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Abstract

Adversarial training has emerged as a popular approach for training models that are
robust to inference-time adversarial attacks. However, our theoretical understanding
of why and when it works remains limited. Prior work has offered generalization
analysis of adversarial training, but they are either restricted to the Neural Tangent
Kernel (NTK) regime or they make restrictive assumptions about data such as
(noisy) linear separability or robust realizability. In this work, we study the stability
and generalization of adversarial training for two-layer networks without any
data distribution assumptions and beyond the NTK regime. Our findings
suggest that for networks with any given initialization and sufficiently large width,
the generalization bound can be effectively controlled via early stopping. We
further improve the generalization bound by leveraging smoothing using Moreau’s
envelope.

1 Introduction

Despite the remarkable performance of over-parameterized deep networks in real-world applications,
recent studies have revealed that they are highly vulnerable to adversarial attacks. These attacks
use maliciously crafted imperceptible perturbations designed to deceive trained neural networks
during inference [Szegedy et al., 2013, Biggio et al., 2013]. The lack of adversarial robustness has
raised significant concerns for deploying neural network-based models in safety-critical applications.
Therefore, it is crucial to design algorithms to learn robust models that can make reliable predictions
on test data even in the presence of adversarial perturbations.

One principal approach to robust learning, adversarial training [Madry et al., 2018] (along with its
variants [Zhang et al., 2019, Wang et al., 2020]), has proven to be an effective empirical defense
mechanism against adversarial attacks. Naturally, this puts an emphasis on also developing a
theoretical understanding of robust learning. To study the generalization performance of robust
learning, one traditional approach is via uniform convergence [Khim and Loh, 2018, Yin et al.,
2019, Awasthi et al., 2020, Mustafa et al., 2022], which provides the worst-case type uniform
bounds for a given hypothesis class and are algorithm independent. Another line of work focuses
on analyzing the convergence and generalization guarantees of adversarial training, yet they either
focus on linear classifiers [Charles et al., 2019, Li et al., 2020, Zou et al., 2021, Chen et al., 2023], or
introduce restrictive distribution assumptions such as (noisy) linear separability [Wang et al., 2024b]
or robust realizability [Mianjy and Arora, 2024]. Therefore, it remains unclear whether we can derive
theoretical results for adversarial training that extend beyond these simplifying assumptions.

In this work, we leverage a different machinery by analyzing adversarial training algorithm through
the lens of uniform stability. Stability is a classical tool in learning theory that has been extensively
studied in the literature [Bousquet and Elisseeff, 2002, Hardt et al., 2016]. Uniform argument stability
measures the difference in output parameters when an algorithm is run on two training sets that
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differ by only one sample. In the standard (non-robust) setting, Hardt et al. [2016] show a uniform

stability bound of O(ηT
n
) after T iterations of gradient descent with step size η on convex and smooth

losses using a training dataset of size n. They further provide a uniform stability bound of O(T
q

n
)

for smooth and non-convex losses with decaying step size η = O( 1
t
), where q ∈ (0, 1) is a constant.

The choice of decaying step size is common in the non-convex setting, as maintaining a constant step
size leads to an exponentially increasing bound on uniform stability.

When it comes to the robust setting, the primary challenge lies in the non-smoothness of the robust
(adversarial) loss. The robust loss is generally non-smooth even if the standard counterpart is
smooth [Xing et al., 2021a, Xiao et al., 2022a]. Previous work by Xing et al. [2021a] studied the

convex non-smooth adversarial losses and provide an additional term of O(η
√
T ) compared to the

convex and smooth losses. Later Xiao et al. [2022a] studied the general non-smooth adversarial losses
by leveraging the approximate co-coercivity of the gradient and provide the bound with an additional
term of O(ηTα) that grows linearly in T , where α is the size of adversarial perturbation in ℓp threat
models. These works, while partially addressing the issue, only focus on general convex / non-convex
functions. However, neural networks, which are a specific instance of non-convex functions and are
widely used in practice, require further investigation.

In this work, we study the stability and generalization guarantees of variants of adversarial training
algorithms. We focus on solving the binary classification problem using two-layer over-parameterized
neural networks with smooth activation functions and logistic loss. Our key contributions are as
follows:

1. We present a bound of O(
√
ηT + ηT

n
+
√
βηT ) on the uniform argument stability of the gradient

descent-based adversarial training of over-parameterized network after T iterations with step size
η, where β represents the precision of generating adversarial examples at each iteration.

2. We provide robust generalization guarantees that depend on the Adversarial Regularized Empirical
Risk Minimization (ARERM) Oracle. Our results hold for any given initialization and any data
distribution. Specifically, if the learner is provided with a good initialization such that there
exist robust networks around this initialization, then a small robust test loss is achieved via early
stopping. Furthermore, our results can be extended to stochastic gradient descent-based adversarial
training.

3. We leverage Moreau’s envelope to construct a smooth loss that approximates robust empirical loss.
We present bounds on the stability and generalization error of gradient descent with Moreau’s
smoothing, and demonstrate its superiority compared with gradient descent-based adversarial
training algorithm.

1.1 Related Work

Stability Analysis. The notion of stability was initially introduced in Bousquet and Elisseeff [2002]
to study the generalization of statistical learning problems. More recently, a fine-grained analysis
has been presented by Feldman and Vondrak [2019] and Bousquet et al. [2020]. For smooth loss
functions, Hardt et al. [2016] explored the stability of SGD in both convex and non-convex settings,
which was later extended to convex non-smooth loss functions by Bassily et al. [2020] and the bound

incorporated an additional term of O(η
√
T ) due to non-smoothness. Lei and Ying [2020] tackled

the non-smoothness differently by assuming the gradient of the loss to be Hölder continuous. For
non-convex and non-smooth loss, Lei [2023] introduced the stability of sub-gradient, as convergence
to local minimizers is observed in this setting.

Robust Generalization Guarantee. The standard method of giving a generalization guarantee is
through uniform convergence. These theories typically yield an upper bound of O( 1√

n
) and require a

large number of training samples in order to get a small generalization gap. Techniques in this category
include analyzing the Rademacher complexity [Yin et al., 2019, Khim and Loh, 2018, Awasthi et al.,
2020], VC dimension [Cullina et al., 2018, Montasser et al., 2020], covering number [Balda et al.,
2019, Mustafa et al., 2022, Li and Telgarsky, 2023], PAC Bayesian analysis [Farnia et al., 2018,
Viallard et al., 2021, Xiao et al., 2023] and margin-based analysis [Farnia et al., 2018].

Generalization Guarantee of Adversarial Training. Providing generalization guarantees for
adversarial training of neural networks is challenging due to its non-convex nature. A series of
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works [Charles et al., 2019, Li et al., 2020, Zou et al., 2021, Chen et al., 2023] have focused on
a simpler problem – adversarial training of linear models with a convex loss wherein generating
adversarial examples admits a closed-form solution. Several works bypass this challenge by con-
sidering a lazy training regime [Gao et al., 2019, Zhang et al., 2020, Li and Telgarsky, 2023] in
which the landscape of the neural network can be studied near certain random initialization, and
the generalization guarantee is usually obtained via uniform convergence. Unfortunately, Wang
et al. [2022] proved that adversarial robustness is at odds with lazy regime. Recently, Mianjy and
Arora [2024], Wang et al. [2024b] provide convergence and generalization guarantees for adversarial
training of neural networks, yet they make restrictive assumptions on the data distribution such as
(noisy) linear separability and robust realizability.

Another line of research investigates the generalization of adversarial training through algorithmic
stability analysis. Despite the smoothness of the standard loss, the adversarial loss remains non-
smooth [Liu et al., 2020, Xing et al., 2021a, Xiao et al., 2022b]. To resolve this issue, Farnia
and Ozdaglar [2021] make a strong assumption that the loss is concave in input x. Xing et al.
[2021a] provide adversarial training of convex and non-smooth losses, yielding an additional term

of O(
√
η2T ) compared to the standard non-robust counterpart. Xiao et al. [2022a] and Wang et al.

[2024a] leverage the idea of approximate smoothness and provide bounds that scale linearly with ηT
and the perturbation size. Cheng et al. [2024] consider generating adversarial examples via a single
step of gradient descent and demonstrate that such variant of adversarial training algorithm achieves
better stability. Farnia et al. [2018] also consider specific attack algorithms – these attacks while being
more practical and designed with continuity and Lipschitzness property, may differ significantly from
the worst-case attack, and do not yield a good bound on the robust generalization gap.

2 Problem Setup

Notation. Throughout the paper, we denote scalars, vectors, and matrices with lowercase italics,
lowercase bold, and uppercase bold Roman letters, respectively; e.g., u, u, and U. We use [m]
to denote the set {1, 2, . . . ,m} and use both ∥ · ∥ and ∥ · ∥2 for ℓ2-norm. Given a matrix U =
[u1, . . . , um] ∈ R

d×m, we use ∥U∥F and ∥U∥2 to represent the Frobenius norm and spectral norm,
respectively. We use the standard O-notation (O, Θ and Ω).

We consider a binary classification problem with a bounded input space X inside a Euclidean ball
of radius Cx, and label space Y = {±1}. We assume that data are drawn according to an unknown
probability distribution D on X × Y . The learner has access to n training data drawn i.i.d. from D;
i.e., S = {zi = (xi, yi)}ni=1 ∼ Dn. We do not make any restrictive distributional assumptions such
as realizability [Mianjy and Arora, 2024] or (noisy) linearly separability [Wang et al., 2024b].

We focus on learning two-layer neural networks, parameterized by a pair of weight matrices (a,W):

fW(x) = f(x;W) :=
∑m

s=1 asϕ(⟨ws, x⟩).
Here, m is a positive integer representing the number of hidden units, i.e., the width of the networks.
ϕ : R → R is a 1-Lipschitz, H-smooth activation function. Formally, ∀z, z′ ∈ R, |ϕ′(z)| ≤
1, |ϕ′(z)− ϕ′(z′)| ≤ H |z − z′|. The smoothness property of activation functions is commonly
assumed in algorithmic stability literature and in theory of deep learning and covers a wide range
of activation functions such as smoothed ReLU and smoothed leaky ReLU [Frei et al., 2022].
The weight matrices at the top and bottom layer are denoted as a = [a1, . . . , am] ∈ R

m and

W = [w1, . . . ,wm] ∈ R
d×m, respectively. The top layer weights are initialized such that |ai| =

1√
m
, ∀i ∈ [m], and are kept fixed throughout the training process. Prior works [Du et al., 2018, Arora

et al., 2019, Ji and Telgarsky, 2019] often initialize ai to be uniformly sampled from {± 1√
m
}, which

can be seen as a special instance of ours. We do not make any assumption on the initialization of the
bottom layer matrix, i.e., W0 can be either a standard Gaussian [Du et al., 2018, Ji and Telgarsky,
2019], or a vanishing initialization [Ba et al., 2019, Xing et al., 2021b], or a pre-trained model.

