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Abstract

We study the game modification problem, where
a benevolent game designer or a malevolent ad-
versary modifies the reward function of a zero-
sum Markov game so that a target deterministic
or stochastic policy profile becomes the unique
Markov perfect Nash equilibrium and has a value
within a target range, in a way that minimizes the
modification cost. We characterize the set of pol-
icy profiles that can be installed as the unique equi-
librium of a game and establish sufficient and nec-
essary conditions for successful installation. We
propose an efficient algorithm that solves a con-
vex optimization problem with linear constraints
and then performs random perturbation to obtain
a modification plan with a near-optimal cost.

1. Introduction

Consider a two-player zero-sum Markov game G° =
(R°, P°) with payoff matrices R° and transition probability
matrices P°. Let S be the finite state space, .A; the finite
set of actions for player i € {1,2}, and H is the horizon.
It is well known that such a game has at least one Markov
Perfect (Nash) Equilibrium (MPE) (p°, q°), where p° is
the Markov policy for player 1 and q° for player 2 (Maskin
& Tirole, 2001). Furthermore, all the MPEs of G° have the
same game value v°, corresponding to the expected payoff
for player 1 and loss for player 2 at equilibrium. In the
special case with H = 1 stage, the Markov game reduces to
a matrix normal form game and the MPE reduces to a Nash
Equilibrium (NE).

There may be reasons for a third party to prefer an outcome
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with a different MPE and/or game value. For instance, a
benevolent third party may want to achieve fairness. Many
games are unfair in that v° # 0 (an example, two-finger
Morra, is given in the experiment section). The third party
can modify the payoffs R° into R such that the new game
given to the players is fair with value v = 0. Similarly,
many games have non-intuitive MPEs, and players with
bounded rationality (e.g., average people) may fail to find
or implement them. For the benefit of such players, the
third party may seek a new game whose MPE (p, q) is an
intuitive strategy profile, such as uniform randomization
among a set of actions.

In addition, one often desires an MPE consisting of stochas-
tic policies (i.e., a mixed strategy equilibrium). If actions
represent resources (roads, advertisement slots, etc.), the
game designer might want all resources to be utilized; if
actions represent customers, requests, or demands, the de-
signer might want all of them to be served; if a board/video
game is concerned, the designer might want the agents to
take diverse actions so that the game is more entertaining.
Conversely, a malicious third party may want to trick the
players into playing an MPE (p, q) of its choice. As most
games have mixed equilibria, the players may get suspicious
if the modified game turns out to have a pure strategy MPE,
whereas a mixed equilibrium is harder to detect. Further-
more, the adversary may want to control the game value
v to favor one player over the other—this is the analog of
adversarial attacks in supervised learning.

Regardless of intention, game modification typically incurs
a cost to the third party, who seeks to minimize it. We
assume that the cost is measured by some loss function
¢(R, R°) depending on the new and original games R and
R°. For example, one may consider {(R, R°) = |R — R°||
for some norm | - |.

The Game Modification Problem It is important to un-
derstand when efficient modification is possible and to un-
derstand malicious attacks so as to develop an effective
defense. This motivates us to study the following Game
Modification problem, specified by the tuple
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Here R° and P° are the payoff and transition matrices, re-
spectively, of the original Markov game. A valid payoff
value must be in [—b, b]. The third party has in mind an arbi-
trary (and potentially stochastic) target MPE (p, q), which
is typically not the unique MPE of R°. The third party also
has in mind a target game value range [v, 7]. It is possible
thatb = o0, v = —c0 Or v = 0.

Definition 1 (Game Modification). Game modification
is the following optimization problem to find R given

(R, P°,b, (p,q), [v, ], 0):

inf  ((R,R%) ey

s.t. (p, q) is the unique MPE of (R, P°)
value(R, P°) € [v,7], R has entries in [—b, b].

It is important to require that the modified game (R, P°)
has a unique MPE. In this case, no matter what solver the
players use, they will inevitably find (p, q) and not some
other MPEs of R. Henceforth, we refer to a Markov game
simply by its payoff matrices R and suppress reference to
the transition matrices P°, which the third party cannot
change.

To the best of our knowledge, the Game Modification prob-
lem in the generality of Definition 1 has not been studied in
the literature. With a potentially mixed target MPE (p, q)
and the constraints on uniqueness, game value, and payoffs,
it is a priori unclear when the optimization problem (1) has
a feasible solution. Moreover, in addition to just finding one
feasible game or checking the feasibility of a specific game,
we need to solve the harder problem of optimizing over all
feasible games with a target strategy as the unique NE. The
multi-step structure of Markov games further complicates
the problem.

Our Contributions In this paper, we answer the above
questions: we provide a sufficient and necessary condition
for the feasibility of the game modification problem and
develop an efficient algorithm that provably finds a near-
optimal solution under convex losses £. In particular, using
an operational characterization of MPE uniqueness, we for-
mulate the game modification problem as an optimization
problem with linear and spectral constraints and completely
characterize its feasibility. We further propose an efficient
Relax and Perturb algorithm circumventing the spectral
constraint’s nonconvexity and establish the algorithm’s cor-
rectness and near-optimality.

We first study the special case of normal form games in
Section 3, followed by a generalization to Markov games in
Section 4.

2. Related Work

Reward modification in single-agent reinforcement learning
has been studied in Banihashem et al. (2022); Huang & Zhu
(2019); Rakhsha et al. (2021a;b; 2020); Zhang et al. (2020).
In this setting, a deterministic optimal policy always exists.
Generalizing to the multi-agent setting, even in the zero-sum
case, involves the complication of multiple equilibria and
the non-existence of deterministic equilibrium policies.

Adversarial attacks on multi-agent reinforcement learners
are studied in Wu et al. (2023b); Ma et al. (2021), who con-
sider the setting where an attacker installs a target dominant
strategy equilibrium by modifying the underlying bandit
or Markov game. In general, mixed strategies that assign
positive probabilities to multiple actions cannot be dominant
(they are not dominated by at least one of the actions in the
support). Therefore, the approach in Wu et al. (2023b); Ma
et al. (2021) cannot be directly applied in our setting, which
targets at a mixed strategy Nash equilibrium.

Our model is similar to Wu et al. (2023a), where an attacker
installs a target Nash equilibrium by poisoning the training
data set. Their work requires the target equilibrium to be
a deterministic action profile (i.e., not mixed), and they as-
sume the victims estimate confidence regions of the game
payoff matrices based on a noisy data set. Since it is gen-
erally impossible for all games in the confidence region to
have the same mixed strategy Nash equilibrium, the modi-
fication goal in our setting is infeasible under their setting.
Similarly, data poisoning techniques in Ma et al. (2019);
Rangi et al. (2022); Zhang & Parkes (2008); Zhang et al.
(2009) do not apply to our setting. Instead, we consider
the problem in which the players are provided with the ex-
act payoff matrix by the game designer, so it is possible
to install a mixed strategy as the unique equilibrium of the
modified game. Monderer & Tennenholtz (2003); Ander-
son et al. (2010) explore the problem of installing a pure
strategy equilibrium while minimizing the modification cost,
but their method does not directly extend to mixed-strategy
equilibria.

As our work concerns optimizing over the set of games with
a target strategy as the unique NE, we need a sufficient and
necessary condition for uniqueness. Related and partial
results can be found in a line of prior work on matrix games
with a unique Nash equilibrium (Kreps, 1974; Millham,
1972; Heuer, 1979; Quintas, 1988; Bohnenblust et al., 1950)
and the related problem of unique optimal solutions to lin-
ear programs (Mangasarian, 1978; Appa, 2002; Szilagyi,
2006). Our work gives a form of sufficient and necessary
condition that is amenable to being used as constraints in
a cost minimization formulation, and we provide a short
proof. We also go beyond prior work by studying when this
condition is satisfiable under the additional value and payoff
constraints in (1), with generalization to Markov games.
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3. Modifying Normal Form Games

We begin with the game modification problem for matrix
normal form games, which is a special case of Markov
Games with horizon H = 1.

3.1. Preliminaries

Consider a finite two-player zero-sum game with action
space A = A; x Ay and a b-bounded payoff matrix
R € [—b, b]11xI42] When a joint action (i, ) € A; x Ay
is played, player 1 receives reward [R];; and player 2 re-
ceives reward —[R];;. Let (p, q) denote a (possibly mixed)
strategy profile, where p € A4, and q € A 4,, with Ap
denoting the probability simplex on D. The expected reward
for player 1 is given by p' Rq.

