
DART: A Principled Approach to Adversarially

Robust Unsupervised Domain Adaptation

Yunjuan Wang∗, Hussein Hazimeh†, Natalia Ponomareva†, Alexey Kurakin†, Ibrahim Hammoud†, Raman Arora∗

∗Johns Hopkins University
†Google Research

Abstract—In this work, we consider a setting where the
goal is to achieve adversarial robustness on a target task, given
only unlabeled training data from the task distribution DT , by
leveraging a labeled training data from a different yet related source
task distribution DS . The absence of the labels on training data
for the target task poses a unique challenge as conventional
adversarial robustness defenses cannot be directly applied. To
address this challenge, we first bound the adversarial population
0-1 robust loss on the target task in terms of (i) empirical 0-
1 loss on the source task, (ii) joint loss on source and target
tasks of an ideal classifier, and (iii) a measure of worst-case
domain divergence. Motivated by this bound, we develop a novel
unified defense framework called Divergence-Aware adveRsarial
Training (DART), which can be used in conjunction with a
variety of standard UDA methods; e.g., DANN [Ganin and
Lempitsky, 2015]. DART is applicable to general threat models,
including the popular `p-norm model, and does not require
heuristic regularizers or architectural changes. We also release
DomainRobust, a testbed for evaluating robustness of UDA
models to adversarial attacks. DomainRobust consists of 4 multi-
domain benchmark datasets (with 46 source-target pairs) and
7 meta-algorithms with a total of 11 variants. Our large-scale
experiments demonstrate that, on average, DART significantly
enhances model robustness on all benchmarks compared to the
state of the art, while maintaining competitive standard accuracy.
The relative improvement in robustness from DART reaches up
to 29.2% on the source-target domain pairs considered.

Index Terms—Unsupervised Domain Adaptation, Adversarial
Robustness.

I. INTRODUCTION

In many machine learning applications, only unlabeled data

is available and the cost of labeling can be prohibitive [Settles,

2009, Zhu and Goldberg, 2022]. In such cases, it is often

possible to obtain labeled training data in a related source

domain albeit with a task distribution different from the target

domain. As an example, suppose the target domain of interest

consists of real photographs of objects. One appropriate source

domain could be hand-drawn images of the same objects. Due

to the distribution shift, learning models using only source data

may lead to poor performance [Ganin and Lempitsky, 2015].

To overcome this challenge, there has been extensive research

on unsupervised domain adaptation (UDA) methods [Ben-

David et al., 2006, Liu et al., 2022, Mansour et al., 2008, 2009,

Wilson and Cook, 2020]. Given labeled data from the source

domain and only unlabeled data from the target domain, UDA

methods aim to learn models that are robust to distribution

shifts and that work well on the target domain.

While standard UDA methods have proven successful in

various applications [Ghafoorian et al., 2017, Liu et al., 2021],

they do not take into account robustness to adversarial attacks.

These attacks involve carefully designed input perturbations

that may deceive machine learning models [Chakraborty et al.,

2018, Goodfellow et al., 2014, Hendrycks and Dietterich, 2019,

Szegedy et al., 2013]. The lack of adversarial robustness can

be a serious obstacle for deploying models in safety-critical

applications. A significant body of research has studied defense

mechanisms for making models robust against adversarial

attacks [Chakraborty et al., 2018, Ren et al., 2020]. However,

standard defenses such as adversarial training are not applicable

as we lack labeled data on the target task. Furthermore, a model

trained on labeled source data alone may not transfer well.

In this work, we study unsupervised domain adaptation

(UDA) with respect to the robust loss. Given labeled data

from a source task distribution, DS and unlabeled data from a

related target task distribution, DT , our goal is to train a model

that performs well on DT while ensuring robustness against

adversarial attacks. This requires controlling the robust loss on

the target task without being able to access labeled data. To

that end, we establish a novel bound on the expected robust

loss over the target distribution in terms of the quantities

that can be computed. Motivated by this bound, we introduce

DART, a unified defense framework against adversarial attacks,

which can be used with a wide class of UDA methods and

for general threat models. Through extensive experiments, we

find that DART outperforms the state of the art on various

benchmarks. Our contributions are as follows.

1) Generalization Bound. We establish a novel bound on the

robust loss on the target task. The bound consists of three

quantities: the source domain loss, a measure of “worst-

case” domain divergence, and the loss of an ideal classifier

over the source domain and the “worst-case” target domain.

2) Unified Defense Framework. Building on our theory, we

introduce Divergence-Aware adversaRial Training (DART),

a versatile defense framework that can be used in conjunc-

tion with a wide range of distance-based UDA methods (e.g.,

DANN [Ganin and Lempitsky, 2015], MMD [Gretton et al.,

2012], CORAL [Sun and Saenko, 2016], etc). Our defenses

are principled, apply to general threat models (including the

popular `p-norm attack), and do not require architectural

modifications.

3) Testbed. To encourage reproducible research in this area, we

release DomainRobust1, a testbed designed for evaluating

the adversarial robustness of UDA methods, under the

common `p-norm threat model. DomainRobust consists of

four multi-domain benchmark datasets: DIGITs (including

MNIST, MNIST-M, SVHN, SYN, USPS), OfficeHome,

PACS, and VisDA. DomainRobust encompasses seven meta-

algorithms with a total of 11 variants, including DART,

Adversarial Training [Madry et al., 2017], TRADES [Zhang

et al., 2019a], and several recent heuristics for robust UDA

such as ARTUDA [Lo and Patel, 2022] and SRoUDA [Zhu

et al., 2023]. The testbed is written in PyTorch and can be

easily extended with new methods.

4) Empirical Evaluations. We conduct extensive experiments

on DomainRobust under a white-box setting for all possible

source-target dataset pairs. The results demonstrate that

DART achieves better robust accuracy than the state-of-

the-art on all 4 benchmarks considered, while maintaining

competitive standard (a.k.a. clean) accuracy. For example,

the average relative improvement across all 20 source-target

domain pairs of DIGITs exceeds 5.5%, while the relative

improvement of robust accuracy on individual source-target

pairs reaches up to 29.2%.

II. RELATED WORK

Unsupervised Domain Adaptation (UDA). In their seminal

study, Ben-David et al. [2006] established generalization

bounds for UDA, which were later extended and studied by

various works [Acuna et al., 2021, Ben-David et al., 2010,

Mansour et al., 2009, Zhang et al., 2019b]; see Redko et al.

[2020] for a survey of theoretical results. One fundamental

class of practical UDA methods is directly motivated by

these theoretical bounds and is known as Domain Invariant

Representation Learning (DIRL). Popular DIRL methods work

by minimizing two objectives: (i) empirical risk on the labeled

source data, and (ii) some discrepancy measure between the

feature representations of the source and target domain, making

these representations domain invariant; e.g., DAN [Long et al.,

2015], DANN [Ganin et al., 2016], CORAL [Sun and Saenko,

2016], MCD [Saito et al., 2018]. However, both the theoretical

results and practical UDA methods do not take adversarial

robustness into consideration.

Adversarial Robustness. Understanding the vulnerability

of deep models against adversarial examples is a crucial area

of research [Akhtar and Mian, 2018, Bai et al., 2021, Biggio

et al., 2013, Goodfellow et al., 2014, Szegedy et al., 2013,

Zhang et al., 2020]. Learning a classifier that is robust to

adversarial attacks can be naturally cast as a robust (min-max)

optimization problem [Madry et al., 2017]. One approach to

tackle this optimization problem is via adversarial training:

training the model over adversarial examples generated using

constrained optimization algorithms such as projected gradient

descent (PGD). Unfortunately, adversarial training and its

variants (e.g., TRADES [Zhang et al., 2019a], MART [Wang

1Code can be found here.

et al., 2019]) require labeled data from the target domain, which

is unavailable in UDA. Another related line of work explores

the transferability of robustness between domains [Shafahi et al.,

2019], which still requires labeled target data to fine-tune the

model.

Adversarial Robustness in UDA. Unlike the supervised

learning setting, there has been a limited number of works

that study adversarial robustness in UDA, which we discuss

next. RFA [Awais et al., 2021] employed external adversarially

pretrained ImageNet models for extracting robust features. How-

ever, such pretrained robust models may not be available for the

task at hand, and they are typically computationally expensive

to pretrain from scratch [Brown et al., 2020]. ASSUDA [Yang

et al., 2021] designed adversarial self-supervised algorithms for

image segmentation tasks, with a focus on black-box attacks.

Similarly, ARTUDA [Lo and Patel, 2022] proposed a self-

supervised adversarial training approach, which entails using

three regularizers and can be regarded as a combination of

DANN [Ganin and Lempitsky, 2015] and TRADES [Zhang

et al., 2019a]. SRoUDA [Zhu et al., 2023] introduced data

augmentation techniques to encourage robustness, alternating

between a meta-learning step to generate pseudo labels for the

target and an adversarial training step (based on pseudo labels).

While all these algorithms demonstrated promising results,

they are heuristic in nature. In contrast, our algorithm DART

is not only theoretically justified but also exhibits excellent

performance–it outperforms ARTUDA and SRoUDA on all

the benchmarks considered.

III. PROBLEM SETUP AND PRELIMINARIES

In this section, we formalize the problem setup and introduce

some preliminaries on UDA theory.

UDA setup. Without loss of generality, we focus on

binary classification with an input space X ⊆ R
d (e.g.,

space of images) and an output space Y = {±1}. Let

H ⊆ {h : X → Y} be the hypothesis class and denote the

loss function by ` : R × Y → R+. We define the source

domain DS and target domain DT as probability distributions

over X × Y . Given an arbitrary distribution D over X × Y ,

we use the notation DX to refer to the marginal distribution

over X ; e.g., DX
T denotes the unlabeled target domain. During

training, we assume that the learner has access to a labeled

source dataset ZS = {(xsi , y
s
i)}

ns

i=1 drawn i.i.d. from DS and

an unlabeled target dataset {xti}
nt

i=1 drawn i.i.d. from DX
T . We

use XS and XT to refer to the ns × d source data matrix and

nt × d target data matrix, respectively.

Robustness setup. We assume a general threat model where

the adversary’s perturbation set is denoted by B : X → 2X .

Specifically, given an input example x ∈ X , B(x) ⊆ R
d

represents the set of possible perturbations of x that an

adversary can choose from. One popular example is the

standard `p threat model that adds imperceptible perturbations

to the input: B(x) = {x̃ : ‖x̃ − x‖p ≤ α} for a fixed norm

p and a sufficiently small α. In the context of image

classification, another example of B(x) could be a discrete set

of large-norm (perceptible) transformations such as blurring,

weather corruptions, and image overlays [Hendrycks and

Dietterich, 2019, Stimberg et al., 2023]. In what follows, our

theoretical results will be applicable to a general B(x), and our

experiments will be based on the standard `∞ threat model.

We denote the standard loss and the adversarial loss of a

classifier h on a distribution D by

L(h;D) := E(x,y)∼D [`(h(x), y)] and

Ladv(h;D) := E(x,y)∼D sup
x̃∈B(x)

[`(h(x̃), y)] ,

respectively. Given source samples ZS , we denote the empirical

standard source loss as L(h;ZS) := 1
n

∑n
i=1 `(h(x

s
i), y

s
i).

We add superscript 0/1 when considering 0-1 loss; i.e,

`0/1, L0/1, L
0/1
adv . Our ultimate goal is to find a robust classifier

h that performs well against adversarial perturbations on the

target domain; i.e., h = argminh∈H L
0/1
adv (h;DT).

A. Standard UDA Theory

In this section, we briefly review key quantities and a UDA

learning bound that has been introduced in the seminal work

of Ben-David et al. [2010] – these will be important for the

generalization bound we introduce in Section IV. We first

introduce H∆H-divergence, which measures the ability of the

hypothesis class H to distinguish between samples from two

input distributions.

Definition 1 (H∆H-divergence [Ben-David et al., 2010]).

Given some fixed hypothesis class H, let H∆H denote the

symmetric difference hypothesis space, which is defined by:

h ∈ H∆H ⇔ h(x) = h1(x)⊕ h2(x) for some (h1, h2) ∈ H2,

where ⊕ stands for the XOR operation. Let DX
S and DX

T be

two distributions over X . Then the H∆H-divergence between

DX
S and DX

T is defined as:

dH∆H(DX
S ,DX

T)

= 2 sup
h∈H∆H

∣
∣
∣Ex∼DX

S
1 [h(x) = 1]−Ex∼DX

T
1 [h(x) = 1]

∣
∣
∣ ,

where 1(·) is the indicator function.

Here dH∆H(DX
S ,DX

T) captures an interesting interplay

between the hypothesis class and the source/target distributions.

On one hand, when the two distributions are fixed, a richer

H tends to result in a larger H∆H-divergence. On the other

hand, for a fixed H, greater dissimilarity between the two

distributions leads to a larger H∆H-divergence. In practice,

H∆H-divergence is generally intractable to compute exactly,

but it can be approximated using finite samples, as we will

discuss in later sections. With this definition, Ben-David et al.

[2010] established an important upper bound on the standard

target loss, which we recall in the following theorem.

Theorem 1 (Ben-David et al. [2010]). Given a hypothesis

class H, the following holds:

L0/1(h;DT)
︸ ︷︷ ︸

Target Loss

≤L0/1(h;DS)
︸ ︷︷ ︸

Source Loss

+
1

2
dH∆H(DX

S ,DX
T)

︸ ︷︷ ︸

Domain Divergence

+γ(DS ,DT)
︸ ︷︷ ︸

Ideal Joint Loss

.

(1)

where γ(DS ,DT) := minh∗∈H[L0/1(h∗;DS)+L0/1(h∗;DT)]
is the joint loss of an ideal classifier that works well on both

domains.

We note that Ben-David et al. [2010] also established a

corresponding generalization bound, but the simpler bound

above is sufficient for our discussion. The ideal joint loss γ
can be viewed as a measure of both the label agreement between

the two domains and the richness of the hypothesis class, and

it cannot be directly computed or controlled as it depends on

the target labels (which are unavailable under UDA). If γ is

large, we do not expect a classifier trained on the source to

perform well on the target, and therefore γ is typically assumed

to be small in the UDA literature. In fact, David et al. [2010]

showed that having a small domain divergence and a small

ideal joint risk is necessary and sufficient for transferability.

Assuming a small γ, Theorem 1 suggests that the target loss

can be controlled by ensuring that both the source loss and

domain divergence terms in (1) are small – we revisit some

practical algorithms for ensuring this in Section V.

IV. ADVERSARIALLY ROBUST UDA THEORY

In this section, we derive an upper bound on the adversarial

target loss, which will be the basis of our proposed defense

framework. We present our main theorem below and defer the

proof to Appendix A.

