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Abstract

We study adversarially robust transfer learning, wherein, given labeled data on
multiple (source) tasks, the goal is to train a model with small robust error on a
previously unseen (target) task. In particular, we consider a multi-task represen-
tation learning (MTRL) setting, i.e., we assume that the source and target tasks
admit a simple (linear) predictor on top of a shared representation (e.g., the fi-
nal hidden layer of a deep neural network). In this general setting, we provide
rates on the excess adversarial (transfer) risk for Lipschitz losses and smooth non-
negative losses. These rates show that learning a representation using adversarial
training on diverse tasks helps protect against inference-time attacks in data-scarce
environments. Additionally, we provide novel rates for the single-task setting.

1 Introduction

In many real-world applications, we typically have a scarcity of data for the intended task. Consider,
for example, settings where the learner’s environment is evolving rapidly or where access to high-
quality labeled data is expensive or infeasible due to a lack of expertise or computational limitations.
These problems are typically studied under the framework of transfer learning [6, 22, 23, 40, 19].
Such approaches aim to leverage plentiful labeled data from the source domain to learn models that
can handle distribution shifts and work well on the target domain despite having a small labeled
dataset for the target task.

As transfer learning methods have proven successful in various applications [16, 18, 27], there is a
growing effort to utilize these approaches in high-risk environments like healthcare, medicine, trans-
portation, and finance. Any vulnerability of these systems provides malicious agents with tempting
targets. Consequently, the users of these ML systems may find their health and financial well-being
potentially jeopardized. Additionally, institutions that deploy these systems risk public relations
crises and lawsuits. A particular concern is attacks that happen after a model is deployed. Such
attacks are called “inference-time attacks” where, for example, a malicious agent attacks a large lan-
guage model (LLM) chatbot, a self-driving car, or a fraud-detection system. Much of the literature
focuses on inference-time attacks that add small perturbations to the model’s input. Prior work has
demonstrated that this can cause ML models to act unpredictably [8, 35].

∗Work done while the author was at the Johns Hopkins University.
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While several works have focused on imparting ML algorithms with robustness to adversarial at-
tacks [21, 46, 41, 28, 10], there is little emphasis on adversarially robust transfer learning, i.e.,
ensuring robustness to tasks with little (or no) supervision by leveraging labeled data from related
tasks. In this paper, we study this problem from a theoretical perspective, building on prior work on
this topic [13, 26, 12, 42]. We focus on transfer learning via learning a representation that provides a
method for sharing knowledge between different, albeit related, tasks [7, 45, 14, 29, 49]. A common
approach to achieve this has been termed multi-task representation learning (MTRL) [9, 24, 11]. In
practice, the class of representations is a complex model like a deep neural network, and the predic-
tors trained on top of them are simple linear models [7, 14]. Such a paradigm offers hope that we
can pool our data, potentially providing a substantial benefit if performed well.

In this work, we are interested in answering the following question: can multi-task learning be
used to learn complex representations that facilitate robust transfer while also benefiting from the
diversity of source data? We answer in the affirmative. Consider a class of representations H from
R

d to a lower dimensional space Rk, and a class of real-valued predictors F trained on top of it. Let
t be the number of source tasks, n be the number of samples per source task, and m be the number
of samples for the target task. For exposition, let C(·) be the complexity of a function class that is
independent of t, n,m and the adversarial attack. For Lipschitz losses, we bound the excess transfer
risk for the adversarial loss by
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For smooth and nonnegative losses, we bound the excess transfer risk for the adversarial loss by
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where ν and ε quantify task relatedness, L⋆
src is the average best possible adversarial risk for the

source tasks, and L⋆
tar is the best possible adversarial risk for the target task2. The second bound is

called an optimistic rate [34]. Both L⋆
src and L⋆

tar allow the rate above to interpolate between a slow
and fast rate depending on how difficult it is to be adversarially robust within the setting. Both of
these rates show the benefit of pooling nt data to learn a feature function that assists in mitigating
adversarial attacks.

In the process of showing the above, we establish several results that we believe are of independent
interest. A more complete list of our contributions follows.

1. We show bounds on the excess transfer risk for the adversarial loss class for both Lipschitz losses
(Theorem 2) and smooth nonnegative losses (Theorem 5).

2. Foundational to Theorems 2 and 5 are Lemmas 1 and 3, resp. These lemmas are similar to results
in prior work [25, Lemma 4.4 and Lemma 6.5.]. However, ours are less restrictive because we
remove a Lipschitzness assumption on the adversarial loss class. In Appendix B.2, we provide an
example of an attack model for which our lemma applies but the previous lemmas do not.

3. In our general attack model (Assumption 4) and both Lipschitz losses and smooth nonnegative
losses, we bound the sample-dependent Rademacher complexity of the adversary loss class by
the worst-case Rademacher complexity times a multiplicative factor attributed to the adversarial

attack. This latter factor for many common attacks has a dimensional dependence of
√
d log d.

Additionally, when the loss function is smooth and nonnegative, our bound is a sub-root function,
which is suitable for optimistic rates.

4. We provide a framework for studying adversarial robustness in MTRL, which consists of several
foundational contributions, e.g., Theorems 1 and 4, Definition 1, Assumption 4.A, Algorithm 1.

1.1 Some core difficulties and techniques

• A core part of our arguments is a pair of covering number lemmas that convert from the adver-
sarial loss class into the standard loss class at the expense of inflating the data. However, after
applying this result to the integrand of Dudley’s integral, the sample complexity depends on the
radius of the cover of the function class. This dependency makes bounding the integral difficult.

2For illustration, we use the “Gaussian chain rule” [37] to decompose F ◦ H. Due to space limitations,
henceforth we refrain from it except when indicated. For more details, see the paragraph after Assumption 3.
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Prior work either invoked a model or made a parametric assumption to bound this integral [25].
In contrast, we bound the integral in more generality. We elaborate on these difficulties and detail
our technique in Proof Sketch 5.

• We use a comparison inequality from a celebrated work [31] in a novel way, to our knowledge,
that allows a decomposition that separates function class complexity and attack complexity. Un-
fortunately, this is not a full decomposition due to a weak log log dependence between the factors.
However, we show that this dependence can be handled appropriately.

• We present a reduction from multi-task learning to single-task learning, see the proof of Theo-
rem 3, that we believe is of independent interest. In particular, this observation allows simplifica-
tion of prior work [37, 39] due to these works’ use of worst-case complexity.

1.2 Prior work

Adversarial attack. Prior work has shown that the normalization of model weights, data, and
the definition of robustness can significantly impact the dimensional cost of achieving adversarial
robustness. Although not directly comparable, it is informative to contrast the generalization bounds
for linear classifiers presented by [5] and [17]. Both works perform Rademacher complexity based
analysis with losses that are Lipschitz and satisfy certain monotonic properties. However, they
mainly differ in how they normalize the quantities involved. Let p and q be Hölder-conjugates. [5]
consider ∥·∥p linear classifiers with ∥·∥q normalized data being attacked with ∥·∥∞ perturbations.

They show that the Rademacher complexity of suitably transformed version of the linear model,

after applying Talagrand’s contraction lemma, has a tight d1/q dimensional dependence. Thus, when
p = 1, there is no dimensional dependence. On the other hand, [17] consider ∥·∥2 and ∥·∥p bounded

linear classifiers with data being ∥·∥2 bounded and being attacked with ∥·∥q perturbations. They

show that the Rademacher complexity of similarly transformed function class has no dimensional
dependence. Both rates lead to generalization bounds on the robust risk. Taken together, these
works demonstrate how prior research has strongly leveraged the relationship between the norm
on the attack, which we cannot control, and the model and data norms. Both works also provide
rates for neural networks. [5] provides a lower bound, showing that a certain variational version of

a neural network has a
√
d lower bound. [17] shows that their rate has an

√
d upper bound via a

“tree transformation” which is then used to bound the robust risk. Finally, both works consider the
optimization of surrogate losses for neural networks.

Adversarial transfer. Theoretical analyses of adversarial transfer in MTRL remain relatively
scarce, despite many empirical studies [33, 47, 43, 1, 38, 32]. Two works that provide theoreti-
cal insights into this problem are [13] and [26]. First, [13] is perhaps the first theoretical study of
this problem. Specifically, they study a shared linear projection onto a smaller dimensional sub-
space with linear classifiers trained on top of it, analogous to the regression study in [36, 15]. Under
∥·∥∞ or ∥·∥2 perturbation attacks, they show that the transfer risk of the adversarial loss decays

as
√

k/m +
√

k2d/nt along with multiplicative constants that depend on task diversity and can
reduce the rate as more diverse tasks are gathered. In addition, they study the combination of semi-
supervised learning and adversarial training and show their complementary qualities. Second, [26]
considers a composite model, with a linear model being trained on top of a neural network. For
additive perturbations and Lipschitz losses, they provide two results showing that the robustness of
the predictor is bounded by the robustness of the representation it is trained on. Their first result,
with high probability, bounds the difference between the adversarial loss of the end-to-end predictor
and the standard loss in terms of the average Euclidean difference in the representations over the
predictions. Their second result, applied to classification, provides a sufficient condition for robust-
ness in terms of a bound on the aforementioned Euclidean difference. These results are independent
of the method used for training the parameters of the representation.

