DART: A Principled Approach to Adversarially
Robust Unsupervised Domain Adaptation

Yunjuan Wang*, Hussein Hazimeh', Natalia Ponomarevaf, Alexey Kurakin, Ibrahim Hammoud’, Raman Arora*
*Johns Hopkins University
J‘Google Research

Abstract—In this work, we consider a setting where the
goal is to achieve adversarial robustness on a target task, given
only unlabeled training data from the task distribution Dr, by
leveraging a labeled training data from a different yet related source
task distribution Ds. The absence of the labels on training data
for the target task poses a unique challenge as conventional
adversarial robustness defenses cannot be directly applied. To
address this challenge, we first bound the adversarial population
0-1 robust loss on the target task in terms of (i) empirical 0-
1 loss on the source task, (ii) joint loss on source and target
tasks of an ideal classifier, and (iii) a measure of worst-case
domain divergence. Motivated by this bound, we develop a novel
unified defense framework called Divergence-Aware adveRsarial
Training (DART), which can be used in conjunction with a
variety of standard UDA methods; e.g., DANN [Ganin and
Lempitsky, 2015]. DART is applicable to general threat models,
including the popular /,-norm model, and does not require
heuristic regularizers or architectural changes. We also release
DomainRobust, a testbed for evaluating robustness of UDA
models to adversarial attacks. DomainRobust consists of 4 multi-
domain benchmark datasets (with 46 source-target pairs) and
7 meta-algorithms with a total of 11 variants. Our large-scale
experiments demonstrate that, on average, DART significantly
enhances model robustness on all benchmarks compared to the
state of the art, while maintaining competitive standard accuracy.
The relative improvement in robustness from DART reaches up
to 29.2% on the source-target domain pairs considered.

Index Terms—Unsupervised Domain Adaptation, Adversarial
Robustness.

I. INTRODUCTION

In many machine learning applications, only unlabeled data
is available and the cost of labeling can be prohibitive [Settles,
2009, Zhu and Goldberg, 2022]. In such cases, it is often
possible to obtain labeled training data in a related source
domain albeit with a task distribution different from the rarget
domain. As an example, suppose the target domain of interest
consists of real photographs of objects. One appropriate source
domain could be hand-drawn images of the same objects. Due
to the distribution shift, learning models using only source data
may lead to poor performance [Ganin and Lempitsky, 2015].
To overcome this challenge, there has been extensive research
on unsupervised domain adaptation (UDA) methods [Ben-
David et al., 2006, Liu et al., 2022, Mansour et al., 2008, 2009,
Wilson and Cook, 2020]. Given labeled data from the source
domain and only unlabeled data from the target domain, UDA
methods aim to learn models that are robust to distribution
shifts and that work well on the target domain.

While standard UDA methods have proven successful in
various applications [Ghafoorian et al., 2017, Liu et al., 2021],
they do not take into account robustness to adversarial attacks.
These attacks involve carefully designed input perturbations
that may deceive machine learning models [Chakraborty et al.,
2018, Goodfellow et al., 2014, Hendrycks and Dietterich, 2019,
Szegedy et al., 2013]. The lack of adversarial robustness can
be a serious obstacle for deploying models in safety-critical
applications. A significant body of research has studied defense
mechanisms for making models robust against adversarial
attacks [Chakraborty et al., 2018, Ren et al., 2020]. However,
standard defenses such as adversarial training are not applicable
as we lack labeled data on the target task. Furthermore, a model
trained on labeled source data alone may not transfer well.

In this work, we study unsupervised domain adaptation
(UDA) with respect to the robust loss. Given labeled data
from a source task distribution, Dg and unlabeled data from a
related target task distribution, D, our goal is to train a model
that performs well on Dp while ensuring robustness against
adversarial attacks. This requires controlling the robust loss on
the target task without being able to access labeled data. To
that end, we establish a novel bound on the expected robust
loss over the target distribution in terms of the quantities
that can be computed. Motivated by this bound, we introduce
DART, a unified defense framework against adversarial attacks,
which can be used with a wide class of UDA methods and
for general threat models. Through extensive experiments, we
find that DART outperforms the state of the art on various
benchmarks. Our contributions are as follows.

1) Generalization Bound. We establish a novel bound on the
robust loss on the target task. The bound consists of three
quantities: the source domain loss, a measure of “worst-
case” domain divergence, and the loss of an ideal classifier
over the source domain and the “worst-case” target domain.

2) Unified Defense Framework. Building on our theory, we
introduce Divergence-Aware adversaRial Training (DART),
a versatile defense framework that can be used in conjunc-
tion with a wide range of distance-based UDA methods (e.g.,
DANN [Ganin and Lempitsky, 2015], MMD [Gretton et al.,
2012], CORAL [Sun and Saenko, 2016], etc). Our defenses
are principled, apply to general threat models (including the
popular £,-norm attack), and do not require architectural
modifications.

3) Testbed. To encourage reproducible research in this area, we

release DomainRobust!, a testbed designed for evaluating
the adversarial robustness of UDA methods, under the
common {,-norm threat model. DomainRobust consists of
four multi-domain benchmark datasets: DIGITs (including
MNIST, MNIST-M, SVHN, SYN, USPS), OfficeHome,
PACS, and VisDA. DomainRobust encompasses seven meta-
algorithms with a total of 11 variants, including DART,
Adversarial Training [Madry et al., 2017], TRADES [Zhang
et al., 2019a], and several recent heuristics for robust UDA
such as ARTUDA [Lo and Patel, 2022] and SRoUDA [Zhu
et al., 2023]. The testbed is written in PyTorch and can be
easily extended with new methods.

4) Empirical Evaluations. We conduct extensive experiments
on DomainRobust under a white-box setting for all possible
source-target dataset pairs. The results demonstrate that
DART achieves better robust accuracy than the state-of-
the-art on all 4 benchmarks considered, while maintaining
competitive standard (a.k.a. clean) accuracy. For example,
the average relative improvement across all 20 source-target
domain pairs of DIGITs exceeds 5.5%, while the relative
improvement of robust accuracy on individual source-target
pairs reaches up to 29.2%.

II. RELATED WORK

Unsupervised Domain Adaptation (UDA). In their seminal
study, Ben-David et al. [2006] established generalization
bounds for UDA, which were later extended and studied by
various works [Acuna et al., 2021, Ben-David et al., 2010,
Mansour et al., 2009, Zhang et al., 2019b]; see Redko et al.
[2020] for a survey of theoretical results. One fundamental
class of practical UDA methods is directly motivated by
these theoretical bounds and is known as Domain Invariant
Representation Learning (DIRL). Popular DIRL methods work
by minimizing two objectives: (i) empirical risk on the labeled
source data, and (ii) some discrepancy measure between the
feature representations of the source and target domain, making
these representations domain invariant; e.g., DAN [Long et al.,
2015], DANN [Ganin et al., 2016], CORAL [Sun and Saenko,
2016], MCD [Saito et al., 2018]. However, both the theoretical
results and practical UDA methods do not take adversarial
robustness into consideration.

Adversarial Robustness. Understanding the vulnerability
of deep models against adversarial examples is a crucial area
of research [Akhtar and Mian, 2018, Bai et al., 2021, Biggio
et al., 2013, Goodfellow et al., 2014, Szegedy et al., 2013,
Zhang et al., 2020]. Learning a classifier that is robust to
adversarial attacks can be naturally cast as a robust (min-max)
optimization problem [Madry et al., 2017]. One approach to
tackle this optimization problem is via adversarial training:
training the model over adversarial examples generated using
constrained optimization algorithms such as projected gradient
descent (PGD). Unfortunately, adversarial training and its
variants (e.g., TRADES [Zhang et al., 2019a], MART [Wang

ICode can be found here.

et al., 2019]) require labeled data from the target domain, which
is unavailable in UDA. Another related line of work explores
the transferability of robustness between domains [Shafahi et al.,
2019], which still requires labeled target data to fine-tune the
model.

Adversarial Robustness in UDA. Unlike the supervised
learning setting, there has been a limited number of works
that study adversarial robustness in UDA, which we discuss
next. RFA [Awais et al., 2021] employed external adversarially
pretrained ImageNet models for extracting robust features. How-
ever, such pretrained robust models may not be available for the
task at hand, and they are typically computationally expensive
to pretrain from scratch [Brown et al., 2020]. ASSUDA [Yang
et al., 2021] designed adversarial self-supervised algorithms for
image segmentation tasks, with a focus on black-box attacks.
Similarly, ARTUDA [Lo and Patel, 2022] proposed a self-
supervised adversarial training approach, which entails using
three regularizers and can be regarded as a combination of
DANN [Ganin and Lempitsky, 2015] and TRADES [Zhang
et al., 2019a]. SRoOUDA [Zhu et al., 2023] introduced data
augmentation techniques to encourage robustness, alternating
between a meta-learning step to generate pseudo labels for the
target and an adversarial training step (based on pseudo labels).
While all these algorithms demonstrated promising results,
they are heuristic in nature. In contrast, our algorithm DART
is not only theoretically justified but also exhibits excellent
performance—it outperforms ARTUDA and SRoUDA on all
the benchmarks considered.

III. PROBLEM SETUP AND PRELIMINARIES

In this section, we formalize the problem setup and introduce
some preliminaries on UDA theory.

UDA setup. Without loss of generality, we focus on
binary classification with an input space X C R? (e.g.,
space of images) and an output space) = {+1}. Let
H C {h:X — Y} be the hypothesis class and denote the
loss function by ¢ : R x JV — R,. We define the source
domain Dg and target domain Dy as probability distributions
over X x). Given an arbitrary distribution D over X x),
we use the notation DX to refer to the marginal distribution
over X; e.g., DF denotes the unlabeled target domain. During
training, we assume that the learner has access to a labeled
source dataset Zg = {(x§,yf)}.*, drawn i.i.d. from Dg and
an unlabeled target dataset {x! ?;1 drawn i.i.d. from D:X. We
use Xg and X7 to refer to the ng X d source data matrix and
ng X d target data matrix, respectively.

Robustness setup. We assume a general threat model where
the adversary’s perturbation set is denoted by B : X — 2%,
Specifically, given an input example x € X, B(x) C R
represents the set of possible perturbations of x that an
adversary can choose from. One popular example is the
standard £, threat model that adds imperceptible perturbations
to the input: B(x) = {X: ||X —x||, < a} for a fixed norm
p and a sufficiently small «. In the context of image
classification, another example of B(x) could be a discrete set
of large-norm (perceptible) transformations such as blurring,

weather corruptions, and image overlays [Hendrycks and
Dietterich, 2019, Stimberg et al., 2023]. In what follows, our
theoretical results will be applicable to a general B(x), and our
experiments will be based on the standard /., threat model.

We denote the standard loss and the adversarial loss of a
classifier i on a distribution D by

L(h, D) = IE(x,y)wD [é(h(x), y)] and

Ladv(h; D) = IE(x,y)~D sup [e(h(i)v y)])

XeB(x)
respectively. Given source samples Zg, we denote the empirical
standard source loss as L(h; Zg) = 230 ((h(x5),ys).
We add superscript 0/1 when considering 0-1 loss; i.e,
/1 10/1 L1 Our ultimate goal is to find a robust classifier
h that performs well against adversarial perturbations on the

target domain; i.e., h = argminpey Laod/vl(h; Dr).

A. Standard UDA Theory

In this section, we briefly review key quantities and a UDA
learning bound that has been introduced in the seminal work
of Ben-David et al. [2010] — these will be important for the
generalization bound we introduce in Section IV. We first
introduce ‘HA?H-divergence, which measures the ability of the
hypothesis class H to distinguish between samples from two
input distributions.

Definition 1 (HA%H-divergence [Ben-David et al., 2010]).

Given some fixed hypothesis class H, let HAH denote the
symmetric difference hypothesis space, which is defined by:
h € HAH < h(x) = hy(x) @ ha(x) for some (hy, he) € H2,
where @ stands for the XOR operation. Let D& and D be
two distributions over X'. Then the HA7H-divergence between
DX and DF is defined as:

duan(Ds, D7)

=2 sup |Eyopx1[h(x) =1]-E px1[h(x)=1]
hEHAH s T

)

where 1(-) is the indicator function.

Here dyawn (D%, D) captures an interesting interplay

between the hypothesis class and the source/target distributions.

On one hand, when the two distributions are fixed, a richer
‘H tends to result in a larger 7{A7{-divergence. On the other
hand, for a fixed H, greater dissimilarity between the two
distributions leads to a larger HAH-divergence. In practice,
HAH-divergence is generally intractable to compute exactly,
but it can be approximated using finite samples, as we will
discuss in later sections. With this definition, Ben-David et al.
[2010] established an important upper bound on the standard
target loss, which we recall in the following theorem.

Theorem 1 (Ben-David et al. [2010]). Given a hypothesis
class H, the following holds:

1
LO"(h; Dr) < LY (b Ds)+5 duan(Ds , D7)+7(Ds, Dr) .

Ideal Joint Loss

(D

Target Loss Source Loss Domain Divergence

where v(Dg, Dr) := minp ey [L1(h*; Dg)+ LY (h*; Dr)]
is the joint loss of an ideal classifier that works well on both
domains.

We note that Ben-David et al. [2010] also established a
corresponding generalization bound, but the simpler bound
above is sufficient for our discussion. The ideal joint loss
can be viewed as a measure of both the label agreement between
the two domains and the richness of the hypothesis class, and
it cannot be directly computed or controlled as it depends on
the target labels (which are unavailable under UDA). If y is
large, we do not expect a classifier trained on the source to
perform well on the target, and therefore + is typically assumed
to be small in the UDA literature. In fact, David et al. [2010]
showed that having a small domain divergence and a small
ideal joint risk is necessary and sufficient for transferability.
Assuming a small v, Theorem 1 suggests that the target loss
can be controlled by ensuring that both the source loss and
domain divergence terms in (1) are small — we revisit some
practical algorithms for ensuring this in Section V.

IV. ADVERSARIALLY ROBUST UDA THEORY

In this section, we derive an upper bound on the adversarial
target loss, which will be the basis of our proposed defense
framework. We present our main theorem below and defer the
proof to Appendix A.

Theorem 2. Let H be a hypothesis class with finite VC dimen-
sion VC(H) and adversarial VC dimension AVC(#) [Cullina
et al., 2018]. If Zg and Zp are labeled samples of size? n
drawn i.i.d. from Dg and D, respectively, and Xg and Xp
are the corresponding data matrices, then for any 6 € (0, 1),
w.p. at least 1 — 9, for all h € H,

Lyge (h:Dr) < L' (1 Zs) +¢ @)
————
Source Loss
Worst-case target
+ sup
%[EB(x;),Vi€n],
Zr={&wD}_,

dyuan(Xs, Xr) +2v(Zs, 27) |,

Ideal Joint Loss

Domain Divergence

where the generalization gap € =
O(max{VC(H),AVC(H)} log(n)+log(1/4)) the (empirical)
ideal joint loss is defined as ~(Zg,Z7) =

ming«ey [LY1(h*; Zg) + LYY (h*; Z7)], and the (empirical)
HAH-divergence can be computed as follows?:

dyan(Xs, Xr)

ol 1
—9 (1 - énﬁgﬂ[gh(z;_lo(x €Xs) +xT:Lh%):EL1(X e XT)}))

Theorem 2 states that the adversarial target loss can be
bounded from above by three main terms (besides generaliza-
tion error €): source loss, domain divergence, and the ideal

2We assume that Zg and Z7 have the same size for simplicity. The result
still applies to different sizes.