Theorem 2. Let H be a hypothesis class with finite VC dimen-

sion VC(H) and adversarial VC dimension AVC(H) [Cullina

et al., 2018]. If ZS and ZT are labeled samples of size2 n
drawn i.i.d. from DS and DT , respectively, and XS and XT

are the corresponding data matrices, then for any δ ∈ (0, 1),
w.p. at least 1− δ, for all h ∈ H,

L
0/1
adv (h;DT) ≤ L0/1(h;ZS)

︸ ︷︷ ︸

Source Loss

+ε (2)

+

Worst-case target
︷ ︸︸ ︷

sup
x̃ti∈B(xti),∀i∈[n],

Z̃T={(x̃ti,y
t
i)}

n

i=1

[

dH∆H(XS , X̃T)
︸ ︷︷ ︸

Domain Divergence

+2 γ(ZS , Z̃T)
︸ ︷︷ ︸

Ideal Joint Loss

]

,

where the generalization gap ε =

O(
√

max{VC(H),AVC(H)} log(n)+log(1/δ)
n), the (empirical)

ideal joint loss is defined as γ(ZS ,ZT) :=
minh∗∈H

[
L0/1(h∗;ZS) + L0/1(h∗;ZT)

]
, and the (empirical)

H∆H-divergence can be computed as follows3:

dH∆H(XS ,XT)

=2
(

1−min
h∈H∆H

[1

n

∑

x:h(x)=0

1(x∈XS)+
1

n

∑

x:h(x)=1

1(x∈XT)
])

. (3)

Theorem 2 states that the adversarial target loss can be

bounded from above by three main terms (besides generaliza-

tion error ε): source loss, domain divergence, and the ideal

2We assume that ZS and ZT have the same size for simplicity. The result
still applies to different sizes.

3In Definition 1, we defined dH∆H for two input distributions. Here we
use an equivalent definition in which the two inputs are data matrices.

joint loss. These three terms are similar to those in the bound

of Theorem 1 for standard UDA; however, the main difference

lies in that Theorem 2 evaluates the domain divergence and

ideal joint loss terms for a “worst-case” target domain (instead

of the original target domain). The first two terms (source loss

and domain divergence) do not require target labels and can

thus be directly computed and controlled. However, the ideal

joint risk in Theorem 2 requires labels from the target domain

and cannot be directly computed.

In Section III-A, we discussed how the ideal joint loss

in the standard UDA setting is commonly assumed to be

small and is thus not controlled in many popular practical

methods. Specifically, when the hypothesis class consists of

neural networks, if we decompose h into a feature extractor

g and a classifier f (i.e., h = f ◦ g), the ideal joint

loss can be written as a function of g: γ(DS ,DT , g) :=
minf∗:f∗◦g∈H

[
L0/1(f∗ ◦ g;DS) + L0/1(f∗ ◦ g;DT)

]
. In the

literature [Ben-David et al., 2006], γ(DS ,DT , g) is commonly

assumed to be small for any reasonable g that is chosen

by the learning algorithm. However, for a fixed g, the ideal

joint loss with the worst-case target in our setting may be

generally larger than that of the standard UDA setting. While

one possibility is to assume this term remains small (as in the

standard UDA setting), we hypothesize that in practice it may

be useful to control this term by finding an appropriate feature

extractor g. In the next section, we discuss a practical defense

framework that attempts to minimize the adversarial target risk

by controlling all three terms in Theorem 2, including the ideal

joint loss. In the experiments, we also present evidence that

controlling all three terms typically leads to better results than

controlling only the source loss and domain divergence.

Although our result is inspired by Ben-David et al. [2006],

it is non trivial and can not be obtained by a straightforward

replacement of the loss with an adversarial loss. Specifically,

the proof technique in Ben-David et al. [2006] is not sufficient

to obtain a generalization bound (from sample to population)

for the adversarial version of H∆H-divergence. Therefore,

Theorem 2 requires carefully decomposing the adversarial

H∆H-divergence (among other terms in the objective). We

here provide a brief proof sketch and refer the reader to the

appendix for details.

Proof Sketch: Given input distribution DT , we define a set of

all possible perturbed distributions as P(DT)={D̃ : (x̃, y)∼
D̃, (x, y) ∼ DT , x̃ ∈ B(x)}. The first step is to control the

adversarial target loss as follows:

L
0/1
adv (h;DT)

≤ L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS , D̃T) +
1

2
dH∆Hadv

(DX
S ,DX

T),

(4)

where we define the expected and empirical adversarial

target domain divergence, namely dH∆Hadv
(DX

S ,DX
T) and

dH∆Hadv
(XS ,XT), respectively, as follows:

dH∆Hadv
(DX

S ,DX
T) :=2 sup

h∈H∆H

∣
∣
∣
∣
∣
E(x,y)∼DT

sup
x̃∈B(x)

1 [h(x) = 1]

−E(x,y)∼DS
1 [h(x) = 1]

∣
∣
∣
∣
∣

=2 sup
h∈H∆H

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]

−E(x,y)∼DS
1 [h(x) = 1]

∣
∣
∣
∣
∣

(Khim and Loh [2018])

dH∆Hadv
(XS ,XT) :=2 sup

h∈H∆H

∣
∣
∣
∣
∣

1

n

n∑

i=1

sup
x̃t
i
∈B(xt

i
)

1
[
h(x̃t

i) = 1
]

−
1

n

n∑

i=1

1 [h(xsi) = 1]

∣
∣
∣
∣
∣
.

Under the same perturbation constraints, we have

dH∆Hadv
(DX

S ,DX
T) ≤ sup

D̃T∈P(DT)

dH∆H(DX
S , D̃X

T),

dH∆Hadv
(XS ,XT) ≤ sup

X̃T∈P(XT)

dH∆H(XS , X̃T).

Since our goal is to establish a high-probability bound, we

introduce a key step that builds the connection between the

population adversarial divergence and the empirical adversarial

divergence based on the definitions above:

dH∆Hadv
(DX

S ,DX
T)− dH∆Hadv

(XS ,XT)

≤ dHadv∆Hadv
(D̃X

T , X̃T) + dH∆H(DX
S ,XS),

where we define

dHadv∆Hadv
(D̃X

T , X̃T) :=2 sup
h∈H∆H

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x)=1]

−
1

n

n∑

i=1

sup
x̃t
i
∈B(xt

i
)

1
[
h(x̃ti)=1

]

∣
∣
∣
∣
∣
. (5)

Note that dH∆H(DX
S ,XS) and dHadv∆Hadv

(D̃X
T , X̃T) can be

controlled via the standard [Vapnik, 1999] and adversarial

VC theory [Cullina et al., 2018]. Plugging these bounds and

Equation (5) back into the Equation (4) completes the proof.

V. DIVERGENCE AWARE ADVERSARIAL TRAINING: A

PRACTICAL DEFENSE

Recall that in the standard UDA setting, a fundamental class

of UDA methods – DIRL – are based on the upper bound

(1) or variants that use other domain divergence measures

[Ganin et al., 2016, Li et al., 2017a, Zellinger et al., 2017].

These methods are based on neural networks consisting of two

main components: a feature extractor g that generates feature

representations and a classifier f that generates the model

predictions. Given an example x (from either the source or

target domain), the final model prediction is given by f(g(x))
(which we also write as (f ◦ g)(x), h = f ◦ g ∈ H). The key

insight is that if the feature representations generated by g are

domain-invariant (i.e., they are similar for both domains), then

the domain divergence will be small. Practical algorithms use

a regularizer Ω that acts as a proxy for domain divergence.

Thus, the upper bound on the standard target loss in (1) can

be controlled by identifying a feature transformation g and a

classifier f that minimize the combined effect of the source

loss and domain divergence; i.e.,

min
g,f

L(f ◦ g;ZS)
︸ ︷︷ ︸

Empirical Source Loss

+ Ω(XS ,XT , g)
︸ ︷︷ ︸

Empirical Proxy for Domain Divergence

. (6)

Such strategy is the basis behind several practical UDA meth-

ods, such as Domain Adversarial Neural Networks (DANN)

[Ganin et al., 2016], Deep Adaptation Networks [Li et al.,

2017a], and CORAL [Sun and Saenko, 2016]. As an example,

DANN directly approximates H∆H-divergence in (3); it

defines Ω as the loss of a “domain classifier”, which tries

to distinguish between the examples of the two domains

(based on the feature representations generated by g). We

list some common UDA methods and their corresponding Ω
in Appendix B-B.

We now propose a practical defense framework based on the

theoretical guarantees that we derived in Section IV, namely

DART (Divergence Aware adveRsarial Training). We first

motivate the proposed algorithm by leveraging Theorem 2 in

Section V-A, followed by presenting the formal optimization

formulation in Section V-B. Finally, we provide a concrete

instance of the proposed algorithm in Section V-C.

A. A practical bound

We consider optimizing upper bound (2) in Theorem 2.

Given a feature extractor g and a classifier f , the upper bound

in Theorem 2 can be rewritten as follows,

L
0/1
adv (f ◦g;DT)≤L0/1(f ◦g;ZS) + ε

+ sup
x̃ti∈B(xti),∀i∈[n]

Z̃T={(x̃ti,y
t
i)}

n

i=1

[

dH∆H(XS , X̃T)+2γ(ZS , Z̃T , g)
]

, (7)

Note that minimizing this bound requires optimizing both

g and f . Moreover, for any given g, the ideal joint loss

γ(ZS , Z̃T , g) requires optimizing a separate model. To

avoid optimizing separate models at each iteration and

obtain a more practical method, we further upper bound

Equation (7). Specifically, we note that the ideal joint

loss can be upper bounded as follows: γ(ZS ,ZT , g) =
minf∗:f∗◦g∈H

[
L0/1(f∗ ◦ g;ZS) + L0/1(f∗ ◦ g;ZT)

]
≤

(L0/1(f ◦ g;ZS) + L0/1(f ◦ g;ZT)) for any f such that

f ◦ g ∈ H. Plugging the latter bound in Equation (2) gives us

the following:

L
0/1
adv (f ◦g;DT) ≤ 3L0/1(f ◦g;ZS) + ε

+ sup
x̃ti∈B(xti),∀i∈[n]

Z̃T={(x̃ti,y
t
i)}

n

i=1

[

dH∆H(XS , X̃T)+2L0/1(f ◦g; Z̃T)
]

. (8)

B. DART’s optimization formulation

DART is directly motivated by bound (8). To approximate

the latter bound, we first fix some UDA method that satisfies

form (6) and use the corresponding Ω as an approximation of

dH∆H. Let Z̃S = {(x̃si , y
s
i)}

ns

i=1 denote the source data (which

can be either the original, clean source ZS or potentially a

transformed version of it, as we discuss later) and let X̃S be

the corresponding data matrix. To approximate the third term

in (8), we assume access to a vector of target pseudo-labels ŶT

corresponding to the target data matrix XT – we will discuss

how to obtain pseudo-labels later in this section. Using the

latter approximations in bound (8), we train an adversarially

robust classifier by solving the following optimization problem:

min
g,f

(

L(f ◦ g; Z̃S)

+sup
x̃ti∈B(xti),∀i∈[nt]

[
λ1Ω(X̃S , X̃T , g)+λ2L(f ◦g; (X̃T , ŶT))

])

, (9)

where (λ1, λ2) are tuning parameters. Intuitively, a larger

λ1 places greater emphasis on distinguishing the differences

between the transformed source domain and the adversarial

target domain. In contrast, a larger λ2 focuses more on

learning models that minimize the adversarial target loss using

the target pseudo-labels.

We remark that problem (9) represents a general optimization

formulation–the choice of the optimization algorithm depends

on the model (g, f) as well as the nature of the perturbation

set B. If a neural network is used along with the standard

`p-norm perturbation set, then problem (9) can be optimized

similar to standard adversarial training, i.e., the network can

be optimized using gradient-based algorithms like SGD, and

at each iteration the adversarial target examples X̃T can be

generated via projected gradient descent (PGD) [Madry et al.,

2017]. We provide the pseudocode of DART in Algorithm 1.

Algorithm 1 Divergence-Aware adveRsarial Training (DART)

Require: Labeled source training data {(xsi , y
s
i)}

ns

i=1, unla-

beled target training data XT = {xti}
nt

i=1. Feature extractor

g, target classifier f . Perturbation set B(·). Training

iteration T . Checkpoint frequency K. Pseudo-labeling

approach.

1: Pre-train f, g using Equation (6).

2: Calculate pseudo-label ŶT for unlabeled target training

data.

3: for t = 1, 2, . . . T do

4: Sample a random mini-batch of source and target

examples with the same batch size.

5: Choose either clean source examples or apply one of the

following two transformations to the source examples:

adversarial or KL.

6: Update f, g by optimizing over Equation (9).

7: if t % K = 0 then

8: If the pseudo labeling approach chosen can generate

new pseudo labels during training, update the pseudo-

labels ŶT for the unlabeled target training data.

Otherwise, keep using the initial pseudo labels.

9: end if

10: end for

11: Return f ◦ g.

1) Pseudo-Labels ŶT: The third term in bound (9) requires

target labels, which are unavailable under the UDA setup.

We thus propose using pseudo-labels, which can be obtained

through various methods [Kage et al., 2024]. Here, we describe

a simple approach that assumes access to a proxy for evaluating

the model’s accuracy (standard or robust) on the target domain.

This is the same proxy used for hyperparameter tuning.

For example, this proxy could be the accuracy on a small,

labeled validation set if available or any UDA model selection

criterion [Wilson and Cook, 2020, Section 4.7]. We maintain

a pseudo-label predictor that aims at generating pseudo-labels

for the target data. Initially, this predictor is pretrained using

a standard UDA method in Equation (6). We then use these

pseudo-labels to optimize the model (g, f) as in (9). To improve

the quality of the pseudo-labels, we periodically evaluate the

model’s performance (standard accuracy) based on the pre-

selected proxy and assign the model weights to the pseudo-label

predictor if the model performance has improved.

DART can use any pseudo labeling approach from the

literature. Here we present a simple approach that we used

in the experiments. We assume that we are given a proxy

that can be used to evaluate the model’s accuracy (standard

or robust)–this is the same proxy used for hyperparameter

tuning. We maintain a pseudo-label predictor hp (with the

same model architecture as f ◦ g). In step 2 of Algorithm 1,

we assign weights of f ◦ g to hp, and generate pseudo-labels

for the target data ŶT = hp(XT). In step 8 of Algorithm 1, we

approximate the standard accuracy of f ◦ g (using the proxy).

If the accuracy is better than that of the current pseudo-label

predictor, we update the pseudo-label predictor’s (hp) weights

to that of f ◦ g; otherwise, the pseudo-label predictor’s (hp)

weights remain unchanged. We then regenerate the pseudo-

labels ŶT = hp(XT).
2) Source choices Z̃S: We investigate three natural choices

of transformations of the source data Z̃S = {(x̃si , y
s
i)}

ns

i=1:

1) Clean source: use the original (clean) source data; i.e.,

x̃si = xs
i . 2) Adversarial source: choose the source data

that maximizes the adversarial source loss; i.e., x̃s
i =

argmaxx̃i∈B(xs
i
) `(h(x̃i); y

s
i), which is the standard way of gen-

erating adversarial examples. 3) KL source: choose the source

data that maximizes the Kullback-Leibler (KL) divergence of

the clean and adversarial predictions [Zhang et al., 2019a]; i.e.,

x̃si = argmaxx̃i∈B(xs
i
) KL(h(x̃i), h(x

s
i)). At each iteration, the

adversarial and KL sources can be generated using the same

optimization algorithm used to generate the adversarial target

examples (e.g., PGD for an `p perturbation set).

