

λ

)
Ladv(f

aux
β )/

√
λ+

√
Ladv(f

aux
β )ρ

√
nσ

.

Proof of Theorem A.5. Define x̃i(hβ) = minx̃i∈B(xi,α) yi(h(x̃i) + f aux
β (x̃i)), ∀i ∈ [n]. Applying Lemma A.4 gives us that,

R̂S(L̃) ≤ Eσ

[
sup

h∈H,β∈V

{
2
√
3H

n

n∑

i=1

σi
√
τi min

x̃i∈B(xi,α)
yi(h(x̃i) + f aux

β (x̃i))

}]

≤ Eσ

[
sup

h∈H,β∈V

{
2
√
3H

n

n∑

i=1

σi
√
τiyi ⟨h, k(x̃i(hβ), ·)⟩+

2
√
3H

n

n∑

i=1

σi
√
τiyi ⟨β, faux(x̃i(hβ))⟩

}]

≤ Eσ

[
sup
h∈H

{
2
√
3H

n

n∑

i=1

σi
√
τiyi ⟨h, k(x̃i(hβ), ·)⟩

}]

+ Eσ

[
sup
β∈V

{
2
√
3H

n

n∑

i=1

σi
√
τiyi ⟨β, faux(x̃i(hβ))⟩

}]

where faux is defined as faux = [f aux
1 , f aux

2 , . . . , f aux
k ]⊤. Let t > 0. For the first term, consider Ω(h) = ∥h∥2k, setting

vi = tσi
√
τik(x̃i(hβ), ·) and applying Lemma A.2 gives us

Eσ

[
sup
h∈H

{
n∑

i=1

⟨h, tσi
√
τik(x̃i(hβ), ·)⟩

}]

≤ Eσ

[
t2

2σ

n∑

i=1

∥σi
√
τik(x̃i(hβ), ·)∥2∗ + sup

h∈H
Ω(h) +

n∑

i=1

⟨∇Ω∗(v1:i−1), σit
√
τik(x̃i(hβ), ·)⟩

]

≤ t2κ2

2σ

n∑

i=1

|τi|+
L̂adv(f

aux
β )

λ
(Assumption 2, definition of H, Eσ [σi] = 0.)

Similarly, for the second term, we have

Eσ

[
sup
β∈V

{
n∑

i=1

⟨β, tσi
√
τif

aux(x̃i(hβ))⟩
}]

≤ t2C2

2

n∑

i=1

|τi|+ ρ

Combining the two terms and optimizing over t gives us that

R̂S(L̃) ≤ 4
√
3H(κ+ σC)

√√√√ 1
n

∑n
i=1 |τi|

(
L̂adv(f

aux
β )/λ+ ρ

)

nσ
(3)

Since ϕ(·) is a H-smooth monotonic decreasing function, define x̃1 = argminx̃∈B(x,α) yf
aux
β (x̃), x̃2 =

12
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argminx̃∈B(x,α) y(h(x̃) + f aux
β (x̃)), we have

ℓ̃(h+ f aux
β , (x, y)) = ϕ(y(h(x̃2) + f aux

β (x̃2)))

≤ ϕ(yf aux
β (x̃1)) + ϕ′(yf aux

β (x̃1))y(h(x̃2) + f aux
β (x̃2)− f aux

β (x̃1)) +
H

2
(h(x̃2) + f aux

β (x̃2)− f aux
β (x̃1))

2

(By the definition of x̃1, x̃2, we have yh(x̃2) ≤ y(h(x̃2) + f aux
β (x̃2)− f aux

β (x̃1)) ≤ yf(x̃1))

≤ ϕ(yf aux
β (x̃1)) + ϕ′(yf aux

β (x̃1))max {h(x̃1), h(x̃2)}+
H

2
(max {h(x̃1), h(x̃2)})2

≤ ℓ̃(yf aux
β (x)) + 2

√
Hℓ̃(yf aux

β (x)) ∥h∥∞ +
H

2
∥h∥2∞

≤ ℓ̃(yf aux
β (x)) + 2

√
Hκ

λ
ℓ̃(yf aux

β (x))L̂adv(f
aux
β ) +

HκL̂adv(f
aux
β )

2λ
.

By the definition of τi, we have that

ℓ̃(h+ f aux
β , (xi, yi)) ≤ τi = ℓ̃(f aux

β , (xi, yi)) + 2

√
Hκ

λ
ℓ̃(f aux

β , (xi, yi))L̂adv(f
aux
β ) +

HκL̂adv(f
aux
β )

2λ
.

As a result, applying Jensen’s inequality gives us that

1

n

n∑

i=1

|τi| ≤ L̂adv(f
aux
β ) + 2

√
Hκ

λ
L̂adv(f

aux
β ) +

HκL̂adv(f
aux
β )

2λ
≤
(
1 +

√
Hκ

λ

)2

L̂adv(f
aux
β ).

Plugging back into Equation (3) gives us that

R(L̃) = ES

[
R̂S(L̃)

]
≤ ES


4

√
3H(κ+ σC)

(
1 +

√
Hκ

λ

)
√√√√ L̂adv(f

aux
β )

(
L̂adv(f

aux
β )/λ+ ρ

)

nσ




≤ 4
√
3H(κ+ σC)

(
1 +

√
Hκ

λ

)
Ladv(f

aux
β )/

√
λ+

√
Ladv(f

aux
β )ρ

√
nσ

.

Theorem 3.1. Assume that the learner is given a weighted linear combination f aux
β (·) =∑k

j=1 βjf
aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k such that Ψ(β) ≤ ρ. Fix any δ > 0, and say Assumptions 1 and 2 hold. Then, given an

i.i.d. sample S ∼ Dn of size n, for any λ > 0, the A-RERM rule returns hŵ,β such that with probability at least 1− δ,∣∣∣Ladv(hŵ,β)− L̂adv(hŵ,β)
∣∣∣

≤Õ
(

1√
n

((
1+

1√
λ

)(
Laux

adv√
λ
+
√
Laux

advρ

)
+
√
Laux

adv

))

+ Õ
(
1

n

((
1+

1√
λ

)(√
Laux

adv

λ
+
√
ρ

)))
,

where Laux
adv = Lα

adv(f
aux
β ).

Proof of Theorem 3.1. Define the adversarial loss class L̃ :=
{
(x, y) 7→ ℓ̃(h, (x, y)) : h ∈ H

}
, define the expanded hypoth-

esis class:

H̃ :=

{
x 7→ hw,β(x) : hw,β = hw + f aux

β , hw ∈ H,

Ω(hw) ≤
L̂adv(f

aux
β )

λ
∧ ∥h∥∞ ≤

√
κ

λ
L̂adv(f

aux
β ) ∧Ψ(β) ≤ ρ ∧ L̂adv(hw,β) ≤ L̂adv(f

aux
β )

}
.

