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COVERING PERFECT HASH FAMILIES AND COVERING ARRAYS OF
HIGHER INDEX

CHARLES J. COLBOURN

ABSTRACT. By exploiting symmetries of finite fields, covering perfect hash families provide a succinct
representation for covering arrays of index one. For certain parameters, this connection has led to both
the best current asymptotic existence results and the best known efficient construction algorithms for
covering arrays. The connection generalizes in a straightforward manner to arrays in which every t-way
interaction is covered A > 1 times, i.e., to covering arrays of index more than one. Using this framework,
we focus on easily computed, explicit upper bounds on numbers of rows for various parameters with

higher index.

To Daniela Nikolova on her 70th Birthday

1. Introduction

Combinatorial arrays for testing large-scale systems have been a topic of substantial interest due to
their many applications and to the challenges of constructing such arrays efficiently. Because the arrays
that are needed are large and must satisfy stringent conditions, constructions based on finite fields have
been explored. Perhaps surprisingly, these constructions have led to dramatic improvements in our
knowledge about the sizes of such testing arrays both in theory and in practice. In this paper, our
objective is to explore generalizations of these techniques to testing scenarios in which multiple coverage
is desirable. At the same time, we aim to strengthen bridges among the combinatorial aspects, the
algebraic aspects, the probabilistic aspects, and the testing applications.

For the most part, we follow a well-trodden path that has been earlier followed for covering arrays
[15] and perfect hash families [22]. However, our interest in this paper is primarily to address a basic
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question. Many algebraic, geometric, number-theoretic, or other approaches might be applied to the
construction of testing arrays. How can one decide which appear promising, in the sense that they yield
testing arrays of competitive size? For “small” parameters with index 1, one might check online tables
(such as [10]) to make a comparison. But for larger parameters, or when the index is greater than one,
it is desirable to have simple methods to compute reasonable upper bounds for use as targets with which
to compare a construction. Our use of probabilistic methods here is to derive such methods; in this
paper, their asymptotic consequences are less relevant.

Now we describe the testing arrays formally. Let IV, ¢, k, v, and X be positive integers with k >t > 2,
v>2 and A > 1. A covering array CAN(N;t,k,v) is an N X k array A in which each entry is from a
v-ary alphabet 3, and for every N x t sub-array B of A and every x € X!, there are at least \ rows of
B that each equal x.

For k a positive integer, denote by [k] the set {1,...,k}. A t-way interaction is {(c;,a;) : 1 <i <t}
where ¢; € [k], ¢; # ¢; for i # j, and a; € 3. Row 7 of an N x k array A covers the interaction
v={(ci,a;) : 1 <i<t, ¢ € k], ¢; # cjfori # j, and a; € £} when A(r,¢;) = a; for 1 <1 <t. Array
A A-covers the interaction ¢ when at least A rows of A cover ¢. In this vernacular, a CA)(N;t, k,v)
A-covers each t-way interaction on k columns on an alphabet of size v.

Covering arrays are widely used for combinatorial interaction testing [28, 31, 39]. The k columns
represent factors that might affect test outcomes; the v levels of each factor indicate possible settings
for the factor; each of the N rows forms a test or run of a test plan; ¢ is the coverage strength; and
A is the index or repetition of coverage. Until this time, essentially all research effort has focussed on
the case of index A\ = 1 to ensure that each t-way interaction is tested, but recently it has been argued
that many experimental environments benefit from increasing the index [1, 23]; for related work, see
[16, 17, 34, 40].

Applications require the effective construction of actual covering arrays. Costs of testing include
the effort to generate a test plan, the effort to execute the plan; and the analysis of the outcomes.
In order to reduce execution costs, it is essential to ensure that the number of tests is ‘small’; one
hopes to produce covering arrays with the fewest rows possible. The smallest value of N for which a
CA\(N;t, k,v) exists is a covering array number, denoted by CANy(t, k,v). At the same time, methods
to generate the test plan cannot be too time-intensive. Computational methods are challenged both by
the large number of interactions to cover, v’ (i), and by the large number of rows required. A natural
strategy is to assume and exploit symmetries on the rows, columns, or symbols. For group actions on
the symbols, see [7, 8, 13]; on columns see [12]; and on both see [11, 32, 35], for example. However, these
all concern the action of relatively small groups, and the resulting methods have remained focussed on
‘small’ parameters.