C. Using DART to robustify DANN against `∞ attacks

Here we provide a concrete instance of framework (9), using

DANN as the base UDA method, and assuming the standard

(white-box) `∞ threat model with perturbation set B∞(x) =
{x̃ : ‖x̃ − x‖∞ ≤ α} for some positive scalars p and α. In

DANN, let g be the feature extractor, f be the network’s label

predictor, and d be the domain classifier (a.k.a. discriminator),

which approximates the divergence between the two domains.

With this notation, the empirical proxy for domain divergence

Ω can be written as ΩDANN(XS ,XT , g, d) = − 1
ns

∑ns

i=1 `((d ◦

g)(xsi), 1) −
1
nt

∑nt

i=1 `((d ◦ g)(xt
i), 0), which represents the

negated loss of the domain classifier d (which classifies source

domain examples as 1 and target examples as 0). To find a

robust DANN against `∞ attacks, Equation (9) can be written

more explicitly as:

min
f,g

sup
d

sup
‖x̃t

i
−xt

i
‖∞≤α,∀i

1

ns

ns∑

i=1

`((f ◦ g)(x̃si), y
s
i)

− λ1

(

1

ns

ns∑

i=1

`((d ◦ g)(x̃si), 1) +
1

nt

nt∑

i=1

`((d ◦ g)(x̃t
i), 0)

)

+ λ2
1

nt

nt∑

i=1

`((f ◦ g)(x̃ti), hp(x
t
i)),

where hp is a pseudo-label predictor. x̃si can be chosen based

on previous discussion in Section V-B2.

One common strategy for solving the problem above is

by alternating optimization where we iterate between: (i)

optimizing for transformed source and target data x̃si and

x̃ti for all i, (ii) optimizing over the domain divergence d,

(iii) optimizing the neural network f and g. The optimization

problem over the neural network’s weights (f, g, d) can be

done using gradient based methods such as SGD. Optimization

over the transformed data X̃S and X̃T can be done using a

wide range of constrained optimization methods [Bertsekas,

2016], such as projected gradient descent (PGD) [Madry et al.,

2017].

VI. EMPIRICAL EVALUATION

A. DomainRobust: A PyTorch Testbed for UDA under Adver-

sarial Attacks

We conduct large-scale experiments on DomainRobust:

our proposed testbed for evaluating adversarial robustness

under the UDA setting. DomainRobust focuses on image

classification tasks, including 4 multi-domains meta-datasets

and 11 algorithms. Our implementation is PyTorch-based and

builds up on DomainBed [Gulrajani and Lopez-Paz, 2020],

which was originally developed for evaluating the (standard)

accuracy of domain generalization algorithms.

a) Datasets: DomainRobust includes four multi-domain

meta-datasets:

1) DIGIT datasets [Peng et al., 2019] (includes 5 popular

digit datasets across 10 classes, namely MNIST [LeCun

et al., 1998], MNIST-M [Ganin and Lempitsky, 2015],

SVHN [Netzer et al., 2011], SYN [Ganin and Lempitsky,

2015], USPS [Hull, 1994]);

2) OfficeHome [Venkateswara et al., 2017] (includes 4 do-

mains across 65 classes: Art, Clipart, Product, RealWorld)

3) PACS [Li et al., 2017b] (includes 4 domains across 7

classes: Photo, Art Painting, Cartoon, Sketch);

4) VisDA [Peng et al., 2017] (includes 2 domains across 12

classes: Synthetic and Real).

Further details of each dataset are presented in Appendix B-A.

We consider all pairs of source and target domains for each

dataset. For each dataset in DomainRobust, we want to rank

domains based on their complexity. To do so, we take all

images from a particular domain, compute the histogram of

pixel values from each image and calculate the entropy. We

average these entropy values across all images in the domain,

and use this score as a representation of complexity or hardness

of the domain. The domains are ranked by entropy, from high

to low (indicating complexity from complex to simple), as

follows:

1) DIGITs: MNIST-M>SVHN>SYN>USPS>MNIST.

2) OfficeHome: Art>RealWorld>Product>Clipart.

3) PACS: Photo>Art>Cartoon>Sketch.

4) VISDA: Real>Synthetic.

b) Algorithms: We study 7 meta-algorithms (with a total

of 11 variants). Unless otherwise noted, we use DANN as the

base UDA method, i.e., we fix the domain divergence Ω to

be DANN’s regularizer and use it for all algorithms (except

source-only models). We consider the following algorithms:

• Natural DANN. This is standard DANN without any defense

mechanism.

• Source-only models, which include AT(src) and

TRADES(src). We apply Adversarial Training [Madry

et al., 2017] and TRADES [Zhang et al., 2019a] only on

labeled source data.

• Pseudo-labeled target models, which include AT(tgt,pseudo)

and TRADES(tgt,pseudo). We first train a standard DANN

and use it to predict pseudo-labels for the unlabeled target

data. We then apply standard adversarial training or TRADES

on the pseudo-labeled target data.

• AT+UDA. We train a UDA model where the source examples

are all adversarial and the target examples are clean.

• ARTUDA [Lo and Patel, 2022]. ARTUDA can be seen as

a combination of DANN [Ganin and Lempitsky, 2015] and

TRADES [Zhang et al., 2019a]. In comparison to DART

with clean source, ARTUDA applies two domain divergences

to measure the discrepancy between clean source and clean

target, as well as between clean source and adversarial target.

Additionally, ARTUDA’s methodology for generating adver-

sarial target examples does not take the domain divergence

into consideration, which differs from DART.

• SRoUDA [Zhu et al., 2023]. SRoUDA alternates between

adversarial training on target data with pseudo-labels and fine-

tuning the pseudo-label predictor. The pseudo-label predictor

has a similar role to that in DART; it is initially trained

using a standard UDA method and is then continuously

fine-tuned via a meta-step, a technique originally proposed

by [Pham et al., 2021]. Moreover, Zhu et al. [2023]

introduced novel data augmentation methods such as random

masked augmentation to further enhance robustness.

• DART. We experiment with DART for three different source

choices as described in Section V; namely, DART(clean

src), DART(adv src), and DART(kl src).

Table I presents the optimization formulations of the dis-

cussed algorithms for easy comparison. For fairness, we apply

the same data augmentation scheme that is used in [Gulrajani

and Lopez-Paz, 2020] (described in Appendix B-D) across all

algorithms including SRoUDA.

c) Architecture and optimization: For DIGIT datasets, we

consider multi-layer convolutional networks (see Table VIII

in the appendix for the architecture). For the other datasets,

we consider ResNet50 (pre-trained using ImageNet) as the

backbone feature extractor and all batch normalization layers

frozen. We consider a linear layer as the classifier on top of

the feature extractor. We use cross-entropy loss and Adam

[Kinga et al., 2015] for optimization. We first pre-train each

model using DANN, while periodically evaluating the standard

accuracy of different checkpoints during pre-training. We then

pick the checkpoint with the highest standard accuracy and

use it as an initialization for all algorithms. We use the same

number of training iterations for pre-training and running the

algorithms.

d) Robustness Setup: Although Theorem 2 and Algo-

rithm 1 applies to general perturbation sets, our experiments

focus on the most commonly used `∞-norm perturbation set

B(x) = {x̃ : ‖x̃ − x‖∞ ≤ α} and α = 2/255. During training,

adversarial examples are generated using 5 steps of PGD with

step size 1/255 and random restarts. The small perturbation

size is chosen to enable a thorough exploration that ensures

that optimal adversarial examples would be identified at each

iteration. Specifically, a PGD attack with a step size of 1/255

over 5 steps (the attack search length of 5× 1/255 should be

at least as large as twice the perturbation radius of 2× 2/255),

combined with random initialization, effectively balancing the

attack strength and computational feasibility. We also conducted

experiments with a larger perturbation size of 8/255 using a step

size of 4/255 over 5 steps on a smaller subset of experiments.

However, we believe a thorough exploration of this larger

perturbation setting would require a finer step size, such as

1/255. Achieving this would require at least 17 attack steps to

ensure sufficient coverage of the attack space, which imposes

an impractical computational cost given the extensive set of

experiments conducted so far.

We evaluate all algorithms on the target data using standard

accuracy and robust accuracy, computed using two different

attack methods: (i) PGD attack with 20 iterations, and (ii)

AutoAttack [Croce and Hein, 2020b], which includes four

diverse attacks, namely APGD-CE, APGD-target, FAB [Croce

and Hein, 2020a], and Square Attack [Andriushchenko et al.,

2020]. Note that these attack methods have full access to the

model parameters (i.e., white-box attacks), and are constrained

by the same perturbation size α. If not specifically stated, we

evaluate on using the same α used for training.

e) Hyperparameter tuning: We follow an oracle setting

where a small labeled validation set from the target domain

is used for tuning. This approach is commonly used for

hyperparameter tuning in the literature on UDA [Kumar et al.,

2018, Long et al., 2013, Shen et al., 2018, Wei and Hsu, 2018].

If no labeled validation set is available, the oracle setting can

be viewed as an upper bound on the performance of UDA

methods. For the source domain, we keep 80% of the data

(90% for VisDA). For the target domain, we split the data into

Standard UDA minf,g L(f ◦ g,ZS) + λ1Ω(XS ,XT , g).

AT(src only) minf,g maxx̃s
i
∈B(xs

i
),∀i∈[ns] L(f ◦ g, (X̃S , YS)).

TRADES(src only) minf,g L(f ◦ g, (XS , YS)) + λ1 maxx̃s
i
∈B(xs

i
),∀i∈[ns] KL(f ◦ g(X̃S), f ◦ g(XS)).

AT(tgt,pseudo) minf,g maxx̃t
i
∈B(xt

i
),∀i∈[nt]

L(f ◦ g, (X̃T , ŶT)), where ŶT is the fixed pseudo labels.

TRADES(tgt,pseudo) minf,g L(f ◦ g, (XT , ŶT)) + λ1 maxx̃t
i
∈B(xt

i
),∀i∈[nt]

KL(f ◦ g(X̃T), f ◦ g(XT)), where ŶT is the fixed pseudo labels.

AT+UDA minf,g
(

L(f ◦ g, (X̃S , YS)) + λ1Ω(X̃S ,XT , g)
)

, where X̃S = argmaxx̃s
i
∈B(xs

i
),∀i∈[ns] L(f ◦ g, (X̃S , YS)).

ARTUDA minf,g L(f ◦ g, (XS , YS)) + λ1KL(f ◦ g(X̃T), f ◦ g(XT)) + λ2

(

Ω(XS ,XT , g) + Ω(XS , X̃T , g)
)

,

where X̃T = argmaxx̃t
i
∈B(xt

i
),∀i∈[nt]

KL(f ◦ g(X̃T), f ◦ g(XT)).

SRoUDA minf,g maxx̃t
i
∈B(xt

i
),∀i∈[nt]

L(f ◦ g, (X̃T , ŶT)), where ŶT is the pseudo labels

produced by a separate source model that is kept updated via a meta-step (see Zhu et al. [2023] for details).

DART minf,g L(f ◦ g, Z̃S) + maxx̃t
i
∈B(xt

i
),∀i∈[nt]

(

λ1Ω(X̃S , X̃T , g) + λ2L(f ◦ g, X̃T , ŶT)
)

,

where X̃S has three options as discussed in Section V-B2, ŶT is the pseudo labels produced as described in Section V-B1.

TABLE I: Comparison of the optimization formulations of different algorithms.

Algorithm
Dataset DIGIT (20 source-target pairs) OfficeHome (12 source-target pairs) PACS (12 source-target pairs) VisDA (2 source-target pairs)

nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc nat acc pgd acc aa acc

No defense Natural DANN 69.9±0.3 53.9±0.5 53.4±0.5 57.4±0.2 1.5±0.1 0.4±0.0 81.1±0.3 11.0±0.2 3.6±0.2 73.0±0.4 0.6±0.1 0.0±0.0

Source data only
AT(src only) 71.5±0.1 62.0±0.1 61.7±0.1 49.7±0.7 31.2±0.1 29.9±0.2 65.7±0.9 48.2±0.1 47.0±0.1 36.2±0.5 29.8±0.3 28.5±0.3
TRADES(src only) 71.1±0.0 62.4±0.0 62.0±0.0 48.4±0.4 31.5±0.2 30.1±0.2 66.1±0.7 48.2±0.3 45.9±0.3 36.5±0.2 29.5±0.6 28.9±0.6

Target data +
pseudo-label

AT(tgt,pseudo) 73.8±0.1 68.9±0.1 68.6±0.0 52.7±0.1 40.5±0.2 39.8±0.2 82.0±0.4 70.0±0.2 69.6±0.3 77.7±0.2 70.2±0.3 69.6±0.3
TRADES(tgt,pseudo) 73.9±0.1 69.8±0.0 69.4±0.0 53.0±0.5 41.4±0.3 40.6±0.3 82.7±0.2 71.7±0.3 71.1±0.4 76.6±0.4 69.7±0.1 69.1±0.1

Robust UDA
methods

AT+UDA 71.9±0.1 63.0±0.1 62.7±0.1 51.3±0.9 32.7±0.1 31.2±0.2 68.6±0.8 52.9±0.9 44.4±0.1 57.2±0.7 36.7±0.3 33.2±0.7
ARTUDA 74.3±0.2 70.6±0.1 70.3±0.1 54.6±0.3 39.0±0.5 37.1±0.6 74.6±0.3 60.5±0.2 58.1±0.6 58.9±1.3 47.6±1.3 46.2±1.5
SRoUDA 73.7±0.1 69.2±0.1 68.8±0.1 51.3±0.2 40.6±0.1 38.7±0.2 76.1±0.7 65.3±0.3 64.0±0.5 64.7±1.9 53.2±1.0 51.2±1.1

DART
DART(clean src) 78.3±0.2 74.5±0.1 74.4±0.1 56.4±0.1 40.7±0.1 39.6±0.1 85.5±0.1 73.3±0.0 72.6±0.1 78.4±0.1 71.7±0.2 71.3±0.3
DART(adv src) 77.8±0.2 74.0±0.2 73.9±0.2 55.6±0.2 42.6±0.3 41.6±0.2 84.4±0.3 72.7±0.0 72.2±0.0 77.6±0.4 70.9±0.6 70.6±0.7
DART(kl src) 78.3±0.1 74.5±0.1 74.4±0.1 56.0±0.2 42.4±0.2 41.3±0.2 85.3±0.2 73.1±0.3 72.6±0.4 78.2±0.5 71.3±0.7 71.9±0.4

TABLE II: Standard accuracy (nat acc)/ Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack (aa

acc) on the target test data, averaged over all possible source-target pairs.

unlabeled training data, validation data and test data with a ratio

of 6:2:2 (8:1:1 for VisDA4). For each algorithm, we perform 20

random search trials4 over the hyperparameter distribution (see

Appendix B-E). We apply early stopping and select the best

model amongst the 20 models from random search, based on its

performance on the target validation set. We repeat the entire

suite of experiments three times, reselecting random values

for hyperparameters, re-initializing the weights and redoing

dataset splits each time. The reported results are the means over

these three repetitions, along with their standard errors. This

experimental setup resulted in training a total of 29700 models.