NE can be defined in several equivalent ways. Most conve-
nient for us is the following definition in terms of lack of
incentive for unilateral deviation. A finite two-player game
has at least one NE and possibly more (Nash Jr, 1950).
Definition 2 (Nash Equilibrium). (p, q) is a Nash Equilib-
rium of a game R if and only if p’ Rq > p’" Rq for all
p'eAy andp' Rq < p' Rq forallq' € Ay,.

3.2. Equivalent Formulation of Game Modification

As stated in Definition 1, the game designer seeks a least-
cost game with a given (p, q) as the unique NE and satisfy-
ing the value and payoff constraints in (1). To understand
when such a game exists and how to find the optimal game
algorithmically, our first step is to provide an equivalent
formulation where the uniqueness requirement is expressed
explicitly as linear and spectral constraints.

This is done in the theorem below, for which some notations
are needed. Let Z = supp(p) and J = supp(q) denote the
supports. We use [R];; or Rz7 to denote the |Z| x [J|
submatrix of R with rows in Z and columns in /. We write
Rz, for the |Z| x | Az| submatrix with rows in Z, and R, 7
for the |A;| x | 7| submatrix with columns in 7. Denotes
by 1,7 the |Z|-dimensional all-one vector.

Proposition 1 (Reformulation of Normal-Form Game Modi-
fication). For normal form games and a target policy (p, q)
with supports Z, J, the game modification problem (1) is
equivalent to the following optimization problem:

inf ¢(R,R°) (2a)

R,v

s.t. Rzeq = vz [row SII] (2b)
p' Res = 01[7‘ [column SII] (2¢c)
R.Al\Zoq < U]-|A1\I| [I‘OW SOW] (Zd)

P Rospg > vl 7 [column SOW]  (2¢)

amm<[fif _ﬁf]>>o [INV] )

v<Uv<U

—b<Ri;<b,V(i,j) € A

[value range] 2g)
[payoff bound] (2h)

where o min(+) denotes the smallest singular value.

Proposition 1 follows immediately from the lemma below,
which shows that SIISOW and INV constitute a sufficient
and necessary condition for a game R to admit a given
(p, q) as the unique NE.
Lemma 2 (Uniqueness of NE). R has a unique Nash equi-
librium (p, q) if and only if R satisfies both SISOW (Con-
dition 1) and INV (Condition 2) with respect to (p, q):
Condition 1 (SIISOW: Switch-In Indifferent, Switch-Out
Worse). A game R satisfies SISOW with respect to (p, q)
if equations (2b), (2¢), (2d) and (2e) hold.
Condition 2 (INV: Invertability). A game R satisfies INV
with respect to (p, q) if equation (2f) holds, that is, the
matrix [If%j 1|I|] is invertible.

|71
If the strict inequalities in SIISOW were changed to weak
inequalities, the four equations would be equivalent to Defi-
nition 2 of NE (Osborne, 2004). Therefore, SIISOW implies
that (p, q) is an NE of R. Moreover, under this NE, if the
other player switches to any pure strategy outside its NE sup-
port, its reward will be strictly worse by equations (2e) and
(2d) (“switch-out worse”); if the other player uses any pure
strategy within its support, it will achieve the same game
value by equations (2¢) and (2b) (known as the “switch-in
indifference” principle).

We are not aware of an NE uniqueness result stated in this
form in the literature, though several partial and related
results exist. Lemma C.3 in Mertikopoulos et al. (2018) im-
plies that the SIISOW condition is necessary for NE unique-
ness. Several papers study the existence of (or explicitly
construct) a game with a unique NE (Kreps, 1974; Millham,
1972; Bohnenblust et al., 1950; Nagarajan et al., 2020); our
Lemma 2 characterizes all such games and thereby allow
one to optimize over them, as done in the formulation (2). In
Appendix A.1, we provide a short, self-contained proof for
Lemma 2, noting that with some additional work one may
also derive the lemma from the results in Szilagyi (2006)
on unique solutions to linear program (LP). We remark that
Appa (2002); Mangasarian (1978) also provide uniqueness
results for LP, but they are in terms of perturbation stability
of the solution and hence not in an operational form that
can be used as constraints in a cost-minimization problem
like (2).

3.3. Feasibility of Game Modification

We now study when Game Modification in normal-form
games, as formulated in Proposition 1, is feasible. The
following theorem provides a sufficient and necessary con-
dition.
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Theorem 3 (Feasibility of Game Modification). The Game
Modification problem in Proposition 1 for normal-form
games is feasible if and only if (p, q) satisfies |Z| = | 7|
and it holds that (—b,b) N [v, 7] # &.

The equal-support condition |Z| = | 7| arises due to the
INV condition, which requires Rz s to be a square ma-
trix. The necessity of the equal-support condition is known
in Kreps (1974); Millham (1972); Heuer (1979). Our
lemma further establishes the necessity of the condition
(=b,b) n [v,7] # . Note that the game value cannot
equal b or —b, because the SIISOW condition stipulates a
strictly positive gap between the game value and the value
of the off-support actions. The complete proof is provided
in the Appendix A.4.

The other direction of our proof is constructive. We present
a special matrix game called Extended Rock-Paper-Scissors
(eRPS), which has the desired (p, q) as the unique NE. This
game can be defined for arbitrary strategy space sizes |Aj |
and |.A5|. The standard rock paper scissors game is a special
case when the sizes are 3, hence the name.

Definition 3 (Extended Rock-Paper-Scissors Game). Given
strategy spaces A1, Ao, and target strategy profile (p, q) €
A4, x Ay, with equal supports Z = 7 = {0,...,k — 1},
where 1 < k < min(|4,], |A2|), the Extended Rock Paper
Scissors Game R °RPS (P jg:

( C
Igiqj

if j:(ﬁijl’];ﬁd k

if k_>1,i,j<k

R?.RPS (pa) _ ) Piqj J=(i+2) modk 3)
K 1 ifi<k,j>=k

-1 ifi>kj<k

0 otherwise ,

\

where ¢ = miniez (Pid(i+1 mod k), Pi(i+2 mod k)) IS @
normalizing constant ensuring that all the entries of R °RFS
are between —1 and 1.

For support size &k = 1, namely (p, q) is a pure strategy
profile, the R °RPS game is visualized in Table 1 (left). It is
easy to check that the upper left corner (0, 0) is indeed the
unique pure Nash equilibrium.

For support size k > 2, namely (p, q) is a mixed strategy
profile, the R °RPS game is visualized in Table 1 (right) and
Table 2. As a special case, forp = q = (1/3,1/3,1/3),
R°RPS g the standard Rock-Paper-Scissors game.

Lemma 4. Given any (p, q) with equal support sizes, the Ex-
tended Rock-Paper-Scissors Game R °RPS (P:9) has (p, q)
as the unique Nash equilibrium, and its game value is 0.

Note that applying any positive affine transformation to the
reward matrix preserves the set of Nash equilibria of the
game (Tewolde, 2023). Therefore, if we want the game R to
be bounded between [—b, b] for b > 0, we can simply scale

0 1 1 0.5
—1] 0 0

0
—1[0 0 05

Table 1. R°*S when k = 1 (left) and k > 2 (right).

R °RPS by b. More generally, for each . > 0 and v € R, the
game (R °RPS + ¢ has entries in [v — ¢, v + ¢] and (p, q) as
the unique Nash equilibrium with value v.

There exist other constructions of games that have some
(P, q) as the unique NE; see Bohnenblust et al. (1950); Na-
garajan et al. (2020). Nevertheless, our eRPS construction is
simple and intuitive, generalizing the well-known rock paper
scissors game. The eRPS game matrix also possesses cer-
tain cyclic symmetry and naturally has game value 0. As we
will soon see, the eRPS game is also used in our game mod-
ification algorithm. The proof of Lemma 4 in Appendix A.2
for eRPS showcases an application of the sufficiency of the
SIISOW and INV conditions for NE uniqueness.

3.4. An Efficient Algorithm for Game Modification in
Normal Form Games

We now turn to the main result of this section: We de-
scribe an efficient algorithm to approximately solve Game
Modification in normal-form games and provide guarantees
on its correctness. In particular, we relax the invertibility
constraints so that the remaining constraints are linear and
perturb the solution in a way that maintains the feasibility of
the linear constraints while making the perturbed solution
satisfy invertibility with probability 1.

