2311.01455v3 [cs.RO] 14 Jun 2024

arxiv

oboGen: Towards Unleashing Infinite Data for
Automated Robot Learning via Generative Simulation

Yufei Wang“! Zhou Xian"! Feng Chen"? Tsun-Hsuan Wang® Yian Wang* Katerina Fragkiadaki '
Zackory Erickson' David Held! Chuang Gan*>

Abstract

We present RoboGen, a generative robotic agent
that automatically learns diverse robotic skills at
scale via generative simulation. RoboGen lever-
ages the latest advancements in foundation and
generative models. Instead of directly adapting
these models to produce policies or low-level ac-
tions, we advocate for a generative scheme, which
uses these models to automatically generate di-
versified tasks, scenes, and training supervisions,
thereby scaling up robotic skill learning with min-
imal human supervision. Our approach equips a
robotic agent with a self-guided propose-generate-
learn cycle: the agent first proposes interesting
tasks and skills to develop, and then generates
simulation environments by populating pertinent
assets with proper spatial configurations. After-
wards, the agent decomposes the proposed task
into sub-tasks, selects the optimal learning ap-
proach (reinforcement learning, motion planning,
or trajectory optimization), generates required
training supervision, and then learns policies to
acquire the proposed skill. Our fully generative
pipeline can be queried repeatedly, producing an
endless stream of skill demonstrations associated
with diverse tasks and environments.

1. Introduction

Simulated environments have become a crucial driving force
for teaching robots various complex skills, spanning com-
plex manipulation and locomotion settings (Weng et al.,
2022; Xu et al., 2023; Chen et al., 2022; Haarnoja et al.,
2023; Zhuang et al., 2023). Compared to exploration and
data collection in the real-world, simulated environments
provide access to privileged low-level states and unlim-

“Equal contribution 'CMU *Tsinghua IIIS *MIT CSAIL
“UMass Amherst MIT-IBM AI Lab. Correspondence to: Yufei
Wang <yufeiw2@andrew.cmu.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ited explorations, and support massively parallel compu-
tation for significantly faster data collection without con-
siderable investment in robotic hardware. However, robot
learning in simulations also presents its own limitations:
while exploration and practicing in simulated environments
are cost-effective, constructing these environments requires
tremendous human effort, demanding tedious steps includ-
ing designing tasks, producing relevant and semantically
meaningful assets, generating plausible scene layouts and
configurations, and crafting training supervisions such as
reward or loss functions (James et al., 2020; Srivastava et al.,
2022; Gu et al., 2023; Li et al., 2023a). The onerous task
of creating these components and constructing individual-
ized simulation settings for each one of the countless tasks
encountered in our daily life significantly hinders the scala-
bility of robotic skill learning even in simulated worlds.

In light of this, we propose Generative Simulation (Xian
et al., 2023a), a new paradigm aiming for scaling up sim-
ulated robot learning with the latest advancement in gen-
erative models. Generative simulation advocates for au-
tonomously generating information for all the stages needed
for diverse robotic skill learning in simulation: from high-
level task and skill proposals to task-dependent scene de-
scriptions, asset selections and generations, policy learn-
ing choices, and training supervisions. These information
is then used for massive skill training, enabling robots to
acquire proposed skills. In this paper, as an initial real-
ization of this proposed paradigm, we present RoboGen,
a robotic agent that continuously generates new skills via
a self-guided propose-generate-learn cycle: it firstly self-
proposes skills to learn, and then generates required assets
and constructs the scene in simulation conditioned on the
proposed task. Afterwards, it labels the tasks with natural
language descriptions, decomposes the task into sub-tasks,
selects the optimal learning approach (reinforcement learn-
ing, motion planning, or trajectory optimization), designs
proper training supervisions (e.g. reward functions), and
lastly proceeds to policy learning to solve the proposed task.
One distinct advantage of our proposed paradigm lies in
the careful choice of what modes of knowledge to extract
from contemporary foundation models. These models have
demonstrated impressive capabilities across various modali-



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

RN

Retrive one gold bar from the safe, and lock it

7,

Walk forward upright Climb up the stairs Do a backflip

Crawl backward at 1m/s

iy o }//1- 74
Cut the dough in half Shape dough into a baguette)

Spin counter-clockwiase Jump as high as possible Push the ball forward

Figure 1: 25 example tasks generated and corresponding skills learned by RoboGen. Readers are encouraged to visit our project website

for the diverse set of tasks and skills RoboGen can produce.

ties (Touvron et al., 2023; Driess et al., 2023; OpenAl, 2023;
Rombach et al., 2022; Kang et al., 2023), However, due to
the absence of training data pertaining to dynamics, actu-
ations, and physical interactions, these models are yet to
develop essential understandings for robots to execute phys-
ical actions and interact with the surrounding environments
(e.g., producing precise joint torques needed for walking or
rolling a dough at hand). In contrast to recent efforts that
employ foundation models such as Large Language Models
(LLMs) for directly yielding policies or low-level actions
(Liang et al., 2022; Huang et al., 2023; Wang et al., 2023c),
our method only extracts information that falls neatly within
the capabilities and modalities of these models - object
semantics, object affordances, common-sense knowledge
regarding what tasks are valuable to learn, etc. These knowl-
edge are used to construct environmental playgrounds, and
then augmented with additional help from physics-grounded
simulations, for robots to develop understandings of physi-
cal interactions and acquire diverse skills.

Our experiments show that RoboGen can deliver a contin-
uous stream of diversified skill demonstrations, spanning
tasks including rigid and articulated object manipulation,
deformable object manipulation, as well as legged loco-
motion (see Figure 1). The diversity of tasks and skills
generated by RoboGen surpasses previous human-crafted
robotic datasets, with minimal human involvement beyond
several prompt designs and in-context examples. Our work

attempts to transfer the extensive and versatile knowledge
embedded in large-scale models to the field of robotics,
making a step towards automated large-scale robotic skill
training and demonstration collection for building gener-
alizable robotic systems. Our code will be made publicly
available upon publication. For extensive qualitative results
and interactive examples, please refer to our project site at
https://robogen—-ai.github.io/.

2. Related Work

Robotic skill learning in simulations Various physics-
based simulation platforms have been developed in the
past to accelerate robotics research (Liu & Negrut, 2021).
These include rigid-body simulators (Coumans & Bai, 2016;
Todorov et al., 2012; Xiang et al., 2020; Bousmalis et al.,
2023), deformable object simulators (Macklin et al., 2014;
Lin et al., 2020; Xu et al., 2023; Heiden et al., 2021), and
environments supporting multi-material and their couplings
with robots (Xian et al., 2023b; Gan et al., 2021; Gu et al.,
2023). Such simulation platforms have been heavily em-
ployed in the robotics community for learning diverse skills,
including deformable object manipulation (Lin et al., 2022;
Weng et al., 2022; Wang et al., 2023b), object cutting (Hei-
den et al., 2021; Xu et al., 2023), fluid manipulation (Seita
et al., 2023; Xian et al., 2023b), as well as highly dynamic
and complex skills such as in-hand re-orientation (Chen
et al., 2022; Akkaya et al., 2019), object tossing (Zeng



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

et al., 2020), acrobatic flight (Kaufmann et al., 2020; Lo-
quercio et al., 2021; Song et al., 2023), and legged locomo-
tion (Cheng et al., 2023; Zhuang et al., 2023; Radosavovic
et al., 2023).

Scaling up simulation environments Apart from build-
ing physics engines and simulators, a large body of prior
work targeted at building large-scale simulation benchmarks,
providing platforms for scalable skill learning and standard-
ized benchmarking (Li et al., 2023a; Lin et al., 2020; Xian
et al., 2023b; Yu et al., 2020; James et al., 2020; Gu et al.,
2023; Srivastava et al., 2022). Notably, most of these prior
simulation datasets are manually built with human labeling.
Another line of works attempts to scale up tasks and environ-
ments using procedural generation, and generate demonstra-
tions with Task and Motion Planning (TAMP) (Jiang et al.,
2023; Dalal et al., 2023; McDonald & Hadfield-Menell,
2021; Murali et al., 2023). These methods primarily build
on top of manually-defined rules and planning domains,
limiting the diversity of the generated environments and
skills to relatively simple pick-and-place tasks (Dalal et al.,
2023; McDonald & Hadfield-Menell, 2021). Contrary to
these works, we leverage the common sense knowledge em-
bedded in foundation models to generate meaningful tasks,
relevant scenes, and skill training supervisions, leading to
more diverse and plausible skills.

Foundation and generative models for robotics Follow-
ing the advancement in foundation and generative mod-
els in domains of imagery, language and other modalities,
(Poole et al., 2022; Melas-Kyriazi et al., 2023; Touvron
et al., 2023; Driess et al., 2023; OpenAl, 2023; Liu et al.,
2023a; Girdhar et al., 2023), a line of works explores using
these models for robotics research via approaches such as
code generation (Wu et al., 2023; Liang et al., 2022), data
augmentation (Yu et al., 2023a), visual imagination for skill
execution (Du et al., 2023), sub-task planning (Ahn et al.,
2022; Huang et al., 2022; Lin et al., 2023), concept gener-
alization of learned skills (Brohan et al., 2023), outputting
low-level control actions (Wang et al., 2023c), and goal
specification (Kapelyukh et al., 2023; Jiang et al., 2023).
Related to ours are recent methods using LLMs for reward
generation (Yu et al., 2023b; Ma et al., 2023), and sub-task
and trajectory generation (Ha et al., 2023). Concurrent work
(Wang et al., 2023a) explored LLM-based task generation,
but are limited to table-top rigid object manipulation tasks
with limited assets. The task demonstrations are generated
by using LLMs to directly write the code script for manipu-
lating the objects; in contrast, we use LLMs to generate the
rewards, invoke appropriate algorithms (motion planning,
RL, etc) to learn the skill and generate the demonstrations,
which is more general. Katara et al. (Katara et al., 2023)
also used a LLM to generate table-top rigid and articulated
object manipulation tasks and rewards. Ours differ as we
additionally perform scene generation and automatic algo-

rithm selection. We also demonstrate our pipeline with more
diverse tasks, including more complex and long-horizon ar-
ticulated object manipulation tasks, as well as locomotion
and soft-body manipulation tasks.

3. RoboGen

RoboGen is an automated pipeline that utilizes the embed-
ded common sense and generative capabilities of the latest
foundation models (OpenAl, 2022; Taori et al., 2023) for
automatic task, scene, and training supervision generation,
leading to diverse robotic skill learning at scale. We con-
sider tasks including rigid (articulated) object manipulation,
soft body manipulation, and legged locomotion. We illus-
trate the whole pipeline in Figure 2, composed of several
integral stages: Task Proposal, Scene Generation, Training
Supervision Generation, and Skill Learning. We detail each
of them in the following.

3.1. Task Proposal

RoboGen starts with proposing meaningful and diverse tasks
for robots to learn. We initialize the system with a spe-
cific robot type and an object randomly sampled from a
pre-defined pool. The provided robot and sampled object
information are then used as input to an LLM to generate
task proposal. This initialization step serves as a seeding
stage, providing a basis upon which the LLM can condition
and subsequently reason and extrapolate to generate a vari-
ety of tasks, taking into account both robot capability and
object affordances. Apart from object-based initialization,
another choice is to employ example-based initialization,
where we initialize the query with a provided robot and
several example tasks sampled from a list of 11 pre-defined
tasks (see Appendix D.1). For tasks involving legged robots
and soft-body manipulation, we prompt the LLM with only
example-based seeding.

We use GPT-4 (OpenAl, 2023) as our LLM backend to
query in the current pipeline, which can be upgraded once
better models are available. In the following, we explain
details of RoboGen in the context of a robotic arm (e.g.,
Franka) and tasks generated pertain to object manipulation,
using object-based initialization. In this case, the objects
used for initialization are sampled from a predefined list,
including common articulated and non-articulated objects
in household scenarios such as oven, microwave, dispenser,
laptop, dishwasher, etc., extracted from PartNetMobility
(Xiang et al., 2020) and RLBench (James et al., 2020). The
common sense and reasoning capability embedded in LLMs
like GPT-4 allow them to produce meaningful tasks consid-
ering the object affordances, functionalities, and how they
can be interacted with. We instantiate a prompt for task
proposal containing the following information: 1) the cate-
gory of the sampled object, 2) its articulation tree derived



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

A) Task Proposal

I B) Scene Generation |

I C) Training Supervision Generation I

Initialization

*—a) Robot

— og
U
[—b) Object

Elfﬁi

Scene Components & Configuration
LLM

[

Relevant Asset Asset Scene
Assets Sizes Configuration Configuration

Dataset Retrieval

Objaverse

VLM

text-to-image-to-3D generatio

"m Grasp | [ Open
Door Door

Task Decomposition

Put bowl
inside

Set
Timer

Select

[

Reinforcement

Gradient Action Primitive

Learning ] [Optlmlzatmn] [& Motion Planning

)

Verification

. Midjourney — Zero-1-to-3 |

Reward Generation

Scene

|

Task Proposals r
“Retrive one gold bar
and lock the safe”
“Heat up a bowl of soup
using the microwave” | |—J
“Close the laptop lid”|

Scene Population

[

—
=
=

Figure 2: RoboGen consists of the following stages: A) task proposal, B) scene generation, C) training supervision generation, and D)

skill learning with generated information.

from its URDF file, and 3) semantic annotations of the links
in the object’s articulation, e.g., which link corresponds to
the door in a sampled microwave. These information are
provided by the PartNetMobility dataset. Additionally, we
include one example input-output pair in the prompt. We
feed the prompt to GPT-4 to obtain a number of semantically
meaningful tasks that can be performed with the sampled
object, where each task consists of 1) task name, 2) a nat-
ural language description of the task, 3) additional objects
needed for performing the proposed task and 4) joints and
links of the sampled articulated object relevant to the task.

As a concrete example, if a sampled articulated object is a
microwave, where joint_0 is a revolute joint connect-
ing its door, and joint_1 is another revolute joint control-
ling the timer knob, GPT-4 could return a task named “heat
up a bowl of soup”, with a task description of “The robot
arm places a bowl of soup inside the microwave, closes the
door and sets the microwave timer for an appropriate heating
duration”, additional objects that are necessary for the gener-
ated task such as “A bowl of soup”, and task-relevant joints
and links including joint_0 (for opening the microwave
door), joint_1 (for setting the timer), 1ink_0O (the door),
and 1ink_1 (the timer knob). Note that for cases where
we sample non-articulated objects or use example-based ini-
tialization, the sampled objects and examples are provided
only as a hint for task proposal, and the generated tasks will
not be tied to them. By repeatedly querying with different
sampled objects and examples, we can generate a diverse
range of manipulation and locomotion tasks, concerning the
relevant object affordances when needed.

3.2. Scene Generation

Once a task proposal is obtained, RoboGen then generates
a corresponding scene for solving the task by populating
the environment with a number of relevant and necessary
objects (assets). As shown in Figure 2 (B), generating a
corresponding scene requires obtaining information for 4
different components: a) relevant assets to be used, b) asset
sizes, c) initial asset configurations and d) initial scene
configuration. We explain details in the following.

Relevant assets In the previous stage of task proposal, we
obtained a list of relevant assets that are necessary for per-
forming the proposed task. To further increase the complex-
ity and diversity of the generated scenes while resembling
object distributions of real-world scenarios, we query GPT-4
to return a number of additional queries (object names and
their descriptions) that are semantically relevant to the task.
For example (Figure 1), for the task “Open storage, put the
toy inside and close it”, the generated scene involves addi-
tionally a living room mat, a table-top lamp, a book, and
an office chair. These queries (names) of the assets needed
for the scene are used to search in existing object mesh
databases. Specifically, we use Objaverse (Deitke et al.,
2023), a large-scale dataset containing over 800k object
assets (3d meshes, textures, and etc.) as the main database
to retrieve the top £k = 10 objects that matches the asset
queries. Due to noises in assets’ language annotations and
the extreme diversity of objects in Objaverse (e.g. many
of the assets are not common household objects), object re-
trieved this way are potentially not suitable for the proposed
task. We further use Gemini-Pro (Team et al., 2023), a
state-of-the-art vision-language models (VLM) to verify the
retrieved assets and filter out the undesired ones. (See Ap-
pendix A.1 for more details for the retrieval and verification



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

process.) In practice, we found objects retrieved this way
work well for rigid object manipulation tasks. For soft-body
manipulation tasks, where a more consistent and control-
lable target shape for the soft-body under manipulation is
desired, and fine-grained details of geometry and texture
are secondary, we ask GPT-4 to come up with desired target
shapes, and use a text-to-image followed by image-to-mesh
generation pipeline to generate the needed mesh. We use
Midjourney (Midjourney, 2022) as our text-to-image gen-
erative model, and Zero-1-to-3 (Liu et al., 2023b) as our
image-to-mesh generative model. See more details of the
generation pipeline in Appendix C.

Asset size Assets generated or retreived from Obja-
verse (Deitke et al., 2022) and PartNetMobility (Xiang et al.,
2020) are usually not of physically plausible sizes. To ac-
count for this, we query GPT-4 to generate the sizes of the
assets such that: 1) the sizes should match real-world object
sizes; 2) the relative sizes between objects allow a plausible
solution for solving the task, e.g., for the task of “putting
a book into the drawer”, the size of the drawer should be
larger than the book.

Initial asset configuration For certain tasks, the articulated
object should be initialized with valid states for the robot
to learn the skill. For example, for the task of “close the
window”, the window should be initialized in an open state;
similarly, for the task of “opening the door”, the door should
be initially closed. Again, we query GPT-4 to set the initial
configurations of these articulated objects, specified in joint
angles.

Scene configuration Spatial configuration specifying the
location and relevant poses of each asset in the scene is
crucial for both producing plausible environments and al-
lowing valid skill learning. E.g., for the task of “retrieving a
document from the safe”, the document needs to be initial-
ized inside the safe; for the task of “removing the knife
from the chopping board”, the knife needs to be initially
placed on the chopping board. RoboGen queries GPT-4 to
generate the locations for each asset as well as such spe-
cial spatial relationships with the task description as the
input. To avoid collision between objects, RoboGen in-
structs GPT-4 to place objects in a collision-free manner.
(See Appendix A.2 for more details.) With the generated
scene components and their corresponding configurations,
we populate the scene accordingly. See Figure 1 for a col-
lection of example scenes and tasks generated by RoboGen.
More examples of the generated scenes are available on our
project website.

3.3. Training Supervision Generation

To acquire the skill for solving the proposed task, supervi-
sions for skill learning are needed. To facilitate the learning
process, RoboGen first queries GPT-4 to plan and decom-

pose the generated task into shorter-horizon sub-tasks. After
the decomposition, RoboGen then queries GPT-4 to choose
a proper algorithm for solving each sub-task. There are
three different types of learning algorithms integrated into
RoboGen: reinforcement learning (Schulman et al., 2017;
Haarnoja et al., 2018), gradient-based trajectory optimiza-
tion (Xian et al., 2023b; Xu et al., 2023), and action primitive
with motion planning (Karaman & Frazzoli, 2011). Each of
these is suited for different tasks, e.g., gradient-based trajec-
tory optimization is more suitable for learning fine-grained
manipulation tasks involving soft bodies such as shaping a
dough into a target shape (Xu et al., 2023; Lin et al., 2022);
action primitives coupled with motion planning are more
reliable in solving the task such as approaching a target ob-
ject via a collision-free path; reinforcement learning better
suits tasks that are contact rich and involving continuous
interaction with other scene components, e.g., legged lo-
comotion, or when the required actions cannot be simply
parameterized by discrete end-effector poses, e.g., turning
the knob of an oven. We provide examples and let GPT-4
choose which learning algorithm to use conditioned on the
generated sub-task.