Adversarial Attacks. We consider a general threat model where the adversary’s perturbation set is
defined as B : X → 2X . Given an input x, B(x) represents the set of all possible perturbations of x
that an adversary can choose from. This broader definition of attack includes both the standard ℓp
threat models with perturbation size of α, i.e., B(x) = {x̃ : ∥x̃ − x∥p ≤ α}, as well as a discrete set
of large-norm transformations. Unlike prior works [Mianjy and Arora, 2024, Wang et al., 2024b], we
do not make any assumptions on the perturbation size.
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In this work, we focus on logistic loss, ℓ(z) = ln(1 + e−z), which serves as a smooth and convex
surrogate loss for the 0-1 loss. With a slight abuse of notation, for a fixed sample z = (x, y), we define
ℓ(z,W) := ℓ(yf(x;W)). The population and empirical loss w.r.t. ℓ(·) are denoted, respectively, as

L(W) := E(x,y)∼Dℓ(yf(x;W)), L̂(W;S) :=
1

n

n∑

i=1

ℓ(yif(xi;W)).

Given B, for a fixed sample z = (x, y), we define the robust loss as ℓrob(z,W) := max
x̃∈B(x)

ℓ(yf(x̃;W)).

The robust population and empirical loss w.r.t. ℓ(·) are defined as

Lrob(W) := E(x,y)∼D max
x̃∈B(x)

ℓ(yf(x̃;W)) L̂rob(W;S) :=
1

n

n∑

i=1

max
x̃i∈B(xi)

ℓ(yif(x̃i;W)).

Adversarial Training. During training, the network bottom layer weight W are updated using
gradient descent-based adversarial training (or its stochastic version). We denote the weight matrix
at the t-th iterate of adversarial training as Wt. For each training example (xi, yi), at iteration t, we
generate a β1-optimal adversarial example (x̃i(Wt), yi), which satisfies the following condition:

ℓ(yif(x̃i(Wt);Wt)) ≥ max
x̃∈B(xi)

ℓ(yif(x̃;Wt))− β1. (1)

Setting β1 = 0 recovers the scenario where we have access to the worst-case adversarial attack.
As this may not be feasible in practice due to computational reason, the parameter β1 allows us
to capture the precision of the attack algorithm, which includes common attacks such as projected
gradient descent (PGD) [Madry et al., 2018]. We should regard β1 as a parameter we can choose. Our
results in Section 3 suggest that we can achieve better generalization by adding more computation
and making β1 smaller.

Algorithm 1 Variants of Adversarial Training Algorithms

Input: Step size η. Number of iterations T . Initial weight W0. β ≥ 0. µ > 0.
for t = 0, . . . , T − 1 do

GD: ∀i ∈ [n], compute a β1-optimal adversarial example x̃i(Wt) that satisfies Equation (1).

Update Wt+1 = Wt − η
n

n∑
i=1

∇Wℓ(yif(x̃i(Wt);Wt)).

SGD: Compute a β1-optimal adversarial example x̃t+1(Wt) that satisfies Equation (1).
Update Wt+1 = Wt − η∇Wℓ(yt+1f(x̃t+1(Wt);Wt)).

Moreau Envelope: Compute a β2-optimal minimizer Ũ
µ
(Wt;S) that satisfies Equation (2).

Update Wt+1 = Wt − η
µ
(Wt − Ũ

µ
(Wt;S)).

end for
return: {Wt}Tt=0.

Optimizing the Moreau Envelope. Since the robust loss is non-smooth [Xiao et al., 2022a], we
utilize Moreau’s envelope to construct a smooth function that approximates the empirical robust loss.
Such an idea has previously been explored in Xiao et al. [2024]. Given training data S and µ > 0, we
redefine the robust surrogate loss as follows:

Mµ(W;S) = min
U

(
L̂rob(U;S) +

1

2µ
∥U − W∥2F

)
.

Selecting µ appropriately ensures that L̂rob(U;S) + 1
2µ∥U − W∥2F is a strongly convex function

w.r.t. U. Given W and S, we define Uµ(W;S) = argminU∈Rd×m L̂rob(U;S)+ 1
2µ∥U−W∥2F , which

can be obtained via subgradient-based method (solve a min-max optimization). The gradient of the
Moreau envelope can be simply calculated as ∇WM

µ(W;S) = 1
µ
(W − Uµ(W;S)). Given training

data S, at each iteration t, we generate a β2-optimal minimizer Ũ
µ
(Wt;S) that satisfies

L̂rob(Ũ
µ
(Wt;S);S) +

1

2µ
∥Ũ

µ
(Wt;S)− Wt∥2F ≤ β2 +Mµ(Wt;S). (2)

We remark that β2-optimal minimizer defined in Equation (2) and β1-optimal adversarial example
defined in Equation (1) are approximating different quantities, which are not comparable. All the
algorithms described above are summarized in Algorithm 1.
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Uniform Argument Stability. Given a training set S = {zi}ni=1 drawn i.i.d. from D, let S′ denote
the training set obtained by replacing one example in S with an independently drawn example z′ ∼ D.
We refer to S, S′ as neighboring samples and write S ≃ S′. Given an algorithm A : (X ×Y)n → H,

where the hypothesis class H is parameterized using a parameter matrix W ∈ R
d×m, we define the

uniform argument stability as

δA(S, S′) := ∥A(S)−A(S′)∥F .

For any L-Lipschitz loss function g, |g(A(S), z)−g(A(S′), z)| ≤ LδA(S, S′). The standard stability
argument [Mohri et al., 2018] relates the expected generalization gap to the uniform argument stability.

ES∼Dnεgen(A(S)) := ES∼Dn

(
Ez∼Dg(A(S), z)− 1

n

n∑

i=1

g(A(S), zi)
)
≤ L sup

S≃S′
δA(S, S

′). (3)

In this paper, we consider robust generalization using logistic loss, so function g(W, z) = ℓrob(z,W),
and εgen(W) = Ez∼D[ℓrob(z,W)] − 1

n

∑n
i=1 ℓrob(zi,W). We also remark that a high probability

bound for stabile algorithms can be given based on Feldman and Vondrak [2019]. For simplicity, our
generalization bounds in this paper are only in expectation.

3 Main Result

In this section, we present our main results, providing theoretical guarantees for adver-
sarial training of two-layer neural networks with smooth activation functions. We dis-
cuss (stochastic) adversarial training in Section 3.1 and gradient descent-based Moreau’s
smoothing in Section 3.2. Our generalization bounds rely on a key quantity, the
Adversarial Regularized Empirical Risk Minimization (ARERM) Oracle defined as

∆oracle
S := min

W∈Rd×m

(
L̂rob(W;S) +

2∥W − W0∥2F
ηT

)
.

Given a sample, ∆oracle
S returns the minimal empirical risk in the vicinity of an initialization W0.

3.1 Generalization Guarantees for Adversarial Training

We begin by presenting a bound on the uniform argument stability (UAS) of Algorithm 1 with GD.

Theorem 3.1. Assume that the network width satisfies m ≥ H2C4
xη

2(T + 1)2. Then, after T
iterations of Algorithm 1 with GD, for any neighboring datasets S, S′, we have

sup
S≃S′

δA(S, S
′) ≤ O(Cxη

√
T + Cx

ηT

n
+
√
β1ηT ).

Remarkably, setting β1 = 0 yields a bound of O(η
√
T + ηT

n
) on the UAS of Algorithm 1, thereby

recovering the result in prior work of Xing et al. [2021a]. However, note that Xing et al. [2021a]
show the result only for convex learning problems, whereas we consider training two-layer neural
networks using logistic loss, which is non-convex and non-smooth. Further note that we assume that
the networks are sufficiently over-parameterized, i.e., m ≥ Ω(η2T 2), a condition that is commonly
assumed in deep learning theory. We can also regard this condition as early stopping, wherein

T ≤ O
( √

m

HC2
xη

)
. This view is also consistent with several empirical studies [Caruana et al., 2000,

Rice et al., 2020, Pang et al., 2021].

Next, we show that stable robust learning rules do not overfit.

Theorem 3.2. Define α1(η, T ) := O(C2
xη

√
T +C2

x
ηT
n

+Cx

√
β1ηT ). Assume that the width of the

networks satisfies m ≥ H2C4
xη

2(T +1)2, and α1(η, T ) < 1. Then, after T iterations of Algorithm 1
with GD, we have

min
[ 9T
10

]≤t≤T
ES∼Dnεgen(Wt) ≤

17α1(η, T )

1− α1(η, T )

[
ES∼Dn∆oracle

S +
C2

xη

2
+ β1

]
,

and

min
0≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α1(η, T )

[
ES∼Dn∆oracle

S +
C2

xη

2
+ β1

]
.
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The result above bounds the robust generalization gap and the robust loss in terms of the ARERM
oracle, a step size-dependent term O(η), and the precision of the adversarial examples β1. Note
though that the bound holds for the minimum over the last few iterates (past iterates), rather than
for the last iteration. This distinction arises because, unlike standard gradient descent for neural
networks, we cannot guarantee a decreasing robust training loss without additional assumptions on
the data distributions owing to the non-smooth nature of the robust loss. The step size-dependent
term arises for the same reason. A direct corollary gives us a bound on the expected robust loss.

Corollary 3.3. After T ≤ O(min{n2, 1
β2
1

}) iterations of Algorithm 1 with GD using a step size of

η = Θ( 1
C2

x

√
T
) on a network with width m ≥ Ω(T ), for any weight matrix W

min
0≤t≤T

ES∼DnLrob(Wt) ≤ 1.1Lrob(W) +O
(
C2

x∥W − W0∥2F√
T

)
+O

(
1√
T

)
.

Since corollary 3.3 holds for any W0, it underscores the importance of initialization for robust
learning. Given a good initialization, such as a pre-trained model, and assuming that there exists
a robust network W∗ in the vicinity of the initialization (i.e., ∥W∗ − W0∥F = O(1)) that achieves
a small robust loss Lrob(W∗) ≈ 0, we have that the minimum expected robust loss over all iterates

approaches O
(

1√
T

)
. Further, if β1 is small enough and m ≳ n2, then T can be of the order Θ(n2),

leading to a O(1/n) upper bound on the robust test loss.