3In Definition 1, we defined dy; A, for two input distributions. Here we
use an equivalent definition in which the two inputs are data matrices.

joint loss. These three terms are similar to those in the bound
of Theorem 1 for standard UDA; however, the main difference
lies in that Theorem 2 evaluates the domain divergence and
ideal joint loss terms for a “worst-case” target domain (instead
of the original target domain). The first two terms (source loss
and domain divergence) do not require target labels and can
thus be directly computed and controlled. However, the ideal
joint risk in Theorem 2 requires labels from the target domain
and cannot be directly computed.

In Section III-A, we discussed how the ideal joint loss
in the standard UDA setting is commonly assumed to be
small and is thus not controlled in many popular practical
methods. Specifically, when the hypothesis class consists of
neural networks, if we decompose h into a feature extractor
g and a classifier f (i.e., h = f o g), the ideal joint
loss can be written as a function of g: v(Dg,Dr,g) :=
min g« fogen [Lo/l(f* 0g;Dg) + LY (f* o g;'DT)]. In the
literature [Ben-David et al., 2006], v(Ds, Dr, g) is commonly
assumed to be small for any reasonable g that is chosen
by the learning algorithm. However, for a fixed g, the ideal
joint loss with the worst-case target in our setting may be
generally larger than that of the standard UDA setting. While
one possibility is to assume this term remains small (as in the
standard UDA setting), we hypothesize that in practice it may
be useful to control this term by finding an appropriate feature
extractor g. In the next section, we discuss a practical defense
framework that attempts to minimize the adversarial target risk
by controlling all three terms in Theorem 2, including the ideal
joint loss. In the experiments, we also present evidence that
controlling all three terms typically leads to better results than
controlling only the source loss and domain divergence.

Although our result is inspired by Ben-David et al. [2006],
it is non trivial and can not be obtained by a straightforward
replacement of the loss with an adversarial loss. Specifically,
the proof technique in Ben-David et al. [2006] is not sufficient
to obtain a generalization bound (from sample to population)
for the adversarial version of HA%#H-divergence. Therefore,
Theorem 2 requires carefully decomposing the adversarial
‘HAH-divergence (among other terms in the objective). We
here provide a brief proof sketch and refer the reader to the
appendix for details.

Proof Sketch: Given input distribution Dp, we define a set of
all possible perturbed distributions as P(Dp)={D : (X, y)~
D, (x,y) ~ Dr,X € B(x)}. The first step is to control the
adversarial target loss as follows:

Ly (h; Dr)

adv

- 1

< L' (h; Dg) + sup y(Ds,Dr) + 5czmyadv(Dg?,2)55),
DreP(Dr)

4

where we define the expected and empirical adversarial
target domain divergence, namely dyaw,, (Da,D3) and
dya,, (Xs, Xr), respectively, as follows:

AHAH (Dé(, D?) =2 sup

E(y)~py sup 1 [h(x) =1]
heHAH

XeEB(x)

—Exy~ps L [h(x) =1]

=2 sup

sup E, .\ p Llh(x)=1
heHAH oyl [1lx) = 1

DreP(Dr)

—E(x,y)~ps 1 [R(x) = 1] (Khim and Loh [2018])

n

1 -
dyary, (Xs, Xr) :=2sup |— Z sup1 [h(x}) = 1]
heHAH| T =] kteB(xh)

—2 S ae) = 1]

Under the same perturbation constraints, we have

dunn,, (DS, D7) < sup duan(DF, D7),
DreP(Dr)

dyary, (Xs, Xr) < sup dyan(Xs, Xr).
XreP(Xr)

Since our goal is to establish a high-probability bound, we
introduce a key step that builds the connection between the
population adversarial divergence and the empirical adversarial
divergence based on the definitions above:

d3yart (DS, D7) — dygarn,, (Xs, Xr)

< dyy, a7, (D7, X1) + dran (DS, Xs),

where we define

sup E(X}y)NﬁT]l [h(x)=1]

de\dvAHud\' (bl)“(’ XT) =2 sup L
T €P(Dr)

heHAH
n

- = sup 1 [n(x})=1
i1 XeB(x))) =11

. (5

Note that dyaw (D%, Xs) and dyyy, am., (D, Xr) can be
controlled via the standard [Vapnik, 1999] and adversarial
VC theory [Cullina et al., 2018]. Plugging these bounds and
Equation (5) back into the Equation (4) completes the proof.

V. DIVERGENCE AWARE ADVERSARIAL TRAINING: A
PRACTICAL DEFENSE

Recall that in the standard UDA setting, a fundamental class
of UDA methods — DIRL — are based on the upper bound
(1) or variants that use other domain divergence measures
[Ganin et al., 2016, Li et al., 2017a, Zellinger et al., 2017].
These methods are based on neural networks consisting of two
main components: a feature extractor g that generates feature
representations and a classifier f that generates the model
predictions. Given an example x (from either the source or
target domain), the final model prediction is given by f(g(x))
(which we also write as (f o g)(x),h = f o g € H). The key
insight is that if the feature representations generated by g are
domain-invariant (i.e., they are similar for both domains), then
the domain divergence will be small. Practical algorithms use
a regularizer {2 that acts as a proxy for domain divergence.

Thus, the upper bound on the standard target loss in (1) can
be controlled by identifying a feature transformation g and a
classifier f that minimize the combined effect of the source
loss and domain divergence; i.e.,

L(fog;2s) + 2(Xs, X7, 9)
(S —— —_——

Empirical Source Loss Empirical Proxy for Domain Divergence

min (6)
Such strategy is the basis behind several practical UDA meth-
ods, such as Domain Adversarial Neural Networks (DANN)
[Ganin et al., 2016], Deep Adaptation Networks [Li et al.,
2017a], and CORAL [Sun and Saenko, 2016]. As an example,
DANN directly approximates HA7-divergence in (3); it
defines €2 as the loss of a “domain classifier”’, which tries
to distinguish between the examples of the two domains
(based on the feature representations generated by g). We
list some common UDA methods and their corresponding {2
in Appendix B-B.

We now propose a practical defense framework based on the
theoretical guarantees that we derived in Section IV, namely
DART (Divergence Aware adveRsarial Training). We first
motivate the proposed algorithm by leveraging Theorem 2 in
Section V-A, followed by presenting the formal optimization
formulation in Section V-B. Finally, we provide a concrete
instance of the proposed algorithm in Section V-C.

A. A practical bound

We consider optimizing upper bound (2) in Theorem 2.
Given a feature extractor g and a classifier f, the upper bound
in Theorem 2 can be rewritten as follows,

LY N (fog; Dr) <LV} (fog; Zs) + ¢

adv
+ sup [duan(Xs, Xr)+21(2s, Zr.9)]. ()

xteB(xh),Vic[n)
Zr={vD},

Note that minimizing this bound requires optimizing both
g and f. Moreover, for any given g, the ideal joint loss
v(Zs,Z7,g) requires optimizing a separate model. To
avoid optimizing separate models at each iteration and
obtain a more practical method, we further upper bound
Equation (7). Specifically, we note that the ideal joint
loss can be upper bounded as follows: v(Zg, Zr,9) =
min g« p-ogep [LY1(f* 0 g5 Z5) + LYY (f* 0 g3 27)] <
(LYY (f 0 g; Zs) + LYY (f o g; Zr)) for any f such that
f o g € H. Plugging the latter bound in Equation (2) gives us
the following:

LU (fog; Dr) < 3L (fog; Zs) + ¢

adv
+ sup[duan(Xs, Xr) 420 (fogi Zr)|. ®)
XieB(x}),Vi€[n]

Zr={&wD},
B. DART'’s optimization formulation

DART is directly motivated by bound (8). To approximate
the latter bound, we first fix some UDA method that satisfies
form (6) and use the corresponding €) as an approximation of

dyan- Let Zg = {(X5,yf)}", denote the source data (which

can be either the original, clean source Zg or potentially a
transformed version of it, as we discuss later) and let 5(5 be
the corresponding data matrix. To approximate the third term
in (8), we assume access to a vector of target pseudo-labels Y
corresponding to the target data matrix X7 — we will discuss
how to obtain pseudo-labels later in this section. Using the
latter approximations in bound (8), we train an adversarially
robust classifier by solving the following optimization problem:

(L(f °g; Z3)

+sup [MQ(Xs, X7, 9)+ 2 L(fog; (XT,YT))])a)
xLeB(xt),Vie[n,)

min
g.f

where (A1, A\2) are tuning parameters. Intuitively, a larger
A1 places greater emphasis on distinguishing the differences
between the transformed source domain and the adversarial
target domain. In contrast, a larger \s focuses more on
learning models that minimize the adversarial target loss using
the target pseudo-labels.

We remark that problem (9) represents a general optimization
formulation—the choice of the optimization algorithm depends
on the model (g, f) as well as the nature of the perturbation
set B. If a neural network is used along with the standard
{,-norm perturbation set, then problem (9) can be optimized
similar to standard adversarial training, i.e., the network can
be optimized using gradient-based algorithms like SGD, and
at each iteration the adversarial target examples X can be
generated via projected gradient descent (PGD) [Madry et al.,
2017]. We provide the pseudocode of DART in Algorithm 1.

Algorithm 1 Divergence-Aware adveRsarial Training (DART)

Ns

Require: Labeled source training data {(x{,y;)}.°;, unla-
beled target training data X7 = {x!}"* |. Feature extractor
g, target classifier f. Perturbation set B(-). Training
iteration 7. Checkpoint frequency K. Pseudo-labeling
approach.

1: Pre-train f, g using Equation (6).

2: Calculate pseudo-label Yy for unlabeled target training

data.

3: fort=1,2,...T do

: Sample a random mini-batch of source and target
examples with the same batch size.

5: Choose either clean source examples or apply one of the
following two transformations to the source examples:
adversarial or KL.

Update f, g by optimizing over Equation (9).
. ift % K =0 then

8: If the pseudo labeling approach chosen can generate
new pseudo labels during training, update the pseudo-
labels Y7 for the unlabeled target training data.
Otherwise, keep using the initial pseudo labels.

9: end if

10: end for

11: Return f o g.

1) Pseudo-Labels Yr: The third term in bound (9) requires
target labels, which are unavailable under the UDA setup.
We thus propose using pseudo-labels, which can be obtained
through various methods [Kage et al., 2024]. Here, we describe
a simple approach that assumes access to a proxy for evaluating
the model’s accuracy (standard or robust) on the target domain.
This is the same proxy used for hyperparameter tuning.
For example, this proxy could be the accuracy on a small,
labeled validation set if available or any UDA model selection
criterion [Wilson and Cook, 2020, Section 4.7]. We maintain
a pseudo-label predictor that aims at generating pseudo-labels
for the target data. Initially, this predictor is pretrained using
a standard UDA method in Equation (6). We then use these
pseudo-labels to optimize the model (g, f) as in (9). To improve
the quality of the pseudo-labels, we periodically evaluate the
model’s performance (standard accuracy) based on the pre-
selected proxy and assign the model weights to the pseudo-label
predictor if the model performance has improved.

DART can use any pseudo labeling approach from the
literature. Here we present a simple approach that we used
in the experiments. We assume that we are given a proxy
that can be used to evaluate the model’s accuracy (standard
or robust)-this is the same proxy used for hyperparameter
tuning. We maintain a pseudo-label predictor h, (with the
same model architecture as f o g). In step 2 of Algorithm 1,
we assign weights of f o g to h,, and generate pseudo-labels
for the target data Y7 = hp(X7). In step 8 of Algorithm 1, we
approximate the standard accuracy of f o g (using the proxy).
If the accuracy is better than that of the current pseudo-label
predictor, we update the pseudo-label predictor’s (h,) weights
to that of f o g; otherwise, the pseudo-label predictor’s (h,)
weights remain unchanged. We then regenerate the pseudo-
labels Yo = hy,(X7).

2) Source choices Zg: We investigate three natural choices
of transformations of the source data Zg = {(X},y)}i°,:
1) Clean source: use the original (clean) source data; i.e.,
X; = xJ. 2) Adversarial source: choose the source data
that maximizes the adversarial source loss; i.e., X; =
argmaxy, ¢ g(xs) £(h(X;); y;), which is the standard way of gen-
erating adversarial examples. 3) KL source: choose the source
data that maximizes the Kullback-Leibler (KL) divergence of
the clean and adversarial predictions [Zhang et al., 2019a]; i.e.,
X; = argmaxy ¢p(xs) KL(h(X;), h(x])). At each iteration, the
adversarial and KL sources can be generated using the same
optimization algorithm used to generate the adversarial target
examples (e.g., PGD for an /¢, perturbation set).

C. Using DART to robustify DANN against {, attacks

Here we provide a concrete instance of framework (9), using
DANN as the base UDA method, and assuming the standard
(white-box) £, threat model with perturbation set Boo(x) =
{X : ||X = X||loo < «} for some positive scalars p and «. In
DANN, let g be the feature extractor, f be the network’s label
predictor, and d be the domain classifier (a.k.a. discriminator),
which approximates the divergence between the two domains.
With this notation, the empirical proxy for domain divergence

€ can be written as Qpann(Xs, X7, g,d) = _7%5 S l((do
9)(x8),1) — n% . 0((d o g)(x£),0), which represents the
negated loss of the domain classifier d (which classifies source
domain examples as 1 and target examples as 0). To find a
robust DANN against /., attacks, Equation (9) can be written

more explicitly as:

Ns

minsup swp > (o g)(&),)

9 d Rt —xt||w<a¥i s T

Y (1 Zs:é((do QE)1) + — iwdo g)(iﬁ),0)>

n n
S =1 t =1

o (S 0). hu(x),

where h), is a pseudo-label predictor. X; can be chosen based
on previous discussion in Section V-B2.

One common strategy for solving the problem above is
by alternating optimization where we iterate between: (i)
optimizing for transformed source and target data X; and
X! for all 4, (ii) optimizing over the domain divergence d,
(iii) optimizing the neural network f and g. The optimization
problem over the neural network’s weights (f,g,d) can be
done using gradient based methods such as SGD. Optimization
over the transformed data Xg and X7 can be done using a
wide range of constrained optimization methods [Bertsekas,
2016], such as projected gradient descent (PGD) [Madry et al.,
2017].