We consider several action primitives including grasping,
approaching and releasing a target object. Since parallel jaw
gripper can be limited when grasping objects with diverse
sizes, we consider a robotic manipulator equipped with
a suction cup to simplify object grasping. The grasping
and approaching primitives are implemented as follows:
we first randomly sample a point on the target object or
link, compute a gripper pose that aligns with the normal of
the sampled point, and then use motion planning to find a
collision-free path to reach the target gripper pose. After the
pose is reached, we proceed along the normal direction until
a contact is made with the target object. For the grasping and
approaching primitives, RoboGen asks GPT-4 to specify the
target object to grasp or approach, conditioned on the sub-
task. See Appendix A.3 for more implementation details
about the action primitives.

For sub-tasks trained with RL, we prompt GPT-4 to write
corresponding reward functions with three in-context ex-
amples. For rigid manipulation and locomotion tasks, the
reward functions are based on the low-level states which
GPT-4 can query via provided simulator APIs. For soft
body manipulation tasks, RoboGen uses reward functions
specified as the earth-mover distance between the particles
of current and target shape. We prompt GPT-4 to generate a
text description of the target shape, and then use a text-to-3d
model (Liu et al., 2023b) to generate the mesh of the target
shape using the text description, as described in Section 3.2.
See Appendix C for more details on this text-to-3d pipeline.



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

3.4. Skill Learning

Once we obtained all the required information for the pro-
posed task, including scene components and configurations,
task decompositions, and training supervisions for the de-
composed sub-tasks, we are able to construct the scene in
simulation for the robot to learn the required skills for com-
pleting the task. For long-horizon tasks that involve multiple
sub-tasks, we adopt a simple scheme of learning each sub-
task sequentially: for each sub-task, we run the learning
algorithm for N = 8 times and use the end state with the
highest reward as the initial state for the next sub-task. As
aforementioned, we use a combination of techniques for
skill learning, including reinforcement learning, gradient-
based trajectory optimization, and action primitive with
motion planning, selected on the fly conditioned on the task
generated. For more details, please refer to Appendix A.3.

We included the prompts used for all the stages discussed
above in Appendix D for reference.

Discussion on design choices Our framework design priori-
tizes its foundational structure over specific backend models
used in the initial implementation, and our system is ag-
nostic to the backend LLM/VLM/generative model used,
ensuring that RoboGen can be continuously improved by
upgrading the backend modules with newer models once
they become available. In addition, while human-designed
3D asset databases currently still present better quality, au-
tomated text-to-3D generative pipelines utilize massive 2D
image resources available online and holds a better potential
in further scaling up. As a result, we intentionally added
support for both retrieval-based and generation-based meth-
ods for acquiring assets, and anticipate our method evolving
towards a fully generative model in the future.

4. Experiments

RoboGen is an automated pipeline that can be queried end-
lessly, and generate a continuous stream of skill demonstra-
tions for diverse tasks. Our experiments aim to answer the
following questions: 1) Task Diversity: How diverse are
the tasks proposed by RoboGen for robotic skill learning? 2)
Scene Validity: Does RoboGen generate valid simulation
environments? 3) Training Supervision Validity: Does
RoboGen generate valid task decomposition and training su-
pervisions for the task that will induce intended robot skills?
4) Skill Learning: Does integrating different learning algo-
rithms in RoboGen improve skill learning performance? 5)
System: Can the whole system produce diverse and mean-
ingful robotic skill demonstrations?

4.1. Experimental Setup

Our proposed system is generic and agnostic to specific
simulation platforms. However, since we consider a wide

range of task categories ranging from rigid dynamics to soft
body simulation, and also consider skill learning methods
such as gradient-based trajectory optimization which neces-
sitates a differentiable simulation platform, we used Genesis
for deploying RoboGen, a simulation platform for robot
learning with diverse materials and fully differentiable'. For
skill learning, we use SAC (Haarnoja et al., 2018) as the RL
algorithm. The policy and Q networks are both Multi-layer
Perceptrons (MLP) of size [256, 256, 256], trained with a
learning rate of 3e — 4. For each sub-task, we train with
IM environment steps. We use BIT* (Gammell et al., 2015)
as the motion planning algorithm, and Adam (Kingma &
Ba, 2014) for gradient-based trajectory optimization for soft
body manipulation tasks. More implementation details can
be found in Appendix A.3.

4.2. Evaluation Metrics and Baselines
The following evaluation metrics and baselines are used:

Task Diversity The diversity of the generated tasks can be
measured in many aspects, such as the semantic meanings
of the tasks, scene configurations of the generated simu-
lation environments, the appearances and geometries of
the retrieved object assets, and the robot actions required
to perform the task. For semantic meanings of the tasks,
we perform quantitative evaluations by computing the Self-
BLEU (Papineni et al., 2002; Zhu et al., 2018) and the em-
bedding similarity (Zhu et al., 2018) on the generated task
descriptions, where lower scores indicate better diversity.
In addition to the semantics, we also compare the diver-
sity of the generated tasks in the image space, measured
by the embedding similarity of the rendered images of the
scenes at the initial state with both ImageNet pre-trained ViT
(Dosovitskiy et al., 2020) and CLIP models (Radford et al.,
2021). We compare to established benchmarks, including
RLBench (James et al., 2020), Maniskill2 (Gu et al., 2023),
Meta-World (Yu et al., 2020), and Behavior-100 (Srivastava
et al., 2022). We also compare to concurrent work (Wang
et al., 2023a), which leverages LLM to write codes for
generating table-top rigid object manipulation tasks. For
robot actions, we evaluate RoboGen qualitatively using the
generated environments and visualizations of learned robot
skills.

Scene Validity To verify that the retrieved objects match the
requirements of the task, we compute the BLIP-2 scores (Li
et al., 2023b) between rendered images of the retrieved
objects in the simulation scene, and the text descriptions of
the objects. We compare with two ablations of our system.
A) w/o object verification: 'We retrieve objects based on
matching of language descriptions without using a VLM to
verify the retrieved object. B) w/o size verification: We use

!Genesis is still under development and will be release publicly
soon. We build our system on top of an internal version.



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

“Retrieve a gold bar from the safe” |

Grasp the safe door Open the safe door Retrieve the gold bar

EE

Move it to the table

Grasp the door again Close the door Rotate the knob to lock

“Heat up a bow! of soup using the microwave”
W ] 1 g |

A

Approach the door Open the door Grasp the soup

Put it in the microwave

Turn the knob to set timer

Close the door Grasp the timer knob

“Put the toy into the storage”

i>~T

Open the door Grasp the toy Move the toy inside

“Move the toy car out of the box”

Open the box

» T

Move it out of the box

Retrieve the toy car Release the toy car

Figure 3: Snapshots of the learned skills on 4 example long-horizon tasks.

RoboGen  Behavior-100  RLbench ~ MetaWorld  Maniskill2 ~ GenSim
Number of Tasks 106 100 106 50 20 70
Task Description - Self-BLEU |, 0.284 0.299 0.317 0.322 0.674 0.378
Task Description - Embedding Similarity (SentenceBert) | 0.165 0.210 0.200 0.263 0.194 0.288
Scene Image - Embedding Similarity (ViT) | 0.193 0.389 0.375 0.517 0.332 0.717
Scene Image - Embedding Similarity (CLIP) | 0.762 0.833 0.864 0.867 0.828 0.932

Table 1: Comparison on task diversity with representative human-designed robotics datasets Behavior-100, RLBench, MetaWorld,

Maniskill2, and concurrent work GenSim (Wang et al., 2023a).

the default size associated with the retrieved asset without
quering LLM for plausible sizes. We also evaluate scene-
level validity via human evaluation, examining whether the
generated scenes align with the task descriptions, and if the
scene configurations and retrieved objects are correct.

Training Supervision Validity We perform human verifica-
tion by asking a human expert to manually inspect whether
the generated decompositions and reward functions are rea-
sonable for solving the task. We also perform qualitative
evaluations by presenting videos of the learned skills using
the generated decomposition and training supervisions.

Skill Learning Performance We provide quantitative anal-
ysis on the skill learning success rate. The success rate is
defined as the ratio of runs that successfully learn the skill
over all attempting runs for a task. In addition, we com-
pare to an ablation where we remove the options of using
motion planning-based primitive, and rely purely on rein-
forcement learning to learn the skills on a set of generated
articulated-object manipulation tasks.

System We show qualitative evaluations of the whole sys-
tem, by providing videos of over 100 learned skills on our
website. Figure 1 includes snapshots of representative tasks.
We also provide a detailed list of generated tasks along

with task statistics (e.g., average number of sub-steps) and a
detailed failure analysis in Appendix B.1 and B.3, respec-
tively.

4.3. Results

Task Diversity We compare RoboGen with several estab-
lished robotics benchmarks in terms of task diversity and
report results in Table 1. Note that RoboGen can generate
an endless stream of tasks when queried repeatedly, but here
we evaluate a version with 106 tasks generated, comparable
to prior works. RoboGen achieves the lowest Self-BLEU,
as well as the lowest similarity score in both language and
image space, demonstrating that our pipeline can generate
tasks whose semantic and visual diversity matches or sur-
passes prior manually crafted skill learning benchmarks and
datasets. We also note the diversity of scenes and tasks gen-
erated by RoboGen is noticeably higher than GenSim (Wang
et al., 2023a). We believe part of the reason is that GenSim
only generates table-top pick-and-place manipulation tasks
with a small number of assets from the Ravens benchmark-
ing dataset (Shridhar et al., 2022). In contrast, RoboGen can
generate a broader range of tasks such as articulated object
manipulation tasks that reason about their affordances and
functionalities, legged locomotion, and soft body manipula-



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

=== RoboGen
mmm w/o Object Verification
s w/o Size Verification

Load dish Store a hamburger
into dishwasher in refrigerator

4
IS

BLIP-2 Score
o
W

o
N

0.1

0.0
Put a pen
into the storage

hmmmmmm

Retrieve a document Heat a bowl of
from safe

Place a brocolli
into pot

Move a toy Average

soup in microwave into box

Tasks

Figure 4: We compare the BLIP-2 score of ablations of RoboGen on 7 tasks to evaluate the importance of both object and size verification.

o
®

: I I I

== RoboGen
mmm RoboGen - w/o action primitive

0.0 I I I

slide s start
S haltway 'ash:_an \id Pfg\shwasher

Success Rate
o
>

o
S

)
o

I I 5

wind the to\\et en

I.'. I II I I

rop hing
use \aP o was!
Cl op enmne door

Tasks
1.00

ver ush in han
dsp\ayscree Ovendoor pu\\\e mew\nqonfaucet s‘efoftab\e c d‘,ect\on

Figure 5: Among 12 articulated object manipulation tasks, the success rate decreases drastically if only RL is used for skill learning.

tion tasks, meanwhile leverage more diverse assets retrieved
from open-world databases such as Objaverse, resulting
in much higher diversity in both task semantics and scene
images. We also provide the full list of generated tasks, in-
cluding the task name and task descriptions in Appendix B.1,
and refer readers to our project website for visualizations of
the generated tasks.

Scene Validity Figure 4 shows the BLIP-2 score of all
compared methods on an example set of 7 generated tasks.
As shown, removing the size verification leads to drastic
decrease in BLIP-2 score. This is expected as the default
asset sizes can be drastically different from plausible real-
world sizes. The ablation “w/o object verification” also
has a lower BLIP-2 score and a larger variances, indicating
our verification step improves validity of the constructed
scene. The results demonstrate the importance of using both
object and size verification in RoboGen. In addition, we
conducted manual evaluations of the generated tasks for
scene-level validity. Out of 155 generated tasks (full list in
Appendix B.1), we found 13 failures due to incorrect scene
generation. The failures can be categorized into 1) required
functionality not supported by the assets, e.g., loading paper
into a printer asset which do not have a movable tray. 2)
incorrect semantic understanding of articulated object’s joint
state, i.e., failure to correctly map the joint angle value of an
articulated object to its semantic state, e.g., an LLM cannot

judge whether the joint angle value O corresponds to the door
being opened or closed. 3) failure to find matched assets
for tasks that require extremely precise spatial relationships,
e.g., it is hard to retrieve or generate stapler and staples
whose size and geometry exactly match each other for the
task of loading the staples into the stapler. We provide a
detailed analysis in Appendix B.3 on the failure cases and
potential solutions to address them in future work.

Training Supervision Validity Figure 3 demonstrates the
skills learned with the generated training supervisions from
RoboGen, i.e., the task decompositions and reward func-
tions, on 4 example long-horizon tasks. As shown, the robot
successfully learns skills to complete the corresponding
tasks, suggesting that the automatically generated training
supervisions are effective in deriving meaningful and useful
skills. We also manually inspected the generated decompo-
sitions and reward functions, and found 6 failure cases in
the 155 generated object manipulation tasks. The errors can
be categorized into 1) referring to undefined variables; 2)
reward does not encode the intended behavior. Examples
include incorrect semantic understanding of articulated ob-
ject state, e.g., the task is to fold the chair, yet the generated
reward actually encourages unfolding the chair due to mis-
understanding of the mapping between joint angle values
and object state. We also find it hard to generate correct
rewards for continuous motions such as “moving robotic



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

hand back-and-forth”, or “knock the door”. Again, see Ap-
pendix B.3 for detailed failure analysis and discussion on
potential solutions.

Skill Learning We first evaluate the success rate of our
skill learning pipeline on a subset of 50 generated object
manipulation tasks, 7 soft-body manipulation tasks, and 12
locomotion tasks. Over all 69 benchmarked tasks, RoboGen
achieves an average success rate of 0.774, indicating 3 out
of 4 runs could lead to successful skill learning. Detailed
statistics of the tasks are available in Appendix B.2.

Further, we compare to an ablated version of RoboGen
where only RL is used for skill learning. We randomly select
12 tasks that involve interactions with articulated objects
for this comparison. The results are shown in Figure 5. As
shown, allowing RoboGen to select the optimal learning
algorithms beneficial for achieving higher performance for
completing the tasks. When only RL is used, the skill
learning completely fails for most tasks.

System Figure 1 and 3 show some representative tasks and
learned skills generated by RoboGen. As shown in Fig-
ure 1, RoboGen can generate diverse tasks for skill learning
spanning rigid/articulated object manipulation, legged loco-
motion and soft body manipulation. Figure 3 further shows
that RoboGen is able to deliver long-horizon manipulation
skills with reasonable decompositions. For extensive qual-
itative results of proposed tasks and learned skills, please
refer to our project site. Again, please refer to Appendix B
for a list of generated tasks, their statistics, and a detailed
failure analysis.

5. Conclusion & Limitations

We introduced RoboGen, a generative agent that automat-
ically proposes and learns diverse robotic skills at scale
via generative simulation. RoboGen utilizes the latest ad-
vancements in foundation models to automatically generate
diverse tasks, scenes, and training supervisions in simula-
tion, making a foundational step towards scalable robotic
skill learning in simulation, while requiring minimal human
supervision once deployed. Our system is a fully genera-
tive pipeline that can be queried endlessly, producing a large
number of skill demonstrations associated with diverse tasks
and environments. Our current system still has several limi-
tations: 1) Large-scale verification of learned skills is still
a challenge in the current pipeline, which could potentially
be addressed by incorporating feedback from multi-modal
foundation models in the future. 2) Our paradigm is in-
trinsically constrained by sim-to-real gaps for real-world
deployment, which is a stand-alone research field. However,
given the recent rapid advancements in physically accurate
simulation (Li et al., 2020) and techniques like domain ran-
domization (Tobin et al., 2017; Xu et al., 2023) and realistic

sensory signal rendering (Zhang et al., 2023), we anticipate
a continual narrowing of this gap in the near future.

Acknowledgement

This work is supported by National Science Foundation
under Grant No. 1IS-2046491, National Science Foundation
award No. 1849287, DARPA Machine Common Sense, an
Amazon faculty award, an NSF CAREER award, an AFOSR
YIP award, and Cisco and Amazon research award. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation, DARPA, Amazon, AFOSR, or Cisco.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,
David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., et al. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

Akkaya, 1., Andrychowicz, M., Chociej, M., Litwin, M.,
McGrew, B., Petron, A., Paino, A., Plappert, M., Powell,
G., Ribas, R, et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

Bousmalis, K., Vezzani, G., Rao, D., Devin, C., Lee, A. X.,
Bauza, M., Davcheyv, T., Zhou, Y., Gupta, A., Raju, A.,
et al. Robocat: A self-improving foundation agent for
robotic manipulation. arXiv preprint arXiv:2306.11706,
2023.

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Chen,
X., Choromanski, K., Ding, T., Driess, D., Dubey, A.,
Finn, C,, et al. Rt-2: Vision-language-action models
transfer web knowledge to robotic control. arXiv preprint
arXiv:2307.15818, 2023.

Chen, T., Xu, J., and Agrawal, P. A system for general
in-hand object re-orientation. In Conference on Robot
Learning, pp. 297-307. PMLR, 2022.

Cheng, X., Kumar, A., and Pathak, D. Legs as manipulator:
Pushing quadrupedal agility beyond locomotion. arXiv
preprint arXiv:2303.11330, 2023.

Coumans, E. and Bai, Y. Pybullet, a python module for



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

physics simulation for games, robotics and machine learn-
ing. http://pybullet.org, 2016.

Dalal, M., Mandlekar, A., Garrett, C., Handa, A., Salakhut-
dinov, R., and Fox, D. Imitating task and motion planning
with visuomotor transformers, 2023.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,
O., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,
A., and Farhadi, A. Objaverse: A universe of annotated
3d objects. arXiv preprint arXiv:2212.08051, 2022.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel,
0., VanderBilt, E., Schmidt, L., Ehsani, K., Kembhavi,
A., and Farhadi, A. Objaverse: A universe of annotated
3d objects. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 13142—
13153, 2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Driess, D., Xia, F.,, Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T,
et al. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378, 2023.

Du, Y., Yang, M., Dai, B., Dai, H., Nachum, O., Tenenbaum,
J., Schuurmans, D., and Abbeel, P. Learning universal
policies via text-guided video generation. arXiv preprint
arXiv:2302.00111, 2023.

Gammell, J. D., Srinivasa, S. S., and Barfoot, T. D. Batch
informed trees (bit*): Sampling-based optimal planning
via the heuristically guided search of implicit random geo-
metric graphs. In 2015 IEEE international conference on
robotics and automation (ICRA), pp. 3067-3074. IEEE,
2015.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M.,
Traer, J., Freitas, J. D., Kubilius, J., Bhandwaldar, A.,
Haber, N., Sano, M., Kim, K., Wang, E., Lingelbach,
M., Curtis, A., Feigelis, K., Bear, D. M., Gutfreund, D.,
Cox, D., Torralba, A., DiCarlo, J. J., Tenenbaum, J. B.,
McDermott, J. H., and Yamins, D. L. K. Threedworld: A
platform for interactive multi-modal physical simulation,
2021.

Girdhar, R., El-Nouby, A., Liu, Z., Singh, M., Alwala, K. V.,
Joulin, A., and Misra, I. Imagebind: One embedding
space to bind them all. arXiv preprint arXiv:2305.05665,
2023.

10

Gu, J., Xiang, F, Li, X., Ling, Z., Liu, X., Mu, T., Tang,
Y., Tao, S., Wei, X., Yao, Y., et al. Maniskill2: A unified
benchmark for generalizable manipulation skills. arXiv
preprint arXiv:2302.04659, 2023.

Ha, H., Florence, P., and Song, S. Scaling up and distilling
down: Language-guided robot skill acquisition. arXiv
preprint arXiv:2307.14535, 2023.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861-1870. PMLR,
2018.

