
Learning Generalizable Tool-use Skills through Trajectory Generation

Carl Qi∗1 Yilin Wu∗2 Lifan Yu2 Haoyue Liu2 Bowen Jiang2 Xingyu Lin∗∗3 David Held∗∗2

Abstract— Autonomous systems that efficiently utilize tools
can assist humans in completing many common tasks such
as cooking and cleaning. However, current systems fall short
of matching human-level of intelligence in terms of adapting
to novel tools. Prior works based on affordance often make
strong assumptions about the environments and cannot scale
to more complex, contact-rich tasks. In this work, we tackle this
challenge and explore how agents can learn to use previously
unseen tools to manipulate deformable objects. We propose
to learn a generative model of the tool-use trajectories as a
sequence of tool point clouds, which generalizes to different
tool shapes. Given any novel tool, we first generate a tool-
use trajectory and then optimize the sequence of tool poses to
align with the generated trajectory. We train a single model
on four different challenging deformable object manipulation
tasks, using demonstration data from only one tool per task.
The model generalizes to various novel tools, significantly
outperforming baselines. We further test our trained policy
in the real world with unseen tools, where it achieves the
performance comparable to human. Additional materials can
be found on our project website.1

I. INTRODUCTION

Building autonomous systems that leverage tools can

greatly enhance efficiency and assist humans in completing

many common tasks in everyday life [1], [2], [3], [4], [5], [6],

[7]. As humans, we possess an innate ability to adapt quickly

to use novel tools. However, replicating such adaptability

in autonomous systems presents a significant challenge. To

solve this task of novel tool manipulation, prior work has

explored different representations for tools. A good tool

representation should contain a rich visual understanding of

the object and be useful for downstream physical interac-

tions. Prior work [2] uses data-driven approaches to learn

the latent representations for tools but such representation

cannot generalize because of the lack of compositionality and

interpretability. Another line of the work studies keypoints

as a representation for tool which works only for rigid object

manipulation including hammering, pushing and reaching.

In this work, we explore how agents can learn to use

novel tools to manipulate deformable objects. Beyond the

challenges of representing novel tools, manipulating de-

formable objects with tools adds considerable difficulties.

For one, manipulating deformable objects often results in

rich, continuous contact between the tool and the object; the

contacts between a roller tool and dough, for example, are

1University of Texas at Austin, United States
2Carnegie Mellon University, United States
3University of California, Berkeley, United States
∗ equal contribution
∗∗ equal advising
1https://sites.google.com/view/toolgen

Goal

Tool

(unseen during training)

Execution

Generate point cloud trajectory

Align the selected tool to generated point clouds

ToolGenOne model for all

tasks and goals

Observation

Fig. 1: Our method ToolGen can solve deformable object

manipulation with diverse tasks and goals. It does so by

first generating a point cloud trajectory of the desired tool

and then aligning the actual tool to the generated point

clouds for execution. We train a single model for four

different challenging deformable object manipulation tasks.

Our model is trained with demonstration data from just a

single tool for each task and is able to generalize to various

unseen tools.

continuous and cannot be easily discretized, which makes

specifying discrete affordance labels to describe such inter-

actions difficult. Further, defining rewards or keypoints (as is

sometimes used for tool and environment representations [3],

[4]) for deformable objects is also challenging. Therefore,

operating novel tools to solve diverse tasks calls for an

approach that makes few assumptions about the task and

the environment. Our goal is to train a policy to solve

various manipulation tasks with multiple tools, including

tools that were not seen during training. We propose a novel

approach, ToolGen, which learns tool-use skills via trajectory

generation and sequential pose optimization. Given the scene,

the goal, and a tool, ToolGen first generates a point cloud

of a tool in the desired initial pose, and it subsequently

predicts how this generated tool would move to perform

the task. Finally, we sequentially align the actual tool to

the generated tool to extract the actions for the agent to

execute. Fig 1 offers an overview of our task setting and

ToolGen’s outputs. We evaluate ToolGen against several

baselines in deformable object manipulation with diverse

tasks, goals, and tools. Impressively, with just a single model

trained across all tasks and tools, ToolGen significantly

outperforms the baselines and generalizes to many novel

tools. Further, ToolGen achieves this despite being trained

on demonstrations from just one tool for each task.

To summarize our contribution, we propose ToolGen,

ar
X

iv
:2

3
1
0
.0

0
1
5
6
v
5

[c

s.
R

O
]

 6
 S

ep
 2

0
2
4

which represents tool use via trajectory generation. We have

shown that generating a point cloud trajectory of the tool can

effectively capture the essence of tool use, i.e. how the tool

should be placed in relation to the dough and how it should

move over time, which allows us to generalize to a variety of

unseen tools and goals. Furthermore, we transfer the policy

to the real world without any finetuning to demonstrate our

method’s effectiveness on three real world manipulation tasks

with unseen novel tools and different goals.

II. RELATED WORK

Learning Generalizable Tool-use Skills: Prior works

have explored training robots to perform manipulation tasks

with tools. To enable generalization, some approaches predict

intermediate “affordances” and then generate actions based

on these affordances [2], [8], [9], [10]. For example, af-

fordances like grasping points or functional points and be

represented as key points [2], [3], [4], [9], [10]. Similarly,

concepts like contacts and forces [11], [12] can also be

used. However, obtaining labels for these affordances can

be difficult, and such affordance labels do not easily extend

to deformable object manipulation, since the contacts with

deformable objects (e.g. rolling a piece of dough) are com-

plex and cannot be modeled by a few keypoints. Comparing

to these methods, our method is capable of learning from

unlabeled interaction data, as it implicitly learns affordances

from the point clouds of the tool and the dough. This data-

driven approach is similar to prior work [13], but we do not

explicitly specify the structure of the shape embedding space,

leaving more flexibility in tool shapes.