We remark that by a similar analysis, our result can be reduced to the standard (non-robust) setting for
gradient descent training of two-layer networks by setting the perturbation set B(x) = {x}, ∀x ∈ X ,

β1 = 0, and redefining α1(η, T ) = O(C2
x
ηT
n
). In this context, we can show that gradient descent for

the binary classification problem can achieve excess risk bound of O(1/
√
n) by taking ηT = Θ(

√
n)

if m ≳ n and assuming ∥W∗ − W0∥F = O(1), where W∗ ∈ argmin
W

Lrob(W).

Next, we extend our result to the stochastic adversarial training.

Theorem 3.4. After T iterations of Algorithm 1 with SGD on a network of width m ≥ H2C4
xη

2(T +
1)2 we have that for any weight matrix W,

min
0≤t≤T

E{z1,...,zt}∼DtLrob(Wt) ≤ Lrob(W) +
∥W − W0∥2F
η(T + 1)

+
C2

xη

2
+ β1.

Similar to the discussion following Corollary 3.3, we assert that if we assume that there exists an

over-parameterized robust network with small robust loss, then using a step size of η = 1/
√
T ,

stochastic adversarial training yields an excess risk bound of O(1/
√
T ).

3.2 Generalization Guarantees for Gradient Descent on Moreau’s Envelope

We now present a bound on the uniform argument stability of gradient descent with smoothing based
on Moreau’s envelope.

Theorem 3.5. After T iterations of Algorithm 1 with Moreau Envelope with step-size η ≤
min{µ,

√
m

8HC2
x
} ≤

√
m

2HC2
x

, on a network of width m ≥ H2C4
xη

2T 2, for any neighboring datasets

S, S′, we have

sup
S≃S′

δA(S, S
′) ≤ O

(
Cx

ηT

n
+ ηT

√
β2
µ

)
.

Setting β2 = 0 yields a bound of O(ηT
n
) on the UAS of Algorithm 1, thereby recovering the result in

prior work of [Hardt et al., 2016, Xiao et al., 2024] for convex and smooth functions. Note that by

using Moreau’s envolope, we are able to shave off the O(η
√
T ) term that appears in Theorem 3.1.

Although inspired by Xiao et al. [2024], Theorem 3.5 differs from the non-convex setting of Xiao et al.
[2024]. Our result utilizes the specific structure of over-parameterized neural networks that exhibit
weakly convex properties, a special instance of non-convex functions, and allows for a constant
step size. In contrast, [Xiao et al., 2024, Theorem 4.7] follows the traditional stability argument for
non-convex and smooth functions in Hardt et al. [2016], considering a decaying step size ηt ≤ µ

t
.
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Such a condition might be impractical if µ is chosen to be sufficiently small. In fact, our results
indicate that it is necessary to select a sufficiently small µ so that the robust training loss is well
approximated by the Moreau envelope (see Lemma C.1 in the Appendix).

Even though the gradient descent-based algorithm with Moreau’s smoothing achieves better stability
guarantees compared to gradient descent-based adversarial training when β1 = β2 = 0, it requires
more computational resources. Specifically, for the calculation of the gradient at each step, we need to
solve a min-max optimization problem with a strongly convex and non-smooth objective to obtain a
β-optimal minimizer. Additionally, for every step of this min-max optimization, we need to generate
adversarial examples and apply sub-gradient descent.

Theorem 3.6. Define α2(η, T ) := O(C2
x
ηT
n

+ CxηT
√

β2

µ
). Assume α2(η, T ) < 1. Then, after

T ≥ 8 iterations of Algorithm Moreau Envelope with step-size η ≤ µ on a network of width
m ≥ H2C4

xη
2T 2, we have

min
[ 9T
10

]≤t≤T
ES∼Dnεgen(Wt) ≤

55α2(η, T )

1− α2(η, T )

[
ES∼Dn∆oracle

S + C2
xµ+ 2η(T + 1)

β2
µ

]
,

and

min
1≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α2(η, T )

[
ES∼Dn∆oracle

S + C2
xµ+ 2η(T + 1)

β2
µ

]
.

Similar to Theorem 3.2, the result above shows that both the robust generalization gap as well as the
robust loss can be bounded in terms of the ARERM oracle, parameter µ in Moreau’s envelope, and a
term of O(ηTβ2/µ) dependent on the precision of generating the minimizer of Moreau envelope.
While the bound above is on the minimum expected generalization gap (and expected robust test loss)
over the last few iterates (past iterates), we can give a bound for the the last iterate for the case when
β2 = 0. We conclude the section by presenting the following direct corollary.

Corollary 3.7. After T ≤ O(min{n2, 1

β
2/3
2

}) iterations of Algorithm 1 with Moreau Envelope with

step-size η = µ = Θ( 1
C2

x

√
T
) on a network of width m ≥ Ω(T ), we have for any weight matrix W,

min
1≤t≤T

ES∼DnLrob(Wt) ≤ 1.1Lrob(W) +O
(
C2

x∥W − W0∥2F√
T

)
+O

(
1√
T

)
.

4 Proof Sketch

We begin by providing a high level intuition behind our analysis technique, and then we highlight the
key ideas in the proofs of the main theorems. For simplicity, we assume that the learner can generate
optimal attacks during adversarial training, i.e., we consider β1 = 0, β2 = 0 in this section. We refer
the reader to the Appendix for proofs of the more general case.

Our analysis relies on a key lemma demonstrating that the objective function (i.e., the robust empirical
risk) being minimized in adversarial training of two-layer neural networks with smooth activation
functions using the logistic loss function is “almost” convex.

Definition 4.1. Let l > 0. A function f(x) is said to be −l-weakly convex if f(x)+ l
2∥x∥22 is convex

in x.

Lemma 4.2. (Restatement of Lemma A.4) For any weight matrices W1 and W2,

L̂rob(W
2;S) ≥ L̂rob(W

1;S) +
〈
∇WL̂rob(W

1;S),W2 − W1
〉
− HC2

x

2
√
m
∥W2 − W1∥2F .

Equivalently, L̂rob(W;S) is −HC2
x√

m
-weakly convex.

We borrow many ideas from Xiao et al. [2024] and Xing et al. [2021a] in our proofs. These papers
primarily focus on the convex setting, while only giving a general result for non-convex functions.
We extend their results to a special case of learning neural networks. We argue that by specializing
our analysis to neural networks would lead to sharper results than a general non-convex function
class, as we will be able to leverage the “almost” convexity of neural network training [Richards
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and Rabbat, 2021, Richards and Kuzborskij, 2021]. This allows us to get stability and optimization
guarantees that are similar to the convex setting when we consider an over-parameterized network
m ≥ poly(ηT ). An additional challenge we face is that the robust loss is non-smooth even if its
standard counterpart (logistic loss) is smooth, making the analysis more complicated than the standard
(non-robust) scenario. Nevertheless, we can still leverage the “almost” convex nature of the loss to
establish the stability of adversarial training.

The following lemma gives a relationship between stability and generalization which is useful in
both standard adversarial training as well as gradient descent with Moreau’s envelope. When the

robust training loss L̂rob(WT ;S) is small, Lemma 4.3 provides a tighter bound than directly applying
Equation (3). See Proposition A.3 for both results.

Lemma 4.3. (Restatement of Proposition A.3) The robust test loss satisfies the following:

ES∼DnLrob(WT ) ≤ ES∼Dn

1

1− Cx · sup
S≃S′

δA(S, S′)
L̂rob(WT ;S).

This result gives a way to bound the expected robust loss. Say you want to bound the expected robust
test loss by (1 + ϵ) times the expected training loss. Then, to ensure 1

1−α1(η,T ) ≤ 1 + ϵ, we need

α1(η, T ) ≤ ϵ
1+ϵ

= O(ϵ).Since α1(η, T ) = O(η
√
T+ ηT

n
+
√
β1ηT ), we can set different parameters

in more than one way to ensure that α1(η, T ) = O(ϵ). We can set β1 = O(ϵ2), n = Θ(1/ϵ),
T = Θ(1/ϵ2), η = O( 1

T
); or set β1 = O(ϵ3), n = Θ(1/ϵ2), T = Θ(1/ϵ4), η = O( ϵ√

T
).

4.1 Generalization Guarantees for Gradient-Based Adversarial Training

The stability guarantee we give in the following Theorem 4.4 is similar to the result in the convex
case [Xing et al., 2021a]. While [Xing et al., 2021a] use the monotone subgradient condition
of the convex functions, we show that the subgradients of an “almost” convex loss function are
“almost” monotone. We do incur an additional term of exp

(
2HC2

xηT/
√
m
)
, which is small for

over-parameterized neural networks (m ≥ ploy(ηT )).

Theorem 4.4. (Restatement of Theorem 3.1) Let S and S′ be any two neighboring data sets, i.e., they
differ only in one example. Let WT and W′

T denote the weight matrices returned after T iterations of
Algorithm 1 with GD on S and S′, respectively. Then, we have

∥WT − W′
T ∥2F ≤ exp

(
1 +

2HC2
xηT√
m

)
·
(
4C2

xη
2(T + 1) +

4C2
xη

2(T + 1)2

n2

)
.

We next provide an intermediate lemma that lead us to Theorem 3.2.

Lemma 4.5. (Restatement of Theorem B.2) Set k =
(
1 +

HC2
xη√
m

)−1

. Then after T ≤
√
m

HC2
xη

− 1

iterations of Algorithm 1 with GD,

1
T∑

t=0
kt

T∑

t=0

ktL̂rob(Wt;S) ≤ ∆oracle
S +

C2
xη

2
.

Richards and Kuzborskij [2021] (see Lemma 2 in their paper) give an optimization guarantee

by providing an upper bound on the averaged training loss 1
T

∑T
t=1 L̂(Wt;S) of all iterates. In

Lemma 4.5 we use a more refined analysis by considering the weighted average of the training loss.
Specifically, for any weight matrix W, we follow the standard technique in the convex case and upper
bound the following:

∥W − Wt+1∥2F = ∥W − Wt∥2F + η2∥∇WL̂rob(Wt;S)∥2F + 2η
〈
∇WL̂rob(Wt;S),W − Wt

〉
.

The second term on the right hand side is bounded by the Lipschitzness of the logistic loss. The

inner product in the third term is bounded by L̂rob(W;S)− L̂rob(Wt;S) +
HC2

x

2
√
m
∥W − Wt∥2F using

Lemma A.4. We finish the proof by telescoping. The weighted telescoping technique removes all of
the ∥W − Wt∥2F terms (t > 0) in the upper bound, thereby giving a simpler result. The term C2

xη/2
in the upper bound stems from the non-smoothness of the robust loss, and is unavoidable even if the
robust loss is convex. Finally, Theorem 3.2 follows from Theorem 4.4 and Lemmas 4.3 and 4.5.
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4.2 Generalization Guarantees for Gradient-Descent on Moreau’s Envelope

Below we give the key lemmas for bounding the generalization error of GD with Moreau’s envelope.
The proof technique here is similar to that for standard adversarial training (in the previous section),
except that we get to utilize the smoothness of Moreau’s envelope. Specifically, Lemma 4.6 leverages
the fact that the gradient is “almost” co-coercive to control the uniform argument stability.