Haarnoja, T., Moran, B., Lever, G., Huang, S. H., Tirumala,
D., Wulfmeier, M., Humplik, J., Tunyasuvunakool, S.,
Siegel, N. Y., Hafner, R., et al. Learning agile soccer
skills for a bipedal robot with deep reinforcement learn-
ing. arXiv preprint arXiv:2304.13653, 2023.

Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A.,
and Ramos, F. Disect: A differentiable simulation en-
gine for autonomous robotic cutting. arXiv preprint
arXiv:2105.12244, 2021.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence,
P., Zeng, A., Tompson, J., Mordatch, 1., Chebotar, Y., et al.
Inner monologue: Embodied reasoning through planning
with language models. arXiv preprint arXiv:2207.05608,
2022.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei,
L. Voxposer: Composable 3d value maps for robotic
manipulation with language models. arXiv preprint
arXiv:2307.05973, 2023.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. Rlbench:
The robot learning benchmark & learning environment.
IEEE Robotics and Automation Letters, 5(2):3019-3026,
2020.

Jiang, Y., Gupta, A., Zhang, Z., Wang, G., Dou, Y., Chen, Y.,
Fei-Fei, L., Anandkumar, A., Zhu, Y., and Fan, L. Vima:
Robot manipulation with multimodal prompts. 2023.

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E.,
Paris, S., and Park, T. Scaling up gans for text-to-image
synthesis. arXiv preprint arXiv:2303.05511, 2023.

Kapelyukh, I., Vosylius, V., and Johns, E. Dall-e-bot: In-
troducing web-scale diffusion models to robotics. IEEE
Robotics and Automation Letters, 2023.

Karaman, S. and Frazzoli, E. Sampling-based algorithms
for optimal motion planning. The international journal
of robotics research, 30(7):846-894, 2011.



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Katara, P., Xian, Z., and Fragkiadaki, K. Gen2sim: Scaling
up robot learning in simulation with generative models.
arXiv preprint arXiv:2310.18308, 2023.

Kaufmann, E., Loquercio, A., Ranftl, R., Miiller, M., Koltun,
V., and Scaramuzza, D. Deep drone acrobatics. arXiv
preprint arXiv:2006.05768, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S.,
Martin-Martin, R., Wang, C., Levine, G., Lingelbach, M.,
Sun, J., et al. Behavior-1k: A benchmark for embodied
ai with 1,000 everyday activities and realistic simulation.
In Conference on Robot Learning, pp. 80-93. PMLR,
2023a.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Boot-
strapping language-image pre-training with frozen im-
age encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023b.

Li, M., Ferguson, Z., Schneider, T., Langlois, T. R., Zorin,
D., Panozzo, D., Jiang, C., and Kaufman, D. M. Incre-
mental potential contact: intersection-and inversion-free,
large-deformation dynamics. ACM Trans. Graph., 39(4):
49, 2020.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Lin, K., Agia, C., Migimatsu, T., Pavone, M., and Bohg,
J. Text2motion: From natural language instructions to
feasible plans. arXiv preprint arXiv:2303.12153, 2023.

Lin, X., Wang, Y., Olkin, J., and Held, D. Softgym: Bench-
marking deep reinforcement learning for deformable ob-
ject manipulation. arXiv preprint arXiv:2011.07215,
2020.

Lin, X., Huang, Z., Li, Y., Tenenbaum, J. B, Held, D., and
Gan, C. Diffskill: Skill abstraction from differentiable
physics for deformable object manipulations with tools.
arXiv preprint arXiv:2203.17275, 2022.

Liu, C. K. and Negrut, D. The role of physics-based simula-
tors in robotics. Annual Review of Control, Robotics, and
Autonomous Systems, 4:35-58, 2021.

Liu, H., Chen, Z., Yuan, Y., Mei, X., Liu, X., Mandic, D.,
Wang, W., and Plumbley, M. D. Audioldm: Text-to-audio
generation with latent diffusion models. arXiv preprint
arXiv:2301.12503, 2023a.

11

Liu, R., Wu, R., Van Hoorick, B., Tokmakov, P., Zakharov,
S., and Vondrick, C. Zero-1-to-3: Zero-shot one image to
3d object. arXiv preprint arXiv:2303.11328, 2023b.

Loquercio, A., Kaufmann, E., Ranftl, R., Miiller, M., Koltun,
V., and Scaramuzza, D. Learning high-speed flight in the
wild. Science Robotics, 6(59):eabg5810, 2021.

Luo, T., Rockwell, C., Lee, H., and Johnson, J. Scalable
3d captioning with pretrained models. arXiv preprint
arXiv:2306.07279, 2023.

Ma, Y. J,, Liang, W., Wang, G., Huang, D.-A., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Eureka: Human-level reward design via coding large lan-
guage models. arXiv preprint arXiv:2310.12931, 2023.

Macklin, M., Miiller, M., Chentanez, N., and Kim, T.-Y.
Unified particle physics for real-time applications. ACM
Transactions on Graphics (TOG), 33(4):1-12, 2014.

McDonald, M. J. and Hadfield-Menell, D. Guided imitation
of task and motion planning, 2021.

Melas-Kyriazi, L., Rupprecht, C., Laina, 1., and Vedaldi,
A. Realfusion: 360 {\deg} reconstruction of any object
from a single image. arXiv preprint arXiv:2302.10663,
2023.

Midjourney. Midjourney. https://www.midjourney.
com/, 2022.

Murali, A., Mousavian, A., Eppner, C., Fishman, A., and
Fox, D. Cabinet: Scaling neural collision detection for
object rearrangement with procedural scene generation,
2023.

OpenAl. Chatgpt.
chatgpt, 2022.

https://openai.com/blog/

OpenAl. Gpt-4 technical report.
arXiv:2303.08774, 2023.

arXiv preprint

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311-318,
2002.

Poole, B., Jain, A., Barron, J. T., and Mildenhall, B. Dream-
fusion: Text-to-3d using 2d diffusion. arXiv preprint
arXiv:2209.14988, 2022.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748-8763. PMLR, 2021.



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Radosavovic, L., Xiao, T., Zhang, B., Darrell, T., Malik, J.,
and Sreenath, K. Learning humanoid locomotion with
transformers. arXiv preprint arXiv:2303.03381, 2023.

Reimers, N. and Gurevych, I. Sentence-bert: Sentence
embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.

10684-10695, 2022.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Seita, D., Wang, Y., Shetty, S. J., Li, E. Y., Erickson, Z., and
Held, D. Toolflownet: Robotic manipulation with tools
via predicting tool flow from point clouds. In Conference
on Robot Learning, pp. 1038—1049. PMLR, 2023.

Shen, T., Gao, J., Yin, K., Liu, M.-Y., and Fidler, S. Deep
marching tetrahedra: a hybrid representation for high-
resolution 3d shape synthesis. Advances in Neural Infor-
mation Processing Systems, 34:6087-6101, 2021.

Shridhar, M., Manuelli, L., and Fox, D. Cliport: What and
where pathways for robotic manipulation. In Conference
on Robot Learning, pp. 894-906. PMLR, 2022.

Song, Y., Romero, A., Miiller, M., Koltun, V., and Scara-
muzza, D. Reaching the limit in autonomous racing:
Optimal control versus reinforcement learning. Science
Robotics, 8(82):eadgl1462, 2023.

Srivastava, S., Li, C., Lingelbach, M., Martin-Martin, R.,
Xia, F., Vainio, K. E., Lian, Z., Gokmen, C., Buch, S., Liu,
K., et al. Behavior: Benchmark for everyday household
activities in virtual, interactive, and ecological environ-
ments. In Conference on Robot Learning, pp. 477-490.
PMLR, 2022.

Sucan, I. A., Moll, M., and Kavraki, L. E. The open motion
planning library. IEEE Robotics & Automation Magazine,
19(4):72-82, 2012.

Taori, R., Gulrajani, 1., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca:  An instruction-following Illama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023.

12

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23-30. IEEE, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ inter-
national conference on intelligent robots and systems, pp.
5026-5033. IEEE, 2012.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, L., Ling, Y., Yuan, Z., Shridhar, M., Bao, C., Qin,
Y., Wang, B., Xu, H., and Wang, X. Gensim: Generating
robotic simulation tasks via large language models. In
Arxiv, 2023a.

Wang, Y., Sun, Z., Erickson, Z., and Held, D. One policy
to dress them all: Learning to dress people with diverse
poses and garments. arXiv preprint arXiv:2306.12372,
2023b.

Wang, Y.-J., Zhang, B., Chen, J., and Sreenath, K. Prompt a
robot to walk with large language models. arXiv preprint
arXiv:2309.09969, 2023c.

Weng, T., Bajracharya, S. M., Wang, Y., Agrawal, K., and
Held, D. Fabricflownet: Bimanual cloth manipulation
with a flow-based policy. In Conference on Robot Learn-
ing, pp. 192-202. PMLR, 2022.

Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song,
S., Bohg, J., Rusinkiewicz, S., and Funkhouser, T. Tidy-
bot: Personalized robot assistance with large language
models. arXiv preprint arXiv:2305.05658, 2023.

Xian, Z., Gervet, T., Xu, Z., Qiao, Y.-L., and Wang, T.-H.
Towards a foundation model for generalist robots: Di-
verse skill learning at scale via automated task and scene
generation. arXiv preprint arXiv:2305.10455, 2023a.

Xian, Z., Zhu, B., Xu, Z., Tung, H.-Y., Torralba, A., Fragki-
adaki, K., and Gan, C. Fluidlab: A differentiable envi-
ronment for benchmarking complex fluid manipulation.
arXiv preprint arXiv:2303.02346, 2023b.

Xiang, F,, Qin, Y., Mo, K., Xia, Y., Zhu, H,, Liu, F.,, Liu, M.,
Jiang, H., Yuan, Y., Wang, H., et al. Sapien: A simulated
part-based interactive environment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11097-11107, 2020.



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Xu, Z., Xian, Z., Lin, X., Chi, C., Huang, Z., Gan, C.,
and Song, S. Roboninja: Learning an adaptive cut-
ting policy for multi-material objects. arXiv preprint
arXiv:2302.11553, 2023.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094-1100. PMLR,
2020.

Yu, T., Xiao, T., Stone, A., Tompson, J., Brohan, A., Wang,
S., Singh, J., Tan, C., Peralta, J., Ichter, B., et al. Scaling
robot learning with semantically imagined experience.
arXiv preprint arXiv:2302.11550, 2023a.

Yu, W., Gileadi, N., Fu, C., Kirmani, S., Lee, K.-H., Are-
nas, M. G., Chiang, H.-T. L., Erez, T., Hasenclever, L.,
Humplik, J., et al. Language to rewards for robotic skill
synthesis. arXiv preprint arXiv:2306.08647, 2023b.

Zeng, A., Song, S., Lee, J., Rodriguez, A., and Funkhouser,
T. Tossingbot: Learning to throw arbitrary objects with
residual physics. IEEE Transactions on Robotics, 36(4):
1307-1319, 2020.

Zhang, X., Chen, R., Li, A., Xiang, F., Qin, Y., Gu, J., Ling,
Z., Liu, M., Zeng, P., Han, S., et al. Close the optical
sensing domain gap by physics-grounded active stereo
sensor simulation. /EEE Transactions on Robotics, 2023.

Zhu, Y., Lu, S., Zheng, L., Guo, J., Zhang, W., Wang, J.,
and Yu, Y. Texygen: A benchmarking platform for text
generation models. In The 41st international ACM SIGIR
conference on research & development in information
retrieval, pp. 1097-1100, 2018.

Zhuang, Z., Fu, Z., Wang, J., Atkeson, C., Schwertfeger, S.,
Finn, C., and Zhao, H. Robot parkour learning. arXiv
preprint arXiv:2309.05665, 2023.

13



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

A. Implementation Details
A.1. Asset Retrieval and Verification

For each object in Objaverse, we obtain a list of language descriptions of it by combining the default annotations and a
more cleaned version of annotations from (Luo et al., 2023). Given the language description of the asset we want to retrieve,
we use Sentence-Bert (Reimers & Gurevych, 2019) to get the embedding of the description, and retrieve k objects from
Objaverse whose language embeddings are the most similar to the language embedding of the target asset. Due to noises in
the object annotations, there can be significant discrepancies between the actual asset and the intended target, even when the
similarity score in the language embedding space is high. To resolve this, we further use Gemini-Pro (Team et al., 2023) a
state-of-the-art vision-language model (VLM) to verify the retrieved assets and filter out the undesired ones. Specifically,
we input an image of the retrieved object to the VLM mode to generate a caption of the object. The caption, together with
the description of the desired asset and the description of the task, are fed back into GPT-4 to verify if the retrieved asset is
appropriate to be used in the proposed task.

A.2. Collision Resolving in Scene Generation

When the LLM generate the initial pose of the objects, we prompt it to leverage its basic spatial understanding and tries to
place the objects in different locations. We use this as the initialization, and check potential collisions in the initial scene
configuration. For any detected collision between two objects, we identify the collision node of the objects in contact, and
push their center of mass away along the opposite directions of the collision normals to resolve collision.

A.3. Skill Learning

For reinforcement learning, we use SAC (Haarnoja et al., 2018) as the RL algorithm. For object manipulation tasks, the
observation space is the low-level state of the objects and robot in the task. The policy and Q networks used in SAC are both
Multi-layer Perceptrons (MLP) of size [256, 256, 256]. We use a learning rate of 3e — 4 for the actor, the critic, and the
entropy regularizer. The horizon of all manipulation tasks are 100, with a frameskip of 2. The action of the RL policy is 6d:
where the first 3 elements determines the translation, either as delta translation or target location (suggested by GPT-4),
and the second 3 elements determines the delta rotation, expressed as delta-axis angle in the gripper’s local frame. For
each sub-task, we train with 1M environment steps. For locomotion tasks, the cross entropy method (CEM (De Boer et al.,
2005)) is used for skill learning, which we find to be more stable and efficient than RL. The ground-truth simulator is used
as the dynamcis model in CEM, and the actions to be optimized are the joint angle values of the robot. The horizon for all
locomotion tasks are 150, with a frameskip of 4

For action primitives, we use BIT* (Gammell et al., 2015) implemented in the Open Motion Planning Library (OMPL) (Sucan
et al., 2012) as the motion planning algorithm. For the grasping and the approaching primitive, we first sample a surface
point on the target object or link, then compute a gripper pose that aligns the gripper y axis with the normal of the sampled
point. The pre-contact gripper pose is set to be 0.03m above the surface point along the normal direction. Motion planning
is then used to find a collision-free path to reach the target gripper pose. After the target gripper pose is reached, we keep
moving the gripper along the normal until contact is made.

For soft body manipulation tasks, we use Adam (Kingma & Ba, 2014) for gradient-based trajectory optimization. We
run trajectory optimization for 300 gradient steps. We use a learning rate of 0.05 for the optimizer. The horizons of all
manipulation tasks are either 150 or 200. We use Earth Mover’s distance between object’s current and target shape as the
cost function for trajectory optimization.

For querying GPT-4, we used a temperature between 0.8 — 1.0 for task proposal to ensure diversity in the generated tasks.
For all other stages of RoboGen, we use temperature values between 0 — 0.3 to ensure more robust responses from GPT-4.

B. Generated tasks, Statistics, and Analysis

B.1. List of Tasks and Statistics

Note that RoboGen can be used to generate different type of tasks including rigid and articulated object manipulation, soft
body object manipulation, and legged locomotion, but the major diversity of the tasks lies in manipulating articulated and
rigid objects in the current framework, due to the varied nature of these objects in everyday life.

14



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

a
3

-

2

IS
&

'

8

number of tasks
number of tasks
number of tasks

100
80
80
80
60
40
20
. ) - ) I
0 . — . — o - — 0 - ___
2 3 4 5 6 7 8 2 3 4 1 2 3 4 5

10 1 0
number of substeps number of RL substeps number of primitive substeps

F

Figure 6: Left: The distribution of number of substeps for the generated rigid and articulated object manipulation tasks in
Table 2. The average number of substeps is 3.13. Middle: The distribution of number of substeps that need to be solved
using RL for the generated tasks. The average number of RL substeps is 1.5. Right: The distribution of number of substeps
that need to be solved using motion planning based primitives for the generated tasks. The average number of such kind of
substeps is 1.63. Regarding duration for solving the task: if the task’s subgoals can all be solved via planning, typically each
task can be solved within 10 minutes. If certain subgoals require RL to solve, it usually takes around 2-3 hours for each
RL-necessary step, and the total duration thus depends on both the number and nature of the subtasks. Taking these into
account, a task typically takes 4-5 hours on average. This is done using 8 threads of a CPU running at 2.5Ghz, meaning that
each single node in a cluster with a 32-core (64 threads) CPU could run 8 jobs in parallel at the same time.

Table 2 provides the list of rigid and articulated object manipulation tasks that are generated using RoboGen at the time of
submission. We note that RoboGen can be constantly queried to generate more tasks. Figure 6 shows the distribution of
number of substeps for these generated tasks. As shown, most tasks are short-horizon and can be solved within 4 substeps.
Longer-horizon tasks require 8 and up to 10 substeps to solve. The average number of substeps for all tasks is 3.13. Figure 6
also presents the distribution of substeps to be solved using RL or motion planning based primitives. Please refer to the
caption of the figure for more details.

Table 3 shows a list of representative soft body manipulation tasks that RoboGen generates, and Table 4 shows the a list of
example generated locomotion tasks.

Table 2: List of generated tasks.