13
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Recall the optimization problem:

hŵ = argmin
h∈H

{
L̂adv(h+ f aux

β ) + λΩ(h)
}
, hŵ,β = hŵ + f aux

β ∈ H̃.

We have L̂adv(hŵ + f aux
β ) + λΩ(hŵ) ≤ L̂adv(f

aux
β ), which gives us that Ω(hŵ) ≤ 1

λ L̂adv(f
aux
β ), L̂adv(hŵ,β) ≤ L̂adv(f

aux
β ).

Leveraging Lemma A.3, we have hŵ,β ∈ H̃. From Theorem A.5 we have that

R(L̃) ≤ O
(
(κ+ σC)

√
H

(
1 +

√
Hκ

λ

)
Laux

adv/
√
λ+

√
Laux

advρ√
nσ

)
.

Note that

r = sup
h∈H̃

Ladv(h) = sup
h∈H̃

ES

[
L̂adv(h)

]
≤ ES

[
sup
h∈H̃

L̂adv(h)

]
≤ ES

[
L̂adv(f

aux
β )
]
= Laux

adv.

Plugging into Theorem A.1 gives us that

Ladv(hŵ,β)−L̂adv(hŵ,β)

≤ 2R(L̃) + 3

√
(4R(L̃) + Laux

adv)M log (1/δ)

2n
+

1.5M log (1/δ)

n

≤ 2R(L̃) + 3

(
√
Laux

adv +
2R(L̃)√
Laux

adv

)√
M log (1/δ)

n
+

1.5M log (1/δ)

n
(
√
a+ b ≤ √

a+ b
2
√
a

)

≤ O
(

1√
n

(√
H

σ
(κ+ σC)

(
1 +

√
Hκ

λ

)(
Laux

adv√
λ

+
√
Laux

advρ

)
+
√
Laux

advM log (1/δ)

))

+O
(
1

n

(√
H

σ
(κ+ σC)

(
1 +

√
Hκ

λ

)(√
Laux

adv

λ
+
√
ρ

)
√
M log (1/δ) +M log (1/δ)

))

Theorem 3.2. Assume that the learner is given a weighted linear combination f aux
β (·) =

∑k
j=1 βjf

aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k such that Ψ(β) ≤ ρ. Fix any δ > 0, and say Assumptions 1 and 2 hold. Let τ > 0 be such

that suph∈H Ω(h) ≤ τ. Then, given an i.i.d. sample S ∼ Dn of size n, and setting λ as

λ=Õ





√√√√ 1

τ

√
Laux

adv

n

(√
Laux

adv+
√
ρ
)
+

√
1

τ2n

√
Laux

adv

n

(√
Laux

adv+
√
ρ
)




the A-RERM rule returns hŵ,β such that with probability at least 1− δ,

Ladv(hŵ,β)− min
hw:Ω(hw)≤τ

Ladv(hw,β)≤Õ
(
1

n
+

√
Laux

adv

n1/2

+

√
Laux

adv+
4
√
Laux

advρ

n1/4
√
τ+

4
√
Laux

adv+
8
√
Laux

advρ

n3/8

√
τ

)
.

Proof of Theorem 3.2. For any choice of β with Ψ(β) ≤ ρ, denote the optimal hypothesis in the class as

hw∗ = argmin
hw:Ω(hw)≤τ

Ladv(hw,β)

By the definition of hŵ, we have

L̂adv(hŵ,β) + λΩ(hŵ) ≤ L̂adv(hw∗,β) + λΩ(hw∗)

14
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Now denote Z = (κ+ σC)

√
H2κLaux

adv

n (
√
Laux

adv +
√
ρ). Then follow the proof of Theorem 3.1 gives us that

Ladv(hŵ,β) ≤ L̂adv(hw∗,β) + λτ +
Z

λ
+

√
M log (1/δ)

n

√
Laux

adv +
Z

λ
+
M log (1/δ)

n

≤ L̂adv(hw∗,β) + λτ +
Z

λ
+

√
Laux

advM log (1/δ)

n
+

√
ZM log (1/δ)

nλ
+
M log (1/δ)

n
Optimize over λ gives us that

λ∗ =

√
Z

τ
+

1

τ

√
ZM log (1/δ)

n

=

√√√√ (κ+ σC)

τ

√
H2κLaux

adv

n
(
√
Laux

adv +
√
ρ) +

1

τ

√

(κ+ σC)

√
H2κLaux

adv

n
(
√
Laux

adv +
√
ρ)
M log (1/δ)

n

Plug it back gives us that

Ladv(hŵ,β) ≤ L̂adv(hw∗,β) +
√
τ

√

Z +

√
ZM log (1/δ)

n
+

√
Laux

advM log (1/δ)

n
+
M log (1/δ)

n

≤ L̂adv(hw∗,β) +
(
√
Laux

adv + (Laux
advρ)

1/4
)

n1/4

√
τ(κ+ σC)H

√
κ

+
(Laux

adv)
1/4 + (Laux

advρ)
1/8

n3/8

(
M log (1/δ) (κ+ σC)H

√
κτ2
)1/4

+

√
Laux

advM log (1/δ)

n
+
M log (1/δ)

n
(4)

We finally use Bernstein’s inequality to concentrate L̂adv(hw∗,β) around Ladv(hw∗,β). Formally, with probability at least

1− δ,

L̂adv(hw∗,β) ≤ Ladv(hw∗,β) +

√
2 log (1/δ)E [

∑n
i=1(ℓ(hw∗,β , (xi, yi))− Ladv(hw∗,β))2]

n
+

2M log (1/δ)

3n

≤ Ladv(hw∗,β) + 2

√
Ladv(hw∗,β)M log (1/δ)

n
+

2M log (1/δ)

3n

≤ Ladv(hw∗,β) + 2

√
Laux

advM log (1/δ)

n
+

2M log (1/δ)

3n
Plug it back into Equation (4) gives us that with probability at least 1− δ,

Ladv(hŵ,β) ≤ Ladv(hw∗,β) +
(
√
Laux

adv + (Laux
advρ)

1/4
)

n1/4

√
τ(κ+ σC)H

√
κ

+
(Laux

adv)
1/4 + (Laux

advρ)
1/8

n3/8

(
M log (1/δ) (κ+ σC)H

√
κτ2
)1/4

+ 3

√
Laux

advM log (1/δ)

n
+

2M log (1/δ)

n

We now provide theoretical results that generalize Section 3 from the RKHS additive hypothesis class to two-layer neural

networks with ReLU activation functions.

Theorem A.6. Assume that the learner is given a weighted linear combination f aux
β (·) =∑k

j=1 βjf
aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k. Given a scalar λ > 0, for any i.i.d. sample S ∼ Dn of size n, define classes

H =

{
h ∈ H : Ω(h) ≤

L̂adv(f
aux
β )

λ

}
, V = {β : Ψ(β) ≤ ρ} .

15
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and the adversarial loss class

L̃ =
{
(x, y) 7→ ℓ̃(h(x) + f aux

β (x), y) : h ∈ H ∧ β ∈ V
}
.