While not strictly in the MTRL setting, [12] works with a non-composite model and gives a suf-
ficient condition for robust transfer in terms of the discrepancy between the symmetric difference
hypothesis space. They give generalization bounds using Rademacher complexity. Also, [42] stud-
ies the connection between domain transfer and adversarial robustness, showing that robustness is
neither necessary nor sufficient for domain transferability.

Optimistic rates. Optimistic rates are a type of self-normalized inequality that bounds the excess
risk that interpolates between two rates of decay. The prototypical example being the use of a smooth
nonnegative losses to give a rate where a fast O(1/n) is achieved when task is realizable and a
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standard O(1/
√
n) when it is not [34]. Optimistic rates have been shown for linear regression with

Gaussian data [48], multi-output prediction [30], adversarial robustness [25], and multi-task learning
[39]. The typical way to achieve optimistic rates is via local Rademacher complexity machinery [4].

2 Problem setup and preliminaries

Let X ⊆ R
d and Y ⊆ R denote the input and the label spaces, respectively. Let H be a class of

representation maps from R
d to R

k, and F and F0 each be a class of predictors from R
k to Y .3 For

a loss function ℓ : R × Y → R, denote ℓy := ℓ(·, y) so we can represent the functions consistently
as a composition. Let ∥·∥2 and ∥·∥∞ denote the Euclidean norm and the uniform norm, respectively.

We use the convention that Õ(·) hides log terms from the usual asymptotic notation.

Each source task is represented by a distribution {Pj} over X × Y , for j = 1, . . . , t, and the target
task is represented by probability distribution P0. Following prior work [37, 39], we make the
following assumptions for all tasks P0, . . . , Pt. We assume that (a) the marginal distribution over X
is the same; (b) there exists a common representation h⋆ ∈ H and task-specific predictors f⋆j ∈ F ,

f⋆0 ∈ F0 such that Pj can be decomposed as Pj(x, y) = Px(x)Py|x(y|f⋆j ◦ h⋆(x)); and (c) the

predictor f⋆j ◦ h⋆ is the optimal4 in-class predictor for its respective task w.r.t. ℓ. The assumption
above implies that any additional noise in y is independent of x because y depends on x only via
f⋆j ◦ h⋆(x). As noted in [39], the second assumption above does not imply the third.

We assume that we have access to n training examples for each source task drawn i.i.d. from the
respective distributions P1, . . . , Pt, andm examples for the target task P0. We use (xij , y

i
j) to denote

the ith training example for the jth task.

Adversarial attacks and adversarial training. We formulate our attack with a function class
A ⊆ {A : X → X}. For example, A = {x 7→ x + δ | ∥δ∥∞ ≤ 0.01, x + δ ∈ X} for additive

∥·∥∞ attacks. Our goal is to learn a composite predictor f̂ ◦ ĥ ∈ F0 ◦ H which performs well and
is robust to these adversarial attacks, i.e., it has a small adversarial risk defined formally as follows.
Let f0 ∈ F0 and f = (f1, . . . , ft) ∈ F⊗t. Then, the adversarial population risk and empirical risk
for the target and the source tasks are defined as follows.

Rtar(f0, h,A) := E(x,y)∼P0

[

max
A∈A

(ℓy ◦ f0 ◦ h ◦A)(x)
]

,

Rsrc(f , h,A) :=
1

t

t∑

j=1

E(x,y)∼Pj

[

max
A∈A

(ℓy ◦ fj ◦ h ◦A)(x)
]

,

R̂tar(f0, h,A) :=
1

m

m∑

i=1

[

max
A∈A

(

ℓyi
0

◦ f0 ◦ h ◦A
)

(xi0)

]

,

R̂src(f , h,A) :=
1

nt

t∑

j=1

n∑

i=1

[

max
A∈A

(

ℓyi
j
◦ fj ◦ h ◦A

)

(xij)

]

.

We also make natural modifications of the two-stage learning procedure used in [37, 39].

Algorithm 1 (Two-stage adversarial MTRL).

(f̂ , ĥ) ∈ argmin
f∈F⊗t,h∈H

R̂src(f , h,A)

︸ ︷︷ ︸

Multi-task adversarial (representation) learning

(Stage 1)

f̂0 ∈ argmin
f∈F0

R̂tar

(

f0, ĥ,A
)

︸ ︷︷ ︸

Adversarial Transfer learning

(Stage 2)

In Stage 1, we perform empirical risk minimization over the adversarial loss class for the combined

t tasks. After Stage 1 we have t compositions f̂1 ◦ ĥ, . . . , f̂t ◦ ĥ which minimize the average risk

3As in prior work [37, 39], we allow different predictor classes for the source and target tasks.
4This assumption is not strictly necessary but it helps making the optimistic rates more interpretable.
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above. Now, in Stage 2, we fix the representation ĥ learned from the source tasks and perform
empirical risk minimization again to find a new predictor for the target task. The final predictor for

the target task is f̂0 ◦ ĥ.

Adversarial task diversity. Naturally, if all of our tasks are drastically different we expect Al-
gorithm 1 to perform poorly. Therefore, it is crucial to quantify the relationship between the tasks.
Prior work in the linear setting gives sufficient properties between the tasks to provide provable rates
[15, 36]. However, these assumptions are in terms of spectral properties and therefore not suitable
in a more general setting. A more general notion of task relatedness called task diversity was intro-
duced in [37]. This relationship between tasks was shown to be sufficient for Lipschitz losses [37]
and smooth nonnegative losses [39]. Yet, it was not clear if these guarantees hold in an adversarial
setting. To close the gap, we introduce a new notion of adversarial task diversity.5

Definition 1 (Robust (ν, ε,A)-task diversity ). The tasks {Pj}ti=1 are (ν, ε,A)-diverse over P0, if
for the corresponding f⋆ ∈ F⊗t, f⋆0 ∈ F0 and representation h⋆ ∈ H, we have that for all h′ ∈ H

inf
f ′∈F0

Rtar(f
′, h′,A)−Rtar(f

⋆
0, h

⋆,A) ≤ ν−1( inf
f ′∈F⊗t

Rsrc

(
f ′, h′,A

)
−Rsrc(f

⋆, h⋆,A)) + ε.

Loss class and dataset notation. Let a function class Q be a function class and its t-fold Cartesian
product be Q⊗t. We use the following notation for the standard MTRL loss class.

L
(
Q⊗t

)
:= {(x1, . . . , xt) 7→ ((ℓy1

◦ q1)(x1), . . . , (ℓyt
◦ qt)(xt)) | q ∈ Q⊗t}.

We define an adversarial counterpart to the MTRL loss class (above) as follows.

LA
(
Q⊗t

)
:= {(x1, . . . , xt) 7→ (max

A∈A
(ℓy1

◦ q1 ◦A)(x1), . . . ,max
A∈A

(ℓyt
◦ qt ◦A)(xt)) | q ∈ Q⊗t}.

We define the function class Q restricted by functional V : R
t → R at r as Q|r =

{q ∈ Q⊗t | V (q) ≤ r}. We will consider V to be a multiple (by a factor of b) of the adversar-
ial or standard risk. The Rademacher complexity of this restricted functional class yields local
Rademacher complexity. When using local Rademacher complexity it is common to bound it by a
sub-root function. A function ψ : [0,∞) → [0,∞) is sub-root if it is nonnegative, nondecreasing,
and if r 7→ ψ(r)/

√
r is nonincreasing for r > 0. Sub-root functions are continuous and have unique

fixed points [4]. Given x ∈ X let Cx(ε) be a proper ∥·∥A-cover of A(x) at scale ε. Since Cx(ε)
is proper, this cover is realized by some subset of A. Let CA(x)(ε) be this subset of A w.r.t. x.

Given a dataset S := {(xi, yi)}i∈[n], we notate SA(ε) := {(A(xi), yi) | i ∈ [n], A ∈ CA(xi)(ε)} to
represent the approximate inflation of S with respect to A at radius ε. Our convention is to have all
covers be minimal when minimality can be achieved.

Complexities. Next, we introduce the notions of complexities of functions classes that we
will utilize. First, we give the Rademacher based complexities suitable in MTRL on a fixed
set of inputs. Let Q be a class of vector-valued functions from Z to R

q . Denote the
p-fold Cartesian product of Q as Q⊗p. For Z =

(
zij
)

j∈[p],i∈[n]
, where zij ∈ Z , de-

fine the data-dependent Rademacher width and data-dependent Rademacher complexity, respec-

tively, as R̂(Q⊗p,Z) := Eσi,j,k
[supq∈Q⊗p(np)−1

∑n,p,q
i,j,k=1 σijk(qj(z

i
j))k] and ˆ|R|(Q⊗p,Z) :=

Eσi,j,k
[supq∈Q⊗p |(np)−1

∑n,p,q
i,j,k=1 σijk(qj(z

i
j))k|], where σi,j,k are i.i.d. Rademacher random

variables. In contrast to the convention we will place a particular emphasis on the dataset, and
therefore, it is prominent in the notation. We define the worst-case Rademacher width and the

worst-case Rademacher complexities as R̂(Q⊗p, n) := supZ R̂(Q⊗p,Z) and ˆ|R|(Q⊗p, n) :=

sup|Z|=n
ˆ|R|(Q⊗p,Z).