Thanks to Lemma 2, the requirement of R having (p, q) as
the unique NE can be fulfilled by the equivalent SIISOW
and the INV conditions, as done in reformulation in Proposi-
tion 1. If we ignore the INV condition therein for a moment
and tighten the strict inequalities, we obtain an optimization
problem with linear constraints:

I}I%lgl {(R,R°) (4a)
s.t. Rzeq = vl (4b)
p' Reg = vl (4c)
Rnzed < (v —10) 114,17 (4d)
P Reang = (0401, 7 (4e)
v<v<T (4f)

—b+)\<Rij<b—)\,V(i,j)€A. (4g)

In (4), the first four constraints (4b)—(4e) encode the SI-
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[ANA T o [ 1 [ 2 [ 3 ] [k—2] k-1 [ &k [ .. JJA[-1]
0 0 ——< - 0 0 0 1 1
Pod1 Poqcz -
1 0 0 7P1Q2 P19s3 0 0 1 1
2 0 0 0 ——=< 0 0 1 1
P2qs3
3 0 0 0 0 0 0 1 1
k-2 Pk—c2QO 0 0 0 0 7pkfchk71 1 1
(6] [

k-1 _pquo Pr—191 0 0 0 0 1
k -1 -1 -1 —1 -1 -1 0 0
|A1| —1 -1 -1 -1 -1 -1 -1 0 0

Table 2. The R*™S game when k > 2, i.e. (p,q) is a mixed strategy

ISOW condition. Notice we introduced a small SIISOW
margin parameter ¢ > 0 in (4d) and (4e), tightening the
strict inequalities in Proposition 1. Doing so ensures that
the feasible set of the problem (4) is closed. A margin A is
also added to the reward bound (4g) for reasons that would
become clear momentarily.

One can solve the linearly constrained program (4) for a so-
lution R. To ensure R has a unique NE, it remains to satisfy

R -1
the INV condition that the matrix [1%‘7 OI] must be
|71

invertible. However, enforcing INV directly by constraining
the smallest singular value of the matrix leads to a nonlinear,
nonconvex optimization problem that is difficult to solve.

We adopt an alternative approach: we take the solution R’ to
the program (4)—which may not satisfy the INV condition—
and add a small special random matrix to R’ in such a way
that: (i) the resulting matrix R is invertible with probabil-
ity 1; (ii) R still has (p, q) as its unique NE and satisfies
the value constraint v € [v, 7] in (4f). Moreover, by in-
troducing a small margin A in the reward bound (4g) and
using a sufficiently small perturbation, we further ensure
that the perturbed rewards remain in the original designated
range [—b, b]. Specifically, the matrix we add is e R RS |
where ¢ is a random number in [\, A] and R °RFS the Ex-
tended Rock-Paper-Scissors game matrix, which has entries
in [—1, 1] and game value 0.

Combining the above ingredients, we have the complete
procedure, Relax And Perturb (RAP), which is presented
in Algorithm 1. RAP approximately solves the Game Mod-
ification problem, provably satisfying the constraints with
probability 1 and achieving a near minimal cost ¢ (R, R°)
as long as the random perturbation is small (Theorem 5).

Remark 1. If the solution of problem (4) R’ already satisfies

R, -1
the INV condition, that is [ 1%‘7 OIII] is invertible, then
|7

no perturbation is needed. In addition, the perturbation can

Algorithm 1 Relax And Perturb (RAP)

Input: original game R°, cost function ¢, target policy
(p,q), target value range [v, 7], reward bound b € RT U
{o0}.

Parameters: margins . € R™ and A € RT,

Output: modified game R.

1: Solve the problem (4). Call the solution R’
2: Sample € ~ uniform[—A, A]
3: Return R = R’ + ¢ RRPS (P.a),

also be put in a loop while the INV condition is not satisfied,
although the perturbed solution satisfies the INV condition
with probability one in theory.

When the cost function ¢ is convex, the problem (4) is a
convex program with linear constraints, for which efficient
solvers exist (Wright, 2006). The program (4) is further
reduced to a linear program when / is piecewise linear, as
shown in the following examples.

Example 1 (L' Cost). One may measure the cost of modi-
fying the game from R° to R by the L' distance

((RR)=|R-FR|, = ]
iE.A],jG.AQ

’Rij — R;’j\ .

Example 2 (Occupancy Weighted Cost). In some applica-
tions, the cost of modifying an entry is proportional to how
often the entry is visited by the players at the equilibrium
(p, q). We can use the following weighted cost function:

((R,R) = )]

€Ay 7j€A2

piq; |Rij — Ry (5)

Note that it is costless to modify the entries outside the prod-
uct of the supports of p, q. Applications of this weighted
cost include online reward poisoning in multi-agent rein-
forcement learning, where an attacker pays for the modified
reward entry only when the online learners use the corre-
sponding action profile.
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3.5. Performance Guarantees for RAP

Below, we show that the RAP Algorithm has the desired
feasibility and near-optimality properties with respect to the
original Game Modification problem (2) in Proposition 1.
Let C* denote the optimal value of (2). We say that the
cost function £ is L-Lipschitz if |¢ (X, R°) — £ (Y, R°)| <
L|X-Y|,,vX,Y.

Theorem 5 (Feasibility and Optimality of RAP Algorithm).
Suppose that the parameters ¢, A of Algorithm 1 satisfy

(=b+A+0u,b—A—1)n[-v0] # T

and let R (1,\) = R’ + eR°RPS be the output of the Algo-
rithm 1 with margin parameters ¢, A. The following hold.

1. (Existence) The solution R’ to program (4) exists.

2. (Feasibility) With probability 1, R (¢, A) is feasible for
the original Game Modification problem (2).

3. (Optimality) If in addition the cost ¢ is L-Lipschitz
with L < oo, then R (¢, A) is asymptotically optimal:

lim ¢(R

max{¢,A\}—0

(1,\),R°) = O,

4. (Optimality Gap) If ¢ is piecewise linear (e.g., L!
cost), then the optimality gap is at most linear in (¢, \):
L(R(t,N),R%) = C* + O(max {s, A}).
In the result above, existence follows from Theorem 3. Fea-
sibility holds because the matrix sum

[Rzy —11} +€[R%:}PS —11}
1, 0 1, 0

is invertible with probability 1, as € is a continuous random
variable and the second matrix above is invertible.

To prove optimality, we take a feasible solution R() to
the original game modification problem (2) with a cost at
most C* + ¢, and then slightly and carefully modify its
entries to get a new solution R’ (¢) for which (i) the reward
bound (4g) with A margin is satisfied, (ii) the SIISOW prop-
erties (4b)—(4e) are preserved, and (iii) the game value is the
same. The costs of R'(¥) and R(®) are close thanks to the
Lipschitz property of the cost. In particular, the difference
((R'®), R°) — £(R), R°), and in turn the optimality gap,
vanish when the margin parameters ¢, A go to zero.

Part 4 of the theorem further shows that the optimality gap
vanishes at a linear rate in (¢, A) under piecewise linear
cost /. In this case (4) is a linear program with a full rank
constraint matrix, and we can control the optimality gap
using techniques from sensitivity analysis of linear programs
(Bertsimas & Tsitsiklis, 1997; Jansen et al., 1997).

4. Markov Games Modification

In this section, we generalize to Markov games. We install
a possibly stochastic policy as the unique Markov perfect
equilibrium by installing a unique Nash equilibrium in every
stage game defined by the Q functions.

4.1. Preliminaries

A finite-horizon two-player zero-sum Markov game can be
described by a pair (P, R), given the finite state space S,
the finite joint action space A = A; x As, and horizon
H.Here P ={P, : S x8 — [0,1]‘““1‘”““2‘}?:1 is the
transition probabilities, Py : & — [0, 1] the initial state
distribution, and R = {Ry, : 8§ — [~b,p]Alxl4 T
the mean reward function. For each h € [H],s € S, we
treat 12;(s) as an |A;| x |Az| matrix, where [R(s)];; is
the reward for the joint action profile (i,5) € A; x As.
Similarly, the transition probabilities are given by an | A1 | x
| A2| matrix P, (s'|s), where [P, (s'|s)]; is the probability
of transitioning from state s € S in period h € [H] to state
s’ € S when the joint action (%, j) is used. The above matrix
representations are chosen to follow the convention used in
the last section for normal-form matrix games.

A Markovian policy (p, q) is a pair of policies for the two
players: p = {pn : S > A4}l andq = {q, : S —
A, L | Here py(s) and qp,(s) are probability vectors; in
period h € [H], state s € S, [ph(s)]: specifies the probabil-
ity that player 1 takes action i € A;; similarly for [qy(s)];.

A zero-sum Markov game has at least one Markov perfect
equilibrium and a unique Nash value. The action-value or Q
function of the MPE, denoted by Q*, satisfies the following

Bellman equations: for each h € [H],s€ S, (i,5) € A,
@h (5,(6,5)) = R (s, (i, 7)) + (©)
/ /
SZE;SPh s, (6.0)) max min Qi (5, (¢:4)) -

where for a possibly stochastic strategy profile (p’,¢’) €
A, x Ay, we define

Qn (s (W, d) = X

€Ay ,.jE.Az

pgq;Q;: (s, (4, 7)) - 7

We use the convention that Q7F; , ; (s, (4,)) = 0,Vs, 1, j.