Theorem 4.6. (Restatement of Theorem C.4) Let S ≃ S′ be any two neighboring data sets, i.e., S

and S′ differ only in one example. For any η ≤ min{µ,
√
m

8HC2
x
} ≤

√
m

2HC2
x

, let WT and W′
T be the

weight matrices obtained by T iterations of gradient descent with Moreau’s envelopes on datasets S
and S′, respectively. Then, we have that

∥WT − W′
T ∥2F ≤ exp

(
1 +

8HC2
xηT√
m

)
· 16C

2
xη

2(T + 1)2

n2
.

Lemma 4.7 also leverages smoothness due to Moreau’s envelope and yields a bound that does not
involve the additional term C2

xη/2 compared with Lemma 4.5.

Lemma 4.7. (Restatement of Theorem C.6) Set k =
(
1 +

2HC2
xη√

m

)−1

. After T iterations of

Algorithm 1 with Moreau Envelope with η ≤ µ ≤
√
m

2HC2
x

and T ≤
√
m

HC2
xη

, we have

1
T∑

t=1
kt

T∑

t=1

ktMµ(Wt;S) ≤ ∆oracle
S .

Theorem 3.6 is naturally derived via Theorem 4.6, Lemma 4.3 and 4.7.

5 Conclusion

In this work, we establish the generalization guarantees for variants of adversarial training applied
to two-layer networks with smooth activation functions. For over-parameterized neural networks,
we present robust generalization bound that are controlled by the Adversarial Regularized Empirical
Risk Minimization (ARERM) oracle, applicable to any given initialization and any data distributions.
One future direction is to extend our analysis to deep neural networks and beyond neural networks
with smooth activation functions.
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Supplementary Material

A Technical Theorems and Lemmas

Lemma A.1. Let ℓ(z) = ln(1 + e−z) be the logistic loss function. We have |ℓ′(z)| ≤ min{1, ℓ(z)}.

Proof of Lemma A.1.

|ℓ′(z)| = −ℓ′(z) = 1

1 + ez
≤
{
1; (ez > 0)

ln(1 + e−z).
(

x
1+x

≤ ln(1 + x)
)

Lemma A.2. For any sample z = (x, y), and any weight matrices W and W′, we have

ℓrob(z,W)− ℓrob(z,W
′) ≤ Cx∥W − W′∥2 ·min{1, ℓrob(z,W)}.

Proof of Lemma A.2.

ℓrob(z,W)− ℓrob(z,W
′)

= max
x̃∈B(x)

ℓ(yf(x̃;W))− max
x̃∈B(x)

ℓ(yf(x̃;W′))

≤ max
x̃∈B(x)

(ℓ(yf(x̃;W))− ℓ(yf(x̃;W′)))

≤ max
x̃∈B(x)

|ℓ′(yf(x̃;W)) · (yf(x̃;W)− yf(x̃;W′))| (ℓ is convex)

= max
x̃∈B(x)

∣∣∣∣∣ℓ
′(yf(x̃;W)) ·

(
m∑

s=1

asϕ(⟨ws, x̃⟩)−
m∑

s=1

asϕ(⟨w′
s, x̃⟩)

)∣∣∣∣∣

≤ max
x̃∈B(x)

∣∣∣∣∣ℓ
′(yf(x̃;W)) · 1√

m

(
m∑

s=1

| ⟨ws − w′
s, x̃⟩ |

)∣∣∣∣∣ (ϕ is 1-Lip)

≤ max
x̃∈B(x)

∣∣∣∣∣∣
ℓ′(yf(x̃;W)) ·

√√√√
m∑

s=1

⟨ws − w′
s, x̃⟩

2

∣∣∣∣∣∣
(Cauchy’s inequality)

≤ max
x̃∈B(x)

|ℓ′(yf(x̃;W)) · ∥W − W′∥2 · ∥x̃∥2|

≤Cx∥W − W′∥2 · max
x̃∈B(x)

|ℓ′(yf(x̃;W))|

≤Cx∥W − W′∥2 ·min{1, max
x̃∈B(x)

ℓ(yf(x̃;W))} (Lemma A.1)

=Cx∥W − W′∥2 ·min{1, ℓrob(z,W)}.

In the following proposition, we build the relationship between the generalization gap and uniform
stability.

Proposition A.3. Let S and S′ be any two neighboring data sets that differ only in one example. Let
Wt = A(S),W′

t = A(S′) be the weight returned after running algorithm A for t steps using S and
S′, respectively. δA(S, S′) = ∥A(S)−A(S′)∥F . Then if sup

S≃S′
δA(S, S′) < 1

Cx
, we have

ES∼DnLrob(Wt) ≤ ES∼Dn

1

1− Cx · sup
S≃S′

δA(S, S′)
L̂rob(Wt;S) (4)

and

ES∼DnLrob(Wt) ≤ ES∼DnL̂rob(Wt;S) + Cx · sup
S≃S′

δA(S, S
′). (5)

13



Proof of Proposition A.3. Let S and S′ differ in one example, and z′ = S′\S.

ES∼Dn

(
Lrob(Wt)− L̂rob(Wt;S)

)
= ES∪{z′}∼Dn+1 [(ℓrob(z

′,Wt)− ℓrob(z
′,W′

t))] . (6)

Combining Lemma A.2 and Equation (6) we get

ES∼Dn

(
Lrob(Wt)−L̂rob(Wt;S)

)
≤ES∪{z′}∼Dn+1 [Cx∥Wt−W′

t∥2 ·min{1, ℓrob(z′,Wt)}].

Based on the definition of δA,

ES∼Dn

(
Lrob(Wt)− L̂rob(Wt;S)

)

≤ Cx · sup
S≃S′

δA(S, S
′) · ES∪{z′}∼Dn+1 min{1, ℓrob(z′,Wt)}

≤ Cx · sup
S≃S′

δA(S, S
′) ·min{1,ES∼DnLrob(Wt)}.

Simplifying this inequality, we get

ES∼DnLrob(Wt) ≤ ES∼Dn

1

1− Cx · sup
S≃S′

δA(S, S′)
L̂rob(Wt;S)

and

ES∼DnLrob(Wt) ≤ ES∼DnL̂rob(Wt;S) + Cx · sup
S≃S′

δA(S, S
′).

The following lemma gives the weakly convex property of the robust loss (by considering the special
case of β1 = 0).

Lemma A.4. Given any data (x, y), for model with weight W, let x̃(W) ∈ B(x) be an β1-optimal
adversarial examples such that ℓ(yf(x̃(W),W)) ≥ max

x̃∈B(x)
ℓ(yf(x̃,W))−β1. Then for any two weight

matrices W1,W2 ∈ R
d×m, we have

ℓ((x̃(W2), y),W2) ≥ ℓ((x̃(W1), y),W1) +
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉
− β1 −

HC2
x

2
√
m
∥W2 − W1∥22.

Proof of Lemma A.4.

ℓ((x̃(W2), y),W2)− ℓ((x̃(W1), y),W1)−
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉
+ β1

=ℓ(yfW2(x̃(W2)))− ℓ(yfW1(x̃(W1)))−
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉
+ β1

≥ max
x̃∈B(x)

ℓ(yfW2(x̃))− ℓ(yfW1(x̃(W1)))−
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉

(By definition of β1-optimal adversarial examples)

≥ℓ(yfW2(x̃(W1)))− ℓ(yfW1(x̃(W1)))−
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉

≥ℓ′(yfW1(x̃(W1))) ·
(
yfW2(x̃(W1))− yfW1(x̃(W1))

)
−
〈
∇Wℓ((x̃(W

1), y),W1),W2 − W1
〉

(ℓ is convex)

=ℓ′(yfW1(x̃(W1)))y
m∑

s=1

as
(
ϕ(
〈
w2

s, x̃(W
1)
〉
)− ϕ(

〈
w1

s, x̃(W
1)
〉
)− ϕ′(

〈
w1

s, x̃(W
1)
〉
)
〈
w2

s − w1
s, x̃(W

1)
〉)

≥− |ℓ′(yfW1(x̃(W1)))|
m∑

s=1

1√
m

· H
2

〈
w2

s − w1
s, x̃(W

1)
〉2

(ϕ is H-smooth)

≥− 1 · H

2
√
m
∥(W2 − W1)Tx̃(W1)∥22 (Lemma A.1)

≥− HC2
x

2
√
m
∥W2 − W1∥22. (∥x̃(W1)∥2 ≤ Cx)
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The following lemma tells us the gradient has a universal upper bound.

Lemma A.5. For any data (x, y) and any weight matrix W,

∥∇Wℓ(yf(x;W))∥F ≤ Cx.

Proof of Lemma A.5. Since ∇Wℓ(yf(x;W)) = [ℓ′(yf(x;W))yasϕ
′(⟨ws, x⟩)x]ms=1,

∥∇Wℓ(yf(x;W))∥F =

√√√√
m∑

s=1

∥ℓ′(yf(x;W))yasϕ′(⟨Ws, x⟩)x∥22

≤ −Cx · ℓ′(yf(x;W)) (|as| = 1√
m

,ϕ′ ≤ 1, ∥x∥2 ≤ Cx)

≤ Cx. (Lemma A.1)

B Missing Proofs in Section 3.1

Now we give the uniform argument stability upper bound.

Theorem B.1. (Restatement of Theorem 3.1) Let S and S(i) only differ in the i-th data. WT and

W
(i)
T denote the weight matrices returned after after running Algorithm GD for T iterations on S and

S(i), respectively. Then we have

∥WT − W
(i)
T ∥2F ≤ e

1+
2HC2

xηT√
m

(
4C2

xη
2(T + 1) +

4C2
xη

2(T + 1)2

n2
+ 4β1η(T + 1)

)
.

Proof of Theorem B.1. For any weight matrix W and any perturbation of the j-th data x̃j ∈ B(xj)
(j ̸= i), define LS\i(W; {x̃j}j ̸=i) =

1
n

∑
j ̸=i

ℓ(yjf(x̃j ;W)) to be the loss of the (perturbed) data set

without including the i-th data. Let x̃j(Wt) denote the β1-optimal adversarial example of xj given

Wt, and x̃j(W
(i)
t ) denote the β1-optimal adversarial example of xj given W

(i)
t . We first show that the

gradient is an “almost” monotone operator, which is derived from the weakly convex property of the
robust loss (see Lemma A.4).