Next, using the same notation, we define the empirical covering number of vector-valued func-
tion class. With ε > 0, define N 2(Q⊗t, ε,Z) be the cardinality of a minimal cover C such that
for all q ∈ Q⊗t there is a q̃ ∈ C such that (np)−1

∑n,p,q
i,j,k=1((qj(z

i
j))k − (q̃j(z

i
j))k)

2 ≤ ε2 and

N∞(Q⊗t, ε,Z), similarly, but with maxi,j,k |(qj(zij))k − (q̃j(z
i
j))k| ≤ ε as the norm instead.

Finally, we define the fat-shattering dimension. Let Q be a class of functions from Z to R and let
Z = {z1, . . . , zm} where Z ⊆ Z . Then, for γ > 0, we say that Z is γ-shattered by Q, if there

5Note that this is slightly different than the definitions introduced in [37], here we are using a product space
structure like [39] to simplify the problem.
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exist r1, . . . , rm, such that for all b ∈ {0, 1}m there is a qb ∈ Q such that for all i ∈ [m] we have
fb(xi) ≥ ri + γ if bi = 1 and fb(xi) ≤ ri − γ if bi = 0. Let vcZ(Q, γ) be the cardinality of the
largest subset of Z that is γ-shattered by Q. If a largest subset does not exists, let vcZ(Q, γ) = ∞.

Assumptions. We make the following assumptions on the loss function, hypothesis classes, and the
adversarial attack function. The first two assumptions regarding if the loss is Lipschitz or smooth
nonnegative are standard.

Assumption 1 (Lipschitz loss). The loss function ℓ : R × Y → R is Lℓ-Lipschitz and b-bounded
i.e., |ℓ(y′, y)| ≤ b < ∞, ∀y′ ∈ R, y ∈ Y and |ℓy(y1, y)− ℓy(y2, y)| ≤ Lℓ|y1 − y2| for all y1, y2 ∈
R, y ∈ Y .

Assumption 2 (Smooth nonnegative loss). The loss function ℓ : R × Y → R is nonnega-
tive, b-bounded, and H-smooth, i.e., 0 ≤ ℓ(y′, y) ≤ b < ∞ for all y′ ∈ R, y ∈ Y and
∣
∣ℓ′y(y1, y)− ℓ′y(y2, y)

∣
∣ ≤ H|y1 − y2| for all y1, y2 ∈ R, y ∈ Y .

The next assumptions are that the predictor and representation function classes are Lipschitz.

Assumption 3 (Hypotheses and feature maps are Lipschitz).

A: All functions in F and F0 are ∥·∥-Lipschitz for some 0 < LF < ∞, i.e., |f(z1)− f(z2)| ≤
LF∥z1 − z2∥ for all z1, z2 ∈ Dom(f) and f ∈ F ∪ F0.

B: All functions in H are (∥·∥A, ∥·∥)-Lipschitz for some 0 < LH < ∞, i.e., ∥h(z1)− h(z2)∥ ≤
LH∥z1 − z2∥A for all z1, z2 ∈ Dom(h) and h ∈ H.

If the norm in Assumption 3.A is Euclidean and additionally any f ◦ h ∈ F ◦ H is D-bounded
over X w.r.t. ∥ · ∥2 then these assumptions are sufficient to apply the so called Gaussian chain rule
[37]. This allows more interpretability since the statistical cost of learning can be broken up into
two terms, for F and H separately, in a rather intuitive way. We do not apply this theorem primarily
due to space limitations. However, for illustrative reasons, we will assume these assumptions hold
when we analyse the asymptotics of Theorems 2 and 5.

Finally, we make the following assumptions on the adversary.

Assumption 4 (Bounded within-domain adversarial attacks).

A: A(x) is totally bounded w.r.t ∥·∥A for all X . That is, for all ε > 0 a finite number of ∥·∥A balls
of radius ε cover A(x) for all x ∈ X .

B: The attack function cannot perturb outside of the input domain X , i.e., A ⊆ {A : X → X} .

First, Assumption 4.A trivially implies that there exists a ∆ <∞ such that supA∈A,x∈X ∥A(x)∥A ≤
∆. Second, Assumption 4.B is a reasonable assumption as we discuss in Appendix A.

3 Adversarial multi-task representation learning

In this section, we give our main adversarial MTRL results. Given robust task diversity (Definition 1)
holds, these theorems show that with high probability, adversarial excess transfer risk decays with
the sample size and is bounded by the complexity of the non-adversarial loss class and an additional
factor derived from the adversarial attack. First, we show our result for Lipschitz losses, and then
for smooth nonnegative losses.

3.1 Lipschitz losses

Lipschitz losses, like ramp loss, are frequently used in machine learning. We will start with a
uniform convergence bound that is foundational to our study of Lipschitz losses. The following
result bounds the adversarial excess transfer risk by the Rademacher complexity of the adversarial
loss class for the source tasks and target task. This result is an adversarially robust version of the
main MTRL result in [37] before utilizing the Lipschitzness of the loss. Alternatively, it can be seen
as an MTRL version of Corollary 1 in [44].

Theorem 1. Let ĥ and f̂0 be the learned representation and target predictor, as described Algo-
rithm 1. Under Assumption 1 and that f⋆

is (ν, ε,A)-diverse over F0 w.r.t. h⋆, then, with probability
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at least 1− 2δ, we have that Rtar

(

f̂0, ĥ,A
)

−Rtar(f
⋆
0, h

⋆,A) is bounded by

ν−1(8R̂(LA
(
F⊗t(H)

)
, n) + 8b

√

log(2/δ)/nt)+8 sup
h∈H

R̂(LA(F0 ◦ h),m)+8b
√

log(2/δ)/m+ε.

We now apply the above to Lipschitz losses classes. But, before we do, let us define a special
function that features prominently in our work. Let the function ΛA(ρ, L, n, β) be mapped to

(

log log

∣

∣

∣

∣

SA

(

eb

4c
√
nL

)∣

∣

∣

∣

+
cρ

β

)

(

8

c
+ 40

√
eC

c

√

log

(

4c
√
n

e

∣

∣

∣

∣

SA

(

eb

4c
√
nL

)∣

∣

∣

∣

)

log

(

16ρcβn

e2

)

)

.

When needed, we will use Λsrc
A (·, ·, ·, ·) or Λtar

A (·, ·, ·, ·) to indicate which data is being inflated.

Theorem 2. Under the setting of Theorem 1 along with Assumption 3, Assumption 4,

|SA
(
eb/4c

√
ntL3

)
|, |SA(eb/4c

√
mL1)| ≥ ee, vcX (L(F ◦ H), β1b), vcX (L(F0 ◦ H), β2b) ≥ 1,

then the Rademacher complexities R̂(LA(F⊗t(H)), n) and R̂(LA(F0 ◦ h),m) in Theorem 1 are,
respectively, bounded by

2 ˆ|R|
(

L
(

F⊗t(H)
)

, n
)

Λsrc

A

(

2−1
, L3, nt, β1

)

and 2 sup
h∈H

ˆ|R|(L(F0 ◦ h),m)Λtar

A

(

2−1
, L1,m, β2

)

, (1)

where L3 = LℓLFLH, L1 = LℓLF , and C, c are absolute constants.

If we ignore the two factors that come from the adversarial complexity, the result is similar to prior
work in the non-adversarial setting of [37]. In fact, if A exclusively contains the identity function,
then we recover the non-adversarial version modulo log factors.

The assumptions on the fat-shattering dimension and size of the inflated dataset are in several of
our theorems. It should be noted that they are technical and mild. First, |SA(1/

√
n)| is usually

exponential in d, and, therefore, practically always larger than ee < 16. Also, the assumption
trivially holds if the dataset is larger than 16. Second, vcX (L(F ◦ H), βb) ≥ 1 is just a parametric
version of the assumption that the fat-shattering dimension is nonzero. Practically speaking, β being
1 or 1/2 is reasonable and does not impact the bound in any meaningful way.

A dimensionality analysis on the first expression in Equation (1). Recall that A(x) is to-
tally bounded for all x ∈ X w.r.t. ∥·∥A. So, over the sample S, the attack class perturbs the
points only so far. That is, supx∈S,A′,A∈A∥A(x)−A′(x)∥A ≤ ∆ < ∞ for some ∆. This

gives us a radius for which we place n balls of radius ∆ to cover A(S). By standard vol-

ume arguments, e.g. Lemma A.8 in [20], each of these balls can be eb/4c
√
ntL3-covered by

(12c
√
ntL3∆/eb)

d many points. Thus, n(12c
√
ntL3∆/eb)

d bounds the cardinality of the inflated

dataset SA
(
eb/4c

√
ntL3

)
. By using this inequality in Equation (1), R̂(LA(F⊗t(H)), S) is bounded

by ˆ|R|(L(F⊗t(H)), nt)
√

d log(nL3∆/b) log(d log(nL3∆/b)) log(n), where we set β1 = 1, ig-
nored constants and lower-order terms. Therefore, as a function of d, the adversarial training costs

at least a factor of
√
d log dmore in comparison to the standard non-adversarial loss. The analysis of

the second expression in Equation (1) is similar but the dimensional dependence is
√
k log k because

the inflation happens in the image of the representation space.