Under an MPE policy, the stage game of the Markov game
in each period h € [H] and state s € S is a normal form
game with payoff matrix Q, (s), whose (i, j) entry is

[Qn (s)]ij = @4 (s, (4, 7)) ®)

and corresponds to the payoff under the action profile
(i,7) € A. Consequently, an MPE can be defined recur-
sively as the Nash equilibrium for every stage game.
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Definition 4 (Markov Perfect Equilibrium). A Markov per-
fect equilibrium policy (p, q) is a policy that satisfies, for
every he [H],s€ S,

(Pr(8),qr(s))is a Nash equilibrium of Qp(s),

where Q,(s) is defined by equations (6)—(8).

We remark that an alternative approach to studying the equi-
libria of Markov games is by converting it to a single, big
normal-form game and considering the NEs of the latter. An
NE defined in this way is, in general, not Markov perfect—it
requires coordination and commitment to policies in stage
games that are not visited along equilibrium paths. Such
policies are often not realistic. Moreover, it is computa-
tionally intractable to manipulate such a big normal-form
game. Therefore, we focus on MPEs and make use of their
recursive characterization through the Bellman equations.

4.2. Reformulation and Feasibility of Markov Game
Modification

A two-player zero-sum Markov game has a unique MPE if
and only if every stage game Q (s) has a unique NE. Our
results on the uniqueness of NE for normal form games
(Lemma 2) apply to each stage game of the Markov game.
Combining these two observations and the Bellman equa-
tions for Qp,(s)’s, we can write the Game Modification prob-
lem in Definition 1 for Markov games equivalently as an
optimization problem similar to (2), where SIISOW (Condi-
tion 1), INV (Condition 2) and the Bellman equations are
imposed as constraints for every stage game. Due to space
limit, this optimization problem is provided in the appendix.

We provide a sufficient and necessary condition for the
feasibility of the above Game Modification problem for
Markov games. Let Z,(s) = supp(pn(s)) and Jx(s) =
supp(an(s))-

Theorem 6 (Feasibility of Markov Game Modification). The
Game Modification problem in Definition 1 for Markov
games is feasible if and only if |Z;, (s)| = | T}, (s)| for every
he[H],seS,and (—Hb, Hb) N [v,7] # &.

The above theorem subsumes Theorem 3 for normal-form
games. The sufficient condition above is proved by explic-
itly constructing a feasible Markov game, recursively using
the Extended Rock-Paper-Scissors game.

4.3. Efficient Algorithm for Modifying Markov Games

To develop an efficient algorithm, we follow a similar strat-
egy as in normal form games: we ignore the INV (invertibil-
ity) condition and retain only the linear constraints for the
Markov game modification problem, and add small margins
t, A to the SIISOW and reward bound constraints so that
random perturbation can be added later. Doing so leads to

a linearly constrained optimization problem, given in (9),
which generalizes the program (4) for normal-form games.

Jnin, £ (R, R°) ©)
L. [Qn (5)]7, (50 A0 (8) = vn (8) Lz, (s)]
Vhel[H],seS [row SII]
Pr () [Qn (9)]a, () = 00 (5) 17, (o))
Vhel[H]|,seS [column SII]
[Qn (5)] 41\, (5)e A (8) < (vn (5) = ) L ap\z,,(s)
Vhel[H],seS [row SOW]
Pr, (8) [Qn ()] 7, () = (00 (5) + ) 1 a7,
Vhel[H],seS [column SOW]
Qn (s) = Rp (s) + Z Py (s']s) vns1 ()
s'eS
Vhel[H-1],seS [Bellman]

Qy (s) =Ry (s),¥seS

v < ZP()(S)U1 (s)<v
seS

—b+ A< [Rr(s)];; <b—A
V (i,j)e A,he[H],seS

[value range]

[reward bound]

Remark 2. If there is no value range constraint and the cost
¢ is decomposable across the states and periods (e.g., L!
cost), then the program (9) can be broken into H |S| smaller
optimization problems, one for each stage game, that can be
solved sequentially by backward induction.

We present our algorithm, Relax And Perturb for Markov
Games (RAP-MG), in Algorithm 2, which adds random
perturbation to the reward matrix of every stage game.

Algorithm 2 Relax And Perturb for Markov Games (RAP-
MG)

Input: original game (R°, P), cost function /, target policy
(p, q) and value range [v, v], reward bound b € R* U {o0}.
Parameters: margins . € RT™ and A € RT,

Output: modified game (R, P).

1: Solve the problem (9). Call the solution R'.

2: forhe [H],se S do

3:  Sample € ~ uniform[—A, A]

4:  Perturb the reward matrix in stage (h, s):

5 Ry, (5) = R} (5) + e RRPS (Pr(s).an(s)),
6: end for
7: Return (R, P).

In the theorem below we provide feasibility and optimality
guarantees for Algorithm 2. These results are similar to
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those normal form games in Theorem 5, but the proofs are
more complicated due to the dependency across the stage
games. Let C* be the optimal objective value for the original
game modification problem in Definition 1.

Theorem 7 (Feasibility and Optimality of the RAP-MG Al-
gorithm). Let R (1,\) = R’ + eR°RPS denote the output
of Algorithm 2 with margin parameters ¢, A. If

(=b+ A+, b—A—1)n[-v/H,v/H] # &, (10)

then the following hold.

1. (Existence) The solution R’ to the program (9) exists.

2. (Feasibility) R (¢, \) is feasible for the game modifica-
tion problem in Definition 1 with probability 1.

3. (Optimality) If in addition the cost function ¢ is L-
Lipschitz, then R (¢, A) is asymptotically optimal:

lim  ¢(R(:,A\),R°) =C",

max{t,A\}—0

4. (Optimality Gap) If ¢ is piecewise linear, then

L(R(t,N),R%) = C* + O(max {1, A}),

5. Experiments
5.1. Toy Experiments

We run Algorithm 1 on several small normal-form games
such as two-finger Morra and five-action rock-paper-scissors
games.

1. Given left below is the payoff matrix for the simplified
Two-finger Morra game (Good, 1965), which has a unique
NE (p,q) = (i5,+) and value —-5. On the right we
minimally modify the game to keep the same unique NE but

make the game fair with a value of 0.

_ 2 -3 . 2.04 —2.86
Original: (3 4) Modified: <2.86 4 )

We provide another example of game modification for the
classic Two-finger Morra game in the Appendix A.6.

2. The Rock-Paper-Scissors-Fire-Water game, given on
the left below, is a generalization of the Rock-Paper-Scissor

game to five actions (Tagiew, 2009). The unique NE is
P =49 = (3,5, % %, %) and has value 0. We desire the
NE to be simpler for humans, so we redesign the game to
have a uniformly mixed NEp = q = (%, %, %, L, 1). The

s 575757575
resultant game is given below.

Note that an alternative 5-action game, Rock-Paper-Scissors-
Spock-Lizard, also has the desired NE (more details are

provided in the Appendix A.6). However, our modification
has a lower modification cost 4, compared to the cost 8 for
using the alternative game.

Original Modified

o -1 1 -1 1 o -1 1 -1 1
1 0o -1 -1 1 1 0o -1 -1 1
-1 1 0 -1 1 -1 1 0 -1 1
1 1 1 0 -1 1 1 1 0 -3
-1 -1 -1 1 0 -1 -1 -1 3 0

5.2. Approximation

Theorem 5 shows that Algorithm 1 approaches the optimal
cost C* as a linear function in max{, A} in the worst case.
To see how fast the convergence happens in practice, we
tested RAP on a fixed Game Modification instance with
varying choices of ¢ and A. In particular, we considered
(p,q) = ((.47,.53,0,0) T, (.42,.58,0,0)7),

-0.33 —-0.03 0.68 —0.04

o | 016 —-043 094 -045

R = 0.02 0.85 —-0.28 —-0.98 [’ (n
-0.57 03 —-0.12 -0.17

and no reward bound or value constraints. We considered
¢ and \ of the form 10~% for i € {0,...,15}. However,
convergence happened by 10~ for both parameters and so
we only report for parameters down to 1074,

To further explore which parameter had the largest effect on
the cost, we ran RAP under three different configurations.
The result is Figure 1. First, we fixed ¢ = 10~° and varied
) to construct the A curve. Second, we fixed A\ = 10~°
and varied ¢ to construct the ¢ curve. Lastly, we varied both
equally, i.e. considered (¢, \) = (107¢,107%), to construct
the A = ¢ curve.