VI. EMPIRICAL EVALUATION

A. DomainRobust: A PyTorch Testbed for UDA under Adver-
sarial Attacks

We conduct large-scale experiments on DomainRobust:
our proposed testbed for evaluating adversarial robustness
under the UDA setting. DomainRobust focuses on image
classification tasks, including 4 multi-domains meta-datasets
and 11 algorithms. Our implementation is PyTorch-based and
builds up on DomainBed [Gulrajani and Lopez-Paz, 2020],
which was originally developed for evaluating the (standard)
accuracy of domain generalization algorithms.

a) Datasets: DomainRobust includes four multi-domain
meta-datasets:

1) DIGIT datasets [Peng et al., 2019] (includes 5 popular
digit datasets across 10 classes, namely MNIST [LeCun
et al., 1998], MNIST-M [Ganin and Lempitsky, 2015],
SVHN [Netzer et al., 2011], SYN [Ganin and Lempitsky,
2015], USPS [Hull, 1994));

2) OfficeHome [Venkateswara et al., 2017] (includes 4 do-
mains across 65 classes: Art, Clipart, Product, RealWorld)

3) PACS [Li et al., 2017b] (includes 4 domains across 7
classes: Photo, Art Painting, Cartoon, Sketch);

4) VisDA [Peng et al., 2017] (includes 2 domains across 12
classes: Synthetic and Real).

Further details of each dataset are presented in Appendix B-A.
We consider all pairs of source and target domains for each

dataset. For each dataset in DomainRobust, we want to rank
domains based on their complexity. To do so, we take all
images from a particular domain, compute the histogram of
pixel values from each image and calculate the entropy. We
average these entropy values across all images in the domain,
and use this score as a representation of complexity or hardness
of the domain. The domains are ranked by entropy, from high
to low (indicating complexity from complex to simple), as
follows:

1) DIGITs: MNIST-M>SVHN>SYN>USPS>MNIST.
2) OfficeHome: Art>RealWorld>Product>Clipart.

3) PACS: Photo> Art>Cartoon>Sketch.

4) VISDA: Real>Synthetic.

b) Algorithms: We study 7 meta-algorithms (with a total
of 11 variants). Unless otherwise noted, we use DANN as the
base UDA method, i.e., we fix the domain divergence {2 to
be DANN’s regularizer and use it for all algorithms (except
source-only models). We consider the following algorithms:

« Natural DANN. This is standard DANN without any defense
mechanism.

e Source-only models, which include AT(src¢) and
TRADES(src). We apply Adversarial Training [Madry
et al., 2017] and TRADES [Zhang et al., 2019a] only on
labeled source data.

« Pseudo-labeled target models, which include AT(tgt,pseudo)
and TRADES(tgt,pseudo). We first train a standard DANN
and use it to predict pseudo-labels for the unlabeled target
data. We then apply standard adversarial training or TRADES
on the pseudo-labeled target data.

o AT+UDA. We train a UDA model where the source examples

are all adversarial and the target examples are clean.

ARTUDA [Lo and Patel, 2022]. ARTUDA can be seen as

a combination of DANN [Ganin and Lempitsky, 2015] and

TRADES [Zhang et al., 2019a]. In comparison to DART

with clean source, ARTUDA applies two domain divergences

to measure the discrepancy between clean source and clean
target, as well as between clean source and adversarial target.

Additionally, ARTUDA’s methodology for generating adver-

sarial target examples does not take the domain divergence

into consideration, which differs from DART.

e SRoUDA [Zhu et al., 2023]. SRoUDA alternates between
adversarial training on target data with pseudo-labels and fine-
tuning the pseudo-label predictor. The pseudo-label predictor
has a similar role to that in DART; it is initially trained
using a standard UDA method and is then continuously
fine-tuned via a meta-step, a technique originally proposed
by [Pham et al., 2021]. Moreover, Zhu et al. [2023]
introduced novel data augmentation methods such as random
masked augmentation to further enhance robustness.

« DART. We experiment with DART for three different source
choices as described in Section V; namely, DART(clean
src), DART(adv src), and DART(KI src).

Table I presents the optimization formulations of the dis-
cussed algorithms for easy comparison. For fairness, we apply
the same data augmentation scheme that is used in [Gulrajani

and Lopez-Paz, 2020] (described in Appendix B-D) across all
algorithms including SRoUDA.

c) Architecture and optimization: For DIGIT datasets, we
consider multi-layer convolutional networks (see Table VIII
in the appendix for the architecture). For the other datasets,
we consider ResNet50 (pre-trained using ImageNet) as the
backbone feature extractor and all batch normalization layers
frozen. We consider a linear layer as the classifier on top of
the feature extractor. We use cross-entropy loss and Adam
[Kinga et al., 2015] for optimization. We first pre-train each
model using DANN, while periodically evaluating the standard
accuracy of different checkpoints during pre-training. We then
pick the checkpoint with the highest standard accuracy and
use it as an initialization for all algorithms. We use the same
number of training iterations for pre-training and running the
algorithms.

d) Robustness Setup: Although Theorem 2 and Algo-
rithm 1 applies to general perturbation sets, our experiments
focus on the most commonly used ¢,,-norm perturbation set
B(x) ={X: ||X — X||oo < a} and a = 2/255. During training,
adversarial examples are generated using 5 steps of PGD with
step size 1/255 and random restarts. The small perturbation
size is chosen to enable a thorough exploration that ensures
that optimal adversarial examples would be identified at each
iteration. Specifically, a PGD attack with a step size of 1/255
over 5 steps (the attack search length of 5 x 1/255 should be
at least as large as twice the perturbation radius of 2 x 2/255),
combined with random initialization, effectively balancing the
attack strength and computational feasibility. We also conducted
experiments with a larger perturbation size of 8/255 using a step
size of 4/255 over 5 steps on a smaller subset of experiments.
However, we believe a thorough exploration of this larger
perturbation setting would require a finer step size, such as
1/255. Achieving this would require at least 17 attack steps to
ensure sufficient coverage of the attack space, which imposes
an impractical computational cost given the extensive set of
experiments conducted so far.

We evaluate all algorithms on the target data using standard
accuracy and robust accuracy, computed using two different
attack methods: (i) PGD attack with 20 iterations, and (ii)
AutoAttack [Croce and Hein, 2020b], which includes four
diverse attacks, namely APGD-CE, APGD-target, FAB [Croce
and Hein, 2020a], and Square Attack [Andriushchenko et al.,
2020]. Note that these attack methods have full access to the
model parameters (i.e., white-box attacks), and are constrained
by the same perturbation size . If not specifically stated, we
evaluate on using the same « used for training.

e) Hyperparameter tuning: We follow an oracle setting
where a small labeled validation set from the target domain
is used for tuning. This approach is commonly used for
hyperparameter tuning in the literature on UDA [Kumar et al.,
2018, Long et al., 2013, Shen et al., 2018, Wei and Hsu, 2018].
If no labeled validation set is available, the oracle setting can
be viewed as an upper bound on the performance of UDA
methods. For the source domain, we keep 80% of the data
(90% for VisDA). For the target domain, we split the data into

Standard UDA ming g L(f 0 g, Z5) + M1Q(Xs, X1, 9).
AT(src only) min g, g MaXgs eB(x),Vi€ n] L(fog,(Xs,Ys)).
TRADES(SI‘C only) minf’g L(f °g, (Xs, Ys)) + Al maXifeB(xf),we[ns] KL(f o g(Xs), f o} g(Xs)).

AT(tgt,pseudo) miny g MAX5t e B(xt) Vie[ny] L(f og,(Xr,Yr)), where Y7 is the fixed pseudo labels.
TRADES(tgt,pseudo) | ming o L(f o g, (Xr,YT)) + A1 MAX5t (1) Vie[ng] KL(f o g(X1), f 0o g(Xr)), where Y7 is the fixed pseudo labels.
AT+UDA minf’g (L(f og, (Xs, Ys)) + Alﬂ(XS, XT7 g)), where XS = arg max;femxf)’we[ns] L(f og, (Xs, Ys))

ARTUDA ming g L(f 0 g,(Xs,Ys)) + MKL(f 0 g(X7), f 0 g(X7)) + X2 (X5, X7, 9) + 2UX5, X7, 9)).
where X7 = arg MAXgt e 5(xt),Vie ny) KL(f o g(XT), f 0 9(XT)).
SRoUDA ming g MAX5t ¢ 5(xt) Vie] L(f og,(Xr,Yr)), where Yr is the pseudo labels
produced by a separate source model that is kept updated via a meta-step (see Zhu et al. [2023] for details).
DART ming g L(f 0 g, Z5) + maxze e 5(xt) vie[n,] (/\19(XS7XT19) + X2 L(f o g, X1, YT)),
where Xg has three options as discussed in Section V-B2, Yo is the pseudo labels produced as described in Section V-B1.
TABLE I: Comparison of the optimization formulations of different algorithms.
Dataset DIGIT (20 source-target pairs) OfficeHome (12 source-target pairs) PACS (12 source-target pairs) VisDA (2 source-target pairs)
Algorithm nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc ped acc aa acc nat acc ped acc aa acc

No defense Natural DANN 69.94+0.3 53.940.5 534405 | 57.4+0.2 1.540.1 0.4+0.0 81.1£03 11.0£0.2 3.6+0.2 73.0+0.4 0.6+0.1 0.0£0.0
Source data onl AT(src only) 71.5+£0.1 62.0+0.1 61.7+0.1 | 49.7£0.7 31.2+0.1 299402 | 65.7£09 482+0.1 47.0£0.1 | 36.2+0.5 29.840.3 28.5+0.3
ure Y TRADES(src only) 71.1£0.0 62.4+0.0 62.0+0.0 | 48.4+0.4 31.5£02 30.1+0.2 | 66.1£0.7 482403 459403 | 36.5+:0.2 29.5+0.6 28.940.6
Target data + AT(tgt,pseudo) 73.8+0.1 68.9+0.1 68.6+0.0 | 52.7£0.1 405402 39.840.2 82.0+0.4 70.0+£0.2 69.6+03 | 77.7£0.2 702403 69.6+0.3
pseudo-label TRADES(tgt,pseudo) | 73.9+0.1 69.840.0 69.440.0 | 53.0+£0.5 41.4+03 40.6+0.3 82.7£02 71.7£03 71.1£04 | 76.6+04 69.7+0.1 69.1%0.1
Robust UDA AT+UDA 71.940.1 63.0£0.1 62.7+0.1 | 51.3+£0.9 32.740.1 312402 | 68.6+0.8 529409 444+0.1 | 57.240.7 36.7+0.3 33.240.7
methods ARTUDA 743+£0.2 70.6+0.1 70.34+0.1 | 54.6£03 39.0+£0.5 37.1+0.6 | 74.6+£03 60.5£02 58.1+£0.6 | 58.9+1.3 47.6+1.3 46.2+15
SRoUDA 73.7£0.1 69.240.1 68.840.1 | 51.3£0.2 40.6+0.1 38.740.2 | 76.1£0.7 653£03 64.0£0.5 | 64.7+1.9 532410 51.2+1.1

DART(clean src) 783+0.2 745101 744401 | 56.4+0.1 40.7£0.1 39.610.1 85.5+0.1 73.3+0.0 72.6+0.1 | 78.4+0.1 71.7+0.2 71.33+0.3

DART DART(adv src) 77.8+0.2 74.0+0.2 73.940.2 | 55.6£02 42.6+0.3 41.6+0.2 844403 72.7+0.0 722400 | 77.6+£0.4 70.94+0.6 70.61+0.7
DART(kI src) 78.3+0.1 74.5+0.1 744101 | 56.0+£02 424402 41.340.2 853402 73.1£03 72.6+04 | 78.24+0.5 71.3+0.7 71.9+0.4

TABLE II: Standard accuracy (nat acc)/ Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack (aa
acc) on the target test data, averaged over all possible source-target pairs.

unlabeled training data, validation data and test data with a ratio
of 6:2:2 (8:1:1 for VisDA*). For each algorithm, we perform 20
random search trials* over the hyperparameter distribution (see
Appendix B-E). We apply early stopping and select the best
model amongst the 20 models from random search, based on its
performance on the target validation set. We repeat the entire
suite of experiments three times, reselecting random values
for hyperparameters, re-initializing the weights and redoing
dataset splits each time. The reported results are the means over
these three repetitions, along with their standard errors. This

experimental setup resulted in training a total of 29700 models.

B. Results

a) Performance on benchmarks: For each of the 4
benchmark datasets, we train and evaluate all algorithms on all
possible source-target pairs. In Table II, we report the results
for each dataset, averaged over all corresponding source-target
pairs (values after the £ sign are the standard error of the
mean). We refer the reader to Appendix C for full results for
each of the 46 source-target pairs.

Based on Table II, DART demonstrates significant
improvements in adversarial robustness when compared to the
various baselines. As expected, Natural DANN (which does

not use any defense mechanism) has the lowest robust accuracy.

Baselines that solely rely on the source data (specifically,

4As VisDA is a large dataset, we choose a different proportion and only
perform 10 random search trials to save computational resources.

AT(src only) and TRADES(src only)) display lower robustness
compared to the other baselines, indicating that robustness
does not transfer well due to the distribution shift.

Table II shows that DART consistently outperforms the
robust UDA methods (AT+UDA, ARTUDA, and SRoUDA), in
terms of robust accuracy across all four benchmarks. It is es-
sential to highlight that previous work investigating adversarial
robustness in the UDA setting has not assessed two natural base-
lines we consider: AT(tgt,pseudo) and TRADES(tgt,pseudo).
The latter two baselines appear to be very competitive with the
robust UDA methods from the literature — but DART clearly
outperforms these baselines. A more granular inspection of
the results across the 46 source-target pairs (in Appendix C)
reveals that DART consistently ranks first in terms of robust
target test accuracy for 33 pairs under PGD attack and 34
pairs® under AutoAttack. DART is among top two algorithms
in terms of robust target test accuracy for 42 pairs under PGD
attack and 43 pairs under AutoAttack. This highlights the
consistent competitiveness of DART across diverse datasets
and attack settings. The dataset-specific performance details
are as follows:

o DIGITs: DART ranks first in terms of robust target

test accuracy for 14 pairs under PGD and 15 pairs
under AutoAttack. It ranks within the top two among

5 We use black bold to indicate the highest value and orange bold to
indicate the second-highest value. In a tie, we prioritize the method with
smaller standard error.

all algorithms in terms of robust target test accuracy for
all pairs. For the source-target pairs where DART does
not rank first, there are 4 pairs (3 pairs) where a complex
source adapts to a simple target under PGD (AutoAttack),
and 2 pairs (2 pairs) where a simple source adapts to a
complex target under PGD (AutoAttack).