The dimensionality and sample size dependencies of Equation (1). Like in the introduction,
let C(·) be the complexity of a function class which is independent of the sample complexity

and the adversarial attack. Generally, ˆ|R|(L(F⊗t(H)), n) decays as O(
√

C(F⊗t(H))/nt) and
ˆ|R|(L(F0 ◦ h),m) as O(

√

C(F0)/m). If the image of the source tasks predictors is bounded

and ∥·∥2-Lipschitz, we can decompose ˆ|R|(L(F⊗t(H)), n) into O(
√

C(H)/nt+
√

O(C(F))/n)
by using the Gaussian chain rule [37]. Additionally, the adversarial robustness factors contribute

Õ(
√
d) for the source tasks and Õ(

√
k) for the target task because of the dimensionality analysis

in the prior paragraph. Taken together, in this setting, the adversarial excess transfer risk decays

as Õ
(√

dC(F)/n+ dC(H)/nt+
√

kC(F0)/m
)

. See Appendix B.1 for a detailed comparison of

the above rate to the linear setting studied in [13].

Proof Sketch 1. The result follows by bounding the adversarial Rademacher complexities by calling
Theorem 3 twice. However, for the Rademacher complexity w.r.t. the target task one must make the

observation that we can treat ĥ ◦ A(x) as the attack function class for all x. This function is totally
bounded by Assumption 3.B and therefore we can proceed as normal. See Appendix E.1 for details.
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The proof above depends on the following bound on the Rademacher complexity of the multi-task
function class LA(F⊗t(H)). To achieve this bound, we reduce the multi-task setting to the single-
task setting. Although simple, this reduction simplifies arguments made in prior work [37, 39]
because these works use worst-case complexity.

Theorem 3. Under the setting of Theorem 2, R̂(LA(F⊗t(H)), S) is bounded by

2 ˆ|R|(L(F⊗t(H)), n)Λsrc
A
(
2−1, L3, nt, β1

)
, where L3 = LℓLFLH.

Proof Sketch 2. The proof reduces the multi-task setting to the single-task setting by observing that
the data-dependent multi-task Rademacher complexity is equivalent to the data-dependent single-
task Rademacher complexity on a dataset with an additional immutable component indexing the
task. See Appendix E.1 for details.

The proof of Theorem 3 immediately implies we can use the machinery in the single-task setting
literature. This is also true in the non-adversarial setting. Therefore, the above reduction technique
applies to situations outside adversarial robustness. However, the above argument does not work

when not using worst-case Rademacher complexity because S̃ would not be a sample of i.i.d. ran-
dom variables. Yet the above method is a convenient tool as we are using worst-case Rademacher
complexity because our analysis goes through the fat-shattering dimension. In Appendix D, we give
a short remark on a notion of fat-shattering dimension suitable for vector-valued classes.

3.2 Smooth and nonnegative losses

Like in the case of Theorem 1, we extend prior work to the adversarially robust learning setting.
Since much of what we discussed about sample complexity and dimensionality parameters in the
prior section also applies here, this section will be more brief.

Theorem 4. Let ĥ and f̂0 be the learned representation and target predictor, as described Algo-

rithm 1. Let ψ1 and ψ2 be sub-root functions such that ψ1(r) ≥ bR̂(LA(F⊗t(H) |r), n) and

ψ2(r) ≥ b suph∈H R̂(LA(F0 ◦ h |r),m) with r⋆1 and r⋆2 the fixed points of ψ1(r) and ψ2(r), respec-
tively. Under Assumption 2 and that f⋆

is (ν, ε,A)-diverse over F0 w.r.t. h⋆, then, with probability

at least 1− 2e−δ , we have that Rtar

(

f̂0, ĥ,A
)

−Rtar(f
⋆
0, h

⋆,A) is bounded by,

√

Rtar(f
⋆
0, h

⋆,A)

(

9

√

bδ

m
+ 219

√

r⋆1
b

)

+
171bδ

m
+

21967r⋆1
2b

+
1

ν

(
√

Rsrc(f
⋆, h⋆,A)

(

6

√

bδ

nt
+ 146

√

r⋆2
b

)

+
102bδ

nt
+

217r⋆2
b

.

)

+ ε.

Theorem 4 requires bounding the local Rademacher complexity of the adversarial loss class by a
sub-root function, which is the main challenge in applying this result. We show that such a bound is
obtained if the predictor classes are Lipschitz and the loss is smooth and nonnegative.

Theorem 5. Under the setting of Theorem 4 along with Assumption 3, Assumption 4,

|SA
(
eb/4c

√
ntL2

)
|, |SA(eb/4c

√
mLF )| ≥ ee, vcX (L(F ◦ H), β1b), vcX (L(F0 ◦ H), β2b) ≥ 1,

then the fixed points
√

r⋆2/b and
√

r⋆1/b in Theorem 4 are, respectively, bounded by

2
√
12H ˆ|R|

(
F⊗t(H), n

)
Λsrc
A

(

(24Hb)−1/2, L2, nt, β1

)

and 2
√
12H ˆ|R|(F0 ◦ h,m)Λtar

A
(
(24Hb)−1/2, LF ,m, β2

)
, where L2 = LFLH.

Comparing Theorems 2 and 5, the latter has twice as many complexity terms: two for the target
task and two for the source tasks. Therefore, we will start our asymptotic analysis of Theorem 5
from where the analysis after Theorem 2 left off. For the target task terms, one of these terms is
multiplied by the square root of the adversarial risk for the best-in-class predictor and representation,
i.e., Rtar(f

⋆
0, h

⋆,A). This factor is zero when an adversarially robust classifier exists. This leaves
only one complexity term remaining for the target task, which is a squared version of the last one.
Thus, in this setting, the bound is a fast rate in the number of target samplesm. This reasoning shows
the value of learning a robust representation because it takes fewer samples to learn a good predictor.
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Similarly, the bound is a fast rate in the number of source tasks t and respective samples per task n
if there exist predictors with zero adversarial risk on the source tasks. Thus, the bound on the excess

transfer risk of the adversarial loss class decays as Õ(dC(F)/n+ dC(H)/nt+ kC(F0)/m), when
robust predictors and representations exist in our chosen classes.

Proof Sketch 3. The proof is like the argument for Theorem 2, but we use Theorem 6 not Theorem 3.

In the setting above, we now give our bound on the local Rademacher complexity of the adversarial
loss class. Importantly, the bound is a sub-root function in r.

Theorem 6. Under the setting of Theorem 5, R̂(LA(F⊗t(H) |r), S) is bounded by

2
√
12H ˆ|R|(F⊗t(H), n)Λsrc

A
(
(24Hb)−1/2, L2, nt, β1

)
, where L2 = LFLH.

Proof Sketch 4. Use the reduction in the proof of Theorem 3, then use Theorem 8.

4 Standard adversarial learning

4.1 Lipschitz losses

In this section, we bound the adversarial Rademacher complexity for the standard single-task setting
under the assumption of a Lipschitz loss. Such bounds immediately give results for the excess risk of
the adversarial loss class via a uniform convergence guarantee like Corollary 1 in [44]. The results
and arguments for smooth and nonnegative losses are similar. See Section 4.2 for details.

The following result bounds the sample-dependent Rademacher complexity for the adversarial loss
class by two factors: the worst-case Rademacher complexity for the non-adversarial loss class and a
function that encodes the power of the attack model.

Theorem 7. Let F be LF -Lipschitz w.r.t. ∥·∥A. Under Assumption 1, Assumption 4,

|SA(eb/4c
√
nL1)| ≥ ee, vcX (L(F), βb) ≥ 1, then R̂(LA(F), S) is bounded by

2 ˆ|R|(L(F), n)ΛA
(
2−1, L1, n, β

)
, (2)

where L1 = LℓLF and C, c are absolute constants.

Many of the remarks in Section 3 apply to Theorem 7. See Appendices B.2 and B.3 for detailed
comparisons to [25] and [4], respectively.

Proof Sketch 5. The difficulty of studying adversarial robustness originates from the variational
component of the adversarial loss class. Under certain assumptions, we can remove the max func-
tion with an appropriate “inflating” of the dataset by using a covering number argument inspired
by [25]. The proof of the result below is in the appendix.

Lemma 1. Let F be LF -Lipschitz w.r.t. ∥·∥A. Under Assumption 1, and Assumption 4, we have
N∞(LA(F), ε, S) ≤ N∞(L(F), ε/2, SA(ε/2L1)), where L1 = LℓLF .