We observe that in all three cases, convergence happened
even faster than the linear rate promised by Theorem 5. In
addition, we see that A was generally the bottleneck for
convergence with the A\ curve being very close to the A = ¢
curve. In contrast, ¢ had less of an impact on convergence.
We ran the same experiment on other, uniform-randomly
generated instances and noticed a general trend of A being
the dominant factor.

5.3. Scale Benchmarks

We run Algorithm 1 and Algorithm 2 on several games
to illustrate the efficacy of our techniques. We know our
algorithm succeeds by checking that (p,q) satisfies the
SIISOW and INV conditions for R'.

We first show how our methods scale with the number
of actions. For each m € {2,4,8,...,512} we gener-
ate N = 5 random matrices R°® ~ uniform[—1,1]™*"™.



Minimally Modifying a Markov Game to Achieve Any Nash Equilibrium and Value

Parameters vs Cost

—_— A
L

—_— A=

10!

Cost

1072 107! 100
max(A, t)

1073

Figure 1. Convergence to Optimal Cost

Actions vs Time Actions vs Cost

— k=1

—_— k=1 103
o k=m/2 k=m/2
10% —— k=m = k=m

time

102

10t 10? 10! 102

Figure 2. Scale Benchmark for Number of Actions

For each matrix, we also generate 3 random (p,q) ~
Dirichlet(1,...,1) with support size (i) k = 1, (ii) k =
m/2, and (iii) k = m (full support). We run Algorithm 1 on
each instance and report the worst running time (in seconds)
and the worst cost encountered for each m in Figures 2. We
see that the solving time grows linearly in the log, so the
runtime is polynomial in the actions. Using the Gurobi LP
solver, even on a laptop computer, the algorithm handles
millions of variables (5122) in roughly 10 seconds. The
L' costs also appear to grow linearly, though with different
slopes.

Next, we show how our methods scale with the horizon.
We consider Markov games with S = 10, A = 2, random
transitions and random reward matrices. Formally, for each
H e {1,2,4,...,512}, we generate N = 5 random Markov
games and corresponding target NE pairs with full support.
For any fixed H, we generate Ry, (s) € uniform[—1, 1]2*2
for each h and s, and choose P, (s, a) ~ Dirichlet(1,...1)
for each (h, s, a). We run Algorithm 2 on each instance and
report the worst running time and cost encountered for each
H in Figures 3. We observe the solutions are correct, and
again, the algorithm is efficient.

6. Concluding Remarks

Our work points to several future directions: (i) It is interest-
ing to study Markov game modification problems where the
transition probabilities can also be changed and generalize

Horizon vs Time 10° Horizon vs Cost

10t

10°

time
cost

10-! 102

10° 10t 102 10° 10t 10?

Figure 3. Scale Benchmark for Number of Periods

to general-sum, multi-agent games with other equilibrium
concepts. (ii) In many games, the rewards are constrained
to take discrete values (e.g., —1,0, 1). The feasibility and
tractability of such constrained game modification problems
require further investigation. (iii) It is non-trivial to extend
the problem when the attacker’s target is an infinite set of
policies, for example, when the attacker only cares about
the support of the target policies and not specific mixing
probabilities or when the attacker only cares about the target
policies of one of the players. (iv) Extending our results to
data poisoning problems, where the players learn the true
game from observational data, leads to interesting theoreti-
cal and algorithmic questions.
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A. Appendix

In this appendix we provide omitted proofs and additional experiments.

A.1. Proof of Lemma 2

Proof. Lemma 2 states that the SIISOW and INV conditions are sufficient and necessary for (p, q) to be the unique NE of
the game R. We prove sufficiency and necessity separately.

We exploit the well-established connection between Nash equilibrium and linear program duality. In particular, any (p, q)
that is a Nash equilibrium of R is an optimal solution pair to the following pair of primal-dual linear programs (LPs), and
vice versa (Dantzig, 1963).

Definition 5 (Linear Programs for NE).
(Primal) max v
P'EAA; v (12)
st.p'"TR> UllTj‘
(Dual) min v
q/EA.AQ,?} (13)
s.t. Rq' < vlig

The inequalities are elementwise.

The optimal values of the two linear programs both equal v*, the value of the game.

We emphasize that these LPs are used only for characterizing the properties of the set of Nash equilibria of R and its
uniqueness. We do not assume that the players must use LP to find an NE: they can use any other solvers and may find any
one of the NEs if there are multiple ones. This reflects how NE solvers typically work in practice.

Conditions = unique NE: We have already argued that (p, q) is an NE; see the discussion after the definition of SIISOW.
Suppose (r, s) is another NE. We show that it must be the case r = p,s = q.

First of all, it is easy to see that supp(r) < Z, supp(s) S J. Suppose there is a violation 3¢ € supp(r),i ¢ Z. By (2e),
e] Rq < p' Rq = v* which leads to r ' Rq < v*. But since (r,s) is another NE in a two-player zero-sum game, (r, q) is
a third NE with r ' Rq = v* , a contradiction. The case for s is similar.

Because (r, s) is an NE, it satisfies the primal-dual LP in Definition 5. Now with the support constraints, they satisfy the
reduced LPs where the vectors and matrices are restricted to the appropriate support:

a T
1Plrrelgx v st.r'7Rz. > vl‘jl 14
T T,V
min v st. Rgs' 7 <ol (15)
s’ 7€A g,V

We now show this must mean s = q. Consider two cases on the dual restricted LP:

(Case 1) At the solution (s, v*), all constraints in Rz 7s7 < v* are active, i.e. they are equalities Rz 757 = v*. Also sy
sums to 1. We may write the two as a linear system:

(5 1)

By the invertability condition, s 7 has a unique solution and it must equal q 7 because q 7 is also a solution to this linear
system. The rest of s and q are both zeros. Thus s = q.

(Case 2) At least one constraint in R77s7 < v* is inactive. Then there exists slack variables £ € RV, ¢ > 0 with at least
one positive entry, such that
RIJSJ = ’U*]_ - f

Recall (p, q) is an NE. By the assumption that (r, s) is an NE, and the property of two-player zero-sum games, (p, s) is
also an NE with the same value v*. But p' Rs = p; Rz757 = v* — p;& < v*, because all terms in pz are positive and at
least one term in ¢ is positive. This is a contradiction. So case 2 will not happen.

12
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Taken together, s = q. Similarly, one can show r = p.
Unique NE = conditions: Let (p, q) be the unique NE of R with value v*, and let Z, J be their support.

We first show SIISOW. Equations (2c) and (2b) are immediate from NE definition. Since (p, q) is the only NE of the game,
it satisfies Goldman and Tucker Corollary 3A. The corollary states that

Vie Ay, (e] Rq = v*) = (i€ I) (17)
Vje As, (p' Rej = v¥) = (j e J). (18)
Their contraposition is
Vie Ay, (i ¢ I) = (e Rq # v*) (19)
Vje Az, (j¢J)= (p' Rej # v*). (20)

But since v* is the NE game value, these imply

Vie Ay, (i ¢ I) = (e] Rq < v*) 1)
Vje A, (j ¢ J)= (p' Re; <v*). (22)

Therefore, (p, q) satisfies the SIISOW condition.

We next show invertability by contradition. Suppose the matrix in Definition 2 is not invertable. Then either (i) |Z| < |7,
(i) |Z| > |J|, or (i) |Z| = |J| = 2. Case (iii) is due to the fact that should |Z| = |J| = 1, Rz is a scalar and the
Rzg —
1 0
contradicting the uniqueness of (p, q). In what follows we give the proof for (i) or (iii); case (ii) is similar to (i) but with
respect to R; 7 and p, and is omitted.

matrix with determinant 1 is always invertible. We show that any one of the three cases leads to a second NE,

In cases (i) or (iii) the following homogeneous linear system has a nonzero solution:

Rzs —1z|] [6] _0 93

where 6 € RI7I, 2 € R. This nonzero solution (J, x) has some useful properties:

e § sums to zero:
176 = 0. (24

This follows directly from the second equality of (23).
e ¢ # 0. This follows from the first equality of (23)
RI Jé = 1‘1, (25)

otherwise both § and = would be zero, contradicting a nonzero solution.

e r=0and
Rz76 =0. (26)
We first show x = 0. Consider
p'R [ ’ ] @7)
014,117

— Y p" Reys; (28)
jeJ

= D o* (29)
JjeT

= 0, (30)

13
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where the second equality follows from the SIISOW condition pTRej =p'Rq = v*, Vj € J. But at the same time,
by the support of p

1)
PR [0 ] 31)
[A2]—]|T|
= prRzz6 (32)
= p—IrI]_:Z‘. (33)

Therefore x = 0. Then use (25) to obtain (26).
We use this § to construct another NE with the following steps:

1. We scale 4 so its magnitute is sufficiently small. The desired scale is determined by two constants:

(a) Since we are under cases (i) or (iii), | 7| = 2. Thus the entries of g7 cannotbe O or 1: 3¢; > 0: ¢; < ¢; <
1—c, VJ eJ.
(b) By the SIISOW condition, e] Rq < v* fori ¢ Z. Let c; = v* — max;¢r €] Rq.