Another approach is to discover affordance regions in

a self-supervised way by running parameterized motion

primitives [2] or affordance-conditioned policies [3], [4] in

simulation. In the image space, prior works have explored

training an action-conditioned video prediction model [1]

for planning actions for different tools. However, the video

prediction model lacks 3D structure and has difficulty rep-

resenting fine-grained action trajectories. Another research

direction for generalizable tool use is to utilize the pretrained

Large Language Models (LLMs) for long horizon reasoning.

Prior work [14] designs four consecutive modules to prompt

LLMs to directly generate code for robotic tool use. How-

ever, they make an assumption that we have state information

of the tools and objects and directly include them into the

prompt for LLMs. For deformable objects, state estimation

is very challenging so this approach doesn’t generalize to

deformable object manipulation with tool use.

Deformable Object Manipulation with Tools: Prior

works with deformable objects often consider using a fixed

set of tools. For example, Some approaches [5], [7] aim to

solve the task of dough manipulation with a differentiable

simulator but their tool sets are fixed with rolling pin and

spatula. Other work [15], [16] use a fixed tool set of knives

for cutting. These works do not consider generalization to

novel tools, which is the focus of this work.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Consider a set of point clouds (Po,Pg,Ptool), where Po

represents the initial observation of the scene, Pg stands for

the goal, and Ptool for a tool to use for execution. Our task is

to predict an actions sequence of horizon H, where the tool

transforms the initial pose into a predicted target pose. The

actions is represented by a transformations sequence T0:H .

Here, all the point cloud positions as well as the objects’

orientations are relative to a reference frame located at the

dough center. This design allows us to perform manipulation

that is agnostic to the location of the dough on the table.

In the training stage, we use demonstrations of tools

from a training set {Ptraintooli}i=1:Ktrain
, where Ktrain is the

number of training tools we have. The demonstration data

fed into the model are of the form: (Po,Pg,Ptraintooli ,T0:H).
The initial transformation T0 in the sequence brings the

tool to a “reset pose”. The remaining terms T1:H are the

relative transformations from the previous timestep, which

we call “delta poses.” For each task, we manually specify

distributions of the initial and goal configurations. We then

run trajectory optimization using a differentiable simulator

to generate these demonstrations following prior works [17].

Human demonstrations could serve as an alternative source

of the training data described above.

IV. METHOD

We propose the following approach to obtain an trajectory

executable for robots with any given tools:

• We first generate a point cloud of a reconstructed tool

Pgen at a starting pose based on the given tool Ptool

(Sec. IV-A).

• Next we generate a sequence of tool actions of how this

generated tool would achieve the task (Sec. IV-A) based

on policy learned with Behavior Cloning.

• We then align the actual tool to each of the point clouds

in the generated trajectory (Sec. IV-B).

Below, we describe this approach in detail, and experiments

in Sec. V demonstrate the remarkable improvements of this

approach compared to other approaches.

A. Representing tool-use through point cloud trajectory gen-

eration

In this section, we describe our approach for trajectory

generation. A straightforward method for trajectory gener-

ation would be to directly predict the motion of the tool.

However, directly regressing into the tool’s pose, particularly

the orientation, is proved to be challenging, as indicated by

prior studies [18], [19], [20]. To alleviate this challenge,

we employ a generative module Gtra j to produce a point

cloud trajectory P
gen
0:H to complete the task with reconstructed

tool. Our trajectory generation model consists of two parts.

In the first part, a initial point cloud generator Greset is

utilized to reconstruct a tool point cloud at “reset pose”.

In the second part, a path generator Gpath is adopted for

producing trajectory of P
gen
0:H based on the reconstructed tool.

This generated trajectory will later be used to determine the

actions of the actual tool.

(a) Tool trajectory generation module

P
o

P
g

(b) Align existing tool to generated trajectory

Inverse

kinematics

Optimized transformations

Point cloud

decoder

∼ z

Encoder 1

z2

P
g

P
o

P
gen

0

Generated tool

point cloud

Execute actions

P
gen
1:HGenerated tool trajectory

P
tool

Trajectory

generation
T

gen
1:H

P
tool

Encoder 2

⊕

Gtraj = (Greset, Gpath)

Initial point cloud generator Greset Path generator Gpath

Fig. 2: Overview of our method: (a) Given an initial observation of the scene Po, the goal Pg, and a tool Ptool , we first leverage

the trajectory generation module Gtra j to generate an ideal tool trajectory accomplishing the task P
gen
0:H . It encompasses two

submodules: Initial point cloud generator Greset generating reset pose P
gen
0 of reconstructed tool and Path generator Gpath

generating P
gen
1:H (b) We then align the existing tool with the reconstructed tool via sequential pose optimization to extract

the pose of the existing tool T
opt

0:H , and we subsequently use inverse kinematics to obtain the actions for the agent to execute.

Greset is a PointFlow-based [21] encode-decoder genera-

tion model. It conditions on the point cloud of the existing

tool Ptool , the initial scene observation Po, and the goal Pg, to

reconstruct the tool at “reset pose”, P
gen
0 . The architecture of

our PointFlow-based [21] generator Greset is shown in Fig. 2

(a) (top). It encodes the tool points and the concatenation

of initial and target dough points to two sets of latent fea-

tures with separate PointNet++ [22] encoders. These latent

features are concatenated and inputted through an MLP to

produce an estimation of Gaussian distribution. We then take

a sample from this estimated distribution as the input of

a PointFlow [21] decoder, which outputs the reconstruction

point cloud of the given tool at the reset pose P
gen
0 .

The second part Gpath works on predicting a sequence

of transformations of how this generated tool would move

to achieve the task. The architecture of the path generator

is shown in Fig. 2 (a) (top right). We follow the design in

ToolFlowNet [23] to train a policy model through Behavior

Cloning, which optimizes a combined loss of point content

loss and consistency loss. The P
gen
0 from Greset is concate-

nated together with the initial scene observation Po, and the

goal state Pg and passed into the model. Transformations of

H−1 time-steps, T
gen

1:H , are generated for the tool. Details for

Gpath can be found in Appendix B on the website.