Although we find Lemma 1 intuitive, it does result in a difficulty that we demonstrate below. First,
as expected, we can apply Lemma 6, Dudley’s integral; then Lemma 1. These steps are shown in the
inequality below.

R̂(LA(F), S) ≤ 4α+
10√
n

∫ b

α

√

logN∞

(

L(F),
ε

2
, SA

(
ε

2L1

))

dε (3)

The above removes the variational component of the loss at the expense of “inflating” the data. Yet,
notice that now this “inflated” data SA(·) is a function of ε. This makes the integral more difficult to
study because, after applying other techniques from prior work [34, 39], one cannot move the sample
complexity out of the integral. This difficulty is resolved in prior work by either invoking a model
(e.g., F being linear predictors) or making a parametric assumption. Both of these approaches are
used in [25], with the parametric assumption being N∞(L(F), ε/2, SA(ε/2L1)) ≲ ε−2.

Alternatively, we provide an approach that overcomes these challenges while retaining the generality
of the results. Starting at Equation (3), our approach is to decouple the complexity of the class and
the properties of the inflated dataset. We observe that a weak decoupling can be achieved by the use
of a comparison inequality from a ∥·∥∞ cover to the fat-shattering dimension. In particular, such a

comparison inequality is the following special case 6 of a celebrated result in [31].

6The special case is the empirical measure on the drawn data.
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Lemma 2 (Rudelson and Vershynin (2006)). Suppose F is uniformly B bounded for B > 0, then,

for all ξ > 0, we have logN∞(F , ε, S) ≤ Cv log(Bn/vε) logξ(n/v) for 0 < ε < B where
v = vcX (F , cξε) and C, c > 0 are universal constants.

If we apply Lemma 2 to the integrand of Equation (3), then N∞(L(F), ε/2, SA(ε/2L1)) ≤
CvcX (L(F), cξε/2) log(2b|SA(ε/2L1)|/ε) logξ(|SA(ε/2L1)|), where, for illustrative purposes,
we removed the fat-shattering dimension factors from the denominators by assuming that
vcX (L(F), cξε/2) ≥ 1. (In general, we must be more nuanced than this by handling cases –
see the full proof for more details.) This decomposition allows us to handle each factor in turn in
a way that was not possible before. Yet, the picture is more complicated than this, for instance, ξ
can depend weakly on SA(·). Nevertheless, from here, the complete proof – see Appendix E.2.2 –
proceeds with a more traditional analysis and relies on other standard lemmas. The above weak
decomposition illuminates the significance of Assumption 4.B in our analysis. In particular, when
the image of all attacks is in X , we have that the points fat-shattered are within X , not A(X ), i.e.,
we have vcX (L(F), 2) not vcA(X )(L(F), ·). If Assumption 4.B does not hold, there is a stronger
dependence between the complexity of the attack and the complexity of the predictors.

To our knowledge, this is a novel use of this family of fat-shattering comparison inequalities, and our
techniques derive novel rates in the single-task setting while retaining the generality. The authors of

[31, p. 607] conjecture that the logξ(n/v) factor in Lemma 2 can be removed, although it is unclear
what the nature of a ξ like dependence would be. Naturally, their conjecture implies another: that,

for our setting, the Rademacher complexity of the adversarial loss class is R̂(LA(F), S) is O(
√
d).

4.2 Smooth nonnegative losses in the single-task setting

In this section, we bound the local Rademacher complexity of the adversarial loss class for smooth
nonnegative losses in the standard single-task setting. Many of the remarks in Section 4.1 apply here
too. Thus, we will forgo much of this repetitive commentary for the sake of space. First, we bound
the adversarial local Rademacher complexity of the adversarial loss class.

Theorem 8. Under the setting of Lemma 3 along with |SA(eb/4c
√
nLF )| ≥ ee and vcX (F , bβ) ≥

1, then we have R̂(LA(F |r), S) is bounded by
√
12H ˆ|R|(F , n)ΛA

(
(24Hb)−1/2, LF , n, β

)
, where

C, c are absolute constants.

A non-adversarial version of Theorem 8 was shown in the seminal [34] with a bound of order

Õ(
√
Hr ˆ|R|(F , n)). In comparison, in the adversarial setting, the expression in Theorem 8 has the

additional factor due to the adversary which is of order Õ(
√
d). Importantly, our bound is also a sub-

root function in r and, thus, suitable for optimistic rates derived from local Rademacher complexity.
See Appendix B.2 for a comparison of these results with those in [25].

Proof Sketch 6. The proof proceeds by using Lemma 3 and analysis similar to the proof of Lemma 1.

Our proof of Theorem 8 depends on the following covering number lemma, which similar to Lemma
6.5. in [25]. The proof of this lemma is in Appendix E.2.3.

Lemma 3. Let F be a class of predictors and let F |r be all functions in F with empirical ad-
versarial risk less than r on S. If F |r is LF -Lipschitz w.r.t. ∥·∥A, then under Assumption 2 and

Assumption 4, we have N 2(LA(F |r), ε, S) ≤ N∞
(

F , ε/2
√
12Hr, SA

(

ε/2
√
12HrLF

))

.

5 Conclusion

In this work, we have shown several theorems that demonstrate that a representation derived from
adversarial training can assist in defending against adversaries on downstream tasks. Such theorems
show how utilizing diverse tasks can assist in learning robust representations in data-scarce or high-
stake domains. Some additional questions are how to optimally select source tasks to maximally
assist in learning a robust representation and if the assumption of the attack residing within the

data domain can be relaxed while retaining our Õ(
√
d) rate in general settings. Our main technical

innovation is using a celebrated fat-shattering inequality [31] to carefully control the inflation of the
dataset. In doing so we have also shown several novel rates in the single-task setting.
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Glossary

ˆ|R|(Q⊗p,Z) The data-dependent Rademacher complexity of Q⊗p for Z =
(
zij
)

j∈[p],i∈[n]
, i.e.,

ˆ|R|
(
Q⊗p,Z

)
:= Eσi,j,k



 sup
q∈Q⊗p

∣
∣
∣
∣
∣
∣

1

np

n,p,q
∑

i,j,k=1

σijk
(
qj
(
zij
))

k

∣
∣
∣
∣
∣
∣



,

where zij ∈ Z and σi,j,k are i.i.d. Rademacher random variables.

R̂src(f0, h,A) The empirical adversarial risk for the source tasks.

R̂src(f0, h,A) :=
1

m

m∑

i=1

[

max
A∈A

(

ℓyi
0

◦ f0 ◦ h ◦A
)

(xi0)

]

,

R̂tar(f , h,A) The empirical adversarial risk for the target task.

R̂tar(f , h,A) :=
1

nt

t∑

j=1

n∑

i=1

[

max
A∈A

(

ℓyi
j
◦ fj ◦ h ◦A

)

(xij)

]

.

ΛA(ρ, L, n, β) The function that maps to

(

log log

∣
∣
∣
∣
SA

(
eb

4c
√
nL

)∣
∣
∣
∣
+
cρ

β

)(

8

c
+ 40

√
eC

c

√

log

(
4c
√
n

e

∣
∣
∣
∣
SA

(
eb

4c
√
nL

)∣
∣
∣
∣

)

log

(
16ρcβn

e2

))

.

This function encapsulates the cost of being robust to adversarial attacks within our rates.

LA(·) The adversarial loss class:

LA
(
Q⊗t

)
:=

{

(x1, . . . , xt) 7→
(

max
A∈A

(ℓy1
◦ q1 ◦A)(x1), . . . ,max

A∈A
(ℓyt

◦ qt ◦A)(xt)
)

| g ∈ G⊗t

}

.

Rsrc(f , h,A) The adversarial risk for the source tasks.

Rsrc(f , h,A) :=
1

t

t∑

j=1

E(x,y)∼Pj

[

max
A∈A

(ℓy ◦ fj ◦ h ◦A)(x)
]

,

Rtar(f0, h,A) The adversarial risk for the target task.

Rtar(f0, h,A) := E(x,y)∼P0

[

max
A∈A

(ℓy ◦ f0 ◦ h ◦A)(x)
]

,

N p(Q, ε,Z) The covering number of Q at scale ε w.r.t. the empirical ∥·∥p on Z.

R̂(Q⊗p,Z) The data-dependent Rademacher width of Q⊗p for Z =
(
zij
)

j∈[p],i∈[n]
, i.e.,

R̂(Q⊗p,Z) := Eσi,j,k



 sup
q∈Q⊗p

1

np

n,p,q
∑

i,j,k=1

σijk
(
qj
(
zij
))

k



,

where zij ∈ Z and σi,j,k are i.i.d. Rademacher random variables.
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vcX (Q, ε) The fat-shattering dimension of Q at scale ε with points from X .

SA(ε) The inflated dataset w.r.t. attacks A, sample S, and scale ε. See Section 2.

f⋆j The ground truth predictor for task j.

ℓ The loss function ℓ : R× Y → R. We also use the notation ℓy(x) := ℓ(x, y).

L(·) The non-adversarial loss class:

L
(
Q⊗t

)
:=
{
(x1, . . . , xt) 7→ ((ℓy1

◦ q1)(x1), . . . , (ℓyt
◦ qt)(xt)) | q ∈ Q⊗t

}
.