Under Assumptions 1, for the adversarial loss class L̃, we have that

R(L̃) ≤ 4
√
6H (κ+ σC)

(
1 +

√
2Hκ

σλ

)√

Ladv(f
aux
β )

(Ladv(f
aux
β )/λ+ ρ/2)

nσ

Proof of Theorem A.6. We follow the same proof of Theorem A.5.

Define x̃i(hβ) = minx̃i∈B(xi,α) yi(h(x̃i) + f aux
β (x̃i)), ∀i ∈ [n]. Applying Lemma A.4 gives us that,

R̂S(L̃) ≤ Eσ

[
sup

h∈H,β∈V

{
2
√
3H

n

n∑

i=1

σi
√
τi min

x̃i∈B(xi,α)
yi(h(x̃i) + f aux

β (x̃i))

}]

≤ Eσ

[
sup
h∈H

{
2
√
3H

n

n∑

i=1

σi
√
τiyih(x̃i(hβ))

}]
+ Eσ

[
sup
β∈V

{
2
√
3H

n

n∑

i=1

σi
√
τiyi ⟨β, faux(x̃i(hβ))⟩

}]

For the first term, recall that h =
∑m

s=1 asψ(⟨ws, x̃i⟩), then we have

Eσ

[
sup
h∈H

{
2
√
3H

n

n∑

i=1

σi
√
τiyih(x̃i(hβ))

}]

= Eσ

[
sup

w∈W

{
2
√
3H

n

n∑

i=1

σi
√
τiyi

m∑

s=1

asψ(⟨ws, x̃i(hβ)⟩)
}]

= Eσ

[
sup

w∈W

{
2
√
3H

n

m∑

s=1

as

n∑

i=1

σi
√
τiyiψ(⟨ws, x̃i(hβ)⟩)

}]
(|∑m

s=1 as| ≤ 1)

≤ Eσ

[
2
√
3H

n
sup

ws∈W

∣∣∣∣∣

n∑

i=1

σi
√
τiyiψ(⟨ws, x̃i(hβ)⟩)

∣∣∣∣∣

]

≤ Eσ

[
4
√
3H

n
sup

ws∈W

(
n∑

i=1

σi
√
τiyiψ(⟨ws, x̃i(hβ)⟩)

)]

(Eσ,z

[
suph∈H

∣∣ 1
n

∑n
i=1 σih(zi)

∣∣] ≤ 2Eσ,z

[
suph∈H

1
n

∑n
i=1 σih(zi)

]
)

≤ Eσ

[
4
√
3H

n
sup

ws∈W

(
n∑

i=1

σi
√
τiyi ⟨ws, x̃i(hβ)⟩

)]
(Talagrand’s contraction Lemma)

= Eσ

[
4
√
3H

nt
sup

ws∈W

(
n∑

i=1

⟨ws, tσi
√
τix̃i(hβ)⟩

)]

≤ 4
√
3H

nt
Eσ

[
t2

2σ

n∑

i=1

∥σi
√
τix̃i(hβ)∥2∗ + sup

ws∈W
Ω(ws) +

n∑

i=1

⟨∇Ω∗(v1:i−1), σit
√
τix̃i(hβ)⟩

]

(Let t ≥ 0 and set vi = tσi
√
τix̃i(hβ), apply Lemma A.2)

≤ 4
√
3H

nt

(
t2κ2

2σ

n∑

i=1

|τi|+
L̂adv(f

aux
β )

λ

)

(Assumption 2, definition of H, Eσ [σi] = 0, supws∈W Ω(ws) ≤ Ω(h) ≤ L̂adv(f
aux
β )

λ .)

The second term is derived in the same way as shown in the proof of Theorem A.5.

Eσ

[
sup
β∈V

{
n∑

i=1

⟨β, tσi
√
τif

aux(x̃i(hβ))⟩
}]

≤ t2C2

2

n∑

i=1

|τi|+ ρ
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Combining the two terms and optimizing over t gives us that

R̂S(L̃) ≤ 4
√
6H(κ+ σC)

√√√√ 1

n

n∑

i=1

|τi|
(L̂adv(f

aux
β )/λ+ ρ/2)

nσ
(5)

Since ϕ(·) is a H-smooth monotonic decreasing function, define x̃1 = argminx̃∈B(x,α) yf
aux
β (x̃), x̃2 =

argminx̃∈B(x,α) y(h(x̃) + f aux
β (x̃)), then we have

ℓ̃(h+ f aux
β , (x, y)) = ϕ(y(h(x̃2) + f aux

β (x̃2)))

≤ ϕ(yf aux
β (x̃1)) + ϕ′(yf aux

β (x̃1))y(h(x̃2) + f aux
β (x̃2)− f aux

β (x̃1)) +
H

2
(h(x̃2) + f aux

β (x̃2)− f aux
β (x̃1))

2

(By the definition of x̃1, x̃2, we have yh(x̃2) ≤ y(h(x̃2) + f aux
β (x̃2)− f aux

β (x̃1)) ≤ yh(x̃1))

≤ ϕ(yf aux
β (x̃1)) + ϕ′(yf aux

β (x̃1))max {h(x̃1), h(x̃2)}+
H

2
(max {h(x̃1), h(x̃2)})2

Recall Ω is σ strongly convex, we have for its minimizer v and any ws,

∥ws − v∥2 ≤ 2

σ
(Ω(ws)− Ω(v))

Choosing v = 0, we have that

h(x̃1)
2 =

m∑

s=1

asψ(⟨ws, x⟩) ≤ κ

m∑

s=1

∥ws∥2 ≤ 2κ

σ

m∑

s=1

Ω(ws) =
2κ

σ
Ω(h) =

2κL̂adv(f
aux
β )

σλ
.

By the definition of τi, we have that

ℓ̃(h+ f aux
β , (xi, yi)) ≤ τi = ℓ̃(f aux

β , (x, y)) + 2

√
2Hκ

σλ
ℓ̃(f aux

β , (x, y))L̂adv(f
aux
β ) +

HκL̂adv(f
aux
β )

σλ
.

As a result, applying Jensen’s inequality gives us that

1

n

n∑

i=1

|τi| ≤ L̂adv(f
aux
β ) + 2

√
2Hκ

σλ
L̂adv(f

aux
β ) +

HκL̂adv(f
aux
β )

σλ
≤
(
1 +

√
2Hκ

σλ

)2

L̂adv(f
aux
β ).