Task name Task description # of substeps # of RL sub- | # of primitive
steps substeps
Rotate Laptop Screen The robot arm rotates the laptop screentoa | 2 1 1
certain angle for better view
Move Laptop The robot arm lifts and moves the laptoptoa | 3 2 1
new location
Close Laptop Lid The robotic arm will close the laptop lid 2 1 1
Open Laptop Lid The robotic arm will open the laptop lid 2 1 1
Pack Item In Suitcase The robot arm places an item .for example, a | 4 2 2
folded shirt. inside the suitcase
Extend Suitcase Handle The robotic arm will extend the suitcases han- | 2 1 1
dle in order to pull or push the suitcase
Pull Suitcase on Wheels The robot arm extends the suitcase handle, | 3 2 1

grips it in a way to let the suitcase stand on
its wheels and pulls it

Lift Suitcase The robotic arm will lift the suitcase by its | 2 1 1
handle

Partially Close Window The robotic arm partially closes one of the | 2 1 1
slider translation windows

Open Window Halfway The robotic arm will open one of the slider | 2 1 1
translation windows halfway to let fresh air in

Fully Open Window The robotic arm will open both of the slider | 4 2 2

translation windows to their full extent for max-
imum ventilation

Close Window The robotic arm closes both slider translation | 4 2 2
windows

Open and Close Toilet Lid The robot arm will interact with the hinge lid | 4 2 2
of the toilet to first open it and then close it

Open and Close Toilet Pump | The robot arm will interact with the slider | 3 2 1

Lid pump lid to first open it and then close it

Continued on next page

15



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub- | # of primitive
steps substeps

Flush the Toilet The robotic arm will interact with the hinge | 3 1 2
lever of the toilet to flush it

Set Clock Time The robotic arm adjusts the hinge hands of the | 6 2 4
clock to set the desired time

Move Clock Ahead for Day- | The robotic arm moves the clock hands ahead | 2 1 1

light Saving by 1 hour to adjust for daylight saving

Move Clock Back at End of | The robot arm moves the clock hands back by | 2 1 1

Daylight Saving 1 hour to adjust to the end of daylight saving

close the oven door The robot arm needs to close the oven door | 2 1 1
after use This task involves moving towards
the oven door and applying force to close it

Extend Display Screen The robotic arm will extend the slider transla- | 2 1 1
tion screen to enlarge the display

Retract Display Screen The robotic arm will retract the slider transla- | 2 1 1
tion screen to make the display smaller

Adjust Display Angle The robotic arm adjusts the display base link | 2 1 1
to change the viewing angle

Rotate Display Base The robotic arm will rotate the display base to | 2 1 1
point the display to a different direction

Rinse a Plate The robot arm holds a plate under the spout, | 8 3 5
turns on the faucet to rinse the plate, then turns
off the faucet

Turn On Faucet The robotic arm operates the hinge switch of | 2 1 1
the faucet in order for water to flow from the
spout

Wash Hands The robot arm acts as if its washing hands to | 8 4 4
demonstrate good hygiene

Fill a Glass of Water The robot arm first turns on the faucet, waits 5 3 2
for a glass to fill, then turns off the faucet

Fold Chair The robotic arm will fold the chair to save | 3 1 2
room or for easy carrying

Position Chair for Seating The robotic arm positions the unfolded chair | 3 1 2
in a desired location for a person to sit

Unfold Chair The robotic arm will unfold the folding chair | 3 1 2
to make it suitable for sitting

Lift Chair The robotic arm lifts the chair from the ground | 4 2 2
to place it into another location

Staple Papers The robot arm gathers a few loose sheets of pa- | 6 2 4
per and uses the stapler to staple them together

Close Stapler Lid The robot arm closes the lid of the stapler after | 2 1 1
it has been opened

Open Stapler Lid The robotic arm will open the lid of the stapler | 2 1 1

Load Staples into Stapler The robot arm inserts new staples into the sta- | 6 3 3
pler

Turn On the Printer The robot arm pushes the slider button to turn 2 1 1
on the printer

Load Paper into Printer The robot arm loads paper into the printer via | 2 1 1
the input tray, typically located on the printer
body

Print a Document The robot interacts with the printer to printa | 4 2 2
document The robot arm first places a docu-
ment on the printer, then moves the button to
initiate the print

Stop a Printer The robot arm stops a printer by moving the | 2 1 1
slider button to the stop position

Fill Kettle with Water The robot arm opens the kettle lid, holds a | 6 3 3
water jug to fill the kettle with water, and then
closes the lid

Pour Water from Kettle The robot arm holds the kettle handle, tilts the | 4 2 2
kettle to pour water into a cup

Open Kettle Lid The robotic arm will open the kettle lid 2 1 1

Lift Kettle by Handle The robotic arm will lift the kettle by its handle | 2 1 1

close the drawer of the table The robot arm will close the drawer of the table | 2 1 1

Close Door The robotic arm will close the door 2 1 1

Knock On Door The robotic arm will knock on the doorina | 3 3 0
typical way a human would

Partially Open Door Open the door partially for ventilation or for | 2 1 1
casual conversation without fully opening it

Open Door The robotic arm will open the door 2 1 1

Open Partial Box Lid The robotic arm will partially open the box | 2 1 1
lid based on certain degree, to demonstrate
kinematic control

Store an Object Inside Box The robot arm places a small object inside the | 6 3 3
box and closes the lid

Open Box Lid The robotic arm will open the box lid 2 1 1

Continued on next page

16



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub- | # of primitive
steps substeps

Retrieve an Object From Box The robot arm opens the box lid, takes a small | 6 3 3
object from the box, and then closes the lid

Push Drawer In After retrieving an item from the drawer, the | 2 1 1
robot arm slides the drawer back into the box

Close Box Lid The robotic arm closes the lid of the box 2 1 1

Pull Drawer Out The robotic arm uses the prismatic joint to | 2 1 1
slide the drawer out from the box

Making Coffee The robot arm opens the lid of the container, | 8 4 4
places coffee grounds inside, then closes the
lid and starts the brewing process by adjusting
the knob

Turning On Coffee Machine The robotic arm will adjust the hinge knobon | 2 1 1
the coffee machine to the on setting

Change Cleaning Cycle Robot changes the cleaning cycle of the dish- | 2 1 1
washer by interacting with one of the slider
buttons

Open Dishwasher Door The robotic arm will open the dishwasher door | 2 1 1

Load Dishwasher Robot arm places a plate inside the dishwasher | 6 3 3

Press Start Button The robot will press the start button on the | 3 1 2
dishwasher to begin the washing cycle

Close Dispenser Lid After filling or extracting contents, the robotic | 2 1 1
arm will close the lid of the dispenser

Extract Contents The robot arm will open the dispenser lid and | 6 3 3
proceed to extract the contents inside the dis-
penser

Open Dispenser Lid The robotic arm will open the lid of the dis- | 2 1 1
penser

Fill Dispenser The robotic arm opens the dispenser lid and | 5 3 2
then pours the desired content into the dis-
penser

Rotate Fan Rotor The robotic arm will apply a force to the rotor | 3 1 2
of the fan, causing it to rotate

Change Fan Direction The robotic arm will change the direction of | 2 1 1
the fan by physically moving the entire fan

Position Fan To Cool Off a | The robot arm moves the fan to a location in | 2 1 1

Room order to cool off a specific area in a room

Turn Off Water Faucet The robotic arm will rotate the switch of the | 2 1 1
faucet to cut off the water supply

Angle Laptop Screen The robot positions the laptop screen to a de- | 2 1 1
sired angle for better visibility

Opening Refrigerator Door The robotic arm will open one of the refrigera- | 2 1 1
tor doors

Opening Both Refrigerator | The robotic arm opens both the refrigerator | 4 2 2

Doors doors one after the other

Load item into the refrigerator | The robotic arm will open one of the refrigera- | 6 3 3
tor doors, place an item inside, and close the
door

Retrieving an item from the re- | The robotic arm will open one of the refrigera- | 6 3 3

frigerator tor doors, retrieve an item, and then close the
door

Dispose Toilet Paper into Toilet | A robotic arm picks up a piece of toilet paper 10 3 7
and disposes of it in the toilet by dropping it in
and then closing the lid

Close Trashcan Lid The robotic arm will close the trashcans lid 2 1 1

Open Trashcan Lid The robotic arm will open the trashcans lid 2 1 1

Move the Trashcan The robot arm pushes the trashcan from one | 2 1 1
place to another

Change Lamp Direction The robotic arm will alter the lamp’s light di- | 2 1 1
rection by manipulating the lamps head

Rotate Lamp Base The robot arm will rotate the lamp base to | 2 1 1
adjust the lamps general orientation

Adjust Lamp Position The robotic arm will adjust the position of the | 6 3 3
lamp using its hinge rotation bars, enabling the
robot to direct the lamps light to a specific area

Change Lamp Direction The robotic arm will alter the lamp’s light di- | 2 1 1
rection by manipulating the lamps head

Close Drawer The robotic arm will push the drawer closed 2 1 1

Retrieve Object from Drawer The robot arm opens the drawer, retrieves an | 6 3 3
object from inside, and then closes the drawer

Open Drawer The robotic arm will pull the drawer open 2 1 1

Store Object in Table Drawer The robot arm puts an item, like a book, intoa | 6 3 3
drawer in the table

Throw Trash Away The robotic arm places an item of trash inside | 7 3 4

the trash can

Continued on next page

17



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub- | # of primitive
steps substeps

Insert New Trash Bag The robotic arm inserts a new trash bag into | 5 3 2
the trash can

Check Contents of the Pot The robot arm slides the lid of the pot to check | 3 1 2
the contents inside the pot

Stir Contents in Pot The robot arm removes the lid of the pot and | 4 2 2
stirs the pots contents with a stirring spoon

Remove Pot Lid The robotic arm will slide the lid of the pot | 3 1 2
aside

Select Washing Cycle The robotic arm will push one of the washing | 2 1 1
machines slider buttons to select a washing
cycle

Load Clothes Into Washing | The robot arm opens the washing machine door | 4 2 2

Machine and places clothes inside

Adjust Washing Settings The robot arm rotates a knob to adjust washing | 2 1 1
settings such as temperature or spin speed

Open Washing Machine Door The robotic arm will open the washing ma- | 2 1 1
chine door

Move Door Slightly Open The robotic arm opens the door slightly to al- | 3 1 2
low for some air circulation without fully open-
ing it

Deliver an Object The robot arm holds an object, opens the door, | 8 3 5
passes through, then closes the door behind
it This represents the robot arm delivering an
object from one room to another

Find Door Position The robot arm would touch different parts of | 4 2 2
the door to find its initial position It is useful
to know the initial position for actions like
opening or closing

Regulate Coffee Strength The robot arm rotates a knob to adjust the | 2 1 1
strength of the coffee

Insert Portafilter The robot arm inserts the portafilter into the | 3 2 1
coffee machine

Adjust Machine Settings The robot arm adjusts a knob to alter machine | 2 1 1
settings

Pull Lever to Start Coffee | The robot arm pulls a lever to start the brewing | 2 1 1

Brewing process of the coffee machine

Steam Milk The robot operates a lever to steam milk for | 3 2 1
the coffee

Unload Dishes from Dish- | The robot arm retrieves clean dishes from the | 6 3 3

washer dishwasher

Start Dishwasher Cycle The robot arm turns the dishwasher knob to | 2 1 1
start the washing cycle

Open Dishwasher Door The robotic arm will open the dishwasher door | 2 1 1
for placing or removing dishes

Straighten Display Screen The robotic arm will straighten the display | 3 1 2
screen if it has been tilted or rotated

Tilt Display Screen The robotic arm will tilt the display screento | 3 1 2
adjust viewing angle

Position Display Screen The robotic arm will move the display screen | 2 1 1
to a desired location

Orient Globe Towards Specific | The robot arm rotates the globe such that a | 2 1 1

Country specific country on the globes surface faces the
viewer

Rotate Globe Horizontally The robotic arm will rotate the globe horizon- | 2 1 1
tally to display various continents and coun-
tries on its surface

Spin Globe Gently for Leisure | The robot arm spins the globe gently, as are- | 2 1 1
laxing activity or a playful interaction

Adjust Lamp Height The robot arm will adjust the height of the | 6 3 3
lamp by manipulating the rotation bars

Turn On Lamp The robotic arm turns on the lamp by pressing | 3 1 2
the toggle button

Set Soup Bowl in Microwave The robot arm will set a bowl of soup on the | 7 3 4
microwaves rotation tray and set the timer

Rotate Power Knob The robotic arm rotates the power know to set | 2 1 1
the heating power level

Press Microwave Button The robot arm slides the microwave button 3 1 2

Set Timer The robotic arm rotates the timer knob to set | 2 1 1
the duration for heating

Open Microwave Door The robotic arm will open the microwave door | 2 1 1

Open Oven Door The robot arm is programmed to open the door | 2 1 1
of the oven

Adjust Oven Timer The robot arm is to manipulate one of the ovens | 2 1 1

hinge knobs to set an appropriate timer

Continued on next page

18



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 2 continued from previous page

Task name Task description # of substeps # of RL sub- | # of primitive
steps substeps

Set Oven Temperature The robot arm is to adjust another knob to set | 2 1 1
the appropriate temperature for cooking

Set Oven Function The robot arm needs to adjust another knob | 2 1 1
to set the desired oven function — for example,
circulating air, grilling or bottom heat

Open Fridges Freezer Door The robot arm opens the freezer compartment | 2 1 1
door of the refrigerator

Move Cart Forward The robotic arm will push the cart forward 2 1 1

Turn Cart The robotic arm will turn the cart to change its | 2 1 1
direction

Load Object onto Cart The robot arm places an object onto the cart 3 1 2

Unload Object from Cart The robot arm takes an object off from the cart | 3 1 2

Adjust Chair Height The robotic arm will adjust the height of the | 2 1 1
chair by interacting with the knob

Move Chair The robot arm will move the chair using the | 2 1 1
wheels

Rotate Chair The robot arm rotates the chair to a desired | 2 1 1
direction

Tilt Chair Seat The robot arm tilts the chair seat to a desired | 2 1 1
angle

Open Eyeglasses The robotic arm will unfold the legs of the | 4 2 2
eyeglasses

Place Eyeglasses on Table The robot arm picks up the eyeglasses and | 3 1 2
places them on a table

Store an Item in Safe The robot arm opens the safe, places an item | 8 4 4
inside, and then closes and locks the safe

Turn Safe Knob The robotic arm will turn one of the safes | 2 1 1
knobs to unlock it

Retrieve an Item from Safe The robot arm unlocks the safe, opens the door, 8 4 4
retrieves an item from inside, and then closes
and locks the safe

Open Safe Door The robotic arm will open the safe door 2 1 1

Open Trashcan Lid The robotic arm will open the lid of the trash- | 2 1 1
can

Open Dispenser Lid The robotic arm will open the lid of the dis- | 2 1 1
penser

Turn On Water Faucet The robotic arm will rotate the switch of the | 2 1 1
faucet to turn on the water

Open Laptop The robotic arm opens the unfolded state of | 2 1 1
the laptops screen

Open Toilet Lid The robotic arm will carefully open the lid of | 2 1 1
the toilet

Close Dispenser Lid The robotic arm will close the dispenser lid | 2 1 1
after use

Close Table Drawer The robotic arm will close the open drawer on | 2 1 1
the table

Open Trash Can The robotic arm will open the trash can lid 2 1 1

Close Toilet Lid The robotic arm will put down the lid of the | 3 1 2
toilet

Open Door The robotic arm will open the door by rotating | 2 1 1
the hinge

Turn Off Faucet The robotic arm turns off the faucet by rotating | 2 1 1
one of the hinge switches

Close Window The robotic arm will close the window to pre- | 2 1 1
serve indoor temperature

Open Box The robot arm opens the box by manipulating | 2 1 1
the hinge lid

Rotate Clock Hands Rotate the minute and hour hands of the clock | 4 2 2
with the robotic arm, simulating the passing of
time

Unfold the Chair The robotic arm will unfold the chair to prepare | 4 2 2
it for use

Open Kettle Lid The robot arm lifts the kettle lid 2 1 1

B.2. Skill Learning Success Rate

Due to the randomness in the skill learning process (sampling is used in the motion planning-based action primitive, and
RL inherently has randomness during exploration and training), we also provide quantitative analysis on the skill learning
success rate, i.e., given a generated task with correct training supervisions, if we run the skill learning pipeline for multiple
times, how many of the runs would succeed in learning the skill. The success in learning a skill is determined by a human
evaluator watching the video of the learned policy.

19



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Task Name Task Description
Bend the noodle into a U shape The robot needs to to bend an initial straight noodle into the shape of letter ”"U”
Flatten the rice dough The robot uses a square dough flattener to flatten a rice dough
Cut dough in half The robot uses a knife to cut a dough in half
Shape dough The robot uses two square dough flatteners to shape the dough into a baguette

Lift up dumping The robot uses two square dough flatteners to lift up a dumpling

Roll out dough The robot uses a rolling pin to flatten a dough

Put filling onto wrapper The robot needs to grasp a dumpling filling and put it on top of the dumpling wrapper

Table 3: List of soft body manipulation tasks RoboGen generated.

Task Name Task Description
Jump forward The legged robot needs to do a jump forward
Spin counter-clockwise The legged robot needs to spin itself counter-clockwise around the vertical axis
Run forward The legged robot needs to do fun forward at a high speed
Spin left without using right hind leg | The legged robot needs to spin itself to the left while not letting the right hind leg touch the ground
Jump higher than 5 meters The legged robot needs to jump and reach a height higher than 5 meters
Flip forward The legged robot makes a flip forward
Climb up stairs The legged robot climbs up a staircase in the environment
Kick the soccer ball to the left The legged robot needs to kick the soccer ball and make it move to the left
‘Walk backwards The legged robot needs to move backwards
Push Ball The legged robot needs to push the ball forward
Turn Right The legged robot needs to turn itself to face right
Crawl forward The legged robot needs to move forward while keeping the body in a low position

Table 4: List of locomotion tasks RoboGen generated.

We present the detailed skill learning success rate of 50 articulated object manipulation tasks in Table 5. The average skill
learning success rate among these tasks is 0.745. We also benchmark the success rate for the soft-body manipulation and
locomotion tasks, shown in Table 6 and Table 7.

Table 5: Skill learning success rate on 50 articulated object manipulation tasks.

Task name | Task description | Skill Learning Success Rate
Rotate Laptop Screen The robot arm rotates the laptop screen to a 1.0
certain angle for better view
Extend Suitcase Handle The robotic arm will extend the suitcases han- | 1.0
dle in order to pull or push the suitcase
Open Window Halfway The robotic arm will open one of the slider 1.0
translation windows halfway to let fresh air in
Flush the Toilet The robotic arm will interact with the hinge | 0.67

lever of the toilet to flush it
Move Clock Ahead for Day- | The robotic arm moves the clock hands ahead | 0.38
light Saving by 1 hour to adjust for daylight saving
close the oven door The robot arm needs to close the oven door | 0.83
after use This task involves moving towards
the oven door and applying force to close it

Open Trashcan Lid The robotic arm will open the lid of the trash- | 1.0
can

Extend Display Screen The robotic arm will extend the slider transla- | 1.0
tion screen to enlarge the display

Turn On Faucet The robotic arm operates the hinge switch of | 0.83
the faucet in order for water to flow from the
spout

Unfold Chair The robotic arm will unfold the folding chair | 0.5
to make it suitable for sitting

Open Stapler Lid The robotic arm will open the lid of the stapler | 0.5

Turn On the Printer The robot arm pushes the slider button to turn 1.0
on the printer

Lift Kettle by Handle The robotic arm will lift the kettle by its handle | 0.83

close the drawer of the table The robot arm will close the drawer of the table | 0.75

Close Door The robotic arm will close the door 0.5

Open Partial Box Lid The robotic arm will partially open the box | 0.83

lid based on certain degree, to demonstrate
kinematic control

Pull Drawer Out The robotic arm uses the prismatic joint to | 0.67
slide the drawer out from the box
Turning On Coffee Machine The robotic arm will adjust the hinge knobon | 0.5

the coffee machine to the on setting
Continued on next page

20



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 5 continued from previous page

Task name Task description Skill Learning Success Rate

Press Start Button The robot will press the start button on the 1.0
dishwasher to begin the washing cycle

Close Dispenser Lid After filling or extracting contents, the robotic | 0.25
arm will close the lid of the dispenser

Open Dispenser Lid The robotic arm will open the lid of the dis- | 0.0
penser

Rotate Fan Rotor The robotic arm will apply a force to the rotor | 1.0
of the fan, causing it to rotate

Turn On Water Faucet The robotic arm will rotate the switch of the 1.0
faucet to turn on the water

Open Laptop The robotic arm opens the unfolded state of | 0.8
the laptops screen

Opening Both Refrigerator | The robotic arm opens both the refrigerator | 0.8

Doors doors one after the other

Open Toilet Lid The robotic arm will carefully open the lid of | 1.0
the toilet

Close Trashcan Lid The robotic arm will close the trashcans lid 0.33

Change Lamp Direction The robotic arm will alter the lamp’s light di- | 1.0
rection by manipulating the lamps head

Partially Close Window The robotic arm partially closes one of the | 0.5
slider translation windows

Close Dispenser Lid The robotic arm will close the dispenser lid 1.0
after use

Open Drawer The robotic arm will pull the drawer open 0.75

Close Table Drawer The robotic arm will close the open drawer on | 0.75
the table

Open Trash Can The robotic arm will open the trash can lid 1.0

Remove Pot Lid The robotic arm will slide the lid of the pot 1.0
aside

Close Toilet Lid The robotic arm will put down the lid of the 1.0
toilet

Open Washing Machine Door The robotic arm will open the washing ma- | 1.0
chine door

Move Door Slightly Open The robotic arm opens the door slightly to al- | 0.67
low for some air circulation without fully open-
ing it

Open Door The robotic arm will open the door by rotating | 0.5
the hinge

Turn Off Faucet The robotic arm turns off the faucet by rotating | 0.67
one of the hinge switches

Close Window The robotic arm will close the window to pre- | 0.8
serve indoor temperature

Open Box The robot arm opens the box by manipulating | 0.8
the hinge lid

Rotate Clock Hands Rotate the minute and hour hands of the clock | 0.4
with the robotic arm, simulating the passing of
time

Pull Lever to Start Coffee | The robot arm pulls a lever to start the brewing 1.0

Brewing process of the coffee machine

Open Dishwasher Door The robotic arm will open the dishwasher door | 0.6
for placing or removing dishes

Tilt Display Screen The robotic arm will tilt the display screento | 0.6
adjust viewing angle

Unfold the Chair The robotic arm will unfold the chair to prepare 1.0
it for use

Rotate Globe Horizontally The robotic arm will rotate the globe horizon- | 1.0
tally to display various continents and coun-
tries on its surface

Turn On Lamp The robotic arm turns on the lamp by pressing | 0.25
the toggle button

Open Kettle Lid The robot arm lifts the kettle lid 0.75

Open Microwave Door The robotic arm will open the microwave door | 0.25

Table 6: Skill learning success rate on 7 soft-body manipulation tasks.