A The function class containing the attack functions that are maps from X to X .

A An attack function A : X → X in A.

h⋆ The common representation for all tasks.

L1 L1 := LℓLF

LF The Lipschitz constant for the predictors F ∪ F0 w.r.t. ∥·∥: a positive LF such that
|f(z1)− f(z2)| ≤ LF∥z1 − z2∥ for all z1, z2 ∈ Dom(f) and f ∈ F ∪ F0.

Lℓ The Lipschitz constant for the loss function ℓ: a positive Lℓ such that |ℓy(y1, y)− ℓy(y2, y)| ≤
Lℓ|y1 − y2| for all y1, y2 ∈ R, y ∈ Y .

LH The Lipschitz constant for the representations H w.r.t. the norms (∥·∥A, ∥·∥): a positive LH
such that ∥h(z1)− h(z2)∥ ≤ LH∥z1 − z2∥A for all z1, z2 ∈ Dom(h) and h ∈ H.

L2 L2 := LFLH

L3 L3 := LℓLFLH

H The smoothness constant for a smooth loss: a positive H such that
∣
∣ℓ′y(y1, y)− ℓ′y(y2, y)

∣
∣ ≤

H|y1 − y2| for all y1, y2 ∈ R, y ∈ Y .

k The dimension of the embedding space, i.e., the dimension of the image of the representations.

H The representations class that consists of functions from R
d to R

k.

F A hypothesis class consisting of functions from X to Y .

F0 A hypothesis class for the target task consisting of functions from X to Y .

d The dimension of the space from which the data is drawn.

X The input space, i.e., X ⊆ R
d

Y The label space, i.e., Y ⊆ R

b The bound on the loss function: a positive b such that |ℓ(y′, y)| ≤ b <∞ for all y′ ∈ R, y ∈ Y
F⊗t The cartesian product of F for t times.

t The number of source tasks.

n The number of samples drawn for each source task.

m The number of samples drawn for the target task.

A A remark about attack functions

While Assumption 4.B is not made in several works on adversarial robustness in the linear setting
[4, 13], it is made in at least one other work [25, p. 3]. It seems that the literature has yet to formally
made a distinction between these two settings. Therefore, we would like to make a few short remarks
about how Assumption 4.B is natural and mild.

First, in practice, X is frequently known. Therefore, if one seeks to protect against adversarial at-
tacks, protections can be put in place for inputs that are not in X . Thus, since the adversary wants to
avoid detection, it is reasonable for an adversary to only perturb within the input domain. Second,
many attacks in the empirical literature naturally fall into this category, e.g., a sticker placed on a
stop sign. In addition, for image classification with X as the space of images, the famous examples
of images [35] that have been slightly perturbed by definition fall into this category. Also, a key
difficulty of being robust to adversarial attacks is caused by the curse of dimensionality. Specifi-
cally, in classification, this manifests in the distance from any point to the decision boundary being
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exceedingly small. This is also true under Assumption 4.B. Finally, in practice, it is common to
preprocess the input before passing it to the model, e.g., subtracting the mean, removing outliers,
dividing by the standard deviation, and clipping. So, it is a reasonable assumption that the input to
the model, adversarial or not, will often be within the same space.

B Technical comparisons to prior work

B.1 Comparison to [13]

To our knowledge, the first work to study adversarial attacks in the MTRL regime is [13]. Although
we both consider MTRL, there are several differences: they consider classification with represen-
tation functions that are orthonormal matrices and the predictors as linear maps, ∥·∥∞ attacks, a
spectral condition to relate the tasks similar to [15, 36], the loss function (x, y) 7→ −yf(x), and a
sub-Gaussian generative model. Ignoring these differences, they show that the excess transfer risk

decays as
√

k/m +
√

k2d/nt. In comparison, if we instantiate our function classes as they have,

C(F) is O(k) and C(H) is O(dk2) (see e.g., [37, p. 7]). Plugging these values into the expression

from the asymptotic analysis of the Lipschitz loss, our rate is Õ(
√

dk/n+ dk/
√
nt+ k/

√
m). We

observe a
√
d and

√
k gap between the source tasks and target task rate, respectively, compared to

their rate. We believe the additional
√

dk/n term in our rate is an artifact of using the Gaussian
chain rule [37].

B.2 Comparison to [25]

Ignoring our MTRL results, the paper most similar to our own is [25], which does a substantial
analysis of adversarial attacks in the multi-class setting. Like in Appendix B.3, we must be careful
due to different assumptions. In particular, our results hold for a subtly different attack model.
Let us define their notation for illustrative purposes. They define an attack as A : X × B → X
where B is the “noise class.” They require that δ 7→ ℓ(f(A(x, δ)), y) is L-Lipschitz for ∥·∥A and,
similar to our own assumption, the existence of a cover of B. Yet, unlike Lemma 4.4 of [25], we
do not require the Lipschitz assumption. Consequently, our analogous lemma, Lemma 1, applies to
attack models for which theirs does not. As an example, define an attack A(x, δ) to be x if δ = 0
otherwise x+ δ/∥δ∥2 where B = {δ | ∥δ∥2 ≤ 1} . The attack is not continuous and, therefore, not
Lipschitz. So the Lipschitz assumption δ 7→ ℓ(f(A(x, δ)), y) does not hold for non-trivial losses
and predictors.

Ignoring these differences, they state their main generalization bound as, with probability at least
1− δ over the training data S, for all f ∈ F ,

Radv(f)− R̂adv(f) ≤ 3

√

log(2/δ)

2n
+ inf

α>0

(

8α+
24√
n

∫ 1

α

√

logN∞
(

G̃adv,
ε

2
, S̃
)

dε

)

,

where

G̃adv = {(z, δ) 7→ ℓ(f(A(x, δ)), y) : f ∈ F} and S̃ =
{(

xi, δ̃, yi

)

: i ∈ [n], δ̃ ∈ CB(ε/2L)
}

.

Their work then proceeds to bound this integral under additional assumptions like instantiating F
to be a specific model or making parametric assumptions. In comparison, we bound the above
integral by Equation (2). We believe this new bound provides new insights into the cost of being
adversarially robust that were not clear before because of the additional assumptions made for the
analysis. In particular, our work shows that under mild assumptions, for a large attack model, the

dimensional dependence attributed to the attack is Õ(
√
d).

Now let us make a comparison of our optimistic rate to Theorem 6.8 in [25], which is also an
optimistic rate. Their work introduces a robust version of the self-bounding Lipschitz loss [30], of
which a smooth loss is a special case. They bound the local Rademacher complexity of this loss class
by a sub-root function (see Lemma 6.6) under the assumption that N∞(L(F), ε/2, SA(ε/2L1)) ≤
Rb1/ε

2 for ε ∈ [b1, b2] and thatRb1 does not depend onm. However, due to this parametric assump-
tion, it is unclear what the worst-case dimensional dependence one has to pay before instantiating a
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model and attack. In comparison, our approach does not require such assumptions, and we can now

state that, in our setting, the worst-case dimensional dependence due to the adversary is Õ(
√
d).

B.3 Comparison to [44]

Our work is not strictly comparable to [44] due to making different assumptions. They consider
linear predictors and ∥·∥∞ perturbation attacks, i.e., A = {x 7→ x+ δ | ∥δ∥∞ ≤ ∆}. This can
imply that if x ∈ X it is not necessarily true that A(x) ∈ X for some A ∈ A which violates
Assumption 4.B. Ignoring this important difference, we instantiate F to be ∥·∥p-bounded linear

predictors and X to be ∥·∥q-bounded, where p, q are Hölder-conjugates. Note Equation (2) has

dimensionality dependence of Õ(
√
d) because, after applying Talagrand’s contraction inequality,

ˆ|R|(L(F), n) has at most logarithmic dimensionality dependence for p = 1 or p = 2, In contrast,

they have a dimensional dependence of d1/q . So, ignoring logs, we match their bound when p = 2,

and our bound is worse by
√
d when p = 1. Further, these two bounds behave differently as a

function of the perturbation distance. We have a logarithmic dependence in ∆, whereas they have
linear dependence.

C Lemmas

In this section, we list several lemmas from prior work that we use in our proofs.

Lemma 4 (Lemma A.3. in [34]). For any hypothesis class F , any sample size n and any ε >
ˆ|R|(F , n) we have that

vcX (F , ε) ≤ 4n ˆ|R|(F , n)2
ε2

Lemma 5 (Lemma B.1 in [34]). For any H-smooth nonnegative function f : R 7→ R and any
t, r ∈ R we have that

(f(t)− f(r))2 ≤ 6H(f(t) + f(r))(t− r)2.