Plugging back into Equation (5) gives us that

R(L̃) = ES

[
R̂S(L̃)

]

≤ ES


4

√
6H (κ+ σC)

(
1 +

√
2Hκ

σλ

)√

L̂adv(f
aux
β )

(L̂adv(f
aux
β )/λ+ ρ/2)

nσ




≤ 4
√
6H (κ+ σC)

(
1 +

√
2Hκ

σλ

)√

Ladv(f
aux
β )

(Ladv(f
aux
β )/λ+ ρ/2)

nσ

Theorem A.7. Assume that the learner is given a weighted linear combination f aux
β (·) =∑k

j=1 βjf
aux
j (·) of auxiliary

hypotheses with weights β ∈ R
k such that Ψ(β) ≤ ρ. Fix any δ > 0. Then, given an i.i.d. sample S ∼ Dn of size n, for

any λ > 0, the A-RERM rule returns hŵ,β such that with probability at least 1− δ,

Ladv(hŵ,β) ≤ L̂adv(hŵ,β) +O
((√

HLaux
adv +BκH

)
(κ+ σC)

√
(Laux

adv/λ+ ρ)

n

)
+

1.5M log (1/δ)

n

+O
((

Laux
adv +

(√
HLaux

adv +BκH
)
(κ+ σC)

√
(Laux

adv/λ+ ρ)

n

)√
M log (1/δ)

n

)

where Laux
adv = Lα

adv(f
aux
β ).

Proof of Theorem A.7. The procedure is similar as the proof of Theorem 3.1. Define the adversarial loss class L̃ :=
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{
(x, y) 7→ ℓ̃(h; (x, y)) : h ∈ H

}
, define the expanded hypothesis class:

H̃ :=

{
x 7→ hw,β(x) : hw,β = hw + f aux

β , hw ∈ H,

Ω(hw) ≤
L̂adv(f

aux
β )

λ
∧ ∥h∥∞ ≤

√
mBκ ∧Ψ(β) ≤ ρ ∧ L̂adv(hw,β) ≤ L̂adv(f

aux
β )

}
.

Recall the optimization problem:

hŵ = argmin
h∈H

{
L̂adv(h+ f aux

β ) + λΩ(h)
}
, hŵ,β = hŵ + f aux

β ∈ H̃.

We have L̂adv(hŵ + f aux
β ) + λΩ(hŵ) ≤ L̂adv(f

aux
β ), which gives us that Ω(hŵ) ≤ 1

λ L̂adv(f
aux
β ), L̂adv(hŵ,β) ≤ L̂adv(f

aux
β ).

Leveraging Lemma A.3, we have hŵ,β ∈ H̃. From Theorem A.5 we have that

R(L̃) ≤ O


√

H(κ+ σC)

(
1 +

√
2Hκ

σλ

)√

Ladv(f
aux
β )

(Ladv(f
aux
β )/λ+ ρ)

nσ


 .

Note that

r = sup
h∈H̃

Ladv(h) = sup
h∈H̃

ES

[
L̂adv(h)

]
≤ ES

[
sup
h∈H̃

L̂adv(h)

]
≤ ES

[
L̂adv(f

aux
β )
]
= Laux

adv.

Plugging into Theorem A.1 gives us that

Ladv(hŵ,β)− L̂adv(hŵ,β)

≤ 2R(L̃) + 3

√
(4R(L̃) + Laux

adv)M log (1/δ)

2n
+

1.5M log (1/δ)

n

≤ 2R(L̃) + 3

(
√
Laux

adv +
2R(L̃)√
Laux

adv

)√
M log (1/δ)

n
+

1.5M log (1/δ)

n
(
√
a+ b ≤ √

a+ b
2
√
a

)

≤ O
(

1√
n

(√
H

σ
(κ+ σC)

(
1 +

√
Hκ

σλ

)(
Laux

adv√
λ

+
√
Laux

advρ

)
+
√
Laux

advM log (1/δ)

))

+O
(
1

n

(√
H

σ
(κ+ σC)

(
1 +

√
Hκ

σλ

)(√
Laux

adv

λ
+
√
ρ

)
√
M log (1/δ) +M log (1/δ)

))

If we further ignore the dependency on H,B, κ, C, log (1/δ), then the generalization gap can be rewritten as:

Ladv(hŵ,β)−L̂adv(hŵ,β)≤Õ
(

1√
n

((
1+

1√
λ

)(
Laux

adv√
λ
+
√
Laux

advρ

)
+
√
Laux

adv

)
+

1

n

(
1 +

1√
λ

)(√
Laux

adv

λ
+
√
ρ

))

Similar as Theorem 3.1, the generalization gap exhibits a fast rate of O( 1n ) when Laux
adv = O(1/n).

B. Missing Proofs in Section 4

Although adversarial loss is in general non-smooth, it can be characterized via a definition of approximately smoothness,

which we introduce below.

Definition (Xiao et al. (2022b)). Let H > 0 and η > 0. We say a differentiable function g(w) is η-approximately

H-gradient Lipschitz, if ∀w1 and w2, we have

∥∇g(w1)−∇g(w2)∥ ≤ H ∥w1 − w2∥+ η

Within the above definition, Lemma B.1 introduces the properties that adversarial loss satisfies.
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Lemma B.1 (Xiao et al. (2022b)). Let ℓ̃ be the adversarial loss defined as ℓ̃(w; z) = maxz̃∈Bp(z,α) ℓ(w; z̃)1 with ℓ satisfies

Assumption 4. Then ∀w1,w2 and ∀z ∈ Z , adversarial loss ℓ̃ satisfies:

1. (L-Lipschitz)

∥∥∥ℓ̃(w1; z)− ℓ̃(w2; z)
∥∥∥ ≤ L ∥w1 − w2∥.

2. (2Hzα-approximately H-smooth) for all subgradient d(w, z) ∈ ∂wℓ̃(w; z), we have ∥d(w1; z)− d(w2; z)∥ ≤
H ∥w1 − w2∥+ 2Hzα.

For any vector g ∈ R
d, we define the following quantity:

Gγ(w, g) :=
1

γ

(
w − proxγ,λΩ(w − γg)

)
.

Then Proximal Stochastic Adversarial Training can be rewritten as

wt+1,S = wt,S − γtG
γt(wt,S ,∇ℓ̃(wt,S , zξt)).

We now present several properties of Gγ(w, g) that will be used later in our proof.

Lemma B.2 (Lemma 5 in (Zhou et al., 2022)). Let Ω be a convex and possibly non-smooth function. Then, the following

statements hold.

1. For any w, g1, g2 ∈ W , it holds that

∥Gγ(w, g1)−Gγ(w, g2)∥ ≤ ∥g1 − g2∥

2. If Ω is λ-strongly convex, then for all w, v ∈ W and γ > 0, it holds that
∥∥proxγ,Ω(w)− proxγ,Ω(v)

∥∥ ≤ 1

1 + γλ
∥w − v∥

Lemma B.3 (Lemma 1 in (Ghadimi et al., 2016)). For any w ∈ W, g ∈ R
d, and γ > 0, it holds that

⟨g, Gγ(w, g)⟩ ≥ ∥Gγ(w, g)∥2 + λ

γ

(
Ω(proxγ,λΩ(w − γg))− Ω(w)

)

We first provide the result that connects the initialization with the norm of the gradient of the adversarial loss.