For index one, Sherwood et al. [45] extended the Bose-Bush construction of orthogonal arrays [3, 6]
to produce a construction of covering arrays over the finite field employing actions on t-sets of columns

and on symbols. In the process, Sherwood et al. [45] introduced a class of combinatorial arrays called
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‘covering perfect hash families’, later generalized in [14, 15, 48]. These have proved to be remarkably
effective in establishing the best known asymptotic upper bound on covering array numbers of index
one [15, 18] and in the development of efficient algorithms for constructing covering arrays of index one;
see [14, 15, 47, 48, 51, 52|, for example. Connections with linear feedback shift registers, projective
geometries, and linear codes are developed in [37, 40, 41, 49]. Essentially all of the cited work focusses
on index one, but Dougherty et al. [23] explicitly extend the definitions to higher indices.

In this paper, we first recall the ‘covering perfect hash family’ framework for arbitrary index. Then,
by examining probabilistic methods to obtain bounds, we explore the dependence between the index

and number of rows needed for specified strength and number of factors.

2. Covering perfect hash families

Let ¢ be a prime power. Let F, be the finite field of order ¢q. Let Ryq = {ro,...,rse_1} be the set
of all (row) vectors of length ¢ with entries from F,. Let V;, be the set of all column vectors of length
t with entries from Fg, not all 0, in which the first nonzero coordinate is the multiplicative identity
element. Vectors in V., are called permutation vectors. The essence of the Bose-Bush construction [6]
is: When X = {x1,...,x;} is a set of permutation vectors, the array A = (a;;) formed by setting a;; to
be the product of r; and x; is a CA(¢'; ¢, ¢, ) if and only if the ¢ X ¢ matrix X = [x; - - - x;] is nonsingular
(over Fy).

For nonzero p € Iy, substituting x; by px; simply reorders the rows of the covering array pro-

duced; this justifies our restriction to ‘normalized’ vectors in which the first nonzero coordinate is the

multiplicative identity element. Then |V, 4| = q;:f =Yl g

Let C = (c;j) be an n x k array with entries from V; 4. Let T' = {1,...,7:} be a set of distinct column
indices of C. For row p of C' and column set 7', the entries {c,,, --- €,y } form a covering t-set for T
when [c,y, - - €py,] is nonsingular, non-covering otherwise. Then C' is a covering perfect hash family
CPHF(n;k,q,t) when every set {71,...,7} of distinct column indices has a covering t-set in at least
A rows. An equivalent formulation can be useful. A t-set T' of columns is p-covered if it has a covering
t-set in at least p rows; it is pu~-covered if it has a covering t-set in exactly p rows. Then the CPHF

condition asks for every ¢-set to be A-covered. The following is straightforward (see [15, 45]).
Lemma 2.1. Suppose that a CPHFy(n;k,q,t) exists. Then there exists a CAx(n(q¢t — 1) + \;t, k,q).

As observed in [14, 15], one can often reduce the number of rows by enforcing restrictions on the entries
of the CPHF. For our purposes, what matters is that a CPHF with few rows represents a covering array
with far more rows. This succinctness has evident advantages for the construction and storage of a

covering array, but it also facilitates their analysis.

3. Probabilistic Methods and Bounds

We employ probabilistic upper bounds to explore how increases in the index impact sizes of the CPHFs

and the resulting covering arrays. (For applications of similar methods to covering arrays of higher index
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directly, see [21, 23].) For covering array numbers with index one, there is an extensive literature on
both lower bounds and upper bounds. For lower bounds, see [26, 44]. The basic probabilistic method
(see [2], for example) is applied in [9] to obtain an upper bound and a greedy construction algorithm.
Later an efficient algorithm that guarantees to construct an array whose number of rows never exceeds
that upper bound was developed using the Stein—Lovasz—Johnson paradigm [30, 33, 46], by calculating
exact conditional expectations [4, 5]. Subsequently, the symmetric version of the Lovész local lemma
[2, 24] was used to improve on these bounds [27]; see also [19, 38]. Various techniques using tiling
[20, 53], entropy compression [25] and multiphase construction [42, 43] have further improved on these
bounds.