Together, our generative module Gtra j = (Greset ,Gpath)
predicts a trajectory of point clouds P

gen
0:H , which shows the

movement of a reconstructed tool accomplishing the manip-

ulation task. Training details are described in Section IV-C.

B. Execution via sequential pose optimization

In Section IV-A, the generated point cloud trajectory of

the tool P
gen
0:H is built upon the reconstructed tool and is

not guaranteed to be executable for the actual tool. In this

section, we describe the optimization procedure for aligning

the actual tool with the generated tool reconstruction in order

to extract reasonable actions for actual execution (visualized

in Fig. 2 (b) and listed in detail in Algorithm 1).

The initial transformation at time-step 0 exerts a decisive

influence on the overall trajectory. We therefore subdivide the

optimized transformations T
opt

0:H into the reset transformation

T
opt

0 and delta pose optimization T
opt

1:H . To align the actual

tool Ptool to the reconstructed tool in the first timestep P
gen
0 ,

we consider the following terms: 1) the similarity between

the predicted reset pose and actual tool pose, 2) the collision

between tool and the initial scene observation. The loss

function is given by:

Jreset(T) =Cham f er(T ◦Ptool
,P

gen
0)

−λc ·Cham f er(T ◦Ptool
,Po),

(1)

The first term is the Chamfer distance between the actual

tool Ptool transformed by T and the reconstructed tool P
gen
0 at

reset pose. The second term is a penalty term computed as the

Chamfer distance between the existing tool Ptool transformed

by T and the observation of the dough Po. λc is a hyper-

parameter balancing the two terms. The aim of the penalty

term is to avoid undesirable collisions between the tool in

reset pose and the environment, while collisions will be

allowed for subsequent time-steps.

For optimization, we use Projected Gradient Descent,

detailed in Sec. IV-C, for different initializations of T and

learn to start from the one that minimizes the objective

described in Eq. 1.

Next we work on the optimization of the delta poses

T
opt

1:H . Similar to that for reset pose, we evaluate the distance

between the actual tool Ptool and the reconstructed tool

Algorithm 1 Sequential pose optimization

1: Input: The current observation of the dough Po, the

existing tool Ptool , and the point cloud trajectory for the

generated tool P
gen
0:H

2: // Optimize for the reset transformation

3: Initialize random transformations T 1
0 , ...,T

N
0 in SE(3);

4: Optimize T 1
0 , ...,T

N
0 according to Eq. 1 to obtain costs

J1
reset ...J

N
reset ;

5: Choose the transformation that minimizes the costs,

denoted as T
opt

0 ;

6: // Optimize for delta poses

7: Initialize the delta poses as identities, i.e., T1:H = I;

8: Optimize the delta poses according to Eq. 2 and obtain

the final transformations T
opt

1:H ;

9: Output: Optimized transformations for the existing tool:

T
opt

0:H

at each time-step P
gen
t , with an additional penalty term to

encourage small motions. The loss function for the delta

poses is given by:

Jδ (T1:H) = ∑
t=1:H

Cham f er(Tt ◦Xt−1 ◦Ptool
,P

gen
t)+λr · ∥Tt∥

where Xt−1 = Tt−1 ◦Tt−2 ◦ ...T
opt

0
(2)

The first term is the Chamfer distance between the recon-

structed tool points Ptool transformed by Tt ◦Xt−1 and the

generated tool points P
gen
t at time-step t, ∥·∥ is a regulariza-

tion function to moderate the magnitude of the translation

and rotation defined by the delta poses (see Sec. IV-C for

details). λr is a hyper-parameter balancing the two terms.

Finally, we apply these objectives in an optimization

routine, as outlined in Algorithm 1, to align the reconstructed

tool with the generated one and produce the final trajectory

T
opt

0:H for the reconstructed tool. Subsequently, we can utilize

inverse kinematics to determine the required actions for our

agent to execute the task. In our case, these actions comprise

the translation and angular velocities of the tool.

C. Implementation details

Before imputting the tool, the dough, and the goal point

clouds into the PointNet++ networks, we use a one-hot en-

coding to differentiate points that belong to different objects.

Therefore, the input features per point will be [x,y,z,one-hot].
The two modules of trajectory generation, Greset and

Gpath, are trained separately. Greset learns by optimizing the

evidence lower bound (ELBO) given the training tools and

their reset poses T0◦Ptraintooli from the demonstration dataset

described in Sec. III. The trajectories of the training tools

T1:H from the demonstration dataset described in Sec. III are

then used as labels for the training Gpath.

We train a single set of modules (Greset ,Gpath) across a

compact demonstration dataset comprised of multiple tasks

rather than training separate networks for each task. To

achieve this, we introduces a scoring module Dscore to

evaluate and select tool for each task. Details of Dscore

Large scoop

Roll Cut

Small scoop

Training tool

Test tools

Training tool

Training tool

Training tool

Test tools

Test tools

Test tools

Fig. 3: We consider 4 tasks: Roll, Cut, Small scoop, and

Large scoop. On the left side of each task, we illustrate how

the training tool is used to achieve the goal, overlaying the

goal on the initial observation. On the right side, we visualize

the initial configurations of the training tool and test tools for

each task, highlighting the ability of our method to generalize

to novel tools.

module is shown in Appendix A on the website. In training

data, we collect 200 demonstration trajectories for each task

performed with just one training tool. Despite the limited

training data, our model is demonstrated to be capable

of generalizing to various unseen tools in both simulation

and real world. See Appendix C on the website for more

information on our demonstration dataset.

In trajectory optimization, we use the quaternion represen-

tation for the orientation of the transformation, and project

the values onto a unit ball after each gradient update. Here,

we use a step size of 10−2, and λc = 0.1. For optimizing the

delta poses, we use the 3-DoF Euler angles representation

with a step size of 10−3, a regularization factor of λr = 0.1,

and we use the euclidean norm to regularize the translation as

well as the rotation. We use a greedy IK solver [24] to obtain

the robot actions from the simulation and the real world, and

we find it to work well in our tasks. One could also use IK as

the main objective in the sequential pose optimization step

to produce better poses for IK to solve.