‘We choose the scale

. C1 . C2
¢ = min ,min . (34)
(|5|oo il |Ri.75|)

2. Setr =q + [Cg]

We claim (p, r) is another NE:

* Since 0 sums to zero, q 7 + ¢d remains normalized; since ¢ < T 56”1

r € A4, is a proper strategy.

, all entries of q.7 + ¢d remains in [0, 1]. Therefore

o0

* ris a best response to p:
Tp._ T TRl «
p Rr=p Rq+p R ol =v" (35)

where we used (27). Therefore, p' Rr = v* < p' Rq/,Vq' € A4, because p is part of an NE.

* pisabestresponse tor: Vp' € A 4.,

p''Rr (36)
= Ypie] Rq+ps Rrzed+ ) p (ez—TRq +e/ R [CO(SD
ieT i¢T
= Y .pie/Ra+ .7 (eiTRq +e/R [005])
ieZ i¢T
- Ep;v* + Zp; <eiTRq +e/R [C(;S])
ieT i¢T
< Zpgv* + Zp; (’U* — o + e;rR [66;])
ieT i¢T
/ ok / *
= Zpiv + Zpi (v* —co + cR;70) . 37
ieT i¢T

where the second equality follows from (26), the next two lines from SIISOW. Because ¢ < minggr Il'!fﬁ’

p'"Rr (38)
< Zpgv* + Zp; (v* —cy +ca) =v* = p' Rr.
i€l €L

14
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Because § # 0, r # q. Thus (p,r) # (p, q) is indeed a second NE, contradicting uniqueness.

O
A.2. Proof of Lemma 4
Proof. To show uniqueness, we check that the conditions in Lemma 2 is satisfied,
e/Rq=0=p'Rq,VieZ,
e/Rq=—-1<0=p'Rq,Vi¢T, 39
p'Re; =0=p'Rq,¥jeJ,
p'Re;=1>0=p Rq,Vj¢J,
R -1
and we have —Irj 21| is invertible.
1| J| 0
To simplify the notations, we omit the modulo % operation for the indices of p and q. Observe that
e; Rq = T Qiy1 + . Qi+2 =0,VieTZ,
idi+1 idi+2
. ’ o (40)
e, Rq= 2 —1q; = -1,Vi¢ I,
JeT
and similarly,
c c .
pTRej = Pj—2— ——Pj-1 = O,V] € j,
Pj-29; Pj—14;
. , 1)
p'Rej = > 1p; =1,V j¢J.
i€l
In addition, we have,
p'Rq = 2 p: (e/ Rq) = 0. (42)
i€l
Therefore, the SIISOW conditions are satisfied.
We now turn to the invertibility condition. For k = 1, [2 _0 ] is invertible. For fixed p, q, for k& = 2, we have,
c o 1
Poqgo Pod1
det | — L ¢ ~1
P19o P1d:1
1 1 0
1 1
— 0 0 — 0 0
Po 1 -1 pg 90 1 (43)
=det| 0 — O]det|—1 1 pi|det| 0 — 0
P1 1 @ 9 O a1 1
0 0 - 0 0o -
c c
J’_
—c(potp) DTd
PoP19o091
> 0,
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therefore it is invertible, similarly for & = 3,

D — <
c p(;)(h Po%2 .
det pl(éo c P142
— 0 -1
P290 P2d1
1 1 0
-1 _ -1 _
— 0 0 O — 0 0 0
Po do
1 0 -1 1 —po 1 (44)
o — 0 O 1 0 -1 —-p 0O — 0 0
= det p1 1 det 11 0 - Ll det a1 1
0 0 — 0 b2 0 0 — 0
P2 ) Q@ 49 92 O q2 )
0 0 0o - 0 0 0 -
| c L C -
2 (Po + P1 + P2) (do + q1 + q2)
PoP1P2909192
> 0,
and for k = 4,
R — < 0 1]
Pod1 P0%2
0 0o - R
P192 P193
det | _© 0 (R L
pz%o P2493
- ¢ 0 0 -1
P390 P31
| 1 1 0 |
-1 _ -1 _
— 0 0 0 O 0 0 0 0
Po 1 0 1
0O — 0 0 0 0 -1 1 0 =—po 0o — o0 o of @
P1 1 0 0 -1 1 —P1 q1 1
=det| 0 0 0 Ofdet| 1 0 0 —1 —po|det| 0 0O — 0 0
0 0 I;Q L 0 . ! ’ _(I))3 0 0 (::)2 L 0
P3 X qo 4d1 92 q3 as X
0 0 0 0 - 0 0 0 0o -
L c | c
_ 3P0+ P1+p2tps)(q+a+a:tas)
PoP1P2P390919293
> 0,
R -1 1 1 1 1 /
and in general, we can write [1%‘7 OI] as the product of diag <, ,...,,> , [RT p] , and
171 P1 P2 Pr C q 0
. 1 1 1 1 .. . .
diag | —, —,...,—, — |, where R’ is a matrix with entries,
q1 92 qr ¢
-1 ifj=(0¢+1) modk
jo =<1 ifj=(+2) modk, (46)
0 otherwise

with the above examples provided for k = 2, 3, 4,
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and the determinant is given by,

R -1
o[22 L]

iz 0
1 11 / 1 1 11
— ...,,> det [RT p] det diag (,,...,,)
P2 Pk C q 0 i’ q2’ Qi c

P’
k
N )
i
i

1
= det diag (

Zr
1lr

= ck_
j=1
> 0.
This verifies the INV condition and completes the proof. O

A.3. The Markov Game Modification Problem as An Optimization Problem

Here we instantiate the general Game Modification problem (Definition 1) to Markov games as an optimization problem.

Definition 6 (Game Modification for Two-Player Zero-Sum Markov Game). Given the cost function ¢, the target policy
(p, q) with supports Z, 7, target value range [v, U], the game modification for Markov games can be written as the following
optimization problem,

1nf ¢(R,R%)

7U5

L [Qn (8)]z, (50 An (5) = vn (5) iz, (s))

VhelH],seS8S
PZ () [Qn (5)].Jh(s) = v (8) 1|Tjh(s)|
VhelH],s€eS8S
[Qn (5)]A1\zh(s). an (s) < wn (s) LAz (s)l
VhelH],seS
HOICAG) FREASESTIOR RYAN
VhelH],seS
48
omin (l[ h (s ]zh ()Tn (s) _1|(I)h,(s)|1> -0 (“48)
|\—7]L( )l
Vhe [ ] seS
Qn (s) = + 37 Py (s']s) vnga (87)
s'eS

Vhe[H—1],seS
Qn (s) =Ry (s),VseS8

véZPU(s)vl(s)<v

seS
—b<[Rn(s)];; <b

V (i,j) e A,he [H],seS.
A4. Proof of Theorem 3 and Theorem 6
Theorem 3 concerns the feasibility of modifying normal-form games in Proposition 1, and Theorem 6 concerns the feasibility

of modifying H-period Markov games in Definition 6. Below we prove Theorem 6, from which Theorem 3 follows as an
special case with H = 1.
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Direction =. If 7 = (p,q) is the unique Nash in stage game in period h € [H], state s € S, then by Lemma 2,

RI S)Tn(s _1I s

[ fi)( 1)<> 2o (s)] = |Tn (5)].
hi{s

Now to show that (—Hb, Hb) n [v, 7] = empty leads to infeasibility, note that either,

] is an invertible square matrix, therefore,

7> Hb, (49)

or,
v < —Hb, (50

meaning the value of at least one stage game at least b or at most —b, and the SIISOW conditions imply that there are some
entries of Ry, (s) that are strictly larger than b or strictly smaller than —b, which contradicts the reward bound conditions.