Task name ‘ Task description ‘ Skill Learning Success Rate
Bend the noodle into a U shape | The robot needs to to bend an initial straight | 0.8
noodle into the shape of letter "U”
Flatten the rice dough The robot uses a square dough flattener to flat- | 1.0
ten a rice dough
Cut dough in half The robot uses a knife to cut a dough in half 1.0

Continued on next page

21



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 6 continued from previous page

Task name Task description Skill Learning Success Rate
Shape dough The robot uses two square dough flatteners to | 0.6
shape the dough into a baguette
Lift up dumping The robot uses two square dough flatteners to 1.0
lift up a dumpling
Roll out dough The robot uses a rolling pin to flatten a dough 1.0
Put filling onto wrapper The robot needs to grasp a dumpling filling | 0.8
and put it on top of the dumpling wrapper

Table 7: Skill learning success rate on 12 locomotion tasks.

Task name | Task description | Skill Learning Success Rate

Jump forward The legged robot needs to do a jump forward 1.0

Spin counter-clockwise The legged robot needs to spin itself counter- | 1.0
clockwise around the vertical axis

Run forward The legged robot needs to do fun forward ata | 0.6
high speed

Spin left without using right | The legged robot needs to spin itself to the left | 0.8

hind leg while not letting the right hind leg touch the
ground

Jump higher than 5 meters The legged robot needs to jump and reach a 1.0
height higher than 5 meters

Flip forward The legged robot makes a flip forward 0.6

Climb up stairs The legged robot climbs up a staircase in the | 0.4
environment

Kick the soccer ball to the left The legged robot needs to kick the soccer ball | 0.8
and make it move to the left

Walk backwards The legged robot needs to move backwards 1.0

Push Ball The legged robot needs to push the ball for- | 1.0
ward

Turn Right The legged robot needs to turn itself to face 1.0
right

Crawl forward The legged robot needs to move forward while | 0.8

keeping the body in a low position

B.3. Failure Analysis

Through manual inspection on the 155 generated tasks in Table 2, we found 19 failure cases in total, due to either error in
the generated scene or the generated training supervisions. Table 8 provides a detailed analysis on the failure cases.

Among the 19 failure cases, 13 failures can be attributed to incorrect scene generation. The failures can be categorized into
1) required functionality not supported by the assets, e.g., loading paper into a printer asset which do not have a movable tray.
2) incorrect semantic understanding of articulated object’s joint state, i.e., failure to correctly map the joint angle value of an
articulated object to its semantic state, e.g., an LLM cannot judge whether the joint angle value O corresponds to the door
being opened or closed. 3) failure to find matched assets for tasks that require extremely precise spatial relationships, e.g.,
it’s hard to retrieve or generate stapler and staples whose size and geometry exactly match each other for the task of loading
the staples into the stapler. Some of these failures can be addressed with additional checks, e.g., using a vision language
model to verify the mapping between the joint angle values and the semantic state of the asset, while others (generate assets
with required functionalities, or pair of matched assets) might require more fundamental research to address.

6 failures are caused by incorrect reward generation. The errors can be categorized into 1) referring to undefined variables; 2)
reward does not encode the intended behavior. Examples include incorrect semantic understanding of articulated object state,
e.g., the task is to fold the chair, yet the generated reward actually encourages unfolding the chair due to misunderstanding
of the mapping between joint angle values and object state. We also find it hard to generate correct rewards for continuous
motions such as “moving robotic hand back-and-forth”, or “knock the door”. Again, the incorrect semantic understanding of
articulated object state can be potentially fixed by using a vision-language model to figure out the mapping between the joint
angle and object state. For syntax errors such as undefined variables, one could feed the error back to the LLM and ask it
to correct itself. The reward function generation can also be improved to better match the intended goal by incorporating
environment feedback into the system (Ma et al., 2023), which we leave as future work.

22



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Table 8: Failure case analysis

Task name

Task description

| Failure case

Pack Item In Suitcase

The robot arm places an item .for example, a
folded shirt. inside the suitcase

Limited asset functionality: the suitcase cannot be opened.

Open Window Halfway

The robotic arm will open one of the slider
translation windows halfway to let fresh air in

Incorrect semantic understanding of articulated object state:
setting both joint angles to 0 make the window opened already

Correct Clock Time

The robotic arm corrects the time displayed on
the clock based on the standard time

Generated reward refers to undefined variables “standard time”

‘Wash Hands The robot arm acts as if its washing hands to | Reward error in one of the substeps: moving hands back and
demonstrate good hygiene forth
Fold Chair The robotic arm will fold the chair to save | Wrong reward due to incorrect understanding of the joint
room or for easy carrying state of articulated object. The reward actually encourages
unfolding the chair
Unfold Chair The robotic arm will unfold the folding chair | Wrong reward due to incorrect understanding of the joint state
to make it suitable for sitting of articulated object. The reward actually encourages folding
the chair
Staple Papers The robot arm gathers a few loose sheets of pa- | Too delicate initial spatial relationship — the task requires

per and uses the stapler to staple them together

the sheet of paper to be initialized into the stapler, which is
hard for a random stapler and a sheet of paper sampled from
PartNetMobility / Objaverse

Load Staples into Stapler

The robot arm inserts new staples into the sta-
pler

Asset mismatch: randomly sampled stapler and staple won’t
easily match each other

Load Paper into Printer

The robot arm loads paper into the printer via
the input tray, typically located on the printer
body

Limited asset functionality: the printer cannot really be loaded
with paper

Print a Document

The robot interacts with the printer to print a
document The robot arm first places a docu-
ment on the printer, then moves the button to
initiate the print

Limited asset functionality: the printer cannot really be loaded
with paper

Fill Kettle with Water

The robot arm opens the kettle lid, holds a
water jug to fill the kettle with water, and then
closes the lid

Limited asset functionality: the kettle lid cannot be really
moved away from the kettle body

Pour Water from Kettle

The robot arm holds the kettle handle, tilts the
kettle to pour water into a cup

Limited asset functionality: the kettle lid cannot be really
moved away from the kettle body

Knock On Door The robotic arm will knock on the door in a | Reward error: not really correct reward function for the knock-
typical way a human would ing motion.
Making Coffee The robot arm opens the lid of the container, | Limited asset functionality: the coffeemachine lid cannot re-

places coffee grounds inside, then closes the
lid and starts the brewing process by adjusting
the knob

ally be moved away from the body

Extract Contents

The robot arm will open the dispenser lid and
proceed to extract the contents inside the dis-
penser

Limited asset functionality: the lid of the dispenser canont be
removed from the body to enable the pouring motion.

Fill Dispenser

The robotic arm opens the dispenser lid and
then pours the desired content into the dis-
penser

Limited asset functionality: the lid of the dispenser canont be
removed from the body to enable the pouring motion.

Stir Contents in Pot

The robot arm removes the lid of the pot and
stirs the pots contents with a stirring spoon

Limited asset functionality: the lid cannot really be removed
from the pod

Deliver an Object

The robot arm holds an object, opens the door,
passes through, then closes the door behind
it This represents the robot arm delivering an
object from one room to another

Reward error for delivering an object through the door

Open Eyeglasses

The robotic arm will unfold the legs of the
eyeglasses

Incorrect semantic understanding of the object joint state. Set-
ting the joint angle to 0 actually make the eyeglass already
unfolded.

C. Asset Generation Results

We provide more details on our text-to-3D asset generation pipeline here. This asset generation pipeline is majorly used for
generating goal meshes for deformable object manipulation tasks. It works as follows. First, given the text descriptions of
the object, we use Midjourney (Midjourney, 2022) to generate a 2D image of it. We prompt Midjourney to generate the
image with white background, in either front view or top-down view, as images in these formats are more suitable inputs
for the following text-to-3D generation models. Midjourney usually generates 4 images in a batch, and a random image is
chosen as input for the following image-to-3d model. Then, the generated image and text descriptions are used as input
to zero-1-to-3 (Liu et al., 2023b), an image to mesh generative model. The generated mesh is then refined using Deep

Marching Tetrahedra (DMTet) (Shen et al., 2021). Figure 9 shows some example results.

23



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

image of bagel mesh of bagel image of croissant mesh of croissant

image of rope mesh of rope image of cylinder dough mesh of cylinder dough

mesh of mooncake

mesh of baguette

image of dumpling mesh of dumpling image of meat mesh of meat

Table 9: Example generated images and meshes from our text-to-image-to-3d pipeline.

24



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D. Prompts

D.1. Pre-defined tasks for example-based initialization of RoboGen (purely non-articulated object manipulation
tasks).

For task proposal of non-articulated object manipulation tasks, we use example-based seeding for RoboGen. Below is the
list of example tasks.

Task: stack two blocks, with the larger one at the bottom.
Object: A small block, and a large block.

won
’

Taks: Put the broccoli on the grill pan
Objects: a broccoli, a grill pan
"

’

Task: Put 1 mug on the cup holder
Objects: A mug, a mug tree holder

won
’

Task: Pick up the hanger and place it on the clothing rack
Objects: a cloth hanger, a clothing rack

won
’

Task: Put 1 book into the bookshelf
Objects: a book, a bookshelf

’

Taks: Put the knife on the chopping board
Objects: a kitchen knife, a board

won
’

Task: Put a old toy in bin
Objects: A old toy, a rubbish bin

won
’

Task: Place the dishes and cutlery on the table in preparation for a meal

Objects: a dish plate, a fork, a spoon, a steak knife
o
’

won

Task: Stack one cup on top of the other
Objects: Two same cups
"

’

Task: Remove the green pepper from the weighing scales and place it on the floor

Objects: A green pepper, a weighing scale
won
’

Task: Put the apple on the weighing scale to weigh it

Objects: An apple, a weighing scale
won
’

D.2. Pre-defined tasks for example-based initialization of RoboGen (locomotion tasks).

For task proposal of locomotion tasks, we included 3 examples in the prompt as the seeding for RoboGen.

Skill: flip rightwards
Reward:
‘Y '‘python
def _compute_reward(self):
# we first get some information of the quadruped/humanoid robot.
# COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.
COM_pos, COM_quat = get_robot_pose(self
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity (self

face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

face direction points from the center of mass towards the face direction of the quadruped/humanoid.

side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

gravity direction is [0, 0, -1].

when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot
is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

e % 3 W 3

25



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

target_side = np.array ([0, 1, 0]) # maintain initial side direction during flip
target_ang = np.array([50, 0, 0.0]) # spin around x axis to do the rightwards flip, since x is the face direction of the robot.

alpha_ang = 1.0
alpha_side = 1.0

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)
r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r += r_ang + r_side

# there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.
r_energy = get_energy_reward(self)
return r + r_energy

won
’

won

Skill: jump backward
Reward:
‘Y 'python
def _compute_reward(self):
# we first get some information of the quadruped/humanoid.
# COM_pos and COM_quat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.
COM_pos, COM_quat = get_robot_pose (self
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity (self

# face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

# face direction points from the center of mass towards the face direction of the quadruped/humanoid.

4 side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

# up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

# gravity direction is [0, 0, -1].

# when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot
is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

if self.time_step <= 30: # first a few steps the robot are jumping
target_height = 5.0

else: # then it should not jump
target_height = 0.0

target_v = np.array([-5.0, 0, 0.0]) # jump backwards

target_up = np.array ([0, 0, 1]) # maintain up direction

target_face = np.array([1l, 0, 0]) # maintain initial face direction
target_side = np.array ([0, 1, 0]) # maintain initial side direction
target_ang = np.array ([0, 0, 0.0]) # don’t let the robot spin
alpha_vel = 5.0

alpha_ang = 1.0

alpha_face = 1.0

alpha_up = 1.0

alpha_side = 1.

alpha_height = 10.0

r_vel = - alpha_vel % np.linalg.norm(COM_vel - target_v)

r_ang = - alpha_ang * np.linalg.norm(COM_ang - target_ang)
r_face = - alpha_face x np.linalg.norm(face_dir - target_face)
r_up = - alpha_up % np.linalg.norm(up_dir - target_up)

r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r_height = - alpha_height % np.linalg.norm(COM_pos[2] - target_height)
r = r_vel + r_ang + r_face + r_up + r_side + r_height

# there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.
r_energy = get_energy_reward(self)
return r + r_energy

won
’

won

Skill: walk to ball
Object: ball # for this task there is a ball in the environment
Location: [1, 0, 0] # we put it at the position [1l, 0, 0]. The robot is initialized at the origin [0, 0, 0].
Reward:
‘Y 'python
def _compute_reward(self):
# we first get some information of the quadruped/humanoid.
# COM_pos and COM_gquat are the position and orientation (quaternion) of the center of mass of the quadruped/humanoid.
COM_pos, COM_quat = get_robot_pose (self
# COM_vel, COM_ang are the velocity and angular velocity of the center of mass of the quadruped/humanoid.
COM_vel, COM_ang = get_robot_velocity (self

face_dir, side_dir, and up_dir are three axes of the rotation of the quadruped/humanoid.

face direction points from the center of mass towards the face direction of the quadruped/humanoid.

side direction points from the center of mass towards the side body direction of the quadruped/humanoid.

up direction points from the center of mass towards up, i.e., the negative direction of the gravity.

gravity direction is [0, 0, -1].

when initialized, the face of the robot is along the x axis, the side of the robot is along the y axis, and the up of the robot
is along the z axis.

face_dir, side_dir, up_dir = get_robot_direction(self, COM_quat)

#
#
#
#
#
#

target_v = np.array([0.0, 0, 0.0])

26



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

target_up = np.array ([0, 0, 11)

target_face = np.array([1l, 0, 0])
target_side = np.array ([0, 1, 0])
target_ang = np.array ([0, 0, 0.0])

alpha_vel = 0.0

alpha_ang = 0.0

alpha_face = 1.0

alpha_up = 1.0

alpha_side = 1.0

alpha_height = 1.0

r_vel = - alpha_vel x np.linalg.norm(COM_vel - target_v)
r_ang = - alpha_ang = np.linalg.norm(COM_ang - target_ang)
r_face = - alpha_face % np.linalg.norm(face_dir - target_face)
r_up = - alpha_up * np.linalg.norm(up_dir - target_up)
r_side = - alpha_side * np.linalg.norm(side_dir - target_side)
r_height = - alpha_height % np.linalg.norm(COM_pos[2] - self.COM_init_pos[2])

r += r_vel + r_ang + r_face + r_up + r_height

# don’t want the ball to move

obj_pos, obj_gquat = get_obj_pose ("ball")

obj_vel, obj_ang = get_obj_vel("ball")

target_obj_vel = np.array([0.0, 0, 0.0])

alpha_obj_vel = 1.0

r_obj_vel = - alpha_obj_vel % np.linalg.norm(obj_vel - target_obj_vel)
r += r_obj_vel

# move towards the ball

r_dist = - np.linalg.norm(COM_pos - obj_pos)

r += r_dist

# there is a default energy term that penalizes the robot for consuming too much energy. This should be included for all skill.

r_energy = get_energy_reward(self)
return r + r_energy

won
’

D.3. Prompt for soft body manipulation tasks

The task proposal prompt for soft body manipulation is as follows:

We need you to generate some robot learning tasks involving manipulation of soft materials, especially those focused on making baked
foods.

Please think of 5 suitable table-top tasks involving manipulating soft body objects in common household scenarios.
You should first think of the soft-body object to manipulate, and then you can choose what tools to use in the next conversation.

Note: you should only think of meaningful tabletop manipulation tasks in household settings. Please do not think of tasks that are not
common in household scenarios. You should make sure that the tasks can be solved by a robot arm.

Please do not think of tasks that involve chemical change of the objects, such as boiling the water, or frying a steak.

Please output a list with 5 different task names.

After we obtain the task names, we use the following prompt for scene generation as well as training supervision generation.
We assume soft body manipulation tasks can be described using a initial configuration and a goal configuration. For both the
initial and the goal configuration, we ask GPT-4 to generate a text description of the soft body. This text description is used
as input to our text-to-image-to-3d pipeline to generate the mesh of the softbody. The training supervision takes a fixed form
as the earth mover distance between the mesh in the initial configuration and the mesh in the goal configuration.

We need you to generate some robot learning tasks involving soft materials.

We have successfully built a system that builds simulation environments using the following YAML file format, and we also have a system
that translates language descriptions into meshes. The YAML files can import the mesh into the simulation environment.

We believe that a successful task consists of two parts: a start YAML file and a goal YAML file.
The YAML file must follow the following rules.

I will give you the name of the task you need to build.

Here is an example:

Taskl: Make a pretzel

Description: Reshape dough into pretzel.

start.yaml

DR

yaml

# note: every child leads a different object
# note: You can only use type 'mesh’.
childs:

27



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- type: ’Mesh’
obj_cfg:
file: cube_dough.obj
scale: (0.1, 0.1, 0.1)
# The first dimension is the x-axis, which expands horizontally, the second dimension is the y-axis, which expands vertically,
and the third dimension is the z-axis, which represents the horizontal height.
pos: (0.5, 0.5, 0.5)
material_cfg:
# note: Define name for the material
name: ’cube_dough’
# note: Use rgba to control the color
color: (0.9, 0.9, 0.9, 1.0)
# We need to provide a detailed language description as the image_prompt, which is used as input for a text-to-image model to
generate an image, so we want a fully detailed one.
# Prompt must be a string.
Image_prompt: ’“a cube dough, no background, top-view’
# Mesh_prompt helps an image-to-mesh model to generate a mesh from an image, so we want a fully detailed one. It must follow the
rule of prompt.
Mesh_prompt: ’a cube dough’

goal.yaml
‘Y lyaml
childs:
- type: ’Mesh’
obj_cfg:
file: pretzel.obj
pos: (0.5, 0.5, 0.5)
scale: (0.1, 0.1, 0.1)
# contorl the size of the mesh
# all the mesh will be scaled into default size as 1 meter in length, 1 meter in height, 1 meter in width
# In this case, the mesh will be 0.1 meter in width, 0.1 meter in length, 0.1 meter in height.
material_cfg:
name: ’'pretzel’
color: (0.9, 0.9, 0.9, 1.0)
# We need to provide a detailed language description as the image_prompt, which is used as input for a text-to-image model to
generate an image, so we want a fully detailed one.
# Prompt must be a string.
Image_prompt: ’"a pretzel, no background, top-view’
# Mesh_prompt helps an image-to-mesh model to generate a mesh from an image, so we want a fully detailed one. It must follow the
rule of prompt.
Mesh_prompt: ’a pretzel’

LY

I want you to generate a task with the name: {TASK NAME}

D.4. All prompts for articulated object centric manipulation tasks

In the following, we show all prompts used for generating an articulated object manipulation task using RoboGen.

D.4.1. PROMPT FOR TASK PROPOSAL.

