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Abstract

We study robust Markov games (RMG) with s-
rectangular uncertainty. We show a general equiv-
alence between computing a robust Nash equilib-
rium (RNE) of a s-rectangular RMG and comput-
ing a Nash equilibrium (NE) of an appropriately
constructed regularized MG. The equivalence re-
sult yields a planning algorithm for solving s-
rectangular RMGs, as well as provable robustness
guarantees for policies computed using regular-
ized methods. However, we show that even for
just reward-uncertain two-player zero-sum matrix
games, computing an RNE is PPAD-hard. Conse-
quently, we derive a special uncertainty structure
called efficient player-decomposability and show
that RNE for two-player zero-sum RMG in this
class can be provably solved in polynomial time.
This class includes commonly used uncertainty
sets such as L1 and L∞ ball uncertainty sets.

1. Introduction
Offline reinforcement learning (RL) and RL in simulated en-
vironments are effective ways to deal with situations where
traditional online RL would be too risky or costly. However,
these approaches suffer from the sim-to-real gap in which
slight differences in the models can lead to policies with
poor performance in the true environment. To combat the
sim-to-real gap, robust policies were studied using the frame-
work of robust Markov decision processes (RMDP) (Satia &
Lave, 1973) and later robust Markov Games (RMG) (Zhang
et al., 2020b). Robust approaches have been effective in
the real world, especially for navigating UAVs in mission-
critical multi-agent environments (Chen et al., 2023) and
in queuing systems (Kardeş et al., 2011). In practice, reg-
ularization has been a popular approach to improving the
robustness and convergence of multi-agent RL algorithms
with empirical success.
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A robust Markov game (S, {Ai}i∈[N ], P
⋆, r⋆, H,U) is de-

fined by a standard Markov game (MG) G⋆ := (P ⋆, r⋆),
called the nominal game, and an uncertainty set U :=
P × Ur that describes all possible models that could be
realized. Here, P is the set of possible transition kernels,
and Ur is the set of possible reward functions. A common
solution concept for RMGs is the Markov-perfect robust
Nash Equilibrium (MPRNE). A policy π is an MPRNE
if, for each stage game (h, s), π is a mutual best response
assuming the worst-case model for each player.

Unlike classical RMDPs, solving RMGs is already difficult
when only the reward function has uncertainty. Specifically,
a single-stage game with reward uncertainty can capture
arbitrary general-sum games and so is PPAD-hard to solve.
Surprisingly, unlike traditional game theory, even the two-
player zero-sum version of reward-uncertain RMGs with
|S| = H = 1 and the minimal (s, a)-rectangularity assump-
tion is PPAD-hard to solve. Similarly, two-player zero-sum
RMGs with only transition uncertainty and H = 2 periods
are also PPAD-hard to solve. Thus, solving even simple
RMGs is already a computational challenge.

Although many advances have been made for RMDPs,
RMGs are much less understood. The seminal paper (Zhang
et al., 2020b) devised algorithms to learn a robust NE (RNE)
for RMGs but only proved asymptotic convergence of their
methods. On the other hand, Blanchet et al. (2023) proposed
provably sample-efficient algorithms to learn an RNE for the
special case of (s, a)-rectangular RMGs, but their methods
require an efficient planning oracle that does not currently
exist in the literature. Creating such a planning oracle is
one of the goals of this work. Lastly, adding a regularizer to
the value function of an MG has shown promise to improve
robustness empirically, but formal guarantees have not been
shown in the multi-agent setting (Zhang et al., 2020a).

Our Contributions. We study the computational com-
plexity of computing MPRNE for RMGs with s-rectangular
uncertainty. We show that computing an MPRNE of an
RMG with s-rectangular uncertainty can be done by com-
puting a Markov-perfect NE (MPNE) of an appropriately
designed regularized MG. In particular, the regularizer cor-
responds to the support function of the uncertainty set for
the stage game. Furthermore, we show that for most well-
known regularization functions, such as entropy and ℓp norm
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regularizers, the set of MPNE for a regularized game corre-
sponds exactly to the set of MPRNE for an RMG with an
interpretable uncertainty. This fact implies that for common
classes of regularizers and uncertainty sets, the problems of
solving RMGs and regularized MGs are polynomial-time
equivalent. Thus, any efficient off-the-shelf algorithm for
regularized MGs can be used to efficiently compute robust
policies, confirming the empirical phenomenon mathemati-
cally.

We also show that many useful classes of RMGs with s-
rectangular reward uncertainty can be solved in polynomial
time. As in classical game theory, our first step is to ex-
tend the notion of zero-sum games to the robust setting.
Although the zero-sum property does not guarantee effi-
ciency, our proof of computational hardness reveals a key
structural bottleneck to efficiency: general-sum behavior
is simulated whenever the support function output of the
reward uncertainty set involves a product of each player’s
policy. In contrast, if the support function decomposes into
separate parts for both players, σ(π) = Ω1(π1) + Ω2(π2),
we show the equivalent regularized MG is also zero-sum.
Thus, our planning algorithm runs in polynomial time so
long as the uncertainty satisfies what we call the efficiently
player-decomposable assumption. This assumption permits
many standard sets such as L1 and L∞-ball uncertainty sets.

1.1. Related Work

Robust MDPs. Robust MDPs have been studied under
many different uncertainty structures. The original structure,
called (s, a)-rectangularity, was first introduced in (Satia &
Lave, 1973; Nilim & El Ghaoui, 2003). Many attempts to
generalize (s, a)-rectangularity have led to a rich family of
rectangularity notions including s-rectangularity (Epstein &
Schneider, 2003; Wiesemann et al., 2013), r-rectangularity
(Goh et al., 2018; Goyal & Grand-Clément, 2023), k-
rectangularity (Mannor et al., 2016), and d-rectangularity
(Ma et al., 2023b). Many standard MDP techniques have
also been extended to the robust setting including dynamic
programming (Iyengar, 2005; Ho et al., 2018), policy itera-
tion (Kaufman & Schaefer, 2013; Ho et al., 2021), policy
gradient (Kumar et al., 2023; Wang et al., 2023), and func-
tion approximation (Lim & Autef, 2019; Tamar et al., 2014).
Regularized MDP techniques also successfully solve robust
MDPs due to a general equivalence for many uncertainty
sets (Derman et al., 2021; 2023; Kumar et al., 2022) includ-
ing both (s, a) and s-rectangularity.

In the learning setting, standard RL approaches have
been successfully “robustified” including model-based ap-
proaches (Wang & Zou, 2021), Q-learning (Liu et al., 2022),
policy gradient (Wang & Zou, 2022; Badrinath & Kalathil,
2021), and kernel methods (Lim & Autef, 2019). Strong the-
oretical results have also pinned down the sample complex-

ity of many methods (Panaganti & Kalathil, 2022; Shi & Chi,
2023; Yang et al., 2022). In fact, Pinto et al. (2017) showed
that robust learning is equivalent to learning in adversarial
games and this is further exploited using game-theoretical
techniques (Hayashi et al., 2005).

Robust MGs. Robust normal form games were first in-
troduced by Aghassi & Bertsimas (2006). Perchet (2020)
showed that robust games can be reduced to general sum
games, but computationally efficient methods have yet to be
established. The notion of robustness has been extended to
Markov games (Zhang et al., 2020b; Kardeş et al., 2011). A
sample efficient approach for learning robust policies under
(s, a)-rectangularity is derived by Blanchet et al. (2023), but
their method relies on a planning oracle that has yet to be
derived in the literature. Our work provides the efficient
planning oracle needed to make those methods tractable
and extends beyond just (s, a)-rectangularity. In contrast,
Ma et al. (2023a) addresses the problem of learning a ro-
bust CCE with low sample complexity whereas we focus on
computing the stronger solution concept of robust NE.

Regularization in MDP and MGs. Various regulariza-
tion methods have been extensively used in MDPs (Kumar
et al., 2023; Geist et al., 2019) and games (Grill et al., 2019;
Cen et al., 2021; Zhang et al., 2023; Mertikopoulos & Sand-
holm, 2016), with diverse motivations, such as improved
exploration (Lee et al., 2018), stability (Schulman et al.,
2017) and convergence (Cen et al., 2021; Zhan et al., 2023).
Popular regularizers include a variety of entropy functions
and KL divergence. Recent works relate regularization to
robustness in MDP/RL (Brekelmans et al., 2022; Eysenbach
& Levine, 2021; Husain et al., 2021). In particular, Derman
et al. (2023) provides an equivalence between regulariza-
tion and robustness in MDPs. However, the robustness-
regularization duality is much less understood in games.
Our work fills this gap and opens the path to efficient plan-
ning and learning algorithms for achieving robustness in
games via regularization.

Notation. For an integer N, we denote [N ] :=
{1, 2, . . . , N}. We define the extended reals by R = R ∪
{−∞,∞}. For a given finite set Z , we denote by ∆(Z) the
probability simplex over Z , and denote by RZ the class of
real-valued functions defined over Z . For a set M ⊂ RZ ,
the characteristic function δM : RZ → R is defined as
δM(x) = 0 if x ∈ M and +∞ otherwise. The Legendre-
Fenchel transform of δM is the so-called support function
σM : RZ → R, with σM(y) := supx∈M⟨x, y⟩. For a com-
pact set W ⊂ Rn, we denote the interior of W by int(W) ⊂
W, and the boundary of W by Bd(W) = W \ int(W).

With slight overload of notation, ⟨·, ·⟩ denotes the standard
inner product when the inputs are vectors, and denotes the
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Frobenius (also known as component-wise) inner product
when the inputs are matrices of the same dimensions. We
will overload the functions such as log(·) and exp(·) to take
vector inputs, meaning the function is applied in an entry-
wise manner. That is, for a vector x = (x1, . . . , xn)

⊤ ∈
Rn, the notation exp(x) := (exp(x1), . . . , exp(xn))

⊤ ∈
Rn. For a matrix B ∈ Rm×n, we denote by ∥B∥p→q =

sup
{
∥Bx∥q : x ∈ Rn with ∥x∥p = 1

}
the opera-

tor norm on the space Rm×n, where ∥·∥p denotes the
vector ℓp-norm. The dual to a norm ∥·∥ is defined as
∥v∥∗ = sup∥u∥≤1⟨u, v⟩. For any number p ∈ [0,∞],
we use p∗ ∈ [0,∞] to denote its conjugate satisfying
1
p + 1

p∗ = 1. Therefore, the dual norm of ∥·∥p is ∥·∥p∗ .

2. Preliminaries
In this work, we consider H-horizon Markov games (MG)
of N players, with a finite state space S, and a finite ac-
tion space Ai for each player i ∈ [N ]. We let A :=
A1 × A2 · · · × AN denote the joint action space and let
a = (a1, . . . , aN ) ∈ A denote a joint action of N players.
Without loss of generality, we assume that the initial state s1
is fixed 1. For such a MG, we use G = (P, r) to represent
the game model, where P = {Ph : S ×A → ∆(S)}h∈[H]

is the transition kernel, and r = {ri,h}i∈[N ],h∈[H] is the de-
terministic reward function, with ri,h(s,a) being the reward
for player i ∈ [N ] given that the joint action a is applied at
state s at step h.

A Markovian policy for player i is denoted by πi = {πi,h :
S → ∆(Ai)}h∈[H], with πi,h(·|s) being the the strategy of
player i at state s at step h. We use π := (π1, . . . , πN ) to
represent a product joint policy of the N players. For each
player i ∈ [N ], π−i denotes the joint policy of all players
except player i. Let Πi be the set of all Markov policies
for player i, and Π := Π1 × Π2 × · · · × ΠN be the set
of all product Markov joint policies of the N players, and
Π−i = Π1 × · · · × Πi−1 × Πi+1 · · · × ΠN . We overload
the notation ∆(A) := ∆(A1)×· · ·∆(AN ) to represent the
space of all product joint policy of the N players at every
single state.

2.1. Robust Markov Game

Robust solution concept. Recall that a robust Markov
game (RMG) (S, {Ai}i∈[N ], P

⋆, r⋆, H,U) is defined by a
standard MG G⋆ := (P ⋆, r⋆), called the nominal game, and
an uncertainty set U := P × Ur that describes all possible
models. Here, P is the set of possible transition kernels, and
Ur is the set of possible reward functions. Given a product
joint policy π, for each player i ∈ [N ] we define the robust

1For the case that the initial state is stochastic, one can add
s0 as the initial state and set the initial state distribution as the
transition kernel from s0 to s1.

value functions of π with respect to the uncertainty set U as
follows: ∀s ∈ S, µ ∈ ∆(A), h ∈ [H],

V π
i,h(s) := inf

G∈U
V

π

i,h(s,G), (1)

Qπ
i,h(s, µ) := inf

G∈U
Ea∼µ

[
Q

π

i,h(s,a, G)
]
, (2)

where V
π

i,h(·, G) and Q
π

i,h(·, ·, G) are the standard value
functions for the MG G = (P, r) (cf. equations (10)-(11)
in Appendix B). Similar to the Bellman equation for stan-
dard MG, we have a robust Bellman equation, as stated in
Proposition B.1.

We let V †,π−i

i,h (s) denote the optimal value for player i start-
ing from state s at step h, given a product Markov joint
policy π−i of all players except player i, i.e.,

V
†,π−i

i,h (s) = sup
π′
i∈Πi

V
π′
i×π−i

i,h (s), ∀s ∈ S, h ∈ [H]. (3)

A policy πi that attains the optimal value V
†,π−i

i,h (s), for
all s ∈ S, h ∈ [H] is a robust best response policy to a
given π−i. It is well-known that when π−i is Markovian,
the best response amongst all history-dependent policies is
Markovian, as it reduces to solving a single-agent robust
MDP problem (Iyengar, 2005). Our work will focus on
Markov policies πi as above. Compared with the best re-
sponse policy in standard MGs, the robust best response
policy maximizes the robust value function of each player i
given other players’ policy π−i, leading to the notion of ro-
bust Nash equilibrium (Zhang et al., 2020b; Blanchet et al.,
2023).

Definition 2.1. A joint product policy π = {πh}h∈[H] is a
Markov perfect robust Nash equilibrium if it holds that

V π
i,h(s) = V

†,π−i

i,h (s), ∀i ∈ [N ], h ∈ [H], s ∈ S.