β1 +
HC2

x

2
√
m
∥Wt − W

(i)
t ∥2F + LS\i(Wt; {x̃j(Wt)}j ̸=i)

≥ 1

n

∑

j ̸=i

[
β1 +

HC2
x

2
√
m
∥Wt − W

(i)
t ∥2F + ℓ(yjf(x̃j(Wt);Wt))

]

≥ 1

n

∑

j ̸=i

[
ℓ(yjf(x̃j(W

(i)
t );W

(i)
t )) +

〈
∇Wℓ(yjf(x̃j(W

(i)
t );W

(i)
t )),Wt − W

(i)
t

〉]
(Lemma A.4)

=LS\i(W
(i)
t ; {x̃j(W

(i)
t )}j ̸=i) +

〈
∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i),Wt − W

(i)
t

〉
.

Similarly, we get

β1 +
HC2

x

2
√
m
∥Wt − W

(i)
t ∥2F + LS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)

≥LS\i(Wt; {x̃j(Wt)}j ̸=i) +
〈
∇WLS\i(Wt; {x̃j(Wt)}j ̸=i),W

(i)
t − Wt

〉
.

Adding these two inequalities together, we get
〈
∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)−∇WLS\i(Wt; {x̃j(Wt)}j ̸=i),W

(i)
t − Wt

〉

≥− 2β1 −
HC2

x√
m

∥Wt − W
(i)
t ∥2F . (7)
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Now we start upper bounding ∥Wt − W
(i)
t ∥F .

∥Wt+1 − W
(i)
t+1∥2F

=∥Wt − η∇WLS\i(Wt; {x̃j(Wt)}j ̸=i)−
η

n
∇Wℓ(yif(x̃i(Wt);Wt))

− W
(i)
t + η∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i) +

η

n
∇Wℓ(y

′
if(x̃

′
i(W

(i)
t );W

(i)
t ))∥2F

≤
(
∥Wt − η∇WLS\i(Wt; {x̃j(Wt)}j ̸=i)− W

(i)
t + η∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)∥F +

2ηCx

n

)2

(Lemma A.5)

≤T + 2

T + 1
∥Wt − η∇WLS\i(Wt; {x̃j(Wt)}j ̸=i)− W

(i)
t + η∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)∥2F

+ (T + 2)
4η2C2

x

n2
((a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 for p > 0.)

=
T + 2

T + 1
∥Wt − W

(i)
t ∥2F +

T + 2

T + 1
∥η∇WLS\i(Wt; {x̃j(Wt)}j ̸=i)− η∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)∥2F

− 2η
T + 2

T + 1

〈
∇WLS\i(W

(i)
t ; {x̃j(W

(i)
t )}j ̸=i)−∇WLS\i(Wt; {x̃j(Wt)}j ̸=i),W

(i)
t − Wt

〉

+ (T + 2)
4η2C2

x

n2

≤T + 2

T + 1
∥Wt − W

(i)
t ∥2F +

T + 2

T + 1
4η2C2

x +
T + 2

T + 1
(4β1η +

2HC2
x√

m
η∥Wt − W

(i)
t ∥2F ) + (T + 2)

4η2C2
x

n2

(Lemma A.5 and Equation (7))

=
T + 2

T + 1

(
(1 +

2HC2
x√

m
η)∥Wt − W

(i)
t ∥2F + 4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)
.

Define γ = T+2
T+1 (1 +

2HC2
x√

m
η), then the inequality above can be written as

∥Wt+1 − W
(i)
t+1∥2F ≤ γ∥Wt − W

(i)
t ∥2F +

T + 2

T + 1

(
4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)
.

Dividing both sides by γt+1,

∥Wt+1 − W
(i)
t+1∥2F

γt+1
≤ ∥Wt − W

(i)
t ∥2F

γt
+
T + 2

T + 1

4η2C2
x + 4β1η + (T + 1)

4η2C2
x

n2

γt+1
.

Summing up this inequality for t = 0, 1, . . . , T − 1, we obtain

∥WT − W
(i)
T ∥2F ≤ γT

T−1∑

t=0

T + 2

T + 1

4η2C2
x + 4β1η + (T + 1)

4η2C2
x

n2

γt+1

≤ γT

γ − 1

T + 2

T + 1

(
4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)

≤ (T + 1)γT
T + 2

T + 1

(
4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)

= (T + 1)(
T + 2

T + 1
)T+1(1 +

2HC2
x√

m
η)T

(
4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)

≤ (T + 1)e · e
2HC2

xηT√
m

(
4η2C2

x + 4β1η + (T + 1)
4η2C2

x

n2

)
(1 + x ≤ ex)

= e
1+

2HC2
xηT√
m

(
4C2

xη
2(T + 1) +

4C2
xη

2(T + 1)2

n2
+ 4β1η(T + 1)

)
.
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The proof of Theorem 3.1 is immediately obtained from Theorem B.1 by observing e
1+

2HC2
xηT√
m ≤ e3.

Next we give an optimization guarantee. We show that when T is sufficiently large, the robust training
loss can approach the adversarial regularized empirical risk minimization oracle. We do not need
early stopping in the Theorem below.

Theorem B.2. After running Algorithm GD for T iterations, we have

min
0≤t≤T

L̂rob(Wt;S)≤ min
W∈Rd×m


L̂rob(W;S) +

HC2
x

2
√
m(1− 1

(1+
HC2

xη√
m

)T+1
)
∥W − W0∥2F +

C2
xη

2
+β1


.

Proof of Theorem B.2. For any given W, we have

∥W − Wt+1∥2F
=∥W − Wt + η∇WL(Wt; {x̃i(Wt)}ni=1)∥2F
=∥W − Wt∥2F + η2∥∇WL(Wt; {x̃i(Wt)}ni=1)∥2F + 2η ⟨∇WL(Wt; {x̃i(Wt)}ni=1),W − Wt⟩

≤∥W − Wt∥2F + η2C2
x +

HC2
xη√
m

∥W − Wt∥2F + 2ηL̂rob(W;S)− 2ηL(Wt; {x̃i(Wt)}ni=1)

(Lemma A.5 and Lemma A.4)

=(1 +
HC2

xη√
m

)∥W − Wt∥2F + η2C2
x + 2ηL̂rob(W;S)− 2ηL(Wt; {x̃i(Wt)}ni=1).

Dividing both sides by (1 +
HC2

xη√
m

)t+1 we get

∥W − Wt+1∥2F
(1 +

HC2
xη√
m

)t+1
≤ ∥W − Wt∥2F

(1 +
HC2

xη√
m

)t
+

η2C2
x

(1 +
HC2

xη√
m

)t+1
+

2η(L̂rob(W;S)− L(Wt; {x̃i(Wt)}ni=1))

(1 +
HC2

xη√
m

)t+1
.

(8)

Taking the sum for t = 0, 1, . . . , T we get

2η

T∑

t=0

L̂rob(W;S)

(1 +
HC2

xη√
m

)t+1
+ ∥W − W0∥2F +

T∑

t=0

η2C2
x

(1 +
HC2

xη√
m

)t+1

≥2η

T∑

t=0

L(Wt; {x̃i(Wt)}ni=1)

(1 +
HC2

xη√
m

)t+1
(9)

≥2η
T∑

t=0

L̂rob(Wt;S)− β1

(1 +
HC2

xη√
m

)t+1

≥2η min
0≤t≤T

L̂rob(Wt;S) ·
T∑

t=0

1

(1 +
HC2

xη√
m

)t+1
− 2η

T∑

t=0

β1

(1 +
HC2

xη√
m

)t+1
.

Simplifying the above inequality, we have

min
0≤t≤T

L̂rob(Wt;S) ≤ L̂rob(W;S) +
HC2

x

2
√
m(1− 1

(1+
HC2

xη√
m

)T+1
)
∥W − W0∥2F +

C2
xη

2
+ β1.

Theorem 3.2. Define α1(η, T ) := O(C2
xη

√
T +C2

x
ηT
n

+Cx

√
β1ηT ). Assume that the width of the

networks satisfies m ≥ H2C4
xη

2(T +1)2, and α1(η, T ) < 1. Then, after T iterations of Algorithm 1
with GD, we have

min
[ 9T
10

]≤t≤T
ES∼Dnεgen(Wt) ≤

17α1(η, T )

1− α1(η, T )

[
ES∼Dn∆oracle

S +
C2

xη

2
+ β1

]
,

and

min
0≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α1(η, T )

[
ES∼Dn∆oracle

S +
C2

xη

2
+ β1

]
.
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Proof of Theorem 3.2. Define t0 := [ 9T10 ] and k := 1

1+
HC2

xη√
m

. From equation (9), we have

2η

T∑

t=0

L̂rob(W;S)

(1 +
HC2

xη√
m

)t+1
+ ∥W − W0∥2F +

T∑

t=0

η2C2
x

(1 +
HC2

xη√
m

)t+1

≥2η

T∑

t=t0

L(Wt; {x̃i(Wt)}ni=1)

(1 +
HC2

xη√
m

)t+1

≥2η
T∑

t=t0

L̂rob(Wt;S)− β1

(1 +
HC2

xη√
m

)t+1
.

Taking minimum over all weight matrices W,

T∑

t=t0

kt+1
(
L̂rob(Wt;S)− β1

)

≤min
W

(
T∑

t=0

kt+1L̂rob(W;S) +
∥W − W0∥2F

2η
+

T∑

t=0

ηC2
x

2
kt+1

)

=
T∑

t=0

kt+1 ·min
W


L̂rob(W;S) +

∥W − W0∥2F
2η

T∑
t=0

kt+1

+
C2

xη

2




≤
T∑

t=0

kt+1 ·min
W

(
L̂rob(W;S) +

∥W − W0∥2F
η(T + 1)

+
C2

xη

2

)
(m ≥ H2C4

xη
2(T + 1)2)

≤
T∑

t=0

kt+1 ·
(
∆oracle

S +
C2

xη

2

)
.

Taking the expectation on both sides, we get

T∑

t=t0

kt+1

(
min

t0≤t≤T
ES∼DnL̂rob(Wt;S)− β1

)
≤

T∑

t=t0

kt+1
(
ES∼DnL̂rob(Wt;S)− β1

)

≤
T∑

t=0

kt+1 ·
(
ES∼Dn∆oracle

S +
C2

xη

2

)
.