Lemma 6 (Lemma A.1. in [34]). For any function class F containing functions f : X 7→ R and
S = (x1, . . . , xn), we have that

R̂(F , n) ≤ inf
α≥0






4α+ 10

∫ supf∈F

√
Ê[f2]

α

√

logN 2(F , ε, S)
n

dε







D Vector-valued fat-shattering dimension digression

To our knowledge, the literature has not yet defined a notion of fat-shattering dimension suitable for
vector-valued classes. In this section, we extend the fat-shattering dimension [2] to vector-valued

functions. Let Q = {q = (g1, . . . , qt)} be a class of vector valued functions and S := (xij)
(t,nj)

(j,i)=(1,1)

be points in the domain of the coordinates of Q, where nj are positive integers. We say that S is

γ-shattered by Q if there exists reals rij for j ∈ [t] and i ∈ [nj ] such that for all b ∈ {0, 1}
∑

j nj

there is a q|b ∈ Q such that

g|b j(x
i
j) ≥ rij + γ if bij = 1 and

g|b j(x
i
j) ≤ rij − γ if bij = 0.

Let vcX (Q, γ) be the cardinality of the largest set γ-shattered.

Indeed, the authors proved foundational lemmas of the form found in [2, 3] in an effort to show The-

orem 3 before realizing the lifting argument. In fact, note that vcX (Q, γ) = vcX×N

(

Q̃, γ
)

, where

the left is the vector-valued fat-shattering dimension and the right is the real-valued fat-shattering

dimension with Q̃ being defined as in the proof of Theorem 3.

This definition has several immediate desirable constructionist properties. Let F be a real-valued
function class whose domain is X .
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1. If vcX (F , γ) = d, then vcX (F⊗t, γ) = td: use the same sample that shattered the real-
valued function class t times.

2. If Q is a vector valued function class and vcX (Q, γ) = d, the function class restricted to
one coordinate has fat-shattering dimension ⌈d/t⌉ by the pigeonhole principle.

Although suitable for multi-task learning, the class of functions defined above is a strict subset of
classes defined for multi-output prediction [30]. The fat-shattering dimension is a special case, i.e.,
one-dimensional, of the combinatorial dimension. In the multi-output setting, we conjecture that the
more general notion of combinatorial dimension is the correct characterization.

E Proofs

E.1 Proofs in Section 3

Here we give some proofs not provided in the main body of the paper.

Theorem 1. Let ĥ and f̂0 be the learned representation and target predictor, as described Algo-
rithm 1. Under Assumption 1 and that f⋆

is (ν, ε,A)-diverse over F0 w.r.t. h⋆, then, with probability

at least 1− 2δ, we have that Rtar

(

f̂0, ĥ,A
)

−Rtar(f
⋆
0, h

⋆,A) is bounded by

ν−1(8R̂(LA
(
F⊗t(H)

)
, n) + 8b

√

log(2/δ)/nt)+8 sup
h∈H

R̂(LA(F0 ◦ h),m)+8b
√

log(2/δ)/m+ε.

The proof proceeds exactly as the main generalization bound within in [37, pp. 12-14], we note that
the adversarial attack does not change that the assumption that the loss is bounded and Lipschitz.
Therefore, two assumptions prevent us from applying this result directly. First, we use (ν, ε,A)-
diversity instead of (ν, ε)-diversity. Second, we use the two-stage adversarial training ERM instead
of the non-adversarial two-stage ERM. If we follow the same structure of the proof in the non-
adversarial setting, these differences are of no consequence. Indeed, if we apply the traditional
risk decomposition, utilize the definition of ERMs, use symmetrization on both the source tasks and
target task, and, finally, apply the diversity assumption to connect the source tasks to the target tasks,
this completes the proof.

Theorem 2. Under the setting of Theorem 1 along with Assumption 3, Assumption 4,

|SA
(
eb/4c

√
ntL3

)
|, |SA(eb/4c

√
mL1)| ≥ ee, vcX (L(F ◦ H), β1b), vcX (L(F0 ◦ H), β2b) ≥ 1,

then the Rademacher complexities R̂(LA(F⊗t(H)), n) and R̂(LA(F0 ◦ h),m) in Theorem 1 are,
respectively, bounded by

2 ˆ|R|
(

L
(

F⊗t(H)
)

, n
)

Λsrc

A

(

2−1
, L3, nt, β1

)

and 2 sup
h∈H

ˆ|R|(L(F0 ◦ h),m)Λtar

A

(

2−1
, L1,m, β2

)

, (1)

where L3 = LℓLFLH, L1 = LℓLF , and C, c are absolute constants.

Proof of Theorem 2. Given Theorem 1, all that remains is to bound adversarial Rademacher com-
plexity of the source tasks and target task. We will bound the Rademacher complexity for the target
task. The proof for the source tasks complexity is similar, but we do not push forward the geometry
of the attack into the embedding space, i.e., for the source tasks, we must only invoke Theorem 3.

Recall by Assumption 3.B we have that H is (∥·∥A, ∥·∥) Lipschitz. Also, by Assumption 4.A,
A(x) is totally bounded for all x ∈ X w.r.t ∥·∥A. Lipschitz functions are uniformly contin-
uous, and uniformly continuous functions preserve the property of being totally bounded. So,

ĥ ◦ A(x) is totally bounded for all x ∈ X w.r.t ∥·∥. Observe that maxh∈H R̂(LA(F0 ◦ h),m) =

maxh∈H R̂(Lh◦A(F0),m), i.e., we can take the perspective that ĥ ◦ A is the attack func-
tion class. Now, we apply Theorem 3 with H containing only the identity and t = 1,

we have maxh∈H R̂(Lh◦A(F0),m) ≤ 2 suph∈H
ˆ|R|(L(F0 ◦ h),m)Λtar

A
(
2−1, L1,m, β2

)
. The

Rademacher complexity is still a function of h because the worst-case Rademacher complexity is in
terms of the image of h on X .

Theorem 3. Under the setting of Theorem 2, R̂(LA(F⊗t(H)), S) is bounded by

2 ˆ|R|(L(F⊗t(H)), n)Λsrc
A
(
2−1, L3, nt, β1

)
, where L3 = LℓLFLH.
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Proof. We observe that R̂(LA(F⊗t(H)), S) = R̂(LÃ(Q̃), S̃) and R̂(L(F⊗t(H)), S) =

R̂(L
(

Q̃
)

, S̃), where T ∈ [t] and S̃ :=
{
(x11, 1), . . . , (x

t
1, 1), . . . , (xt

1, t), . . . , (xt
t, t)
}

, Q̃ :=
{

x, T 7→∑t
j 1T=jfj(x) | f ◦ h ∈ F⊗t(H)

}

, Ã := {x, T 7→ A(x)|A ∈ A}, and S̃A(·) := SA(·).
We consider the new lifted component of S̃ as immutable. That is, it does not change when tak-
ing worst-case Rademacher complexity. We have reduced our problem to the standard single-task
setting, and we can apply our result below Theorem 7, which gives the result.

Theorem 4. Let ĥ and f̂0 be the learned representation and target predictor, as described Algo-

rithm 1. Let ψ1 and ψ2 be sub-root functions such that ψ1(r) ≥ bR̂(LA(F⊗t(H) |r), n) and

ψ2(r) ≥ b suph∈H R̂(LA(F0 ◦ h |r),m) with r⋆1 and r⋆2 the fixed points of ψ1(r) and ψ2(r), respec-
tively. Under Assumption 2 and that f⋆

is (ν, ε,A)-diverse over F0 w.r.t. h⋆, then, with probability

at least 1− 2e−δ , we have that Rtar

(

f̂0, ĥ,A
)

−Rtar(f
⋆
0, h

⋆,A) is bounded by,

√

Rtar(f
⋆
0, h

⋆,A)

(
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√

bδ

m
+ 219

√

r⋆1
b

)

+
171bδ

m
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21967r⋆1
2b

+
1
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(
√

Rsrc(f
⋆, h⋆,A)

(

6

√

bδ

nt
+ 146

√

r⋆2
b

)

+
102bδ

nt
+

217r⋆2
b

.

)

+ ε.

The remarks made after Theorem 1 are equally applicable here. That is, the proof proceeds exactly
as the main generalization bound within in [39, pp. 32-34], because the adversarial loss does not
impact the argument. Besides the usual risk decomposition and symmetrization, the additional step
is showing a result analogous to Theorem 12 in [39]. Yet, the proof of this theorem is first applying
Bernstein inequality, then doing routine computations, so this too goes through. Therefore, a routine
argument shows the above result.

E.2 Proofs in Section 4.1

In this section we give proofs not in the main text of the paper.

E.2.1 Structural Results

In this section, we give some of our structural results foundational to our analysis of both Lipschitz
losses and smooth nonnegative losses. The following two lemmas are essentially the complete and
generalized argument given in Proof Sketch 5.

Lemma 7. Let s(·) be a function from the reals to finite subsets of X such that if ε1 < ε2 we have
that |s(ε2)| ≤ |s(ε1)|. Let ε, κ, λ, ρ be positive reals and n a positive integer. Under Assumption 1

along with max{α1, α2} ≤ ε ≤ κ,

∣
∣
∣s( eb

4c
√
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)
∣
∣
∣ ≥ ee and vcX (L(F), βb) ≥ 1, then
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)

where

• ξ1 := 1/ log log
∣
∣
∣s
(

eb
4c

√
nρλ

)∣
∣
∣ ,

• ξ2 := bβ/cκρ,

• α1 :=
ˆ|R|(F,n)
cξ1ρ

,

• α2 :=
ˆ|R|(F,n)
cξ2ρ

,

• and c, C are absolute constants.
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Proof. We first apply Lemma 2. That is, for ξ > 0 we have

logN∞
(

L(F), ρε, s
( ε

λ

))

≤ C vcX (L(F), cξρε)
︸ ︷︷ ︸
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b

We will ensure that this expression is well defined by enforcing bounds on various variables e.g.
that the fat-shattering dimension is greater than one. Yet, assume for now that everything is well
behaved.