B. Results

a) Performance on benchmarks: For each of the 4

benchmark datasets, we train and evaluate all algorithms on all

possible source-target pairs. In Table II, we report the results

for each dataset, averaged over all corresponding source-target

pairs (values after the ± sign are the standard error of the

mean). We refer the reader to Appendix C for full results for

each of the 46 source-target pairs.

Based on Table II, DART demonstrates significant

improvements in adversarial robustness when compared to the

various baselines. As expected, Natural DANN (which does

not use any defense mechanism) has the lowest robust accuracy.

Baselines that solely rely on the source data (specifically,

4As VisDA is a large dataset, we choose a different proportion and only
perform 10 random search trials to save computational resources.

AT(src only) and TRADES(src only)) display lower robustness

compared to the other baselines, indicating that robustness

does not transfer well due to the distribution shift.

Table II shows that DART consistently outperforms the

robust UDA methods (AT+UDA, ARTUDA, and SRoUDA), in

terms of robust accuracy across all four benchmarks. It is es-

sential to highlight that previous work investigating adversarial

robustness in the UDA setting has not assessed two natural base-

lines we consider: AT(tgt,pseudo) and TRADES(tgt,pseudo).

The latter two baselines appear to be very competitive with the

robust UDA methods from the literature – but DART clearly

outperforms these baselines. A more granular inspection of

the results across the 46 source-target pairs (in Appendix C)

reveals that DART consistently ranks first in terms of robust

target test accuracy for 33 pairs under PGD attack and 34

pairs5 under AutoAttack. DART is among top two algorithms

in terms of robust target test accuracy for 42 pairs under PGD

attack and 43 pairs under AutoAttack. This highlights the

consistent competitiveness of DART across diverse datasets

and attack settings. The dataset-specific performance details

are as follows:

• DIGITs: DART ranks first in terms of robust target

test accuracy for 14 pairs under PGD and 15 pairs

under AutoAttack. It ranks within the top two among

5 We use black bold to indicate the highest value and orange bold to
indicate the second-highest value. In a tie, we prioritize the method with
smaller standard error.

all algorithms in terms of robust target test accuracy for

all pairs. For the source-target pairs where DART does

not rank first, there are 4 pairs (3 pairs) where a complex

source adapts to a simple target under PGD (AutoAttack),

and 2 pairs (2 pairs) where a simple source adapts to a

complex target under PGD (AutoAttack).

• OfficeHome: DART ranks first in terms of robust target

test accuracy for 10 pairs under PGD and 9 pairs under

AutoAttack. It ranks within the top two among all

algorithms in terms of robust target test accuracy for

11 pairs under both PGD and AutoAttack. For the source-

target pairs where DART does not rank first, there is 1 pair

where a complex source adapts to a simple target under

both PGD and AutoAttack, and 1 pair (2 pairs) where

a simple source adapts to a complex target under PGD

(AutoAttack). The only pair where DART does not rank

within the top two in terms of robust target test accuracy is

Clipart→RealWorld, where the mean difference in robust

target test accuracy between DART and the best algorithm

is 2.2 under PGD and 2.4 under AutoAttack.

• PACS: DART ranks first in terms of robust target test

accuracy for 8 pairs under both PGD and AutoAttack. It

ranks within the top two among all algorithms in terms

of robust target test accuracy for 9 pairs under PGD and

10 pairs under AutoAttack. For the source-target pairs

where DART does not rank first, there is 1 pair where a

complex source adapts to a simple target under both PGD

and AutoAttack, and 3 pairs where a simple source adapts

to a complex target under both PGD and AutoAttack.

For the remaining pairs – Photo→Art, Cartoon→Photo,

Art→Photo – DART is not in the top two, with an average

mean difference in robust target test accuracy of 2.6 under

PGD and 2.4 under AutoAttack.

• VISDA: DART ranks within the top two among all

algorithms in terms of robust target test accuracy for

both pairs under both PGD and AutoAttack. For the pairs

that DART does not rank first, there are 1 pair for simple

source adapt to complex target under PGD.

To summarize, for the source-target pairs where DART does

not rank first in terms of robust target test accuracy, there are 7

pairs (6 pairs) where a complex source adapts to a simple target

under PGD (AutoAttack), and 6 pairs where a simple source

adapts to a complex target under both PGD and AutoAttack.

This demonstrates that DART performs consistently, regardless

of whether the problem involves adapting to a more complex

domain or a simpler one. We further list the following methods

that perform the best when DART does not rank first in terms

of the robust accuracy:

• AT(tgt,pseudo): Top performance on 2 pairs under PGD

attacks and 1 pair under AutoAttack.

• TRADES(tgt,pseudo): Top performance on 5 pairs under

PGD attacks and 6 pairs under AutoAttack.

• ARTUDA: Top performance on 5 pairs under PGD attacks

and 4 pairs under AutoAttack.

• SRoUDA: Top performance on 1 pair under both PGD

attacks and AutoAttack.

The above description indicates that TRADES(tgt,pseudo)

and ARTUDA are the most competitive baselines. Moreover,

for the source-target pairs where DART does not rank within

the top two, TRADES(tgt,pseudo) emerges as the top performer,

suggesting that leveraging source information may not always

provide a significant advantage in terms of robustness, partic-

ularly when transferring from a simple source to a complex

target.

Among the three DART variants, the adversarial source

achieves the best performance on 17 pairs, the KL source on

16 pairs, and the clean source on 13 pairs. This suggests that

applying a transformation to the source data when using DART

often leads to improved performance.

The results also demonstrate that DART does not compro-

mise standard accuracy. In fact, DART even improves standard

accuracy on the DIGIT and PACS datasets, as indicated in

Table II. Across the entirety of the 46 source-target pairs, DART

achieves the highest standard accuracy on 30 pairs.

b) Ablation study: We examine the effectiveness of

the individual components in DART’s objective function

(Equation 9), by performing an ablation study on three

randomly picked source-target pairs that DART achieves the top

performance: SVHN→MNIST, SYN→MNIST-M, and PACS

for Photo→Sketch. Specifically, we consider DART(clean

src) and study the following ablation scenarios: (1) w/o

domain divergence term: we remove the second term Ω in

the objective function; (2) w/o the approximation of the ideal

joint worst target loss: we exclude the third term in the objective

function; (3) we obtain pseudo-labels by standard UDA method,

and fix it throughout the training process; (4) we use the

current model to predict pseudo-labels for the third term. The

results are presented in Table III. Our findings reveal that

omitting either the domain divergence or third term (which

approximates the joint worst target loss) results in a significant

performance degradation, confirming that these components

are important. On the other hand, for DART without the

pseudo-labeling technique discussed in Section V, scenarios

(3) and (4) still experienced some performance degradation in

both standard and robust accuracy compared to DART. The

comparison between scenarios (3), (4), and DART includes all

components highlighting the importance of the quality of target

pseudo-labels. It is not surprising that (4) outperforms (3), as

the pseudo-labels are continuously updated at each iteration.

Similarly, compared to (4), DART updates pseudo-labels only

when the current model is guaranteed to improve based on

standard accuracy, as described in Section V-B1. This approach

further enhances the quality of the pseudo-labels. In summary,

DART with all the components achieves the best performance.

c) Comparison with additional baselines: To strengthen

the comparison, we propose two new, modified baselines

that run adversarial training or TRADES on pseudo-labeled

target data, where the pseudo labels are generated using

exactly the pseudo labeling method used in our approach

(described in Section V)–we refer to these methods as

AT(tgt,cg) and TRADES(tgt,cg). These two methods are similar

International Conference on Machine Learning. PMLR,

2021.

Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks

on deep learning in computer vision: A survey. Ieee Access,

2018.

Maksym Andriushchenko, Francesco Croce, Nicolas Flam-

marion, and Matthias Hein. Square attack: a query-efficient

black-box adversarial attack via random search. In European

conference on computer vision. Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfus-

cated gradients give a false sense of security: Circumventing

defenses to adversarial examples. In International conference

on machine learning. PMLR, 2018.

Muhammad Awais, Fengwei Zhou, Hang Xu, Lanqing Hong,

Ping Luo, Sung-Ho Bae, and Zhenguo Li. Adversarial robust-

ness for unsupervised domain adaptation. In Proceedings

of the IEEE/CVF International Conference on Computer

Vision, 2021.

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang.

Recent advances in adversarial training for adversarial

robustness. arXiv preprint arXiv:2102.01356, 2021.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando

Pereira. Analysis of representations for domain adaptation.

Advances in neural information processing systems, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza,

Fernando Pereira, and Jennifer Wortman Vaughan. A theory

of learning from different domains. Machine learning, 2010.

Dimitri Bertsekas. Nonlinear Programming. Athena Scientific,

2016.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson,

Nedim Šrndić, Pavel Laskov, Giorgio Giacinto, and Fabio

Roli. Evasion attacks against machine learning at test time.

In Joint European conference on machine learning and

knowledge discovery in databases, pages 387–402. Springer,

2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,

Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,

Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-

wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,

Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler,

Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-

shot learners. In Advances in Neural Information Processing

Systems, 2020.

Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chat-

topadhyay, and Debdeep Mukhopadhyay. Adversarial attacks

and defences: A survey. arXiv preprint arXiv:1810.00069,

2018.

Francesco Croce and Matthias Hein. Minimally distorted

adversarial examples with a fast adaptive boundary attack.

In International Conference on Machine Learning. PMLR,

2020a.

Francesco Croce and Matthias Hein. Reliable evaluation of

adversarial robustness with an ensemble of diverse parameter-

free attacks. In International conference on machine learning.

PMLR, 2020b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.

Randaugment: Practical data augmentation with no separate

search. arXiv preprint arXiv:1909.13719, 2019.

Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-

learning in the presence of adversaries. Advances in Neural

Information Processing Systems, 31, 2018.

Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossi-

bility theorems for domain adaptation. In Proceedings of the

Thirteenth International Conference on Artificial Intelligence

and Statistics, 2010.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In International conference

on machine learning. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal

Germain, Hugo Larochelle, Francois Laviolette, Mario Marc-

hand, and Victor Lempitsky. Domain-adversarial training of

neural networks. The journal of machine learning research,

2016.

Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur, Nico

Karssemeijer, Elena Marchiori, Mehran Pesteie, Charles RG

Guttmann, Frank-Erik de Leeuw, Clare M Tempany, Bram

Van Ginneken, et al. Transfer learning for domain adaptation

in mri: Application in brain lesion segmentation. In Medical

Image Computing and Computer Assisted Intervention.

Springer, 2017.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572, 2014.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard

Schölkopf, and Alexander Smola. A kernel two-sample test.

The Journal of Machine Learning Research, 2012.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain

generalization. arXiv preprint arXiv:2007.01434, 2020.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural

network robustness to common corruptions and perturbations.

arXiv preprint arXiv:1903.12261, 2019.

Jonathan J. Hull. A database for handwritten text recognition

research. IEEE Transactions on pattern analysis and machine

intelligence, 1994.

Patrick Kage, Jay C Rothenberger, Pavlos Andreadis, and

Dimitrios I Diochnos. A review of pseudo-labeling for

computer vision. arXiv preprint arXiv:2408.07221, 2024.

Justin Khim and Po-Ling Loh. Adversarial risk bounds via

function transformation. arXiv preprint arXiv:1810.09519,

2018.

D Kinga, Jimmy Ba Adam, et al. A method for stochastic

optimization. In International conference on learning

representations, 2015.

Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid

Karlinsky, Rogerio Feris, Bill Freeman, and Gregory Wornell.

Co-regularized alignment for unsupervised domain adapta-

tion. Advances in neural information processing systems,

2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition.

Proceedings of the IEEE, 1998.

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang,

and Barnabás Póczos. Mmd gan: towards deeper understand-

ing of moment matching network. In Proceedings of the 31st

International Conference on Neural Information Processing

Systems, 2017a.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales.

Deeper, broader and artier domain generalization. In Pro-

ceedings of the IEEE international conference on computer

vision, 2017b.

Xiaofeng Liu, Xiongchang Liu, Bo Hu, Wenxuan Ji, Fangxu

Xing, Jun Lu, Jane You, C-C Jay Kuo, Georges El Fakhri,

and Jonghye Woo. Subtype-aware unsupervised domain

adaptation for medical diagnosis. In Proceedings of the

AAAI Conference on Artificial Intelligence, 2021.

Xiaofeng Liu, Chaehwa Yoo, Fangxu Xing, Hyejin Oh, Georges

El Fakhri, Je-Won Kang, Jonghye Woo, et al. Deep

unsupervised domain adaptation: A review of recent advances

and perspectives. APSIPA Transactions on Signal and

Information Processing, 2022.

Shao-Yuan Lo and Vishal Patel. Exploring adversarially robust

training for unsupervised domain adaptation. In Proceedings

of the Asian Conference on Computer Vision, 2022.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang

Sun, and Philip S Yu. Transfer feature learning with

joint distribution adaptation. In Proceedings of the IEEE

international conference on computer vision, 2013.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan.

Learning transferable features with deep adaptation networks.

In International conference on machine learning. PMLR,

2015.

Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Deep transfer learning with joint adaptation networks.

In International conference on machine learning. PMLR,

2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learning

models resistant to adversarial attacks. arXiv preprint

arXiv:1706.06083, 2017.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.

Domain adaptation with multiple sources. Advances in neural

information processing systems, 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh.

Domain adaptation: Learning bounds and algorithms. arXiv

preprint arXiv:0902.3430, 2009.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

Bo Wu, and Andrew Y Ng. Reading digits in natural images

with unsupervised feature learning. In Proceedings of the

NIPS Workshop on Deep Learning and Unsupervised Feature

Learning, 2011.

A Tuan Nguyen, Toan Tran, Yarin Gal, Philip HS Torr, and

Atılım Güneş Baydin. Kl guided domain adaptation. arXiv

preprint arXiv:2106.07780, 2021.

Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,

Dequan Wang, and Kate Saenko. Visda: The visual domain

adaptation challenge. arXiv preprint arXiv:1710.06924,

2017.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate

Saenko, and Bo Wang. Moment matching for multi-source

domain adaptation. In Proceedings of the IEEE/CVF

international conference on computer vision, 2019.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta

pseudo labels. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, 2021.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban,

and Younès Bennani. A survey on domain adaptation theory:

learning bounds and theoretical guarantees. arXiv preprint

arXiv:2004.11829, 2020.