Rectangularity. It is common to choose the uncertainty set
centered around the nominal model G⋆ := (P ⋆, r⋆). In this
work, we consider reward uncertainty sets of the form Ur =
r⋆ +R. We allow the reward uncertainty sets to potentially
depend on the players’ policy π ∈ Π, denoted by Ur(π) =
r⋆ + R(π). When the context is clear, we will drop the
notation (π) for the ease of exposition. As the robust MDP
literature (Wiesemann et al., 2013; Derman et al., 2023;
Nilim & El Ghaoui, 2003), we consider uncertainty sets that
satisfy certain rectangular condition.

Definition 2.2. [s-rectangular Uncertainty Set] The uncer-
tainty sets U := P × Ur with Ur = r⋆ +R satisfy

P = ×(s,h)∈S×[H]Ps,h, Ur = ×(i,s,h)∈[N ]×S×[H]Ur
i,s,h,

where Ps,h ⊂ RS×A and Ur
i,s,h = r⋆i,h(s, ·)+Ri,s,h ⊂ RA

are closed, convex sets.
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Definition 2.3. [(s, a)-Rectangular Uncertainty Set] A spe-
cial case of s-rectangularity is a (s, a)-rectangular uncer-
tainty set:

P = ×(s,a,h)∈S×A×[H]Ps,a,h,

Ur = ×(i,s,a,h)∈[N ]×S×A×[H]Ur
i,s,a,h,

where Ps,a,h ⊂ ∆(S) and Ur
i,s,a,h = r⋆i,h(s,a) +

Ri,s,a,h ⊂ R are closed, convex sets.

We remark that the state-action value function defined in (2)
is different from the classical setting. The new definition
here allows us to provide a unified framework for both s-
rectangular and (s, a)-rectangular uncertainty sets.

Robust suboptimality gap. Given a joint policy π, for
each player i ∈ [N ], we define the robust suboptimality gap
at step h as

RNEGapi,h(π, s) := V
†,π−i

i,h (s)− V π
i,h(s). (4)

That is, the RNE gap measures the suboptimality gap of
player i’s policy πi against its robust best response pol-
icy given all other players’ policy π−i. It is clear that
RNEGapi,h(π, s) ≥ 0 for all product joint π and all
s ∈ S and h ∈ [H]. For any MPRNE policy π∗, we
have RNEGapi,h(π

∗, s) = 0.

Existence of RNE. Recall that the reward uncertainty
sets can depend on the players’ policy π ∈ Π, denoted
by Ur(π). We consider the following assumption on the
reward uncertainty sets, which ensures the existence of ro-
bust Nash equilibrium. We first define the continuity of
a point-to-set function. Consider a function f that maps
each z ∈ Rd1 to a set in Rd2 . The function f is con-
tinuous at z ∈ Rd1 if it satisfies the following: for each
ϵ > 0, there exists δ(ϵ) > 0 such that for all z′ ∈ Rd1

with ∥z − z′∥∞ < δ(ϵ), it holds that D
(
f(z), f(z′)

)
:=

max
{
supy∈f(z) infy′∈f(z′) ∥y − y′∥∞ ,

supy′∈f(z′) infy∈f(z) ∥y − y′∥∞
}
< ϵ.

Assumption 2.1. Consider s-rectangular uncertainty
set. For each π ∈ Π, the reward uncertainty set
Ur(π) = ×(i,s,h)∈[N ]×S×[H]Ur

i,s,h(π), where Ur
i,s,h(π) =

r⋆i,h(s, ·) +Ri,s,h(π) ⊂ RA satisfies the following for all
(i, s, h) ∈ [N ]× S ×H:

1. Bounded game value: There exists a constant Lr

such that for each r ∈ Ur
i,s,h(π), it holds that Lr ≤

Ea∼π(·|s) [r(a)] .

2. Convexity: The support function σRi,s,h(π) : RA →
(−∞,+∞] of Ri,s,h(π), defined as σRi,s,h(π)(y) :=

supx∈Ri,s,h(π) ⟨x, y⟩, satisfies that σRi,s,h(π)

(
−

πi,h(s)π
⊤
−i,h(s)

)
is convex in πi,h(s) and continuous

at all π ∈ Bd(Π).

3. Continuity: The set Ri,s,h(·) is continuous at all π ∈
int(Π); and supy∈Ri,s,h(π) ∥y∥∞ < ∞ for all π ∈
int(Π).

We remark that a special reward uncertainty set that is policy-
independent and bounded satisfies Assumption 2.1 (Aghassi
& Bertsimas, 2006). Such uncertainty set has been con-
sidered in discounted Markov games (Kardeş et al., 2011;
Zhang et al., 2020b). In this paper, we consider more gen-
eral reward uncertainty sets. Importantly, the boundedness
condition in Assumption 2.1 does not require the uncertainty
set to be uniformly bounded. This relaxation allows us to
consider uncertainty sets based on log-barrier functions.

The following theorem states that a robust Nash equilibrium
(RNE) always exists. The proof is provided in Section C.
A similar existence result has been proved for the case
with only (s, a)-rectangular transition uncertainty (Blanchet
et al., 2023).

Theorem 2.1. (Existence of RNE). Given a RMG
(S, {Ai}i∈[N ], P

⋆, r⋆, H,U) with s-rectangular uncer-
tainty set U satisfying Assumption 2.1, the robust Nash
equilibrium defined in Definition (2.1) always exists. More-
over, a joint policy π† = {π†

h}h∈[H] defined as follows is
an MPRNE:

π†
h(· | s) ∈ NE

(
{Qπ†

i,h(s, ·)}i∈[N ]

)
, ∀s ∈ S, h ∈ [H],

where NE(·) denotes the Nash equilibrium of a general-sum,
normal-form game.

2.2. Regularized Markov Games

A regularized Markov game with N players can be
described by a tuple (S, {Ai}i∈[N ], P, r, H,Ω), with
G = (P, r) being a standard MG model. Here Ω :=
(Ωi,h)i∈[N ],h∈[H] is a set of policy regularization functions
such that for all (i, h) ∈ [N ]× [H], Ωi,h : S ×∆(A) → R
is convex in πi,h given a fixed π−i. Given a joint policy
π ∈ Π, the regularized value functions for each player i are
defined as follows: ∀s ∈ S,a ∈ A, h ∈ [H],

Ṽ π
i,h(s,G) = Eπ

P

[ H∑
t=h

ri,t(st,at)− Ωi,t(st,πt)|sh = s
]
,

Q̃π
i,h(s,a, G) = ri,h(s,a)+

Eπ
P

[ H∑
t=h+1

ri,t(st,at)− Ωi,t(st,πt)|sh = s,ah = a
]
.

A common solution concept for regularized MG is the
Markov perfect Nash equilibrium (MPNE).

Definition 2.4. A joint product policy π = {πh}h∈[H] is
an MPNE for a regularized MG if it holds that Ṽ π

i,h(s) =

supπ′
i∈Πi

Ṽ
π′
i×π−i

i,h (s), ∀i ∈ [N ], h ∈ [H], s ∈ S.
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3. Markov Games with Reward Uncertainty
In this section, we consider robust Markov games with only
reward uncertainty. To solve such RMGs, we take inspira-
tion from the single-player setting. We follow the ideas of
Derman et al. (2023) to show that solving RMGs can be
done through solving regularized MGs. In fact, for many
common regularizers, the reverse is also true, which im-
plies regularization yields robust solutions. Importantly, the
equivalence results mean existing efficient, regularized MG
solvers can be used off-the-shelf to efficiently solve robust
MGs. Proofs for the results in this section are deferred to
Appendix D.

3.1. Matrix Games

To build intuition for our results, we first study matrix games
with N players since they can be viewed as a simple Markov
game with S = H = 1. Already through matrix games,
we see that reward uncertainty is much more complex to
handle than in the single-agent setting. Nevertheless, by
understanding the support functions induced by uncertainty
sets, we can derive equivalent regularized matrix games.

Reward Structure. We consider s-rectangular reward un-
certainty set of the form U = r⋆ + R, where r⋆ ∈ U is
the nominal model, and R = ×i∈[N ]Ri with Ri ⊂ RA.
Recall that the uncertainty set R can potentially depend on
the players’ joint policy π ∈ ∆(A). We observe that the
robust value for player i can be simplified to

V π
i = inf

r∈U
Ea∼π [ri(a)] = inf

r∈U
π⊤
i riπ−i.

Here, we view ri as a matrix in RAi×A−i , πi as a column
vector in RAi and π−i as a column vector in RA−i . By
Proposition C.2, we can equivalently rewrite the robust value
function as follows:

V π
i = π⊤

i r
⋆
i π−i − σRi

(−πiπ
⊤
−i), (5)

where σRi
(y) = supx∈Ri

⟨x, y⟩ denotes the support func-
tion of Ri.

Equivalence between Robustness and Regularization.
If we consider the support function σRi as a regularizer,
equation (5) shows an equivalence between player i’s ro-
bust game value V π

i and the value Ṽ π
i (s,G⋆) in a σRi

-
regularized game. Note that the RNE of the matrix game
is a product joint policy π† such that π†

i is the robust best
response policy to π†

−i. That is,

π†
i ∈ arg sup

πi∈∆(Ai)

V
πi×π†

−i

i = arg sup
πi∈∆(Ai)

Ṽ
πi×π†

−i

i (s,G⋆),

which implies an equivalence between solving a robust game
and solving a regularized game.

Theorem 3.1. Consider a robust matrix game G with un-
certainty set U = r⋆ +R satisfying Assumption 2.1, where
r⋆ ∈ U is the nominal model, and R = ×i∈[N ]Ri. Con-
sider a regularized normal form game G′ with payoff matrix
r⋆ and the regularizer function Ωi : ∆(A) → R for each
player i ∈ [N ] defined as Ωi(π) := σRi

(−πiπ
⊤
−i). Then,

π is a RNE of robust game G if and only if π is a NE of
regularized game G′.

We provide the proof of Theorem 3.1 in Appendix D.1.

Corollary 3.2. Robust matrix games can be solved using
any planning algorithm for regularized games.

Interpretable Equivalence. Thus, we see that we can
solve a given robust game by solving a particular regular-
ized game. However, since our reduction maps robust games
to very specialized regularized games, it is unclear whether
commonly used regularized methods can be used to solve
robust games. Fortunately, we can show for many common
classes of regularizers, solutions to the regularized game cor-
respond to the solutions of robust games with interpretable
uncertainty sets.

Theorem 3.3. Consider a regularized normal form game G′

with payoff matrix r⋆ and the regularizer Ωi : ∆(A) → R
for each i ∈ [N ].

1. If Ωi is ℓp/ℓq-norm regularization, i.e. Ωi(π) :=
αi ∥−πi∥p ∥π−i∥q for each player i ∈ [N ], then solv-
ing for the NE of G′ is equivalent to solving for RNE of
the robust game G with s-rectangular ball uncertainty
U = r⋆ + ×i∈[N ]Ri, where Ri =

{
Ri ∈ RAi×A−i :

∥Ri∥q∗→p ≤ αi

}
.

2. If Ωi is strongly convex and decomposable with kernel ω,
i.e., Ωi(π) := τi

∑
ai
πi(ai)ωi(πi(ai)) for each player

i ∈ [N ] with τi ≥ 0, then solving for a NE of G′

is equivalent to solving for a RNE of robust game G
with (s, a)-rectangular, policy-dependent uncertainty set
U(π) = r⋆ +×i∈[N ],a∈ARi,a(π), where

Ri,a(π) =
[
τiωi(πi(ai)) + gi(π−i(a−i)),

ωi(πi(ai)) + gi(π−i(a−i))
]
⊂ R, (6)

with functions ωi, ωi : [0, 1] → R and gi, gi : [0, 1] → R
are continuous.

See Appendix D.2 for the proof of Theorem 3.3. We remark
that the s-rectangular ball-constrained uncertainty set satis-
fies Assumption 2.1. The policy-dependent uncertainty set
in (6) also satisfies Assumption 2.1 by properly choosing
the functions ωi, ωi, gi, gi. Theorem 3.3 implies that the
shape of the reward uncertainty set determines the equiva-
lent regularizer function. For example, a ball-constrained
uncertainty set corresponds to norm regularization. Also,
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the size of the uncertainty set, e.g., the radius parameter αi,
determines the magnitude of the regularization factor.

Corollary 3.4. For any regularizer considered in Theo-
rem 3.3, solutions to the regularized game are provably
robust.

Remark. Observe that as long as the functions for regular-
ization and uncertainty sets in Theorem 3.3 are efficiently
computable, then given either a regularized game or a ro-
bust game, the construction of the equivalent game can be
done in polynomial time. Therefore, Theorem 3.3 implies
the problem of computing an RNE of a robust game for
special classes of uncertainty is polynomial-time equiva-
lent to the problem of computing an NE of a regularized
game with special classes of regularizers. This means the
computational complexity of both problems is the same. In
particular, an efficient algorithm for one problem implies an
efficient algorithm for the other.

Examples of regularization. A classical example of de-
composable regularizers is the negative Shannon entropy
Ωi(π) =

∑
ai∈Ai

πi(ai) log πi(ai). Entropy regulariza-
tion is applied extensively in both single-agent MDP and
multi-agent games (Kumar et al., 2023; Grill et al., 2019;
Geist et al., 2019; Zhan et al., 2023; Cen et al., 2021;
Zhang et al., 2023), and has been shown to accelerate
the convergence of many learning algorithms. Another
example is KL divergence regularizer (Schulman et al.,
2017) Ωi(π) =

∑
ai∈Ai

πi(ai) log
πi(ai)
µi(ai)

= dKL(πi, µi),
where µi ∈ ∆(Ai) is a given distribution. The litera-
ture has also considered the negative Tsallis entropy reg-
ularizer (Lee et al., 2018) Ωi(π) = 1

2

(
∥πi∥22 − 1

)
=

1
2

∑
ai∈Ai

(
πi(ai)

2 − πi(ai)
)
. Theorem 3.3 also applies

to other regularizers, such as the Renyi entropy regulariza-
tion (Mertikopoulos & Sandholm, 2016); See Section D.3
for additional discussion.

