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COVERING PERFECT HASH FAMILIES AND COVERING ARRAYS OF
HIGHER INDEX

CHARLES J. COLBOURN

Abstract. By exploiting symmetries of finite fields, covering perfect hash families provide a succinct

representation for covering arrays of index one. For certain parameters, this connection has led to both

the best current asymptotic existence results and the best known e�cient construction algorithms for

covering arrays. The connection generalizes in a straightforward manner to arrays in which every t-way

interaction is covered � > 1 times, i.e., to covering arrays of index more than one. Using this framework,

we focus on easily computed, explicit upper bounds on numbers of rows for various parameters with

higher index.

To Daniela Nikolova on her 70th Birthday

1. Introduction

Combinatorial arrays for testing large-scale systems have been a topic of substantial interest due to

their many applications and to the challenges of constructing such arrays e�ciently. Because the arrays

that are needed are large and must satisfy stringent conditions, constructions based on finite fields have

been explored. Perhaps surprisingly, these constructions have led to dramatic improvements in our

knowledge about the sizes of such testing arrays both in theory and in practice. In this paper, our

objective is to explore generalizations of these techniques to testing scenarios in which multiple coverage

is desirable. At the same time, we aim to strengthen bridges among the combinatorial aspects, the

algebraic aspects, the probabilistic aspects, and the testing applications.

For the most part, we follow a well-trodden path that has been earlier followed for covering arrays

[15] and perfect hash families [22]. However, our interest in this paper is primarily to address a basic
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question. Many algebraic, geometric, number-theoretic, or other approaches might be applied to the

construction of testing arrays. How can one decide which appear promising, in the sense that they yield

testing arrays of competitive size? For “small” parameters with index 1, one might check online tables

(such as [10]) to make a comparison. But for larger parameters, or when the index is greater than one,

it is desirable to have simple methods to compute reasonable upper bounds for use as targets with which

to compare a construction. Our use of probabilistic methods here is to derive such methods; in this

paper, their asymptotic consequences are less relevant.

Now we describe the testing arrays formally. Let N, t, k, v, and � be positive integers with k � t � 2,

v � 2, and � � 1. A covering array CA�(N ; t, k, v) is an N ⇥ k array A in which each entry is from a

v-ary alphabet ⌃, and for every N ⇥ t sub-array B of A and every x 2 ⌃t, there are at least � rows of

B that each equal x.

For k a positive integer, denote by [k] the set {1, . . . , k}. A t-way interaction is {(ci, ai) : 1  i  t}
where ci 2 [k], ci 6= cj for i 6= j, and ai 2 ⌃. Row r of an N ⇥ k array A covers the interaction

◆ = {(ci, ai) : 1  i  t, ci 2 [k], ci 6= cj for i 6= j, and ai 2 ⌃} when A(r, ci) = ai for 1  i  t. Array

A �-covers the interaction ◆ when at least � rows of A cover ◆. In this vernacular, a CA�(N ; t, k, v)

�-covers each t-way interaction on k columns on an alphabet of size v.

Covering arrays are widely used for combinatorial interaction testing [28, 31, 39]. The k columns

represent factors that might a↵ect test outcomes; the v levels of each factor indicate possible settings

for the factor; each of the N rows forms a test or run of a test plan; t is the coverage strength; and

� is the index or repetition of coverage. Until this time, essentially all research e↵ort has focussed on

the case of index � = 1 to ensure that each t-way interaction is tested, but recently it has been argued

that many experimental environments benefit from increasing the index [1, 23]; for related work, see

[16, 17, 34, 40].

Applications require the e↵ective construction of actual covering arrays. Costs of testing include

the e↵ort to generate a test plan, the e↵ort to execute the plan; and the analysis of the outcomes.

In order to reduce execution costs, it is essential to ensure that the number of tests is ‘small’; one

hopes to produce covering arrays with the fewest rows possible. The smallest value of N for which a

CA�(N ; t, k, v) exists is a covering array number, denoted by CAN�(t, k, v). At the same time, methods

to generate the test plan cannot be too time-intensive. Computational methods are challenged both by

the large number of interactions to cover, vt
✓
k

t

◆
, and by the large number of rows required. A natural

strategy is to assume and exploit symmetries on the rows, columns, or symbols. For group actions on

the symbols, see [7, 8, 13]; on columns see [12]; and on both see [11, 32, 35], for example. However, these

all concern the action of relatively small groups, and the resulting methods have remained focussed on

‘small’ parameters.