Chiara Regniez, Gauthier Gidel, and Hugo Berard. A distri-

butional robustness perspective on adversarial training with

the ∞-wasserstein distance. 2021.

Kui Ren, Tianhang Zheng, Zhan Qin, and Xue Liu. Adversarial

attacks and defenses in deep learning. Engineering, 2020.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya

Harada. Maximum classifier discrepancy for unsupervised

domain adaptation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018.

Burr Settles. Active learning literature survey. 2009.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghi-

asi, Christoph Studer, David Jacobs, and Tom Goldstein.

Adversarially robust transfer learning. arXiv preprint

arXiv:1905.08232, 2019.

Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein

distance guided representation learning for domain adapta-

tion. In Proceedings of the AAAI Conference on Artificial

Intelligence, 2018.

Matthew Staib and Stefanie Jegelka. Distributionally robust

deep learning as a generalization of adversarial training.

In NIPS workshop on Machine Learning and Computer

Security, 2017.

Florian Stimberg, Ayan Chakrabarti, Chun-Ta Lu, Hussein

Hazimeh, Otilia Stretcu, Wei Qiao, Yintao Liu, Merve Kaya,

Cyrus Rashtchian, Ariel Fuxman, et al. Benchmarking

robustness to adversarial image obfuscations. arXiv preprint

arXiv:2301.12993, 2023.

Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In Computer Vision–

ECCV 2016 Workshops. Springer, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

Vladimir Vapnik. The nature of statistical learning theory.

Springer science & business media, 1999.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,

and Sethuraman Panchanathan. Deep hashing network for

unsupervised domain adaptation. In Proceedings of the IEEE

conference on computer vision and pattern recognition, 2017.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun

Ma, and Quanquan Gu. Improving adversarial robustness

requires revisiting misclassified examples. In International

conference on learning representations, 2019.

Kai-Ya Wei and Chiou-Ting Hsu. Generative adversarial guided

learning for domain adaptation. In BMVC, 2018.

Garrett Wilson and Diane J Cook. A survey of unsupervised

deep domain adaptation. ACM Transactions on Intelligent

Systems and Technology (TIST), 2020.

Jinyu Yang, Chunyuan Li, Weizhi An, Hehuan Ma, Yuzhi

Guo, Yu Rong, Peilin Zhao, and Junzhou Huang. Exploring

robustness of unsupervised domain adaptation in semantic

segmentation. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021.

Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas

Natschläger, and Susanne Saminger-Platz. Central moment

discrepancy (cmd) for domain-invariant representation learn-

ing. In International Conference on Learning Representa-

tions, 2017.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent

El Ghaoui, and Michael Jordan. Theoretically principled

trade-off between robustness and accuracy. In International

conference on machine learning. PMLR, 2019a.

Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and

Chenliang Li. Adversarial attacks on deep-learning models

in natural language processing: A survey. ACM Transactions

on Intelligent Systems and Technology (TIST), 2020.

Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael

Jordan. Bridging theory and algorithm for domain adaptation.

In International conference on machine learning. PMLR,

2019b.

Wanqing Zhu, Jia-Li Yin, Bo-Hao Chen, and Ximeng Liu.

Srouda: Meta self-training for robust unsupervised domain

adaptation. In Proceedings of the AAAI Conference on

Artificial Intelligence, 2023.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-

supervised learning. Springer Nature, 2022.

APPENDIX A

PROOF OF THEOREM 2

Before presenting the proof, we first define the set of all possible perturbed distributions as follows:

P(DT) =
{

D̃ : (T (x), y) ∼ D̃, ∃ a map T : X → X with T (x) ∈ B(x), (x, y) ∼ DT

}

.6

As an illustrative example, consider the scenario where the perturbation set B is defined as an `p norm ball, then set of

perturbation distributions P can be effectively constructed using the Wasserstein metric [Khim and Loh, 2018, Regniez et al.,

2021, Staib and Jegelka, 2017].

Theorem 2. Let H be a hypothesis class with finite VC dimension VC(H) and adversarial VC dimension AVC(H) [Cullina

et al., 2018]. If ZS and ZT are labeled samples of size7 n drawn i.i.d. from DS and DT , respectively, and XS and XT are the

corresponding data matrices, then for any δ ∈ (0, 1), w.p. at least 1− δ, for all h ∈ H,

L
0/1
adv (h;DT) ≤ L0/1(h;ZS)

︸ ︷︷ ︸

Source Loss

+ε (2)

+

Worst-case target
︷ ︸︸ ︷

sup
x̃ti∈B(xti),∀i∈[n],

Z̃T={(x̃ti,y
t
i)}

n

i=1

[

dH∆H(XS , X̃T)
︸ ︷︷ ︸

Domain Divergence

+2 γ(ZS , Z̃T)
︸ ︷︷ ︸

Ideal Joint Loss

]

,

where the generalization gap ε = O(
√

max{VC(H),AVC(H)} log(n)+log(1/δ)
n), the (empirical) ideal joint loss is defined as

γ(ZS ,ZT) := minh∗∈H

[
L0/1(h∗;ZS) + L0/1(h∗;ZT)

]
, and the (empirical) H∆H-divergence can be computed as follows8:

dH∆H(XS ,XT)

=2
(

1−min
h∈H∆H

[1

n

∑

x:h(x)=0

1(x∈XS)+
1

n

∑

x:h(x)=1

1(x∈XT)
])

. (3)

Proof of Theorem 2. We use the notation fS and fT to represent labeling function X → Y of the given source domain and

target domain. Note that (x, y) ∼ DS implies fS(x) = y, and (x, y) ∼ DT implies fT (x) = y. Here we consider 0-1 loss,

which can be represented as `(y1, y2) = |y1 − y2|.
For any given DT , we consider h∗ := h∗(DT) = argminh∈H γ(DS ,DT). We first upper bound the adversarial target risk as

follows:

L
0/1
adv (h;DT)

= E(x,y)∼DT
sup

x̃∈B(x)

|h(x̃)−fT (x)|

= sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−fT (x)| (By the definition of P(DT).)

≤ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ sup

D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|

= sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h(x)−h∗(x)|

+ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

≤ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h(x)−h∗(x)|

+

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣
∣
∣
∣
∣

≤ sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h∗(x)−fT (x)|+ E(x,y)∼DS

|h∗(x)−fS(x)|+ E(x,y)∼DS
|h(x)−fS(x)|

+

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣
∣
∣
∣
∣

6We slightly abuse the notation when the input distribution is over X ; i.e., P(DX
T) =

{

D̃ : T (x) ∼ D̃, ∃ a map T : X → X with T (x) ∈ B(x), x ∼ DX
T

}

.

7We assume that ZS and ZT have the same size for simplicity. The result still applies to different sizes.
8In Definition 1, we defined dH∆H for two input distributions. Here we use an equivalent definition in which the two inputs are data matrices.

= sup
D̃T∈P(DT)

L0/1(h∗; D̃T) + L0/1(h∗;DS) + L0/1(h;DS)

+

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣
∣
∣
∣
∣

= L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS , D̃T)

+

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
|h(x)−h∗(x)|−E(x,y)∼DS

|h(x)−h∗(x)|

∣
∣
∣
∣
∣

≤ L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS , D̃T)

+ sup
h∈H∆H

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]− E(x,y)∼DS

1 [h(x) = 1]

∣
∣
∣
∣
∣

(Denote this line as 1
2dH∆Hadv

(DX
S ,DX

T), which we also define later in the proof.)

= L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS , D̃T) +
1

2
dH∆Hadv

(DX
S ,DX

T) (10)

Given distributions DS ,DT , samples XS ,XT each with size n, we recall the definition of expected and empirical H∆H-

divergence:

dH∆H(DX
S ,DX

T) = 2 sup
h∈H∆H

∣
∣
∣Ex∼DX

S
1 [h(x) = 1]− Ex∼DX

T
1 [h(x) = 1]

∣
∣
∣

dH∆H(XS ,XT) = 2 sup
h∈H∆H

∣
∣
∣
∣
∣

1

n

n∑

i=1

1 [h(xsi) = 1]−
1

n

n∑

i=1

1
[
h(xti) = 1

]

∣
∣
∣
∣
∣

We now define the expected and empirical adversarial target domain divergence, namely dH∆Hadv
(DX

S ,DX
T) and

dH∆Hadv
(XS ,XT), respectively, as follows:

dH∆Hadv
(DX

S ,DX
T) = 2 sup

h∈H∆H

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]−E(x,y)∼DS

1 [h(x) = 1]

∣
∣
∣
∣
∣

dH∆Hadv
(XS ,XT) = 2 sup

h∈H∆H

∣
∣
∣
∣
∣

1

n

n∑

i=1

sup
x̃t
i
∈B(xt

i
)

1
[
h(x̃ti) = 1

]
−

1

n

n∑

i=1

1 [h(xsi) = 1]

∣
∣
∣
∣
∣

Under the same perturbation constraints, we have

dH∆Hadv
(DX

S ,DX
T) ≤ sup

D̃T∈P(DT)

dH∆H(DX
S , D̃X

T)

dH∆Hadv
(XS ,XT) ≤ sup

X̃T∈P(XT)

dH∆H(XS , X̃T) (11)

Therefore, the following upper bound holds:

dH∆Hadv
(DX

S ,DX
T)− dH∆Hadv

(XS ,XT)

≤ 2 sup
h∈H∆H

∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]− E(x,y)∼DS

1 [h(x) = 1]

−
1

n

n∑

i=1

sup
x̃t
i
∈B(xt

i
)

1
[
h(x̃t

i) = 1
]
+

1

n

n∑

i=1

1 [h(xsi) = 1]

∣
∣
∣
∣

≤ 2 sup
h∈H∆H

∣
∣
∣
∣
∣

sup
D̃T∈P(DT)

E(x,y)∼D̃T
1 [h(x) = 1]−

1

n

n∑

i=1

sup
x̃t
i
∈B(xt

i
)

1
[
h(x̃t

i) = 1
]

∣
∣
∣
∣
∣

(Denote this line as dHadv∆Hadv
(D̃X

T , X̃T))

+ 2 sup
h∈H∆H

∣
∣
∣
∣
∣
E(x,y)∼DS

1 [h(x) = 1]−
1

n

n∑

i=1

1 [h(xs
i) = 1]

∣
∣
∣
∣
∣

= dHadv∆Hadv
(D̃X

T , X̃T) + dH∆H(DX
S ,XS)

Therefore from standard VC theory [Vapnik, 1999] we have

P

[

sup
h∈H

∣
∣
∣L0/1(h;DS)− L0/1(h;ZS)

∣
∣
∣ ≥

ε

4

]

≤ 8(2n)VC(H) exp(−
nε2

128
) (12)

P
[

dH∆H(DX
S ,XS) ≥

ε

4

]

≤ 8(2n)VC(H) exp(−
nε2

128
) (13)

Based on the adversarial VC theory from [Cullina et al., 2018], we have

P
[

dHadv∆Hadv
(D̃X

T , X̃T) ≥
ε

4

]

≤ 8(2n)AVC(H) exp(−
nε2

128
) (14)

Similarly, we recall the definition of expected and empirical ideal joint risk as follows:

γ(DS ,DT) = min
h∈H

[

L0/1(h;DS) + L0/1(h;DT)
]

γ(ZS ,ZT) = min
h∈H

[

L0/1(h;ZS) + L0/1(h;ZT)
]

We then have,

γ(DS ,DT)− γ(ZS ,ZT)

= min
h1∈H

[

L0/1(h1;DS) + L0/1(h1;DT)
]

− min
h2∈H

[

L0/1(h2;ZS) + L0/1(h2;ZT)
]

≤
[

L0/1(h2;DS) + L0/1(h2;DT)
]

− min
h2∈H

[

L0/1(h2;ZS) + L0/1(h2;ZT)
]

≤ sup
h∈H

[

L0/1(h;DS) + L0/1(h;DT)− L0/1(h;ZS)− L0/1(h;ZT)
]

≤ sup
h∈H

[

L0/1(h;DS)− L0/1(h;ZS)
]

+ sup
h∈H

[

L0/1(h;DT)− L0/1(h;ZT)
]

Applying standard VC theory and adversarial VC theory leads to:

P
[

|γ(DS ,DT)− γ(ZS ,ZT)| ≥
ε

4

]

≤ P

[

sup
h∈H

∣
∣
∣L0/1(h;DS)− L0/1(h;ZS)

∣
∣
∣ ≥

ε

8

]

· P

[

sup
h∈H

∣
∣
∣L0/1(h;DT)− L0/1(h;ZT)

∣
∣
∣ ≥

ε

8

]

≤ 64(2n)2VC(H) exp(−
nε2

256
) (15)

Consider each of the above events (12), (13), (14), (15) hold with probability δ
4 , we set ε =

O

(√
max(VC(H),AVC(H)) log(n)+log(1/δ)

n

)

. By taking a union bound over the above events gives us that with probability at

least 1− δ, the following holds:

L
0/1
adv (h;DT)

≤ L0/1(h;DS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
dH∆Hadv

(DX
S ,DX

T) (Equation (10))

≤ L0/1(h;ZS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
dH∆Hadv

(XS ,XT) + ε (Union bound)

≤ L0/1(h;ZS) + sup
D̃T∈P(DT)

γ(DS ,DT) +
1

2
sup

X̃T∈P(XT)

dH∆H(XS , X̃T) + ε (Equation (11))

≤ L0/1(h;ZS) + sup
X̃T∈P(XT)

[
2γ(ZS ,ZT) + dH∆H(XS , X̃T)

]
+ ε

(Given non-negative functions a(x) and b(x), supx a(x) + supx b(x) ≤ 2 supx(a(x) + b(x)))

We remark that the theorem can be extended to any symmetric loss function that satisfies the triangle inequality.

APPENDIX B

EXPERIMENTAL DETAILS

A. Datasets

• DIGIT contains 5 popular digit datasets. In our implementation, we use the digit-five dataset presented by [Peng et al., 2019]

1) MNIST is a dataset of greyscale handwritten digits. We include 64015 images.

2) MNIST-M is created by combining MNIST digits with the patches randomly extracted from color photos of BSDS500 as

their background. We include 64015 images.

3) SVHN contains RGB images of printed digits cropped from pictures of house number plates. We include 96322 images.

4) Synthetic digits contains synthetically generated images of English digits embedded on random backgrounds. We include

33075 images.

5) USPS is a grayscale dataset automatically scanned from envelopes by the U.S. Postal Service. We include 9078 images.

• OfficeHome contains objects commonly found in office and home environments. It consists of images from 4 different

domains: Artistic (2,427 images), Clip Art (4,365 images), Product (4,439 images) and Real-World (4,357 images). For each

domain, the dataset contains images of 65 object categories.