Imposing some symmetry on the covering arrays led to similar improvements in the conditional
expectation methods [13], but the best known asymptotic bounds arise by imposing the strong symmetry
of CPHFs [15, 18]. In [15], three upper bounds on covering array numbers are derived, all using CPHFs.
The first uses a conditional expectation method in the vein of Stein—Lovasz—Johnson. The second uses
the Lovasz Local Lemma for CPHFs. The third, and best, is a conditional expectation method that
constructs an array that has more factors than necessary and permits a small number of uncovered
t-sets, so that deleting one column from each uncovered t-set yields the desired array. This process has
been variously called ‘random selection with postprocessing’ [50], ‘expurgation’ [19], or ‘oversampling’
[17].

Here we extend this best known bound to obtain an oversampling conditional expectation bound for
CPHFs of higher index. Suppose that the entries of an n x k array A are chosen uniformly at random
from V; 4. Let T be a set of ¢ columns of A. The probability that row p of A does not contain a covering

gt

t
t-set for T' can easily be computed. The total number of t-sets is (ﬁ) , and the number that are

t .
covering t-sets is (qt£1> Hﬁ;(l](qt —¢"). So within row p of A, the probability that the columns of T" are

not covering is

1 ; t—1 ;

breim 1 — [Tio(d" — ¢") I_Hqt—ql
q T t t :
(qt - 1) i=1 q 1

In [15], it is shown that for all ¢ > 3 and ¢t > 3, % < g < g+l

Because coverage in different rows is independent, the probability that T is u=-covered is

n— n 1- ¢ s K
(e =ein(G) (55)

Excluding all cases in which T is y=-covered for pu < A, the probability that T is not A-covered is

A-1 1 i
2 () ()

pu=0
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There are (];) choices for T'. Using the union bound, the probability that at least one is not A-covered

B o 3 (1) (L0t )"
Yk tn) = <t>¢t,q Z <M> <¢tv;q>

=0

is no more than

Indeed, by linearity of expectations, the expected number of ¢-sets in the random array A that are not
A-covered is exactly 1y ¢ n -

Via the basic probabilistic method [2], existence of a CPHF(n; k, ¢, t) is guaranteed when v, ; , » < 1.
Moreover, a conditional expectation construction yields an efficient algorithm to produce a CPHF that
meets the bound [23].

Because coverage for each t-set of columns is only dependent on at most (];) — (kt_t) other t-sets,

the symmetric version of the Lovasz Local Lemma improves on the basic bound, requiring the weaker

O -7 0) ()| <

pn=0

condition that

Then using the Moser-Tardos strategy [36], a CPHF(n; k, ¢,t) can be generated in expected polynomial
time (in the number of events) by resampling ¢-sets that are not A-covered.
The best bound, however, arises from the basic probabilistic method by using oversampling (or

expurgation). We derive this bound next. The essential idea to construct a CPHFy(n; k, ¢,t) follows:

(1) Choose k' > k.

(2) Construct a random n x k' array B.

(3) Let T ={T1,...,T:} be the set of t-sets of columns that are not A-covered in B.

(4) Choose C ={c1,...,¢co} C [1,k'] so that CNT; # 0 for each 1 <i < 7.

(5) Delete all columns whose column index is in C'.

(6) The resulting array is a CPHF\(n; k' — 0, ¢, t).
Naturally we require that k¥’ — o > k for this to succeed, yet our only choice is that of &’. Now o < 7
because we can choose a single column index for each T; € T to form C. Hence it suffices if &' — 7 > k.
Because B has been chosen uniformly at random, the expected value of 7 is known to be ¥y s p x.
In order to choose k', we want k" — |9k 1 n2] > k. Then to obtain the largest k, choose k’ so that
Uit — V=1 tnx < 1 but Y14 nx — Ui t0,x > 1. The intuition is that k' should be increased by 1

when the number of additional uncovered t-sets shows an expected increase of no more than 1. Now

dama =ty = ()= ()]t [0 () (58]
= (2)en, [0 () (S52)']