The first stage of RoboGen is task proposal, where it proposes meaningful and diverse tasks for robots to learn. For tasks
related to articulated object manipulation, we randomly sample an object from a pre-defined pool, and ask GPT-4 to propose
tasks related to the functionality and affordance of the sampled object. We show the prompt we use for this stage here.

We include one input-output example (when the sampled object is an oven) in the prompt. For the prompt shown here, we
ask GPT-4 to generate meaningful tasks related to a trashcan:

I will give you an articulated object, with its articulation tree and semantics. Your goal is to imagine some tasks that a robotic arm
can perform with this articulated object in household scenarios. You can think of the robotic arm as a Franka Panda robot. The
task will be built in a simulator for the robot to learn it.

Focus on manipulation or interaction with the object itself. Sometimes the object will have functions, e.g., a microwave can be used to
heat food, in these cases, feel free to include other objects that are needed for the task.

Please do not think of tasks that try to assemble or disassemble the object. Do not think of tasks that aim to clean the object or
check its functionality.

For each task you imagined, please write in the following format:

Task name: the name of the task.

Description: some basic descriptions of the tasks.

Additional Objects: Additional objects other than the provided articulated object required for completing the task.
Links: Links of the articulated objects that are required to perform the task.

- Link 1: reasons why this link is needed for the task

- Link 2: reasons why this link is needed for the task

Joints: Joints of the articulated objects that are required to perform the task.
- Joint 1: reasons why this joint is needed for the task
— Joint 2: reasons why this joint is needed for the task

Example Input:

28



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘‘‘Oven articulation tree
links:
base
link_0
link_1
link_2
link_3
link_4
link_5
link_6
link_7

joints:

joint_name: joint_0 joint_type: revolute parent_link: 1link_7 child_link: 1ink_0
joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1
joint_name: joint_2 joint_type: continuous parent_link: link_7 child_link: link_2
joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3
joint_name: joint_4 joint_type: continuous parent_link: link_7 child_link: link_4
joint_name: joint_5 joint_type: continuous parent_link: link_7 child_link: link_5
joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6
joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7

T

‘‘‘Oven semantics
link_0 hinge door
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 hinge knob
link_5 hinge knob
link_6 hinge knob
link_7 heavy oven_body

Example output:

Task Name: Open Oven Door

Description: The robotic arm will open the oven door.

Additional Objects: None

Links:

- link_0: from the semantics, this is the door of the oven. The robot needs to approach this door in order to open it.

Joints:

- joint_0: from the articulation tree, this is the revolute joint that connects link_0. Therefore, the robot needs to actuate this
joint for opening the door.

Task Name: Adjust Oven Temperature

Description: The robotic arm will turn one of the oven’s hinge knobs to set a desired temperature.

Additional Objects: None

Links:

- link_1: the robot needs to approach link_1, which is assumed to be the temperature knob, to rotate it to set the temperature.

Joints:

- Jjoint_1: joint_1 connects link_1 from the articulation tree. The robot needs to actuate it to rotate link_1 to the desired
temperature.

Task Name: Heat a hamburger Inside Oven

Description: The robot arm places a hamburger inside the oven, and sets the oven temperature to be appropriate for heating the
hamburger.

Additional Objects: hamburger

Links:

— 1link_0: 1link_0 is the oven door from the semantics. The robot needs to open the door in order to put the hamburger inside the oven.

link_1: the robot needs to approach link_1, which is the temperature knob, to rotate it to set the desired temperature.

Joints:

— joint_0: from the articulation tree, this is the revolute joint that connects 1link_0 (the door). Therefore, the robot needs to
actuate this joint for opening the door.

— Jjoint_1: from the articulation tree, joint_1 connects link_1, which is the temperature knob. The robot needs to actuate it to rotate
link_1 to the desired temperature.

Task Name: Set Oven Timer

Description: The robot arm turns a timer knob to set cooking time for the food.

Additional Objects: None.

Links:

- link_2: link_2 is assumed to be the knob for controlling the cooking time. The robot needs to approach link_2 to set the cooking time

Joints:
- Jjoint_2: from the articulation tree, joint_2 connects link_2. The robot needs to actuate joint_2 to rotate 1link_2 to the desired
position, setting the oven timer.

Can you do the same for the following object:

‘*‘‘TrashCan articulation tree
links:

base

1link_0

link_1

joints:

joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: 1link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

29



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

‘“‘TrashCan semantics
link_0 hinge door
link_1 free trashcan_body

DR

Here we provide an example response from GPT-4 with the sampled object being a trashcan. GPT-4 come up with two tasks:
Open Trash Can and Throw Trash Away. It also returns an additional object as "a pile of trash” for the task of Throw Trash
Away. It returns the involved links and joints for these two tasks as well.

Task Name: Open Trash Can

Description: The robotic arm will open the trash can 1lid.

Additional Objects: None

Links:

— 1link_0: This link represents the 1id of the trash can, based on the sematics. The robot needs to approach this lid to open it.
Joints:

- Jjoint_0: The joint_0 in the articulation tree connects 1link_0 (the 1id). Thus, the robot needs to actuate this joint to open the 1lid.

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can.

Additional Objects: A pile of trash

Links:

— 1link_0: Link_0, as the trash can 1id, needs to be approached and opened by the robot in order to throw away the trash.
Joints:

- Jjoint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

D.4.2. SCENE GENERATION PROMPT.

Once a task proposal is obtained, RoboGen then generates a corresponding scene for solving the task by populating the
environment with a number of relevant and necessary objects (assets). Continuing the above example, we show the scene
generation prompt for the task “Throw Trash Away”. We include 3 input-output examples in the prompt. As shown in the
prompt, we ask GPT-4 to output the scene in a yaml file format, such that it can be easily processed and subsequently used
to build the scene in simulation.

I need you to describe the initial scene configuration for a given task in the following format, using a yaml file. This yaml file will
help build the task in a simulator. The task is for a mobile Franka panda robotic arm to learn a manipulation skill in the
simulator. The Franka panda arm is mounted on a floor, at location (1, 1, 0). It can move freely on the floor. The z axis is the
gravity axis.

The format is as follows:
Y 'yaml
- use_table: whether the task requires using a table. This should be decided based on common sense. If a table is used, its location
will be fixed at (0, 0, 0). The height of the table will be 0.6m. Usually, if the objects invovled in the task are usually placed
on a table (not directly on the ground), then the task requires using a table.
# for each object involved in the task, we need to specify the following fields for it.
- type: mesh
name: name of the object, so it can be referred to in the simulator
size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday objects. E.g., an apple is
of scale 0.08m. You can think of the scale to be the longest dimension of the object.
lang: this should be a language description of the mesh. The language should be a concise description of the obejct, such that the
language description can be used to search an existing database of objects to find the object.
path: this can be a string showing the path to the mesh of the object.
on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This should be based on
common sense and the requirement of the task. E.g., a microwave is usually placed on the table.
center: the location of the object center. If there isn’t a table needed for the task or the object does not need to be on the table,
this center should be expressed in the world coordinate system. If there is a table in the task and the object needs to be
placed on the table, this center should be expressed in terms of the table coordinate, where (0, 0, 0) is the lower corner of
the table, and (1, 1, 1) is the higher corner of the table. In either case, you should try to specify a location such that
there is no collision between objects.

An example input includes the task names, task descriptions, and objects involved in the task. I will also provide with you the
articulation tree and semantics of the articulated object.

This can be useful for knowing what parts are already in the articulated object, and thus you do not need to repeat those parts as
separate objects in the yaml file.

Your task includes two parts:

1. Output the yaml configuration of the task.

2. Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to place an "item" into the
drawer, and to heat "food" in the microwave. In the generated yaml config, you should change these placeholder objects to be
concrete objects in the lang field, e.g., change "item" to be a toy or a pencil, and "food" to be a hamburger, a bowl of soup,
etc.

Example input:

Task Name: Insert Bread Slice

Description: The robotic arm will insert a bread slice into the toaster.

Objects involved: Toaster, bread slice. Only the objects specified here should be included in the yaml file.

‘‘‘Toaster articulation tree
links:

base

1link_0

link_1

30



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

link_2
link_3
link_4
link_5

joints:

joint_name: joint_0 joint_type: continuous parent_link: link_5 child_link: 1link_0
joint_name: joint_1 joint_type: prismatic parent_link: link_5 child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: 1link_5 child_link: 1link_2

joint_name: joint_3 Jjoint_type: prismatic parent_link: link_5 child_link: 1link_3

joint_name: joint_4 joint_type: prismatic parent_link: link_5 child_link: link_4

joint_name: joint_5 joint_type: fixed parent_link: base child_link: 1link_5
o

‘‘‘Toaster semantics
link_0 hinge knob

link_1 slider slider
link_2 slider button
link_3 slider button
link_4 slider button
link_5 free toaster_body

T

An example output:
YN 'yaml
- use_table: True ### Toaster and bread are usually put on a table.
- type: mesh
name: "Toaster"
on_table: True # Toasters are usually put on a table.
center: (0.1, 0.1, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where
(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the toaster near the lower corner of
the table.
size: 0.35 # the size of a toaster is roughly 0.35m
lang: "a common toaster"
path: "toaster.urdf"
- type: mesh
name: "bread slice"
on_table: True # Bread is usually placed on the table as well.
center: (0.8, 0.7, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where
(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the bread slice near the higher
corner of the table.
size: 0.1 # common size of a bread slice
lang: "a slice of bread"
Path: "bread_slice.obj"

RN

Another example input:

Task Name: Removing Lid From Pot

Description: The robotic arm will remove the lid from the pot.

Objects involved: KitchenPot. Only the objects specified here should be included in the yaml file.

*'‘KitchenPot articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: prismatic parent_link: link_1 child_link: 1link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1
Vo

*'‘KitchenPot semantics
link_0 slider lid
link_1 free pot_body
o
Output:
‘Y 'yaml
- use_table: True # A kitchen pot is usually placed on the table.
- type: mesh
name: "KitchenPot"
on_table: True # kitchen pots are usually placed on a table.
center: (0.3, 0.6, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where
(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the kitchen pot just at a random
location on the table.
size: 0.28 # the size of a common kitchen pot is roughly 0.28m
lang: "a common kitchen pot"
path: "kitchen_pot.urdf"
I
Note in this example, the kitchen pot already has a 1lid from the semantics file. Therefore, you do not need to include a separate 1lid
in the yaml file.

One more example input:

Task Name: Heat a hamburger in the oven.

Description: The robotic arm will put a hamburger in the oven and use the oven to heat it.

Objects involved: A hamburger, an oven. Only the objects here should be included in the yaml file.

‘‘‘Oven articulation tree

links:
base

31



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

1link_0
link_1
link_2
link_3
link_4
link_5
link_6
link_7

joints:

joint_name: joint_0 joint_type: revolute parent_link: 1link_7 child_link: 1link_0
joint_name: joint_1 joint_type: continuous parent_link: link_7 child_link: link_1
joint_name: joint_2 Jjoint_type: continuous parent_link: link_7 child_link: link_2
joint_name: joint_3 joint_type: continuous parent_link: link_7 child_link: link_3
joint_name: joint_4 Jjoint_type: continuous parent_link: link_7 child_link: link_4
joint_name: joint_5 Jjoint_type: continuous parent_link: link_7 child_link: link_5
joint_name: joint_6 joint_type: continuous parent_link: link_7 child_link: link_6
joint_name: joint_7 joint_type: fixed parent_link: base child_link: link_7

**‘Oven semantics
link_0 hinge door
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 hinge knob
link_5 hinge knob
link_6 hinge knob
link_7 heavy oven_body

RN

Output:
Y Ylyaml
- use_table: True # Although an oven is usually just placed on the ground, a hamburger is usually placed on the table.
- type: mesh
name: "Oven"
on_table: False # An oven is usually just placed on the floor.
center: (1.0, 0, 0) # Remember that when not on a table, the center is expressed in the world coordinate. Since the robot is at (1,
1, 0) and the table is at (0, 0, 0), we place the oven at (1.8, 2, 0) to avoid collision with the table and the robot.
size: 0.9 # the size of an oven is roughly 0.9%m
lang: "a common oven"
path: "oven.urdf"

- type: mesh
name: "hamburger"
on_table: True # a hamburger is usually placed on the table.
center: (0.2, 0.4, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where

(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the hamburger just at a random
location on the table.

size: 0.1 # common hamburgers’ diameters are 10 cm.

lang: "a common hamburger"

path: "hamburger.obj"

Rules:

- You do not need to include the robot in the yaml file.

- The yaml file should only include the objects listed in "Objects involved".

- Sometimes, the task description / objects involved will refer to generic/placeholder objects, e.g., to place an "item" into the
drawer, and to heat "food" in the microwave. In the generated yaml config, you should change these placeholder objects to be
concrete objects in the lang field, e.g., change "item" to be a toy or a pencil, and "food" to be a hamburger, a bowl of soup,
etc.

Can you do this for the following task:

Task Name: Throw Trash Away

Description: The robotic arm places an item of trash inside the trash can
Objects involved: TrashCan, A pile of trash

‘‘‘TrashCan articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: 1link_1 child_link: 1link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

R

‘*‘*‘TrashCan semantics
1ink_0 hinge door
link_1 free trashcan_body

Here we show an example response from GPT-4. The generated scene yaml file specifies the location of each object, its
physical size, along with a language description of the object, which will be used when retrieving the object from Objaverse.

Output:
‘Y lyaml
- use_table: False # Trash cans are usually placed on the floor.

32



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- type: mesh
name: "TrashCan"
on_table: False # Trash cans are usually placed on the floor.
center: (1.5, 1.5, 0) # Remember that when not on a table, the center is expressed in the world coordinate. Since the robot is at (1,
1, 0) and the table is at (0, 0, 0), we place the trash can at (1.5, 1.5, 0) to avoid collision with the table and the robot.
size: 0.6 # the size of a common trash can is roughly 0.6m
lang: "a common trash can"
path: "trashcan.urdf"
- type: mesh
name: "Trash"
on_table: True # Trash is usually picked up from a table or the floor. Here we assume it’s on the table.
center: (0.5, 0.5, 0) # Remember that when an object is placed on the table, the center is expressed in the table coordinate, where
(0, 0, 0) is the lower corner and (1, 1, 1) is the higher corner of the table. Here we put the trash in the middle of the table

size: 0.1 # common size of a pile of trash

lang: "a pile of paper waste" # Note here, we changed the generic/placeholder "pile of trash" object to be a more concrete object: a
pile of paper waste.

path: "paper_waste.obj"

D.4.3. PROMPT FOR RETRIEVING SEMANTICALLY RELEVANT ASSETS.

To further increase the complexity and diversity of the generated scenes while resembling object distributions of real-world
scenarios, we query GPT-4 to return a number of additional queries (object names and their descriptions) that are semantically
relevant to the task. Here we show the prompt for this part. We include one input-output example in the prompt. We again
ask GPT-4 to output the list of semantically relevant assets in the yaml file format.

Given a task, which is for a mobile Franka panda robotic arm to learn a manipulation skill in the simulator, your goal is to add more
objects into the task scene such that the scene looks more realistic. The Franka panda arm is mounted on a floor, at location (1,
1, 0). It can move freely on the floor. The z axis is the gravity axis.

The input to you includes the following:
Task name, task description, the essential objects involved in the task, and a config describing the current task scene, which contains
only the essential objects needed for the task. The config is a yaml file in the following format:
Y 'yaml
— use_table: whether the task requires using a table. This should be decided based on common sense. If a table is used, its location
will be fixed at (0, 0, 0). The height of the table will be 0.6m.
# for each object involved in the task, we need to specify the following fields for it.
- type: mesh
name: name of the object, so it can be referred to in the simulator
size: describe the scale of the object mesh using 1 number in meters. The scale should match real everyday objects. E.g., an apple is
of scale 0.08m. You can think of the scale to be the longest dimension of the object.
lang: this should be a language description of the mesh. The language should be a bit detailed, such that the language description
can be used to search an existing database of objects to find the object.
path: this can be a string showing the path to the mesh of the object.
on_table: whether the object needs to be placed on the table (if there is a table needed for the task). This should be based on
common sense and the requirement of the task.
center: the location of the object center. If there isn’t a table needed for the task or the object does not need to be on the table,
this center should be expressed in the world coordinate system. If there is a table in the task and the object needs to be
placed on the table, this center should be expressed in terms of the table coordinate, where (0, 0, 0) is the lower corner of
the table, and (1, 1, 1) is the higher corner of the table. In either case, you should try to specify a location such that
there is no collision between objects.

Your task is to think about what other distractor objects can be added into the scene to make the scene more complex and realistic for
the robot to learn the task. These distractor objects are not necessary for the task itself, but their existence makes the scene
look more interesting and complex. You should output the distractor objects using the same format as the input yaml file. You
should try to put these distractor objects at locations such that they don’t collide with objects already in the scene.

Here is one example:
Input:

Task name: Heat up a bowl of soup in the microwave
Task description: The robot will grab the soup and move it into the microwave, and then set the temperature to heat it.
Objects involved: Microwave, a bowl of soup
Config:
‘Y lyaml
- use_table: true
- center: (0.3, 0.7, 0)
lang: A standard microwave with a turntable and digital timer
name: Microwave
on_table: true
path: microwave.urdf
size: 0.6
type: urdf
- center: (0.2, 0.2, 0)
lang: A ceramic bowl full of soup
name: Bowl of Soup
on_table: true
path: bowl_soup.obj
size: 0.15
type: mesh

Output:

33



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

yaml
- name: plate # a plate is a common object placed when there is microwave and bowl of soup, in a kitchen setup
lang: a common kitchen plate
on_table: True
center: (0.8, 0.8, 0)
type: mesh
path: "plate.obj"
size: 0.15 # a plate is usually of scale 0.15m
- name: sponge # a sponge is a common object placed when there is microwave and bowl of soup, in a kitchen setup
lang: a common sponge
on_table: True
center: (0.5, 0.2, 0)
type: mesh
path: "sponge.obj"
size: 0.1 # a sponge is usually of scale 0.1lm
- name: Oven # a oven is a common object placed when there is microwave and bowl of soup, in a kitchen setup
lang: a kitchen oven
on_table: False # an oven is usually a standalone object on the floor
center: (1.8, 0.5, 0) # remember robot is at (1, 1, 0) and table is at (0, 0, 0). So the oven is placed at (1.8, 0.5, 0) in the world
coordinate system to avoid collision with other objects.
type: mesh
path: "oven.obj"
size: 0.8 # an oven is usually of scale 0.8m

DR

Can you do it for the following task:
Task name: Throw Trash Away
Task description: The robotic arm places an item of trash inside the trash can
Initial config:
Y 'yaml
- use_table: false
- center: (1.5, 1.5, 0)
lang: a common trash can
name: TrashCan
on_table: false
path: trashcan.urdf
size: 0.6
type: urdf
- center: (0.5, 0.5, 0)
lang: a pile of paper waste
name: Trash
on_table: true
path: paper_waste.obj
size: 0.05
type: mesh

RN

Here is an example response from GPT-4. For the task of throwing away trash, the addition objects are: a broom, a dustpan,
and a recycling bin, which are common objects for a scene where one needs to throw trash away.

Sure, here is the output for the given task:
‘Y lyaml
- name: broom # a broom is a common object found near a trash can
lang: a common broom
on_table: False
center: (2, 1.5, 0)
type: mesh
path: "broom.obj"
size: 1.2 # a broom is usually of scale 1.2m
— name: dustpan # a dustpan is a common object found near a trash can
lang: a common dustpan
on_table: False
center: (2, 2, 0)
type: mesh
path: "dustpan.obj"
size: 0.3 # a dustpan is usually of scale 0.3m
- name: recycling bin # a recycling bin is a common object found near a trash can
lang: a common recycling bin
on_table: False
center: (1, 2, 0)
type: mesh
path: "recycling_ bin.obj"
size: 0.6 # a recycling bin is usually of scale 0.6m
- name: soda_can # a soda can is a common object found near a trash can
lang: a common soda can
on_table: True
center: (0.7, 0.7, 0)
type: mesh
path: "soda_can.obj"
size: 0.1 # a soda can is usually of scale 0.1lm

34



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D.4.4. ASSET SIZE ADJUSTMENT PROMPT.

