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Force-Constrained Visual Policy: Safe

Robot-Assisted Dressing via Multi-Modal Sensing

Zhanyi Sun∗, Yufei Wang∗, David Held†, Zackory Erickson†

Abstract—Robot-assisted dressing could profoundly enhance
the quality of life of adults with physical disabilities. To achieve
this, a robot can benefit from both visual and force sensing.
The former enables the robot to ascertain human body pose and
garment deformations, while the latter helps maintain safety and
comfort during the dressing process. In this paper, we introduce
a new technique that leverages both vision and force modalities
for this assistive task. Our approach first trains a vision-based
dressing policy using reinforcement learning in simulation with
varying body sizes, poses, and types of garments. We then learn
a force dynamics model for action planning to ensure safety. Due
to limitations of simulating accurate force data when deformable
garments interact with the human body, we learn a force
dynamics model directly from real-world data. Our proposed
method combines the vision-based policy, trained in simulation,
with the force dynamics model, learned in the real world, by
solving a constrained optimization problem to infer actions that
facilitate the dressing process without applying excessive force
on the person. We evaluate our system in simulation and in a
real-world human study with 10 participants across 240 dressing
trials, showing it greatly outperforms prior baselines. Video
demonstrations are available on our project website1.

Index Terms—Multi-Modal Perception for HRI; Sensorimotor
Learning; Physically Assistive Devices

I. INTRODUCTION

DRESSING is a crucial activity for individuals with dis-

abilities or limited mobility to receive assistance with.

Recent studies [1] estimate that 92% of all residents in nursing

facilities and at-home care patients require assistance with

dressing. Robot-assisted dressing has emerged as a potential

solution to these challenges [2], [3], [4], [5], which could be

used to enhance the quality of life of people with physical

disabilities. In this work, we demonstrate a new learning-based

method for combining vision and force sensing modalities

towards a safe and comfortable assistive dressing system.

Robot-assisted dressing comes with several challenges.

First, robotic manipulation of deformable garments is chal-

lenging due to the lack of a compact state space representa-

tion, complex cloth dynamics, and self-occlusions of clothing.

Moreover, during robot-assisted dressing, the robot works in

proximity to the human and has direct physical contact with
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Fig. 1. Our method learns a force dynamics model in the real world to
constrain the vision-based policy trained in simulation (right), preventing high
force from being applied to the person (left).

the human body. Undesired motions performed by the robot

that strain the garment or cause accidental collisions with a

person could apply large forces to the human body and pose

discomfort and potential safety risks.

Prior work in cloth manipulation and robot-assisted dressing

has demonstrated the use of vision [2], [6] and force [7] modal-

ities separately to make control decisions. Yet, there is a clear

advantage to leveraging both modalities simultaneously [8].

Visual sensing is useful to observe the garment and human arm

to infer a reasonable dressing path, and force sensing is needed

to ensure safety and comfort during the dressing process. In

this context, simulation can be used to collect large amounts

of data to train a control policy that can generalize across

diverse people, body poses, and garments. Prior work [2] has

demonstrated the ability to transfer point cloud-based assistive

dressing policies from simulation to the real world; however,

most simulators do not provide sufficiently accurate robot

force sensing when manipulating deformable garments around

human bodies, which limits the transfer of force-based models

from simulation to the real world. This reality gap necessitates

learning from force measurements directly in the real world.

The question that we explore in this paper is how to combine

a visual policy for assistive dressing trained in simulation with

force sensing data that is only available in the real world.

In this paper, we propose a new method for the task

of assistive dressing, named Force-Constrained Visual Policy

(FCVP), shown in Figure 1. Our method elegantly handles

the case in which only the visual modality (using point

clouds) can be simulated sufficiently accurate to be transferred

to the real world, but the force modality cannot. Our key

idea is to use a vision-based policy trained in simulation

to propose actions, and then to use a force-based dynamics

model trained in the real world to filter out unsafe actions.

We comprehensively evaluate our method with a real-world

human study with 10 participants and 240 trials, demonstrating

its strong effectiveness.
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In summary, we make the following contributions:

• We propose a new method for multi-modal learning

when one sensor cannot be well-modeled in simulation.