• PACS is created by intersecting the classes found in Caltech256 (Photo), Sketchy (Photo, Sketch), TU-Berlin (Sketch) and

Google Images (Art painting, Cartoon, Photo). It consists of four domains, namely Photo (1,670 images), Art Painting (2,048

images), Cartoon (2,344 images) and Sketch (3,929 images). Each domain contains seven categories.

• VisDA is a synthetic-to-real dataset consisting of two parts: synthetic and real. The synthetic dataset contains 152,397 images

generated by 3D rendering. The real dataset is built from the Microsoft COCO training and validation splits, resulting in a

collection of 55,388 object images that correspond to 12 classes.

B. Common Domain Divergence in UDA Methods

Recall the following notation: f represents the classifier, g represents the feature extractor, d represents the discriminator.

1) Domain Adversarial Neural Network (DANN) [Ganin and Lempitsky, 2015].

Ω(XS ,XT , g, d) = sup
d

(
Exs∈XS

log(d ◦ g(xs)) + Ext∈XT
log(1− d ◦ g(xt))

)
.

2) Maximum Mean Discrepancy (MMD) [Gretton et al., 2012]. Given kernel k(·, ·),

Ω(XS ,XT , g, k)

= Exs∈XS
k(g(xs), g(xs)) + Ext∈XT

k(g(xt), g(xt))− 2Exs∈XS
Ext∈XT

k(g(xs), g(xt)).

A similar idea has been used in DAN [Long et al., 2015], JAN [Long et al., 2017].

3) Central Moment Discrepancy (CMD). Given moment K, a range [a, b]d. Denote Ck(X) = Ex∈X((x − E(x))k).

Ω(XS ,XT , g,K) =
1

|b− a|

∥
∥Exs∈XS

(g(xs))− Ext∈XT
(g(xt))

∥
∥
2

+
K∑

k=2

1

|b− a|
k
‖Ck(g(XS))− Ck(g(XT))‖2

4) CORrelation ALignment (CORAL) [Sun and Saenko, 2016]. Define the covariance matrix Cov(X) =
Exi∈X,xj∈X [(xi − E [xi])(xj − E [xj])].

Ω(XS ,XT , g) = ‖Cov(g(XS))− Cov(g(XT))‖
2
F .

5) Kullback-Leibler divergence (KL) [Nguyen et al., 2021].

Ω(XS ,XT , g)

= Ext∈XT

[
log(pT (g(x

t)))− log(pS(g(x
t)))
]
+ Exs∈XS

[log(pS(g(x
s)))− log(pT (g(x

s)))]

where pS(z) ≈ Exs∈XS
p(z|xs), pT (z) ≈ Ext∈XT

p(z|xt), p(z|x) is a Gaussian distribution with a diagonal covariance matrix

and z is sampled via reparameterization trick.

6) Wasserstein Distance (WD) [Shen et al., 2018]. Hyperparameter λ.

Ω(XS ,XT , f, g, d) = sup
d

(

Exs∈XS
(d ◦ g)(xs)−Ext∈XT

(d ◦ g)(xt)−λ
(
∇g(x)(d ◦ g)(x)−1

)2
)

.

Layer

1 Conv2D(in=d, out=64)
2 ReLU
3 GroupNorm(groups=8)
4 Conv2D(in=64,out=128,stride=2)
5 ReLU
6 GroupNorm(8 groups)
7 Conv2D(in=128,out=128)
8 ReLU
9 GroupNorm(8 groups)

10 Conv2D(in=128,out=128)
11 ReLU
12 GroupNorm(8 groups)
13 Global average-pooling

TABLE VIII: Details of Convolutional network architecture for DIGIT datasets (including MNIST, MNIST-M, SVHN, SYN,

USPS). All convolutions use 3× 3 kernels and “same” padding.

C. Architectures

For the DIGIT dataset, we use the same convolutional neural network that has been used in [Gulrajani and Lopez-Paz, 2020]–

see Table VIII for details.

D. Data Preprocessing and Augmentation

For DIGIT datasets, we only resize all images to 32× 32 pixels. For non-DIGIT datasets, we apply the following standard

data augmentation techniques [Gulrajani and Lopez-Paz, 2020] (for both the labeled source training data and the unlabeled

target training data): crops of random size and aspect ratio, resizing to 224×224 pixels, random horizontal flips, random

color jitter, grayscaling the image with 10% probability; and normalized the data using ImageNet channel means and standard

deviations. Note that for SRoUDA, we do not apply the proposed random masked augmentation [Zhu et al., 2023] as well as

RandAugment [Cubuk et al., 2019] to ensure a fair comparison across all methods.

E. Hyperparameters

Condition Parameter Default value Random distribution

Network Resnet dropout rate 0 Uniform([0, 0.1, 0.5])

Algorithm λ1 1.0 10Uniform(−1,1)

λ2 1.0 10Uniform(−1,1)

discriminator steps 1 2Uniform(0,3)

adam β1 0.9 Uniform(0,0.9)

DIGIT data augmentation False False
batch size 128 128
number of iterations 20k 20k

learning rate 0.001 10Uniform(−4.5,−2.5)

discriminator learning rate 0.001 10Uniform(−4.5,−2.5)

weight decay 0 0

discriminator weight decay 0 10Uniform(−6,−3)

not DIGIT data augmentation True True
batch size 16 16
number of iterations 25k 25k

learning rate 0.00005 10Uniform(−5,−3.5)

discriminator learning rate 0.00005 10Uniform(−5,−3.5)

weight decay 0.0001 10Uniform(−5,−2)

discriminator weight decay 0.0001 10Uniform(−5,−2)

TABLE IX: Hyperparameters, the default values and distributions for random search.

APPENDIX C

RESULTS ON ALL SOURCE-TARGET PAIRS

A. Digits

Source→Target SVHN→MNIST SVHN→MNIST-M SVHN→SYN SVHN→USPS

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 82.6±0.2 64.9±0.9 64.0±0.9 51.8±0.6 21.0±2.3 20.2±2.4 93.8±0.1 80.2±0.4 79.2±0.4 88.0±1.0 69.2±1.1 67.4±1.6
AT(src only) 82.3±0.4 75.1±0.4 74.7±0.4 55.7±0.3 36.7±0.3 35.5±0.3 94.8±0.2 90.6±0.1 90.4±0.1 90.2±0.3 82.0±0.3 81.4±0.2
TRADES(src only) 83.0±0.6 74.9±0.2 74.4±0.2 54.3±0.3 38.9±0.2 37.6±0.2 94.3±0.1 90.7±0.1 90.4±0.2 91.5±0.3 81.7±0.1 80.9±0.1
AT(tgt,pseudo) 87.5±0.1 85.8±0.1 85.8±0.1 59.2±0.2 47.0±0.3 46.0±0.3 95.6±2.0 92.4±0.1 92.3±0.1 93.8±0.5 91.7±0.4 91.6±0.3
TRADES(tgt,pseudo) 86.6±0.2 84.8±0.1 84.7±0.1 61.1±0.3 50.4±0.6 49.4±0.5 95.7±0.2 93.3±0.2 93.2±0.2 94.3±0.4 92.1±0.2 92.0±0.1
AT+UDA 81.6±0.6 71.7±0.5 70.9±0.6 55.8±0.3 39.5±0.2 38.5±0.2 94.8±0.0 90.7±0.2 90.4±0.1 88.4±1.2 80.2±1.1 79.4±1.2
ARTUDA 92.6±0.7 91.2±0.7 91.1±0.7 58.0±0.7 48.0±1.2 47.2±1.3 97.0±0.2 94.8±0.1 94.7±0.1 98.1±0.1 97.0±0.2 96.9±0.1
SRoUDA 86.5±0.1 84.0±0.2 83.9±0.2 59.9±0.6 50.1±0.6 48.9±0.6 95.9±0.1 93.9±0.1 93.8±0.1 94.5±0.3 91.9±0.9 91.8±0.9

DART(clean src) 98.7±0.1 98.2±0.2 98.2±0.2 70.2±1.4 61.7±1.3 61.4±1.3 97.2±0.1 94.4±0.3 94.3±0.3 98.5±0.1 97.8±0.1 97.7±0.1
DART(adv src) 98.7±0.1 98.3±0.2 98.3±0.2 68.5±1.5 59.8±1.2 59.3±1.2 97.0±0.0 95.0±0.0 94.9±0.0 98.3±0.4 97.5±0.4 97.4±0.4

DART(kl src) 98.6±0.2 98.2±0.2 98.2±0.2 72.6±1.4 63.6±1.7 63.2±1.8 97.1±0.1 94.9±0.1 94.8±0.1 98.4±0.0 97.4±0.1 97.7±0.1

TABLE X: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack (aa

acc) of target test data on DIGIT dataset with a fix source domain SVHN and different target domains.

Source→Target SYN→MNIST SYN→MNIST-M SYN→SVHN SYN→USPS

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 96.3±0.2 89.0±1.3 88.6±1.4 60.4±0.8 38.7±0.3 38.3±0.3 82.2±0.7 37.9±0.7 36.3±0.6 97.5±0.1 85.6±0.7 85.1±0.8
AT(src only) 96.6±0.1 94.4±0.1 94.3±0.1 63.4±0.5 43.1±0.3 42.9±0.3 79.0±0.5 49.2±0.3 48.4±0.3 97.3±0.0 93.4±0.1 93.2±0.1
TRADES(src only) 96.5±0.0 94.3±0.1 94.2±0.1 63.1±0.2 43.8±0.4 43.5±0.4 76.7±0.5 52.4±0.1 51.1±0.3 97.1±0.2 93.4±0.1 93.2±0.1
AT(tgt,pseudo) 97.2±0.0 96.8±0.0 96.8±0.0 65.9±0.6 55.8±0.5 55.2±0.5 84.6±0.2 70.9±0.0 69.9±0.1 98.1±0.1 97.3±0.2 97.3±0.2
TRADES(tgt,pseudo) 97.3±0.0 96.9±0.0 96.9±0.0 66.5±0.3 58.6±0.6 58.0±0.6 84.7±0.3 73.8±0.2 72.4±0.2 98.3±0.1 97.2±0.1 97.2±0.1
AT+UDA 95.9±0.1 94.0±0.1 94.0±0.1 68.2±0.4 51.5±0.2 51.3±0.2 82.3±0.3 53.5±0.3 52.8±0.3 96.2±0.2 92.7±0.2 92.5±0.2
ARTUDA 98.6±0.1 98.2±0.1 98.2±0.1 69.6±0.6 61.6±0.7 60.9±0.4 83.4±0.6 69.4±1.2 68.3±1.4 98.6±0.1 97.8±0.1 97.8±0.1
SRoUDA 97.0±0.0 96.0±0.1 96.0±0.1 63.6±0.4 55.0±0.1 54.4±0.1 84.8±0.2 71.1±0.1 69.6±0.1 98.1±0.1 96.9±0.3 96.8±0.4

DART(clean src) 98.3±0.3 97.9±0.3 97.9±0.3 75.2±0.8 66.7±0.8 66.5±0.8 86.2±0.1 72.8±0.3 72.2±0.3 98.6±0.2 97.8±0.3 97.8±0.3

DART(adv src) 98.1±0.3 97.5±0.2 97.5±0.2 72.6±0.9 64.3±1.0 64.1±1.0 86.1±0.1 73.0±0.2 72.3±0.2 98.4±0.1 97.6±0.1 97.6±0.1
DART(kl src) 98.2±0.3 97.8±0.3 97.8±0.3 74.4±1.2 66.0±1.3 65.8±1.3 86.2±0.2 72.8±0.3 72.1±0.3 98.4±0.1 97.5±0.0 97.5±0.0

TABLE XI: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain SYN and different

target domains.

Source→Target USPS→MNIST USPS→MNIST-M USPS→SVHN USPS→SYN

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 98.3±0.1 95.9±0.4 95.8±0.4 54.1±3.4 40.7±2.2 40.5±2.2 21.2±1.4 9.8±1.4 9.6±1.4 40.8±1.6 33.2±1.8 33.1±1.8
AT(src only) 98.3±0.0 97.5±0.0 97.5±0.0 60.7±0.2 48.2±0.2 48.0±0.2 24.0±0.3 15.5±0.2 15.3±0.2 46.3±0.4 38.6±0.4 38.5±0.4
TRADES(src only) 98.4±0.0 97.5±0.0 97.5±0.0 60.7±0.3 48.3±0.1 48.1±0.1 24.4±0.2 15.1±0.3 14.9±0.3 46.2±0.4 39.1±0.4 39.0±0.4
AT(tgt,pseudo) 98.5±0.1 98.2±0.1 98.2±0.1 63.9±0.3 56.3±0.1 56.0±0.1 24.9±0.1 19.7±0.1 19.5±0.1 45.5±0.1 41.9±0.2 41.8±0.2
TRADES(tgt,pseudo) 98.5±0.1 98.2±0.1 98.2±0.1 64.1±0.0 58.3±0.2 57.9±0.2 24.7±0.1 20.3±0.2 20.1±0.2 45.3±0.2 42.6±0.2 42.5±0.2
AT+UDA 98.2±0.0 97.6±0.1 97.6±0.1 62.4±0.5 50.4±0.4 50.1±0.3 23.0±0.1 14.6±1.0 14.5±1.1 45.7±1.1 39.7±0.5 39.6±0.4
ARTUDA 99.0±0.0 98.8±0.0 98.8±0.0 56.9±0.7 52.2±0.8 52.1±0.8 23.8±0.9 20.0±0.3 19.9±0.3 49.0±1.1 49.3±0.5 49.3±0.5
SRoUDA 98.4±0.0 97.9±0.1 97.9±0.1 62.5±0.1 54.2±0.4 53.7±0.4 21.4±0.8 18.0±0.3 17.9±0.3 45.6±0.0 41.6±0.1 41.4±0.1

DART(clean src) 98.8±0.0 98.4±0.0 98.4±0.0 66.8±1.0 60.7±0.8 60.6±0.8 29.1±0.4 25.2±0.2 25.1±0.2 53.2±0.5 50.7±0.4 50.6±0.4
DART(adv src) 98.8±0.0 98.5±0.0 98.5±0.0 67.3±0.8 61.0±0.9 60.8±0.9 29.7±0.8 25.5±0.5 25.4±0.4 53.0±0.2 50.6±0.2 50.6±0.2
DART(kl src) 98.8±0.1 98.5±0.1 98.5±0.1 68.4±0.8 62.0±0.8 61.8±0.8 29.0±0.9 25.2±0.7 25.1±0.7 53.8±0.5 51.3±0.6 51.3±0.6

TABLE XII: Standard / Robust accuracy (%) of target test data on DIGIT dataset with a fix source domain USPS and different

target domains.