V. RESULTS

As shown below, we demonstrate that ToolGen is able to

perform well on a variety of manipulation tasks with novel

tools using just a single model trained across multiple tasks

and tools. Notably, we train with demonstrations from only

one training tool per task and we test on several unseen

tools, demonstrating our method’s generalization abilities.

We additionally evaluate ToolGen on real world observations

and use a Franka Panda robot to execute the predicted

trajectory. For real world experiments, we include both the

qualitative results and quantitative results to highlight our

policy’s effectiveness when transferred to the real world.

A. Tasks and baselines

Tasks: We evaluate our method against several baselines

in a soft body simulator, PlasticineLab [17]. We consider

four tasks: “Roll”, “Cut”, “Small scoop” and “Large scoop”.

Example configurations and their training and test tools for

(a) Performance of all the methods across 3 different settings.
We evaluate 10 trajectories per task per tool and then aggregate
the performance across all the tasks.

Generated scoop trajectory

Test tool

Test tool Test tool aligned to generated tools

Generated cut trajectory

Test tool aligned to generated tools

(b) Examples of generated tool trajectories for scoop (top) and cut
(bottom), as well as the trajectories of the test tools aligned to these
generated trajectories.

Fig. 4: Fig. 4a: Performance of all the methods across 3 settings. Fig. 4b: Examples of generated tool trajectories and test

tool alignments.

these tasks are depicted in Fig. 3. In our setup, all of the

tools are placed far from the dough at the start of each task,

as would be the case in a normal tool-use scenario.

Metric: We specify goals as 3D point clouds of different

geometric shapes. We report the normalized decrease in the

Chamfer Distance between the observation and the goal,

computed as s(t) = s0−sH

s0
, where s0,sH are the initial and

final Chamfer Distances to the goal respectively. To compute

the performance of each method, we evaluate 10 trajectories

per task per tool and then aggregate the performance across

all the tasks.

Baselines: We evaluate the following baselines with different

action representations. All of the baselines regress to reset

transformations and delta poses, except for BC-E2E which

predicts delta poses directly from the initial configuration

without a reset transformation. Details on the architectures

of the baselines are described in Appendix D on the website.

• TrajOpt Oracle. Differentiable trajectory optimization

with ground truth dynamics from the simulator.

• BC-E2E. End-to-end behavioral cloning that outputs a

H ′ × 6,(H ′ > H) vector representing the delta poses

of the tool relative to the initial tool pose. Unlike the

other baselines, this baseline does not output a reset

transformation.

• BC-Joint. Behavioral cloning that jointly regresses to

the reset transformation and subsequent delta poses

from the initial tool configuration.

• BC-Latent. Behavioral cloning that regresses to the

reset transformation, moves the tool to the predicted

reset pose, and then predict subsequent delta poses from

a latent encoding of the scene with the tool in the reset

pose.

• TFN-Traj. Behavioral cloning that regresses to the

reset transformation, moves the tool to the predicted

reset pose, and then uses the updated scene to predict

subsequent delta poses with the ToolFlowNet-based [23]

trajectory model described in Appendix B on the web-

site.

We examine three settings, each presenting a greater level

of difficulty, detailed in Sec. V-B, Sec. V-C, and Sec. V-

D, respectively. We demonstrate that ToolGen is robust

to these generalization challenges and maintains superior

performance over the baselines. We additionally conduct

ablation studies by removing the path generator of ToolGen,

detailed in Appendix E on the website.

B. Leveraging training tools at test time

We first test the methods on a set of held out config-

urations using training tools. To successfully perform the

manipulation, the methods need to output the appropriate

poses for the training tools to complete the tasks. Fig. 4a

shows the performance of all the methods. We see that most

methods achieve reasonable performance. This shows that

all these methods generalize reasonably well to different goal

configurations given the same training tools. In contrast, BC-

E2E achieves suboptimal performance on even this simple

version of the task, showing the limitations of methods that

do not predict a reset transformation.

C. Generalization to unseen initial tool poses

To simulate the fact that a tool might be in any initial

configuration in the real world, we randomize the initial

poses of the training tools in SE(3) and rerun evaluations.

From Fig. 4a, we observe that ToolGen is the only method

that is robust to this perturbation. Despite the fact that

the baselines are trained with the same tools, they fail to

generalize to unseen initial poses of the tool. On the other

Goal

TFN-Traj

ToolGen

Goal
Task: Cut Task: Large scoop

t t

Fig. 5: Example rollouts of ToolGen (ours) compared to the

baseline TFN-Traj. The goal configuration of each task is

shown on the top right. ToolGen can effectively use the new

tool while the baseline struggles.

Method Roll Cut Small scoop Large Scoop Average

BC-E2E 0.49±0.30 −0.22±0.44 −0.27±0.20 0.07±0.08 0.02±0.26
BC-Joint 0.64±0.26 0.00±0.09 −0.05±0.10 −0.01±0.07 0.30±0.41

BC-Latent 0.70±0.15 0.37±0.10 −0.15±0.30 0.34±0.41 0.15±0.33
TFN-Traj 0.70±0.19 0.29±0.19 0.40±0.44 0.35±0.40 0.43±0.36

ToolGen (Ours) 0.75±0.15 0.82±0.08 0.50±0.40 0.80±0.19 0.72±0.27

TABLE I: Quantitative performance for different methods

when using novel tools. Each value in the table represents

the normalized decrease of Chamfer Distance for a specific

task, measured across the use of 3 novel tools in 10 different

goal configurations. The final column denotes the average

performance of each method across all tasks.

hand, ToolGen is robust to the initial configuration of the

tool and receives no performance loss.

D. Generalization to unseen tools

Finally, we evaluate the methods on a far more challenging

scenario, in which our agents are given unseen tools. We

evaluate each novel tool on 10 held out goals for each task

and average their performances. See Fig. 3 for a visualization

of the novel tools we consider. Since the novel tools are also

in arbitrary initial poses, this scenario requires the method to

be robust to tool shapes as well as initial poses of the tool.