Our method, Force-Constrained Visual Policy (FCVP),

combines a vision-based policy trained in simulation with

a force-based dynamics model trained in the real world.

• We evaluate our method rigorously in simulation and also

perform a real-world human study with 10 participants

and 240 dressing trials to quantify the real-world practi-

cality and efficacy of the proposed method and system.

These experiments demonstrate that our method leads to

a safe and comfortable assistive dressing system with

higher dressing performance by ensuring low forces are

exerted to the human.

II. RELATED WORK

Robot Assisted Dressing: A large body of works have

studied the problem of robot-assisted dressing [2], [3], and

some of those have investigated how to use the force modality

to minimize force during the dressing task [5], [7], [8], [9].

Visual inputs are either not used in these works [7], or simply

used for detecting initial waypoints on the human arm for

interpolating a dressing path [8], [9]. Our method differs from

these approaches in that we learn a force dynamics model

to filter actions proposed from a vision policy. Some other

works [2], [10], [11], [12], [13] leverage only vision to perform

a dressing task with no force sensing. Ours differ from those

as we leverage both vision and force to ensure safety and

comfort during dressing.

Another line of work related to ours studies force perception

and simulation during robot-assisted dressing [14], [15], [16],

[17]. Some of these papers study force sensing during robot-

assisted dressing in simulation [14], [17] without a quantitative

real-world verification. Others [15] show that with system

identification, simulation parameters can be tuned to approx-

imate robot force sensing when dressing a known garment

on a fixed human body pose, yet large error still remains

when the garment undergoes deformations not presented in

the system identification data. Our work differs from these, as

instead of tuning the simulation parameters for force sensing

and performing sim2real transfer, we directly learn a force

dynamics model in the real world.

Multi-Modal Learning for Robotic Manipulation: Re-

cently, there has been an increasing number of works studying

multi-modal learning, which combines modalities such as vi-

sion and force [8], vision and touch [18], [19], [20], [21], [22],

[23], and vision and audio [24], [25], [26], with applications

in grasping [20], [21], object manipulation [18], [22], [26],

[27], assistive tasks [8], [9], [23], and many more. Most prior

works on multimodal learning focus on how to design a more

effective policy network architecture that takes all modalities

as input. Most of them directly train in the real world [19],

[21], [23], [24], [26], via imitation learning [23], [24], [26],

supervised learning [21], or self-supervised learning followed

by reinforcement learning [19], which all require a large

amount of human-collected datasets or robot trials. In contrast,

our approach trains the vision-based policy in simulation.

Some approaches train a multimodal policy in simulation

and perform sim2real transfer, such as vision with contact

points [20], and vision with rigid-body force sensing [27].

These approaches assume that all of the modalities can be

accurately simulated; in contrast, our method trains a force-

based dynamics model directly in the real world, without

assuming that the force modality can be accurately simulated

for modeling cloth-human force interactions. In contrast to

these prior works which employ a single policy network that

handles both modalities, our proposed approach combines a

vision-based policy trained in simulation and a force dynamics

model trained in the real-world via solving a constrained

optimization problem.

Safe Reinforcement Learning: The objective of developing

a safe robot-assisted dressing system can be formulated as

a safe reinforcement learning problem [28], [29], where the

reward is to dress the person, and the safety constraint is that

the amount of force applied to the person should be below

a threshold. However, there could be some issues of directly

applying safe RL algorithms to our problem setting: if we

train the safe RL policy in simulation using both vision and

force, then it will be difficult to transfer to the real world

since the simulator does not provide accurate enough force

simulation with deformable cloth. Our method avoids this

issue by training a vision-based policy in simulation and a

force-based dynamics model in the real world.

III. PROBLEM STATEMENT AND ASSUMPTIONS

As shown in Figure 1, we study the task of single-arm

dressing assistance, where the goal is to dress the sleeve of a

garment onto a person’s arm. Single-arm assistive dressing is

a fundamental skill of full upper-body dressing assistance for

individuals with motor impairments. We want to achieve safe

dressing assistance by ensuring that low forces are exerted to

the human during the dressing process. Formally, let ft ∈ R
be the amount of force the garment exerts onto the human

body at time step t (which we approximate through force

sensing at the robot’s end-effector). We want to develop a

safe robot-assisted dressing system that can pull the garment

to cover the human arm and shoulder, while maintaining the

force applied to the human to be below a threshold τ , i.e.,

ft < τ , ∀t ∈ [1, T ], where T is the horizon of the task. We

assume the person holds their arm static during the dressing

process, and that the robot has already grasped the opening

of the garment shoulder in preparation for dressing. While not

the focus of this paper, prior works have proposed methods

for grasping garments [3], [10] and adapting to human motion

during dressing assistance [30], which could be integrated into

our work.