For index one, Sherwood et al. [45] extended the Bose-Bush construction of orthogonal arrays [3, 6]

to produce a construction of covering arrays over the finite field employing actions on t-sets of columns

and on symbols. In the process, Sherwood et al. [45] introduced a class of combinatorial arrays called
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‘covering perfect hash families’, later generalized in [14, 15, 48]. These have proved to be remarkably

e↵ective in establishing the best known asymptotic upper bound on covering array numbers of index

one [15, 18] and in the development of e�cient algorithms for constructing covering arrays of index one;

see [14, 15, 47, 48, 51, 52], for example. Connections with linear feedback shift registers, projective

geometries, and linear codes are developed in [37, 40, 41, 49]. Essentially all of the cited work focusses

on index one, but Dougherty et al. [23] explicitly extend the definitions to higher indices.

In this paper, we first recall the ‘covering perfect hash family’ framework for arbitrary index. Then,

by examining probabilistic methods to obtain bounds, we explore the dependence between the index

and number of rows needed for specified strength and number of factors.

2. Covering perfect hash families

Let q be a prime power. Let Fq be the finite field of order q. Let Rt,q = {r0, . . . , rqt�1} be the set

of all (row) vectors of length t with entries from Fq. Let Vt,q be the set of all column vectors of length

t with entries from Fq, not all 0, in which the first nonzero coordinate is the multiplicative identity

element. Vectors in Vt,q are called permutation vectors. The essence of the Bose-Bush construction [6]

is: When X = {x1, . . . ,xt} is a set of permutation vectors, the array A = (aij) formed by setting aij to

be the product of ri and xj is a CA(qt; t, t, q) if and only if the t⇥ t matrix X = [x1 · · ·xt] is nonsingular

(over Fq).

For nonzero µ 2 Fq, substituting xi by µxi simply reorders the rows of the covering array pro-

duced; this justifies our restriction to ‘normalized’ vectors in which the first nonzero coordinate is the

multiplicative identity element. Then |Vt,q| = qt�1
q�1 =

Pt�1
i=0 q

i.

Let C = (cij) be an n⇥k array with entries from Vt,q. Let T = {�1, . . . , �t} be a set of distinct column

indices of C. For row ⇢ of C and column set T , the entries {c⇢�1 · · · c⇢�t} form a covering t-set for T

when [c⇢�1 · · · c⇢�t ] is nonsingular, non-covering otherwise. Then C is a covering perfect hash family

CPHF�(n; k, q, t) when every set {�1, . . . , �t} of distinct column indices has a covering t-set in at least

� rows. An equivalent formulation can be useful. A t-set T of columns is µ-covered if it has a covering

t-set in at least µ rows; it is µ=
-covered if it has a covering t-set in exactly µ rows. Then the CPHF

condition asks for every t-set to be �-covered. The following is straightforward (see [15, 45]).

Lemma 2.1. Suppose that a CPHF�(n; k, q, t) exists. Then there exists a CA�(n(qt � 1) + �; t, k, q).

As observed in [14, 15], one can often reduce the number of rows by enforcing restrictions on the entries

of the CPHF. For our purposes, what matters is that a CPHF with few rows represents a covering array

with far more rows. This succinctness has evident advantages for the construction and storage of a

covering array, but it also facilitates their analysis.

3. Probabilistic Methods and Bounds

We employ probabilistic upper bounds to explore how increases in the index impact sizes of the CPHFs

and the resulting covering arrays. (For applications of similar methods to covering arrays of higher index
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directly, see [21, 23].) For covering array numbers with index one, there is an extensive literature on

both lower bounds and upper bounds. For lower bounds, see [26, 44]. The basic probabilistic method

(see [2], for example) is applied in [9] to obtain an upper bound and a greedy construction algorithm.

Later an e�cient algorithm that guarantees to construct an array whose number of rows never exceeds

that upper bound was developed using the Stein–Lovász–Johnson paradigm [30, 33, 46], by calculating

exact conditional expectations [4, 5]. Subsequently, the symmetric version of the Lovász local lemma

[2, 24] was used to improve on these bounds [27]; see also [19, 38]. Various techniques using tiling

[20, 53], entropy compression [25] and multiphase construction [42, 43] have further improved on these

bounds.