3.2. Markov Games

The intuition for matrix games extends directly to Markov
games. The main additional ingredient needed for the anal-
ysis is backward induction. By applying Theorem 3.1 to
each stage game, we can construct a regularized MG whose
MPNE are all MPRNE for the RMG.

We consider Markov games with s-rectangular reward un-
certainty of the form U = P ⋆×(r⋆ +R) . Similar to matrix
games, we see that each player i’s robust value function is
equivalent to the value function of a regularized MG, as
stated in the following proposition. The proof is provided
in Appendix D.4. For notational simplicity, we define,

[PhV ](s,a) := Es′∼Ph(·|s,a) [V (s′)] .

Proposition 3.5. Suppose the uncertainty is s-rectangular.
Given any product joint policy π ∈ Π, the robust value

function
{
V π
i,h

}
h∈[H]

of each player i ∈ [N ] satisfies:

V π
i,h(s) = Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

hV
π
i,h+1](s,a)

]
,

− σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
. (7)

Given the proposition, we can similarly construct a regular-
ized Markov game as in the matrix game case.

Theorem 3.6. Consider a robust MG G with s-rectangular
uncertainty set U = P ⋆ × (r⋆ +R). Consider a regu-
larized MG G′ = (S, {Ai}i∈[N ], P

⋆, r⋆, H,Ω), where the
regularizer functions {Ωi,h}h∈[H] for each player i ∈ [N ]

are given by Ωi,h(s, µ) := σRi,s,h

(
− µiµ

⊤
−i

)
, ∀s ∈ S, h ∈

[H], µ ∈ ∆(A). Then, π is a MPRNE for G if and only if
π is a MPNE for G′.

Corollary 3.7. RMGs with s-rectangular reward uncer-
tainty can be solved using any planning or learning algo-
rithm for the equivalent regularized Markov games.

Remark. The same results from Theorem 3.3 extend to the
full RMG setting by simply using the same shape of uncer-
tainty set for each stage (s, h), as stated in Theorem D.1
in Appendix D.6. In particular, our results apply to the
well-known regularized game, including ℓp/ℓq-norm regu-
larization and decomposable regularizers such as entropy
regularization and KL divergence. In the following, we give
the example of widely employed entropy regularization.

Example: Entropy Regularization. Consider Shannon
entropy regularized Markov game with

Ωi,h(s, µ) = τi
∑

ai∈Ai

µi(ai) log µi(ai), ∀µ ∈ ∆(A),

where τi > 0 denotes regularization factor. The regularized
NE is equivalent to the RNE of a robust MG with (s, a)-
rectangular policy-dependent uncertainty set U(π) = P ⋆ ×
(r⋆ +R(π)) , where R(π) = ×i,s,a,hRi,s,a,h(π) with

Ri,s,a,h(π) =
[
τi log πi,h(ai|s), ωi,s,h(πi,h(ai|s))

]
,

where the function ωi,s,h : [0, 1] → R is continuous and
non-negative to ensure that r⋆ ∈ Uπ. The reader can find
additional details of other regularizers in Section D.6.

4. Efficient Algorithms for Robust Zero-Sum
MG

Although the results from Section 3 provide insights that
allow us to solve RMGs, they do not yield efficient algo-
rithms in general. Our reduction may result in general-sum
regularized games which are hard to solve. As we will see
shortly, even for a two-player zero-sum Markov game with
reward uncertainty, computing the RNE is PPAD-hard in
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general. However, we show that when uncertainty sets sat-
isfy a natural decomposition assumption, then an MPRNE
of a two-player zero-sum Markov game can be computed
in polynomial time. Proofs for the results in this section are
deferred to Appendix E.

First, we extend the notion of zero-sum Markov games to
the robust setting.

Definition 4.1 (Two-Player Zero-Sum RMG). A RMG G
is a two-player zero-sum RMG (TPZS RMG) with reward
uncertainty if N = 2 and for each h ∈ [H] and s ∈ S,
r⋆2,h(s, ·) = −r⋆1,h(s, ·).

While this is a crucial first step, focusing on TPZS RMGs is
insufficient to guarantee efficient algorithms. Surprisingly,
even with the most restrictive notion of (s, a)-rectangularity,
TPZS RMGs are PPAD-hard to solve. Observe this stands in
sharp contrast to traditional game theory where two-player
zero-sum games can be efficiently solved using LP methods.

Theorem 4.1. Even restricted to the class of (s, a)-
rectangular uncertainty sets, computing an RNE of a TPZS
RMG is PPAD-hard even for H = S = 1.

Proof Sketch. We present a poly-time reduction from the
problem of computing an NE for a general-sum game to the
problem of computing an RNE for a two-player zero-sum
robust matrix game with (s, a)-rectangular reward uncer-
tainty. Since computing an NE of a general-sum game is
PPAD-hard, it then follows that computing an RNE for the
aforementioned class of robust matrix games is also PPAD-
hard. Let (A,B) be an arbitrary general sum matrix game.

The idea is to construct a two-player zero-sum robust matrix
game G defined by (r⋆,R1,R2) so that the set of solutions
to both games is the same. First, we choose matrices r⋆,
R1 and R2 satisfying r⋆ + R1 = A and r⋆ + R2 = −B.
Then, we choose R1 and R2 satisfying −σR1

(−π1π
⊤
2 ) =

π⊤
1 R1π2 and −σR1

(−π1π
⊤
2 ) = π⊤

1 R2π2. Consequently,
we see the robust suboptimality gap for G simplifies to,

RNEGap1(π) + RNEGap2(π)

= max
π′
1∈∆(A1)

{
π′⊤
1 (r⋆ +R1)π2

}
− π⊤

1 (r
⋆ +R1)π2

+ max
π′
2∈∆(A2)

{
π⊤
1 (−r⋆ −R2)π

′
2

}
− π⊤

1 (−r⋆ −R2)π2

= max
π′
1∈∆(A1)

{
π′⊤
1 Aπ2

}
− π⊤

1 Aπ2

+ max
π′
2∈∆(A2)

{
π⊤
1 Bπ′

2

}
− π⊤

1 Bπ2.

We see the total suboptimality gap of π for G exactly
matches the suboptimality gap of π for (A,B). This implies
the set of solutions to both games is the same as desired.

The proof of Theorem 4.1 is provided in Appendix E.1.
Thanks to Theorem 4.1, we cannot hope to solve TPZS

RMGs even under the simplest (s, a)-rectangularity assump-
tion. However, the proof reveals key structural properties
of the uncertainty set that lead to hardness. Specifically,
we needed the uncertainty sets to satisfy −σR1

(−π1π
⊤
2 ) =

π⊤
1 R1π2. In particular, observe the support function in-

volves a product of π1 and π2. This property allowed us to
simulate a general sum game through the uncertainty sets.

One way to avoid such hardness is to consider uncer-
tainty sets that break the support function into two sepa-
rate pieces: one for π1 and one for π2. Formally, suppose
that σRi(−πiπ

⊤
−i) = Ωi,i(πi) + Ωi,−i(π−i). Immediately,

we see that an uncertainty set satisfying −σR1(−π1π
⊤
2 ) =

π⊤
1 R1π2 is no longer possible. Even better, by inspecting

the RNEGap of G, we see that each of the Ωi,−i(π−i) terms
cancel out, leading to the following RNEGap:

max
π′
1∈∆(A1)

{
π′
1
⊤
r⋆π2 − Ω1,1(π

′
1) + Ω2,2(π2)

}
− min

π′
2∈∆(A2)

{
π1

⊤r⋆π′
2 − Ω1,1(π1) + Ω2,2(π

′
2)
}
.

Observe this is exactly the suboptimality gap of π for a
TPZS regularized game. Importantly, TPZS regularized
games can be solved in polynomial time so long as the reg-
ularizer functions are strongly convex (Facchinei & Pang,
2003; Cherukuri et al., 2017). Thus, as long as the decom-
position of σ into Ω functions is known or can be computed
efficiently, solving the robust matrix game can also be done
efficiently by solving the zero-sum regularized game.

Definition 4.2 (Efficiently Player-Decomposable). Suppose
G is a TPZS RMG with s-rectangular reward uncertainty.
We say that G is efficiently player-decomposable if ∀i ∈
{1, 2}, s ∈ S, h ∈ [H], µ ∈ ∆(A), σRi,s,h

(−µiµ
⊤
−i) =

Ωh
i,i(µi) + Ωh

i,−i(µ−i), where each Ω is a strongly convex
function that is either known in advance or can be computed
from G in polynomial time.

Lemma 4.2. Suppose G is a robust matrix game that satis-
fies Definition 4.2 and G′ is the corresponding regularized
game constructed in Theorem 3.1. Then, G′ is a TPZS regu-
larized game with separate regularizers, Ωi = Ωi,i for each
player i. Therefore, computing an RNE for G can be done
in polynomial time by solving G′.

The proof of Lemma 4.2 can be found in Appendix E.2.
Lemma 4.2 implies we can solve each stage game so long
as the decomposition holds for each stage. Thus, to solve a
zero-sum RMG, we can solve each stage’s regularized game
using backward induction.

Theorem 4.3. Suppose G is an RMG that satisfies Def-
inition 4.2 and G′ is the corresponding regularized MG
constructed in Theorem 3.6. Then, G′ is a TPZS regularized
MG with separate regularizers, Ωi,h(s, ·) = Ωh

i,i(s, ·) for
each player i and stage (s, h). Therefore, computing an
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MPRNE for G can be done in polynomial time by solving
G′.

The proof of Theorem 4.3 is provided in Appendix E.3. We
immediately have the following result.

Corollary 4.4. RMGs satisfying Definition 4.2 can be
solved in polynomial time using any efficient planning or
learning algorithm for TPZS regularized MGs.

We point out that the classes of uncertainty set we discussed
in Theorem 3.3 do not all satisfy Definition 4.2. Specifi-
cally, case 1. concerning general ball uncertainty does not
satisfy our decomposition. However, we show very similar
uncertainty sets do satisfy the conditions and thus can be
solved efficiently, as stated in the following theorem.

Theorem 4.5. Consider a regularized MG with payoff ma-
trix r⋆ and the regularizer Ωi,h : S × Π → R for each
player i ∈ [N ] and state s ∈ S .

1. If Ωi,h(s,πh) = αi,s,h ∥πi,h(s)∥p is the p-norm regular-
izer for each i ∈ [N ], h ∈ [H], s ∈ S, then solving for
MPNE of the regularized game is equivalent to solving
for MPRNE of the robust game with ball constrained un-
certainty set R1,s,h =

{
R1 ∈ RA1×A2 : ∥R1∥∞→p ≤

α1,s,h

}
and R2,s,h =

{
R2 ∈ RA1×A2 :

∥∥R⊤
2

∥∥
∞→p

≤
α2,s,h

}
.

2. The Markov game version of (s, a)-rectangular, policy-
dependent reward uncertainty set from part 2. of Theo-
rem 3.3 carries over without any additional restrictions.

In either case, both the RMG and regularized MG can be
solved in polynomial time.

Remark. As with Theorem 3.3, classical and common regu-
larizers can be applied as special cases of Theorem 4.5. See
Appendix D.3 for additional discussion.

5. Markov Games with Transition Uncertainty
Up to this point, we have focused on RMGs with reward
uncertainty. In this section, we consider transition uncer-
tainty. Similar to before, we show that RMGs with transition
uncertainty can be solved using regularized MG methods.
One can easily integrate the results of this section with those
of Section 3 to characterize general RMGs with both re-
ward and transition uncertainty. Proofs for the results in this
section are deferred to Appendix F.

If G is an RMG with s-rectangular transition uncertainty,
then the uncertainty set takes the form U = P × {r⋆}. We
can again derive a robust policy evaluation equation for G
similar to that in Proposition C.2 for reward uncertainty.

Proposition 5.1. Consider a RMG G with s-rectangular
uncertainty set U = P × {r⋆}. Then for each product

joint Markovian policy π ∈ Π, the robust value function
{V π

i,h}h∈[H] of each player i ∈ [N ] satisfies

V π
i,h(s) =Ea∼πh(s)

[
r⋆i,h(s,a)

]
− σPs,h

(
−V π

i,h+1πh(s)
⊤)
(8)

where [V π
i,h+1πh(s)

⊤](s′,a′) = V π
i,h+1(s

′)πh(a
′|s) for

all s′ ∈ S,a′ ∈ A.

Observe that (8) replaces the linear expected future value
function in a standard MG with a support function σPs,h

(·),
which depends on both the policy and future robust value.
Depending on the uncertainty set, the support function might
involve a non-linear transformation of the policy and the
value function.

To accommodate the non-linearity, we introduce a gen-
eralization of regularized Markov games where Ω :=
(Ωs,h)s∈S,h∈[H] is a finite set of policy-value regularization
functions such that for all s ∈ S, h ∈ [H], Ωs,h : ∆(S)A ×
RS ×∆(A) → R satisfies that for each Ph ∈ ∆(S)A and
for each v ∈ RS , Ωs,h(Ph, v, ·) is convex. Given a joint pol-
icy π for a MG with G = (P, r), the general policy-value
regularized value function is defined recursively as follows:
∀s ∈ S, h ∈ [H],

V̂ π
i,h(s,G) :=Ea∼πh(s) [ri,h(s,a)]

− Ωs,h

(
Ph,−V π

i,h+1,πh(s)
)
. (9)

Note that if Ωs,h (Ph,−v, µ) = ⟨Ph,−vµ⊤⟩ =
−Ea∼µ [[Phv](s,a)] for all h ∈ [H], this regularized MG
reduces to the standard MG.

Viewing the support function σPs,h
(·) as the policy-value

regularizer, Proposition 5.1 implies that the RNE of robust
Markov games with transition uncertainty is equivalent to
the NE of the regularized Markov game.

Theorem 5.2. Consider a RMG G with s-rectangular
uncertainty set U = P × {r⋆}. Consider the policy-
value regularized MG G′ = (S, {Ai}i∈[N ], P

⋆, r⋆, H,Ω),
where the regularizer functions Ω := (Ωs,h)s,h∈[H] satis-
fies Ωs,h (P

⋆
h ,−v, µ) = σPs,h

(
−vµ⊤) , ∀v ∈ RS , ∀µ ∈

∆(A). Then, π is an MPRNE for G if and only if π is an
MPNE for G′.