IV. BACKGROUND - VISION-BASED POLICY LEARNING IN

SIMULATION

Our method leverages a vision-based policy πv trained in

simulation from prior work [2]. We describe the core training

procedure here, and refer to [2] for more details. The dress-

ing task is formulated as a Partially Observable Markovian

Decision Process (POMDP) and is solved via reinforcement
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learning. The core components of the POMDP are defined as

follows:

Observation Space O: The policy observation is the seg-

mented point cloud of the scene, which consists of the garment

point cloud P g and the human arm point cloud Ph. As we

assume the human to be static, we can obtain the static arm

point cloud Ph before the garment occludes the arm and use

it during the whole dressing process; thus our input includes

the full arm even when the garment occludes it. A single point

P r at the location of the robot’s end-effector is added to the

observation. The full observation o is the concatenation of

these three point clouds: o = [P g;Ph;P r] (see Figure 2 for

a visualization). The feature for each point in o is a one-hot

encoding indicating which object the point belongs to, i.e., the

garment, the human arm, or the end-effector.

Action Space A: the action a ∈ A is defined as the delta

transformation for the robot end-effector. It is a 6D vector,

where the first 3 elements denote the delta translation, and the

second 3 denote the delta rotation represented as axis angle.

Reward r: The reward r consists of a term that measures the

task progress, which is the dressed distance of the garment

along the human arm, with additional auxiliary reward terms

to prevent the gripper from moving too close to the person.

The full detailed reward function is the same as in Wang et

al. [2], and can be found on our project website.

SAC [31] is used as the underlying RL algorithm for

training the vision-based policy, and a segmentation-type

PointNet++ [32] as the policy architecture (see [2] for details).

As in prior work [2], the vision-based policy is trained in

simulation on many variations of body shapes, arm poses, and

garments, and can be transferred to a real world manipulator.

However, the actions inferred by the vision-based policy may

exert high forces onto people when deployed in the real world.

Our method handles this by further learning a force dynamics

model in the real world.

V. METHOD

Method Overview: As shown in Figure 2, our system is

comprised of two parts. First, we leverage a vision-based

policy from prior work which is trained in simulation using

reinforcement learning (as described in section IV). By using

simulation, we are able to easily collect a large amount of data

and train a single policy that can generalize to many variations

of human arm poses, body shapes, and garments. The vast

amount of data needed makes it prohibitive to train the vision-

based policy directly in the real world. To ensure safe assistive

dressing, we learn a force dynamics model which predicts

the future forces applied to the human. The force dynamics

model is trained in the real world, due to the fact that many

simulators do not provide sufficiently accurate force simulation

for deformables manipulated around the human body. At test

time, the final robot action is inferred by solving a constrained

optimization problem that combines the vision-based policy

and the force dynamics model.

A. Force dynamics model learning in the real world

As previously mentioned, force simulation of deformable

garments is not sufficiently accurate to transfer from sim-

ulation to the real world. Even after system identification,

it is challenging to accurately estimate all the local forces

caused by cloth deformation and stretch when interacting with

a human or other objects in the environment. Therefore, we

aim to directly learn the force-based model in the real world.

Specifically, we learn a force dynamics model

dψ(ot, Ft, at), which takes as input the current point

cloud observation ot as described in section IV, the past N

steps of forces Ft = [f̃t, ..., f̃t−N+1] (where f̃ ∈ R3 is a

three-dimensional force vector), and the robot action at. The

force dynamics model predicts the future amount of force

f̂t+1 ∈ R the human will experience due to robot action

at. To predict the future force, the force dynamics model

uses a PointNet++ [33] encoder to encode the point cloud

observation ot into a latent vector. This latent vector is then

concatenated with the force history Ft and the action at.