Fig. 4a and Table I shows the quantitative results of all the

methods, and Fig. 5 show examples of rollouts by ToolGen

(ours) and the baseline TFN-Traj. All of the baselines fail

to obtain a high performance, especially in the more chal-

lenging task of scooping (see Table I). In contrast, ToolGen

can leverage completely unseen tools in meaningful ways.

This is because ToolGen leverages trajectory generation to

alleviate the issues of distribution shift. It further uses a

non-learned optimization procedure (gradient descent with

multiple random initializations), which also does not suffer

from a distribution shift. For more analysis, please see our

Appendix E on the website.

We show examples of the tools generated by ToolGen (top

row) as well as the test tools aligned to these generated tools

(bottom row) in Fig. 4b. Overall, ToolGen achieves superior

performance over the baselines in this challenging scenario

of using novel tools. Remarkably, we train just a single

ToolGen model across all tasks and tools, using merely one

training tool per task. Despite this, ToolGen demonstrates the

capacity to solve all tasks effectively when presented with

novel tools.

E. Inference on real world observations

For our real world experiments, we select three represen-

tative tasks, Cut, Roll and Scoop(Large) to test our trained

policy. In each task, we select two real world tools and attach

each tool to a mount so that it can stay on the tool hanger

for the robot to pick up. Details of our environment setup

can be seen in Figure 7 and Appendix I on the website.

Our ToolGen model is trained entirely with simulation data.

To demonstrate the robustness of ToolGen, we record point

clouds of tool and dough from the real world and use

ToolGen to predict the trajectory of the real world tool. To

obtain the point clouds from the real world, we use three

Azure Kinect cameras to record the initial dough and the

tool point clouds. We then manually manipulate the dough

to a desired shape and record the final point cloud as the goal

point cloud. We record the point cloud of the real dough at

its initial and goal states and concatenate them with the tool

point cloud. The initial pose of the tool is entailed in the point

cloud input. The model then output a trajectory of horizon

H = 50. In the execution stage, we use a mold to restore

the dough to the recorded initial state. The robot picks up

the tool and move to the recorded initial pose and executes

the trajectory, where the tool first transforms from the initial

pose to reset pose, and then moves through to execute

the produced trajectory on the real dough. Fig. 6 includes

qualitative results of the robot executing the policy’s rollouts.

For each of the three different tasks, we show an example

of the robot using one of the test tools to reshape the dough.

Quantitatively, despite the gap in point cloud observations

between sim and real, our method can effectively generalize

to unseen tool in the real world with an average normalized

decrease of Chamfer Distance of 0.77 as shown in Table II.

This metric shows how close the final state gets to the

goal compared to the initial state of the dough. The larger

normalized decrease of Chamfer Distance indicates better

performance. Compared to the baseline method BC-Latent,

our method ToolGen outperforms it on all three tasks by a

large margin. BC-Latent fails to generalize to some unseen

real world tools and generates transformations that oscillate

without further movements for those tools. In contrast, our

method successfully generalizes to all tasks with different

goals and tools. Hence, our method demonstrates smaller

performance variance. To prove that our policy is comparable

to human performance, two volunteers are asked to perform

the same manipulation tasks as that for robots. From the table

we can see that our policy’s task performance is very close

to humans with the largest difference of 0.08 in normalized

decrease of Chamfer Distance. We also notice that Scoop

generally has worst performance compared to other two tasks

because the real world dough we are using is so sticky

that both the human and our trained policy struggle with

detaching the scooped piece from the whole dough.

VI. CONCLUSION AND LIMITATIONS

In this paper, we introduce ToolGen, a novel framework

for learning generalizable tool-use skills. ToolGen uses a

point cloud trajectory generation approach to represent tool

Fig. 6: Results of ToolGen on real world observations for Cut (top) and Roll (middle) and Scoop(bottom). For each task,

we visualize initial dough observation, the goal, the real world tool, the policy rollout of our trained policy and the final

state of the policy. As a result, ToolGen can effectively generate manipulation trajectories from real world observations even

though the model is trained entirely in simulation.

Scoop tool

Roll tool

Cut tool
Real Robot Setup

front camera

left camera

right camera

Fig. 7: On the left, it is the real world experiment setup with

three cameras, one Franka Panda robot and a tool hanger. On

the right, they are six tools we use for three different tasks.

use and then applies sequential pose optimization for ex-

ecution. This representation circumvents the issues associ-

ated with using affordances to represent tool use, and it

demonstrates superior generalization capabilities, especially

when evaluating on unseen test tools, given only one tool per

task for training. We applied a single ToolGen model to the

manipulation of deformable objects, tackling diverse tasks,

goals, and tools, and we found that ToolGen significantly

outperforms the baselines and generalizes effectively to many

novel tools. It is our hope that ToolGen will inspire more

innovative approaches for tool use representation that enable

broad ranges of generalization in the future.

Limitations: Our method has several limitations: First, our

method’s execution time is considerably longer compared

to that of a trained policy, due to the time needed for

generating point clouds and optimizing the current tool’s

poses. Quantitative results are shown in Appendix F on the

website. We anticipate that the use of faster techniques for

Method Roll ↑ Cut ↑ Scoop ↑ Average ↑
BC-Latent 0.73±0.21 0.60±0.46 0.55±0.12 0.57±0.27

ToolGen (Ours) 0.83±0.09 0.86±0.16 0.63±0.14 0.77±0.16

Human (Oracle) 0.91±0.03 0.90±0.11 0.69±0.14 0.83±0.14

TABLE II: Quantitative results for different methods when

using real world novel tools. Human Oracle is not an

automated method and serves as an upper bound for the

performance of the dough manipulation tasks. Each value in

the table represents the average normalized decrease of the

Chamfer Distance and the standard deviation for a specific

task, measured across 2 different goal configurations. Each

goal configuration is tested with two different initial pose of

tools. The final column denotes the average performance of

each method across all tasks. The metric is computed the

same way as in Table I

sequential pose optimization, such as second-order methods,

could speed up our method. Secondly, as our point cloud

generator is trained on limited tools, it is sometimes unable

to generate accurate point clouds for novel tools and thus

the alignment process could fail. A promising direction is to

train on more variations of the tool to improve the generation

process and make alignment easier. Further details on these

failure cases are shown in Appendix G on the website.