¢ OfficeHome: DART ranks first in terms of robust target
test accuracy for 10 pairs under PGD and 9 pairs under
AutoAttack. It ranks within the top two among all
algorithms in terms of robust target test accuracy for
11 pairs under both PGD and AutoAttack. For the source-
target pairs where DART does not rank first, there is 1 pair
where a complex source adapts to a simple target under
both PGD and AutoAttack, and 1 pair (2 pairs) where
a simple source adapts to a complex target under PGD
(AutoAttack). The only pair where DART does not rank
within the top two in terms of robust target test accuracy is
Clipart—RealWorld, where the mean difference in robust
target test accuracy between DART and the best algorithm
is 2.2 under PGD and 2.4 under AutoAttack.

o PACS: DART ranks first in terms of robust target test
accuracy for 8 pairs under both PGD and AutoAttack. It
ranks within the top two among all algorithms in terms
of robust target test accuracy for 9 pairs under PGD and
10 pairs under AutoAttack. For the source-target pairs
where DART does not rank first, there is 1 pair where a
complex source adapts to a simple target under both PGD
and AutoAttack, and 3 pairs where a simple source adapts
to a complex target under both PGD and AutoAttack.
For the remaining pairs — Photo—Art, Cartoon— Photo,
Art—Photo — DART is not in the top two, with an average
mean difference in robust target test accuracy of 2.6 under
PGD and 2.4 under AutoAttack.

o VISDA: DART ranks within the top two among all
algorithms in terms of robust target test accuracy for
both pairs under both PGD and AutoAttack. For the pairs
that DART does not rank first, there are 1 pair for simple
source adapt to complex target under PGD.

To summarize, for the source-target pairs where DART does
not rank first in terms of robust target test accuracy, there are 7
pairs (6 pairs) where a complex source adapts to a simple target
under PGD (AutoAttack), and 6 pairs where a simple source
adapts to a complex target under both PGD and AutoAttack.
This demonstrates that DART performs consistently, regardless
of whether the problem involves adapting to a more complex
domain or a simpler one. We further list the following methods
that perform the best when DART does not rank first in terms
of the robust accuracy:

o AT(tgt,pseudo): Top performance on 2 pairs under PGD
attacks and 1 pair under AutoAttack.

« TRADES(tgt,pseudo): Top performance on 5 pairs under
PGD attacks and 6 pairs under AutoAttack.

« ARTUDA: Top performance on 5 pairs under PGD attacks
and 4 pairs under AutoAttack.

¢ SRoUDA: Top performance on 1 pair under both PGD

attacks and AutoAttack.

The above description indicates that TRADES(tgt,pseudo)
and ARTUDA are the most competitive baselines. Moreover,
for the source-target pairs where DART does not rank within
the top two, TRADES(tgt,pseudo) emerges as the top performer,
suggesting that leveraging source information may not always
provide a significant advantage in terms of robustness, partic-
ularly when transferring from a simple source to a complex
target.

Among the three DART variants, the adversarial source
achieves the best performance on 17 pairs, the KL source on
16 pairs, and the clean source on 13 pairs. This suggests that
applying a transformation to the source data when using DART
often leads to improved performance.

The results also demonstrate that DART does not compro-
mise standard accuracy. In fact, DART even improves standard
accuracy on the DIGIT and PACS datasets, as indicated in
Table II. Across the entirety of the 46 source-target pairs, DART
achieves the highest standard accuracy on 30 pairs.

b) Ablation study: We examine the effectiveness of
the individual components in DART’s objective function
(Equation 9), by performing an ablation study on three
randomly picked source-target pairs that DART achieves the top
performance: SVHN—MNIST, SYN—MNIST-M, and PACS
for Photo—Sketch. Specifically, we consider DART(clean
src) and study the following ablation scenarios: (1) w/o
domain divergence term: we remove the second term € in
the objective function; (2) w/o the approximation of the ideal
joint worst target loss: we exclude the third term in the objective
function; (3) we obtain pseudo-labels by standard UDA method,
and fix it throughout the training process; (4) we use the
current model to predict pseudo-labels for the third term. The
results are presented in Table III. Our findings reveal that
omitting either the domain divergence or third term (which
approximates the joint worst target loss) results in a significant
performance degradation, confirming that these components
are important. On the other hand, for DART without the
pseudo-labeling technique discussed in Section V, scenarios
(3) and (4) still experienced some performance degradation in
both standard and robust accuracy compared to DART. The
comparison between scenarios (3), (4), and DART includes all
components highlighting the importance of the quality of target
pseudo-labels. It is not surprising that (4) outperforms (3), as
the pseudo-labels are continuously updated at each iteration.
Similarly, compared to (4), DART updates pseudo-labels only
when the current model is guaranteed to improve based on
standard accuracy, as described in Section V-B1. This approach
further enhances the quality of the pseudo-labels. In summary,
DART with all the components achieves the best performance.

c¢) Comparison with additional baselines: To strengthen
the comparison, we propose two new, modified baselines
that run adversarial training or TRADES on pseudo-labeled
target data, where the pseudo labels are generated using
exactly the pseudo labeling method used in our approach
(described in Section V)-we refer to these methods as
AT(tgt,cg) and TRADES(tgt,cg). These two methods are similar

Source— Target SVHN—MNIST SYN—MNIST-M PACS Photo— Sketch
Algorithm nat acc pgd acc aa acc nat acc ped acc aa acc nat acc pgd acc aa acc
(1) DART w/o DANN term | 95.0£0.1 90.9+0.4 90.8£0.4 | 67.2+0.7 45.1+£0.6 44.840.6 | 79.1+£0.7 76.3+0.7 76.1£0.7
(2) DART w/o third term 84.8+0.3 81.3+£0.2 81.2+0.3 | 65.7+£0.5 53.6+03 53.3+£04 | 723424 63.8£1.1 60.6+0.8
(3) DART fixed label 87.3£0.2 85.2+0.2 85.1£0.2 | 65.6+04 56.0£03 55.5£0.5 | 79.3+ 04 75.7£04 75.4+04
(4) DART self label 96.9+12 959+1.6 959+1.6 | 70.6+3.3 63.54+3.0 634430 | 755+13 68.6+0.7 67.9£0.7
DART w. all components 98.7+0.1 98.2+0.2 982+0.2 | 75.24+0.8 66.7+0.8 66.5+0.8 | 82.5+0.8 79.9+04 79.5+0.5

TABLE III: Standard accuracy (nat acc)/ Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack (aa

acc) on target test data for three source-target pairs.

Source— Target SVHN—MNIST SYN—MNIST-M PACS Photo— Sketch
Algorithm nat acc ped acc aa acc nat acc ped acc aa acc nat acc ped acc aa acc
AT(tgt,cg) 91.44+0.1 90.24+0.1 90.2+0.1 | 67.7£0.7 58.6+£0.6 58.44+0.6 | 79.6+0.5 76.3+0.7 75.9+0.7
TRADES(tgt,cg) 97.1+04 96.6+£04 96.6+04 | 68.5+0.7 63.2+09 63.1+£0.8 | 78.5+0.7 76.4+0.6 76.1£0.5
DART (clean src) | 98.7+£0.1 98.2+0.2 98.24+0.2 | 75.24+0.8 66.7+0.8 66.5+0.8 | 82.5+0.8 79.9+04 79.54+0.5
DART (adv src) 98.7+£0.1 983+0.2 98.3+0.2 | 72.6+0.9 643+1.0 64.1£1.0 | 81.0£1.0 78.1+04 77.7+£0.4
DART (kl src) 98.6+£0.2 98.24+0.2 98.24+0.2 | 744+1.2 66.0£13 65.8+1.3 | 824+£1.6 79.24+12 78.8%1.1

TABLE IV: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) / Robust accuracy under AutoAttack

(aa acc) on target test data for three source-target pairs.

Domain Divergence DANN MMD CORAL

Algorithm nat acc ped acc aa acc nat acc ped acc aa acc nat acc pgd acc aa acc
Natural UDA 74.0+1.1 24.0£2.1 5.6£1.3 68.7+£0.9 23.4+£15 11.0+14 | 68.2%1.1 3.6£1.2 0.240.1
AT+UDA 70.6£1.6 622+1.5 609+£15 | 73.3£03 66.3+£03 65703 | 67.0£3.5 55.7£1.7 53.8+£24
ARTUDA 749+13 704+£14 692413 | 602423 54.6£1.7 52.8419 | 42.8+41.2 342+1.6 31.6%+1.8
SRoUDA 719409 63.7£12 60.842.0 | 62.3+43 56.7£4.1 54944.1 | 61.3+2.0 53.6£1.5 51.841.9
DART(clean src) 82.5+0.8 79.9+04 79.5+0.5 | 76.8+=1.1 76.8+£1.1 73.7+14 | 80.2+0.8 76.8£0.8 76.5+0.8
DART(adv src) 81.0£1.0 78.1+£04 77.7+£04 | 79.2+14 76.6+1.4 76.6+1.4 | 83.0+0.8 80.5+0.9 80.3+0.8
DART(KI src) 824+1.6 792412 788%1.1 | 77.6£1.2 75109 749408 | 81.7£14 793+15 79.3%1.5

TABLE V: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) / Robust accuracy under AutoAttack (aa
acc) on target test data, for three different domain divergence metrics.

to AT(tgt,pseudo) and TRADES(tgt,pseudo), with the main
difference that the pseudo labels may change during training.
We evaluate DART against AT(tgt,cg) and TRADES(tgt,cg) on
the same source-target pairs: SVHN—MNIST, SYN—MNIST-
M, and PACS for Photo—Sketch. The results, presented
in Table IV, show that DART outperforms these baselines,
suggesting that DART’s good performance is not solely due to
the proposed pseudo-labeling method.

d) Different domain divergence metrics: As discussed
earlier, DART is compatible with a wide class of UDA
divergence metrics previously proposed in the literature. Here
we study DART’s performance on PACS Photo—Sketch
when using alternative domain divergence metrics: MMD
(Maximum Mean Discrepancy) [Gretton et al., 2012] and
CORAL (Correlation Alignment) [Sun and Saenko, 2016]. We
conduct a similar investigation with AT+UDA, ARTUDA, and
SRoUDA. The results, reported in Table V, demonstrate that
DART consistently outperforms the adversarially robust UDA
baselines for all three domain divergence metrics considered.

e) Results for o, perturbation size of oo = 8/255: We
conducted additional experiments with o = 8/255 on four
DIGIT source-target pairs (fixing SVHN as the source and
trying all possible targets) and three PACS source-target pairs
(fixing Photo as the source and trying all possible targets).
During training, we generate adversarial examples using 5

Natural DANN
AT(src only)

—e— TRADES(src only)
—e— AT(tgt,fix)

—e— TRADES(tgt,fix)
—e— AT+UDA
ARTUDA

20 —e— SROUDA
DART(KL src)
0 i 3 — —

0.00 0.05 0.10 0.15 0.20 0.25
perturbation size

robust accuracy
i
o

Fig. 1: Robust accuracy as a function of perturbation size for
different algorithms on PACS (Photo— Sketch).

steps of PGD with a step size of 4/255. The robust accuracy
is evaluated with same perturbation size o = 8/255 using 20
steps of PGD with a step size of 4/255. We compared DART
with some of the most competitive methods, with all algorithms
trained and evaluated using the same « = 8/255. The results,
presented in Table VI and Table VII, indicate that DART
outperforms the other methods on average. These findings are
consistent with the results obtained for @ = 2/255. When
comparing /., perturbation sizes of 8/255 and 2/255 within

Source—Target SVHN—MNIST SVHN—MNIST-M SVHN—SYN SVHN—USPS

Algorithm clean acc pgd acc clean acc pgd acc clean acc pgd acc clean acc pgd acc
Natural DANN 82.6+0.2 349+1.0 | 51.8£1.0 5.9+0.1 93.840.1 255+0.8 | 87.9+£0.6 33.7+1.4
AT(tgt,pseudo) 88.0£0.1 84.5+0.1 | 62.5+£09 43.240.3 | 95.840.0 87.2+0.1 | 955404 90.5+0.3
TRADES(tgt,pseudo) | 88.2+0.4 84.9+0.6 | 63.1£1.5 41.5+14 | 96.0+£0.1 89.1+0.4 | 955402 91.44+04
ARTUDA 96.8+£0.7 89.24+1.2 | 48.6£2.5 24.142.6 | 952402 82.7+04 | 98.54+0.1 94.0+£0.8
SRoUDA 87.0+0.3 80.4+£04 | 53.6£1.7 39.6%£1.1 | 96.4£0.1 89.1+0.1 | 96.5+0.2 88.8+1.0
DART/(clean src) 99.0+0.0 97.840.2 | 62.1£04 4594+0.1 | 97.1+0.1 88.6+04 | 98.8+0.1 96.2+0.1

TABLE VI: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) with £, perturbation size of oz = 8/255
of target test data on DIGIT dataset with a fixed source domain (SVHN) and different target domains.

Source—Target Photo— Art Photo—Cartoon Photo— Sketch

Algorithm clean acc pgd acc clean acc ped acc clean acc pgd acc
Natural DANN 89.1+£0.2 0.0£0.0 80.51+0.2 1.1£0.5 74.0+1.1 0.0£0.0
AT (tgt,pseudo) 33.8£1.2 269405 | 81.9+0.6 65.1+1.5 | 77.0+£0.5 72.0£0.5
TRADES(tgt,pseudo) | 62.6£3.4 29.7+1.0 | 80.9+£1.2 66.5+1.3 | 77.2+£0.5 72.540.6
ARTUDA 26.6+0.7 23.5£1.0 | 71.1£2.8 529+1.7 | 63.4+£49 57.1+3.5
SRoUDA 29.0+0.6 244408 | 81.24+14 64.1£0.7 | 50.2+£3.8 41.94+2.7
DART(clean src) 52.8£6.0 28.1+£2.6 | 85.3+£0.8 68.9+1.6 | 79.9+0.9 74.0+0.9

TABLE VII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc) with £, perturbation size of oz = 8/255
of target test data on PACS dataset with a fixed source domain (Photo) and different target domains.

the same source-target pair and algorithm, it is unsurprising to
observe that a larger ¢, perturbation size results in a lower
robust accuracy, which is also consistent with Figure 1.

f) Sanity checks on the PGD attack.: We present some
sanity checks to demonstrate that no gradient masking phenom-
ena [Athalye et al., 2018] exist in our setup. First, we increase
the PGD attack strength (perturbation size) when evaluating
the algorithms for PACS (Photo— Sketch); see Figure 1. It is
evident from the figure that as the perturbation size increases,
the robust accuracy of all the algorithms decreases, while
DART consistently outperforms the other algorithms for all
perturbation sizes. With sufficiently large perturbation size, the
robust accuracy of all algorithms drops to zero, as expected.
Second, we fix the perturbation size to 2/255, and gradually
increase the number of attack iterations—we present the results
of this experiment in Figure 2 in the appendix. The results
of Figure 2 indicate that 20 attack iterations are sufficient to
achieve the strongest PGD attack within the given perturbation
size.