Another MLP then receives as input the concatenated vector

and outputs the predicted force f̂t+1 in the next timestep.

We collect training data for the force dynamics model in

the real world using the vision-based policy πv . To train the

force dynamics model on a wider range of action distributions,

at each time step, the action at is sampled as following: with

probability p, at is uniformly sampled from [−1, 1]|A| (where

|A| is the dimension of the action space), and with probability

1 − p, it is sampled from at ∼ πv(ot). The force dynamics

model (including the PointNet++ encoder and the MLP) is

trained using the MSE loss to predict the future force: L(ψ) =
||dψ(ot, Ft, at)− ft+1||

2
2, where ψ denotes the parameters for

the force dynamics model.

B. Force-Constrained Vision Policy

At test time, we combine the trained vision policy πv and
the force dynamics model dψ to infer the action by solving
the following constrained optimization problem:

argmax
a

π
v(a|o) subject to dψ(o, F, a) ≤ τ (1)

where τ is a user-chosen force threshold. There are sev-

eral optimization algorithms for solving such a constrained

optimization problem, such as Lagrangian method, active-set

method, interior-point method, random shooting method, and

more. As the functions involved in our constrained optimiza-

tion problem are represented using neural networks, we use

the random shooting method to solve the optimization problem

due to its simplicity and low computational cost. The random

shooting method works as follows: we sample a set of actions,

filter out any actions whose predicted forces are above the

threshold τ , and among the actions whose predictions are

below the threshold, we execute the action with the highest

probability under the vision-based policy πv . We use the same

action sampling distribution as during training (i.e. a mix of

actions from the vision policy πv and actions from a uniform

distribution). If there is no action whose predicted force is

below the threshold, we execute the action with the lowest

predicted force.

VI. EXPERIMENTS

We conduct both simulation and real-world experiments

to evaluate our method. We first perform sim2sim transfer
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Fig. 2. Our system combines a vision-based policy and a force dynamics model to achieve safe robot-assisted dressing. As most simulators provide sufficiently
accurate simulation of point clouds yet not the force modality for sim2real transfer, the vision-based policy is trained with a large amount of data in simulation,
and the force dynamics model is trained with a small amount of data in the real world. At test time, the vision-based policy proposes action samples that
progress the dressing task. The force dynamics model predicts the future forces of these sampled actions, and the predictions are used to filter actions that
are unsafe, i.e., those applying too much force to the human. The final chosen action is safe with low force and achieves the task.

Arm

Dressed Ratio ↑
Average Force

Violation ↓
# Training trajectories

in sim B ↓

FCVP (Ours) 0.74 ± 0.29 2.65 225

Vision Only 0.77 ± 0.33 45.45 0

Force Only 0.51 ± 0.28 36.10 225

Multimodal Policy 0.58 ± 0.42 7.51 7987

Force Residual Policy 0.77 ± 0.25 24.60 8190

Multimodal Safe RL 0.52 ± 0.40 4.83 8278

Fig. 3. (Left) Among all compared methods, FCVP achieves the best trade-off between the arm dressed ratio and the force violation amount. (Right) The
detailed quantitative results for each method, as well as the number of training trajectories required for convergence in sim B.

experiments to compare FCVP with other multimodal learning

methods (Section VI-A). We also perform real-world human

studies (Carnegie Mellon University IRB Approval under

2022.00000156) to evaluate the effectiveness of the robot-

assisted dressing system (Section VI-B).

A. Sim2sim Transfer Experiments

Setup: In order to test our method in a controlled setting, we

create two simulation environments with different simulation

parameters (the detailed parameters can be found on our

project website); we treat one of them as simulation (sim

A), and the other as an approximation to the real world (sim

B). The force readings between these two environments are

different due to the differences in the simulation parameters,

approximating the sim2real gap. We use NVIDIA FleX [34]

wrapped in SoftGym [35] as the simulator.

We use SMPL-X [36] to generate human meshes with

distinct body shapes, sizes, and arm poses. Specifically, we

generate 4 different arm pose regions; the arm poses within

each region are similar to each other with small variations, and

the arm poses are very different across regions (see figures of

the arm pose regions on our project website). For each region,

we generate 45 human meshes of distinct body shapes and

sizes. All methods are evaluated on each arm pose region,

and then the results are averaged across the arm pose regions.