Lemma B.4. Under Assumption 1, 4 and 3, consider applying Proximal Stochastic Adversarial Training with training data

S , choose γt ≤ c
t+1 with 0 < c < 1

H . Then ∀i ∈ [n], it holds that

ES,ξ

∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥ ≤

√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T ) + 4Hzα.

Proof. Proof follows the similar idea as Zhou et al. (2022, Lemma 6). Denoting gt,S = ∇ℓ̃(wt,S ; zξt) as the stochastic

gradient of adversarial loss sampled at iteration t. Setting w = wt,S , g = gt,S , apply Lemma B.3, we have

〈
gt,S , G

γ(wt,S , gt,S)
〉
≥
∥∥Gγ(wt,S , gt,S)

∥∥2 + λ

γ
(Ω(wt+1,S)− Ω(wt,S)) (6)

Since ℓ̃ is non-negative, η-approximatelyH-smooth (with η = 2Hzα), apply Xiao et al. (2022a, Lemma 4.2) gives us that

ℓ̃(w1, z)− ℓ̃(w2, z) ≤
〈
∇ℓ̃(w2, z),w1 − w2

〉
+
H

2
∥w1 − w2∥2 + η ∥w1 − w2∥ . (7)

Choosing w1 = w2 − 1
H∇ℓ̃(w2, z) gives us that

0 ≤ ℓ̃(w1, z) ≤ ℓ̃(w2, z)−
1

2H

∥∥∥∇ℓ̃(w2, z)
∥∥∥
2

+
η

H

∥∥∥∇ℓ̃(w2, z)
∥∥∥ .

Rearranging gives us that
∥∥∥∇ℓ̃(w2, z)

∥∥∥ ≤ 2η +

√
2Hℓ̃(w2, z). (8)

1Here we slightly abuse the notation, z̃ ∈ Bp(z, α) is equivalent as x̃ ∈ Bp(x, α).

19



Adversarially Robust Hypothesis Transfer Learning

Choose w2 = wt,S , take expectations w.r.t the training data and the randomness gives us that

Eξ,S

∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥ ≤ Eξ,S

√
2Hℓ̃(wt,S ; zi) + 2η

≤
√
2HEξ,S ℓ̃(wt,S ; zi) + 2η (Jensen’s inequality)

≤

√√√√2HEξ,S
1

n

n∑

i=1

ℓ̃(wt,S ; zi) + 2η (All samples in S are generated i.i.d. from D)

≤
√

2HEξ,SΦ̂adv(wt,S) + 2η. (9)

Moreover, consider a fixed S , we have

L̂adv(wt+1,S)− L̂adv(wt,S)

=
1

n

n∑

i=1

[
ℓ̃(wt+1,S , zi)− ℓ̃(wt,S , zi)

]

≤ 1

n

n∑

i=1

[〈
wt+1,S − wt,S ,∇ℓ̃(wt,S , zi)

〉
+
H

2
∥wt+1,S − wt,S∥2 + η ∥wt+1,S − wt,S∥

]
(Equation (7))

= −
〈
γtG

γt(wt,S , gt,S),∇L̂adv(wt,S)
〉
+
Hγ2t
2

∥∥Gγt(wt,S , gt,S)
∥∥2 + ηγt

∥∥Gγt(wt,S , gt,S)
∥∥

= −γt
〈
Gγt(wt,S , gt,S), gt,S

〉
−
〈
γtG

γt(wt,S , gt,S),∇L̂adv(wt,S)− gt,S

〉

+
Hγ2t
2

∥∥Gγt(wt,S , gt,S)
∥∥2 + ηγt

∥∥Gγt(wt,S , gt,S)
∥∥

= −γt
〈
Gγt(wt,S , gt,S), gt,S

〉
− γt

〈
Gγt(wt,S ,∇L̂adv(wt,S)),∇L̂adv(wt,S)− gt,S

〉
+
Hγ2t
2

∥∥Gγt(wt,S , gt,S)
∥∥2

+ γt

〈
Gγt(wt,S ,∇L̂adv(wt,S))−Gγt(wt,S , gt,S),∇L̂adv(wt,S)− gt,S

〉
+ ηγt

∥∥Gγt(wt,S , gt,S)
∥∥

Combined with Equation (6) gives us that

Φ̂adv(wt+1,S)− Φ̂adv(wt,S)

= L̂adv(wt+1;S)− L̂adv(wt,S) + λ (Ω(wt+1,S)− Ω(wt,S))

≤
(
Hγ2t
2

− γt

)∥∥Gγt(wt,S , gt,S)
∥∥2 − γt

〈
Gγt(wt,S ,∇L̂adv(wt,S)),∇L̂adv(wt,S)− gt,S

〉

+ γt

〈
Gγt(wt,S ,∇L̂adv(wt,S))−Gγt(wt,S , gt,S),∇L̂adv(wt,S)− gt,S

〉
+ ηγt

∥∥Gγt(wt,S , gt,S)
∥∥

≤
(
Hγ2t
2

− γt

)∥∥Gγt(wt,S , gt,S)
∥∥2 − γt

〈
Gγt(wt,S ,∇L̂adv(wt,S)),∇L̂adv(wt,S)− gt,S

〉

+ γt

∥∥∥Gγt(wt,S ,∇L̂adv(wt,S))−Gγt(wt,S , gt,S)
∥∥∥
∥∥∥∇L̂adv(wt,S)− gt,S

∥∥∥+ ηγt
∥∥Gγt(wt,S , gt,S)

∥∥

≤
(
Hγ2t
2

− γt

)(∥∥Gγt(wt,S , gt,S)
∥∥− η

Hγt − 2

)2

− γt

〈
Gγt(wt,S ,∇L̂adv(wt,S)),∇L̂adv(wt,S)− gt,S

〉

+ γt

∥∥∥∇L̂adv(wt,S)− gt,S

∥∥∥
2

+
η2γt

4− 2Hγt
where the last line uses Lemma B.2. Conditioning on wt,S and taking the expectation w.r.t. ξ, we further have

Eξ

[
Φ̂adv(wt+1,S)− Φ̂adv(wt,S)|wt,S

]
≤
(
Hγ2t
2

− γt

)
Eξ

[(∥∥Gγt(wt,S , gt,S)
∥∥− η

Hγt − 2

)2

|wt,S

]

+ γtEξ

[∥∥∥∇L̂adv(wt,S)− gt,S

∥∥∥
2

|wt,S

]
+

η2γt
4− 2Hγt

(γt ≤ 2
H , ∀t ∈ [T ])
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≤ γtEξ

[∥∥∥∇L̂adv(wt,S)− gt,S

∥∥∥
2

|wt,S

]
+

η2γt
4− 2Hγt

Further taking expectation w.r.t. the randomness of wt,S and S , telescoping the above inequality gives us that

Eξ,S

[
Φ̂adv(wT,S)

]
≤ Eξ,S

[
Φ̂adv(w0)

]
+ ES

[
ν2S
] T−1∑

t=0

γt +

T−1∑

t=0

η2γt
4− 2Hγt

(γt ≤ c
t+1 , cH ≤ 1)

≤ Eξ,S

[
Φ̂adv(w0)

]
+ 2cES

[
ν2S
]
log (T ) +

cη2

2
log (T ) (10)

As a result, for cH ≤ 1, ∀i ∈ [n], we have

Eξ,S

∥∥∥∇ℓ̃(wT,S ; zi)
∥∥∥ ≤

√
2HEξ,SΦ̂adv(wt,S) + 2η (Equation (9))

≤
√
2HEξ,S

[
Φ̂adv(w0)

]
+ (4ES [ν2S ] + η2) log (T ) + 2η

≤
√

2HΦadv(w0) + (4ES [ν2S ] + 4H2
zα

2) log (T ) + 4Hzα (η = 2Hzα)

We first consider the case when λ is relatively large.