Theorem 3.1. Lett, k,q, X be positive integers, with t > 2 and q > 2 a prime power. A CPHF(n;k,t, q)

ok (0 (1 dug)"
t—1 n q
<t — 1> (bt,q MZ:% <,LL> < ¢t,q > <k
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Proof. Let © = [Zi‘;(l) (Z) <m)u} The number of t-sets of columns not A-covered in a random
t

¢t,q
- gk k-1 k1 ok
n x gk array B is (t7t1 )ngq@ =5 (t_tl—l )d)gq@' But (t_ti—l )¢2q® < (tt_—ll)gb?,q@ < 1, by
Lk
hypothesis. Hence there exists an n x ﬁk array B with at most - = ; ’—€1 t-sets of columns that are
not A-covered. O

4. The dependence on the index

One could pursue the strategy in [23] to extract an asymptotic upper bound on the number of rows
as a function of k and A (for fixed ¢t and ¢) from Theorem 3.1. However, our goal is to examine explicit
sizes of CPHF s to understand the effect of oversampling and the relationship between the index A and
the number n of rows.

Denote by ©,, ;4 the quantity [Z)‘_l (”) (1_¢t’q>u]. Fix k >t > 3 and ¢ > 3 a prime or prime

#=0 \p Pt.q
power. Theorem 3.1 ensures that a CPHF(n; k, t, q) exists when

Lok
(4.1) (;_1 1> by <1,

and a CPHF,(n/; k, t, q) exists when

=k
(4.2) <tt—_1 1) GrgOn tgn < 1.

When the inequality (4.1) holds, the inequality (4.2) also holds when

A—1 ’ n
’_ ’_ n 1- ¢t,
Oy " Ourtan=dig " | D ( ) ( o q) <t
7q

n=0 a

This yields an upper bound on the number of additional rows that suffice to ensure index A\ rather
than index one. Although this number appears to have no dependence on the number k& of columns, we
remind the reader that n grows logarithmically in & and n’ > n + A — 1. (Dougherty [21] establishes
that as A — oo, increasing A by 1 increases the number of rows by a constant.)

It can (and does) happen that a bound obtained by CPHFs is not as tight as one obtained by a similar
method applied to covering arrays (see §5). To justify our focus on covering perfect hash families, let
us note that Table 1 reports the existence of a CPHF1((39;1000,4,4). Then by Lemma 2.1, there is
a CA19(9955;4,1000,4). Contrast this with bounds obtained by choosing a covering array at random
rather than a CPHF. The basic probabilistic method ensures the existence of a CA1(13579;4, 1000, 4),
and employing oversampling yields a CA1(12138;4,1000,4). As anticipated, the symmetry imposed by
CPHFs produces not just a more compact representation (and a more efficient construction algorithm),
it also results in a worthwhile reduction in the number of rows needed. In our experience, this single
example is typical when A is ‘small’ and ¢ is ‘large’; see §5 for further discussion. It is also noteworthy
that the best known bound on CAN; (4, 1000, 4) is 3404 [29], and hence 10-fold coverage is achieved with

less than three times the number of rows as simple coverage.
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TABLE 1. Upper bounds on the number n of rows in a CPHF,(n; k,4,4) via the basic proba-

bilistic method and via oversampling, for various values of k and A.

Number k of columns

A 102 103 104 10° 106

1] 13 11] 21 17| 28 23| 36 28| 44 34

2| 16 14| 24 20| 32 26| 40 32| 48 38

31 19 17| 27 23| 35 29| 43 35| 51 41

50 24 21| 32 28| 41 34| 49 41| 57 47
10| 34 32| 44 39| 53 46| 62 53| 71 60
15| 44 41| 55 50| 65 57| 74 64| 83 72
25 63 60| 75 69| 8 77| 96 85| 106 93
50 [ 107 103 [ 121 114 | 134 124 | 146 134 | 157 143
100 | 190 185|207 199 | 223 211 | 237 223|251 234
200 | 349 342 | 371 360 | 391 376 | 409 391 | 425 404
500 | 809 800 | 842 826 | 870 849 | 894 869 | 917 888

TABLE 2. Upper bounds on the number n of rows in a CPHF,(n; k,4,7) via the basic proba-

bilistic method and via oversampling, for various values of k and A.