We use the same garments as in Wang et al. [2]: a common

hospital gown and 4 cardigans from the Cloth3D dataset [37].

In simulation, we set the force threshold τ to be 40 units (note

due to simulation inaccuracies, this unit does not correspond

to Newtons in the real world.) We compare the following

methods:

FCVP (Ours): For our method FCVP, we learn a vision-

based policy in sim A. The force dynamics model is learned

in sim B. We collect one trajectory per human mesh and

garment, resulting in a total of 225 trajectories in each arm

pose region for training the force dynamics model in sim B.

We use the past 5 steps of force measurements as input to the

force dynamics model.

Vision Only directly transfers the vision-based policy

trained in sim A to sim B, without any fine-tuning nor using

the force information.

Force Only uses only the force dynamics model trained

in sim B, without using the vision-based policy pretrained in

sim A. The actions are planned by minimizing the predicted

force, and are heuristically sampled within a forward task

progression cone, similar to the method used in [7].

Multimodal Policy: We first pretrain a policy that takes as

input the vision and the force modality in sim A using RL,
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and then we fine-tune it with vision and force in sim B. This

is the most standard approach for multimodal learning.

Force Residual Policy: We first pretrain a policy that only

uses the vision modality in sim A, and then we train a residual

policy on top of this pretrained vision-based policy using both

vision and force in sim B. The residual policy is trained to

output a delta action, which is added to the action from the

pretrained vision-based policy.

Multimodal Safe RL: This is similar to Multimodal Policy,

but instead of using RL to pretrain or fine-tune the policy,

we use safe-RL. We use SAC-Lagrangian [29] as the training

algorithm. Specifically, we first pretrain a policy that takes as

input the vision and the force modality in sim A using SAC-

Lagrangian, and then we fine-tune it with vision and force in

sim B with SAC-Lagrangian.

For training the multimodal policy and the force residual

policy, to encourage the policy to exert low force to the human,

we add an additional penalty term to the reward when the force

is above the threshold. For the multimodal safe RL baseline,

the force is treated as the cost for SAC-Lagrangian.

All methods are evaluated in sim B, to demonstrate the

ability of each method to transfer to new dynamics. We

provide additional details of these baselines on our project

website. We train all multimodal baselines till convergence,

which usually require a magnitude more data than FCVP.

Evaluation Metrics: The first evaluation metric is the Arm

Dressed Ratio, which is the ratio between the dressed arm

distance and the real arm length. A ratio of 1 means that

the arm is fully dressed; 0 means that the arm is not dressed

at all. This metric is used to measure the dressing perfor-

mance and has been used in related work [2]. The second

metric is the Average Force Violation, which is computed as
1

T

∑T

t=1
max(0, ft − τ), in which ft is the measured force at

time step t and τ is the maximal force threshold.

Results: Figure 3 presents the performances of all methods.

As shown on the left subplot, FCVP achieves the best trade-

off between the dressed ratio and the force violation amount:

it achieves the lowest force violation, and the third highest

arm dressed ratio. All other baselines either have large force

violations (Force Residual Policy, Vision Only, Force Only),

or perform poorly on the dressing task, as indicated by a

low Arm Dressed Ratio (Multimodal policy, Multimodal Safe

RL, Force only). As shown in the right table of Figure 3,

most other multimodal learning baselines require much more

training data in sim B, which serves as a proxy of the real

world. This is because they require policy fine-tuning via RL

in sim B. In contrast, FCVP learns a dynamics model in sim

B, which is a supervised learning problem, thus being much

more sample-efficient to learn. Overall, these results show that

both vision and force information are needed to achieve high

dressing performance while being safe; further, our approach

of incorporating vision and force in FCVP not only achieves

better performance, but also requires much less training data

in the “real world” (sim B) than other multimodal learning

methods. Box plots of the force distributions for all methods

are provided on our project website for further visualization.

Ablation study. We first investigate how the number of past

force measurements, denoted as N , affects the performance of

FCVP. We test N = 3, 5, 7 and find that a larger N leads to a

decrease in force violations but also a reduced dressed ratio.