Depending on the uncertainty set Ps,h, the support function
can be further simplified, leading to efficient computation of
regularized value functions. Here we give some examples
of transition uncertainty sets that are commonly considered
in the literature, including both s-rectangular and (s, a)-
rectangular sets. We refer readers to Appendix F.3 for the
proof and discussion of additional examples.

Corollary 5.3. Consider a robust MG with uncertainty set
U = P ×{r⋆}, where P = ×(s,h)∈S×[H]Ps,h satisfies ball
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constraints: Ps,h =
{
P ∈ RS×A :

∥∥P − P ⋆
s,h

∥∥
q∗→p

≤
βs,h

}
. Then the equivalent policy-value regularized MG

is associated with the convex regularizer function Ω =
{Ωs,h}s∈S,h∈[H] such that ∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) =

− Ea∼µ [[P
⋆
hv](s,a)] + βs,h ∥−v∥p

∥∥µ⊤∥∥
q
.

We remark that for the policy-value regularized game in
Corollary 5.3, the corresponding value function defined in
(9) reduces to

V̂ π
i,h(s,G

⋆) =Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

h V̂
π
i,h+1](s,a)

]
− βs,h

∥∥− V̂ π
i,h+1

∥∥
p
∥πh(s)∥q .

Compared with standard MG, the value function involves an
additional term that penalizes the ℓp-norm of future rewards
and ℓq-norm of policy. Note that similar to the case with
reward uncertainty, the size of the uncertainty set, i.e., the
radius βs,h, determines the penalty factor.

When the transition uncertainty set is (s, a)-rectangular,
the regularizer functions for the equivalent policy-value
regularized MG admits simpler forms.

Corollary 5.4. Consider a robust MG with an uncertainty
set U = P × {r⋆}, where P is (s, a)-rectangular of the
form P = ×(s,a,h)∈S×A×[H]Ps,a,h, with Ps,a,h ⊂ ∆(S)
being compact and convex. Then the equivalent policy-
value regularized MG is associated with convex regularizers
Ω = {Ωs,h} such that: ∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
σPs,a,h

(−v)
]
.

Various (s, a)-rectangular transition uncertainty sets have
been considered for robust MDP (Shi et al., 2023; Iyengar,
2005). The uncertain transitions are typically of the form

Ps,a,h =
{
P ∈ ∆(S) : d(P, P ⋆

s,a,h) ≤ βs,a,h

}
,

where βs,a,h > 0 represents the level of uncertainty, and
d(·, ·) is a distance metric between two probability distribu-
tions. Popular distance metrics include Total variation (TV)
distance, KL distance, Chi-square distance, and Wasser-
stein distance. For each case, we can obtain equivalent
policy-value regularizer functions. Here we consider the TV
distance and defer the discussion of other distance metrics
to Appendix F.3.3.

Example. Consider a TV uncertainty set given by
P = ×(s,a,h)∈S×A×[H]PTV

s,a,h with PTV
s,a,h =

{
P ∈

∆(S) : dTV(P, P
⋆
s,a,h) ≤ βs,a,h}. Here dTV(η, η

′) =
1
2 ∥η − η′∥1 = 1

2

∑
s |η(s) − η′(s)| for any η, η′ ∈ ∆(S).

Then the equivalent policy-value regularized MG is asso-
ciated with convex regularizers Ω = {Ωs,h} such that:
∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
− [P ⋆

hv](s,a) +
βs,a,h

2
·

min
u≥0

{
max
s′

(
v(s′)− u(s′)

)
−max

s′

(
v(s′)− u(s′)

)}]
.

In particular, the optimization in Ωs,h is convex and can
be computed in time O(|S| log |S|) (Iyengar, 2005). Com-
pared with standard MGs, the corresponding regularized
value function (9) involves an additional penalty that de-
pends on the policy and future rewards. Similar to the
ball-constrained uncertainty set, the size of the uncertainty
set, i.e., radius βs,ah determines the penalty factor. We
remark that in general, the regularizer function might not in-
clude the standard linear future value term −[P ⋆

hv](s,a), as
shown in Appendix F.3.3 for various transition uncertainty
sets.

Computational Hardness. Lastly, we note that even for
TPSZ RMGs with (s, a)-rectangular transition uncertainty
and H = 2, computing a MPRNE is PPAD-hard. Thus,
dealing with transition uncertainty is generally difficult. The
proof uses transition uncertainty to simulate the same hard
reward uncertainty instances derived in Theorem 4.1.

Theorem 5.5. Even restricted to the class of (s, a)-
rectangular uncertainty sets, computing an MPRNE of a
TPZS RMG with transition uncertainty is PPAD-hard even
for S = H = 2.

6. Conclusions
In this work, we study RMGs with s-rectangular uncertainty.
We show that RMGs can be solved using regularized MG
algorithms. This reduction yields a planning algorithm for
computing an MPRNE of an RMG. We also show that for
many commonly used regularizers, the set of MPNE of the
regularized game is equal to the set of MPRNE of RMGs
with well-behaved uncertainty sets. This gives proof that
regularization methods do produce robust policies.

However, we show even for two-player robust matrix games
with (s, a)-rectangularity, computing an MPRNE is PPAD-
hard. This illustrates that the reward uncertainty case is
already challenging compared to the single-agent setting.
Despite this, we show whenever the support function of
the uncertainty set decomposes into a sum of two parts,
one corresponding to each player’s policy, then our con-
structed regularized game is zero-sum. Consequently, we
can compute an MPRNE for two-player zero-sum RMGs
with efficient player-decomposable reward uncertainty in
polynomial time.
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A. Useful Technical Results
In this section, we state some existing results that are useful in our analysis.

Theorem A.1 (Fenchel-Rockafellar duality (Borwein & Lewis, 2010, Theorem 3.3.5)). Consider the problems:

(P ) min
x

f(x) + g(Ax)

(D) max
y

−f∗(−A∗y)− g∗(y)

where f : X → R and g : Y → R are proper, closed convex functions, and A : X → Y is a linear map. If the regularity
condition 0 ∈ core(dom(g)−A(dom(f))) holds2, then the primal (P ) and dual (D) optimal values are equal.

Lemma A.2 (Induced norm of rank-1 matrices). For any vectors u, v, we have
∥∥uv⊤∥∥

p→q
= ∥u∥q ∥v∥p∗ .

Proof. By definition of matrix-induced norm, we have

∥∥uv⊤∥∥
p→q

= sup
x:x ̸=0

∥∥uv⊤x∥∥
q

∥x∥p

= sup
x:x ̸=0

∣∣v⊤x∣∣ · ∥u∥q
∥x∥p

positive homogeneity of norms

= ∥u∥q · sup
x:x ̸=0

∣∣v⊤x∣∣
∥x∥p

= ∥u∥q · ∥v∥p∗ . definition of dual norm of ∥·∥p .

Lemma A.3 (Dual norm of induced matrix norm). For any matrix R, we have

sup
R:∥R∥p→q≤1

〈
R, xy⊤

〉
= ∥x∥q∗ ∥y∥p =

∥∥xy⊤∥∥
p∗→q

.

Proof. By definition of dual norms, there exists a vector u with ∥u∥q = 1 such that ⟨u, x⟩ = ∥x∥q∗ . Similarly, there exists
v with ∥v∥p∗ = 1 such that ⟨v, y⟩ = ∥y∥p. Then the matrix R0 := uv⊤ satisfies〈

R0, xy
⊤〉 = Tr

(
R⊤

0 xy
⊤) = Tr

(
y⊤(vu⊤)x

)
= ⟨u, x⟩ ⟨v, y⟩ = ∥x∥q∗ ∥y∥p

and, by Lemma A.2,
∥R0∥p→q =

∥∥uv⊤∥∥
p→q

= ∥u∥q ∥v∥p∗ = 1.

So
sup

∥R∥p→q≤1

〈
R, xy⊤

〉
≥

〈
R0, xy

⊤〉 = ∥x∥q∗ ∥y∥p .

On the other hand, for any R with ∥R∥p→q ≤ 1, we have〈
R, xy⊤

〉
= x⊤Ry ≤ ∥x∥q∗ ∥Ry∥q ≤ ∥x∥q∗ ∥y∥p ,

hence sup∥R∥p→q≤1

〈
R, xy⊤

〉
≤ ∥x∥q∗ ∥y∥p. This proves the first equality in the lemma.

The second equality follows from Lemma A.2.
2Given C ⊂ Rd, we say that x ∈ core(C) if for all z ∈ Rd, there exists a small enough t ∈ R such that x + tz ∈ C (Borwein &

Lewis, 2010).
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B. Properties of Robust Markov Games
Recall that given a joint policy π ∈ Π for a MG G = (P, r), the value function and the state-action function for each player
i is defined as: ∀s ∈ S,a ∈ A, h ∈ [H],

V
π

i,h(s,G) := Eπ
P

[ H∑
t=h

ri,t(st,at) | sh = s
]
, (10)

Q
π

i,h(s,a, G) := Eπ
P

[ H∑
t=h

ri,t(st,at) | sh = s,ah = a
]
, (11)

where the expectation Eπ
P [·] is taken with respect to the trajectory {sh, ah, rh}h∈[H] induced by the transition kernel P and

the joint policy π, i.e., ah ∼ πh(sh) and sh+1 ∼ Ph(·|sh,ah). It is convenient to set V
π

i,H+1(s,G) ≡ Q
π

i,H+1(s,a, G) ≡ 0
for the terminal reward.

B.1. Robust Markov Game Bellman Equation

Similar to the Bellman equation for standard MG, we have the following robust Bellman equation.
Proposition B.1. (Robust Bellman Equation). Under Assumption 2.2, for any joint policy π = {πh}h∈[H] ∈ Π, the
following Bellman equations hold:

V π
i,h(s) =Qπ

i,h (s,πh(· | s)) , (12)

Qπ
i,h(s, µ) = inf

rh∈Ur
s,h

Ea∼µ [ri,h(s,a)] + inf
Ph∈Ps,h

Ea∼µ

[
[PhV

π
i,h+1](s,a)

]
, (13)

where Ur
s,h := ×i∈[N ]Ur

i,s,h.

Proof. Blanchet et al. (2023) established the robust Bellman Equation for robust Markov game with S × A-rectangular
transition uncertainty set. We extend the result to Markov games with general S-uncertainty set, including both reward
function uncertainty and transition uncertainty. Throught out the proof, for each game model G = (P, r), we will use
Gh :=

(
{Pt}Ht=h, {rt}Ht=h

)
to denote the model parameters from step h to the terminal step H . With this notation, we note

that for a standard Markov game with model G, the value functions satisfy

V
π

i,h(s,G) = V
π

i,h(s,G
h),

Q
π

i,h(s,a, G) = Q
π

i,h(s,a, G
h).

To facilitate the proof, we introduce the following shorthands to denote the uncertainty sets from step h to the terminal step
H:

Ph := ×(s,t)∈S×{t,t+1,...,H}Ps,t,

Ur,h := ×(i,s,t)∈[N ]×S×{t,t+1,...,H}Ur
i,s,t,

Uh := Ph × Ur,h.

Let Ph := ×s∈SPs,h and Ur
h := ×(i,s)∈[N ]×SUr

i,s,h.

We will prove the following stronger results via induction from step h = H to 1: given any π ∈ Π, for each player i ∈ [N ],
there exists a game model Ĝ = (P̂ , r̂) such that: (1) Robust Bellman equations (12)-(13) hold; (2) the robust value functions
satisfy

V π
i,h(s) = V

π

i,h(s, Ĝ
h), , ∀s ∈ S, (14)

Qπ
i,h(s, µ) = Ea∼µ

[
Q

π

i,h(s,a, Ĝ
h)
]
, ∀s ∈ S, µ ∈ ∆(A). (15)

1. (Base case): For h = H , by the definition of robust state-action value function in (2), it follows that (13) holds. We
also have

Qπ
i,H(s, µ) = inf

G∈U
Ea∼µ

[
Q

π

i,H(s,a, G)
]
= inf

r∈Ur
Ea∼µ [ri,H(s,a)] = inf

rH(s,·)∈Ur
s,H

Ea∼µ [ri,H(s,a)] .
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By Assumption 2.2, one can thus find a single reward function r̂H ∈ Ur
s,H = ×iUr

i,s,H such that for each s ∈ S,

r̂H(s, ·) ∈ arg inf
rH(s,·)∈Ur

s,H

Ea∼µ [ri,H(s,a)] .

Therefore,
Qπ

i,H(s, µ) = Ea∼µ [r̂i,H(s,a)] = Ea∼µ

[
Q

π

i,H(s,a, ĜH)
]
. (16)

By definition of robust value function in (1), we have

V π
i,H(s) = inf

G∈U
V

π

i,H(s,G)
(I)
= inf

G∈U
Ea∼πH(s)

[
Q

π

i,H(s,a, G)
]

(II)
= Qπ

i,H(s,πH(s))
(III)
= Ea∼πH(s)

[
Q

π

i,H(s,a, ĜH)
]

(V I)
= V

π

i,H(s, ĜH),

where equalities (I) and (V I) follow from the Bellman equations (10)-(11) of standard Markov game, equality (II)
follows from the definition of robust Q-function in (2), and (III) holds due to (16). We complete the proof of the base
case.

2. (Induction step): Now suppose that (12)-(13) and (14)-(15) hold for all t > h. Thus there exists Ĝh+1 :=(
{P̂t}Ht=h+1, {r̂t}Ht=h+1

)
such that

V π
i,h+1(s) = V

π

i,h+1(s, Ĝ
h+1), , ∀s ∈ S. (17)

By the definition of robust state-action value function in (2), we have: ∀s ∈ S, µ ∈ ∆(A),

Qπ
i,h(s, µ) := inf

Gh∈Uh
Ea∼µ

[
Q

π

i,h(s,a, G
h)
]

= inf
{Pt}H

t=h∈Ph,{rt}H
t=h∈Ur,h

Ea∼µ

[
ri,h(s,a) + Es′∼Ph(·|s,a)

[
V

π

i,h+1(s
′, Gh+1)

]]
(I)
= inf

rh(s,·)∈Ur
s,h

Ea∼µ [ri,h(s,a)] + inf
{Pt}H

t=h∈Ph,{rt}H
t=h+1∈Ur,h+1

Ea∼µ

[
Es′∼Ph(·|s,a)

[
V

π

i,h+1(s
′, Gh+1)

]]
≤ inf

rh(s,·)∈Ur
s,h

Ea∼µ [ri,h(s,a)]︸ ︷︷ ︸
T1

+ inf
Ph∈Ph

Ea∼µ

[
Es′∼Ph(·|s,a)

[
V

π

i,h+1(s
′, Ĝh+1)

]]
︸ ︷︷ ︸

T2

, (18)

where the equality (I) follows from the rectangular uncertainty set assumption and the fact that the first only depends
on the reward function at state s and step h. We thus can find a single reward function r̂h ∈ Ur

hthat attains the minimum
value of the term T1 for each state s ∈ S; we can also find a single transition kernel P̂h ∈ Ph that it attains the
minimum value of T2.