Imposing some symmetry on the covering arrays led to similar improvements in the conditional

expectation methods [13], but the best known asymptotic bounds arise by imposing the strong symmetry

of CPHFs [15, 18]. In [15], three upper bounds on covering array numbers are derived, all using CPHFs.

The first uses a conditional expectation method in the vein of Stein–Lovász–Johnson. The second uses

the Lovász Local Lemma for CPHFs. The third, and best, is a conditional expectation method that

constructs an array that has more factors than necessary and permits a small number of uncovered

t-sets, so that deleting one column from each uncovered t-set yields the desired array. This process has

been variously called ‘random selection with postprocessing’ [50], ‘expurgation’ [19], or ‘oversampling’

[17].

Here we extend this best known bound to obtain an oversampling conditional expectation bound for

CPHFs of higher index. Suppose that the entries of an n ⇥ k array A are chosen uniformly at random

from Vt,q. Let T be a set of t columns of A. The probability that row ⇢ of A does not contain a covering

t-set for T can easily be computed. The total number of t-sets is
⇣
qt�1
q�1

⌘t
, and the number that are

covering t-sets is
⇣

1
qt�1

⌘tQt�1
i=0(q

t� qi). So within row ⇢ of A, the probability that the columns of T are

not covering is

�t,q := 1�
Qt�1

i=0(q
t � qi)

(qt � 1)t
= 1�

t�1Y

i=1

qt � qi

qt � 1
.

In [15], it is shown that for all q � 3 and t � 3, 1
q < �t,q  q+1

q2 .

Because coverage in di↵erent rows is independent, the probability that T is µ=-covered is

✓
n

µ

◆
�n�µ
t,q (1� �t,q)

µ = �nt,q

✓
n

µ

◆✓
1� �t,q
�t,q

◆µ

.

Excluding all cases in which T is µ=-covered for µ < �, the probability that T is not �-covered is

�nt,q

2

4
��1X

µ=0

✓
n

µ

◆✓
1� �t,q
�t,q

◆µ
3

5 .
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There are
�k
t

�
choices for T . Using the union bound, the probability that at least one is not �-covered

is no more than

 k,t,n,� :=

✓
k

t

◆
�nt,q

2

4
��1X

µ=0

✓
n

µ

◆✓
1� �t,q
�t,q

◆µ
3

5 .

Indeed, by linearity of expectations, the expected number of t-sets in the random array A that are not

�-covered is exactly  k,t,n,�.

Via the basic probabilistic method [2], existence of a CPHF�(n; k, q, t) is guaranteed when  k,t,n,� < 1.

Moreover, a conditional expectation construction yields an e�cient algorithm to produce a CPHF that

meets the bound [23].

Because coverage for each t-set of columns is only dependent on at most
�k
t

�
�

�k�t
t

�
other t-sets,

the symmetric version of the Lovász Local Lemma improves on the basic bound, requiring the weaker

condition that

e

✓
k

t

◆
�

✓
k � t

t

◆�
�nt,q

2

4
��1X

µ=0

✓
n

µ

◆✓
1� �t,q
�t,q

◆µ
3

5 < 1.

Then using the Moser-Tardos strategy [36], a CPHF�(n; k, q, t) can be generated in expected polynomial

time (in the number of events) by resampling t-sets that are not �-covered.

The best bound, however, arises from the basic probabilistic method by using oversampling (or

expurgation). We derive this bound next. The essential idea to construct a CPHF�(n; k, q, t) follows:

(1) Choose k0 � k.

(2) Construct a random n⇥ k0 array B.

(3) Let T = {T1, . . . , T⌧} be the set of t-sets of columns that are not �-covered in B.

(4) Choose C = {c1, . . . , c�} ⇢ [1, k0] so that C \ Ti 6= ; for each 1  i  ⌧ .

(5) Delete all columns whose column index is in C.

(6) The resulting array is a CPHF�(n; k0 � �, q, t).

Naturally we require that k0 � � � k for this to succeed, yet our only choice is that of k0. Now �  ⌧

because we can choose a single column index for each Ti 2 T to form C. Hence it su�ces if k0 � ⌧ � k.

Because B has been chosen uniformly at random, the expected value of ⌧ is known to be  k0,t,n,�.