Source→Target MNIST→MNIST-M MNIST→SVHN MNIST→SYN MNIST→USPS

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 62.4±3.9 45.9±3.2 45.6±3.2 21.8±0.2 12.4±0.6 12.2±0.7 47.0±1.4 39.0±2.5 38.8±2.5 98.8±0.2 97.2±0.4 97.1±0.4
AT(src only) 67.7±0.5 51.8±0.0 51.4±0.0 25.5±1.2 14.4±0.1 14.2±0.0 50.0±0.5 44.1±0.4 44.0±0.4 99.0±0.1 98.1±0.1 98.1±0.1
TRADES(src only) 67.0±0.4 52.2±0.2 51.9±0.2 25.5±0.9 14.1±0.1 13.9±0.1 49.6±0.7 43.9±0.5 43.8±0.5 98.8±0.2 98.0±0.1 98.0±0.1
AT(tgt,pseudo) 70.2±0.1 61.8±0.3 61.4±0.3 22.9±0.0 17.9±0.1 17.7±0.1 51.0±0.5 48.0±0.5 47.9±0.5 99.0±0.2 98.4±0.2 98.4±0.2
TRADES(tgt,pseudo) 70.0±0.2 63.7±0.1 63.2±0.2 22.5±0.1 17.9±0.2 17.7±0.2 51.2±0.6 48.9±0.7 48.8±0.7 99.1±0.2 98.6±0.2 98.6±0.2
AT+UDA 68.9±0.5 54.7±0.4 54.2±0.3 21.3±1.3 17.6±0.5 17.5±0.5 49.9±0.4 44.0±0.4 43.8±0.4 98.9±0.1 98.1±0.1 98.1±0.1
ARTUDA 63.3±0.4 56.5±0.7 56.3±0.7 20.0±0.4 18.7±0.1 18.6±0.1 52.2±0.5 51.0±0.6 50.9±0.6 99.2±0.1 98.8±0.2 98.8±0.2

SRoUDA 69.9±0.2 62.0±0.2 61.4±0.2 23.0±1.8 18.8±0.4 18.7±0.3 51.2±0.5 48.6±0.6 48.5±0.6 99.0±0.2 98.5±0.2 98.5±0.2

DART(clean src) 77.7±1.8 71.2±1.9 71.1±1.9 22.5±0.1 19.1±0.3 19.0±0.3 53.2±0.6 51.1±0.6 51.1±0.6 99.1±0.1 98.5±0.1 98.5±0.1
DART(adv src) 78.4±0.3 71.3±0.2 71.1±0.2 22.6±0.3 19.4±0.1 19.3±0.1 53.2±0.5 51.2±0.6 51.2±0.6 99.1±0.2 98.4±0.1 98.4±0.1
DART(kl src) 77.3±2.1 70.6±2.1 70.4±2.1 22.5±0.1 19.8±0.2 19.7±0.2 53.4±0.3 51.4±0.2 51.3±0.2 99.1±0.1 98.6±0.1 98.6±0.1

TABLE XIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of DIGIT dataset with a fix source domain MNIST and different target domains.

Source→Target MNIST-M→MNIST MNIST-M→SVHN MNIST-M→SYN MNIST-M→USPS

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 98.4±0.1 94.1±1.1 94.0±1.2 35.9±0.8 5.7±1.6 5.4±1.5 69.0±1.4 38.4±1.2 38.0±1.2 97.5±0.1 78.9±2.8 78.1±3.1
AT(src only) 98.7±0.0 97.8±0.1 97.7±0.1 34.0±0.5 22.8±0.2 22.3±0.2 68.9±0.1 54.8±0.3 54.4±0.3 96.8±0.1 91.2±0.4 91.0±0.5
TRADES(src only) 98.6±0.1 97.7±0.0 97.7±0.0 32.0±0.1 24.3±0.1 23.8±0.1 67.3±0.6 54.9±0.2 54.3±0.2 96.6±0.4 92.3±0.3 92.2±0.3
AT(tgt,pseudo) 98.9±0.1 98.6±0.0 98.6±0.0 43.4±0.1 32.0±0.4 30.8±0.4 77.3±0.3 70.1±0.4 69.8±0.4 98.3±0.1 97.5±0.1 97.5±0.1
TRADES(tgt,pseudo) 98.9±0.1 98.6±0.1 98.6±0.1 43.2±0.5 31.7±0.4 30.4±0.4 77.7±0.3 72.0±0.6 71.7±0.6 98.5±0.3 97.6±0.2 97.6±0.2
AT+UDA 98.8±0.1 98.0±0.1 98.0±0.1 37.3±1.2 18.2±0.8 17.5±0.8 73.5±0.6 61.6±0.5 61.3±0.6 96.4±0.5 92.1±0.8 91.9±0.8
ARTUDA 99.2±0.1 99.0±0.1 99.0±0.1 34.5±2.9 22.6±0.8 21.4±0.7 92.3±0.8 88.5±1.3 88.2±1.3 99.0±0.1 98.1±0.3 98.1±0.2
SRoUDA 99.1±0.0 98.9±0.0 98.9±0.0 48.2±0.4 38.2±0.1 37.1±0.2 76.4±0.1 70.4±0.2 70.1±0.2 98.4±0.1 97.7±0.2 97.7±0.2

DART(clean src) 99.3±0.0 98.9±0.0 98.9±0.0 52.3±2.4 41.7±1.6 41.3±1.6 92.6±0.4 88.3±0.8 88.2±0.9 99.1±0.1 98.2±0.2 98.2±0.2
DART(adv src) 99.4±0.1 99.1±0.1 99.1±0.1 48.4±1.8 38.6±1.3 38.2±1.3 89.6±0.9 85.5±1.1 85.4±1.1 98.9±0.1 98.2±0.1 98.2±0.1

DART(kl src) 99.3±0.0 99.1±0.0 99.1±0.0 49.9±1.8 40.3±1.2 40.0±1.2 91.8±0.8 87.4±1.1 87.2±1.1 99.0±0.2 98.5±0.2 98.5±0.2

TABLE XIV: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on DIGIT dataset with a fix source domain MNIST-M and different target domains.

B. OfficeHome

Source→Target RealWorld→Art RealWorld→Clipart RealWorld→Product

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 61.0±0.6 0.4±0.1 0.0±0.0 55.5±0.6 3.8±0.5 1.1±0.2 74.3±0.9 1.9±0.2 0.2±0.1
AT(src only) 47.2±1.2 28.0±1.2 27.3±1.1 54.1±0.8 40.9±1.0 39.7±1.0 66.7±0.3 49.9±1.1 48.9±1.3
TRADES(src only) 45.6±0.4 27.5±1.3 26.5±1.4 53.9±1.7 41.9±0.7 41.0±0.6 66.9±1.3 48.9±0.8 47.4±0.5
AT(tgt,pseudo) 46.4±0.8 29.4±1.4 28.8±1.2 55.0±0.5 49.4±0.6 48.9±0.5 72.3±1.5 60.4±0.8 59.6±0.9
TRADES(tgt,pseudo) 47.9±2.4 27.4±0.4 26.5±0.3 55.6±0.9 49.7±0.8 49.3±0.8 70.0±1.4 61.9±1.2 61.3±1.2
AT+UDA 50.3±1.5 27.7±0.4 26.5±0.3 53.8±1.0 44.2±0.3 43.3±0.2 67.0±1.0 51.2±0.9 49.7±0.9
ARTUDA 49.5±2.0 28.4±1.0 26.1±1.1 58.3±0.7 48.5±0.9 46.7±0.5 73.0±0.6 58.3±0.4 55.7±0.6
SRoUDA 42.1±1.4 27.5±0.1 25.2±0.3 55.4±0.6 47.3±0.7 46.2±0.8 70.7±0.6 60.6±1.2 58.6±2.0

DART(clean src) 53.7±1.0 29.1±1.6 27.2±1.1 58.6±0.4 49.8±1.1 49.0±1.0 74.0±0.9 60.2±1.5 59.1±1.4
DART(adv src) 49.8±2.3 32.3±1.7 31.3±1.4 57.8±0.5 52.5±0.5 51.9±0.5 73.8±0.7 63.1±0.2 62.3±0.2
DART(kl src) 53.4±1.5 32.0±1.6 30.8±1.6 57.4±0.5 51.8±0.9 51.0±0.8 73.0±0.6 63.2±0.9 62.5±0.9

TABLE XV: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on OfficeHome dataset with a fix source domain RealWorld and different target domains.

Source→Target Art→Clipart Art→Product Art→RealWorld

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 49.1±0.3 2.8±0.4 1.1±0.2 55.5±0.8 0.9±0.2 0.3±0.1 66.8±0.8 1.0±0.3 0.1±0.1
AT(src only) 45.4±0.6 32.0±0.3 30.7±0.2 48.5±0.4 29.8±0.3 28.0±0.6 57.2±2.1 36.1±0.8 34.7±1.1
TRADES(src only) 46.1±0.7 32.8±0.6 31.5±0.8 50.4±0.6 31.2±0.1 29.5±0.1 58.8±1.3 35.2±0.6 33.4±0.7
AT(tgt,pseudo) 48.0±0.5 41.7±0.7 41.2±0.7 55.9±0.4 46.2±0.3 45.6±0.5 57.6±0.6 40.5±1.1 39.6±1.0
TRADES(tgt,pseudo) 48.6±0.3 43.6±0.4 43.1±0.4 55.9±0.4 47.6±0.1 47.2±0.3 57.1±1.6 41.8±0.2 40.6±0.5
AT+UDA 45.6±0.6 32.9±0.6 32.2±0.5 48.4±1.0 30.0±1.0 28.6±1.2 56.2±1.6 34.6±0.9 33.3±0.8
ARTUDA 50.9±1.6 41.7±1.7 40.0±2.0 55.0±0.8 41.2±1.0 39.2±1.4 61.7±0.6 42.5±1.0 39.6±0.4
SRoUDA 48.2±0.5 38.9±0.5 37.5±0.8 52.9±0.6 45.8±0.3 44.6±0.3 57.4±1.4 44.2±0.7 42.0±1.1

DART(clean src) 50.4±0.9 42.2±0.6 41.4±0.5 60.1±0.2 47.7±1.0 46.4±1.4 62.7±0.5 40.7±0.5 38.5±0.4
DART(adv src) 49.8±0.3 42.5±0.5 41.9±0.6 58.5±0.9 47.1±1.4 46.4±1.5 61.6±0.7 41.8±0.3 39.4±0.3
DART(kl src) 50.8±0.1 43.9±0.2 43.3±0.2 57.9±1.0 47.7±0.6 46.7±0.6 62.1±0.6 43.8±1.1 41.4±1.3

TABLE XVI: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on OfficeHome dataset with a fix source domain Art and different target domains.

Source→Target Clipart→Art Clipart→Product Clipart→RealWorld

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 45.2±0.8 0.0±0.0 0.0±0.0 47.9±0.8 3.6±1.0 1.1±0.3 67.4±1.5 0.6±0.3 0.1±0.1
AT(src only) 34.4±1.8 14.5±0.6 13.0±0.3 51.2±1.5 33.1±0.8 31.7±0.8 53.8±1.0 28.3±0.1 26.5±0.7
TRADES(src only) 30.6±2.5 16.6±0.4 15.1±0.5 48.6±1.5 34.1±0.9 32.8±0.7 50.2±2.1 30.9±0.8 28.7±1.2
AT(tgt,pseudo) 39.4±1.5 23.0±0.1 22.0±0.4 55.6±0.8 46.8±1.2 46.5±1.2 56.5±0.8 41.5±0.4 40.4±0.4
TRADES(tgt,pseudo) 40.0±1.0 22.0±0.4 21.1±0.5 56.2±0.3 47.9±0.5 47.3±0.4 56.2±0.3 43.8±1.0 42.8±0.5

AT+UDA 39.6±1.9 16.4±1.0 15.2±1.2 52.4±1.1 34.5±0.7 32.5±1.3 57.6±0.5 32.0±0.8 28.0±1.8
ARTUDA 42.0±0.2 20.2±1.0 18.9±1.2 56.1±1.3 44.1±1.4 42.9±1.5 58.9±1.2 39.2±0.6 37.9±0.5
SRoUDA 36.3±0.3 23.8±0.6 21.3±0.1 53.9±1.0 47.2±1.1 45.7±1.2 55.1±1.7 42.1±0.8 39.9±1.1

DART(clean src) 44.1±0.9 24.2±0.5 22.6±0.3 57.0±0.3 45.5±0.6 44.8±0.5 57.8±0.3 39.6±0.2 38.3±0.3
DART(adv src) 43.0±1.3 26.1±1.1 25.0±1.0 58.0±1.0 47.6±0.9 47.0±0.8 58.0±0.2 41.5±0.9 40.4±0.8
DART(kl src) 42.6±0.8 24.6±0.8 23.0±0.7 58.3±0.8 48.8±1.4 48.5±1.3 58.9±0.8 40.8±0.6 39.9±0.4

TABLE XVII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on OfficeHome dataset with a fix source domain Clipart and different target domains.

Source→Target Product→Art Product→Clipart Product→RealWorld

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 49.1±0.3 0.2±0.1 0.0±0.0 57.4±0.2 2.0±0.5 0.3±0.1 60.0±0.6 0.3±0.1 0.0±0.0
AT(src only) 33.8±1.3 15.3±0.4 13.8±0.4 47.2±0.1 34.1±0.6 32.1±0.6 56.9±1.3 34.6±1.0 32.1±0.9
TRADES(src only) 29.5±3.1 13.5±0.9 12.5±0.9 45.7±1.1 32.0±0.4 30.9±0.4 54.5±0.6 33.4±0.1 32.1±0.1
AT(tgt,pseudo) 38.5±1.6 20.3±0.6 19.3±0.6 49.1±0.8 42.9±0.4 42.3±0.6 61.4±1.5 44.2±1.2 43.3±1.2
TRADES(tgt,pseudo) 37.7±2.2 22.1±0.8 21.2±0.9 49.3±1.1 44.3±1.7 43.8±1.9 61.6±0.9 44.0±1.5 42.9±1.4
AT+UDA 36.1±3.4 14.8±0.9 14.2±0.6 48.9±0.7 37.9±1.3 36.7±1.4 59.3±1.8 35.8±1.1 34.4±1.2
ARTUDA 38.3±2.1 18.0±1.4 15.8±1.1 48.5±0.9 42.8±0.8 42.2±0.6 62.4±0.3 42.7±2.0 40.9±2.3
SRoUDA 33.5±1.3 22.4±1.3 20.8±1.1 49.9±0.4 41.6±0.6 39.9±0.3 60.2±2.0 45.6±0.7 43.2±0.7

DART(clean src) 43.7±2.5 21.5±0.8 20.0±1.0 52.5±1.3 44.8±1.3 43.7±1.4 63.5±0.8 43.6±0.5 42.6±0.5
DART(adv src) 41.7±0.5 23.9±0.5 22.2±0.5 50.0±0.7 44.8±0.9 44.4±0.9 64.4±1.1 47.7±0.9 46.4±1.0
DART(kl src) 41.8±1.0 23.0±0.0 21.0±0.1 52.0±0.9 44.3±1.1 43.6±1.2 64.2±1.6 44.5±1.2 43.3±1.2

TABLE XVIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on OfficeHome dataset with a fix source domain Product and different target domains.