On the other hand, by (17) and the definition of robust value function in (1), we have

Qπ
i,h(s, µ) ≤ inf

rh(s,·)∈Ur
s,h

Ea∼µ [ri,h(s,a)] + inf
Ph∈Ph

Ea∼µ

[
Es′∼Ph(·|s,a)

[
V π
i,h+1(s)

]]
(19)

= inf
rh(s,·)∈Ur

s,h

Ea∼µ [ri,h(s,a)]

+ inf
Ph∈Ph

Ea∼µ

[
Es′∼Ph(·|s,a)

[
inf

{Pt}H
t=h+1∈Ph+1,{rt}H

t=h+1∈Ur,h+1
V

π

i,h+1(s
′, Gh+1)

]]
= inf

rh(s,·)∈Ur
s,h

Ea∼µ [ri,h(s,a)] + inf
{Pt}H

t=h∈Ph,{rt}H
t=h+1∈Ur,h+1

Ea∼µ

[
Es′∼Ph(·|s,a)

[
V

π

i,h+1(s
′, Gh+1)

]]
= Qπ

i,h(s, µ),

where the last equality follows from the definition of robust state-action value function in (2). Therefore, all the
inequality above are equalities. In particular, equation (19) proves the robust Bellman equation (13) for step h. In
addition, from (18), we have

Qπ
i,h(s, µ) = Ea∼µ [r̂i,h(s,a)] + Ea∼µ

[
Es′∼P̂h(·|s,a)

[
V

π

i,h+1(s
′, Ĝh+1)

]]
= Ea∼µ

[
Q

π

i,h(s,a, Ĝ
h)
]
, (20)
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which proves (15) for step h.

Next we will show that V π
i,h(s) satisfies (12) and (14). By definition of robust value function in (1), we have

V π
i,h(s) = inf

{Pt}H
t=h∈Ph,{rt}H

t=h∈Ur,h
Eπ
P

[
H∑
t=h

ri,h(st,at) | sh = s

]

= inf
{Pt}H

t=h∈Ph,{rt}H
t=h∈Ur,h

Ea∼πh(s)

[
Eπ
P

[
H∑
t=h

ri,h(st,at) | sh = s,ah = a

]]
(I)
= inf

{Pt}H
t=h∈Ph,{rt}H

t=h∈Ur,h
Ea∼πh(s)

[
Q

π

i,h(s,a, G
h)
]

≤ Ea∼πh(s)

[
Q

π

i,h(s,a, Ĝ
h)
]

(II)
= Qπ

i,h(s,πh(s))

(III)
= inf

Gh∈Uh
Ea∼πh(s)

[
Q

π

i,h(s,a, G
h)
]

(V I)
= inf

Gh∈Uh
V

π

i,h(s,G
h)

(V )
= V π

i,h(s),

where (I) follows from the definition of state-action value function definition (11), (II) follows from (20), (III) holds
due to the definition of robust state-action value function definition (2), (V I) is true from Bellman equation of Markov
game, and (V ) holds by definition in (1). Therefore, the inequality above is equality. Note that (II) proves the Bellman
equation (12). In addition, we have

V π
i,h(s) = Ea∼πh(s)

[
Q

π

i,h(s,a, Ĝ
h)
]
= V

π

i,h(s, Ĝ
h).

We complete the proof of step h.

This finishes the proof of Proposition B.1.

C. Proof of Existence of Robust NE
In this section, we provide the proof of Theorem 2.1 on the existence of robust Nash equilibrium. We first consider matrix
games in Section C.1 and then proceed to Markov games in Section C.2.

C.1. Matrix Games with Reward Uncertainty

We first consider matrix games with reward uncertainty. In particular, the reward uncertainty set is of the form U = r⋆ +R
with R = ×i∈[N ]Ri, where Ri ⊂ RA contains the possible reward functions for player i. Here we allow the reward
uncertainty sets to potentially depend on the players’ policy π = (π1, . . . , πN ) with πi ∈ ∆(Ai), denoted by U(π) =
r⋆ +R(π) with R(π) = ×i∈[N ]Ri(π). The existence of RNE has been established for the setting where the uncertainty
set is fixed and policy-independent (Zhang et al., 2020b; Kardeş et al., 2011; Aghassi & Bertsimas, 2006). Here we extend
the result to more general uncertainty sets.

Our proof uses Kakutani’s Fixed Point Theorem (Kakutani, 1941). We first state a relevant definition, followed by Kakutani’s
theorem below. For a mapping from a closed, bounded, convex set E in a Euclidean space into the family of all closed,
covex subsets of E, upper semicontinuity is defined as follows.

Definition C.1. A point-to-set mapping ϕ : E → 2E is called upper semicontinuous (u.s.c.) if

yn ∈ ϕ(xn), n = 1, 2, 3, . . .

lim
n→∞

xn = x,

lim
n→∞

yn = y,
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imply that y ∈ ϕ(x).
Theorem C.1 (Kakutani’s Fixed Point Theorem (Kakutani, 1941)). If E is a closed, bounded, and convex set in a Euclidean
space, and ϕ is an upper semicontinuous point-to-set mapping of E into the family of closed, convex subsets of E, then
∃x ∈ E s.t. x ∈ ϕ(x).

C.1.1. PROPERTIES OF ROBUST VALUE FUNCTIONS

To apply Kakutani’s Fixed Point Theorem, we first establish some properties of the worst-case expected payoff functions,
i.e., robust value function, defined as

Fi(π) ≜ inf
r∈U(π)

π⊤
i riπ−i.

Here we view ri ∈ U(π) as a matrix in RAi×A−i , πi ∈ RAi as a column vector in and π−i ∈ RA−i . We begin by deriving
an equivalent equation for the robust value function.
Proposition C.2. For each player i ∈ [N ], given any product joint policy π ∈ Π of all players, the robust value for player i
satisfies

Fi(π) = π⊤
i r

⋆
i π−i − σRi(π)(−πiπ

⊤
−i), (21)

where σRi(π)(·) is the support function of the reward uncertainty set Ri(π).

Proof. Recall that the characteristic function δRi(π) : RA → {0,∞} over a set Ri(π) ⊆ RA is defined as δRi(π)(x) = 0
if x ∈ Ri(π) and +∞ otherwise. The Legendre-Fenchel transform of δRi(π), i.e., the support function σRi(π) : RA →
(−∞,+∞], is defined as

σRi(π)(y) := sup
x∈Ri(π)

⟨x, y⟩ = sup
x∈RA

{
⟨y, x⟩ − δRi(π)(x)

}
. (22)

By the form of the uncertainty set U(π) = r⋆ +×Ri(π), given any π ∈ Π, we have

Fi(π) = inf
r∈U(π)

π⊤
i riπ−i = inf

x∈Ri(π)
π⊤
i (r

⋆
i + x)π−i

= inf
x∈Ri(π)

π⊤
i xπ−i + π⊤

i r
⋆
i π−i

= inf
x∈RA

{π⊤
i xπ−i + δRi(π)(x)}+ π⊤

i r
⋆
i π−i.

We now proceed to apply Fenchel-Rockafellar duality theorem (Theorem A.1) to the minimization term. Fix player
i’s policy πi and all other players’ policy π−i. We define the function f : RA → R as f(x) = π⊤

i xπ−i for each
x ∈ RA. Consider the identity mapping IdA : RA → RA. Then dom(f) = RA, dom(δRi(π)) = Ri(π), and thus
core(dom(δRi(π)) − IdA(dom(f))) = core(Ri(π) − RA) = core(RA) = RA. Note that 0 ∈ RA. We now can apply
Fenchel-Rockafellar duality, noting that (IdA)∗ = IdA and (δRi(π))

∗(y) = σRi(π)(y):

inf
x∈RA

{f(x) + δRi(π)(x)} = − inf
y∈RA

{f∗(−y) + δ∗Ri(π)(y)} = − inf
y∈RA

{f∗(−y) + σRi(π)(y)}.

We have

f∗(−y) = sup
x∈RA

{⟨x,−y⟩ − π⊤
i xπ−i}

= sup
x∈RA

∑
ai∈Ai

∑
a−i∈A−i

x(ai,a−i) [−y(ai,a−i)− πi(ai)π−i(a−i)]

=

{
0 if − y(ai,a−i)− πi(ai)π−i(a−i) = 0 ∀ai ∈ Ai,a−i ∈ A−i

+∞ otherwise

Note that y ∈ RA such that y(ai,a−i) = −πi(ai)π−i(a−i) is exactly the negative outer product of πi and π−i, i.e.,
y = −πiπ

⊤
−i. Therefore, we have

Fi(π) = − inf
y∈RA

{f∗(−y) + σRi(π)(y)}+ π⊤
i r

⋆
i π−i = π⊤

i r
⋆
i π−i − σRi(π)(−πiπ

⊤
−i).
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Lemma C.3. Under Assumption 2.1, for each agent i ∈ [N ], Fi(π) is continuous on Π.

Proof. Here we focus on the case where the uncertainty set U(π) is well-defined for each π ∈ int(Π). The proof for
the setting where U(π) is well-defined for all π ∈ Π follows similarly. Recall that for an arbitrary π ∈ int(Π), we
have σRi(π)(−πiπ

⊤
−i) := supx∈Ri(π)

〈
x,−πiπ

⊤
−i

〉
= supx∈RA

{〈
−πiπ

⊤
−i, x

〉
− δRi(π)(x)

}
. For each x ∈ Ri(π), by

Assumption 2.1, we have 〈
x,−πiπ

⊤
−i

〉
= −Ea∼π [x(a)] ≤ −Lr < +∞.

Therefore, the sup attains its maximum on the closed set Ri(π). We denote the maximizer by x∗(π) ∈ Ri(π).

Let us consider ϵ > 0. Consider δ(ϵ,π) given by

δ̄(ϵ,π) = min

{
1

2
inf

z∈Bd(Π)
∥π − z∥∞ , δ

( ϵ

3

)
,

min{ϵ, 1}
6|A| ·max{rmax,M}

}
,

where M := maxx∈Ri(π) ∥x∥∞. For each π′ ∈ Π such that ∥π − π′∥∞ < δ̄(ϵ,π), we have π′ ∈ int(Π). By Assumption
2.1, D

(
Ri(π),Ri(π

′)
)

< ϵ
3 . Thus there exist x̂′ ∈ Ri(π

′) and x̂ ∈ Ri(π) such that ∥x̂− x∗(π′)∥∞ < ϵ
3 and

∥x̂′ − x∗(π)∥∞ < ϵ
3 .

By Proposition C.2, we have

Fi(π
′)− Fi(π) = (π′

i)
⊤r⋆i π

′
−i − sup

x∈Ri(π′)

〈
x,−π′

i(π
′
−i)

⊤〉− π⊤
i r

⋆
i π−i + sup

x∈Ri(π)

〈
x,−πiπ

⊤
−i

〉
≤

〈
r⋆, π′

i(π
′
−i)

⊤ − πiπ
⊤
−i

〉
−

〈
x̂′,−π′

i(π
′
−i)

⊤〉+ 〈
x∗(π),−πiπ

⊤
−i

〉
=

〈
r⋆, π′

i(π
′
−i)

⊤ − πiπ
⊤
−i

〉
−

〈
x̂′ − x∗(π),−π′

i(π
′
−i)

⊤〉+ 〈
x∗(π), π′

i(π
′
−i)

⊤ − πiπ
⊤
−i

〉
≤ |A| ∥r⋆i ∥∞

∥∥π′
i(π

′
−i)

⊤ − πiπ
⊤
−i

∥∥
∞ + ∥x̂′ − x∗(π)∥∞ + |A| ∥x∗(π)∥∞

∥∥πiπ
⊤
−i − π′

i(π
′
−i)

⊤∥∥
∞

≤ |A|rmax · 2 ∥π − π′∥∞ + ∥x̂′ − x∗(π′)∥∞ + |A| ·M · 2 ∥π − π′∥∞
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

For the other direction, we have

Fi(π)− Fi(π
′) = π⊤

i r
⋆
i π−i − σRi(π)(−πiπ

⊤
−i)− (π′

i)
⊤r⋆i π

′
−i + σRi(π′)(−π′

i(π
′
−i)

⊤)

= π⊤
i r

⋆
i π−i − sup

x∈Ri(π)

〈
x,−πiπ

⊤
−i

〉
− (π′

i)
⊤r⋆i π

′
−i + sup

x∈Ri(π′)

〈
x,−π′

i(π
′
−i)

⊤〉
≤

〈
r⋆, πiπ

⊤
−i − π′

i(π
′
−i)

⊤〉− 〈
x̂,−πiπ

⊤
−i

〉
+

〈
x∗(π′),−π′

i(π
′
−i)

⊤〉
=

〈
r⋆, πiπ

⊤
−i − π′

i(π
′
−i)

⊤〉− 〈
x̂, π′

i(π
′
−i)

⊤ − πiπ
⊤
−i

〉
+

〈
x∗(π′)− x̂,−π′

i(π
′
−i)

⊤〉
≤ |A| ∥r⋆i ∥∞

∥∥πiπ
⊤
−i − π′

i(π
′
−i)

⊤∥∥
∞ + |A| ∥x̂∥∞

∥∥πiπ
⊤
−i − π′

i(π
′
−i)

⊤∥∥
∞ + ∥x∗(π′)− x̂∥∞

≤ |A|rmax · 2 ∥π − π′∥∞ + |A| ·M · 2 ∥π − π′∥∞ + ∥x̂− x∗(π′)∥

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

Therefore, Fi(·) is continuous in int(Π). By Assumption 2.1, the support function σRi(π)

(
− πiπ

⊤
−i

)
is continuous in the

boundary of the compact set Π. From Proposition C.2, we have that Fi(·) is also continuous in Bd(Π). Therefore, Fi(·) is
continuous in Π.