In order to choose k0, we want k0 � b k0,t,n,�c � k. Then to obtain the largest k, choose k0 so that

 k0,t,n,� �  k0�1,t,n,�  1 but  k0+1,t,n,� �  k0,t,n,� > 1. The intuition is that k0 should be increased by 1

when the number of additional uncovered t-sets shows an expected increase of no more than 1. Now

 k0,t,n,� �  k0�1,t,n,� =
h�k0

t

�
�
�k0�1

t

�i
�nt,q

hP��1
µ=0

�n
µ

� ⇣1��t,q

�t,q

⌘µi

=
�k0�1
t�1

�
�nt,q

hP��1
µ=0

�n
µ

� ⇣1��t,q

�t,q

⌘µi

Theorem 3.1. Let t, k, q,� be positive integers, with t � 2 and q � 2 a prime power. A CPHF�(n; k, t, q)

exists whenever
✓ t

t�1k

t� 1

◆
�nt,q

2

4
��1X

µ=0

✓
n

µ

◆✓
1� �t,q
�t,q

◆µ
3

5 < 1.
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Proof. Let ⇥ =
hP��1

µ=0

�n
µ

� ⇣1��t,q

�t,q

⌘µi
. The number of t-sets of columns not �-covered in a random

n ⇥ t
t�1k array B is

� t
t�1k
t

�
�nt,q⇥ =

t
t�1k

t

� t
t�1k�1
t�1

�
�nt,q⇥. But

� t
t�1k�1
t�1

�
�nt,q⇥ <

� t
t�1k
t�1

�
�nt,q⇥ < 1, by

hypothesis. Hence there exists an n⇥ t
t�1k array B with at most

t
t�1k

t = k
t�1 t-sets of columns that are

not �-covered. ⇤

4. The dependence on the index

One could pursue the strategy in [23] to extract an asymptotic upper bound on the number of rows

as a function of k and � (for fixed t and q) from Theorem 3.1. However, our goal is to examine explicit

sizes of CPHF�s to understand the e↵ect of oversampling and the relationship between the index � and

the number n of rows.

Denote by ⇥n,t,q,� the quantity
hP��1

µ=0

�n
µ

� ⇣1��t,q

�t,q

⌘µi
. Fix k > t � 3 and q � 3 a prime or prime

power. Theorem 3.1 ensures that a CPHF(n; k, t, q) exists when

(4.1)

✓ t
t�1k

t� 1

◆
�nt,q < 1,

and a CPHF�(n0; k, t, q) exists when

(4.2)

✓ t
t�1k

t� 1

◆
�n

0
t,q⇥n0,t,q,� < 1.

When the inequality (4.1) holds, the inequality (4.2) also holds when

�n
0�n

t,q ⇥n0,t,q,� = �n
0�n

t,q

2

4
��1X

µ=0

✓
n0

µ

◆✓
1� �t,q
�t,q

◆µ
3

5 < 1.

This yields an upper bound on the number of additional rows that su�ce to ensure index � rather

than index one. Although this number appears to have no dependence on the number k of columns, we

remind the reader that n grows logarithmically in k and n0 � n + � � 1. (Dougherty [21] establishes

that as �! 1, increasing � by 1 increases the number of rows by a constant.)

It can (and does) happen that a bound obtained by CPHFs is not as tight as one obtained by a similar

method applied to covering arrays (see §5). To justify our focus on covering perfect hash families, let

us note that Table 1 reports the existence of a CPHF10(39; 1000, 4, 4). Then by Lemma 2.1, there is

a CA10(9955; 4, 1000, 4). Contrast this with bounds obtained by choosing a covering array at random

rather than a CPHF. The basic probabilistic method ensures the existence of a CA10(13579; 4, 1000, 4),

and employing oversampling yields a CA10(12138; 4, 1000, 4). As anticipated, the symmetry imposed by

CPHFs produces not just a more compact representation (and a more e�cient construction algorithm),

it also results in a worthwhile reduction in the number of rows needed. In our experience, this single

example is typical when � is ‘small’ and q is ‘large’; see §5 for further discussion. It is also noteworthy

that the best known bound on CAN1(4, 1000, 4) is 3404 [29], and hence 10-fold coverage is achieved with

less than three times the number of rows as simple coverage.
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Table 1. Upper bounds on the number n of rows in a CPHF�(n; k, 4, 4) via the basic proba-

bilistic method and via oversampling, for various values of k and �.