First, to bound A, to apply Lemma 4 we need that

ˆ|R|(F , n) ≤ cξρε

so, with some abuse of notation, we will set

α :=
ˆ|R|(F,n)
cξρ

Now, applying Lemma 4, we have

A ≤ 4n ˆ|R|(F , n)2
(

1

cξρε

)2

.

Now to bound B, we want to bound these log factors by a function that is constant in ε and α.

We use that, by Khintchine’s inequality, α > eb
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.

Using this inequality and since α ≤ ε and
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Combining both of these arguments gives
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Let ξM = argmaxξ∈(0,∞){ξ | vcX (L(F), cξρκ) ≥ 1}.

Let ξ1 := 1/ log log
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∣. Note that s

(
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is sufficiently large by assumption for this

expression to be well defined.

Case #1 Suppose ξ1 ∈ (0, ξM ]. Using this value for the expression we derived above we have that
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Focusing on the log factors again, we can use that ξ1 ∈ (0, ξM ] to simplify with
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Furthermore, since ξ1 ≤ 1 we can simplify further,
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Finally,
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shows that
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Case #2 Suppose ξ1 ̸∈ (0, ξM ]. Recall that vcX (L(F), bβ) ≥ 1. This implies that ξ2 = bβ/cρκ ∈
(0, ξM ). Also by monotonicity of fat-shattering dimension we have that ξ2 < ξ1 ≤ 1. This implies
that we can make the same argument as we made for the first case with the slight modification that

logξ1
(∣
∣
∣
∣
s

(
eb
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√
nρλ

)∣
∣
∣
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< e,

which doesn’t change the final result.

Taking the maximum over both the cases shows that
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The next theorem uses the comparison inequality given in Lemma 7 inside Dudley’s integral along
various observations about the quantities involved to bound the desired integral.

Lemma 8 (A Dudley’s integral computation). Let s(·) be a function from the reals to finite subsets
of X such that if ε1 < ε2 we have that |s(ε2)| ≤ |s(ε1)|. Let ε, κ, λ, ρ be positive reals and n a

positive integer. Under Assumption 1 along with

∣
∣
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where c, C are absolute constants.

Proof of Lemma 8. Starting with

4α+
10√
n

∫ κ

α
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logN∞
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dε

Focusing on the integrand, we now apply Lemma 7.
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where α1 and α2 come from the dependence that the lower bound on the integral has from either ξ1
or ξ2 respectively. If we replace the maximum with the summation and evaluate the integral then we
have shown the result.
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Now we use the fact that ξ1 = 1/ log log s
(
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and ξ1 ≤ 1 and ξ2 = bβ/κc and Khintchine’s

inequality,
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E.2.2 Lipschitz Losses

The proof below is inspired by Lemma 4.4. in [25].

Lemma 1. Let F be LF -Lipschitz w.r.t. ∥·∥A. Under Assumption 1, and Assumption 4, we have
N∞(LA(F), ε, S) ≤ N∞(L(F), ε/2, SA(ε/2L1)), where L1 = LℓLF .

Proof of Lemma 1. First note that for generic f̃ ∈ F and Ãi ∈ A that the following chain of
inequalities holds:
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(xi) then applied triangle inequality.

Applying Lipschitzness of ℓ· ◦ F we can bound the first term:
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Now fix ε > 0. Now let CA(ε/2L1) be a cover of A at scale ε/2L1 w.r.t. ∥·∥A and our sample S.

Let Ãi be in the cover above and ε/2L1 close to the attack on xi, so
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i∈[n]
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2
.

Now construct an ∥·∥∞ cover of L(F) at radius ε/2 on the image of all CA(ε/2L1) on S. Call this

set SA
(

ε
2L1

)

, which constructs our “inflated sample”. Now we pick the f̃ to be ε/2 close to f on

our inflated sample. Therefore, by definition, we have,
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So the Equation (4) is upper bounded by ε.

Therefore we have shown a appropriate cover of L(F) on the specified larger sample is a cover of
our adversarial loss class. More formally,

N∞(LA(F), ε, S) ≤ N∞
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,

which shows the result.

Theorem 7. Let F be LF -Lipschitz w.r.t. ∥·∥A. Under Assumption 1, Assumption 4,
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where L1 = LℓLF and C, c are absolute constants.

Proof of Theorem 7. Applying Lemma 6 and Lemma 1 shows the following.
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Now using Lemma 8 with ρ = 1/2 and λ = 2L1 and κ = b and s(·) = SA(·), we have that
Equation (5) is bounded by
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E.2.3 Smooth and nonnegative losses

Lemma 3. Let F be a class of predictors and let F |r be all functions in F with empirical ad-
versarial risk less than r on S. If F |r is LF -Lipschitz w.r.t. ∥·∥A, then under Assumption 2 and

Assumption 4, we have N 2(LA(F |r), ε, S) ≤ N∞
(
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√
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.
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Proof of Lemma 3. First note that for generic f̃ ∈ F |r and Ãi ∈ A by applying Lemma 5, that the
following chain of inequalities holds:
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Fix ε > 0. Let CA(ε/2LF
√
12Hr) be a cover of A at scale ε/2LF

√
12Hr w.r.t. ∥·∥A. Let C be a

cover of F ◦ CA(ε/2LF
√
12Hr) with all CA(ε/2LF

√
12Hr) being included in the cover at scale

ε/2
√
12Hr w.r.t. S and ∥·∥∞.

Pick each Ãi ∈ CA(ε/2LF
√
12Hr) such that

LF max
i∈[n]

max
A∈A

∥
∥
∥A(xi)− Ãi(x

i)
∥
∥
∥
A
≤ ε/2

√
12Hr

and, with Ãi fixed, pick f̃ ◦ Ã ∈ C such that

max
i∈[n]

{∣
∣
∣
∣

(

f ◦ Ãi

)

(xi)−
(

f̃ ◦ Ãi

)

(xi)

∣
∣
∣
∣

}

≤ ε/2
√
12Hr.
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Therefore maxi∈[n] maxA∈A
∣
∣
∣(f ◦A)(xi)−

(

f̃ ◦ Ãi

)

(xi)
∣
∣
∣ ≤ ε/2

√
12Hr So C covers LA(F |r)

at scale ε, so

N 2(LA(F |r), ε, S) ≤ N∞

(

F , ε

2
√
12Hr

, SA

(
ε

2
√
12HrLF

))

Theorem 8. Under the setting of Lemma 3 along with |SA(eb/4c
√
nLF )| ≥ ee and vcX (F , bβ) ≥

1, then we have R̂(LA(F |r), S) is bounded by
√
12H ˆ|R|(F , n)ΛA

(
(24Hb)−1/2, LF , n, β

)
, where

C, c are absolute constants.

Proof. Let ξM = argmaxξ∈(0,∞)

{

ξ | vcX
(

F , ξ c
√
b

2
√
12H

)

≥ 1
}

.

Applying Lemma 6 and Lemma 3 we have

R̂(LA(F |r), S) ≤ 4α+
10√
n

∫ b

α

√

logN 2(LA(F) |r, ε, S) dε

≤ 4α+
10√
n

∫
√
br

α

√

logN∞

(

F , ε

2
√
12Hr

, SA

(
ε

2LF
√
12Hr

))

dε

.

Now using Lemma 8, which is our general bound of this type of integral, we have with ρ =
1/2

√
12Hr and λ = 2LF

√
12Hr and κ =

√
br and s(·) = SA(·), the integral is bounded by

√
12H ˆ|R|(F , n)
(

log log

∣
∣
∣
∣
SA

(
eb

4c
√
nLF

)∣
∣
∣
∣
+

c

β2
√
12Hr

)(

8

c
+ 40

√
eC

c

√

log

(
4c
√
n

e

∣
∣
∣
∣
SA

(
eb

4c
√
nLF

)∣
∣
∣
∣

)

log

(
16cβn

2
√
12Hre2

))

=
√
12H ˆ|R|(F , n)ΛA

(

(24Hb)−1/2, LF , n, β
)

.
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F NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our theorems are in the setting of adversarially robust transfer learning and
the asymptotic rates given in the introduction directly follow from our theorems (as ex-
plained in the main body).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our theorem statements are clearly qualified with the assumptions and algo-
rithm they use. When our assumptions differ from prior work, we discuss this in detail in
Appendix B.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proofs for all our results. Due to considering Lipschitz and
smooth nonnegative losses there are a few proofs that are trivially nearly identical, when
this is the case we clearly indicate this and remark exactly what to modify.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See, in particular, the second paragraph in the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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