Direction <. Fix a stage game in period h € [H], state s € S, if |Zj, (s)| = |Tn (s)| = k for some k, then without loss of
generality, we can rename the actions so that 7 (s) = J, (s) = {0,1,2, ...,k — 1} and Lemma 4 provides a game with
the unique Nash equilibrium (py, (s) ,qn (s)). Note that since the value of R RFS is 0, all stage games have value 0, so we
have, forevery h € [H],s € S,

Qn (s) = Ry (s). (51)

The (—Hb, Hb) N [v,7] # & condition guarantees the existence of some v* € [v, D] that satisfies,
—Hb <v* < Hb. (52)
Now consider the Markov game (R, P) with rewards defined by,

1.
Ry, (s) = 6R RPS (Pr(s)an(s) 7V (53)

This implies that the () matrices can be computed as recursively forh = H — 1, H — 2, ..., 1,

(5= L=l
Vp(S) = H v*,
Qh( 2 Ph 'Uh+1( )
s'eS
H h
Z Ph 54
s'eS
H-h ,
=R (s)+ —
— §RERPS (Pn(s)an(s)) 4 %v*,

H-h+1
which is an affine transformation of R *RFS | so it has unique Nash (py, (s), qx (s)) with value T+v*. In particular,

vy == Z Py(s)vy (s

seS

—14+1
~ S Ry (s S Y (55)
SeS

the value of this game is given by,

= 'U R
which satisfies the value range constraint. In addition, for J sufficiently small, the entry bound conditions are satisfied as
well. In particular, if 6 < min {Hb — v*, Hb + v*}, for which the righthand side is strictly positive due to the condition
(—Hb, Hb)  [v,7] # &, we have Ry, (s) € [—b,b].

A.5. Proof of Feasibility/Optimality for RAP and RAP-MG Algorithms (Theorem 5 and Theorem 7)

Theorem 5 concerns the feasibility and optimality of the RAP algorithm for normal form games. This result is a special case
of Theorem 7 below for the RAP-MG algorithm for Markov games.

18
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Proof. We show the general result for H-period Markov games, and Theorem 5 is the special case when H = 1.

Existence. Existence of a solution is implied by Theorem 6 with value bounds [—Hb + HX, Hb — H\], and due to (10),
we have,

(—Hb+ HX, Hb— H)) n [v,7] # &, (56)

and therefore, Theorem 6 implies the feasible of the problem thus existence of a solution.

Feasibility. We only have to check the INV constraints since ¢, A > 0 implies that the other constraints in the original
problem are satisfied. We check that for every stage game Q in period h € [H],s € S, we have Q, (s) = Q}, (s) +
e R °RPS (Pr(9).an(9) satisfies INV, where @), (s) is the solution to the optimization. To simplify the notations, we drop the
(h, s) indices.

We use the following properties of R *RPS from the proof of Lemma 4,

R q =0y,
p' RE® =04,

eRPS

(57
RANzed = 140z,

T peRPS  _
P Rig = Laagl-
Now we check the three conditions of the attacker’s problem are satisfied. We have

Qz.q = Qzq +eREX™ q
= ’Ul‘z‘ (58)

/
=0 1|I|,

and similarly,
p' Qus =p'Q.; +epRAE™
= ’U]_‘j| (59)
= ’U/]_|J‘.
‘We also have
Q20 = Q) rea + R 74
<vliang| —€lja,\z (60)
< Ul]—\Al\I\-

and similarly,
pTQOAz\j = pTQ/.AQ\J + aRjéliqu
> vliap\g| + €11, (61)
> ’U/1|-A2\J‘ .
eRPS

-1
I] is invertible with probability 1, in particular, since [ 17
|71

Q%J
Nl y
Lemma 4, we can write its singular value decomposition,

—1yz

Next we show that [ 0 ] is invertible by

|:R eRPS _1|I|

T =UxV', (62)
Ly 0 ]

for some orthonormal U, V e R(IZI+1)x(171+1) and nonsingular diagonal matrix ¥ € RUZI+D*(71+1) Consider the event
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(63)

-1 —(1 1
[?_@7' 0III] is singular. Then [ (1 PEI)JlTj | ( +0€) III] is singular, and the following matrix is also singular:
—1/277T Qzz - (1 + 5) 1|I| —1/2
D aaY [(1+5)1le 0 v
L4+ eRRS  —(1+e)17
=127 [QIJ | ] V12
(1+e)1], 0
e 1
/ ReRPS _ 1
Al - L e
ot 0
1
where ¢’ := =1- ,
1+e 1+e¢
!
which implies € = T—o " 1= 1%5”
_ 1 Z—I/QUT (1 - 6/) Q/I\% + éJR eRPS _1|I| VE—l/Q
1—¢ 1 0
|71
/
— 271/2UT [?_ZF'J _]dl-j| V271/2
|71

g —1/277T RICRPS —1z —1/2
+= U 1177‘ o |VE

—nl2yT [?/%J _EI] VETY2 4T
171

Consequently, there exists a nonzero vector x € RIZI+1 = RITI+1 gyuch that,

Qr; -1

n2yT | TR T s 2y — e

1 0 :
|71

This means that —¢ is an eigenvalue of the following deterministic matrix,

ElﬂUT[??7 —yﬂ]VZUa
[T

which happens with probability 0 since ¢ ~ Unif [—\, A] is continuous.

Optimality. Fix ¢ > 0. Consider a feasible solution to (48), (R(®),v(%)), that satisfies
¢ (R(s),RO) _Cr < %
In particular, feasibility of R(*) implies, for every h € [H],s € S,
@7 (9] a=v ()17
pT[Q ()] = 1]y

@7 ()], a<vl) ()14

Ai\Ze
P | (S)].AN >0 (5)1ang
9min ([ng) () 17 ] 0) >0
iz 1y
() =R () + D) Pu(s']s) vl (5)

s'eS

—b< [Rgﬁ (s)]” <bY (i,5) € A.

]
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Due to the strict SOW inequality in (48), we can find the (&) > 0 such that the SOW conditions in (9) is also satisfied,

€) . . ) (e) (e) (e)
) = nefn {v;(f (8) Lz — [th (5)]A1\z. a.p [ n (s )].AN — vy (5)1A2\J|}v (68)
where the min is element-wise for the vectors.
Since v(¢) € (—Hb, Hb), we can find the value gap A\(¥) > 0,
A& = p — min |Uh (s) = Pij (8] s) vh+1 (s’)| , (69)

he[H],s€S,(i,5)€ A

by noting that if A(¥) = 0, then |v(¥)| > Hb which contradicts our assumption.

Now we define the following 9,

s (19 e o
= mln{Q’QLbH(H+1) |S|A}' (70)

Note that R(*) does not satisfy (9) due the tighter bounds on the entries, meaning —b + A < [R(E) (s )] < b — A may not

be satisfied for some h € [H], s € S, (i, j) € A. We define R'() as follows and show that (R'(®), E)) is feasible to (9),
forevery h e [H],s€ S, (i,j) € A,

g () U;(f) (s)d / (&) (. o .
o -0 0L 2 St e sea
h = s'e :
Y min {max { [Rgf) (s)] b+ 5} b— 5} otherwise
ij

(71)
In particular, we have for i € Zj, (s),j € Jp (),

/(e 5\ o v ()0
[ 7 <s>]ij - (1 - ME)) [Ql(l) (S)]ij - vh)\((s) ' 72

Now, to check the feasibility of (R'),v(®)) to (9), fix h € [H], s € S. To simplify the notations, we drop the (A, s) indices.

Observe that
) 5 0§ .
1a= <<1 - )\(s)> £ E ) s g = O

6)5
< A(e)) @
(6)5
< NG ) 1‘I| + Y ~o 177q, since (R(E),v(g)) is feasible (73)
u<8>5
-(35)
=),
and similarly,
(CFY
To'© _ 4T _ (e)
5 w5 (74)
=(1- (e)
<1 A(a)) RERRSE
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Consider any ¢ < 9, we have,

,(©)
Q.Al\I'q = (QAl\Io 2 ) q

()
L
\QAl\I-q+ 9 1‘-/41\1‘

© _ ,© o
< (U — ) 1‘_,41\1‘ + 71|A1\Il

(75)
(D
(v@ - 5) Liang
< (v =) 140,
and similarly,
P Q> (Qf‘)b\j - L(26)>
> (U(s) + L(E)) Lja\7] — L(; 1 a7 (76)

)
L
> <U(€) + >1|A2\J

= <’U(E) + L) 1|A2\J\'

Izl 7]

% lli-o

{Qzﬂ — 1l 7) =0y

Q’(E) -1 Q(E) -1 x
Now to show that 1%7 0“7 I'l is invertible, since 7 I71'| is invertible, there exists vector [ t] # 0\ 7)41,

such that

=0

Lz
QL) g _
- )\(s Jr = (1 - W) iz =07
‘a: =0
1— LI FNG) et Y0 e (1o Y, =0
= ) 77T e T AE) 171 = 171 , since 1|TI|x =0
lmx ~0 7
5 o v 5
= (<1—A(E>)Q 7t 5e )\ @ ) o = 0
1‘}‘3: =0
/(e) g _
_ Qs <1—>\(€))tlj|0|j
l‘TI‘z =0
X
~1
= [ lj] 11— g t :O|J\+1~
A