We use N = 5, which achieves a good trade off between

these two objectives. We also study the impact of including

past actions as part of the input for the force dynamics model.

We test including 0, 1, 3, 5 steps of past actions, and find the

performance varies minimally across these different lengths.

The best performance is achieved when the model does not

include past actions as part of its input. Please refer to our

project website for further details on these ablation studies.

B. Real-World Human Study

Experimental Setup: Figure 4 shows the setup for our real-

world human study. We use the Sawyer robot for executing the

dressing task, and measured the force at the Sawyer robot’s

end-effector (wrist) using Sawyer’s built-in force sensing. The

robot movement (action) is the delta translation and rotation

of the end-effector, and is executed using the Sawyer’s built-

in IK solver and an impedance controller. We use a single

Intel RealSense D435i camera to capture the point cloud

observations of the scene. We compare our method with the

following two baselines:

Vision Only [2] chooses the action with the highest prob-

ability under the vision-based policy.

Vision with Random Actions samples the action from

the vision-based policy with probability p, and uniformly

randomly from [−1, 1]|A| with probability 1 − p, where |A|
is the dimension of the action space (6 in our case).

We compare to the “Vision with Random Actions” base-

line as it is also used for collecting data for training the

force dynamics model, as mentioned in section V-A. We set

p = 0.1 and the force threshold τ to be 5.4 Newtons in

our experiments, which is an empirical value based on the

force distributions of successful and safe dressing trials, and

we think this value would be comfortable for the participants

during the dressing process. We do not compare to the Force

Only baseline because it performs poorly in terms of the

dressed ratios even in simulation (see table in Figure 3). We

also do not compare to other multimodal learning baselines, as

they all require extensive amounts of training data to converge

(as shown in the sim2sim transfer experiments in Figure 3),

which is prohibitive to collect in the real world.

In addition to the evaluation metrics described in sec-

tion VI-A, we present participants with 7-point Likert items

that range from 1=‘Strongly Disagree’ to 7=‘Strongly Agree’

with the following statements: 1. “The robot successfully

dressed the garment onto my arm”; 2. “The force the robot

applied to me during dressing was appropriate”; and 3. “The

dressing process was comfortable for me.”

Human Study Procedure: We recruit 10 participants, com-

prising 4 males, 4 females, 1 non-binary individual, and 1

participant who chooses not to disclose their gender identity.

The age of the participants spans from 19 to 36. We test each

participants with two garments: a short-sleeve hospital gown

and a long-sleeve purple cardigan. These two garments differ

in geometry (see Fig 4 for sleeve lengths and widths), elasticity

and roughness (the purple cardigan is more elastic), and mass



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MARCH, 2024

Fig. 4. Left: Human study setup. Right: Poses and Garments that we test in
the human study.

(the hospital gown is heavier). We test each participant with

two different arm poses, randomly chosen from three poses.

The poses and garments we use are shown in Figure 4. We

evaluate each of the three methods for two trials on each

pose-garment combination, resulting in a total of 24 trials per

participant. We also randomize the ordering of the test poses,

garments, and methods. Participants are asked to hold their

arm steady throughout each trial. We run each trial for a fixed

number of time steps, unless the participant asks to stop or the

measured force is above a safety threshold (15 Newtons). We

train a single force dynamics model and test it on all these 10

participants.

Force dynamics model training: Before evaluating FCVP in

the human study, we need to capture real-world force data

and train a force dynamics model. We capture force data from

a separate 11-participant study, using a similar procedure as

noted above. The 11 participants consist of 6 males and 5

females with ages ranging from 22 to 50. For each participant,

we first run the Vision with Random Actions baseline for 8

trials, 2 trials for each combination of 2 arm poses and 2

garments. Using the force data collected in these 8 trials, we

train a force dynamics model on this participant. We then run

our method (FCVP) with the trained force dynamics model,

as well as the Vision Only baseline (order randomized) for 8

trials on the same arm poses and garments. This results in 24

dressing trajectories for each of the 11 participants. By using

3 different methods, we are able to enlarge the distribution

of the captured force data, which is beneficial for training

a single generalized force dynamics model. These 3 methods

used for data collection are optimized for either completing the

dressing task (Vision Only baseline and Vision with Random

Action baseline), or reducing the force (FCVP), thus they

are all safer compared to random trajectories, reducing the

safety risk posed to the participants during data collection.