Lemma C.4. Under Assumptions 2.2 and 2.1, for each agent i ∈ [N ], Fi(π) is concave in πi given a fixed π−i.

Proof. By Proposition C.2, the concavity of Fi(π) in πi follows by the convexity of the support function σRi(π)

(
−

πiπ
⊤
−i

)
.
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C.1.2. EXISTENCE OF RNE

Theorem C.5. Under Assumptions 2.2 and 2.1, the robust matrix game has an equilibrium.

Proof. We first construct a point-to-set mapping. Note that Π is closed, bounded and convex. We define ϕ : Π → 2Π as

ϕ(π) :=

{
z ∈ Π | zi ∈ argmax

ui∈∆(Ai)

Fi(ui,π−i), i = 1, . . . , N

}
.

We next show that ϕ satisfies all the conditions in the Kakutani’s Fixed Point Theorem.

By Lemma C.3, Fi(ui,π−i) is continuous. By Weierstrass’ Theorem, the maximum of this continuous function on a
compact set ∆(Ai) exists, i.e., argmaxui∈∆(Ai) Fi(ui,π−i) ̸= ∅. We thus have ϕ(π) ̸= ∅ for each π ∈ Π.

Next, we show that ϕ(π) is a convex set for each π ∈ Π. Suppose that z, w ∈ ϕ(π). By the definition of ϕ, for each i ∈ [N ]
and ∀yi ∈ ∆(Ai), we have

Fi(zi,π−i) = Fi(wi,π−i) ≥ Fi(yi,π−i).

Hence, for each λ ∈ [0, 1], we have

λFi(zi,π−i) + (1− λ)Fi(wi,π−i) ≥ Fi(yi,π−i).

By the concavity of Fi from Lemma C.4,

Fi(λzi + (1− λ)wi,π−i) ≥ λFi(zi,π−i) + (1− λ)Fi(wi,π−i) ≥ Fi(yi,π−i).

Therefore, λz + (1− λ)w ∈ ϕ(π).

We now show that ϕ is upper semi-continuous. Suppose that πn ∈ Π with limn→∞ πn = π, and zn ∈ ϕ(πn) with
limn→∞ zn = z. By the definition of ϕ,for each n and i ∈ [N ] and ∀yi ∈ ∆(Ai), we have

Fi(z
n
i ,π

n
−i) ≥ Fi(yi,π

n
−i).

By the continuity of Fi, if we take the limit on both sides, we have

Fi(zi,π−i) ≥ Fi(yi,π−i).

Hence z ∈ ϕ(π). Therefore, ϕ is upper semi-continuous.

Together, we show that ϕ satisfies all the conditions of Kakutani’s Fixed Point Theorem (Theorem C.1). Therefore, there
exists π ∈ Π, such that π ∈ ϕ(π). That is, there exists an equilibrium in the robust matrix game.

C.2. Markov Games: Proof of Theorem 2.1

Proof. We define,
π†

h(s) ∈ NE(Qπ†

h (s, ·)). (23)

We will show that the above policy π† is well defined. By definition of NE and (12), this means that,

V π†

i,h (s) = Qπ†

i,h(s,π
†
h(s)) = sup

u∈∆(Ai)

Qπ†

i,h(s, (u,π
†
−i,h(s))).

We show the stronger claim that for the policy π† defined above,

V π†

i,h (s) = sup
π̃i∈Πi

V
(π̃i,π

†
−i)

i,h (s), ∀h ∈ [H], s ∈ S, i ∈ [N ], (24)

where Πi denotes the set of policies for agent i. We proceed by induction on h.

19



Roping in Uncertainty: Robustness and Regularization in Markov Games

1. (Base Case) Suppose that h = H . For each s ∈ S , by Theorem C.5, there exists an equilibrium for the robust matrix
game with reward uncertainty set ×i∈[N ]Ui,s,H . Therefore, π†

H(s) in (23) is well defined. We also have,

V π†

i,H(s) = sup
u∈∆(Ai)

Qπ†

i,H

(
s, (u,π†

−i,H(s))
)

= sup
u∈∆(Ai)

inf
rH∈Ur

s,H

Ea∼(u,π†
−i,H(s)) [ri,H(s,a)]

= sup
π̃i∈Πi

inf
rH∈Ur

s,H

Ea∼(π̃i,H(s),π†
−i,H(s)) [ri,H(s,a)]

= sup
π̃i∈Πi

V
(π̃i,π

†
−i)

i,H (s).

The second equality follows from (13) and the fourth equality follows from (12). The third equality follows since π† is
Markovian.

Overall, we see that (24) holds for h = H .

2. (Inductive Step) Suppose that h < H . For any i ∈ [N ] and s ∈ S , for each µ ∈ ∆(A), we define

Fi,s,h(µ) = Qπ†

i,h

(
s, µ

)
= inf

rh∈Ur
s,h(µ)

inf
Ph∈Ps,h

Ea∼µ

[
ri,h(s,a) + [PhV

π†

i,h+1](s,a)
]
.

Following the same line of argument for the proof of Theorem C.5 for a robust matrix game, we can show that Fi,s,h(µ)
is continuous and concave, and consequently, there exists an equilibrium for the stage game with the expected payoff
{Fi,s,h}i∈[N ]. Therefore, the NE π†

h(s) in (23) is well defined. We see that,

V π†

i,h (s) = sup
u∈∆(Ai)

Qπ†

i,h

(
s, (u,π†

−i,h(s))
)

= sup
u∈∆(Ai)

inf
rh∈Ur

s,h

inf
Ph∈Ps,h

Ea∼(π̃i,h(s),π
†
−i,h(s))

[
ri,h(s,a) + [PhV

π†

i,h+1](s,a)
]

≤ sup
π̃i∈Πi

inf
rh∈Ur

s,h

inf
Ph∈Ps,h

Ea∼(π̃i,h(s),π
†
−i,h(s))

[
ri,h(s,a) + [PhV

(π̃i,π
†
−i)

i,h+1 ](s,a)

]
= sup

π̃i,h(s)∈∆(Ai)

inf
rh∈Ur

s,h

inf
Ph∈Ps,h

Ea∼(π̃i,h(s),π
†
−i,h(s))

[
ri,h(s,a) + sup

π̃i∈Πi

[PhV
(π̃i,π

†
−i)

i,h+1 ](s,a)

]
≤ sup

π̃i,h(s)∈∆(Ai)

inf
rh∈Ur

s,h

inf
Ph∈Ps,h

Ea∼(π̃i,h(s),π
†
−i,h(s))

[
ri,h(s,a) + Es′∼Ph(s,a)

[
sup

π̃i∈Πi

V
(π̃i,π

†
−i)

i,h+1 (s′)

]]
= sup

π̃i,h(s)∈∆(Ai)

inf
rh∈Ur

s,h

inf
Ph∈Ps,h

Ea∼(π̃i,h(s),π
†
−i,h(s))

[
ri,h(s,a) + Es′∼Ph(s,a)

[
V π†

i,h+1(s
′)
]]

= sup
π̃i,h(s)∈∆(Ai)

Qπ†

i,h

(
s, (π̃i,h(s),π

†
−i,h(s))

)
= V π†

i,h (s).

The first two equalities use (23) and (13), respectively. The first inequality follows by allowing player i to also deviate
at future steps. The second inequality uses Jensen’s inequality. The following equality follows from the induction
hypothesis. The last two equalities use (13) and (23) respectively.

Next, since the starting and ending terms are the same, all inequalities must be equalities. In particular, the first
inequality is equality, which is the relationship we wanted to show after applying (23) and (13). Since this relationship
holds for arbitrary s ∈ S and i ∈ [N ], we see that (24) holds at time h.

This completes the proof of (24). The fact that π† is an NE then immediately follows from the h = 1 case.
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D. Analysis of Markov Games with Reward Uncertainty
D.1. Proof of Theorem 3.1

Let us first recall the definition of regularized value functions for a regularized Markov game (S, {Ai}i∈[N ], P, r, H,Ω),
with G = (P, r). Given a joint policy π ∈ Π, for each player i, ∀s ∈ S,a ∈ A, h ∈ [H],

Ṽ π
i,h(s,G) = Eπ

P

[ H∑
t=h

ri,t(st,at)− Ωi,t(πt(st))|sh = s
]
, (25)

Q̃π
i,h(s,a, G) = ri,h(s,a) + Eπ

P

[ H∑
t=h+1

(ri,t(st,at)− Ωi,t(πt(st))) |sh = s,ah = a
]
. (26)

Proof. By the definition of the expected payoff Ṽ π
i in (25) for each player i in a regularized game, for each product joint

policy π ∈ Π, we have
Ṽ π
i (r⋆) = π⊤

i r
⋆
i π−i − Ωi(π) = π⊤

i r
⋆
i π−i − σRi(−πiπ

⊤
−i).

For the robust game, by Proposition C.2, for each π ∈ Π, the robust value of player i satisfies:

V π
i = π⊤

i r
⋆
i π−i − σRi

(−πiπ
⊤
−i) = Ṽ π

i (r⋆).

Consider any RNE π† of the robust game. By definition, we have

π†
i ∈ argmax

πi∈∆(Ai)

V
πi×π†

−i

i = argmax
πi∈∆(Ai)

Ṽ
πi×π†

−i

i (r⋆),

which implies that π† is an NE of the regularized game. Following a similar argument, we can conclude that any NE of the
regularized game is an RNE of the robust game.

D.2. Proof of Theorem 3.3

Proof. For ball constrained uncertainty set Ri :=
{
Ri ∈ RAi×A−i : ∥Ri∥q∗→p ≤ αi

}
, we have

σRi
(−πiπ

⊤
−i) = sup

Ri∈Ri

⟨Ri,−πiπ
⊤
−i⟩

= sup
Ri:∥Ri∥q∗→p≤αi

⟨Ri,−πiπ
⊤
−i⟩

= αi sup
Ri:∥Ri∥q∗→p≤1

⟨Ri,−πiπ
⊤
−i⟩

= αi ∥−πi∥p ∥π−i∥q
= Ωi(π),

where the second to last equality follows from Lemma A.3 on the dual norm of matrix operator norm. The equivalence
between the robust game and the regularized games immediately follow from Theorem 3.1.

For the (s, a)-rectangular policy-dependent uncertainty set, let Ri(π) := ×a∈ARi,a(π). We have

σRπ
i
(−πiπ

⊤
−i) = sup

Ri∈Ri(π)

⟨Ri,−πiπ
⊤
−i⟩

= −
∑
ai

∑
a−i

[−τiωi(πi(ai))− gi(π−i(a−i))]πi(ai)π−i(a−i)

= τi
∑
ai

πi(ai)ωi(πi(ai)) +
∑
a−i

gi(π−i(a−i))π−i(a−i).

By Proposition C.2, the robust best response policy br(π−i) for player i is given by the following optimization problem:

arg sup
πi∈∆(Ai)

V
πi×π−i

i
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= arg sup
πi∈∆(Ai)

{
π⊤
i r

⋆
i π−i − σRπ

i
(−πiπ

⊤
−i)

}
= arg sup

πi∈∆(Ai)

π⊤
i r

⋆
i π−i − τi

∑
ai

πi(ai)ωi(πi(ai))−
∑
a−i

gi(π−i(a−i))π−i(a−i)


≡ arg sup

πi∈∆(Ai)

{
π⊤
i r

⋆
i π−i − τi

∑
ai

πi(ai)ωi(πi(ai))

}
= arg sup

πi∈∆(Ai)

{
π⊤
i r

⋆
i π−i − Ωi(π)

}
which gives the best response policy w.r.t. π−i for the regularized game with regularizer Ω = {Ωi}. Therefore, solving the
RNE of the robust game is equivalent to solving the NE of the regularized normal-form game.

D.3. Examples of Game Regularization

As pointed out in Section 3.1, we can apply Theorem 3.3 to popular regularization schemes in games, including negative
Shannon entropy regularization, KL divergence regularization, and Tsallis entropy regularization. Here we provide details
of the {ωi} functions for the reward function uncertainty set and two more examples of regularizers studied in games.

• The negative Shannon entropy: Ωi(π) =
∑

ai∈Ai
πi(ai) log πi(ai). Thus we can define ωi(πi(ai)) := log πi(ai).

• The KL divergence regularizer: Ωi(π) =
∑

ai∈Ai
πi(ai) log

πi(ai)
µi(ai)

= dKL(πi, µi), where µi ∈ ∆(Ai) is a given

distribution. We can let ωi(πi(ai)) := log πi(ai)
µi(ai)

.

• The Tsallis entropy regularizer Ωi(π) =
1
2

∑
ai∈Ai

(πi(ai)
2−πi(ai)). Thus we can define ωi(πi(ai)) :=

1
2 (πi(ai)−1).

• The Renyi (negative) entropy regularizer: Ωi(π) = −(1− q)−1 log
(∑

ai∈Ai
πi(ai)

q
)

for a given q ∈ (0, 1), and thus

we can let (with a slight abuse of notation) ωi(πi, ai) := −(1− q)−1 log
(∑

a′
i∈Ai

πi(a
′
i)

q
)
.

D.4. Proof of Proposition 3.5

Proof. From Proposition B.1 we have that

V π
i,h(s) = inf

rh∈Ur
s,h

Ea∼πh(s) [ri,h(s,a)] + Ea∼πh(s)

[
[P ⋆

hV
π
i,h+1](s,a)

]
.

We proceed with backward induction over h. In the base case at step h = H , there is no further future transitions, thus
∀s ∈ S and each i ∈ [N ]

V π
i,H(s) = inf

rH∈Ur
s,H

Ea∼πH(s) [ri,H(s,a)]

= Ea∼πH(s)

[
inf

rH∈Ur
s,H

ri,H(s,a)

]
= Ea∼πH(s)

[
r⋆i,H(s,a)

]
− σRi,s,H

(
−πi,H(s)π⊤

−i,H(s)
)

where the last equality holds from Proposition C.2.