C. PACS

Source→Target Photo→Art Photo→Cartoon Photo→Sketch

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 89.1±0.2 3.9±3.1 0.0±0.0 80.5±0.2 11.5±2.5 2.2±1.3 74.0±1.1 24.0±2.1 5.6±1.3
AT(src only) 71.0±3.0 32.7±1.6 31.1±1.7 71.4±1.9 50.4±0.6 48.6±0.2 69.3±0.5 61.0±0.6 59.6±0.7
TRADES(src only) 61.5±2.8 33.2±0.7 32.4±0.5 72.9±2.2 50.0±0.7 47.3±0.5 68.9±0.8 59.3±1.0 58.1±1.4
AT(tgt,pseudo) 82.3±0.7 59.1±0.7 58.5±0.9 85.5±0.6 77.4±1.0 77.1±0.9 78.2±0.4 75.5±0.3 75.1±0.3
TRADES(tgt,pseudo) 82.1±1.0 63.2±1.5 62.1±1.3 84.4±0.2 76.7±0.9 76.5±0.8 78.7±0.5 75.3±0.7 74.9±0.7
AT+UDA 73.3±3.5 44.1±1.4 29.5±2.1 70.6±1.6 62.2±1.5 60.9±1.5 70.6±1.6 62.2±1.5 60.9±1.5
ARTUDA 85.9±1.1 60.1±1.4 56.3±1.2 87.5±1.7 78.1±0.5 77.5±0.6 74.9±1.3 70.4±1.4 69.2±1.3
SRoUDA 76.1±1.7 56.4±0.2 54.7±0.3 82.4±1.3 71.7±1.8 70.1±1.8 71.9±0.9 63.7±1.2 60.8±2.0

DART(clean src) 85.2±1.2 58.0±0.9 56.7±1.3 89.4±0.8 80.5±0.3 79.9±0.1 82.5±0.8 79.9±0.4 79.5±0.5

DART(adv src) 84.1±1.2 59.3±0.3 58.5±0.2 87.7±0.7 80.7±0.5 80.1±0.4 81.0±1.0 78.1±0.4 77.7±0.4
DART(kl src) 84.1±0.4 58.8±1.5 57.8±1.5 87.3±0.4 79.5±0.8 79.3±0.8 82.4±1.6 79.2±1.2 78.8±1.1

TABLE XIX: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on PACS dataset with a fix source domain Photo and different target domains.

Source→Target Cartoon→Art Cartoon→Photo Cartoon→Sketch

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 84.9±0.7 0.6±0.3 0.0±0.0 92.5±0.7 1.4±0.4 0.0±0.0 78.2±0.9 25.7±2.2 8.7±0.9
AT(src only) 59.6±1.0 30.2±1.0 28.9±1.0 77.9±1.9 53.8±0.5 51.8±0.3 77.1±0.9 66.6±0.6 65.1±0.8
TRADES(src only) 58.7±2.5 28.0±0.4 27.1±0.5 78.9±1.3 53.8±0.8 51.9±1.0 74.6±0.9 67.6±0.2 66.7±0.2
AT(tgt,pseudo) 76.2±1.7 55.0±1.6 54.7±1.6 93.3±0.5 80.3±0.8 80.0±0.8 80.0±0.3 77.4±0.2 77.1±0.3
TRADES(tgt,pseudo) 78.5±1.7 58.0±1.4 56.8±1.0 92.2±0.1 82.1±0.5 81.7±0.6 79.9±0.5 77.6±0.4 77.5±0.4
AT+UDA 68.9±1.2 46.2±5.9 23.3±1.7 78.8±2.3 61.3±2.0 41.8±5.1 75.9±1.7 67.7±1.4 66.8±1.2
ARTUDA 76.5±2.5 53.3±1.6 52.2±1.7 89.4±0.9 75.0±1.7 71.7±1.0 80.3±0.4 74.9±1.0 73.8±1.1
SRoUDA 72.0±1.5 50.9±1.1 49.2±1.6 90.3±0.9 79.9±2.0 79.2±1.9 76.7±1.2 72.3±1.3 71.3±1.3

DART(clean src) 77.4±1.1 54.6±0.3 53.8±0.2 94.2±0.5 79.8±1.2 78.6±1.2 84.9±0.4 81.0±0.7 80.6±0.7

DART(adv src) 78.2±1.3 56.3±1.3 55.9±1.2 90.6±0.9 77.6±1.4 77.1±1.2 85.5±1.0 82.4±1.2 82.0±1.3
DART(kl src) 78.9±1.0 55.5±1.0 54.6±1.6 92.0±0.1 78.1±0.8 77.5±0.6 84.6±0.3 81.0±0.5 80.5±0.6

TABLE XX: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on PACS dataset with a fix source domain Cartoon and different target domains.

Source→Target Art→Cartoon Art→Photo Art→Sketch

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 84.3±0.6 12.4±6.1 1.1±0.8 97.9±0.4 2.7±1.5 0.0±0.0 84.9±0.7 0.6±0.3 17.5±5.2
AT(src only) 79.2±0.4 63.9±1.2 63.0±1.0 82.5±0.6 65.8±0.5 65.3±0.2 79.9±1.1 72.4±1.2 71.4±1.2
TRADES(src only) 81.5±1.5 62.5±2.0 60.8±1.9 87.9±0.6 70.8±0.8 69.9±0.6 78.8±1.1 71.5±0.7 70.7±0.6
AT(tgt,pseudo) 85.1±0.1 76.5±0.9 76.2±0.8 95.0±1.4 83.1±1.2 82.2±1.2 84.8±0.1 81.1±0.6 81.0±0.6
TRADES(tgt,pseudo) 85.1±0.9 77.2±1.0 76.9±1.0 95.3±0.7 82.2±0.6 81.4±0.4 86.1±0.7 83.3±0.7 83.0±0.7
AT+UDA 78.5±1.8 65.1±0.6 64.5±0.5 79.0±2.0 57.8±2.1 57.3±1.9 80.8±0.7 71.6±0.3 70.4±0.6
ARTUDA 88.3±2.1 76.0±1.7 74.3±2.1 95.0±0.6 78.5±1.3 74.7±1.3 80.3±1.3 61.5±1.0 53.5±1.8
SRoUDA 84.2±1.4 75.8±0.6 75.1±0.5 94.1±0.7 81.5±1.0 80.3±1.1 77.3±4.6 73.2±4.9 72.6±4.8

DART(clean src) 89.1±0.3 79.1±0.3 78.7±0.2 95.9±0.7 81.4±1.4 80.3±1.6 89.5±0.6 86.4±0.5 85.8±0.6
DART(adv src) 88.9±0.4 79.2±0.9 78.3±1.0 94.1±0.4 81.3±0.6 80.6±0.8 87.9±0.9 84.6±0.9 84.3±0.9
DART(kl src) 89.4±0.7 80.9±1.0 80.5±1.2 96.1±0.5 81.1±0.4 80.5±0.4 88.3±0.6 85.4±0.5 85.1±0.5

TABLE XXI: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on PACS dataset with a fix source domain Art and different target domains.

Source→Target Sketch→Art Sketch→Cartoon Sketch→Photo

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 68.0±1.2 1.5±1.2 0.7±0.5 72.3±1.4 14.0±4.5 7.4±3.1 71.1±4.0 0.3±0.1 0.0±0.0
AT(src only) 22.3±1.4 19.0±0.9 18.6±1.1 66.6±1.7 40.2±1.1 38.7±1.5 31.7±5.5 22.7±1.1 22.2±1.3
TRADES(src only) 26.8±4.2 17.3±2.1 11.6±4.8 67.1±0.8 43.4±1.3 42.6±1.4 35.0±5.5 21.3±2.4 12.3±4.3
AT(tgt,pseudo) 62.4±2.2 37.5±0.8 36.7±0.5 72.5±1.8 64.0±1.2 63.8±1.1 88.8±0.7 73.6±0.7 72.9±0.7
TRADES(tgt,pseudo) 69.1±2.3 44.2±2.5 43.2±2.2 71.6±0.6 63.8±0.6 63.4±0.4 89.6±0.7 76.4±1.4 75.6±1.4
AT+UDA 47.0±1.2 28.5±1.4 6.2±1.0 67.9±1.6 40.4±0.8 38.2±0.6 32.4±3.3 27.2±2.1 12.5±4.3
ARTUDA 49.5±2.4 31.7±3.4 31.1±3.2 38.1±2.5 25.5±1.8 22.9±1.4 48.9±1.8 40.4±2.9 39.6±3.2
SRoUDA 24.5±1.7 22.4±0.3 22.4±0.4 72.4±1.0 62.3±0.2 61.3±0.2 91.9±0.5 73.1±3.6 70.5±4.7

DART(clean src) 71.9±1.8 53.1±4.4 52.4±4.6 78.4±0.7 69.2±0.9 68.9±0.8 87.8±1.4 76.8±1.0 75.9±1.1
DART(adv src) 67.8±1.4 47.4±2.9 46.6±3.0 77.3±0.8 68.2±1.0 67.9±1.1 89.3±0.8 77.6±1.5 77.0±1.7

DART(kl src) 69.4±0.5 49.3±1.4 48.6±1.6 80.0±0.5 70.3±0.2 70.1±0.2 90.5±0.5 77.7±1.7 77.2±1.9

TABLE XXII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on PACS dataset with a fix source domain Sketch and different target domains.

D. VISDA

Source→Target Synthetic→Real Real→Synthetic

Algorithm clean acc pgd acc aa acc clean acc pgd acc aa acc

Natural DANN 67.4±0.2 0.5±0.2 0.0±0.0 78.6±0.9 0.8±0.1 0.0±0.0
AT(src only) 19.0±0.2 18.0±0.3 17.2±0.4 53.5±0.8 41.6±0.4 39.8±0.4
TRADES(src only) 18.6±0.1 16.5±0.7 16.4±0.7 54.4±0.5 42.6±0.5 41.3±0.6
AT(tgt, fix) 69.6±0.3 58.3±0.7 57.5±0.7 85.7±0.2 82.0±0.2 81.7±0.2
TRADES(tgt, fix) 68.1±0.7 57.9±0.5 56.9±0.5 85.1±0.3 81.5±0.5 81.2±0.5
AT+UDA 48.0±1.1 24.1±0.9 18.5±1.4 66.4±0.6 66.4±0.6 47.8±0.8
ARTUDA 45.2±4.8 32.5±2.7 31.9±2.6 72.5±2.5 62.6±0.3 60.6±0.4
SRoUDA 48.2±2.7 33.4±0.7 30.8±0.7 81.2±1.4 72.9±1.3 71.7±1.6

DART(clean src) 69.5±0.2 58.0±0.5 57.5±0.6 87.3±0.3 85.3±0.2 85.1±0.3

DART(adv src) 69.0±0.4 57.5±0.8 56.9±0.9 86.3±0.7 84.4±0.7 84.3±0.7
DART(kl src) 69.6±1.2 57.4±1.2 58.5±0.6 86.8±0.3 85.3±0.3 85.2±0.3

TABLE XXIII: Standard accuracy (nat acc) / Robust accuracy under PGD attack (pgd acc)/ Robust accuracy under AutoAttack

(aa acc) of target test data on VisDA dataset.

APPENDIX D

ADDITIONAL EXPERIMENTAL RESULTS

A. Results on source test data

While our primary objective is to defend against attacks on the target domain, we note that DART continues to exhibit

robustness against adversarial attacks on the source domain. In Table XXIV, we provide the standard and robust accuracy for

the PGD attack with perturbation size α = 2/255 on source test data. These results clearly demonstrate that DART, when

employing an adversarial source or KL source, consistently maintains or even improves robustness on source test data.

Dataset DIGIT OfficeHome PACS VisDA

Algorithm nat acc pgd acc nat acc pgd acc nat acc pgd acc nat acc pgd acc

Natural DANN 96.5±0.1 85.7±0.1 71.2±0.2 1.2±0.1 89.7±0.4 12.3±1.4 88.0±0.7 1.9±0.2
AT(src only) 96.7±0.1 90.4±0.2 68.9±0.9 47.1±0.3 82.9±1.6 64.6±1.5 60.7±6.1 47.8±4.9
TRADES(src only) 96.5±0.0 90.5±0.2 68.8±0.2 47.5±0.4 81.5±2.2 62.5±1.9 72.2±1.8 57.7±1.6
AT(tgt,pseudo) 76.6±0.4 68.2±0.4 45.5±0.2 28.0±0.1 52.2±1.4 33.3±1.1 37.7±2.2 28.7±1.2
TRADES(tgt,pseudo) 79.3±1.2 69.6±0.7 45.2±0.8 29.6±0.3 55.2±1.1 36.7±0.7 37.9±0.6 28.9±0.5
AT+UDA 96.2±0.2 89.6±0.3 66.9±0.9 45.0±0.3 83.4±1.0 64.5±1.4 82.8±1.0 68.0±0.9
ARTUDA 96.1±0.1 82.8±0.0 67.3±0.3 38.4±0.2 85.1±1.0 47.0±0.2 81.0±3.1 31.5±2.1
SRoUDA 82.6±0.2 73.0±0.3 46.2±0.2 30.4±0.2 58.3±1.4 33.7±1.5 35.1±4.0 19.7±1.6

DART(clean src) 96.0±0.0 82.4±0.2 65.1±0.7 37.6±0.4 85.1±0.1 51.5±0.6 80.9±2.0 38.6±2.0
DART(adv src) 96.1±0.0 90.5±0.1 65.0±0.6 45.7±0.4 86.0±0.8 68.7±0.5 77.8±0.8 64.3±1.1
DART(kl src) 95.9±0.0 89.4±0.1 64.9±0.4 44.6±0.3 85.5±0.1 67.4±0.3 80.3±1.2 62.8±1.2

TABLE XXIV: Standard / Robust accuracy(%) of source test data with an average of all source-target pairs for all datasets.

These experiments compare 11 algorithms across 46 source-target pairs in the exact same conditions.

	Introduction
	Related Work
	Problem Setup and Preliminaries
	Standard UDA Theory

	Adversarially Robust UDA Theory
	Divergence Aware Adversarial Training: a practical defense
	A practical bound
	DART's optimization formulation
	Pseudo-Labels T
	Source choices S

	Using DART to robustify DANN against attacks

	Empirical Evaluation
	DomainRobust: A PyTorch Testbed for UDA under Adversarial Attacks
	Results

	Conclusion
	Appendix A: Proof of Theorem 2
	Appendix B: Experimental Details
	Datasets
	Common Domain Divergence in UDA Methods
	Architectures
	Data Preprocessing and Augmentation
	Hyperparameters

	Appendix C: Results on all source-target pairs
	Digits
	OfficeHome
	PACS
	VISDA

	Appendix D: Additional Experimental Results
	Results on source test data