We ask participants to hold their arm steady throughout each

trial when collecting the force data to ensure the accuracy

of the collected data. We use the force data captured during

the 264 dressing trials on these 11 participants to train a

single generalized force dynamics model, and evaluate it in

another human study with 10 new participants (gender and

age distributions as described above). Note that the 10 new

participants we test in the evaluation of FCVP with the

generalized force dynamics model are all different from the

11 participants used for collecting the force data. More details

of the study procedure for both human studies can be found

in our project website.

Human Study Results: Videos of the dressing trials are

available on our project website. Table I compares the results

TABLE I
QUANTITATIVE RESULTS OF THE HUMAN STUDY. FCVP NOT ONLY

ACHIEVES HIGHER ARM DRESSED RATIO, BUT ALSO HAS SIGNIFICANTLY

LOWER FORCE VIOLATIONS.

Arm

Dressed Ratio ↑
Average

Force Violation (N) ↓

FCVP (Ours) 0.81 ± 0.21 0.089
Vision Only [2] 0.71 ± 0.17 0.39

Vision w/ Random Action 0.71 ± 0.18 0.34

of all methods, averaged over all 10 participants. As shown,

our Force-Constrained Visual Policy has significantly lower

force violation compared to both baselines. Furthermore, it

achieves higher arm dressed ratios. Due to sim2real transfer

gaps, the vision-based policy often deviates to a state where

the garment gets caught on the person. This state usually

does not occur in simulation, as the simulated garments

are often more elastic with lower frictional coefficients than

those in the real world, due to limited simulation fidelity. By

constraining the amount of force applied to the person, the

force dynamics model guides the vision-based policy to avoid

such scenarios, and as a result, the final dressing performance

is higher (see Figure 1 for an example). This same factor

might affect other multimodal learning baseline methods as

well, potentially leading to a similar discrepancy between their

sim2sim and sim2real performance. Still, the performance of

the other baseline methods would likely be lower than that of

our method (FCVP) in the real world, since their performance

in simulation is quite poor (see Fig 3). Further, due to the large

amount of training data (thousands of dressing trajectories)

needed for fine-tuning other multimodal learning methods (see

the last column of the table in Fig 3), it is often impractical

to train and test these methods in the sim2real setting. In

contrast, our method is able to efficiently learn a dynamics

model from just 264 real world trajectories. Thus, our method

is both higher performing and more practical than the other

approaches. We note that the performance of the Vision Only

baseline is lower than reported by [2]. This is due to us testing

on only a subset of the garments and poses (the most difficult

ones) among those tested in [2].

Figure 5 shows the density (left) and box (middle) plots

of the force distributions of all participants. As shown, most

of the forces exerted by FCVP are below the force threshold,

while the other two baselines violate the threshold more fre-

quently, demonstrating the strong effectiveness of our method

for reducing the force violation. Figure 5 (right) also reports

the Likert Item responses of all participants. On average,

FCVP achieves a median score of 6 for all three Likert items,

meaning that the participants “Agree” that the robot success-

fully dressed the garment onto their arm, “Agree” the force

the robot applied to them during dressing is appropriate, and

“Agree” that the dressing process was comfortable for them.

The medians of FCVP are higher than or the same as both

baselines for all 3 Likert items. We conduct a Wilcoxon signed

rank test to test if the distribution of the paired difference in

scores between two methods is different from a distribution

symmetric about zero. For all three Likert items and both

baselines, we obtain a p-value smaller than 0.01 (p < 0.01),

i.e., we find a statistically significant difference between FCVP
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Fig. 5. Left and middle: Density plot and box plot of the force distributions on all participants in the human study. The dashed black line represents the force
threshold. Our method greatly reduces the force violation compared to the baselines. Right: Likert item responses from all 10 participants. FCVP achieves
statistically significant differences from both baselines with higher reported scores for all 3 Likert items.

and the two baselines, and the median of the difference is

greater than zero. We note that our human study is performed

on a younger age distribution than the group that will likely

need assistive dressing. However, as our experiments have

shown, the dynamics model is able to generalize to new

participants within the same age distribution; thus we believe

that if it is trained with an older age distribution, it should

perform well on that older age distribution as well. We hope

to verify this in future studies.