Now suppose that (7) holds for all steps t > h. Then ∀s ∈ S and each i ∈ [N ], we have

V π
i,h(s) = inf

rh∈Ur
s,h

Ea∼πh(s) [ri,h(s,a)] + Ea∼πh(s)

[
[P ⋆

hV
π
i,h+1](s,a)

]
= Ea∼πh(s)

[
inf

rh∈Ur
s,h

ri,h(s,a)

]
+ Ea∼πh(s)

[
[P ⋆

hV
π
i,h+1](s,a)

]
= Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

hV
π
i,h+1](s,a)

]
− σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
,

which completes the proof for the induction step.
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D.5. Proof of Theorem 3.6

Proof. For the robust MG, by Proposition 3.5, for each π ∈ Π, the robust value functions of player i satisfy:

V π
i,h(s) = Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

hV
π
i,h+1](s,a)

]
− σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
.

We can use backward induction from h = H to 1 to show that

V π
i,h(s) = Ṽ π

i,h(s,G
⋆), ∀s ∈ S, ∀h ∈ [H].

At the base step h = H , from Proposition 3.5, we have for ∀s ∈ S and each i ∈ [N ]

V π
i,H(s) = Ea∼πH(s)

[
r⋆i,H(s,a)

]
− σRi,s,H

(
−πi,H(s)π⊤

−i,H(s)
)

= Ea∼πH(s)

[
r⋆i,H(s,a)

]
− Ωi,H(π, s)

= Ṽ π
i,H(s,G⋆)

Now assume that for t > h that
V π
i,t(s) = Ṽ π

i,t(s,G
⋆), ∀s ∈ S, ∀i ∈ [N ]

and that π† = (π†
1, . . . , π

†
N ) is an NE for the regularized game at steps t > h. Then ∀s ∈ S and each i ∈ [N ]

V π
i,h(s) = Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

hV
π
i,h+1](s,a)

]
− σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
= Ea∼πh(s)

[
r⋆i,h(s,a) + [P ⋆

h Ṽ
π
i,h+1](s,a)

]
− Ωi,h(π, s)

= Ṽ π
i,h(s,G

⋆)

Thus V π
i,h(s) = Ṽ π

i,h(s,G
⋆), ∀s ∈ S, ∀h ∈ [H], ∀i ∈ [N ].

Consider any RNE π† of the robust MG. By definition, we have

π†
i ∈ argmax

πi∈∆(Ai)

V
πi×π†

−i

i,1 (s1) = argmax
πi∈∆(Ai)

Ṽ
πi×π†

−i

i,1 (s1, G
⋆),

which implies that π† is an NE of the regularized MG. Following a similar argument, we can conclude that any NE of the
regularized MG is an RNE of the robust MG.

D.6. Examples of Regularized Markov Game and Equivalent Robust Markov Game

Theorem D.1. Consider a regularized MG G′ = (S, {Ai}i∈[N ], P
⋆, r⋆, H,Ω) with regularizer functions Ω :=

(Ωi,h)i∈[N ],h∈[H] .

1. If Ωi,h(s, µ) = αi,s,h ∥µi∥p ∥µ−i∥q is the ℓp/ℓq-norm regularizer for each i ∈ [N ], h ∈ [H], s ∈ S and ∀µ ∈ ∆(A),
then solving for MPNE of the regularized game G′ is equivalent to solving for MPRNE of the robust game G with
s-rectangular ball constrained reward uncertainty set Ur = r⋆ +×i,s,hRi,s,h,

Ri,s,h =
{
Ri ∈ RAi×A−i : ∥Ri∥q∗→p ≤ αi,s,h

}
,

where q∗ satisfies 1
q∗ + 1

q = 1.

2. If Ωi,h is decomposable with kernel ω, i.e., Ωi,h(s, µ) := τi,s,h
∑

ai∈Ai
µi(ai)ωi,s,h

(
µi(ai)

)
, i ∈ [N ], h ∈ [H], s ∈ S ,

with τi,s,h ≥ 0, and Ωi,h(s, µ) is convex in µi for each given µ−i. Then solving for NE of the regularized game G′

is equivalent to solving for RNE of robust game with (s, a)-rectangular policy-dependent uncertainty set U(π) =
r⋆ +×i,s,a,hRi,s,a,h(π), where

Ri,s,a,h(π) =
[
τi,s,hωi,s,h (πi,h(ai|s)) + gi,s,h (π−i,h(a−i|s)) ,

ωi,s,h (πi,h(ai|s)) + gi,s,h(π−i,h(a−i|s))
]
⊂ R,

with functions ωi,s,h, ωi,s,h : [0, 1] → R and gi,s,h, gi,s,h : [0, 1] → R are continuous.

The proof follows easily from Theorem 3.3 using backward induction.

23



Roping in Uncertainty: Robustness and Regularization in Markov Games

D.6.1. EXAMPLES OF MARKOV GAME REGULARIZATION

We can apply Theorem D.1 above to popular regularization schemes in Markov games. Below we provide four examples
with the corresponding {ωi} functions for the reward function uncertainty set.

• The negative Shannon entropy: Ωi,h(s, µ) =
∑

ai∈Ai
µi(ai) log µi(ai). Thus we can define ωi,s,h(πi,h(ai|s)) :=

log πi,h(ai|s).

• The KL divergence regularizer: Ωi,h(s, µ) =
∑

ai∈Ai
µi(ai) log

µi(ai)
νi(ai)

= dKL(µi, νi), where νi ∈ ∆(Ai) is a given

distribution. We can let ωi,s,h(πi,h(ai|s)) := log
πi,h(ai|s)
νi(ai)

.

• The Tsallis entropy regularizer Ωi,h(s, µ) =
1
2

∑
ai∈Ai

(µi(ai)
2 − µi(ai)). Thus we can define ωi,s,h(πi,h(ai|s)) :=

1
2 (πi,h(ai|s)− 1).

• The Renyi (negative) entropy regularizer: Ωi,h(s, µ) = −(1− q)−1 log
(∑

ai∈Ai
µi(ai)

q
)

for a given q ∈ (0, 1). Thus

we can let (with a slight abuse of notation) ωi,s,h(πi,h(·|s), ai) := −(1− q)−1 log
(∑

a′
i∈Ai

πi,h(a
′
i|s)q

)
.

E. Analysis of Robust Zero-Sum Markov Games
E.1. Proof of Theorem 4.1

Proof. We present a poly-time reduction from the problem of computing an NE for a general-sum game to the problem
of computing an RNE for a two-player zero-sum robust matrix game with (s, a)-rectangular reward uncertainty. Since
computing an NE of a general-sum game is PPAD-hard, it then follows that computing an RNE for the aforementioned class
of robust matrix games is also PPAD-hard. Let (A,B) be an arbitrary general sum matrix game. WLOG we can further
assume that A,B ≤ 0. To construct the robust matrix game instance, we first define r = −A+B

2 and r = A+B
2 . Then, we

map (A,B) to the robust matrix game G defined by r⋆ = A− r, R1 = {r ∈ Rn1×n2 | r ≤ r ≤ r}, and R2 = −R1.

To prove the reduction is correct, we show that π is an NE for (A,B) if and only if π is an RNE for G. First, we observe
that for player 1,

−σR1(−π1π
⊤
2 ) = − sup

r≤R≤r
⟨R,−π1π

⊤
2 ⟩

= − sup
r≤R≤r

−π⊤
1 Rπ2

= inf
r≤R≤r

π⊤
1 Rπ2

= π⊤
1 rπ2.

Using Proposition C.2, we see the robust suboptimality gap for player 1 under π is exactly,

D1(π) = max
π′
1∈∆(A1)

{
π′⊤
1 (r⋆ + r)π2

}
− (π⊤

1 (r
⋆ + r)π2).

Similarly, we observe that −σ−R1
(−π1π

⊤
2 ) = π⊤

1 (−r)π2. Thus, the robust suboptimality gap for player 2 under π is
exactly,

D2(π) = max
π′
2∈∆(A2)

{
π⊤
1 (−r⋆ − r)π′

2

}
− (π⊤

1 (−r⋆ − r)π2).

Putting these together, the RNE gap for π is,

RNEGap(π) = max
π′
1∈∆(A1)

{
π′⊤
1 (r⋆ + r)π2

}
+ max

π′
2∈∆(A2)

{
π⊤
1 (−r⋆ − r)π′

2

}
− π⊤

1 (r
⋆ + r)π2 − π⊤

1 (−r⋆ − r)π2

= max
π′
1∈∆(A1)

{
π′⊤
1 Aπ2

}
+ max

π′
2∈∆(A2)

{
π⊤
1 Bπ′

2

}
− π⊤

1 Aπ2 − π⊤
1 Bπ2.

Observe this last term is exactly the NE gap for (A,B). Thus, minimizing the optimality gaps for both games is equivalent
which implies the set of RNEs for G is exactly the set of NEs for (A,B). In particular, this means that π is an NE for (A,B)
if and only if π is an RNE for G. Thus, the reduction is correct.
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Lastly, we note that G can easily be computed in linear time in the size of (A,B) just by computing the average and
difference of matrices. Thus, the reduction can be done in polynomial time.

By simply defining R1(a) = [r(a), r(a)] and R2(a) = [−r(a),−r(a)] the same proof applies to (s, a)-rectangularity.

E.2. Proof of Lemma 4.2

Proposition C.2 implies that, the robust value for player i satisfies,

V π
i = π⊤

i r
⋆
i π−i − σRi(−πiπ

⊤
−i)

Now, suppose that the characteristic function could be decomposed into σRi
(−πiπ

⊤
−i) = Ωi,i(πi) + Ωi,−i(π−i). Then the

robust suboptimality gap for player i takes the form,

V
†,π−i

i (s)− V π
i (s) = max

π′
i∈∆(A1)

{
π′
i
⊤
r⋆i π−i − σRi

(−π′
iπ

⊤
−i)

}
−

(
π⊤
i r

⋆
i π−i − σRi

(−πiπ
⊤
−i)

)
= max

π′
i∈∆(A1)

{
π′
i
⊤
r⋆i π−i − Ωi,i(π

′
i)− Ωi,−i(π−i)

}
−
(
π⊤
i r

⋆
i π−i − Ωi,i(πi)− Ωi,−i(π−i)

)
= max

π′
i∈∆(A1)

{
π′
i
⊤
r⋆i π−i − Ωi,i(π

′
i)
}
−
(
π⊤
i r

⋆
i π−i − Ωi,i(πi)

)
.

Next, we define Ωi(πi) := Ωi,i(πi). We see the RNE gap takes the form,

RNEGap = max
π′
1∈∆(A1)

{
π′
1
⊤
r⋆π2 − Ω1(π

′
1)
}
−
(
π⊤
1 r

⋆
1π2 − Ω1(π1)

)
+ max

π′
2∈∆(A2)

{
π1

⊤(−r⋆)π′
2 − Ω2(π

′
2)
}
−
(
π⊤
1 (−r⋆)π2 − Ω2(π2)

)
= max

π′
1∈∆(A1)

{
π′
1
⊤
r⋆π2 − Ω1(π

′
1) + Ω2(π2)

}
− min

π′
2∈∆(A2)

{
π1

⊤r⋆π′
2 − Ω1(π1) + Ω2(π

′
2)
}

This exactly matches the RNEGap for the zero-zum regularized game with regularization functions Ω1 and Ω2. Thus,
solving the original two-player zero-sum robust game is equivalent to solving the two-player zero-sum regularized game
with regularization functions Ω1 and Ω2. Furthermore, since Ω1,1 and Ω2,2 are strongly convex by assumption, we know
this regularized game can be solved in polynomial time (Zhang et al., 2020a).

E.3. Proof of Theorem 4.3

Proof. The proof is nearly immediate given the proof of Theorem 3.6, Lemma 4.2, and the definition of regularized MGs.
For completeness, we give a formal proof below. We follow the proof of Theorem 3.6 and show the constructed regularized
game is TPZS. We proceed by backward induction on h. For the base case, we consider h = H . Fix any policy π. For any
s ∈ S and i ∈ [N ], we know by (7),

V π
i,H(s) = Ea∼πH(s)

[
r⋆i,H(s,a)

]
− σRi,s,H

(
−πi,H(s)π⊤

−i,H(s)
)
.

Since σRi,s,H

(
−πi,H(s)π⊤

−i,H(s)
)
= ΩH

i,i(πi,H(s)) + ΩH
i,−i(π

⊤
−i,H(s)) by Definition 4.2, Lemma 4.2 implies an NE for

the robust stage game is equivalent to an NE for the corresponding TPZS regularized game.

For the inductive step, suppose that h < H . Fix any policy π. For any s ∈ S and i ∈ [N ], again we know by (7),

V π
i,H(s) = Ea∼πH(s)

[
r⋆i,h(s,a) + [P ⋆

hV
π
i,h+1](s,a)

]
− σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
.

From the proof of Theorem 3.6, we know that [P ⋆
hV

π
i,h+1](s,a) = [P ⋆

h Ṽ
π
i,h+1](s,a). Furthermore, the induction hypothesis

implies the future game is TPZS and so admits a unique NE value Ṽ π
i,h+1(s

′) = Ṽ ∗
i,h+1(s

′) for each s′ ∈ S . Define
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r′i,h(s,a) := r⋆i,h(s,a) + [P ⋆
h Ṽ

∗
i,h+1](s,a). Since σRi,s,h

(
−πi,h(s)π

⊤
−i,h(s)

)
= Ωh

i,i(πi,h(s)) + Ωh
i,−i(π

⊤
−i,h(s)) by

Definition 4.2, we see that solutions to the robust stage game correspond to a TPZS regularized game by Lemma 4.2.
Furthermore, this regularized game is exactly the regularized stage game of G′. This completes the proof.

E.4. Proof of Theorem 4.5

Proof. The two cases of efficiently decomposable structures are

1. For the ball constrained uncertainty case R1,s,h =
{
R1 ∈ RA1×A2 : ∥R1∥∞→p ≤ α1,s,h

}
and R2,s,h =

{
R2 ∈

RA1×A2 :
∥∥R⊤

2

∥∥
∞→p

≤ α2,s,h

}
.