X QI(E 1
Since 1 § # 01741, we have |71 is invertible.
e )t Ly 0
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Since we did not change the value (%), the value range constraint is still satisfied,
v<o® <7

For the range condition, we use the short-hand notation,
A (e) (8 _ P / (g) ’
vy (8) =y, (s) Z [ h (5 ‘5)] i Un+1 (5)
Note that we have,

R () = @ (s) = 3 Pu (s']s) vﬁfll ()

s’'eS
5
0 c
(1 G ) B2+ 3 Pl (s > a )\(6 - 2 Pl iy ()
s'eS s’'eS
@ 4 [ @ (o) 9
(1 /\(e)) R < SZE;SPh s) vy (s (s )) NG)

1) )
_ () (e)
- ( )\(E)) R + Av,” (s) GL

where we drop the indices (h, s) as before. Now for any A < §, we have, foreveryi € Z,j € 7,

~b< R <b

0 ) 0 ) 0 1)
<1 /\(6)> (=5) () A”v < <1 )\(6)> Rij @) A”v < <1 )\(6)> b ) A”U

b + Aijv(s) /(E) b - Aij’U(E)
*b+5W<Rij <b76T
(8) — A.®

SR B <R <b-0 b= Ay

b— mlIl Aizj/v(s)‘ b — min Aizjzv(s)‘

a5’ i’
= b+ 0 <R <b— 4, since b+ A;v® > b— min Ai,j,v@] >b— A,
i'5'
= b+ A< RS <b- A
and for any other (7, j) € A,
—b+6 < min {max { R, ~b+ 0} b~ d} <b-3s

= b+0<R <b-4
- b+/\<R’(E) <b— A\
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In addition, we show that each entry changes by less than forit e Z,j € J. In particular, we have

3
SLH|S|A]
(€ _ gl
R - R
<|ef’ -
PN NG
< (1_ A(e))QU e

(o) v©E§
(e) vij NG ‘

U(E)5
BXC)

(83)

N

)\(5 Q17

bH bé
o | The
(H+1)b £ 1A
A& LH(H+1)|S[|A]2 b’
e
2LH |S[|A]’

N

A

due to the definition of 4,

and for other (4, j) € A,
ij

min {max {R(Fi) _b} ; b} _ R(_E_)

ij i

‘ R _ R®
ij

<

<90 (84)

ex®

<
2LbH (H + 1) |S||A]
< L,
2LH |S||A|

since A\(&) < b.

Therefore we have,

((R*)—C* </t (R/(E)> _c*
</ ( R _RE 4 R<€>) _ o

(R) -+ L|R© ~ RO

5 1 (85)
= C" o+ LH IS g

+ L=

</
€
S3
g
Sgthor

=€

which concludes the proof.

Optimality Gap. To obtain the result in the linear case, we note that if the cost function is linear, (9) (restated below) is a
linear program (since it does not have the invertibility constraint),

énz}% ¢(R,R°) (86)
t[Qh()]zh(g).Qh() on (8) Lz, (), V h e [H] s € S
() [Qn (9)]e g (5) = 00 (8) 1[5,y Y hE[H],5€ S
[ (S)]_Al\Ih(g)o an () < (vn (8) =) Lapz,(s), VhE[H],5€S
() [Qn ()t 70y = (Wn (8) + ) 1y 7, Y hE[H] 5 €S
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Qn (s) = Ry (s) + Z Py, (s'|s) vhs1 (s') ,Vhe[H—1],s€S8

s'eS
Qn (s) =Ry (s),VseS8
v< Y Py(s)vi(s) <D
seS
b+ A< [Ru(s)];; <b—AV (i,j) e A he[H],s€S

which we can rewrite it in the standard form for the case when ¢t = A = 0,

min ¢ (R, R°)
z(R,v,Q)

Ao —b (87

)

=0,

and since ¢ and A enters the constraint through b linearly, we can write the problem for § = max {¢, \},

min ¢ (R, R°)
z(R,v,
Ar=b =b+6d, (88)
z =0,

for some fixed vector d. By (Bertsimas & Tsitsiklis, 1997), in particular, equation (5.2) in section 5.2, assuming the optimal
solution to (9) is always finite for every ¢, A satisfying (10), which is true due to our previous feasibility proof and the fact
that the costs are bounded by bH |S||.A|, we have that the optimal solution can be written as a finite collection of linear
functions in the form,

14 °:b) = T
(R,R°;b) maxy; b, (89)

where y; is the dual optimal solution in a region where ¢ (R, R°; b) is linear, and we have,
14 (R, R°; b') =/{(R,R°; b+ 0d)

= T(b+6d
lrg[%yz( + 0d)

. (90)
={¢(R,R°b)+0maxy, d
1€[N]
={(R,R°;b)+ 0O ().
When ¢ = )\ = 0, the problem is a relaxation of (1), thus we have that the optimal solution to (9), denoted by R/, satisfies,
(R, R%b) < C*, (91)
and due to our previous feasibility proof, for ¢, A satisfying (10),
((R,R%b) = C*, (92)
and combined with the previous result,

((R,R%b) = (R ,R%b) +0(0)

<C*+0(0), ©3)
we have,
L(R(t,A),R°)=C"+0(0). o4)
=C" + O (max {¢,A\}).
O
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A.6. Additional Experiments

Code Details. We conducted our experiments using standard python3 libraries and the gurobi optimization package. We
provide our code in a jupyter notebook with an associated database folder so that our experiments can be easily reproduced.
The notebook already reads in the database by default so no file management is needed. Simply ensure the notebook is
in the same directory as the database folder (like we have arranged in our uploaded zip). We note that for our benchmark
tests, the database was too large to upload directly. Instead we will upload that database on github. However, the scale
experiments can be reproduced by using the generation code we included in the notebook. Our code is available at:
https://github.com/YoungWu559/game—-modification.

Classic Two-finger Morra. Consider the classic Two-finger Morra game. The game’s payoff matrix is described in (95).
Note that this game is different from the simplified two-finger morra game considered in the main text.

0 2 -3 0
-2 0 0 3

TFM:= |73 o o a (95)
0 -3 4 0

TFW has infinitely many NEs: each player’s strategy can be any convex combination of (0,4/7,3/7,0)T and
(0,3/5,2/5,0)T. Since people often naively use uniform mixing, it may be desirable to derive a similar game where
uniform mixing is NE. Applying Algorithm 1 with p = ¢ = (1/4,1/4,1/4,1/4) T produces the new payoff matrix (96).

0 2 -3 0
-2 0 -2 3
TFM' .= 5 0 0 -4 (96)

-2 -3 4 0

Observe that TFW T is an unfair game with value —.25, unlike the original game whose value was 0. The total cost for the
change was 4.

5-action RPSSL. Consider the generalization of the rock-paper-scissors (RPS) game where each player now has 5
strategies rock, paper, scissors, spock, and lizard (RPSSL) that we mentioned in the main text. The game’s payoff matrix
is described in (97). Note that this game is different from the 5-action Rock-Paper-Scissor-Fire-Water (RPSFW) game
considered in the main text.

RPSSL:=|-1 1 0 -1 1 (97)

Similar to RPS, the unique NE for RPSSL is the uniformly mixed strategy pair p = q = (1/5,1/5,1/5,1/5,1/5)T.
Suppose that instead, we wish to skew the distribution to favor the new actions, spock and lizard. Specifically, if p = q =
(1/9,1/9,1/9,1/3,1/3)T, running Algorithm 1 produces the new payoff matrix (98).

0o -1 1 -1 1
1 0 -1 1 —1
RPSSLY:= -1 1 0o -1 1 (98)
1 -1 1 0 -1/3
-1 1 -1 1/3 0

We observe the resultant NE is fair with value 0. The total cost for the change is 1.33.
Note on Other Cost Functions For general cost functions, one may use Frank-Wolfe-type algorithms, which call a linear
programming (LP) oracle in each iteration. Faster specialized solvers can be used if the cost has additional structures.

For example, if the cost function is representable by an SDP or other conic programs, one can use interior methods as
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implemented in MOSEK or other libraries. If the cost function is quadratic (e.g., squared Euclidean norm), one can use a
quadratic program (QP) solver based on the QP simplex methods, such as those implemented in Gurobi. If the cost function
is piecewise linear (e.g., L1 norm), one can use an LP solver such as Gurobi or GLPK.
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