Generalization of the force dynamics model. As the input

to the force dynamics model is the partial point cloud of the

scene, which captures the shape and size of the human arm,

the force dynamics model should be able to generalize to the

shape and size of the arm within the training distribution.

In our human study, the size and shape of the arms of the

10 evaluation participants are different to those of the 11

training participants. The average prediction error (L1 norm)

of the force dynamics model is 0.00631N on the 11 training

participants, and 0.0478N on the 10 evaluation participants.

Despite this train-eval gap, the evaluation prediction error

is still small (< 0.1N), and the force dynamics model still

proves to be useful in reducing force violations, as shown in

Table I. These results indicate that the force dynamics model

can generalize reasonably well to the shape and size of the

human arms. We believe the gap can be narrowed in future

work by regularization, or collecting more data.

We also analyze the generalization of the force dynamics

model to different physical properties of the garments, such as

roughness and elasticity, in simulation. We create 50 garments

with the same geometry but different elasticity, by randomly

sampling the spring coefficients of the garments within a range

of [0.3, 1.5]. We then train a force dynamics model on 40

garments and test on the remaining 10. The force dynamics

model generalizes well to the garments with unseen elasticity:

the average force violation increased slightly from 2.21 to 4.13

simulation units from training garments to unseen garments (a

vision-based policy trained on the 10 unseen garments has a

force violation of 38.8 simulation units). More details of these

experiments can be found on our project website.

System analysis. There can be cases where there is no

action whose predicted force is below the safety threshold.

We present the ratio of the number of timesteps where this

situation occurs to the total number of timesteps. Findings

from our human study indicate that this ratio is low, at 4.028%,

showing that such cases are uncommon and generally don’t

impact dressing performance. The ratio could be further low-

ered by sampling more actions when solving the constrained

optimization problem. The average inference time taken to

solve the optimization problem in the real-world experiments

is 0.065 seconds per timestep. Each dressing trial usually lasts

between 40 and 60 seconds.

C. Limitations

One limitation is that our method assumes the person holds a

static pose and that the robot has already grasped the garment.

Prior works have introduced new sensors and control strategies

specifically targeting at relaxing these assumptions [6], [8],

[30], which could be applied in conjunction with our work.

Additionally, in our experiments, we note that FCVP still has

some forces that exceed the threshold. There are two reasons

for this: First, there may be minor errors in the learned force

dynamics model’s prediction.An action can be predicted to

be below the threshold, but actually applies more force when

executed. This issue can be mitigated by collecting more

data for training the force dynamics model to make it more

accurate, or by adding a buffer to the force threshold to account

for prediction inaccuracies. Second, because our method uses

random shooting to solve the constrained optimization prob-

lem, the solutions may not satisfy the constraint if all sampled

actions are infeasible. This would result in some forces above

the threshold. This issue can be alleviated by sampling more

actions until a feasible action is found, or by using alternative

optimization algorithms to solve the constrained optimization

problem. At last, we request all participants to wear short-

sleeve T-shirts during dressing. The properties of the cloth

they wear, such as friction and elasticity, could affect the

forces applied to the users during the dressing process and

affect the ground-truth force labels used to train the force

dynamics model. We have not tested if the force dynamics

model generalizes to other clothing the users wear, such as

pulling a jacket over a long-sleeve shirt, which we leave as

interesting future work.

VII. CONCLUSION

In this paper, we propose a new method to leverage both

vision and force modalities for robot-assisted dressing, based

on which we build a system that combines these modalities

to ensure task progress and low applied forces for safety.
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We learn a vision-based policy via reinforcement learning in

simulation across diverse people, poses, and garments. We

train a force dynamics model directly in the real world to

achieve safety and overcome inaccuracies in simulated force

sensing with deformable garments. Our system combines the

vision-based policy and the force model via a constrained

optimization problem to find actions that progress the dressing

process without applying excessive force to the person. We

evaluate our system in simulation and in a real-world human

study with 10 participants and 240 trials, demonstrating that

it greatly outperforms prior baselines.
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