Number k of columns

� 102 103 104 105 106

1 13 11 21 17 28 23 36 28 44 34

2 16 14 24 20 32 26 40 32 48 38

3 19 17 27 23 35 29 43 35 51 41

5 24 21 32 28 41 34 49 41 57 47

10 34 32 44 39 53 46 62 53 71 60

15 44 41 55 50 65 57 74 64 83 72

25 63 60 75 69 86 77 96 85 106 93

50 107 103 121 114 134 124 146 134 157 143

100 190 185 207 199 223 211 237 223 251 234

200 349 342 371 360 391 376 409 391 425 404

500 809 800 842 826 870 849 894 869 917 888

Table 2. Upper bounds on the number n of rows in a CPHF�(n; k, 4, 7) via the basic proba-

bilistic method and via oversampling, for various values of k and �.

Number k of columns

� 102 103 104 105 106

1 21 19 35 31 48 43 62 55 76 67

2 24 23 38 35 52 47 67 59 80 71

3 27 26 42 38 56 50 70 63 84 75

5 32 31 48 44 63 57 77 69 91 82

10 44 43 61 57 77 71 92 84 107 97

15 55 53 73 69 89 83 105 97 121 110

25 75 73 95 90 113 106 130 121 146 135

50 122 120 145 140 166 158 185 175 203 191

100 210 207 238 231 262 253 285 273 306 292

200 377 373 412 404 442 430 469 454 494 477

500 855 850 904 893 945 930 982 963 1016 993

For applications, we are most concerned with the sizes of the covering perfect hash families whose

existence is guaranteed. For certain values of t and q, we tabulate the upper bounds on n for various

choices of k and �. In the tables provided, for each choice of t, q, k, and � we provide the upper bound

from the basic probabilistic method first and then the upper bound obtained using oversampling from

Theorem 3.1.

http://dx.doi.org/10.22108/ijgt.2023.137230.1836

http://dx.doi.org/10.22108/ijgt.2023.137230.1836


300 Int. J. Group Theory, 13 no. 3 (2024) 293-305 C. J. Colbourn

Table 3. Upper bounds on the number n of rows in a CPHF�(n; k, 7, 4) via the basic

probabilistic method and via oversampling, for various values of k and �.

Number k of columns

� 102 103 104 105 106

1 9 8 14 11 19 15 24 19 29 23

2 11 10 16 14 22 18 27 22 32 25

3 13 12 19 16 24 20 29 24 34 28

5 17 15 22 20 28 24 33 28 39 32

10 25 23 31 28 37 33 43 37 49 42

15 33 31 39 36 46 41 52 46 58 51

25 47 45 55 51 62 57 69 62 75 67

50 82 80 91 87 100 93 107 100 115 106

100 149 146 160 155 170 163 180 170 188 177

200 278 274 293 286 305 296 317 305 327 314

500 656 650 677 667 694 681 710 694 724 706

Table 4. Upper bounds on the number n of rows in a CPHF�(n; k, 25, 4) via the basic

probabilistic method and via oversampling, for various values of k and �.

Number k of columns

� 102 103 104 105 106

1 5 5 8 7 11 9 14 11 17 13

2 7 6 10 8 13 11 16 13 19 15

3 8 7 11 10 14 12 18 14 21 17

5 11 10 14 13 17 15 21 17 24 20

10 17 16 21 19 24 22 28 24 31 27

15 23 22 27 25 31 28 34 31 38 34

25 35 34 39 37 43 40 47 43 51 46

50 63 62 69 66 73 70 77 73 82 76

100 119 117 125 122 130 126 136 130 140 134

200 228 226 235 232 242 237 248 242 254 247

500 550 547 560 555 569 562 577 569 585 575

Tables 1, 2, 3, and 4 give both upper bounds on n, for each

� 2 {1, 2, 3, 5, 10, 15, 25, 50, 100, 200, 500}

and k 2 {100, 1000, 10000, 100000, 1000000} in a CPHF�(n; k, q, t) with (q, t) = (4,4), (4,7), (7,4), and

(25.4), respectively. For each parameter selection, oversampling makes a clear improvement. One

might conclude that these improvements are relatively small, but remember that each row of the CPHF

underlies qt � 1 rows of the covering array that it generates. In Table 2, for example, each row of
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a CPHF�(n; k, 4, 7) generates 16,383 rows in the covering array. Although the relative improvement

appears to be small, the reduction in the size of the covering array generated is nonetheless substantial.