Lemma 4.1. Say Assumptions 1, 3 and 4 hold. Let wT and w′
T denote the outputs on two neighboring datasets S,S ′,

respectively, after running PSAT for T iterations on each of the datasets using γt =
c

t+1 with 0 < c < 1
H . Then, for λ > H ,

we have that:

Eξ∼Uniform[n],S,S(i) ∥wT − w′
T ∥ ≤ 4(1 + λ)Hzα

λ−H

+
2(1+λ)

√
2HΦadv(w0)+(4ES[ν2S ]+4H2

zα
2) log (T )

n(λ−H)
.

Further, for λ > 2H + 1, we have

Eξ∼Uniform[n],S,S(i)∥wT − w′
T ∥

2≤ 8(H+2)2(1+λ)2H2
zα

2

(2λ− 3H − 2)HT

+
(1+λ)2

(
32HΦadv(w0)+

(
64ES

[
ν2S
]
+16H2

zα
2
)
log (T )

)

(2λ− 3H − 2)HTn
.

Proof of Lemma 4.1. Given the training set S ∼ Dn and an additional example z ∼ D, let S(i) be the training set

obtained by replacing the i-th example of S with z; namely, S(i) = (z1, . . . , zi−1, z, zi+1, . . . , zn). We define δt,S,S(i) =∥∥wt,S − wt,S(i)

∥∥. Recall that ℓ̃ is η-approximately H-smooth (η = 2Hzα). At the t-th iteration, if i /∈ ξt, which happens

w.p. n−1
n , we have

δt+1,S,S(i) =
∥∥∥proxγt,λΩ

(wt,S − γt∇ℓ̃(wt,S ; zξt))− proxγt,λΩ
(wt,S(i) − γt∇ℓ̃(wt,S(i) ; zξt))

∥∥∥

≤ 1

1 + γtλ

∥∥∥wt,S − γt∇ℓ̃(wt,S ; zξt)− wt,S(i) + γt∇ℓ̃(wt,S(i) ; zξt)
∥∥∥ (Lemma B.2)

≤ 1 + γtH

1 + γtλ
δt,S,S(i) +

γtη

1 + γtλ
(ℓ̃ is η-approximately H-smooth)

On the other hand, if i ∈ ξt, which happens w.p. 1
n , we have

δt+1,S,S(i) =
∥∥∥proxγt,λΩ

(wt,S − γt∇ℓ̃(wt,S ; zi))− proxγt,λΩ
(wt,S(i) − γt∇ℓ̃(wt,S(i) ; z))

∥∥∥

≤ 1

1 + γtλ

∥∥∥wt,S − γt∇ℓ̃(wt,S ; zi)− wt,S(i) + γt∇ℓ̃(wt,S(i) ; z)
∥∥∥ (Lemma B.2)

≤ 1

1 + γtλ
δt,S,S(i) +

γt
1 + γtλ

(∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥+

∥∥∥∇ℓ̃(wt,S(i) ; z)
∥∥∥
)
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Combining the above two cases and taking expectation w.r.t. the randomness of ξ,S,S(i), we have

Eξ,S,S(i)

[
δt+1,S,S(i)

]

≤
[
n− 1

n

1 + γtH

1 + γtλ
+

1

n

1

1 + γtλ

]
Eξ,S,S(i)

[
δt,S,S(i)

]
+
n− 1

n

γtη

1 + γtλ
+

2

n

γt
1 + γtλ

Eξ,S

∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥

≤ 1 + γtH

1 + γtλ
Eξ,S,S(i)

[
δt,S,S(i)

]
+

2

n

γt
1 + γtλ

√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T ) +

(n+ 3)γtη

n(1 + γtλ)
(Lemma B.4)

≤ exp

(
γt

1 + λ
(H − λ)

)
Eξ,S,S(i)

[
δt,S,S(i)

]
+

2γt
n

√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (t) + 4γtη

(1 + x ≤ exp (x))

Note that the relation xt+1 ≤ atxt + bt with x0 = 0 unwinds from T to 0 as xT ≤ ∑T
t=1 bt

∏T
k=t+1 ak. Recursively

applying the above inequality over t = 0, 1, . . . , T − 1, with δ0,S,S(i) = 0, γt =
c

t+1 gives us that

Eξ,S,S(i)

[
δT,S,S(i)

]

≤
T−1∑

t=0

[
T−1∏

k=t+1

exp

(
γk

1 + λ
(H − λ)

)](
2γt
n

√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (t) + 4γtη

)

=

T−1∑

t=0

[
exp

(
(H − λ)

T−1∑

k=t+1

c

(k + 1)(1 + λ)

)](
2γt
n

√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (t) + 4γtη

)

≤
T−1∑

t=0

(
t+ 1

T

) c
1+λ

(λ−H)
(
2c
√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (t)

n(t+ 1)
+

4cη

t+ 1

)
(11)

≤ 2(1 + λ)

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T ) +

2(1 + λ)η

λ−H

(λ > H ,
∑T−1

t=0 (t+ 1)c(λ−H)/(1+λ)−1 ≲
∫ T

t=1
tc(λ−H)/(1+λ)−1.)