Because the assets retrieved from Objaverse is usually not of correct physical sizes, we ask GPT-4 to correct any unreasonable
object sizes. For each object in the scene, we query GPT-4 to correct its size such that the size matches the real-world size.
We continue the above example of throw trash away.

A robotic arm is trying to manipulate some objects to learn corresponding skills in a simulator. However, the size of the objects might
be wrong. Your task is to adjust the size of the objects, such that they match each other when interact with each other; and the
size should also match what is commonly seen in everyday life, in household scenarios.

Now I will give you the name of the task, the object and their sizes, please correct any unreasonable sizes.
Objects are represented using a mesh file, you can think of size as the longest dimension of the object.

I will write in the following format:
Task: task description

objl, mesh, size

obj2, mesh, size

Please reply in the following format:
explanations of why some size is not reasonable.
Y Ylyaml

objl, mesh, corrected_size

obj2, mesh, corrected_radius

Vo

Here is an example:

Input:

I

Task: The robotic arm lowers the toilet seat from an up position to a down position
Toilet, mesh, 0.2

Output:

A toilet is usually 0.6 - 0.8m in its back height, so the size is not reasonable -- it is a bit too small. Below is the corrected size.
‘Y 'yaml

Toilet, mesh, 0.7

Another example:

Input:

a

Task: Fill a cup with water under the faucet
Faucet, mesh, 0.25

Cup, mesh, 0.3

Vo

Output:

The size of the faucet makes senes. However, the size of the cup is too large for 2 reasons: it does not match the size of tha faucet
for getting water under the faucet; and it is not a common size of cup in everyday life. Below is the corrected size.

yaml

Faucet, mesh, 0.25

Cup, mesh, 0.12

One more example to show that even if no change is needed, you should still reply with the same size.
Input:

i

Task: Open Table Drawer The robotic arm will open a table drawer

table, mesh, 0.8

DR

Output:

The size of the table is reasonable, so no change is needed.

Y 'yaml

table, mesh, 0.8

This is also a good example to show that sometimes, the task description might include two objects, e.g., a table and a drawer, yet
there is only one object size provided (here the table). This is not an error, but that the other object is part of the provided
object, i.e., here the drawer is part of the table. It’s fine, you should then just reply with the corrected size of the object
provided, here, the table, in such cases.

Task: Throw Trash Away The robotic arm places an item of trash inside the trash can
trashcan, mesh, 0.6
trash, mesh, 0.1

An example response from GPT-4, where it adjusted the size of the trash from 0.1m to 0.05m.

The size of the trashcan is reasonable as it is a common size for a household trashcan. However, the size of the trash is a bit too
large. Trash items are usually smaller to fit inside the trashcan. Below is the corrected size.

yaml

trashcan, mesh, 0.6

trash, mesh, 0.05

DR

DR

35



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

D.4.5. PROMPT FOR ARTICULATED OBJECT JOINT INITIALIZATION.

For scene generation, we also need to specify the asset configuration, which is the initial joint angle of the articulated object.
E.g., for the robot to learn to open the drawer, the drawer needs to be initially closed. We continue the example of throwing
the trash away. We include multiple input-output examples in the prompt.

Your goal is to set the Joint angles of some articulated objects to the right value in the initial state, given a task. The task is
for a robot arm to learn the corresponding skills to manipulate the articulated object.

The input to you will include the task name, a short description of the task, the articulation tree of the articulated object, a
semantic file of the articulated object, the links and joints of the articulated objects that will be involved in the task, and
the substeps for doing the task.

You should output for each joint involved in the task, what Jjoint value it should be set to. You should output a number in the range
[0, 1], where 0 corresponds to the lower limit of that joint angle, and 1 corresponds to the upper limit of the joint angle. You
can also output a string of "random", which indicates to sample the joint angle within the range.

By default, the joints in an object are set to their lower joint limits. You can assume that the lower joint limit corresponds to the
natural state of the articulated object. E.g., for a door’s hinge joint, 0 means it is closed, and 1 means it is open. For a
lever, 0 means it is unpushed, and 1 means it is pushed to the limit.

Here is an example:

Input:
Task Name: Close the door
Description: The robot arm will close the door after it was opened.

‘‘‘door articulation tree
links:

base

link_0

link_1

link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: 1link_0
joint_name: joint_1 Jjoint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: revolute parent_link: 1link_0 child_link: link_2
o

*‘‘door semantics

link_0 hinge rotation_door
link_1 static door_frame
link_2 hinge rotation_door

Links:

- link_0: link_ 0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

- joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this
joint cautiously to ensure the door is closed.

substeps:
approach the door
close the door

Output:

The goal is for the robot arm to learn to close the door after it is opened. Therefore, the door needs to be initially opened, thus, we
are setting its value to 1, which corresponds to the upper joint limit.

joint values

joint_0: 1

Another example:
Task Name: Turn Off Faucet
Description: The robotic arm will turn the faucet off by manipulating the switch

‘‘‘Faucet articulation tree
links:

base

1ink_0

link_1

joints:
joint_name: joint_0 Jjoint_type: fixed parent_link: base child_link: 1link_0
joint_name: joint_1 joint_type: revolute parent_link: 1link_0 child_link: link_1

‘‘‘Faucet semantics
link_0 static faucet_base
link_1 hinge switch

Links:

— 1link_0: 1link_0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

- Jjoint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this
joint cautiously to ensure the door is closed.

36



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

substeps:
grasp the faucet switch
turn off the faucet

Output:
For the robot to learn to turn off the faucet, it cannot be already off initially. Therefore, joint_1 should be set to its upper joint
limit, or any value that is more than half of the joint range, e.g., 0.8.

‘Y'Yjoint wvalue

joint_1: 0.8

[N

One more example:
Task Name: Store an item inside the Drawer
Description: The robot arm picks up an item and places it inside the drawer of the storage furniture

‘‘‘StorageFurniture articulation tree
links:

base

link_0

link_1

link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: 1link_1 child_link: 1link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: 1link_2
o

‘‘‘StorageFurniture semantics
link_0 hinge rotation_door
link_1 heavy furniture_body
link_2 slider drawer

Links:

- link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item inside.

Joints:

- joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to actuate this joint to
open the drawer to store the item.

substeps:

grasp the drawer

open the drawer

grasp the item

put the item into the drawer
grasp the drawer again

close the drawer

release the grasp

Output:

This task involves putting one item into the drawer of the storage furniture. As noted in the substeps, the robot needs to first open
the drawer, put the item in, and then close it. Since the articulated object is initialized with the lower joint limit, i.e., the
drawer is initially closed, it aligns with the task where the robot needs to first learn to open the drawer. Therefore, no
particular joint angle needs to be set, and we just output None.

‘YYjoint value

None

DR

Can you do it for the following task:

Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can

‘‘‘TrashCan articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_ 1 child_link: 1link_0

joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

R

**‘TrashCan semantics
1link_0 hinge door
link_1 free trashcan_body

Links:
link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:
joint_0: Joint_0, connecting to link_ 0, needs to be actuated for the robot to open the trash can lid.

37



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

substeps:

grasp the trash can 1lid

open the trash can 1lid

grasp the trash

put the trash into the trash can
release the trash

grasp the trash can 1lid again
close the trash can 1lid

An example output from GPT-4. It correctly reasons that to throw the trash away in the trashcan, the robot needs to learn to
open the trashcan, thus the trashcan needs to be initialized as closed (joint angle set to be 0).

Output:
The task involves the robot learning to throw trash away. The robot needs to learn to open the trash can 1id, throw the trash in, and
then close the lid. Therefore, we need to set the initial joint angle such that the trash can 1lid is not already open. We can set
joint_0 to its lower limit, which corresponds to the trash can 1lid being closed.

*YYjoint value
joint_0: 0O

T

D.4.6. PROMPT FOR SPECIAL SPATIAL RELATIONSHIPS.

For certain tasks, the objects in the scene need to satisfy certain spatial relationships. For example, for the task of retrieve a
gold bar from the safe, the gold bar needs to be initially inside the safe. Here we show the prompt we use for that, and we
continue the “Throw away trash” example.

Your goal is to output any special spatial relationships certain objects should have in the initial state, given a task. The task is
for a robot arm to learn the corresponding skills in household scenarios.

The input to you will include

the task name,

a short description of the task,

objects involved in the task,

substeps for performing the task,

If there is an articulated object involved in the task, the articulation tree of the articulated object, the semantic file of the
articulated object, and the links and joints of the articulated objects that will be involved in the task.

We have the following spatial relationships:

on, obj_A, obj_B: object A is on top of object B, e.g., a fork on the table.

in, obj_A, obj_B: object A is inside object B, e.g., a gold ring in the safe.

in, obj_A, obj_B, link_name: object A is inside the link with link_name of object B. For example, a table might have two drawers,
represented with link_0, and link_1, and in(pen, table, link _0) would be that a pen is inside one of the drawers that corresponds
to 1link_0.

Given the input to you, you should output any needed spatial relationships of the involved objects.
Here are some examples:

Input:

Task Name:Fetch Item from Refrigerator

Description: The robotic arm will open a refrigerator door and reach inside to grab an item and then close the door.
Objects involved: refrigerator, item

‘“‘refrigerator articulation tree
links:

base

link_0

link_1

link_2

joints:

joint_name: joint_0 joint_type: fixed parent_link: base child_link: 1link_0
joint_name: joint_1 joint_type: revolute parent_link: 1link 0 child_link: link_1
joint_name: joint_2 joint_type: revolute parent_link: 1link_0 child_link: link_2

R

‘“‘refrigerator semantics

1link_0 heavy refrigerator_body
link_1 hinge door
link_2 hinge door

Links:

link_1: The robot needs to approach and open this link, which represents one of the refrigerator doors, to reach for the item inside.

Joints:

joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to open the door, reach for
the item, and close the door.

substeps:

grasp the refrigerator door

open the refrigerator door

grasp the item

move the item out of the refrigerator
grasp the refrigerator door again

38



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

close the refrigerator door

Output:

The goal is for the robot arm to learn to retrieve an item from the refrigerator. Therefore, the item needs to be initially inside the
refrigerator. From the refrigerator semantics we know that link_0 is the body of the refrigerator, therefore we should have a
spatial relationship as the following:

‘‘'spatial relationship

In, item, refrigerator, 1link_0
o

Another example:

Task Name: Turn Off Faucet

Description: The robotic arm will turn the faucet off by manipulating the switch
Objects involved: faucet

‘‘‘Faucet articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: fixed parent_link: base child_link: 1link_0
joint_name: joint_1 joint_type: revolute parent_link: 1link_0 child_link: link_1

RN

‘‘‘Faucet semantics
link_0 static faucet_base
link_1 hinge switch

Vo

Links:

link_0: 1link_0 is the door. This is the part of the door assembly that the robot needs to interact with.

Joints:

joint_0: Joint_0 is the revolute joint connecting link_0 (the door) as per the articulation tree. The robot needs to actuate this joint
cautiously to ensure the door is closed.

substeps:
grasp the faucet switch
turn off the faucet

Output:
There is only 1 object involved in the task, thus no special spatial relationships are required.
‘‘‘spatial relationship

None
o

One more example:

Task Name: Store an item inside the Drawer

Description: The robot arm picks up an item and places it inside the drawer of the storage furniture.
Objects involved: storage furniture, item

‘‘‘StorageFurniture articulation tree
links:

base

link_0

link_1

link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: 1link_1 child_link: 1link_0
joint_name: joint_1 Jjoint_type: fixed parent_link: base child_link: link_1

joint_name: joint_2 joint_type: prismatic parent_link: link_1 child_link: 1link_2
o

‘‘‘StorageFurniture semantics
link_0 hinge rotation_door
link_1 heavy furniture_body
link_2 slider drawer

Links:

link_2: link_2 is the drawer link from the semantics. The robot needs to open this drawer to place the item inside.

Joints:

joint_2: joint_2, from the articulation tree, connects to link_2 (the drawer). Thus, the robot would need to actuate this joint to open
the drawer to store the item.

substeps:

grasp the drawer

open the drawer

grasp the item

put the item into the drawer
grasp the drawer again

close the drawer

release the grasp

Output :

This task involves putting one item into the drawer of the storage furniture. The item should initially be outside of the drawer, such
that the robot can learn to put it into the drawer. Therefore, no special relationships of in or on are needed. Therefore, no
special spatial relationships are needed.

39



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

spatial relationship
None

Can you do it for the following task:

Task Name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can
Objects involved: TrashCan, Trash

‘*‘‘TrashCan articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_ 1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

DR

‘'‘TrashCan semantics
1ink_0 hinge door
link_1 free trashcan_body

RN

Links:
link_0: Link_0, as the trash can lid, needs to be approached and opened by the robot in order to throw away the trash.

Joints:
joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

substeps:

grasp the trash can 1lid

open the trash can lid

grasp the trash

put the trash into the trash can
release the trash

grasp the trash can 1lid again
close the trash can 1lid

An example output from GPT-4: it decides that there is no speical relationship needed for the task of throw trash away.

Output:

The task involves the robot arm placing an item of trash into the trash can. Initially, the trash should not be inside the trash can,

so the robot can learn to put it in. Therefore, no special spatial relationships are needed.
spatial relationship
None

We have finished all steps needed for scene generation now.

D.4.7. PROMPT FOR GENERATING TRAINING SUPERVISION.

To acquire the skill for solving the proposed task, supervisions for skill learning are needed. To facilitate the learning
process, RoboGen first queries GPT-4 to plan and decompose the generated task into shorter-horizon sub-tasks. After the
decomposition, RoboGen then queries GPT-4 to choose a proper algorithm for solving each sub-task. For sub-tasks to be
learned using RL, we prompt GPT-4 to write corresponding reward functions with three in-context examples. For object
manipulation and locomotion tasks, the reward functions are based on the low-level states which GPT-4 can query via a
provided list of simulator APIs. Here we show the prompt we use for this, which includes 3 input-output examples, including
the decomposition, the algorithm selection, and the reward if RL is selected as the algorithm. With the generated scene and

training supervision, we can then perform skill learning to let the robot learn the skill to perform this task.

A robotic arm is trying to solve some household object manipulation tasks to learn corresponding skills in a simulator.

We will provide with you the task description, the initial scene configurations of the task, which contains the objects in the task and

certain information about them.

Your goal is to decompose the task into executable sub-steps for the robot, and for each substep, you should either call a primitive

action that the robot can execute, or design a reward function for the robot to learn, to complete the substep.
For each substep, you should also write a function that checks whether the substep has been successfully completed.

Common substeps include moving towards a location, grasping an object, and interacting with the joint of an articulated object.

An example task:

Task Name: Fetch item from refrigerator

Description: The robotic arm will open a refrigerator door reach inside to grab an item, place it on the table, and then close the door

Initial config:
Y lyaml

40



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

- use_table: true

- center: (1.2, 0, 0)
lang: a common two-door refrigerator
name: Refrigerator
on_table: false
path: refrigerator.urdf
size: 1.8
type: urdf

- center: (1.2, 0, 0.5)
lang: a can of soda
name: Item
on_table: false
path: soda_can.obj
size: 0.2
type: mesh

I will also give you the articulation tree and semantics file of the articulated object in the task. Such information will be useful
for writing the reward function/the primitive actions, for example, when the reward requires accessing the joint value of a joint
in the articulated object, or the position of a link in the articulated object, or when the primitive needs to access a name of
the object.

‘‘‘Refrigerator articulation tree

links:

base

1link_0

link_1

link_2

joints:

joint_name: joint_0 Jjoint_type: fixed parent_link: base child_link: 1link_0
joint_name: joint_1 joint_type: revolute parent_link: 1link_0 child_link: link_1
joint_name: joint_2 joint_type: revolute parent_link: link_0 child_link: link_2

‘' ‘Refrigerator semantics
link_0 heavy refrigerator_body
link_1 hinge door

link_2 hinge door

Vo

I will also give you the links and joints of the articulated object that will be used for completing the task:

Links:

link_1: This link is one of the refrigerator doors, which the robot neesd to reach for the item inside.

Joints:

joint_1: This joint connects link_1, representing one of the doors. The robot needs to actuate this joint to open the door, reach for
the item, and close the door.

For each substep, you should decide whether the substep can be achieved by using the provided list of primitives. If not, you should
then write a reward function for the robot to learn to perform this substep.

If you choose to write a reward function for the substep, you should also specify the action space of the robot when learning this
reward function.

There are 2 options for the action space: "delta-translation", where the action is the delta translation of the robot end-effector,
suited for local movements; and "normalized-direct-translation", where the action specifies the target location the robot should
move to, suited for moving to a target location.

For each substep, you should also write a condition that checks whether the substep has been successfully completed.

Here is a list of primitives the robot can do. The robot is equipped with a suction gripper, which makes it easy for the robot to grasp
an object or a link on an object.

grasp_object (self, object_name): the robot arm will grasp the object specified by the argument object name.

grasp_object_link (self, object_name, link_name): some object like an articulated object is composed of multiple links. The robot will
grasp a link with link_name on the object with object_name.

release_grasp(self): the robot will release the grasped object.

approach_object (self, object_name): this function is similar to grasp_object, except that the robot only approaches the object, without
grasping it.

approach_object_link (self, object_name, link_name): this function is similar to grasp_object_link, except that the robot only
approaches the object’s link, without grasping it.

Note that all primitives will return a tuple (rgbs, final state) which represents the rgb images of the execution process and the final
state of the execution process.

You should always call the primitive in the following format:

rgbs, final state = some_primitive_function(self, argl, ..., argn)

Here is a list of helper functions that you can use for designing the reward function or the success condition:

get_position(self, object_name): get the position of center of mass of object with object_name.

get_orientation(self, object_name): get the orientation of an object with object_name.

detect (self, object_name, object_part): detect the position of a part in object. E.g., the opening of a toaster, or the handle of a
door.

get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.

get_joint_limit (self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an object, returned as a 2-
element tuple.

get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.

get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.

get_bounding_box (self, object_name): get the axis-aligned bounding box of an object. It returns the min and max xyz coordinate of the
bounding box.

get_bounding_box_link (self, object_name, link_name): get the axis-aligned bounding box of the link of an object. It returns the min and
max xyz coordinate of the bounding box.

in_bbox (self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at bbox_min and the highest
corner at bbox_max.

get_grasped_object_name (self): return the name of the grasped object. If no object is grasped by the robot, return None. The name is
automatically converted to the lower case.

41



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

get_grasped_object_and_link_name (self): return a tuple, the first is the name of the grasped object, and the second is the name of the
grasped link. If no object is grasped by the robot, return (None, None). The name is automatically converted to the lower case.

gripper_close_to_object (self, object_name): return true if the robot gripper is close enough to the object specified by object_name,
otherwise false.

gripper_close_to_object_link (self, object_name, link_name): return true if the robot gripper is close enough to the object link,
otherwise false.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is closed with the 1lid joint
being 0, and a lever is unpushed when the joint angle is 0.