Number k of columns

A 102 103 104 10° 106
1| 21 19| 35 31| 48 43| 62 55| 76 67
2| 24 23| 38 35| 52 47| 67 59| 80 71
3| 27 26| 42 38| 56 50| 70 63| 84 75
5| 32 31| 48 44| 63 57| 77 69| 91 82
10| 44 43| 61 57| 77 71| 92 84| 107 97
15| 55 53| 73 69| 89 883|105 97| 121 110
25 75 73] 95 90| 113 106 | 130 121 | 146 135
50 [ 122 120 | 145 140 | 166 158 | 185 175 | 203 191
100 | 210 207 | 238 231|262 253 | 285 273 | 306 292
200 | 377 373 | 412 404 | 442 430 | 469 454 | 494 477
500 | 855 850 | 904 893 | 945 930 | 982 963 | 1016 993

299

For applications, we are most concerned with the sizes of the covering perfect hash families whose

existence is guaranteed. For certain values of ¢t and ¢, we tabulate the upper bounds on n for various

choices of k and A. In the tables provided, for each choice of t, q, k, and A we provide the upper bound

from the basic probabilistic method first and then the upper bound obtained using oversampling from

Theorem 3.1.
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TABLE 3. Upper bounds on the number n of rows in a CPHF(n;k,7,4) via the basic

probabilistic method and via oversampling, for various values of k£ and .

Number & of columns

A 102 103 10? 10° 106
1 9 8| 14 11| 19 15| 24 19| 29 23
2011 10} 16 14| 22 18| 27 22| 32 25
3113 12| 19 16| 24 20| 29 24| 34 28
o 17 15| 22 20| 28 24| 33 28| 39 32
10 25 23| 31 28| 37 33| 43 37| 49 42
151 33 31| 39 36| 46 41| 52 46| 58 51
25| 47 45| b5 51| 62 S7| 69 62| 75 67
50| 8 80| 91 87100 93| 107 100|115 106
100 | 149 146 | 160 155 | 170 163 | 180 170 | 188 177
200 | 278 274|293 286 | 305 296 | 317 305 | 327 314
500 | 656 650 | 677 667 | 694 681 | 710 694 | 724 706

TABLE 4. Upper bounds on the number n of rows in a CPHF(n; k,25,4) via the basic

probabilistic method and via oversampling, for various values of k£ and A.

Number k of columns

A 102 103 104 10° 106
1 8 11 9| 14 11| 17 13
2 10 13 11| 16 13| 19 15
3/ 8 7|11 10| 14 12| 18 14| 21 17
5/ 11 10| 14 13| 17 15| 21 17| 24 20
10 17 16| 21 19| 24 22| 28 24| 31 27
15| 23 22| 27 25| 31 28| 34 31| 38 34
25| 35 34| 39 37| 43 40| 47 43| 51 46
50| 63 62| 69 66| 73 70| 77T 73| 82 76
100 | 119 117 | 125 122|130 126|136 130 | 140 134
200 | 228 226 | 235 232 | 242 237 | 248 242 | 254 247
500 | 550 547 | 560 555 | 569 562 | 577 569 | 585 575

Tables 1, 2, 3, and 4 give both upper bounds on n, for each

A€ {1,2,3,5,10,15,25,50, 100, 200, 500}

and k € {100, 1000, 10000, 100000, 1000000} in a CPHFx(n;k, q,t) with (¢,t) = (4,4), (4,7), (7,4), and

(25.4), respectively. For each parameter selection, oversampling makes a clear improvement.

One

might conclude that these improvements are relatively small, but remember that each row of the CPHF

underlies ¢ — 1 rows of the covering array that it generates. In Table 2, for example, each row of

http://dx.doi.org/10.22108/1ijgt.2023.137230.1836
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a CPHF\(n;k,4,7) generates 16,383 rows in the covering array. Although the relative improvement
appears to be small, the reduction in the size of the covering array generated is nonetheless substantial.

What is more striking is the relatively small number of additional rows needed to obtain A-fold
coverage. Examining k& = 10* in Table 2, for example, twice the number of rows that suffice for A = 1
is enough to ensure at least 15-fold coverage, while four times the number suffices to provide at least

50-fold coverage.