VII. CONCLUSION

In this paper, we tackled the problem of learning adversarially
robust models under an unsupervised domain adaptation setting.
We developed robust generalization guarantees and provided a
unified, practical defense framework (DART), which can be
integrated with standard UDA methods. We also released a new
testbed (DomainRobust) and performed extensive experiments,
which demonstrate that DART consistently outperforms the
state of the art across four multi-domain benchmarks. One
limitation of our evaluation is its focus solely on computer
vision applications, with the assumption of access to a small

80 1
o
E —e— Natural DANN
> 60 AT(src only)
8 —e— TRADES(src only)
© —e— AT(tgt,fix)
7 —e— TRADES|(tgt, fix)
2 40+ —e— AT+UDA
o ARTUDA

—e— SROUDA
DART(KL src)
20+

0 10 20 30 40 50
attack iteration

Fig. 2: Robust accuracy as a function of attack iterations for
different algorithms on PACS (Photo—Sketch).

labeled target validation set for model selection. Exploring
other domains and alternative model selection methods would
be an interesting direction for future work. Another natural next
step is to extend our theory and defense framework to other
settings of distribution shift such as domain generalization.

ACKNOWLEDGEMENT

This work was done when Yunjuan Wang was a student
researcher at Google Research. YW and RA were supported,
in part, by DARPA GARD award HR00112020004, and NSF
CAREER award IIS-1943251.

REFERENCES

David Acuna, Guojun Zhang, Marc T Law, and Sanja Fidler. f-
domain adversarial learning: Theory and algorithms. In

International Conference on Machine Learning. PMLR,
2021.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks
on deep learning in computer vision: A survey. leee Access,
2018.

Maksym Andriushchenko, Francesco Croce, Nicolas Flam-
marion, and Matthias Hein. Square attack: a query-efficient
black-box adversarial attack via random search. In European
conference on computer vision. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-
cated gradients give a false sense of security: Circumventing
defenses to adversarial examples. In International conference
on machine learning. PMLR, 2018.

Muhammad Awais, Fengwei Zhou, Hang Xu, Lanqing Hong,
Ping Luo, Sung-Ho Bae, and Zhenguo Li. Adversarial robust-
ness for unsupervised domain adaptation. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, 2021.

Tao Bai, Jingi Luo, Jun Zhao, Bihan Wen, and Qian Wang.
Recent advances in adversarial training for adversarial
robustness. arXiv preprint arXiv:2102.01356, 2021.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando
Pereira. Analysis of representations for domain adaptation.
Advances in neural information processing systems, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza,
Fernando Pereira, and Jennifer Wortman Vaughan. A theory
of learning from different domains. Machine learning, 2010.

Dimitri Bertsekas. Nonlinear Programming. Athena Scientific,
2016.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,
Nedim Srndié, Pavel Laskov, Giorgio Giacinto, and Fabio
Roli. Evasion attacks against machine learning at test time.
In Joint European conference on machine learning and
knowledge discovery in databases, pages 387—402. Springer,
2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-
shot learners. In Advances in Neural Information Processing
Systems, 2020.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chat-
topadhyay, and Debdeep Mukhopadhyay. Adversarial attacks
and defences: A survey. arXiv preprint arXiv:1810.00069,
2018.

Francesco Croce and Matthias Hein. Minimally distorted
adversarial examples with a fast adaptive boundary attack.
In International Conference on Machine Learning. PMLR,
2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of
adversarial robustness with an ensemble of diverse parameter-

free attacks. In International conference on machine learning.
PMLR, 2020b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical data augmentation with no separate
search. arXiv preprint arXiv:1909.13719, 2019.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-
learning in the presence of adversaries. Advances in Neural
Information Processing Systems, 31, 2018.

Shai Ben David, Tyler Lu, Teresa Luu, and Dédvid Pal. Impossi-
bility theorems for domain adaptation. In Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics, 2010.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, Francois Laviolette, Mario Marc-
hand, and Victor Lempitsky. Domain-adversarial training of
neural networks. The journal of machine learning research,
2016.

Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur, Nico
Karssemeijer, Elena Marchiori, Mehran Pesteie, Charles RG
Guttmann, Frank-Erik de Leeuw, Clare M Tempany, Bram
Van Ginneken, et al. Transfer learning for domain adaptation
in mri: Application in brain lesion segmentation. In Medical
Image Computing and Computer Assisted Intervention.
Springer, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard
Scholkopf, and Alexander Smola. A kernel two-sample test.
The Journal of Machine Learning Research, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain
generalization. arXiv preprint arXiv:2007.01434, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
arXiv preprint arXiv:1903.12261, 2019.

Jonathan J. Hull. A database for handwritten text recognition
research. IEEE Transactions on pattern analysis and machine
intelligence, 1994.

Patrick Kage, Jay C Rothenberger, Pavlos Andreadis, and
Dimitrios I Diochnos. A review of pseudo-labeling for
computer vision. arXiv preprint arXiv:2408.07221, 2024.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via
function transformation. arXiv preprint arXiv:1810.09519,
2018.

D Kinga, Jimmy Ba Adam, et al. A method for stochastic
optimization. In International conference on learning
representations, 2015.

Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid
Karlinsky, Rogerio Feris, Bill Freeman, and Gregory Wornell.
Co-regularized alignment for unsupervised domain adapta-
tion. Advances in neural information processing systems,
2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 1998.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,
and Barnabds P6czos. Mmd gan: towards deeper understand-
ing of moment matching network. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales.
Deeper, broader and artier domain generalization. In Pro-
ceedings of the IEEE international conference on computer
vision, 2017b.

Xiaofeng Liu, Xiongchang Liu, Bo Hu, Wenxuan Ji, Fangxu
Xing, Jun Lu, Jane You, C-C Jay Kuo, Georges El Fakhri,
and Jonghye Woo. Subtype-aware unsupervised domain
adaptation for medical diagnosis. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021.

Xiaofeng Liu, Chaechwa Yoo, Fangxu Xing, Hyejin Oh, Georges
El Fakhri, Je-Won Kang, Jonghye Woo, et al. Deep
unsupervised domain adaptation: A review of recent advances
and perspectives. APSIPA Transactions on Signal and
Information Processing, 2022.

Shao-Yuan Lo and Vishal Patel. Exploring adversarially robust
training for unsupervised domain adaptation. In Proceedings
of the Asian Conference on Computer Vision, 2022.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang
Sun, and Philip S Yu. Transfer feature learning with
joint distribution adaptation. In Proceedings of the IEEE
international conference on computer vision, 2013.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan.
Learning transferable features with deep adaptation networks.
In International conference on machine learning. PMLR,
2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation networks.
In International conference on machine learning. PMLR,
2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation with multiple sources. Advances in neural
information processing systems, 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.
Domain adaptation: Learning bounds and algorithms. arXiv
preprint arXiv:0902.3430, 2009.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,
Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. In Proceedings of the
NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and
Atilim Giines Baydin. Kl guided domain adaptation. arXiv
preprint arXiv:2106.07780, 2021.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain

adaptation challenge. arXiv preprint arXiv:1710.06924,
2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF
international conference on computer vision, 2019.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta
pseudo labels. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2021.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban,
and Younes Bennani. A survey on domain adaptation theory:
learning bounds and theoretical guarantees. arXiv preprint
arXiv:2004.11829, 2020.

Chiara Regniez, Gauthier Gidel, and Hugo Berard. A distri-
butional robustness perspective on adversarial training with
the co-wasserstein distance. 2021.

Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial
attacks and defenses in deep learning. Engineering, 2020.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya
Harada. Maximum classifier discrepancy for unsupervised
domain adaptation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018.

Burr Settles. Active learning literature survey. 2009.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghi-
asi, Christoph Studer, David Jacobs, and Tom Goldstein.
Adversarially robust transfer learning. arXiv preprint
arXiv:1905.08232, 2019.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein
distance guided representation learning for domain adapta-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2018.

Matthew Staib and Stefanie Jegelka. Distributionally robust
deep learning as a generalization of adversarial training.
In NIPS workshop on Machine Learning and Computer
Security, 2017.

Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein
Hazimeh, Otilia Stretcu, Wei Qiao, Yintao Liu, Merve Kaya,
Cyrus Rashtchian, Ariel Fuxman, et al. Benchmarking
robustness to adversarial image obfuscations. arXiv preprint
arXiv:2301.12993, 2023.

Baochen Sun and Kate Saenko. Deep coral: Correlation
alignment for deep domain adaptation. In Computer Vision—
ECCV 2016 Workshops. Springer, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

Vladimir Vapnik. The nature of statistical learning theory.
Springer science & business media, 1999.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In International

conference on learning representations, 2019.

Kai-Ya Wei and Chiou-Ting Hsu. Generative adversarial guided
learning for domain adaptation. In BMVC, 2018.

Garrett Wilson and Diane J Cook. A survey of unsupervised
deep domain adaptation. ACM Transactions on Intelligent
Systems and Technology (TIST), 2020.

Jinyu Yang, Chunyuan Li, Weizhi An, Hehuan Ma, Yuzhi
Guo, Yu Rong, Peilin Zhao, and Junzhou Huang. Exploring
robustness of unsupervised domain adaptation in semantic
segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas
Natschlédger, and Susanne Saminger-Platz. Central moment
discrepancy (cmd) for domain-invariant representation learn-
ing. In International Conference on Learning Representa-
tions, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent
El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In International
conference on machine learning. PMLR, 2019a.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and
Chenliang Li. Adversarial attacks on deep-learning models
in natural language processing: A survey. ACM Transactions
on Intelligent Systems and Technology (TIST), 2020.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael
Jordan. Bridging theory and algorithm for domain adaptation.
In International conference on machine learning. PMLR,
2019b.

Wanging Zhu, Jia-Li Yin, Bo-Hao Chen, and Ximeng Liu.
Srouda: Meta self-training for robust unsupervised domain
adaptation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-
supervised learning. Springer Nature, 2022.

APPENDIX A
PROOF OF THEOREM 2

Before presenting the proof, we first define the set of all possible perturbed distributions as follows:
P(Dr) = {ﬁ (T(x),y) ~D,3amap T: X — X with T(x) € B(x), (x,y) ~ DT} 6

As an illustrative example, consider the scenario where the perturbation set B is defined as an £, norm ball, then set of
perturbation distributions P can be effectively constructed using the Wasserstein metric [Khim and Loh, 2018, Regniez et al.,
2021, Staib and Jegelka, 2017].

Theorem 2. Let H be a hypothesis class with finite VC dimension VC(#) and adversarial VC dimension AVC(#) [Cullina
et al., 2018]. If Zg and Z¢ are labeled samples of size’” n drawn i.i.d. from Dg and Dy, respectively, and Xg and Xr are the
corresponding data matrices, then for any ¢ € (0,1), w.p. at least 1 — ¢, for all h € H,
L (hs D) < LY (h; Z5) +e @
————
Source Loss
Worst-case target
—— ~ ~
+ sup dyan(Xs, Xr) +2v(Zs, 2r) |,
xieB(x}),vieln],
Zr={(&wH},

Domain Divergence Ideal Joint Loss

where the generalization gap ¢ = (’)(\/ max{VC(H)’AVC(ﬁ)}log(”)+l°g(1/ %), the (empirical) ideal joint loss is defined as

v(Zs, Zr) == minp-ey [LY(h*; Zg) + LYY (h*; Z7)], and the (empirical) HAH-divergence can be computed as follows®:

duan(Xs, Xr)
:2(1—}137}2%{% Z]I(XEXS)—%%Z]I(XEXT)D. 3)
x:h(x)=0 x:h(x)=1

Proof of Theorem 2. We use the notation fg and fr to represent labeling function X —) of the given source domain and
target domain. Note that (x,y) ~ Dg implies fs(x) = y, and (x,y) ~ Dr implies fr(x) = y. Here we consider 0-1 loss,
which can be represented as (y1,y2) = |y1 — y2|.

For any given Dr, we consider h* := h*(Dr) = argmin, ¢4 v(Ds, Dr). We first upper bound the adversarial target risk as
follows:

Lgj) (h; Dr)
:E(x,y)NDT sup |h(i)*fT(X)|
xeB(x)
= sup Eq 5 [h(X)—fr(x)| (By the definition of P(Dr).)
DreP(Dr) 1
< s By s, DO—fr0l+ s E s h()—h* ()
DreP(Dr) DreP(Dr)
= sup Eq 5, [R(X)—fr(x)]+Exy)~ps [h(x) =R (x)]
DreP(Dr)
b By s,)= Rt (0| ~Eg gy [(X)—h* (1)
DreP(Dr)
< sup By opy [RT(X) = fr(X)] 4 Exy)ps [R(x) —h" (x)]
DreP(Dr)

F| s By s, B0 — B (0] —Eq s [h(x)— b (0)

DreP(Dr)

< sup o By op, W)= fr(X)] + By aps [77 (%) = fs ()] + Eqy)ps [h(X) = 5 ()]
DreP(Dr)

T s Eyom, 10— (X) ~Egys A(X) b (3)
DreP(Dr)

We slightly abuse the notation when the input distribution is over X'; i.e., P(Df) = {ﬁ :T(x) ~D,Famap T : X — X with T(x) € B(x), x ~ D?}

TWe assume that Zg and Z have the same size for simplicity. The result still applies to different sizes.
8In Definition 1, we defined ds; a3 for two input distributions. Here we use an equivalent definition in which the two inputs are data matrices.