We can show the decomposability for each player. For player 1, we have

σR1,s,h
(−π1,h(s)π

⊤
2,h(s)) = sup

R1∈R1,s,h

⟨R1,−π1,h(s)π
⊤
2,h(s)⟩

= sup
R1:∥R1∥∞→p≤α1,s,h

⟨R1,−π1,h(s)π
⊤
2,h(s)⟩

= α1,s,h sup
R1:∥R1∥∞→p≤1

⟨R1,−π1,h(s)π
⊤
2,h(s)⟩

= α1,s,h ∥−π1,h(s)∥p

Similarly, for player 2, we have

σR2,s,h
(−π1,h(s)π

⊤
2,h(s)) = sup

R2∈R2,s,h

⟨R2,−π1,h(s)π
⊤
2,h(s)⟩

= sup
R2:∥R⊤

2 ∥∞→p
≤α2,s,h

⟨R2,−π1,h(s)π
⊤
2,h(s)⟩

= α2,s,h sup
R2:∥R⊤

2 ∥∞→p
≤1

⟨R2,−π1,h(s)π
⊤
2,h(s)⟩

= α2,s,h ∥−π2,h(s)∥p

where the last equality for both player views follows from Lemma A.3 on the dual norm of matrix operator norm. Thus
we obtain decombosable Ωi,h(s, πi,h(s)) = αi,s,h ∥πi,h(s)∥p.

2. For the decomposable kernel case,

Ri,s,a,h(π) =
[
τi,s,hωi,s,h (πi,h(ai|s)) + gi,s,h (π−i,h(a−i|s)) , ωi,s,h (πi,h(ai|s)) + gi,s,h(π−i,h(a−i|s))

]
⊂ R,

with parameters τi,s,h ≥ 0, functions ωi,s,h, ωi,s,h : [0, 1] → R and gi,s,h, gi,s,h : [0, 1] → R.

This is the same structure as in Theorem D.1, and thus we know the decomposable regularizer is Ωi,h(s,π) =
τi,s,h

∑
ai
πi,h(ai|s)ωi,s,h(πi,h(ai|s)).

With each case of Ωi,h shown to be decomposable, we can proceed as in Theorem D.1. The MPRNE of the RMG, and
MPNE of the corresponding regularized MG, are found by solving for the respective NE for each s ∈ S at each h ∈ [H].
For either case, for each s ∈ S , we have from Theorem 3.3 that at each step h = H we can efficiently solve the RNE
through the corresponding regularized NE. Then we can proceed via backward induction to solve the NE for all h, as done
in Theorem 3.6.

F. Analysis of Markov Games with Transition Uncertainty
F.1. Proof of Proposition 5.1

Proof. We will prove the proposition via an induction from step h = H to 1.

For the base case h = H , as there is no transition, (8) holds by the definition of the robust value function.
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Now suppose that (8) holds for all t ≥ h+ 1. By Proposition B.1, we have

V π
i,h(s) = Ea∼πh(s)

[
r⋆i,h(s,a)

]
+ inf

Ph∈Ps,h

Ea∼πh(s)

[
[PhV

π
i,h+1](s,a)

]
= Ea∼πh(s)

[
r⋆i,h(s,a)

]
+ inf

Ph∈Ps,h

Ea∼πh(s),s′∼Ph(·|s,a)
[
V π
i,h+1(s

′)
]

= Ea∼πh(s)

[
r⋆i,h(s,a)

]
+ inf

Ph∈Ps,h

⟨Ph, V
π
i,h+1πh(s)

⊤⟩

= Ea∼πh(s)

[
r⋆i,h(s,a)

]
− sup

Ph∈Ps,h

⟨Ph,−V π
i,h+1πh(s)

⊤⟩

= Ea∼πh(s)

[
r⋆i,h(s,a)

]
− σPs,h

(
−V π

i,h+1πh(s)
⊤) .

F.2. Proof of Theorem 5.2

Proof. For the robust MG, by Proposition 5.1, for each π ∈ Π, the robust value functions of player i satisfy:

V π
i,h(s) = Ea∼πh(s)

[
r⋆i,h(s,a)

]
− σPs,h

(
−V π

i,h+1πh(s)
⊤) , ∀s ∈ S, ∀h ∈ [H].

We can use backward induction from h = H to 1 to show that

V π
i,h(s) = V̂ π

i,h(s,G
⋆), ∀s ∈ S, ∀h ∈ [H].

Consider any RNE π† of the robust MG. By definition, we have

π†
i ∈ argmax

πi∈∆(Ai)

V
πi×π†

−i

i,1 (s1) = argmax
πi∈∆(Ai)

V̂
πi×π†

−i

i,1 (s1, G
⋆),

which implies that π† is an NE of the regularized MG. Following similar argument, we can conclude that any NE of the
regularized MG is an RNE of the robust MG.

F.3. Examples of Transition Uncertainty Sets

F.3.1. PROOF OF COROLLARY 5.3

Proof. For ball constrained uncertainty set Ps,h =
{
P ∈ RS×A :

∥∥∥P − P ⋆
s,h

∥∥∥
q∗→p

≤ βs,h

}
, we have

σPs,h

(
−vµ⊤) = sup

Ph∈Ps,h

⟨Ph,−vµ⊤⟩

= ⟨P ⋆
h ,−vµ⊤⟩+ sup

∥P ′
h∥p→q∗

≤βs,h

⟨P ′
h,−vµ⊤⟩

= −Ea∼µ [[P
⋆
hv](s,a)] + βs,h sup

∥P ′
h∥p→q∗

≤1

⟨P ′
h,−vµ⊤⟩

(I)
= −Ea∼µ [[P

⋆
hv](s,a)] + βs,h ∥−v∥p

∥∥µ⊤∥∥
q

= Ωs,h (P
⋆
h ,−v, µ)

where equality (I) follows from Lemma A.3 on the dual norm of matrix operator norm. The equivalence between the robust
game and the regularized game immediately follows from Theorem 5.2.

F.3.2. PROOF OF COROLLARY 5.4

Proof. By Theorem 5.2, it is sufficient to verify that the support function σPs,h
(·) is equivalent to the specified regularizer

function Ωs,h for each uncertainty set. When the transition uncertainty set is (s, a)-rectangular with the form P =
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×(s,a,h)∈S×A×[H]Ps,a,h, for each s ∈ S, h ∈ [H], the support function σPs,h
can be simplified. In particular, for each

v ∈ RS , µ ∈ ∆(A), we have

σPs,h
(−vµ⊤) = sup

P∈Ps,h

⟨P,−vµ⊤⟩

= sup
P={Pa′}a′∈A:Pa′∈Ps,a′,h

Ea∼µ [⟨Pa,−v⟩]

(I)
= Ea∼µ

[
sup

Pa∈Ps,a,h

⟨Pa,−v⟩

]
(II)
= Ea∼µ

[
σPs,a,h

(−v)
]
, (27)

where (I) holds due to the independence of uncertainty sets {Ps,a,h}a∈A and (II) follows from the definition of support
function.

F.3.3. EXAMPLES OF S ×A-RECTANGULAR TRANSITION UNCERTAINTY SETS

We first formally introduce various distance metric for distributions.

1. Total variation distance: for any η, ν ∈ ∆(S), dTV(η, ν) =
1
2 ∥η − ν∥1 = 1

2

∑
s |η(s)− ν(s)|.

2. Kullback-Leibler (KL) distance: for any η, ν ∈ ∆(S), dKL(η, ν) =
∑

s∈S η(s) log η(s)
ν(s) .

3. Chi-square distance: for any η, ν ∈ ∆(S), dχ2(η, ν) =
∑

s
(η(s)−ν(s))2

ν(s) .

4. Wasserstein distance: consider p-Wasserstein metric w.r.t. to a metric ρ(·), i.e., for any η, ν ∈ ∆(S), dWp(η, ν) :=(
infγ∼Γ(η,ν) E(x,y)∼γ [ρ(x, y)

p]
)1/p

, where Γ(η, ν) denotes the set of all couplings of η and ν.

Corollary F.1. Consider a robust MG (S, {Ai}i∈[N ], P
⋆, r⋆, H,U) with uncertainty set U = P × {r⋆}, where P is

(s, a)-rectangular.

1. If P is a KL uncertainty set given by P = ×(s,a,h)∈S×A×[H]PKL
s,a,h with PKL

s,a,h =
{
P ∈ ∆(S) : dKL(P, P

⋆
s,a,h) ≤

βs,a,h

}
, then the equivalent policy-value regularized MG (S, {Ai}i∈[N ], P

⋆, r⋆, H,Ω) is associated with the following
convex regularizer: ∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
min
λ≥0

{
βs,a,hλ+ λ log

(
(P ⋆

s,a,h)
⊤ exp

(
− v

λ

))}]
. (28)

2. If P is a Chi-square uncertainty set given by P = ×(s,a,h)∈S×A×[H]Pχ2

s,a,h with Pχ2

s,a,h =
{
P ∈ ∆(S) :

dχ2(P, P ⋆
s,a,h) ≤ βs,a,h

}
, then the equivalent policy-value regularized MG (S, {Ai}i∈[N ], P

⋆, r⋆, H,Ω) is asso-
ciated with the following convex regularizer: ∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
max
u≥0

{
(P ⋆

s,a,h)
⊤(v − u)−

√
βs,a,h VarP⋆

s,a,h
(v − u)

}]
; (29)

3. If P is a total variation uncertainty set given by P = ×(s,a,h)∈S×A×[H]PTV
s,a,h with PTV

s,a,h =
{
P ∈ ∆(S) :

dTV(P, P
⋆
s,a,h) ≤ βs,a,h}, then the equivalent policy-value regularized MG (S, {Ai}i∈[N ], P

⋆, r⋆, H,Ω) is associated
with the following convex regularizer: ∀s ∈ S, v ∈ RS , µ ∈ ∆(A),

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
−[P ⋆

hv](s,a) +
βs,a,h

2
min
u≥0

{
max
s′

(
v(s′)− u(s′)

)
−max

s

(
v(s)− u(s)

)}]
; (30)

4. Wasserstein uncertainty set: If the uncertainty set P is S ×A-rectangular given by P = ×(s,a,h)∈S×A×[H]P
Wp

s,a,h with

PWp

s,a,h =
{
P ∈ ∆(S) : dWp(P, P

⋆
s,a,h) ≤ βs,a,h

}
,

Ωs,h (P
⋆
h ,−v, µ) = Ea∼µ

[
inf
λ≥0

{
λβs,a,h + Es̃∼P⋆

s,a,h

[
sup
s′∈S

{
− v(s′)− λρ(s̃, s′)

}]}]
. (31)
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Proof. By Corollary 5.4, it is sufficient to analyze the support function σPs,a,h
for each case.

1. KL uncertainty set: From the strong duality result on KL constrained set (Iyengar, 2005, Lemma 4.1) the optimization
problem in the support function σPs,a,h

(−v) is equivalent to

min
λ≥0

{
βs,a,hλ+ λ log

(
(P ⋆

s,a,h)
⊤ exp

(
− v

λ

))}
, (32)

which is convex in λ and can be solved efficiently. By (27), we have σPs,h
(−vµ⊤) = Ωs,h (P

⋆
h ,−v, µ) with Ωs,h

defined in (28).

2. Chi-square uncertainty set: From the strong duality result on χ2-distance constrained set (Iyengar, 2005, Lemma 4.2),
the optimization problem in the support function σPs,a,h

(−v) is equivalent to

min
u≥0

{
−(P ⋆

s,a,h)
⊤(v − u) +

√
βs,a,h VarP⋆

s,a,h
(v − u)

}
, (33)

where VarP⋆
s,a,h

(v − u) = (P ⋆
s,a,h)

⊤(v − u)2 −
(
(P ⋆

s,a,h)
⊤(v − µ)

)2

and the convex optimization problem (33) can

be solved with complexity O(|S| log |S|). By (27), we have σPs,h
(−vµ⊤) = Ωs,h (P

⋆
h ,−v, µ) with Ωs,h defined in

(29).

3. TV uncertainty set: From the strong duality result on TV-constrained set (Iyengar, 2005, Lemma 4.3), the optimization
problem in the support function σPs,a,h

(−v) is equivalent to

−(P ⋆
s,a,h)

⊤v +
βs,a,h

2
min
u≥0

{
max
s′

(v(s′)− u(s′))−max
s′

(v(s′)− u(s′))
}
, (34)

which can be solved with complexity O(|S| log |S|). By (27), we have σPs,h
(−vµ⊤) = Ωs,h (P

⋆
h ,−v, µ) with Ωs,h

defined in (30).

4. Wasserstein uncertainty set: From the strong duality result (Blanchet & Murthy, 2019, Theorem 1), it holds that

σPs,a,h
(−v) = sup

P∈PWp
s,a,h

EP [−v] = inf
λ≥0

{
λβs,a,h + Es̃∼P⋆

s,a,h

[
sup
s′∈S

{−v(s′)− λρ(s̃, s′)}
]}

,

which yields the equivalent regualrizer function Ωs,h defined in (30).

F.4. Proof of Theorem 5.5

Proof. Given a general-sum game (A,B) we construct a transition-uncertain RMG that recovers the same properties as the
reward-uncertain RMG from the proof of Theorem 4.1. Then, the proof of hardness follows exactly as before.

We define r and r exactly as before. Then, we define the nominal reward model by r⋆1(s1,a) = A(a)− r(a), r⋆2(s1,a) =
r(a), and r⋆2(s2,a) = r(a). Here, we use the subscript to denote the time step, not the player number since the game is
zero-sum. Lastly, we define Ps,a = ∆(S) to allow all possible transitions. Note, that we only need to define the transition
uncertainty for the first step since H = 2. We assume the start state is s1 so let r⋆2(s1,a) be arbitrary.

It is then clear that the worst model for the first player deterministically sends it to state s1, which yields a reward of
π⊤
1 (r

⋆ + r)π2 as before. Similarly, the worst model for the second player deterministically sends it to state s2 which yields
a reward of π⊤

1 (−r⋆ − r)π2 as before. Thus, the earlier proof then applies and shows the problem is PPAD-hard to solve.
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