VII. ACKNOWLEDGEMENT

This work was supported by the National Science Foun-

dation under Grant No. IIS-2046491, and the National

Institute of Standards and Technology under Grant No.

70NANB23H178. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of

the National Science Foundation, or the National Institute

of Standards and Technology.

REFERENCES

[1] A. Xie, F. Ebert, S. Levine, and C. Finn, “Improvisation through
physical understanding: Using novel objects as tools with visual
foresight,” Robotics: Science and Systems (RSS), 2019.

[2] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei,
and S. Savarese, “Learning task-oriented grasping for tool manipu-
lation from simulated self-supervision,” The International Journal of

Robotics Research (IJRR), 2020.
[3] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “Keto: Learning

keypoint representations for tool manipulation,” in IEEE International

Conference on Robotics and Automation (ICRA), 2020.
[4] D. Turpin, L. Wang, S. Tsogkas, S. Dickinson, and A. Garg, “Gift:

Generalizable interaction-aware functional tool affordances without
labels,” in Robotics: Science and Systems (RSS), 2021.

[5] X. Lin, Z. Huang, Y. Li, J. B. Tenenbaum, D. Held, and C. Gan,
“Diffskill: Skill abstraction from differentiable physics for deformable
object manipulations with tools,” International Conference on Learn-

ing Representations (ICLR), 2022.
[6] C. Qi, X. Lin, and D. Held, “Learning closed-loop dough manipulation

using a differentiable reset module,” IEEE Robotics and Automation

Letters, vol. 7, no. 4, pp. 9857–9864, 2022.
[7] X. Lin, C. Qi, Y. Zhang, Z. Huang, K. Fragkiadaki, Y. Li, C. Gan,

and D. Held, “Planning with spatial-temporal abstraction from point
clouds for deformable object manipulation,” in Conference on Robot

Learning (CoRL), 2022.
[8] Y. Zhu, Y. Zhao, and S. Chun Zhu, “Understanding tools: Task-

oriented object modeling, learning and recognition,” in IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2015.
[9] L. Manuelli, W. Gao, P. Florence, and R. Tedrake, “kPAM:KeyPoint

affordances for Category-Level robotic manipulation,” International

Symposium of Robotics Research (ISRR), 2019.
[10] W. Gao and R. Tedrake, “kpam 2.0: Feedback control for category-

level robotic manipulation,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2962–2969, 2021.

[11] Z. Zhang, Z. Jiao, W. Wang, Y. Zhu, S.-C. Zhu, and H. Liu, “Under-
standing physical effects for effective tool-use,” IEEE Robotics and

Automation Letters (R-AL), 2022.
[12] Y. Wi, A. Zeng, P. Florence, and N. Fazeli, “Virdo++: Real-world,

visuo-tactile dynamics and perception of deformable objects,” arXiv

preprint arXiv:2210.03701, 2022.
[13] S. Thompson, L. P. Kaelbling, and T. Lozano-Perez, “Shape-based

transfer of generic skills,” in 2021 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2021, pp. 5996–6002.
[14] M. Xu, P. Huang, W. Yu, S. Liu, X. Zhang, Y. Niu, T. Zhang, F. Xia,

J. Tan, and D. Zhao, “Creative robot tool use with large language
models,” 2023.

[15] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos,
“Disect: A differentiable simulation engine for autonomous robotic
cutting,” arXiv preprint arXiv:2105.12244, 2021.

[16] Z. Xu, Z. Xian, X. Lin, C. Chi, Z. Huang, C. Gan, and S. Song,
“Roboninja: Learning an adaptive cutting policy for multi-material
objects,” Robotics: Science and Systems (RSS), 2023.

[17] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and
C. Gan, “Plasticinelab: A soft-body manipulation benchmark with
differentiable physics,” in International Conference on Learning Rep-

resentations, 2021.
[18] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy,

and J. Kelly, “A smooth representation of belief over so (3) for deep
rotation learning with uncertainty,” arXiv preprint arXiv:2006.01031,
2020.

[19] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 5745–5753.

[20] J. Chen, Y. Yin, T. Birdal, B. Chen, L. J. Guibas, and H. Wang,
“Projective manifold gradient layer for deep rotation regression,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2022, pp. 6646–6655.
[21] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan,

“Pointflow: 3d point cloud generation with continuous normalizing
flows,” in Proceedings of the IEEE/CVF international conference on

computer vision, 2019, pp. 4541–4550.
[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep

hierarchical feature learning on point sets in a metric space,” Advances

in neural information processing systems, vol. 30, 2017.

[23] D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson, and D. Held,
“Toolflownet: Robotic manipulation with tools via predicting tool flow
from point clouds,” in Conference on Robot Learning (CoRL), 2022.

[24] K. Zhang, M. Sharma, J. Liang, and O. Kroemer, “A modular robotic
arm control stack for research: Franka-interface and frankapy,” arXiv

preprint arXiv:2011.02398, 2020.
[25] O. Sorkine-Hornung and M. Rabinovich, “Least-squares rigid motion

using svd,” Computing, vol. 1, no. 1, pp. 1–5, 2017.
[26] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Ros-

tamizadeh, and A. Makadia, “An analysis of svd for deep rotation
estimation,” Advances in Neural Information Processing Systems,
vol. 33, pp. 22 554–22 565, 2020.

APPENDIX

A. Implementation of tool scoring module

Given a set of K training tools, represented as a set of

point clouds, {Ptraintooli}i=1:K , we train a tool scoring module

Dscore, which takes in a tool point cloud Ptool , the initial

observation Po, and the goal Pg, and it predicts a score

s for the tool indicating how suitable the tool is for the

task. The architecture for the tool scoring module is shown

in Fig. 2 (a). The module first encodes the tool points to

a latent feature using a PointNet++ [22] encoder. It then

encodes the concatenation of observation points and goal

points to another latent feature using a separate PointNet++

encoder. These latent features are concatenated and inputted

through a multi-layer perceptron (MLP) to output a score.