Simplifying the equation above, we get

min
t0≤t≤T

ES∼DnL̂rob(Wt;S) ≤ β1 +

T∑
t=0

kt+1

T∑
t=t0

kt+1

·
(
ES∼Dn∆oracle

S +
C2

xη

2

)
(10)

≤ β1 +

(
9∑

r=0

(
1

k

)r T+1

10

)
·
(
ES∼Dn∆oracle

S +
C2

xη

2

)

≤ β1 +

(
9∑

r=0

e
r
10

)
·
(
ES∼Dn∆oracle

S +
C2

xη

2

)

(m ≥ H2C4
xη

2(T + 1)2)

≤ β1 + 17

(
ES∼Dn∆oracle

S +
C2

xη

2

)
.
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Equation (4) gives us for any t ≤ T , ES∼Dnεgen(Wt) ≤ α1(η,T )
1−α1(η,T )ES∼DnL̂rob(Wt;S). Therefore,

min
t0≤t≤T

ES∼Dnεgen(Wt) ≤
α1(η, T )

1− α1(η, T )
min

t0≤t≤T
ES∼DnL̂rob(Wt;S)

≤ α1(η, T )

1− α1(η, T )

(
β1 + 17

(
ES∼Dn∆oracle

S +
C2

xη

2

))
.

The proof of the second statement takes a similar approach. Following the same procedure, we can
replace t0 by 0 in equation (10), and get

min
0≤t≤T

ES∼DnL̂rob(Wt;S) ≤ ES∼Dn∆oracle
S +

C2
xη

2
+ β1.

Combining with equation (4),

min
0≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α1(η, T )
min

0≤t≤T
ES∼DnL̂rob(Wt;S)

≤ 1

1− α1(η, T )

(
ES∼Dn∆oracle

S +
C2

xη

2
+ β1

)
.

Corollary 3.3. After T ≤ O(min{n2, 1
β2
1

}) iterations of Algorithm 1 with GD using a step size of

η = Θ( 1
C2

x

√
T
) on a network with width m ≥ Ω(T ), for any weight matrix W

min
0≤t≤T

ES∼DnLrob(Wt) ≤ 1.1Lrob(W) +O
(
C2

x∥W − W0∥2F√
T

)
+O

(
1√
T

)
.

Proof of Corollary 3.3. Under the conditions of the corollary, we have m ≥ H2C4
xη

2(T + 1)2, and

α1(η, T ) = O(C2
xη

√
T + C2

x
ηT
n

+ Cx

√
β1ηT ) can be small enough so that 1

1−α1(η,T ) ≤ 1.1. Then

it is clear that this corollary is a special case of Theorem 3.2.

We now extend the previous ideas to stochastic adversarial training.

Lemma B.3. After T iterations of Algorithm 1 with SGD, for any weight matrix W,

min
0≤t≤T

(ℓrob(zt+1,Wt)− ℓrob(zt+1,W)) ≤ HC2
x

2
√
m(1− 1

(1+
HC2

xη√
m

)T+1
)
∥W − W0∥2F +

C2
xη

2
+ β1.

Proof of Lemma B.3. The proof proceeds similarly as Theorem B.2.

∥W − Wt+1∥2F
=∥W − Wt + η∇Wℓ((x̃t+1(Wt), yt+1),Wt)∥2F
=∥W − Wt∥2F + η2∥∇Wℓ((x̃t+1(Wt), yt+1),Wt)∥2F + 2η ⟨∇Wℓ((x̃t+1(Wt), yt+1),Wt),W − Wt⟩

≤∥W − Wt∥2F + η2C2
x +

HC2
xη√
m

∥W − Wt∥2F + 2ηℓrob(zt+1,W)− 2ηℓ((x̃t+1(Wt), yt+1),Wt)

(Lemma A.5 and Lemma A.4)

≤(1 +
HC2

xη√
m

)∥W − Wt∥2F + η2C2
x + 2ηℓrob(zt+1,W)− 2ηℓrob(zt+1,Wt) + 2ηβ1.

Dividing both sides by (1 +
HC2

xη√
m

)t+1, we get

∥W − Wt+1∥2F
(1 +

HC2
xη√
m

)t+1
≤ ∥W − Wt∥2F

(1 +
HC2

xη√
m

)t
+
η2C2

x + 2ηℓrob(zt+1,W)− 2ηℓrob(zt+1,Wt) + 2ηβ1

(1 +
HC2

xη√
m

)t+1
.
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Taking the sum of the above equation for t = 0, 1, . . . , T :

∥W − W0∥2F +
T∑

t=0

η2C2
x + 2ηβ1

(1 +
HC2

xη√
m

)t+1

≥2η

T∑

t=0

ℓrob(zt+1,Wt)− ℓrob(zt+1,W)

(1 +
HC2

xη√
m

)t+1
(11)

≥2η

T∑

t=0

min
0≤t≤T

(ℓrob(zt+1,Wt)− ℓrob(zt+1,W))

(1 +
HC2

xη√
m

)t+1
.

Simplifying the above inequality we have

min
0≤t≤T

(ℓrob(zt+1,Wt)− ℓrob(zt+1,W)) ≤ HC2
x

2
√
m(1− 1

(1+
HC2

xη√
m

)T+1
)
∥W − W0∥2F +

C2
xη

2
+ β1.

Theorem 3.4. After T iterations of Algorithm 1 with SGD on a network of width m ≥ H2C4
xη

2(T +
1)2 we have that for any weight matrix W,

min
0≤t≤T

E{z1,...,zt}∼DtLrob(Wt) ≤ Lrob(W) +
∥W − W0∥2F
η(T + 1)

+
C2

xη

2
+ β1.

Proof of Theorem 3.4. Taking the expectation over S ∼ Dn on both sides of Equation (11), we
obtain

∥W − W0∥2F +
T∑

t=0

η2C2
x + 2ηβ

(1 +
HC2

xη√
m

)t+1

≥2η
T∑

t=0

E{z1,...,zt}∼DtEzt+1∼Dℓrob(zt+1,Wt)− Ezt+1∼Dℓrob(zt+1,W)

(1 +
HC2

xη√
m

)t+1

=2η

T∑

t=0

E{z1,...,zt}∼DtLrob(Wt)− Lrob(W)

(1 +
HC2

xη√
m

)t+1

≥2η

T∑

t=0

min
0≤t≤T

E{z1,...,zt}∼DtLrob(Wt)− Lrob(W)

(1 +
HC2

xη√
m

)t+1
.

Simplifying the above inequality, we get

min
0≤t≤T

E{z1,...,zt}∼DtLrob(Wt) ≤ Lrob(W) +
HC2

x

2
√
m(1− 1

(1+
HC2

xη√
m

)T+1
)
∥W − W0∥2F +

C2
xη

2
+ β1

≤ Lrob(W) +
∥W − W0∥2F
η(T + 1)

+
C2

xη

2
+ β1.

(m ≥ H2C4
xη

2(T + 1)2)

C Missing Proofs in Section 3.2

From Lemma A.4, for any µ <
√
m

HC2
x

, Lrob(U) + 1
2µ∥U − W∥2F is strongly convex in U. Recall that

the Moreau envelope is defined as

Mµ(W;S) = min
U

(
L̂rob(U;S) +

1

2µ
∥U − W∥2F

)
.
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The minimizer of the optimization problem above is denoted as

Uµ(W;S) = argmin
U

(
L̂rob(U;S) +

1

2µ
∥U − W∥2F

)
.

We borrow a few properties of the Moreau envelope from Xiao et al. [2024].

Lemma C.1. For any µ <
√
m

HC2
x

,

1. min
W

Mµ(W;S) has the same global solution set as min
W

L̂rob(W;S).

2. The gradient of Mµ(W;S) is ∇WM
µ(W;S) = 1

µ
(W − Uµ(W;S)).

3. Mµ(W;S) +
∥W∥2

F

2

( √
m

HC2
x
−µ

) is convex.

4. Uµ(W;S) is

√
m

HC2
x√

m

HC2
x
−µ

-Lipschitz in W w.r.t the Frobenius norm.

5. Mµ(W;S) is max

{
1
µ
, 1√

m

HC2
x
−µ

}
-smooth.

6. L̂rob(W;S)− C2
x

2

(

1
µ−HC2

x√
m

) ≤Mµ(W;S) ≤ L̂rob(W;S).

7. ∥∇WM
µ(W;S)∥F ≤ Cx.

Proof of Lemma C.1. The first 5 statements are covered in the proof of [Xiao et al., 2024, Lemma
A.1]. For the statement 6,

L̂rob(W;S) = L̂rob(W;S) +
1

2µ
∥W − W∥2F

≥ min
U

(
L̂rob(U;S) +

1

2µ
∥U − W∥2F

)

=Mµ(W;S)

= L̂rob(W;S) + min
U

(
L̂rob(U;S)− L̂rob(W;S) +

1

2µ
∥U − W∥2F

)

≥ L̂rob(W;S) + min
U

(〈
∇WL̂rob(W;S),U−W

〉
−HC2

x

2
√
m
∥U−W∥2F +

1

2µ
∥U−W∥2F

)

(“almost” convex robust loss from Lemma A.4)

≥ L̂rob(W;S) + min
U

(
−Cx∥U − W∥F − HC2

x

2
√
m
∥U − W∥2F +

1

2µ
∥U − W∥2F

)

(Lemma A.5)

= L̂rob(W;S)− C2
x

2
(

1
µ
− HC2

x√
m

) .

Now we prove statement 7. For any γ ∈ (0, 1), from the definition of the Moreau envelope,

L̂rob(U
µ(W;S);S) +

1

2µ
∥Uµ(W;S)− W∥2F

≤L̂rob((1− γ)W + γUµ(W;S);S) +
1

2µ
∥(1− γ)W + γUµ(W;S)− W∥2F

(Uµ(W;S) obtains the minimum)

≤L̂rob(U
µ(W;S);S) + Cx(1− γ)∥Uµ(W;S)− W∥F +

γ2

2µ
∥Uµ(W;S)− W∥2F .

(The robust loss is Cx-Lip from Lemma A.2)
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Simplifying the inequality above, we get

∥Uµ(W;S)− W∥F ≤ 2µCx

1 + γ
.

Let γ → 1, we get

∥∇WM
µ(W;S)∥F =

1

µ
∥Uµ(W;S)− W∥F ≤ Cx.

Next we show a result similar as [Xiao et al., 2024, Lemma A.2]. They use the first-order optimal
condition to prove the result, which only holds for the smooth loss functions. Here we give a different
proof that doesn’t depend on the subgradient, so it can be applied to the robust loss.

Lemma C.2. Let Ũ
µ
(W;S) be any β2-optimal minimizer of min

U

(
L̂rob(U;S) + 1

2µ∥U − W∥2F
)

.