What is more striking is the relatively small number of additional rows needed to obtain �-fold

coverage. Examining k = 104 in Table 2, for example, twice the number of rows that su�ce for � = 1

is enough to ensure at least 15-fold coverage, while four times the number su�ces to provide at least

50-fold coverage.

5. Limitations of CPHFs

Dougherty [21] applies similar probabilistic methods, both to covering arrays directly and to covering

arrays from CPHFs, with the goal of obtaining the best asymptotic bounds for higher index. He remarks

that “bounds achieved for the covering arrays resulting from [covering perfect] hash families are not as

asymptotically strong as the results we have obtained [for covering arrays directly].”

Table 5. Upper bounds on the number N of rows in a CA�(N ; 4, k, 4) via oversampling

for CAs directly (first entry) and via CPHFs (second entry), for various k and �.

Number k of columns

� 102 103 104 105 106

1 4708 2806 6475 4336 8240 5866 10005 7141 11770 8671

2 5504 3572 7342 5102 9162 6632 10972 8162 12775 9692

3 6181 4338 8079 5868 9948 7398 11798 8928 13635 10458

5 7370 5360 9375 7145 11328 8675 13250 10460 15149 11990

10 9919 8170 12138 9955 14266 11740 16337 13525 18367 15310

25 16328 15325 19007 17620 21522 19660 23927 21700 26254 23740

50 25658 26315 28884 29120 31862 31670 34674 34220 37365 36515

100 42626 47275 46646 50845 50301 53905 53712 56965 56944 59770

Look at Table 5. When �  25, the bound via CPHFs always improves on that from CAs directly

(sometimes dramatically). Yet when � = 100, the route via CPHFs discussed here yields weaker bounds

than treating covering arrays directly.

What is the explanation for this behaviour? When a t-set of columns is not covering in a row

of a CPHF, the corresponding rows of the generated array nevertheless cover some (but not all) t-way

interactions. As the number of rows with non-covering sets increases, the partial coverage of interactions

from each of these rows may combine to cover all t-way interactions, despite no single row of the CPHF

having a covering set! This partial coverage is ignored in the all-or-nothing analysis carried out for

CPHFs here. When the number of symbols is small, the probability that a row contains a non-covering

set in a particular t-set of columns increases. Also as the index increases (and hence the number of

rows in the CPHF increases), the number of occurrences of non-covering sets increases. Indeed when q is

‘small’ and/or when � is ‘large’, ignoring the partial coverage from non-covering sets results in bounds
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that are weak. Even when the index is 1, it was earlier observed that the CPHF techniques fare poorly

when q = 2 [15].

It is feasible to improve the probabilistic analysis to account for the partial coverage that has been

thus far ignored. We plan to treat this in a later paper. Despite this limitation of the current analysis,

we believe that the current bounds from CPHFs serve their intended purpose of providing a sensible

target for comparison to evaluate the promise of proposed algebraic constructions, particularly when

the index is small and the number of symbols is not too small.

6. Concluding Remarks

The probabilistic approach leads to e�cient and e↵ective construction algorithms for covering perfect

hash families, and hence to covering arrays, in a well-understood manner. However, in closing we

focus on a di↵erent direction. We have seen that adopting the algebraic framework of finite fields

in certain cases improves both the sizes of the covering arrays generated and the e�ciency of their

construction. Nevertheless, we have employed probabilistic analysis, choosing arrays at random. Can

we choose the covering perfect hash families deterministically in general to achieve arrays with fewer

(or at least, no more) rows? In one special case, that of a CPHF1(n; 252 + 25 + 1, 25, 3), Raaphorst et

al. [41] give a construction with n = 2 from the desarguesian projective plane. By way of contrast,

the basic probabilistic method yields a CPHF1(6; 252 + 25 + 1, 25, 3) which oversampling improves to a

CPHF1(5; 252 + 25 + 1, 25, 3). Hence, even when probabilistic techniques yield the best general results,

there can be much room for improvement in specific situations. It would be of substantial practical

interest to discover other group-theoretic, algebraic, or geometric connections and thereby devise even

more e�cient methods for the construction of covering arrays with fewer rows.
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