= sup LYY n*;Dp)+ LYY (h*;Ds) + LY (h; Dg)
DreP(Dr)

+|_ sup By 5, [h(x) =R (X)[=Exy)~ps [h(X) = (x)]
DreP(Dr)

=L"(h;Dg)+ sup y(Ds,Dr)
DreP(Dr)

+|_ sup B op, () =R (X)|=Exy)~ps [h(X) =" (x)]

'ﬁTG'P('DT)
< LYY (h;Ds)+ sup +(Ds,Dr)
ﬁTEP(DT)
+ sup sup E,) 5,1 [h(x) = 1] = Ex yyops L [M(x) = 1]
heHAH |DreP(Dr)
(Denote this line as dyamn,, (D, DY), which we also define later in the proof.)
~ 1
=L (h;Ds)+ sup 4(Ds,Dr) + duan,, (D5, D7) (10)
DreP(Dr)

Given distributions Dg, Dr, samples Xg, X1 each with size n, we recall the definition of expected and empirical HAH-
divergence:

dHAH(Dg,D%() =2 sup
heHAH

Eypy 1 [A(x) = 1] = By py 1 [h(x) = 1]

1 S 1) = 1] - %le [h(x}) = 1]

dyan(Xs,Xr) =2 sup -
=1 =1

heHAH

We now define the expected and empirical adversarial target domain divergence, namely duyaw,, (Da,D7) and
dyan,,, (Xs, Xr), respectively, as follows:

dyar,, (Do, D) =2 sup sup B 5 1K) = 1] =B ymps 1 [h(x) = 1]

heHAH ﬁTGP('DT)
1< IRS
dHA'HaVXS7XT =92 sup — sup 1 hiz =1|——]lhxj =1
o) hwmn2§w@[<> Jn;[<>]

Under the same perturbation constraints, we have

dyar, (D3, DY) < sup dyan(D3, D7)
DreP(Dr)

duare (Xs, Xr) < sup dyan(Xs, Xr) (11)
X1 €P(XT)

Therefore, the following upper bound holds:

dyyar, (DS, D7) — dyyar, (Xs, Xr)

<2 sup | sup K, p5, L[A(x)=1]—Exy~pslh(x)=1]
he€HAH | DreP(Dr)
1 n » 1 n
- = sup 1 |h(X;)=1|+ =]l[h(xf)l]‘
=1 KEB()] " ;
1< -
<2 sup sup B op, L) =1 —=>" sup 1[h(x})=1]| (Denote this linc as dy,, an, (D, Xr))
heHAH | Brep(Dr) M= RieB(x))
1 n
+2 sup |Exyopsl]h(x)=1]—— 1[h(xi)=1
WSup Byt h(x) = 1] n; [h(x) = 1]

= 30, 5% (D7, X7) + dpan(DF , Xs)

Therefore from standard VC theory [Vapnik, 1999] we have

2
P [sup | L0/ (s D) — L (s Zs)| = £ | < 8(2n)¥CM exp(~12) (12)

heH 4 128

X € VC(H) ne’
P [dHAH(DS Xg) > Z] < 8(2n) VM exp(~) (13)

Based on the adversarial VC theory from [Cullina et al., 2018], we have
XS € AVC(H ne’

P [dHad\'AHadv (DT7XT) > 1:| < 8(2n) ()eXp(_ﬁg) (14)

Similarly, we recall the definition of expected and empirical ideal joint risk as follows:
7(Ds, Dr) = min (L0 (s Ds) + L (s D)
€

— i 0/1(p. 0/1(p,.
(25, Zr) = min 1 (h Z5) + L (s Z1)|

‘We then have,

fY(DS) DT) - ’Y(ZSv ZT)
R 0/1(p . 0/1(p . o 0/1(5 . 0/1(p .
Join [L (h1;Ds) + L (h17DT)} Join {L (ho; Zg) + L~ (he; ZT)}

IN

[LO/I(hQ; Dg) + LYY (hy; DT)] ~ min [Lo/l(hQ; Zg) + LY (ho; ZT)}
2

< sup [Lo/l(h; Ds) + LY (h; Dp) — LYY (h; Zg) — LY (h; ZT)]
S
< sup [LO/!(h; Ds) = L (s Zs)| + sup [LO/"(h Dr) — L (h: Z1)|
heH heH

Applying standard VC theory and adversarial VC theory leads to:
€
P[(Ds, Dr) - 125, 21)| 2§

<p {sup L0 (1 Ds) — L0 (h: 25)| 2 } P [sup L0/ (h: Dr) — L (h: Z1) | }
heH 8 heH 8
< 64(2n)2YCH) exp("62) (15)
n X —_
= PLT956

Consider each of the above events (12), (13), (14), (15) hold with probability g,

@] \/ max(VC(74).AVE(?)) log(n)+log(1/ 5)>. By taking a union bound over the above events gives us that with probability at

we set € =

n

least 1 — 4, the following holds:

LY (h;Dr)

adv

1
< L”'(:Ds)+ sup 4(Ds, Dr) + duan. (D5, D7) (Equation (10))
DreP(Dr) 2
T

< LY (h;Z5)+ sup (D, Dr) + =dyan, (Xs, Xr) + € (Union bound)
ﬁTGP(DT)

< Lo/l(h; Zs)+ sup ~(Ds,Dr)+ sup d’HA’H(XS7)~(T) + € (Equation (11))
ﬁTEP(DT) XTGP(XT)
<L (h;Zg)+ sup [29(Zs, 2r) + duan(Xs, X7)] + e
XrEP(XT)
(Given non-negative functions a(z) and b(z), sup, a(z) + sup, b(z) < 2sup, (a(z) + b(z)))

DN | —

N |

We remark that the theorem can be extended to any symmetric loss function that satisfies the triangle inequality.
O

APPENDIX B
EXPERIMENTAL DETAILS

A. Datasets

o DIGIT contains 5 popular digit datasets. In our implementation, we use the digit-five dataset presented by [Peng et al., 2019]

1) MNIST is a dataset of greyscale handwritten digits. We include 64015 images.

2) MNIST-M is created by combining MNIST digits with the patches randomly extracted from color photos of BSDS500 as
their background. We include 64015 images.

3) SVHN contains RGB images of printed digits cropped from pictures of house number plates. We include 96322 images.

4) Synthetic digits contains synthetically generated images of English digits embedded on random backgrounds. We include
33075 images.

5) USPS is a grayscale dataset automatically scanned from envelopes by the U.S. Postal Service. We include 9078 images.

« OfficeHome contains objects commonly found in office and home environments. It consists of images from 4 different
domains: Artistic (2,427 images), Clip Art (4,365 images), Product (4,439 images) and Real-World (4,357 images). For each
domain, the dataset contains images of 65 object categories.

o PACS is created by intersecting the classes found in Caltech256 (Photo), Sketchy (Photo, Sketch), TU-Berlin (Sketch) and
Google Images (Art painting, Cartoon, Photo). It consists of four domains, namely Photo (1,670 images), Art Painting (2,048
images), Cartoon (2,344 images) and Sketch (3,929 images). Each domain contains seven categories.

« VisDA is a synthetic-to-real dataset consisting of two parts: synthetic and real. The synthetic dataset contains 152,397 images
generated by 3D rendering. The real dataset is built from the Microsoft COCO training and validation splits, resulting in a
collection of 55,388 object images that correspond to 12 classes.

B. Common Domain Divergence in UDA Methods

Recall the following notation: f represents the classifier, g represents the feature extractor, d represents the discriminator.
1) Domain Adversarial Neural Network (DANN) [Ganin and Lempitsky, 2015].

Q(XS7XTa g, d) = Sl;p (EXSEXS IOg(d © g(xs)) + EXf’GXT log(l —do g(xt))) .

2) Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. Given kernel k(-,-),
Q(XS7XTag7k)
=]EXSGXSk(g(XS)a g(xs)) +]EXtEXTk(g(Xt)vg(xt)) - QEXSGXS]EXtEXTk(g(XS)vg(xt))‘
A similar idea has been used in DAN [Long et al., 2015], JAN [Long et al., 2017].
3) Central Moment Discrepancy (CMD). Given moment K, a range [a,b]?. Denote Cj,(X) = Eyex((x — E(x))¥).
1
UXs, Xr,9. K) = 5= [Bxexs (906) ~ Extexr (9x))]
Ko
+ — 1Cx(9(X5s)) — Cr(g(X7))ll,
i |b—al
4) CORrelation ALignment (CORAL) [Sun and Saenko, 2016]. Define the covariance matrix Cov(X) =
Ex,exx;ex [(xi — E [x])(x; — E [x;])].
Q(Xs, X, g) = [|Cov(g(Xs)) — Cov(g(Xr))| -
5) Kullback-Leibler divergence (KL) [Nguyen et al., 2021].

QXs,Xr,9)
= Evex, [log(pr(g(x"))) —log(ps(9(x)))] + Exsexs [log(ps(9(x*))) — log(pr(g(x*)))]

where pg(z) & Eysexop(2]x%), pr(2) ~ Exeex, p(2]xt), p(z|x) is a Gaussian distribution with a diagonal covariance matrix
and z is sampled via reparameterization trick.
6) Wasserstein Distance (WD) [Shen et al., 2018]. Hyperparameter .

Q(X57XT7 fvgad) = Sl;p (EXSGXS (d © g)(xs)iExf‘EXT (do g)(xt)iA (Vg(X) (d © g)(x)il)Q) .

Layer

Conv2D(in=d, out=64)
ReLU
GroupNorm(groups==8)
Conv2D(in=64,0out=128,stride=2)
ReLU

GroupNorm(8 groups)
Conv2D(in=128,0ut=128)
ReLU

GroupNorm(8 groups)

10 Conv2D(in=128,0ut=128)
11 | ReLU

12 | GroupNorm(8 groups)

13 | Global average-pooling

TABLE VIII: Details of Convolutional network architecture for DIGIT datasets (including MNIST, MNIST-M, SVHN, SYN,
USPS). All convolutions use 3 x 3 kernels and “same” padding.

O 000NN W~ 3

C. Architectures

For the DIGIT dataset, we use the same convolutional neural network that has been used in [Gulrajani and Lopez-Paz, 2020]-
see Table VIII for details.

D. Data Preprocessing and Augmentation

For DIGIT datasets, we only resize all images to 32 x 32 pixels. For non-DIGIT datasets, we apply the following standard
data augmentation techniques [Gulrajani and Lopez-Paz, 2020] (for both the labeled source training data and the unlabeled
target training data): crops of random size and aspect ratio, resizing to 224 x224 pixels, random horizontal flips, random
color jitter, grayscaling the image with 10% probability; and normalized the data using ImageNet channel means and standard
deviations. Note that for SRoUDA, we do not apply the proposed random masked augmentation [Zhu et al., 2023] as well as
RandAugment [Cubuk et al., 2019] to ensure a fair comparison across all methods.

E. Hyperparameters

Condition | Parameter Default value = Random distribution
Network Resnet dropout rate 0 Uniform([0, 0.1, 0.5])
Algorithm | A\q 1.0 1QUniform(—1,1)
,\2 1.0 10Uniform(71,1)
discriminator steps 1 gUniform(0,3)
adam (1 0.9 Uniform(0,0.9)
DIGIT data augmentation False False
batch size 128 128
number of iterations 20k 20k
]earning rate 0.001 10Uniform(74.5,72.5)
discriminator learning rate 0.001 1QUniform(—4.5,~2.5)
weight decay 0 0
discriminator weight decay 0 1(QUniform(—6,—3)
not DIGIT | data augmentation True True
batch size 16 16
number of iterations 25k 25k
learning rate 0.00005 1QUniform(—5,—3.5)
discriminator learning rate 0.00005 1QUniform(—5,~3.5)
weight decay 0.0001 1QUniform(—5,—2)
discriminator weight decay 0.0001 1QUniform(—5,—2)

TABLE IX: Hyperparameters, the default values and distributions for random search.

APPENDIX C
RESULTS ON ALL SOURCE-TARGET PAIRS

A. Digits
Source— Target SVHN—MNIST SVHN—MNIST-M SVHN—SYN SVHN—USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 82.6+0.2 64.9+09 64.0£09 | 51.8+£0.6 21.04£23 20.2+24 | 93.8+£0.1 80.2+£0.4 79.2+04 | 88.0+1.0 69.2+1.1 67.4£1.6
AT (src only) 82.3+0.4 75.1+04 74.7+0.4 | 557403 36.7+0.3 35.5+03 | 94.840.2 90.6+0.1 90.4+0.1 | 90.24+0.3 82.0+0.3 81.440.2
TRADES(src only) 83.0+0.6 749402 744402 | 543+03 389402 37.6£0.2 | 94.3+0.1 90.7£0.1 90.4+0.2 | 91.5+£03 81.7+0.1 80.940.1
AT(tgt,pseudo) 87.5+£0.1 85.840.1 85.840.1 | 59.240.2 47.0£0.3 46.0+£0.3 | 95.6+£2.0 92.4+0.1 92.340.1 | 93.840.5 91.7+04 91.6£0.3
TRADES(tgt,pseudo) | 86.6+£0.2 84.840.1 84.7+0.1 | 61.1+£0.3 504+0.6 49.4+0.5 | 957+£02 933+0.2 93.240.2 | 943+04 92.1+02 92.0£0.1
AT+UDA 81.6+£0.6 71.7+£0.5 70.9£0.6 | 55.840.3 39.5£02 38.5+0.2 | 94.8£0.0 90.7+£0.2 90.440.1 | 88.4+1.2 80.2+1.1 79.4+£1.2
ARTUDA 92.6+0.7 912407 91.1+0.7 | 58.0+£0.7 48.0+1.2 472413 | 97.04£0.2 94.8£0.1 94.7+0.1 | 98.1£0.1 97.0+£0.2 96.940.1
SRoUDA 86.5+0.1 84.0+0.2 83.940.2 | 59.940.6 50.1£0.6 48.9+0.6 | 959+0.1 93.9+0.1 93.840.1 | 945403 91.9409 91.8+£09
DART(clean src) 98.7+0.1 97.240.1 944+03 943+03 | 985+0.1 97.8+0.1 97.7+0.1
DART (adv src) 98.7+0.1 98.3+0.2 98.31+0.2 | 685+1.5 59.841.2 59.3+12 | 97.0£0.0 95.0+£0.0 94.9+0.0 | 98.3+0.4
DART(kI src) 72.6+1.4 63.6+1.7 63.2+1.8 9744+0.1 97.7+0.1

TABLE X: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack (aa
acc) of target test data on DIGIT dataset with a fix source domain SVHN and different target domains.

Source—Target SYN—MNIST SYN—MNIST-M SYN—SVHN SYN—USPS
Algorithm clean acc pgd acc aa acc clean acc ped acc aa acc clean acc ped acc aa acc clean acc ped acc aa acc
Natural DANN 96.3+0.2 89.0+£1.3 88.6+1.4 | 60.4+0.8 387403 383+03 | 82.24+0.7 37.9£0.7 36.3+0.6 | 97.5£0.1 85.6+0.7 85.14+0.8
AT(src only) 96.6+0.1 94.4+0.1 94.31+0.1 | 63.4+0.5 43.1+£03 429403 | 79.0+£0.5 49.2+03 48.4+03 | 97.3£0.0 93.4+0.1 93.240.1
TRADES(src only) 96.5£0.0 943+0.1 94.24+0.1 | 63.1+£0.2 43.8404 43.5+04 | 76.7+0.5 52.4+0.1 51.1+£03 | 97.1£0.2 93.4+0.1 93.240.1
AT(tgt,pseudo) 97.240.0 96.8+0.0 96.8+0.0 | 65.9+0.6 55.84+0.5 55.240.5 | 84.6+0.2 70.9£0.0 69.9+0.1 | 98.1+£0.1 97.3+0.2 97.31+0.2
TRADES(tgt,pseudo) | 97.3+0.0 96.9+0.0 96.9+0.0 | 66.5+0.3 58.6+0.6 58.0+0.6 | 84.7+0.3 73.84£0.2 72.4+0.2 | 98.3+0.1 97.24+0.1 97.24+0.1
AT+UDA 959+0.1 94.0+£0.1 94.0£0.1 | 68.2+0.4 51.5£0.2 51.3£0.2 | 82.3+0.3 53.5£0.3 52.8+£0.3 | 96.2+0.2 92.7+£0.2 92.5+0.2
ARTUDA 98.6+0.1 98.2+0.1 98.24+0.1 | 69.6+0.6 61.6+0.7 60.9+0.4 | 83.44+0.6 694+12 683+1.4 | 98.6+0.1 97.8+0.1 97.840.1
SRoUDA 97.0£0.0 96.0£0.1 96.0+0.1 | 63.6+0.4 55.040.1 54.440.1 | 84.8402 71.1£0.1 69.6+0.1 | 98.1£0.1 969403 96.84+0.4
DART(clean src) 75.24+0.8 66.7£0.8 66.5+0.8 | 86.2+0.1 72.8+0.3 72.24+0.3

DART (adv src) 98.1£0.3 97.5£02 97.5£0.2 | 72.6+£09 64.3+£1.0 64.1£1.0 | 86.1%+0.1 98.4+0.1 97.6+£0.1 97.6+0.1
DART(kI src) 98.24+0.3 97.8+03 97.840.3 72.840.3 72.1£0.3 | 98.4+0.1 97.5£0.0 97.5+0.0

TABLE XI: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain SYN and different
target domains.