We train the module with binary cross-entropy loss, in which

the tool used in the demonstration to achieve the goal point

cloud Pg is considered as a positive example, and randomly

selected tools from the training set are considered as negative

examples.

B. Details on the path generator

The path generator Gpath starts by encoding the con-

catenated point clouds into a latent vector using a Point-

Net++ [22] encoder. This vector is then input into a

ToolFlowNet [23]-based trajectory model. The trajectory

model is set to a flow dimension of (H − 1) × 3. The

resulting output is interpreted as the tool’s flow at each time

step, thereby producing H −1 delta poses T
gen

1:H via singular

value decomposition [25], [26]. Finally, by utilizing this path

generator with the generated tool in the reset pose P
gen
0 ,

we create a point cloud trajectory P
gen
1:H . We train the path

generator using the delta poses of the training tools T1:H as

labels (from the demonstration dataset). At each timestep,

we apply the ToolFlowNet [23] loss between the trajectory

produced by Gpath and the actual trajectory of the training

tool.

C. Details on tasks and demonstration data

Per task Overall

of initial configurations 200 800
of target configurations 200 800
of training trajectories 180 720
of testing trajectories 20 80
of total trajectories 200 800

of total transitions 104 4×104

TABLE III: Summary of training/testing data

We inherit the data generation procedure from Diff-

Skill [5]: first, we randomly generate initial and target con-

figurations. The variations in these configurations include the

location, shape, and size of the dough and the reset pose of

the tool. We then sample a specific initial configuration and

a target configuration and perform gradient-based trajectory

optimization to obtain demonstration data. For each task,

the demonstration data consists of all the transitions from

executing the actions outputted by the trajectory optimizer,

and we use a task horizon of H = 50. For each task,

we perform a train/test split on the dataset and select 10

configurations in the test split for evaluating the performance

for all the methods. More information about training and

testing data can be found in Table III.

D. Details on baselines

We provide additional details on each baseline below:

• BC-E2E. End-to-end behavioral cloning that outputs a

H ′ × 6,(H ′ > H) vector representing the delta poses of

the tool relative to the initial tool pose. Unlike the other

baselines, this baseline does not output a reset transfor-

mation. Here, we set H ′ = 60 and use delta poses in the

entire trajectory (i.e. the delta poses from interpolating the

initial pose and the reset pose, as well as the subsequent

delta poses during manipulation) as the label to regress

on. As for the architecture, it first encodes the tool points

to a latent feature using a PointNet++ [22] encoder. It

then encodes the concatenation of observation points and

goal points to another latent feature using a separate

PointNet++ encoder. These latent features are concatenated

and inputted through an MLP to produce the delta poses

(represented as a H ′×6 vector).

• BC-Joint. Behavioral cloning that jointly regresses to

the reset transformation and subsequent delta poses from

the initial tool configuration. As for the architecture, it

first encodes the tool points to a latent feature using a

PointNet++ [22] encoder. It then encodes the concatenation

of observation points and goal points to another latent

feature using a separate PointNet++ encoder. These latent

features are concatenated and inputted through an MLP to

produce the reset transformation as well as delta poses.

• BC-Latent. Behavioral cloning that regresses to the reset

transformation, moves the tool to the predicted reset pose,

and then predict subsequent delta poses from a latent

encoding of the restrictions scene with the tool in the

reset pose. As for the architecture, it first encodes the

tool points to a latent feature using a PointNet++ [22]

encoder. It then encodes the concatenation of observation

points and goal points to another latent feature using a

separate PointNet++ encoder. These latent features are

concatenated and inputted through an MLP to produce

the reset transformation. For the delta poses, we encode

the concatenated point clouds of the scene (observation,

goal, and tool in the reset pose) into a latent vector using

a PointNet++ encoder and then pass the latent feature

though an MLP to produce the delta poses (represented

as a (H −1)×6 vector).

• TFN-Traj. Behavioral cloning that regresses to the reset

transformation, moves the tool to the predicted reset pose,

and then uses the updated scene to predict subsequent

delta poses for the tool with the ToolFlowNet-based [23]

trajectory model described in Appendix B on the webiste.

Ablation Method Training tools Random initial pose Novel tools

ToolGen Reset w/ BC-Latent 0.94±0.05 0.93±0.05 0.30±0.55
ToolGen Reset w/ TFN-Traj 0.86±0.14 0.85±0.07 0.36±0.60

ToolGen (Ours) 0.91±0.05 0.90±0.06 0.72±0.27

TABLE IV: Ablation results across 3 scenarios. Each value

in the table represents the normalized performance across all

tasks.

Method Average Inference Time Average Execution Time

TFN-Traj 0.2s 23.0s
ToolGen (Ours) 22.7s 19.1s

TABLE V: Execution times averaged for all simulation tasks.

E. Ablation studies

We conduct an ablation study on ToolGen by modifying

its point cloud generator: we only generate the initial point

cloud using ToolGen and align the current tool with this point

cloud to determine the current tool’s reset pose. Following

this, we input the current tool at its reset pose into the

delta pose predictors of BC-Latent and TFN-Traj to obtain

the subsequent delta poses. This ablation provides a clear

comparison between the process of directly regressing to the

delta poses and the approach of using ToolGen to output

delta poses. The performance gap between these two methods

when using novel tools is displayed in Table IV, which

underscores the significance of generalization occurring in

trajectory prediction. Specifically, since these two ablations

regress onto the delta poses of the training tools, they tend

to overfit to the training tools, causing them to produce

inaccurate trajectories when faced with out-of-distribution

test tools. In contrast, ToolGen inputs the generated tool into

the trajectory predictors during the generation process. The

generated tool minimizes the distribution shift for the path

generator and thus significantly enhances the accuracy of the

resulting trajectory predictions.