For the above task "Fetch item from refrigerator", it can be decomposed into the following substeps, primitives, and reward functions:

substep 1: grasp the refrigerator door
‘“‘primitive
rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name (self)
success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

substep 2: open the refrigerator door
‘Y'reward
def _compute_reward(self):
# this reward encourages the end-effector to stay near door to grasp it.
eef_pos = get_eef_pos(self) [0]
door_pos = get_link_state(self, "Refrigerator", "link_1")
reward_near = -np.linalg.norm(eef_pos - door_pos

# Get the joint state of the door. We know from the semantics and the articulation tree that joint_1 connects link_1 and is the
joint that controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")

# The reward is the negative distance between the current joint angle and the joint angle when the door is fully open (upper limit)

joint_limit_low, joint_limit_high = get_joint_limit (self, "Refrigerator", "joint_1")
target_joint_angle = Jjoint_limit_high

diff = np.abs(joint_angle - target_joint_angle)

reward_joint = -diff

reward = reward_near + 5 x reward_joint
success = diff < 0.1 % (Joint_limit_high - joint_limit_low)

return reward, success

‘“‘action space

delta-translation
o

In the last substep the robot already grasps the door, thus only local movements are needed to open it.

substep 3: grasp the item

‘“‘primitive
rgbs, final state = grasp_object (self, "Item")
success = get_grasped_object_name (self) == "Item".lower (

substep 4: move the item out of the refrigerator
‘Y'reward
def _compute_reward(self):
# Get the current item position
item_position = get_position(self, "Item")

# The first reward encourages the end-effector to stay near the item
eef_pos = get_eef_pos(self) [0]
reward_near = -np.linalg.norm(eef_pos — item_position)

# The reward is to encourage the robot to grasp the item and move the item to be on the table.

# The goal is not to just move the soda can to be at a random location out of the refrigerator. Instead, we need to place it
somewhere on the table.

# This is important for moving an object out of a container style of task.

table_bbox_low, table_bbox_high = get_bounding_box(self, "init_table") # the table is referred to as "init_table" in the simulator.

table_bbox_range = table_bbox_high - table_bbox_low

# target location is to put the item at a random location on the table
target_location = np.zeros(3)

target_location[0] = table_bbox_low[0] + 0.2 * table_bbox_range[0] # 0.2 is a random chosen number, any number in [0, 1] should
work

target_location[1l] = table_bbox_low[l] + 0.3 * table_bbox_range[l] # 0.3 is a random chosen number, any number in [0, 1] should
work

target_location[2] = table_bbox_high[2] # the height should be the table height
diff = np.linalg.norm(item_position - target_location)

reward_distance = -diff

reward = reward_near + 5 x reward_distance

success = diff < 0.06

return reward, success

‘Ylaction space

normalized-direct-translation
Vi

42



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: grasp the refrigerator door again
““'primitive
rgbs, final_state = grasp_object_link(self, "Refrigerator", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name (self
success = (grasped_object == "Refrigerator".lower() and grasped_link == "link_1".lower())

substep 6: close the refrigerator door

‘Y 'reward

def _compute_reward(self):
# this reward encourages the end-effector to stay near door
eef_pos = get_eef_pos(self) [0]
door_pos = get_link_state(self, "Refrigerator", "link_1")
reward_near = -np.linalg.norm(eef_pos - door_pos

# Get the joint state of the door. The semantics and the articulation tree show that joint_1 connects link_1 and is the joint that
controls the rotation of the door.

joint_angle = get_joint_state(self, "Refrigerator", "joint_1")

# The reward encourages the robot to make joint angle of the door to be the lower limit to clost it.

joint_limit_low, joint_limit_high = get_joint_limit (self, "Refrigerator", "joint_1")

target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)
reward_joint = -diff

reward = reward_near + 5 x reward_joint
success = diff < 0.1 % (joint_limit_high - Jjoint_limit_low)

return reward, success

action space
delta-translation

I will give some more examples of decomposing the task. Reply yes if you understand the goal.

Yes, I understand the goal. Please proceed with the next example.

Another example:

Task Name: Set oven temperature
Description: The robotic arm will turn the knob of an oven to set a desired temperature.
Initial config:

VN vyaml
- use_table: false
- center: (1, 0, 0) # when an object is not on the table, the center specifies its location in the world coordinate.

lang: a freestanding oven
name: oven

on_table: false

path: oven.urdf

size: 0.85

type: urdf

‘‘‘Oven articulation tree:
links:

base

link_0

link_1

link_2

link_3

link_4

joints:

joint_name: joint_0 joint_type: continuous parent_link: link_4 child_link: link_0
joint_name: joint_1 joint_type: continuous parent_link: link_4 child_link: link_ 1
joint_name: joint_2 joint_type: continuous parent_link: link_4 child_link: link_2
joint_name: joint_3 Jjoint_type: continuous parent_link: link_4 child_link: link_3
joint_name: joint_4 Jjoint_type: fixed parent_link: base child_link: link_4

Vo

‘'‘Oven semantics
1ink_0 hinge knob
link_1 hinge knob
link_2 hinge knob
link_3 hinge knob
link_4 heavy oven_body

Links:
link_0: We know from the semantics that link 0 is a hinge knob. It is assumed to be the knob that controls the temperature of the oven.
The robot needs to actuate this knob to set the temperature of the oven.

Joints:

43



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

joint_0: from the articulation tree, joint_0 connects link_0 and is a continuous joint. Therefore, the robot needs to actuate joint_0
to turn link_0, which is the knob.

This task can be decomposed as follows:

substep 1: grasp the temperature knob
““primitive
rgbs, final_state = grasp_object_link(self, "oven", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name (self
success = (grasped_object == "oven".lower () and grasped_link == "link_0".lower())

substep 2: turn the temperature knob to set a desired temperature
‘Y 'reward
def _compute_reward(self):
# This reward encourages the end-effector to stay near the knob to grasp it.
eef_pos = get_eef_pos(self) [0]
knob_pos = get_link_state(self, "oven", "link_0")
reward_near = -np.linalg.norm(eef_pos - knob_pos

joint_angle = get_joint_state(self, "oven", "joint_0")

joint_limit_low, joint_limit_high = get_joint_limit (self, "oven", "Jjoint_0")

desired_temperature = joint_limit_low + (joint_limit_high - joint_limit_low) / 3 # We assume the target desired temperature is one
third of the joint angle. It can also be 1/3, or other values between joint_limit_low and joint_limit_high.

# The reward is the negative distance between the current joint angle and the joint angle of the desired temperature.

diff = np.abs(joint_angle - desired_temperature)

reward_joint = -—diff

reward = reward_near + 5 x reward_joint

success = diff < 0.1 % (Joint_limit_high - joint_limit_low)

return reward, success

‘Ylaction space
delta-translation

Vo

I will provide more examples in the following messages. Please reply yes if you understand the goal.

Yes, I understand the goal. Please proceed with the next example.

Here is another example:

Task Name: Put a toy car inside a box
Description: The robotic arm will open a box, grasp the toy car and put it inside the box.
Initial config:
‘Y lyaml
- use_table: True
- center: (0.2, 0.3, 0)
on_table: True
lang: a box
name: box
size: 0.25
type: urdf
- center: (0.1, 0.6, 0)
on_table: True
lang: a toy car
name: toy_car
size: 0.1
type: mesh

‘‘‘box articulation tree
links:

base

link_0

link_1

link_2

joints:
joint_name: joint_0 joint_type: revolute parent_link: 1link_2 child_link: 1link_0
joint_name: joint_1 joint_type: revolute parent_link: link_2 child_link: link_1

joint_name: joint_2 Jjoint_type: fixed parent_link: base child_link: link_2
o

*‘‘box semantics

link_0 hinge rotation_lid
link_1 hinge rotation_lid
link_2 free box_body

Links:
link_0: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_0 is one of the lids.
link_1: To fully open the box, the robot needs to open both box lids. We know from the semantics that link_1 is another 1lid.

44



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

Joints:

joint_0: from the articulation tree, joint_0 connects link_0 and is a hinge joint. Thus, the robot needs to actuate joint_0 to open
link_0, which is the 1id of the box.

joint_1: from the articulation tree, joint_1 connects link_1 and is a hinge joint. Thus, the robot needs to actuate joint_1 to open
link_1, which is the 1id of the box.

This task can be decomposed as follows:

substep 1: grasp the first 1lid of the box
““'‘primitive
# The semantics shows that 1link_0 and link_1 are the 1id links.
rgbs, final_state = grasp_object_link(self, "box", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name (self)
success = (grasped_object == "box".lower () and grasped_link == "link_0".lower())

substep 2: open the first 1lid of the box
‘Y ‘reward
def _compute_reward(self):
# This reward encourages the end-effector to stay near the 1lid to grasp it.
eef_pos = get_eef_pos(self) [0]
lid_pos = get_link_state(self, "box", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos

# Get the joint state of the first lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint
that controls the rotation of the first 1id link_O.

joint_angle = get_joint_state(self, "box", "joint_0")

# The reward is the negative distance between the current joint angle and the joint angle when the lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit (self, "box", "joint_0")

target_Jjoint_angle = joint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 x reward_joint
success = diff < 0.1 % (Joint_limit_high - joint_limit_low)

return reward, success

‘“‘action space
delta-translation

R

substep 3: grasp the second lid of the box
““‘primitive
# We know from the semantics that 1link_0 and link_1 are the 1id links.
rgbs, final state = grasp_object_link(self, "box", "link_1")
grasped_object, grasped_link = get_grasped_object_and_link_name (self)
success = (grasped_object == "box".lower () and grasped_link == "link_1".lower())

substep 4: open the second lid of the box
‘Y'reward
def _compute_reward(self):
# This reward encourages the end-effector to stay near the lid to grasp it.
eef_pos = get_eef_pos(self) [0]
lid_pos = get_link_state(self, "box", "link_1")
reward_near = -np.linalg.norm(eef_pos - lid_pos

# Get the joint state of the second lid. The semantics and the articulation tree show that joint_1 connects link_1 and is the joint
that controls the rotation of the second lid link_1.

joint_angle = get_joint_state(self, "box", "joint_1")

# The reward is the negative distance between the current joint angle and the joint angle when the 1lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit (self, "box", "joint_1")

target_joint_angle = Jjoint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 % reward_joint

success = diff < 0.1 % (Joint_limit_high - joint_limit_low)
return reward, success

‘“‘action space

delta-translation
o

substep 5: grasp the toy car

‘“‘primitive
rgbs, final_state = grasp_object (self, "toy_car")
success = get_grasped_object_name (self) == "toy_car".lower (

substep 6: put the toy car into the box
‘Ylreward
def _compute_reward(self):

# Get the current car position

car_position = get_position(self, "toy_car")

45



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

# This reward encourages the end-effector to stay near the car to grasp it.
eef_pos = get_eef_pos(self) [0]
reward_near = -np.linalg.norm(eef_pos - car_position)

# Get the box body bounding box

min_aabb, max_aabb = get_bounding_box_link (self, "box", "link_4") # from the semantics, link_4 is the body of the box.
diff = np.array(max_aabb) — np.array(min_aabb)

min_aabb = np.array(min_aabb) + 0.05 % diff # shrink the bounding box a bit

max_aabb = np.array(max_aabb) - 0.05 x diff

center = (np.array(max_aabb) + np.array(min_aabb)) / 2

# another reward is one if the car is inside the box bounding box
reward_in = 0
if in_bbox(self, car_position, min_aabb, max_aabb): reward_in += 1

# another reward is to encourage the robot to move the car to be near the box
# we need this to give a dense reward signal for the robot to learn to perform this task.
reward_reaching = -np.linalg.norm(center - car_position)

# The task is considered to be successful if the car is inside the box bounding box
success = in_bbox (self, car_position, min_aabb, max_aabb)

# We give more weight to reward_in, which is the major goal of the task.
reward = 5 % reward_in + reward_reaching + reward_near
return reward, success

‘‘‘action space
normalized-direct-translation

Vo

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

Please decompose the following task into substeps. For each substep, write a primitive/a reward function, write the success checking
function, and the action space if the reward is used.

The primitives you can call for the robot to execute:

grasp_object (self, object_name): the robot arm will grasp the object specified by the argument object name.

grasp_object_link (self, object_name, link_name): some object like an articulated object is composed of multiple links. The robot will
grasp a link with link_name on the object with object_name.

release_grasp(self): the robot will release the grasped object.

approach_object (self, object_name): this function is similar to grasp_object, except that the robot only approaches the object, without
grasping it.

approach_object_link (self, object_name, link_name): this function is similar to grasp_object_link, except that the robot only
approaches the object’s link, without grasping it.

Note that all primitives will return a tuple (rgbs, final_state) which represents the rgb images of the execution process and the final

state of the execution process.
You should always call the primitive in the following format:
rgbs, final_ state = some_primitive_function(self, argl, ..., argn)

The APIs you can use for writing the reward function/success checking function:

get_position(self, object_name): get the position of center of mass of object with object_name.

get_orientation(self, object_name): get the orientation of an object with object_name.

get_joint_state(self, object_name, joint_name): get the joint angle value of a joint in an object.

get_joint_limit (self, object_name, joint_name): get the lower and upper joint angle limit of a joint in an object, returned as a 2-
element tuple.

get_link_state(self, object_name, link_name): get the position of the center of mass of the link of an object.

get_eef_pos(self): returns the position, orientation of the robot end-effector as a list.

get_bounding_box (self, object_name): get the axis-aligned bounding box of an object. It returns the min and max xyz coordinate of the
bounding box.

get_bounding_box_link (self, object_name, link_name): get the axis-aligned bounding box of the link of an object. It returns the min and
max xyz coordinate of the bounding box.
in_bbox (self, pos, bbox_min, bbox_max): check if pos is within the bounding box with the lowest corner at bbox_min and the highest

corner at bbox_max.

get_grasped_object_name (self): return the name of the grasped object. If no object is grasped by the robot, return None. The name is
automatically converted to the lower case.

get_grasped_object_and_link_name (self): return a tuple, the first is the name of the grasped object, and the second is the name of the
grasped link. If no object is grasped by the robot, return (None, None). The name is automatically converted to the lower case.

gripper_close_to_object (self, object_name): return true if the robot gripper is close enough to the object specified by object_name,
otherwise false.

gripper_close_to_object_link (self, object_name, link_name): return true if the robot gripper is close enough to the object link,
otherwise false.

The action space you can use for learning with the reward: delta-translation is better suited for small movements, and normalized-
direct-translation is better suited for directly specifying the target location of the robot end-effector.

You can assume that for objects, the lower joint limit corresponds to their natural state, e.g., a box is closed with the 1lid joint
being 0, and a lever is unpushed when the joint angle is 0.

Task name: Throw Trash Away
Description: The robotic arm places an item of trash inside the trash can
Initial config:
‘Y lyaml
- use_table: false
- center: (1.5, 1.5, 0)
lang: a common trash can
name: TrashCan
on_table: false
path: trashcan.urdf
reward_asset_path: 7102187’
size: 0.6

46



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

type: urdf
- center: (0.5, 0.5, 0)
lang: a pile of paper waste
name: Trash
on_table: true
path: paper_waste.obj
size: 0.05
type: mesh

LR

‘*‘‘TrashCan articulation tree
links:

base

link_0

link_1

joints:
joint_name: joint_0 joint_type: revolute parent_link: link_1 child_link: link_0
joint_name: joint_1 joint_type: fixed parent_link: base child_link: link_1

DR

‘'‘TrashCan semantics
1ink_0 hinge door
link_1 free trashcan_body

RN

Links:

link_0: Link_0, as the trash can 1id, needs to be approached and opened by the robot in order to throw away the trash.
Joints:

joint_0: Joint_0, connecting to link_0, needs to be actuated for the robot to open the trash can lid.

An example response for the above task “Throw the trash away”. It is decomposed into multiple substeps, and either action
primitive or RL is selected as the algorithm for these substeps. For substep using RL, a reward function is further written.

This task can be decomposed into the following substeps:

substep 1: grasp the trash can lid
‘“‘primitive
rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name (self
success = (grasped_object == "TrashCan".lower () and grasped_link == "link_0".lower ()

substep 2: open the trash can lid
‘Y'reward
def _compute_reward(self):
# This reward encourages the end-effector to stay near the lid to grasp it.
eef_pos = get_eef_pos(self) [0]
lid_pos = get_link_state(self, "TrashCan", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos

# Get the joint state of the lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint that
controls the rotation of the 1lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")

# The reward is the negative distance between the current joint angle and the joint angle when the 1lid is fully open (upper limit).

joint_limit_low, joint_limit_high = get_joint_limit (self, "TrashCan", "joint_0")

target_joint_angle = Jjoint_limit_high

diff = np.abs(joint_angle - target_joint_angle)
reward_joint = -diff

reward = reward_near + 5 x reward_joint
success = diff < 0.1 * (joint_limit_high - joint_limit_low)

return reward, success

‘‘‘action space

delta-translation

substep 3: grasp the trash

““'‘primitive
rgbs, final state = grasp_object (self, "Trash")
success = get_grasped_object_name (self) == "Trash".lower (

substep 4: put the trash into the trash can
‘Y'reward
def _compute_reward(self):
# Get the current trash position
trash_position = get_position(self, "Trash"

# This reward encourages the end-effector to stay near the trash to grasp it.

47



RoboGen: Towards Unleashing Infinite Data for Automated Robot Learning via Generative Simulation

eef_pos = get_eef_pos(self) [0]
reward_near = -np.linalg.norm(eef_pos - trash_position)

# Get the trash can body bounding box

min_aabb, max_aabb = get_bounding_box_link (self, "TrashCan", "link_1") # from the semantics, link_1 is the body of the trash can.
diff = np.array(max_aabb) - np.array(min_aabb)

min_aabb = np.array(min_aabb) + 0.05 x diff # shrink the bounding box a bit

max_aabb = np.array(max_aabb) - 0.05  diff

center = (np.array(max_aabb) + np.array(min_aabb)) / 2

# another reward is one if the trash is inside the trash can bounding box
reward_in = 0
if in_bbox(self, trash_position, min_aabb, max_aabb): reward_in += 1

# another reward is to encourage the robot to move the trash to be near the trash can
# we need this to give a dense reward signal for the robot to learn to perform this task.
reward_reaching = -np.linalg.norm(center - trash_position)

# The task is considered to be successful if the trash is inside the trash can bounding box
success = in_bbox (self, trash_position, min_aabb, max_aabb)

# We give more weight to reward_in, which is the major goal of the task.
reward = 5 % reward_in + reward_reaching + reward_near
return reward, success

‘“‘action space

normalized-direct-translation
o

Since this substep requires moving the item to a target location, we use the normalized-direct-translation.

substep 5: release the trash

““‘primitive
rgbs, final state = release_grasp(self
success = get_grasped_object_name (self) == None

substep 6: grasp the trash can 1lid again
‘Y'primitive
rgbs, final_state = grasp_object_link(self, "TrashCan", "link_0")
grasped_object, grasped_link = get_grasped_object_and_link_name (self
success = (grasped_object == "TrashCan".lower () and grasped_link == "link_0".lower ()

substep 7: close the trash can lid

‘Y 'reward

def _compute_reward(self):
# This reward encourages the end-effector to stay near the lid
eef_pos = get_eef_pos(self) [0]
lid_pos = get_link_state(self, "TrashCan", "link_0")
reward_near = -np.linalg.norm(eef_pos - lid_pos

# Get the joint state of the 1lid. The semantics and the articulation tree show that joint_0 connects link_0 and is the joint that
controls the rotation of the 1lid.

joint_angle = get_joint_state(self, "TrashCan", "joint_0")

# The reward encourages the robot to make joint angle of the lid to be the lower limit to close it.

joint_limit_low, joint_limit_high = get_joint_limit (self, "TrashCan", "joint_0")

target_joint_angle = joint_limit_low

diff = np.abs(target_joint_angle - joint_angle)
reward_joint = -diff

reward = reward_near + 5 x reward_joint
success = diff < 0.1 % (joint_limit_high - Jjoint_limit_low)

return reward, success

action space
delta-translation

48