For two data sets S and S(i) that differ in only one example and any weight matrix W, we have

∥Uµ(W;S)− Uµ(W;S(i))∥F ≤ 2Cx

n
(

1
µ
− HC2

x√
m

)

and

∥Ũ
µ
(W;S)− Uµ(W;S)∥F ≤

√√√√ 2β2
1
µ
− HC2

x√
m

.

Proof of Lemma C.2. From strong convexity of the regularized robust loss, we have

L̂rob(U
µ(W;S(i));S) +

1

2µ
∥Uµ(W;S(i))− W∥2F

≥L̂rob(U
µ(W;S);S) +

1

2µ
∥Uµ(W;S)− W∥2F + (

1

2µ
− HC2

x

2
√
m
)∥Uµ(W;S(i))− Uµ(W;S)∥2F ,

and similarly,

L̂rob(U
µ(W;S);S(i)) +

1

2µ
∥Uµ(W;S)− W∥2F

≥L̂rob(U
µ(W;S(i));S(i)) +

1

2µ
∥Uµ(W;S(i))− W∥2F + (

1

2µ
− HC2

x

2
√
m
)∥Uµ(W;S)− Uµ(W;S(i))∥2F .

Adding these two inequalities,

(
1

µ
− HC2

x√
m

)∥Uµ(W;S)− Uµ(W;S(i))∥2F

≤
[
L̂rob(U

µ(W;S(i));S)−L̂rob(U
µ(W;S(i));S(i))

]
+
[
L̂rob(U

µ(W;S);S(i))−L̂rob(U
µ(W;S);S)

]

=
1

n

[
ℓrob(zi,U

µ(W;S(i)))−ℓrob(z′i,Uµ(W;S(i)))
]
+

1

n
[ℓrob(z

′
i,U

µ(W;S))−ℓrob(zi,Uµ(W;S))]

=
1

n

[
ℓrob(zi,U

µ(W;S(i)))−ℓrob(zi,Uµ(W;S))
]
+

1

n

[
ℓrob(z

′
i,U

µ(W;S))−ℓrob(z′i,Uµ(W;S(i)))
]

≤2Cx

n
∥Uµ(W;S)−Uµ(W;S(i))∥F . (Lemma A.2)

Therefore,

∥Uµ(W;S)− Uµ(W;S(i))∥F ≤ 2Cx

n
(

1
µ
− HC2

x√
m

) . (12)
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From the strong convexity of the regularized robust loss, we also have

β2 ≥
(
L̂rob(Ũ

µ
(W;S);S) +

1

2µ
∥Ũ

µ
(W;S)− W∥2F

)

−
(
L̂rob(U

µ(W;S);S) +
1

2µ
∥Uµ(W;S)− W∥2F

)

≥ (
1

2µ
− HC2

x

2
√
m
)∥Ũ

µ
(W;S)− Uµ(W;S)∥2F .

We get ∥Ũ
µ
(W;S)− Uµ(W;S)∥F ≤

√
β2

1
2µ−HC2

x
2
√

m

.

Now we show an upper bound that is key to bounding the stability of the weight matrix.

Lemma C.3. For any η ≤ µ ≤
√
m

2HC2
x

and any weight matrices W1 and W2,

∥W1 − η∇WM
µ(W1;S)− W2 + η∇WM

µ(W2;S)∥2F ≤ ∥W1 − W2∥2F
1− 4HC2

xη√
m

.

Proof of Lemma C.3. Define ψ1(W) = Mµ(W;S) −Mµ(W1;S) −
〈
∇WM

µ(W1;S),W − W1
〉
.

From Lemma C.1, ψ1(W) is 1
µ

-smooth. From the standard descent lemma of smooth functions, for

any η ≤ µ,

ψ1(W
2 − η∇Wψ1(W

2)) ≤ ψ1(W
2)− η

2
∥∇Wψ1(W

2)∥2F

= ψ1(W
2)− η

2
∥∇WM

µ(W2;S)−∇WM
µ(W1;S)∥2F .

Since ψ1(W) +
∥W∥2

F

2

( √
m

HC2
x
−µ

) is convex from Lemma C.1,

ψ1(W
2 − η∇Wψ1(W

2))

≥ψ1(W
1) +

〈
∇ψ1(W

1),W2 − η∇Wψ1(W
2)− W1

〉
− ∥W2 − η∇Wψ1(W

2)− W1∥2F
2
( √

m

HC2
x
− µ

)

=ψ1(W
1)− ∥W2 − η∇Wψ1(W

2)− W1∥2F
2
( √

m

HC2
x
− µ

)

≥ψ1(W
1)− ∥W2 − η∇WM

µ(W2;S)− W1 + η∇WM
µ(W1;S)∥2F√

m

HC2
x

.

Combining the two inequalities above,

Mµ(W2;S)−Mµ(W1;S)−
〈
∇WM

µ(W1;S),W2 − W1
〉

=ψ1(W
2)− ψ1(W

1)

≥η
2
∥∇WM

µ(W2;S)−∇WM
µ(W1;S)∥2F −∥W2−η∇WM

µ(W2;S)−W1+η∇WM
µ(W1;S)∥2F√

m

HC2
x

.

Similarly, we can get the counterpart of this equation:

Mµ(W1;S)−Mµ(W2;S)−
〈
∇WM

µ(W2;S),W1 − W2
〉

≥η
2
∥∇WM

µ(W1;S)−∇WM
µ(W2;S)∥2F −∥W1−η∇WM

µ(W1;S)−W2+η∇WM
µ(W2;S)∥2F√

m

HC2
x

.
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Adding these two inequalities, we get〈
∇WM

µ(W2;S)−∇WM
µ(W1;S),W2 − W1

〉

≥η∥∇WM
µ(W1;S)−∇WM

µ(W2;S)∥2F − 2∥W1−η∇WM
µ(W1;S)−W2+η∇WM

µ(W2;S)∥2F√
m

HC2
x

.

Thus,

∥W1 − η∇WM
µ(W1;S)− W2 + η∇WM

µ(W2;S)∥2F
=∥W1 − W2∥2F + η2∥∇WM

µ(W1;S)−∇WM
µ(W2;S)∥2F

− 2η
〈
∇WM

µ(W1;S)−∇WM
µ(W2;S),W1 − W2

〉

≤∥W1 − W2∥2F + η2∥∇WM
µ(W1;S)−∇WM

µ(W2;S)∥2F
− 2η2∥∇WM

µ(W1;S)−∇WM
µ(W2;S)∥2F

+
4η∥W1 − η∇WM

µ(W1;S)− W2 + η∇WM
µ(W2;S)∥2F√

m

HC2
x

≤∥W1 − W2∥2F +
4HC2

xη∥W1 − η∇WM
µ(W1;S)− W2 + η∇WM

µ(W2;S)∥2F√
m

.

We get the desired result by simplifying the above inequality.

Theorem C.4. (Restatement of Theorem 3.5) For any η ≤ min{µ,
√
m

8HC2
x
} ≤

√
m

2HC2
x

, let WT and

W
(i)
T be the weight matrices returned after running Algorithm 1 with Moreau Envelope using S and

S(i) respectively for T iterations. Here S and S(i) only differ in the i-th data. We have

∥WT − W
(i)
T ∥2F ≤ e

1+
8HC2

xηT√
m (T + 1)2

(
4Cxη

n
+ 4η

√
β2
µ

)2

.

Proof of Theorem C.4.

∥Wt+1 − W
(i)
t+1∥2F

=∥Wt − η
1

µ
(Wt − Ũ

µ
(Wt;S))− W

(i)
t + η

1

µ
(W

(i)
t − Ũ

µ
(W

(i)
t ;S(i)))∥2F

≤


∥Wt − η

1

µ
(Wt − Uµ(Wt;S))− W

(i)
t + η

1

µ
(W

(i)
t − Uµ(W

(i)
t ;S(i)))∥F +

2η

µ

√√√√ 2β2
1
µ
− HC2

x√
m




2

(Lemma C.2)

≤
(
∥Wt − η

1

µ
(Wt − Uµ(Wt;S))− W

(i)
t + η

1

µ
(W

(i)
t − Uµ(W

(i)
t ;S))∥F +

2Cxη

µn
(

1
µ
− HC2

x√
m

)

+
2η

µ

√√√√ 2β2
1
µ
− HC2

x√
m

)2

(Lemma C.2)

≤
(
∥Wt − η

1

µ
(Wt − Uµ(Wt;S))− W

(i)
t + η

1

µ
(W

(i)
t − Uµ(W

(i)
t ;S))∥F +

4Cxη

n
+ 4η

√
β2
µ

)2

≤T + 2

T + 1
∥Wt − η∇WM

µ(Wt;S)− W
(i)
t + η∇WM

µ(W
(i)
t ;S)∥2F + (T + 2)

(
4Cxη

n
+ 4η

√
β2
µ

)2

((a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 for p > 0.)

≤T + 2

T + 1
· 1

1− 4HC2
xη√

m

∥Wt − W
(i)
t ∥2F + (T + 2)

(
4Cxη

n
+ 4η

√
β2
µ

)2

. (Lemma C.3)

24



Define γ = T+2
T+1 · 1

1− 4HC2
xη√

m

, then the inequality above can be written as

∥Wt+1 − W
(i)
t+1∥2F ≤ γ∥Wt − W

(i)
t ∥2F + (T + 2)

(
4Cxη

n
+ 4η

√
β2
µ

)2

.

Dividing both sides by γt+1 and summing up the inequality, we get

∥WT − W
(i)
T ∥2F ≤ γT

γ − 1
(T + 2)

(
4Cxη

n
+ 4η

√
β2
µ

)2

≤ γT (T + 1)(T + 2)

(
4Cxη

n
+ 4η

√
β2
µ

)2

=

(
T + 2

T + 1

)T+1

 1

1− 4HC2
xη√

m




T

(T + 1)2

(
4Cxη

n
+ 4η

√
β2
µ

)2

≤ e

1+

4HC2
xη√

m
T

1− 4HC2
xη√

m (T + 1)2

(
4Cxη

n
+ 4η

√
β2
µ

)2

( 1
1−x

≤ e
x

1−x )

≤ e
1+

8HC2
xηT√
m (T + 1)2

(
4Cxη

n
+ 4η

√
β2
µ

)2

. (η ≤
√
m

8HC2
x

)

The proof of Theorem 3.5 is obvious from Theorem C.4 by observing e
1+

8HC2
xηT√
m ≤ e9.

We have the following corollary by combining Theorem C.4, Lemma C.1-6 and Proposition A.3.