Source— Target USPS—MNIST USPS—MNIST-M USPS—SVHN USPS—SYN

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 98.3+0.1 959+04 958404 | 54.1+£3.4 40.7£22 405£2.2 | 21.2+14 9.8%+1.4 9.6+14 | 408+1.6 332+1.8 33.1+1.8
AT (src only) 98.3+£0.0 97.5£0.0 97.5£0.0 | 60.7+£0.2 482402 48.0£0.2 | 24.0+£0.3 155402 153+0.2 | 46.3+04 38.6+0.4 38.5+0.4
TRADES(src only) 98.4+0.0 97.5+0.0 97.5+0.0 | 60.7+£0.3 48.340.1 48.1£0.1 | 244402 15.1£03 149403 | 46.2+04 39.1+04 39.0+0.4
AT(tgt,pseudo) 98.5+0.1 98.2+0.1 98.240.1 | 63.9+£03 56.3+0.1 56.0£0.1 | 24.94+0.1 19.7£0.1 19.5+0.1 | 455+0.1 419402 41.840.2
TRADES(tgt,pseudo) | 98.5+£0.1 98.240.1 98.240.1 | 64.1+£0.0 58.3+02 57.9+0.2 | 24.7£0.1 20.3+0.2 20.1+0.2 | 453402 42.6+02 42.5+02
AT+UDA 98.24+0.0 97.6+£0.1 97.6+0.1 | 62.4+0.5 504404 50.1£0.3 | 23.0+£0.1 14.6£1.0 145+1.1 | 457+£1.1 39.7+£0.5 39.6+0.4
ARTUDA 99.0+0.0 98.8+0.0 98.8+0.0 | 56.9+0.7 52.240.8 52.1£0.8 | 23.840.9 20.0£03 199403 | 49.0+£1.1 49.3+0.5 49.31+0.5
SRoUDA 98.44+0.0 97.9+0.1 97.94+0.1 | 62.5+£0.1 542404 53.7+04 | 21.44+0.8 18.0£03 17.9+03 | 45.6+0.0 41.6+0.1 41.440.1
DART(clean src) 98.4+0.0 98.4+00 | 66.8£1.0 60.7£0.8 60.61+0.8 50.6+0.4
DART (adv src) 29.7+0.8 25.5+£0.5 25.4+04 | 53.0+£0.2 50.61+0.2

DART(kI src) 98.8+0.1 98.5+0.1 98.5+0.1 | 68.4+0.8 62.0+0.8 61.8+0.8 | 29.0+£0.9 252+0.7 25.1+0.7 | 53.8+£0.5 51.3+0.6 51.3+0.6

TABLE XII: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain USPS and different
target domains.

Source— Target MNIST—MNIST-M MNIST—SVHN MNIST—SYN MNIST—USPS
Algorithm clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc clean acc ped acc aa acc
Natural DANN 624439 459432 456432 | 21.8£02 124406 12.240.7 | 47.0£14 39.0£25 38.8+2.5 | 98.8+0.2 972404 97.1+04
AT(src only) 67.7£0.5 51.8+£0.0 51.440.0 144+0.1 142400 | 50.0£0.5 44.1+£04 44.0+04 | 99.0+£0.1 98.1+0.1 98.1£0.1
TRADES(src only) 67.0£04 522402 519402 | 25.5+09 14.1+0.1 13.9£0.1 | 49.6+0.7 43.9+05 43.8+0.5 | 98.8+0.2 98.0+0.1 98.0+0.1
AT(tgt,pseudo) 70.240.1 61.8+03 61.4+03 | 22.9+0.0 17.940.1 17.74£0.1 | 51.04£0.5 48.0£0.5 47.9+0.5 | 99.0+£0.2 98.4+0.2 98.440.2
TRADES(tgt,pseudo) | 70.0+0.2 63.7+0.1 63.2+0.2 | 22.54+0.1 17.940.2 17.7+£0.2 | 51.24+0.6 48.94+0.7 48.84+0.7 | 99.1£0.2 98.6+0.2 98.6+0.2
AT+UDA 68.9+0.5 54.7+04 542+0.3 | 21.3+£1.3 17.6£0.5 17.5£0.5 | 49.9+04 44.0+04 43.8+£04 | 98.9+0.1 98.1+0.1 98.1+0.1
ARTUDA 63.3+04 56.5+0.7 56.31+0.7 | 20.0+£0.4 18.7+0.1 18.6+0.1 | 52.240.5 51.0£0.6 50.9+0.6 | 99.2+0.1 98.8+0.2 98.840.2
SRoUDA 69.94+0.2 62.0+02 614402 | 23.0+£1.8 18.8404 187403 | 51.240.5 48.6+£0.6 48.5+0.6 | 99.0+£0.2 98.54+0.2 98.54+0.2
DART(clean src) 22.540.1 19.14£03 19.0+£0.3 | 53.2+0.6 51.1+0.6 51.1£0.6 98.54+0.1 98.5+0.1
DART (adv src) 784+0.3 71.3+0.2 71.1+0.2 | 22.6+0.3 99.1£0.2 98.4+0.1 98.4+0.1
DART(kI src) 77.3+£2.1 70.6£2.1 70.4+£2.1 | 22.5+0.1 19.8+0.2 19.7+£0.2 | 53.44+0.3 51.4+0.2 51.3+0.2

TABLE XIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of DIGIT dataset with a fix source domain MNIST and different target domains.

Source—Target MNIST-M—MNIST MNIST-M—SVHN MNIST-M—SYN MNIST-M—USPS
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 98.4£0.1 94.1£1.1 94.0£1.2 | 359+£0.8 5.7£1.6 54+£15 69.0£14 38.4£12 38.0£1.2 | 97.5£0.1 789+2.8 78.1£3.1
AT (src only) 98.7£0.0 97.8£0.1 97.7£0.1 | 34.0+£0.5 22.8+0.2 22.3+0.2 | 68.9+0.1 54.840.3 54.4+0.3 | 96.8+0.1 91.2+0.4 91.0£0.5
TRADES(src only) 98.6+£0.1 97.7£0.0 97.7£0.0 | 32.0+£0.1 24.3+0.1 23.8£0.1 | 67.3+£0.6 54.9+02 543+02 | 96.6+£0.4 92.3+03 92.2+0.3
AT(tgt,pseudo) 98.9+0.1 98.6+£0.0 98.6+£0.0 | 43.4+0.1 32.0+£04 30.8+£04 | 77.3+£0.3 70.1+£0.4 69.8+£0.4 | 98.3+0.1 97.5+£0.1 97.5+0.1
TRADES(tgt,pseudo) | 98.94+0.1 98.6+0.1 98.6+0.1 | 43.24+0.5 31.7+0.4 304404 | 77.7£0.3 72.04+0.6 71.7+0.6 | 98.54+0.3 97.6+0.2 97.6+0.2
AT+UDA 98.8+0.1 98.0+£0.1 98.0+0.1 | 37.3£1.2 18.24+0.8 17.5£0.8 | 73.5+0.6 61.6£0.5 61.3+£0.6 | 96.4+0.5 92.1+0.8 91.940.8
ARTUDA 99.2+0.1 99.0£0.1 99.0£0.1 | 34.5+£29 22.6+0.8 21.4£0.7 88.5£1.3 98.1£0.3 98.1£0.2
SRoUDA 99.1£0.0 98.9+£0.0 98.9+0.0 | 48.2+0.4 38.2+0.1 37.1+£0.2 | 76.44+0.1 70.4+02 70.1£0.2 | 9844+0.1 97.7+£02 97.7£0.2
DART(clean src) 98.9+0.0 98.9+0.0 | 52.3+2.4 41.7+1.6 41.3£1.6 | 92.6+0.4 88.2+£0.9 | 99.1+0.1 98.2+0.2 98.2+0.2
DART(adv src) 99.4+0.1 484418 38.6+13 382+13 | 89.6+£09 855+1.1 85441.1 | 98.940.1

DART(kI src) 99.1£0.0 99.1£0.0 91.840.8 87.4+1.1 872+1.1 | 99.0+£02 98.5+0.2 98.5+0.2

TABLE XIV: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on DIGIT dataset with a fix source domain MNIST-M and different target domains.

B. OfficeHome
Source— Target RealWorld—Art RealWorld— Clipart RealWorld—Product
Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 61.0+0.6 0.4+£0.1 0.0+0.0 | 555+0.6 3.840.5 1.1£02 | 74309 1.9+0.2 0.240.1
AT(src only) 472412 28.0+1.2 273+1.1 | 541£08 409£1.0 39.7£1.0 | 66.7+£0.3 499+1.1 489+13
TRADES(src only) 45.6+£04 27.5+13 26.5+14 | 53.9£1.7 41.9£0.7 41.0£0.6 | 66.9+1.3 48.9+0.8 47.4%+0.5
AT(tgt,pseudo) 46.4+0.8 294+14 28.8%+1.2 | 55.0£05 49.4£0.6 489£05 | 72.3+15 60.4+0.8 59.6+0.9
TRADES(tgt,pseudo) | 479424 27.4404 26.5+03 | 55.6+0.9 49.7+£0.8 49.3+0.8 | 70.0£1.4 61.9+12 61.3+1.2
AT+UDA 50.3+1.5 277404 265403 | 53.8£1.0 442403 43.3+0.2 | 67.0+£1.0 512409 49.7+0.9
ARTUDA 49.5+£2.0 284+1.0 26.1£1.1 48.5+09 46.7+0.5 | 73.0£0.6 58.3£0.4 55.7£0.6
SRoUDA 42.1+14 27.54+0.1 252403 | 554406 47.3+£0.7 462408 | 70.7+£0.6 60.6+1.2 58.6+2.0
DART(clean src) 29.1£1.6 27.2+1.1 | 58.6+£04 49.84+1.1 49.0+1.0 60.2+1.5 59.1*1.4
DART(adv src) 498423 323+1.7 31.3+14 | 57.8+0.5 52.5+0.5 51.9£0.5 | 73.8+0.7
DART(kl src) 53.4+£15 57.4+0.5 73.0£0.6 63.2+0.9 62.51+0.9

TABLE XV: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on OfficeHome dataset with a fix source domain RealWorld and different target domains.

Source—Target Art—Clipart Art—Product Art—RealWorld
Algorithm clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 49.14+0.3 2.8+£0.4 1.1+0.2 | 55.5£0.8 0.9+0.2 0.3+0.1 66.8+£0.8 1.0£0.3 0.1£0.1
AT(src only) 454406 32.0403 30.7£0.2 | 48.5+04 29.8+0.3 28.0+0.6 | 57.242.1 36.1£0.8 34.7%1.1
TRADES(src only) 46.1£0.7 32.840.6 31.5£0.8 | 50.4£0.6 31.2+0.1 29.540.1 | 58.84+1.3 352+0.6 33.4+0.7
AT(tgt,pseudo) 48.0+0.5 41.7+£0.7 41.24+0.7 | 559404 46.2+03 45.6+0.5 | 57.6£0.6 40.5+1.1 39.6+1.0
TRADES(tgt,pseudo) | 48.6£0.3 55.9+04 47.6+0.1 472403 | 57.1£1.6 41.840.2 40.6+0.5
AT+UDA 45.6+0.6 32.940.6 322405 | 4844+1.0 30.0£1.0 28.6%£1.2 | 56.2+£1.6 34.6+09 33.31+0.8
ARTUDA 50.9+1.6 41.7£1.7 40.0+2.0 | 55.0£0.8 41.2+1.0 39.2+1.4 | 61.7+£0.6 42.5£1.0 39.6+04
SRoUDA 48.24+0.5 389405 37.5+0.8 | 52.940.6 45.8+£03 44.6+03 | 57.4+14 44.240.7 42.0+1.1
DART(clean src) 50.44+0.9 422+0.6 41.4+0.5 | 60.1+0.2 46.4+1.4 40.7£0.5 38.5+0.4
DART(adv src) 49.840.3 425405 41.9+0.6 47.1£14 464415 | 61.64+0.7 41.840.3 39.4+0.3
DART (kI src) 43.9+0.2 43.340.2 | 579£1.0 47.74+0.6 62.1£0.6

TABLE XVI: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on OfficeHome dataset with a fix source domain Art and different target domains.

Source—Target Clipart— Art Clipart—Product Clipart—RealWorld
Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 45.24+0.8 0.0+£0.0 0.0+£0.0 | 47.94+0.8 3.6£1.0 1.1+£0.3 | 67.4+1.5 0.6£0.3 0.1£0.1
AT (src only) 344£1.8 14.5+£0.6 13.0£03 | 51.2+1.5 33.1+£0.8 31.7+0.8 | 53.8£1.0 283+0.1 26.5£0.7
TRADES(src only) 30.6£2.5 16.6£0.4 15.1£0.5 | 48.6+15 34.1+£09 32.840.7 | 50.2£2.1 30.9+0.8 28.7£1.2
AT(tgt,pseudo) 39.4£15 23.0£0.1 22.0£04 | 55.6+0.8 46.8+12 46.5+1.2 | 56.5+£0.8 41.5+£0.4
TRADES(tgt,pseudo) | 40.0£1.0 22.0+04 21.1+£0.5 | 56.24+0.3 56.2+0.3 43.8+1.0 42.840.5
AT+UDA 39.6£19 164£1.0 152+1.2 | 52441.1 345407 325413 | 57.6£0.5 32.0£0.8 28.0£1.8
ARTUDA 42.0+£0.2 20.2+1.0 189+1.2 | 56.1£1.3 44.1+£1.4 429+15 | 589+12 39.240.6 37.9+0.5
SRoUDA 36.3£0.3 23.8+£0.6 21.3£0.1 | 53.9+1.0 4724+1.1 457+12 | 55.1£1.7 39.9+1.1
DART(clean src) 242405 22.6%£03 | 57.0£0.3 45.5+0.6 44.8+0.5 | 57.8£03 39.6£0.2 38.3£0.3
DART(adv src) 43.0£1.3 26.1+1.1 25.0+1.0 47.6+£09 47.0+0.8 | 58.0£0.2 41.5+£09 40.4+0.8
DART(kl src) 42.61+0.8 58.3+0.8 48.8+14 48.5+1.3 40.8£0.6 39.91+0.4

TABLE XVII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on OfficeHome dataset with a fix source domain Clipart and different target domains.