=
2(1 + λ)

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T ) +

4(1 + λ)Hzα

λ−H
(η = 2Hzα)

We can bound Eξ,S,S(i)

[
δ2
T,S,S(i)

]
in a similar fashion. ℓ̃ is η-approximately H-smooth gives us

Eξ,S

∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥
2

≤ 4HEξ,S ℓ̃(wt,S , zi) + 8η2 (Equation (8))

≤ 4HEξ,S

[
Φ̂adv(wt,S)

]
+ 8η2 (Equation (10))

≤ 4HΦadv(w0) +
(
8ES

[
ν2S
]
+ 2η2

)
log (t) + 8η2 (12)

At the t-th iteration, if i /∈ ξt, which happens w.p. n−1
n , we have

δ2t+1,S,S(i) =
∥∥∥proxγt,λΩ

(wt,S − γt∇ℓ̃(wt,S ; zξt))− proxγt,λΩ
(wt,S(i) − γt∇ℓ̃(wt,S(i) ; zξt))

∥∥∥
2

≤ 1

(1 + γtλ)2

∥∥∥wt,S − γt∇ℓ̃(wt,S ; zξt)− wt,S(i) + γt∇ℓ̃(wt,S(i) ; zξt)
∥∥∥
2

(Lemma B.2)

=
1

(1 + γtλ)2

(∥∥wt,S − wt,S(i)

∥∥2 − 2γt

〈
wt,S − wt,S(i) ,∇ℓ̃(wt,S ; zξt)−∇ℓ̃(wt,S(i) ; zξt)

〉

+ γ2t

∥∥∥∇ℓ̃(wt,S ; zξt)−∇ℓ̃(wt,S(i) ; zξt)
∥∥∥
2
)

≤ 1

(1 + γtλ)2

(
δ2t,S,S(i) + 2γtδt,S,S(i)

(
Hδt,S,S(i) + η

)
+ γ2t

(
Hδt,S,S(i) + η

)2)

=
1

(1 + γtλ)2
(
(1 +Hγt)

2δt,S,S(i) + 2γtη(1 +Hγt)δt,S,S(i) + γ2t η
2
)

≤ (1 + γtH)(1 + γtH + γt)

(1 + γtλ)2
δ2t,S,S(i) +

γt(1 + γtH + γt)

(1 + γtλ)2
η2
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On the other hand, if i ∈ ξt, which happens w.p. 1
n , we have

δ2t+1,S,S(i) =
∥∥∥proxγt,λΩ

(wt,S − γt∇ℓ̃(wt,S ; zi))− proxγt,λΩ
(wt,S(i) − γt∇ℓ̃(wt,S(i) ; zi))

∥∥∥
2

≤ 1

(1 + γtλ)2

∥∥∥wt,S − γt∇ℓ̃(wt,S ; zi)− wt,S(i) + γt∇ℓ̃(wt,S(i) ; zi)
∥∥∥
2

(Lemma B.2)

≤ 2

(1 + γtλ)2
δ2t,S,S(i) +

4γ2t
(1 + γtλ)2

(∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥
2

+
∥∥∥∇ℓ̃(wt,S(i) ; zi)

∥∥∥
2
)

Combining the above two cases and taking expectation w.r.t. the randomness of ξ,S,S(i), we have

Eξ,S,S(i)

[
δ2t+1,S,S(i)

]

≤
[
n− 1

n

(1 + γtH)(1 + γtH + γt)

(1 + γtλ)2
+

1

n

1

(1 + γtλ)2

]
Eξ,S,S(i)

[
δ2t,S,S(i)

]
+
n− 1

n

γt(1 + γtH + γt)η
2

(1 + γtλ)2

+
2

n

4γ2t
(1 + γtλ)2

Eξ,S

∥∥∥∇ℓ̃(wt,S ; zi)
∥∥∥
2

≤ (1 + γtH)(1 + γtH + γt)

(1 + γtλ)2
Eξ,S,S(i)

[
δ2t,S,S(i)

]
+
n− 1

n

γt(1 + γtH + γt)η
2

(1 + γtλ)2
+

64γ2t η
2

n(1 + γ2t λ
2)2

(Equation(12))

+
2

n

4γ2t
(1 + γtλ)2

(
4HEξ,S [Φadv(w0)] +

(
8ES

[
ν2S
]
+ 2η2

)
log (t)

)

≤ exp

(
γt(2H − 2λ+ 2) + γ2t (H

2 − λ2)

(1 + λ)2

)
Eξ,S,S(i)

[
δ2t,S,S(i)

]
+

8γ2t
n

(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (t)

)

+ 2(H + 2)γ2t η
2 (n ≥ 33)

Note that the relation xt+1 ≤ atxt + bt with x0 = 0 unwinds from T to 0 as xT ≤
∑T

t=1 bt
∏T

k=t+1 ak. Recursively

applying the above inequality over t = 0, 1, . . . , T − 1, with δ0,S,S(i) = 0, γt =
c

t+1 gives us that

Eξ,S,S(i)

[
δ2T,S,S(i)

]

≤
T−1∑

t=0

[
T−1∏

k=t+1

exp

(
γk(2H − 2λ+ 2))

(1 + λ)2

)
·

T−1∏

k=t+1

exp

(
γ2k

(1 + λ)2
(H2 − λ2)

)]

·
(
8γ2t
n

(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (t)

)
+ 2(H + 2)2γ2t η

2

)

=

T−1∑

t=0

[
exp

(
(2H − 2λ+ 2)

T−1∑

k=t+1

c

(k + 1)(1 + λ)2

)
· exp

(
(H2 − λ2)

T−1∑

k=t+1

c2

(k + 1)2(1 + λ)2

)]

·
(
8γ2t
n

(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (t)

)
+ 2(H + 2)2γ2t η

2

)

≤
T−1∑

t=0

exp

(
c2(H2 − λ2)

(t+ 2)(1 + λ)2

)
·
(
t+ 1

T

)2c(λ−H−1)/(1+λ)2

·
(
8γ2t
n

(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (t)

)
+ 2(H + 2)2γ2t η

2

)

≤
T−1∑

t=0

(
t+ 1

T

)2c(λ−H−1)/(1+λ)2
(
8c2
(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (T )

)

n(t+ 1)2
+

2c2(H + 2)2η2

(t+ 1)2

)

(λ ≥ H + 1)

≤ 2c2(1 + λ)2

(2c(λ−H − 1)− 1)T

(
4
(
4HΦadv(w0) +

(
8ES

[
ν2S
]
+ 2η2

)
log (T )

)

n
+ (H + 2)2η2

)

(choose c = 1
H to maximize c2

(2c(λ−H)−1)T .)
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≤ 2(1 + λ)2

(2λ− 3H − 2)HT

((
16HΦadv(w0) +

(
32ES

[
ν2S
]
+ 8η2

)
log (T )

)

n
+ (H + 2)2η2

)

=
2(1 + λ)2

(2λ− 3H − 2)HT

((
16HΦadv(w0) +

(
32ES

[
ν2S
]
+ 8H2

zα
2
)
log (T )

)

n
+ 4(H + 2)2H2

zα
2

)
(η = 2Hzα)

Leveraging Lemma 4.1 gives us the robust generalization guarantees.