5. Limitations of CPHFs

Dougherty [21] applies similar probabilistic methods, both to covering arrays directly and to covering
arrays from CPHFs, with the goal of obtaining the best asymptotic bounds for higher index. He remarks
that “bounds achieved for the covering arrays resulting from [covering perfect] hash families are not as

asymptotically strong as the results we have obtained [for covering arrays directly].”

TABLE 5. Upper bounds on the number N of rows in a CAx(N;4, k, 4) via oversampling

for CAs directly (first entry) and via CPHFs (second entry), for various k and .

Number k of columns
10? 103 10* 10° 106
4708 2806 | 6475 4336 | 8240 5866 | 10005 7141 | 11770 8671
5504 3572 | 7342 5102 | 9162 6632 | 10972 8162 | 12775 9692
6181 4338 | 8079 5868 | 9948 7398 | 11798 8928 | 13635 10458
7370 5360 | 9375 7145 | 11328 8675 | 13250 10460 | 15149 11990
10| 9919 8170 | 12138 9955 | 14266 11740 | 16337 13525 | 18367 15310
25| 16328 15325 | 19007 17620 | 21522 19660 | 23927 21700 | 26254 23740
50 | 25658 26315 | 28884 29120 | 31862 31670 | 34674 34220 | 37365 36515
100 | 42626 47275 | 46646 50845 | 50301 53905 | 53712 56965 | 56944 59770

Tt W N =

Look at Table 5. When A < 25, the bound via CPHFs always improves on that from CAs directly
(sometimes dramatically). Yet when A\ = 100, the route via CPHFs discussed here yields weaker bounds
than treating covering arrays directly.

What is the explanation for this behaviour? When a t-set of columns is not covering in a row
of a CPHF, the corresponding rows of the generated array nevertheless cover some (but not all) t-way
interactions. As the number of rows with non-covering sets increases, the partial coverage of interactions
from each of these rows may combine to cover all t-way interactions, despite no single row of the CPHF
having a covering set! This partial coverage is ignored in the all-or-nothing analysis carried out for
CPHFs here. When the number of symbols is small, the probability that a row contains a non-covering
set in a particular t-set of columns increases. Also as the index increases (and hence the number of
rows in the CPHF increases), the number of occurrences of non-covering sets increases. Indeed when ¢ is

‘small’ and/or when A is ‘large’, ignoring the partial coverage from non-covering sets results in bounds

http://dx.doi.org/10.22108/1ijgt.2023.137230.1836
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that are weak. Even when the index is 1, it was earlier observed that the CPHF techniques fare poorly
when ¢ = 2 [15].

It is feasible to improve the probabilistic analysis to account for the partial coverage that has been
thus far ignored. We plan to treat this in a later paper. Despite this limitation of the current analysis,
we believe that the current bounds from CPHFs serve their intended purpose of providing a sensible
target for comparison to evaluate the promise of proposed algebraic constructions, particularly when

the index is small and the number of symbols is not too small.

6. Concluding Remarks

The probabilistic approach leads to efficient and effective construction algorithms for covering perfect
hash families, and hence to covering arrays, in a well-understood manner. However, in closing we
focus on a different direction. We have seen that adopting the algebraic framework of finite fields
in certain cases improves both the sizes of the covering arrays generated and the efficiency of their
construction. Nevertheless, we have employed probabilistic analysis, choosing arrays at random. Can
we choose the covering perfect hash families deterministically in general to achieve arrays with fewer
(or at least, no more) rows? In one special case, that of a CPHFy(n;252 4 25 + 1,25,3), Raaphorst et
al. [41] give a construction with n = 2 from the desarguesian projective plane. By way of contrast,
the basic probabilistic method yields a CPHF;(6;25% + 25 + 1,25, 3) which oversampling improves to a
CPHF;(5;25% + 25 + 1, 25,3). Hence, even when probabilistic techniques yield the best general results,
there can be much room for improvement in specific situations. It would be of substantial practical
interest to discover other group-theoretic, algebraic, or geometric connections and thereby devise even

more efficient methods for the construction of covering arrays with fewer rows.
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