F. Execution time

We further compare the average inference time of ToolGen

and a baseline in Table V. Due to the sequential pose

optimization step, ToolGen requires significantly more time

during inference compared to its baseline, TFN-Traj, which

only requires a single forward pass in the networks. We

leave improving the time efficiency of ToolGen’s trajectory

generation for future work.

G. Failure cases

In Figure 8, we present two typical failure scenarios that

occur when trying to align a novel tool with the generated

tool. The first scenario, displayed on the left of Figure 8,

occurs when there is a substantial disparity between the

generated tool (top row) and the test tool (bottom row). In

this case, the optimization process fails to meaningfully align

the test tool with the generated shape in the later timesteps

of the trajectory. However, this issue can be alleviated by

training on more diverse tool shapes, which will create a

richer shape distribution for the point cloud generator to

generate.

λc

λr 0.01 0.1 0.5

0.01 0.45±0.30 0.65±0.23 0.60±0.15
0.1 0.50±0.33 0.72±0.27 0.68±0.10
0.5 0.48±0.36 0.49±0.29 0.53±0.18

TABLE VI: The effects of hyperparameters in sequential

pose estimation. Each entry shows the performance cross

all tasks with a particular combination of hyperparameters.

The second type of failure results from the optimization of

delta poses. The hyper-parameter λr regulates the balance

between the actual alignment and the regularization of the

rotation amount in delta poses, and can be sensitive to

the task at hand. During our experiments, we found that

a single λr value generally performs well across all tasks.

However, in the ”Roll” task, minor problems occurred -

occasionally the tool would rotate itself when aligning with

the generated tool (as shown on the right of Figure 8).

This issue can be remedied by fine-tuning the optimization’s

objective function and hyper-parameters for each task. For

instance, by increasing the regularization parameter λr, we

can prevent large rotations during the alignment of delta

poses.

H. Effects of hyperparameters

To investigate how sensitive ToolGen is to hyperparam-

eters during sequential pose estimation, we vary λc and λr

when optimizing for the transformations. To eliminate any

stochasticity form the generation process, we only generate

the trajectories once and use the same set of generated tra-

jectories for optimization. Table VI shows the performances

of executing the trajectories that are optimized with different

hyperparameters. In summary, λc, which penalizes collisions

between the tool in reset pose and the environment, seems to

have a greater effect than λr. This is because the alignment

at the rest pose is being used to optimize the subsequent

poses, and the error in optimizing the reset pose might

cascade to the later process. We also observe that choosing a

larger λr will decrease the variance in performance. This is

because a larger λr will penalize large motions and encourage

smaller and safer motions. It is worth noting that even with a

large variation of these hyperparameters, ToolGen still almost

always outperforms the baselines.

I. Real World Experiment Details

1) Environment setup:

Robot and workspace. The robot used for real-world

execution is a 7-axis Franka Panda robot arm with a two-

finger Franka Hand. The robot is fixed on a table with a

0.55m×0.55m space for execution. The tool rack is placed

on the left side of the execution space.

Dough. In real world experiments, we use modeling

dough2 for our manipulation tasks. For each of the three

tasks, we create a mold of the same size as the dough in

2Hygloss Products 48308 Dazzlin’ Dough 3lb. White, bought
from Amazon: https://www.amazon.com/Hygloss-Products-48308-Dazzlin-
Dough/dp/B07SNX6BPK

Generated scoop trajectory

Test tool aligned to generated toolsTest tool Test tool Test tool aligned to generated tools

Generated cut trajectory

Failure to align due to a large shape discrepancy Tool rotates itself during alignment

Fig. 8: Example failure cases of ToolGen (ours) when trying to align the test (actual) tool with the generated tool. Left:

the alignment fails due to large difference in shapes of the generated tool and the test tool. Right: occasionally during the

alignment process the aligned tool would have unexpected motions.

Taichi simulation. The real-world experiment goal states are

created by human volunteers using real tools. The dough

is reshaped and placed at a fixed center point before every

experiment run.

Multi-camera setup. Here we set up multiple cameras

to record dough state point clouds. Three Azure Kinect

cameras are arranged around the workspace with equal dis-

tances from each other, i.e., placed in an equilateral triangle

configuration, in front of the robot and on both sides of

the robot, all pointing towards the geometric center of the

workspace. The cameras are calibrated to form point clouds

with re-projection errors less than 0.01m. To synthesize a

comprehensive view of the object, point clouds are further

aligned using an Iterative Closest Point algorithm.

Point cloud processing. The collected tool and dough

point clouds are hollow. We interpolate them by identifying

cross-sections along the x, y, or z axis and filling them

with points. Then we downsample the interpolated point

clouds using the same voxel size of 0.002m. This produces a

uniform distribution of points, and thus allows more accurate

metric calculations for the dough’s target and goal point

clouds.

2) Robot execution details: We use Frankapy3 as the

robot controller. The delta transformations from model out-

put is under the tool frame. To execute the trajectory with

robot arm, we calculate and apply the transformation from

the recorded tool frame to robot end-effector. Each target

pose (x,y,z,r, p,y) under robot frame is passed to Frankapy

as a goal pose. Frankapy then calculates the inverse kine-

matics for the given goal state and execute each goal within

0.5 seconds.

3https://github.com/iamlab-cmu/frankapy

	INTRODUCTION
	Related Work
	Problem statement and assumptions
	Method
	Representing tool-use through point cloud trajectory generation
	Execution via sequential pose optimization
	Implementation details

	Results
	Tasks and baselines
	Leveraging training tools at test time
	Generalization to unseen initial tool poses
	Generalization to unseen tools
	Inference on real world observations

	Conclusion and limitations
	Acknowledgement
	References
	Appendix
	Implementation of tool scoring module
	Details on the path generator
	Details on tasks and demonstration data
	Details on baselines
	Ablation studies
	Execution time
	Failure cases
	Effects of hyperparameters
	Real World Experiment Details
	Environment setup
	Robot execution details