Theorem 4.2. Say Assumptions 1, 3 and 4 hold. Let wT denote the output on a sample S ∼ Dn of size n after running

PSAT for T iterations with γt =
c

t+1 for 0 < c < 1
H , and let λ > 2H + 1. Then, ∀δ > 0, w.p. at least 1− δ, we have that

Ladv(wT )− L̂adv(w
′

T ) ≤
1.5M log (1/δ)

n

+

(

8

√
2L2(HΦadv(w0)+(4ES [ν2

S
]+H2

zα2) log (T )) log (1/δ)

nTH(2λ− 3H − 2)

+
2L

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2

S
] + 4H2

zα2) log (T )

+
4LHzα

λ−H
+

√
32(H+2)2L2H2

zα2 log (1/δ)

(2λ− 3H − 2)HT

)

(1 + λ)

Proof of Theorem 4.2. Apply Lemma 4.1 gives us µ1 and µ2 as follows.

sup
z′

Eξ,S,S(i)

[
ℓ̃(wT,S , z

′)− ℓ̃(wT,S(i) , z′)
]

≤ LEξ,S,S(i)

∥∥wT,S − wT,S(i)

∥∥

≤ 2L(1 + λ)

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T ) +

4L(1 + λ)Hzα

λ−H
:= µ1

sup
z′

Eξ,S,S(i)

[(
ℓ̃(wT,S , z

′)− ℓ̃(wT,S(i) , z′)
)2]

≤ L2
Eξ,S,S(i)

∥∥wT,S − wT,S(i)

∥∥2

≤ 32L2(1 + λ)2HΦadv(w0) +
(
64ES

[
ν2S
]
+ 16H2

zα
2
)
L2(1 + λ)2 log (T )

(2λ− 3H − 2)HTn
+

8(H + 2)2L2(1 + λ)2H2
zα

2

(2λ− 3H − 2)HT
:= µ2

Apply Theorem 2.1 on the adversarial loss gives us that

Ladv(wT,S)− L̂adv(wT,S)

≤ 2L(1 + λ)

n(λ−H)

√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T ) +

4L(1 + λ)Hzα

λ−H
+

1.5M log (1/δ)

n

+

√
4(1 + λ)2

(
32L2HΦadv(w0) + (64ES [ν2S ] + 16H2

zα
2)L2 log (T )

(2λ− 3H − 2)HTn
+

8L2(H + 2)2H2
zα

2

(2λ− 3H − 2)HT

)
log (1/δ)

We next discuss the case when λ is relatively small. We will be using the following Lemma.

Lemma B.5 (Lemma 5 in Kuzborskij & Lampert (2018)). Assume that the loss ℓ(·, z) ∈ [0,M ] is L-Lipschitz for all z.

Then for every t0 ∈ {1, . . . , n}, we have

ES,z,ξ

[
ℓ(wS,T , z)− ℓ(wS(i),T , z)

]
≤ LES,z [Eξ [δT (S, z) = 0] |δt0(S, z) = 0] + ES,ξ [Ladv(wT,S)]

t0
n

Lemma B.6. Let a, y > 0 and 0 < b < 1. Then x− axb − y ≤ 0 implies

x ≤ max
{
2

b
1−b a

1
1−b , a(2y)b

}
+ y
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Theorem 4.3. Say Assumptions 1, 3 and 4 hold. Let wT denote the output on a sample S ∼ Dn of size n after running

PSAT for T = O(n) iterations with γt =
c

t+1 for 0 < c < 1
H , and 0 < λ < H , we have that

Eξ,S

[
Ladv(wT )−L̂adv(wT )

]
≤O
(

max

{
T q

nq+1

L (Q+nHzα)

H(1−q)
,

T
q

q+1

n

(
Eξ,SL̂adv(wT )

) q
q+1

[
L (Q+nHzα)

H(1− q)

] 1
q+1

})

,

where Q =
√
2HΦadv(w0)+(4ES [ν2S ]+4H2

zα
2) log (T ), q = 1− λ

H .

Proof of Theorem 4.3. Given the training set S ∼ Dn and an additional example z ∼ D, let S(i) be the training set

obtained by replacing the i-th example of S with z; namely, S(i) = (z1, . . . , zi−1, z, zi+1, . . . , zn). We define δt,S,S(i) =∥∥wt,S − wt,S(i)

∥∥. Let t0 ∈ {1, . . . , n} be the iteration that δt0,S,S(i) = 0, and PSAT picks two different samples from S
and S(i) in iteration t0 + 1.

We follow the proof of Lemma 4.1 until Equation (11), which gives us that

Eξ,S,S(i)

[
δT,S,S(i)

]
≤

T−1∑

t=0

(
t+ 1

T

)c(λ−H)
(
2c
√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (t)

n(t+ 1)
+

4cη

t+ 1

)

As we consider λ < H , we have

Eξ,S,S(i)

[
δT,S,S(i) |δt0,S,S(i) = 0

]
≤ 4

(H − λ)

(
T

t0

)1− λ
H

(√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T )

n
+ 2η

)

We know from Lemma B.1 that adversarial loss ℓ̃ is L-Lipschitz. Recall that the PSAT assumes sampling from the uniform

distribution over [n] without replacement, therefore apply Lemma B.5 gives us that

ES,z,ξ

[
ℓ̃(wS,T , z)− ℓ̃(wS(i),T , z)

]

≤ 4L

(H − λ)

(
T

t0

)1− λ
H

(√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T )

n
+ 2η

)
+ ES,ξ [Ladv(wT,S)]

t0
n

Define
t0 =

[
4L

HES,ξ [Ladv(wT,S)]

(√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T ) + 2ηn

)] 1
q+1

T
q

1+q ,

where we define q = 1− λ
H ∈ (0, 1). As we are consider small T ≲ n, we have t0 ≤ n. Plugging t0 back gives us that

Eξ,S

[
Ladv(wT,S)− L̂adv(wT,S)

]

≤
(
1 +

1

q

)[
ES,ξ [Ladv(wT,S)]T

n

] q

q+1

[
4Lq

H − λ

(√
2HΦadv(w0) + (4ES [ν2S ] + η2) log (T )

n
+ 2η

)] 1
q+1

≤
(
1 +

1

q

)[
ES,ξ [Ladv(wT,S)]T

n

] q

q+1

[
4Lq

H − λ

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)] 1
q+1

Applying Lemma B.6 with

x = Eξ,SLadv(wT,S), y = Eξ,SL̂adv(wT,S), b =
q

q + 1

a =

(
1 +

1

q

)(
T

n

) q

q+1

[
4Lq

H − λ

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)] 1
q+1

gives us that

Eξ,S

[
Ladv(wT,S)− L̂adv(wT,S)

]

≤ max
{
2qaq+1, a(2y)

q

q+1

}
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= max

{(
1 +

1

q

)q+1(
2T

n

)q
4Lq

H − λ

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)
,

(
1 +

1

q

)(
2TEξ,SL̂adv(wT,S)

n

) q

q+1
[

4Lq

H − λ

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)] 1
q+1
}

= 4max

{(
2T

n

)q
4L

H(1− q)

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)
,

(
2TEξ,SL̂adv(wT,S)

n

) q

q+1
[

4L

H(1− q)

(√
2HΦadv(w0) + (4ES [ν2S ] + 4H2

zα
2) log (T )

n
+ 4Hzα

)] 1
q+1
}

where the last line holds because
(
1 + 1

q

)q+1

q and
(
1 + 1

q

)
q

1
q+1 are bounded when 0 < q < 1.
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