Source—Target Product—Art Product—Clipart Product—RealWorld
Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc ped acc aa acc
Natural DANN 49.1£0.3 0.2£0.1 0.0+0.0 | 57.44+0.2 2.0+0.5 0.340.1 60.0+0.6 0.3£0.1 0.040.0
AT (src only) 33.8+1.3 153£04 13.8£04 | 47.24+0.1 34.1+0.6 32.1+0.6 | 56.9£1.3 34.6£1.0 32.1£0.9
TRADES(src only) 29.543.1 1354+09 125409 | 45.7£1.1 32.0£04 30.9+04 | 5454+0.6 33.440.1 32.140.1
AT (tgt,pseudo) 38.5£1.6 203£0.6 193£0.6 | 49.1+£0.8 429404 423406 | 61.4+£15 442+1.2
TRADES(tgt,pseudo) | 37.7£2.2 22.1£0.8 493+1.1 443%£1.7 438%£19 | 61.6£09 44.0£1.5 429+14
AT+UDA 36.1+3.4 14.8+09 14.240.6 | 48.9£0.7 379413 36714 | 5934+1.8 358%+1.1 344+12
ARTUDA 38.3+2.1 18.0£1.4 15.8+1.1 | 48.5£09 42.84+0.8 42.24+0.6 | 62.44+03 42.7+2.0 40.9+23
SRoUDA 33.5£13 224413 20.8+1.1 | 499404 41.6+0.6 39.94+0.3 | 60.2£2.0 43.240.7
DART(clean src) 43.7+£2.5 21.5+08 20.0£1.0 63.5+0.8 43.6+0.5 42.6+0.5
DART(adv src) 41.7£0.5 23.94+0.5 22.2+0.5 | 50.0£0.7 44.8£09 44.4+09 | 64.4+1.1 47.7+£0.9 46.4+1.0
DART(kl src) 21.0£0.1 | 52.0£0.9 443+£1.1 43.6£1.2 44.5+1.2

TABLE XVIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on OfficeHome dataset with a fix source domain Product and different target domains.

C. PACS
Source—Target Photo—Art Photo—Cartoon Photo—Sketch
Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc ped acc aa acc
Natural DANN 89.1+0.2 3.9+43.1 0.0+£0.0 | 80.5£0.2 11.54#2.5 2.2+13 | 74.0+1.1 24.0+£21 5.6%+13
AT (src only) 71.04+£3.0 3274+1.6 31.1%£1.7 | 71.4£19 504+0.6 48.6+£0.2 | 69.3+0.5 61.0+0.6 59.6+0.7
TRADES(src only) 61.5+2.8 332407 324405 | 729+22 50.0+£0.7 47.3£0.5 | 68.94+0.8 593+1.0 58.1*1.4
AT (tgt,pseudo) 82.3£0.7 59.1£0.7 585£09 | 855+0.6 774+10 77.1+£09 | 782+04 75.5+£03 75.1£0.3
TRADES(tgt,pseudo) | 82.1£1.0 63.2+1.5 62.1£1.3 | 84.4+0.2 76.7£0.9 76.5£0.8 | 78.7£0.5 753%£0.7 74.9£0.7
AT+UDA 73.3+£35 441414 295421 | 70.6£1.6 622+15 609+£15 | 70.6+£1.6 622+1.5 60.9£1.5
ARTUDA 56.3+1.2 78.1£0.5 77.5£0.6 | 749+£13 70.4£14 69.2+1.3
SRoUDA 76.1+1.7 564402 547403 | 82.4+13 71.7£1.8 70.1£1.8 | 71.9409 63.7+£1.2 60.842.0
DART(clean src) 852£1.2 58.0£09 56.7£1.3 | 89.4+0.8 82.5+0.8 79.9+04 79.5+0.5
DART(adv src) 84.1+1.2 59.3£0.3 87.7£0.7 80.7£0.5 80.1+0.4 | 81.0+1.0 78.1+04 77.7+£04
DART (kI src) 84.1£0.4 588%£1.5 57.8£1.5 | 87.3+£04 79.5+0.8 79.3%+0.8

TABLE XIX: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on PACS dataset with a fix source domain Photo and different target domains.

Source—Target Cartoon— Art Cartoon—Photo Cartoon— Sketch

Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 84.91+0.7 0.6:£0.3 0.0£0.0 | 92.5+0.7 1.4+0.4 0.0+£0.0 | 7824+09 2574+22 8.7£0.9
AT(src only) 59.6+£1.0 302+1.0 289+1.0 | 779£19 53.8+£0.5 51.8+£0.3 | 77.1£09 66.6+0.6 65.1£0.8
TRADES(src only) 58.7£25 28.0£04 27.1£05 | 789+£13 53.8+£0.8 51.9£1.0 | 74.6£09 67.6+02 66.7+0.2
AT(tgt,pseudo) 76.2+£1.7 55.0£1.6 54.7+1.6 80.0+£0.3 77.4+£0.2 77.1£03
TRADES(tgt,pseudo) | 78.5+1.7 58.0+1.4 56.8+1.0 | 92.24+0.1 82.1+0.5 81.7+0.6 | 79.9+£0.5 77.6+£04 77.5+0.4
AT+UDA 68.9+1.2 462459 233+1.7 | 788+23 61.3+2.0 41.8+5.1 | 759+1.7 67.7£14 66.8+1.2
ARTUDA 76.5+25 533+1.6 522417 | 89.4+09 75.0+£1.7 71.7£1.0 | 80.3£0.4 749+1.0 73.8£l1.1
SRoUDA 72.0+1.5 509+1.1 492416 | 90.3£0.9 79.9+£2.0 79.2+19 | 76.7+£1.2 723+13 71.3%1.3
DART(clean src) 774£1.1 54.64£03 53.840.2 | 94.24+0.5 79.8+1.2 78.6f1.2 81.0£0.7

DART(adv src) 78.2+1.3 90.6+£09 77.6+14 77.1+1.2 | 85.54+1.0 82.4+1.2 82.0+1.3
DART(kl src) 55.5+£1.0 54.6£1.6 | 92.0+£0.1 78.1£0.8 77.5+0.6 | 84.6%0.3 80.5+0.6

TABLE XX: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on PACS dataset with a fix source domain Cartoon and different target domains.

Source—Target Art—Cartoon Art—Photo Art—Sketch

Algorithm clean acc ped acc aa acc clean acc ped acc aa acc clean acc ped acc aa acc
Natural DANN 84.3+0.6 12.4+6.1 1.1£0.8 | 97.9+04 2.7£1.5 0.0+£0.0 | 84.9£0.7 0.6£0.3 17.5£5.2
AT (src only) 792404 639412 63.0+1.0 | 82.5+£0.6 65.8+0.5 653+0.2 | 799+1.1 724412 71.4+12
TRADES(src only) 81.5£1.5 62.5£2.0 60.8£1.9 | 87.9+0.6 70.8£0.8 69.9+0.6 | 78.8£1.1 71.5£0.7 70.7£0.6
AT (tgt,pseudo) 85.1£0.1 76.5£09 76.2£0.8 | 95.0+14 83.1+1.2 82.2+1.2 | 84.8+£0.1 81.1£0.6 81.0£0.6
TRADES(tgt,pseudo) | 85.1£09 77.2£1.0 76.9£1.0 | 95.3+0.7 86.1£0.7 83.3£0.7 83.0£0.7
AT+UDA 78.5+£1.8 65.14+0.6 64.5+0.5 | 79.0+£2.0 57.8+2.1 57.3+19 | 80.8+£0.7 71.6£0.3 70.4%0.6
ARTUDA 88.3+2.1 76.0£1.7 743£2.1 | 95.0£0.6 78.5+1.3 747+13 | 80.3%£1.3 61.5+1.0 53.5+£1.8
SRoUDA 842414 758+0.6 75.1£0.5 | 94.1+0.7 81.5+1.0 80.3%1.1 | 77.3£4.6 73.2+49 72.6+4.8
DART(clean src) 79.1£0.3 95.9+0.7 814+14 803%+1.6 | 89.5£0.6 86.4+£0.5 85.8£0.6
DART(adv src) 88.91+0.4 783+£1.0 | 94.1£04 81.3+0.6 80.6+0.8 | 87.9+09 84.6+09 84.3+09
DART(kl src) 89.4+0.7 80.9+1.0 80.5+1.2 81.1£0.4 80.5+£0.4

TABLE XXI: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on PACS dataset with a fix source domain Art and different target domains.

Source—Target Sketch— Art Sketch— Cartoon Sketch—Photo

Algorithm clean acc pgd acc aa acc clean acc ped acc aa acc clean acc pgd acc aa acc
Natural DANN 68.01+1.2 1.5£1.2 0.7£0.5 72.3+1.4 14.04+4.5 74431 71.1+£4.0 0.3%0.1 0.0+£0.0
AT(src only) 22.3+14 19.0£09 18.64+1.1 | 66.6+1.7 40.2+1.1 38.7+1.5 | 31.74£55 22.7+1.1 222413
TRADES(src only) 26.8+4.2 17.34£2.1 11.64+4.8 | 67.1+0.8 43.4+13 42.6+£1.4 | 350+5.5 21.3+24 123443
AT(tgt,pseudo) 62.4+22 375408 36.7+0.5 | 72.5+£1.8 64.0+1.2 63.8+£1.1 | 88.840.7 73.6£0.7 72.940.7
TRADES(tgt,pseudo) | 69.14£2.3 442425 432422 | 71.6+£0.6 63.8£0.6 63.4+04 | 89.6£0.7 76.4+14 756%+14
AT+UDA 47.0£1.2 285+14 62£1.0 | 67.9+1.6 404+08 38.2+0.6 | 324+33 272421 125443
ARTUDA 495424 317434 31.1+£3.2 | 38.1+2.5 25.5+£1.8 229414 | 489+£1.8 404429 39.64+3.2
SRoUDA 245417 224403 224404 | 724+£1.0 623402 61.3£0.2 | 91.94+0.5 73.1+£3.6 70.54+4.7
DART(clean src) 71.9+1.8 53.1+44 52.444.6 87.8£1.4 76.8£1.0 75941.1
DART(adv src) 67.8£1.4 474429 46.643.0 | 77.3+£0.8 68.24+1.0 67.9+1.1 | 89.3+0.8

DART(kl src) 80.0+£0.5 70.3+0.2 70.11+0.2 77.7£1.7 77.24£1.9

TABLE XXII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on PACS dataset with a fix source domain Sketch and different target domains.

D. VISDA

Source— Target Synthetic—Real Real— Synthetic
Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc
Natural DANN 67.4£0.2 0.5+0.2 0.0£0.0 | 78.6£0.9 0.8+0.1 0.0£0.0
AT(src only) 19.0£0.2 18.0£0.3 17.2£04 | 53.5+£0.8 41.6+04 39.8+04
TRADES(src only) | 18.6£0.1 16.5£0.7 16.4£0.7 | 54.4+0.5 42.6+0.5 41.3+0.6
AT(tgt, fix) 69.6+0.3 58.3+0.7 57.540.7 | 85.7£0.2 82.0£0.2 81.7£0.2
TRADES(tgt, fix) 68.1+£0.7 57.9£0.5 56.9+0.5 | 85.1+0.3 81.5+0.5 81.2+0.5
AT+UDA 48.0£1.1 24.14+09 185%1.4 | 66.4+0.6 66.4+0.6 47.8£0.8
ARTUDA 452448 325427 319426 | 72.5£25 62.6£0.3 60.6£0.4
SRoUDA 48.242.7 33440.7 30.840.7 | 81.2+14 729+13 71.7£1.6
DART(clean src) 69.51+0.2 87.3+0.3 85.3+0.2

DART(adv src) 69.0£04 57.5£0.8 56.9+0.9 | 86.3+0.7 84.4+0.7 84.3+0.7
DART(kI src) 57.4+1.2 58.540.6 85.240.3

TABLE XXIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack
(aa acc) of target test data on VisDA dataset.

APPENDIX D
ADDITIONAL EXPERIMENTAL RESULTS

A. Results on source test data

While our primary objective is to defend against attacks on the target domain, we note that DART continues to exhibit
robustness against adversarial attacks on the source domain. In Table XXIV, we provide the standard and robust accuracy for
the PGD attack with perturbation size o = 2/255 on source test data. These results clearly demonstrate that DART, when
employing an adversarial source or KL source, consistently maintains or even improves robustness on source test data.

Dataset DIGIT OfficeHome PACS VisDA

Algorithm nat acc pgd acc nat acc pgd acc nat acc pgd acc nat acc pgd acc
Natural DANN 96.5+£0.1 85.74£0.1 | 71.240.2 1.2+0.1 89.7£0.4 12.3£1.4 | 88.0£0.7 1.940.2
AT(src only) 96.740.1 90.4+0.2 | 68.94+0.9 47.1£03 | 829+1.6 64.6+1.5 | 60.7+6.1 47.844.9
TRADES(src only) 96.5+0.0 90.5+0.2 | 68.84+0.2 47.5+04 | 81.5£22 62.5+19 | 722+1.8 57.7+1.6
AT(tgt,pseudo) 76.6+0.4 68.2+04 | 45.540.2 28.0+£0.1 | 522414 333+1.1 | 37.7£22 28.7%+1.2
TRADES(tgt,pseudo) | 79.3+1.2 69.64+0.7 | 45.240.8 29.6£0.3 | 55.24+1.1 36.7£0.7 | 37.9£0.6 28.9+0.5
AT+UDA 96.2+0.2 89.6+0.3 | 66.9+09 45.0+0.3 | 83.44+1.0 64.5+1.4 | 82.8+1.0 68.0+0.9
ARTUDA 96.1+0.1 82.840.0 | 67.3£0.3 38.440.2 | 85.1+1.0 47.0£0.2 | 81.0+£3.1 31.542.1
SRoUDA 82.6+0.2 73.0+£0.3 | 46.2+0.2 30.440.2 | 58.3+14 33.7+1.5 | 351+4.0 19.7£1.6
DART(clean src) 96.0+0.0 824402 | 65.1£0.7 37.6+0.4 | 85.14+0.1 51.5£0.6 | 80.9+£2.0 38.6%2.0
DART(adv src) 96.1+£0.0 90.5+0.1 | 65.0+0.6 45.7+04 | 86.0+0.8 68.7+0.5 | 77.840.8 64.3+1.1
DART(kl src) 95.940.0 89.4+0.1 | 64.94+04 44.6+03 | 85.5+0.1 674403 | 80.3+1.2 62.841.2

TABLE XXIV: Standard / Robust accuracy(%) of source test data with an average of all source-target pairs for all datasets.
These experiments compare 11 algorithms across 46 source-target pairs in the exact same conditions.

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Standard UDA Theory

	Adversarially Robust UDA Theory
	Divergence Aware Adversarial Training: a practical defense
	A practical bound
	DART's optimization formulation
	Pseudo-Labels T
	Source choices S

	Using DART to robustify DANN against attacks

	Empirical Evaluation
	DomainRobust: A PyTorch Testbed for UDA under Adversarial Attacks
	Results

	Conclusion
	Appendix A: Proof of Theorem 2
	Appendix B: Experimental Details
	Datasets
	Common Domain Divergence in UDA Methods
	Architectures
	Data Preprocessing and Augmentation
	Hyperparameters

	Appendix C: Results on all source-target pairs
	Digits
	OfficeHome
	PACS
	VISDA

	Appendix D: Additional Experimental Results
	Results on source test data