Corollary C.5. Assume the width of the networks satisfies m ≥ H2C4
xη

2T 2. After T iterations of

Algorithm 1 with Moreau Envelope with η ≤ min{µ,
√
m

8HC2
x
} ≤

√
m

2HC2
x

, we have

ES∼DnLrob(WT ) ≤ ES∼Dn

Mµ(WT ;S) + C2
xµ

1− e4.5Cx(T + 1)
(

4Cxη
n

+ 4η
√

β2

µ

)

and

ES∼DnLrob(WT ) ≤ ES∼DnMµ(WT ;S) + C2
xµ+ e4.5Cx(T + 1)

(
4Cxη

n
+ 4η

√
β2
µ

)
.

Now we derive an optimization guarantee of optimizing the Moreau envelope.

Theorem C.6. Assume the width of the networks satisfies m ≥ H2C4
xη

2T 2. After running Algo-

rithm 1 with Moreau Envelope for T iterations with η ≤ µ ≤
√
m

2HC2
x

, we have

min
1≤t≤T

Mµ(Wt;S) ≤ min
W

(
L̂rob(W;S) +

2

ηT
∥W − W0∥2F + 2η(T + 1)

β2
µ

)
.

Proof of Theorem C.6. From Lemma C.1, Mµ(W;S) is 1
µ

smooth, so

Mµ(Wt+1;S)

≤Mµ(Wt;S) + ⟨Wt+1 − Wt,∇WM
µ(Wt;S)⟩+

1

2µ
∥Wt+1 − Wt∥2F . (13)
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From the weakly convex property Lemma C.1-3,

Mµ(W;S)

≥Mµ(Wt;S) + ⟨∇WM
µ(Wt;S),W − Wt⟩ −

HC2
x√
m

∥Wt − W∥2F

=Mµ(Wt;S) + ⟨∇WM
µ(Wt;S),W − Wt+1⟩+ ⟨Wt+1 − Wt,∇WM

µ(Wt;S)⟩ −
HC2

x√
m

∥Wt − W∥2F

≥Mµ(Wt+1;S) + ⟨∇WM
µ(Wt;S),W − Wt+1⟩ −

1

2µ
∥Wt+1 − Wt∥2F − HC2

x√
m

∥Wt − W∥2F
(equation (13))

≥Mµ(Wt+1;S) +
1

η
⟨Wt+1 − Wt,Wt+1 − W⟩ − 1

2η
∥Wt+1 − Wt∥2F − HC2

x√
m

∥Wt − W∥2F
(µ ≥ η)

− 1

µ
∥Uµ(Wt;S)− Ũ

µ
(Wt;S)∥F · ∥Wt+1 − W∥F (Lemma C.1-2.)

≥Mµ(Wt+1;S) +
1

η
⟨Wt+1 − Wt,Wt+1 − W⟩ − 1

2η
∥Wt+1 − Wt∥2F − HC2

x√
m

∥Wt − W∥2F

− 2

√
β2
µ

· ∥Wt+1 − W∥F . (Lemma C.2)

From the inequality above, for any weight matrix W,

∥Wt+1 − W∥2F
=∥Wt − W∥2F − ∥Wt+1 − Wt∥2F + 2 ⟨Wt+1 − Wt,Wt+1 − W⟩

≤∥Wt − W∥2F +

(
2ηMµ(W;S)− 2ηMµ(Wt+1;S) +

2HC2
xη√
m

∥Wt − W∥2F + 4η

√
β2
µ

· ∥Wt+1 − W∥F
)
.

Simplifying the above inequality and combining with Lemma C.1-6 gives us

∥Wt+1 − W∥2F ≤
(
1 +

2HC2
xη√
m

)
∥Wt − W∥2F + 4η

√
β2
µ
∥Wt+1 − W∥F

+ 2ηL̂rob(W;S)− 2ηMµ(Wt+1;S)

≤
(
1 +

2HC2
xη√
m

)
∥Wt − W∥2F +

1

T + 1
∥Wt+1 − W∥2F + 4η2(T + 1)

β2
µ

+ 2ηL̂rob(W;S)− 2ηMµ(Wt+1;S).

Thus,

∥Wt+1 − W∥2F ≤
(
1 +

1

T

)(
1 +

2HC2
xη√
m

)
∥Wt − W∥2F

+ 2η

(
1 +

1

T

)(
L̂rob(W;S)−Mµ(Wt+1;S) + 2η(T + 1)

β2
µ

)
. (14)

Dividing both sides by
(
1 + 1

T

)t+1
(
1 +

2HC2
xη√

m

)t+1

and summing up the inequality for t =

0, 1, . . . , T − 1, we get

min
1≤t≤T

Mµ(Wt;S) ≤ L̂rob(W;S) + 2η(T + 1)
β2
µ

+
∥W − W0∥2F

2η
(
1 + 1

T

) T∑
t=1

1

(1+ 1
T )

t
(

1+
2HC2

xη√
m

)t

≤ L̂rob(W;S) +
2

ηT
∥W − W0∥2F + 2η(T + 1)

β2
µ
,

where in the last inequality we use
(
1 + 1

T

) (
1 +

2HC2
xη√

m

)
≤
(
1 + 1

T

) (
1 + 2

T

)
≤ 1 + 3T+1

T 2 .
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Theorem 3.6. Define α2(η, T ) := O(C2
x
ηT
n

+ CxηT
√

β2

µ
). Assume α2(η, T ) < 1. Then, after

T ≥ 8 iterations of Algorithm Moreau Envelope with step-size η ≤ µ on a network of width
m ≥ H2C4

xη
2T 2, we have

min
[ 9T
10

]≤t≤T
ES∼Dnεgen(Wt) ≤

55α2(η, T )

1− α2(η, T )

[
ES∼Dn∆oracle

S + C2
xµ+ 2η(T + 1)

β2
µ

]
,

and

min
1≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α2(η, T )

[
ES∼Dn∆oracle

S + C2
xµ+ 2η(T + 1)

β2
µ

]
.

Proof of Theorem 3.6. Define t0 := [ 9T10 ] and k := 1

(1+ 1
T )

(

1+
2HC2

xη√
m

) . Dividing both sides of

equation (14) by
(
1 + 1

T

)t+1
(
1 +

2HC2
xη√

m

)t+1

and summing up, we have

2η

(
1 +

1

T

) T∑

t=1

kt
(
L̂rob(W;S) + 2η(T + 1)

β2
µ

)
+ ∥W − W0∥2F

≥2η

(
1 +

1

T

) T∑

t=t0

ktMµ(Wt;S).

Taking minimum over all weight matrices W,

2η

(
1 +

1

T

) T∑

t=t0

kt
(
L̂rob(Wt;S)− C2

xµ
)

≤2η

(
1 +

1

T

) T∑

t=t0

ktMµ(Wt;S) (Lemma C.1-6.)

≤min
W

(
2η

(
1 +

1

T

) T∑

t=1

kt
(
L̂rob(W;S) + 2η(T + 1)

β2
µ

)
+ ∥W − W0∥2F

)

≤2η

(
1 +

1

T

) T∑

t=1

kt ·min
W

(
L̂rob(W;S) +

2

ηT
∥W − W0∥2F + 2η(T + 1)

β2
µ

)

=2η

(
1 +

1

T

) T∑

t=1

kt ·
(
∆oracle

S + 2η(T + 1)
β2
µ

)
.

Taking the expectation on both sides, we get

T∑

t=t0

kt
(

min
t0≤t≤T

ES∼DnL̂rob(Wt;S)− C2
xµ

)
≤

T∑

t=t0

kt
(
ES∼DnL̂rob(Wt;S)− C2

xµ
)

≤
T∑

t=1

kt ·
(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

)
.

Simplifying the equation above, we get

min
t0≤t≤T

ES∼DnL̂rob(Wt;S) ≤ C2
xµ+

T∑
t=1

kt

T∑
t=t0

kt
·
(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

)
(15)

≤ C2
xµ+

(
9∑

r=0

(
1

k

)r T
10

)
·
(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

)

27



≤ C2
xµ+

(
9∑

r=0

e
3r
10

)
·
(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

)

(m ≥ H2C4
xη

2T 2)

≤ C2
xµ+ 55

(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

)
.

Equation (4) gives us for any t ≤ T , ES∼Dnεgen(Wt) ≤ α2(η,T )
1−α2(η,T )ES∼DnL̂rob(Wt;S). Therefore,

min
t0≤t≤T

ES∼Dnεgen(Wt) ≤
α2(η, T )

1− α2(η, T )
min

t0≤t≤T
ES∼DnL̂rob(Wt;S)

≤ α2(η, T )

1− α2(η, T )

(
C2

xµ+ 55

(
ES∼Dn∆oracle

S + 2η(T + 1)
β2
µ

))
.

The proof of the second statement takes a similar approach. Following the same procedure, we can
replace t0 by 0 in equation (15), and get

min
0≤t≤T

ES∼DnL̂rob(Wt;S) ≤ ES∼Dn∆oracle
S + C2

xµ+ 2η(T + 1)
β2
µ
.

Combining with equation (4),

min
0≤t≤T

ES∼DnLrob(Wt) ≤
1

1− α2(η, T )
min

0≤t≤T
ES∼DnL̂rob(Wt;S)

≤ 1

1− α2(η, T )

(
ES∼Dn∆oracle

S + C2
xµ+ 2η(T + 1)

β2
µ

)
.

Corollary 3.7. After T ≤ O(min{n2, 1

β
2/3
2

}) iterations of Algorithm 1 with Moreau Envelope with

step-size η = µ = Θ( 1
C2

x

√
T
) on a network of width m ≥ Ω(T ), we have for any weight matrix W,

min
1≤t≤T

ES∼DnLrob(Wt) ≤ 1.1Lrob(W) +O
(
C2

x∥W − W0∥2F√
T

)
+O

(
1√
T

)
.

Proof of Corollary 3.7. Under the conditions of the corollary, we have m ≥ H2C4
xη

2T 2, and

α2(η, T ) = O(C2
x
ηT
n

+ CxηT
√

β2

µ
) can be small enough so that 1

1−α2(η,T ) ≤ 1.1. Then it is

clear that this corollary is a special case of Theorem 3.6.

28



NeurIPS Paper Checklist

A. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We further expand on the claims made in Abstract and Introduction in Section 3.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

B. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discussed the limitations in the Conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper provide the full set of assumptions and a complete and correct proof
for each theoretical result. Please see Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

D. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

E. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]

Justification: The paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

F. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

G. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

H. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

I. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect. The theoretical nature of the results means there are minimal ethical
concerns.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

J. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of the paper is overall positive.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

M. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

O. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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