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ABSTRACT

We present Prompt Cache, an approach for accelerating inference for large language models (LLM) by reusing
attention states across different LLM prompts. Many input prompts have overlapping text segments, such as
system messages, prompt templates, and documents provided for context. Our key insight is that by precomputing
and storing the attention states of these frequently occurring text segments on the inference server, we can
efficiently reuse them when these segments appear in user prompts. Prompt Cache employs a schema to explicitly
define such reusable text segments, called prompt modules. The schema ensures positional accuracy during
attention state reuse and provides users with an interface to access cached states in their prompt. Using a prototype
implementation, we evaluate Prompt Cache across several LLMs. We show that Prompt Cache significantly reduce
latency in time-to-first-token, especially for longer prompts such as document-based question answering and
recommendations. The improvements range from 8 x for GPU-based inference to 60x for CPU-based inference,
all while maintaining output accuracy and without the need for model parameter modifications.

1 INTRODUCTION

A substantial fraction of large language model (LLM)
prompts are reused frequently. For example, prompts usu-
ally commence with identical “system messages” that pro-
vide initial guidelines for its functionality. Documents
can also overlap in multiple prompts. In a wide range of
long-context LLM applications, such as legal analysis (Cui
et al., 2023; Nay et al., 2023), healthcare applications (Stein-
berg et al., 2021; Rasmy et al., 2021), and education (Shen
et al., 2021), the prompt includes one or several documents
from a pool. Additionally, prompts are often formatted
with reusable templates (White et al., 2023) as a result of
prompt engineering. Such examples are common in LLM
for robotics and tool learning (Huang et al., 2022; Driess
et al., 2023; Qin et al., 2023). This further results in a high
degree of overlap between prompts using the same template.

We introduce a novel technique termed Prompt Cache to
reduce the computational overhead in generative LLM in-
ference. Prompt Cache is motivated by the observation that
input prompts to LLM often has reusable structures. The
key idea is to precompute attention states of the frequently
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revisited prompt segments in memory, and reuse them when
these segments appear in the prompt to reduce latency.

Reusing attention states is a popular strategy for accelerating
the service of a single prompt (Pope et al., 2022). The ex-
isting approach, often referred to as Key-Value (KV) Cache,
reuses the key-value attention states of input tokens during
the autoregressive token generation. This eliminates the
need to compute full attention for every token generation
(§ 2.2). By caching the key-value attention computed for the
previously generated token, each token generation requires
the computation of key-value attention states only once.

Building on top of KV Cache, Prompt Cache extends atten-
tion state reuse from a single prompt to multiple prompts
by making attention state reuse modular. In our approach,
frequently reused text segments are individually precom-
puted and stored in memory. When such “cached” segments
appear in the input prompt, the system uses the precomputed
key-value attention states from memory instead of recom-
puting them. As a result, attention computations are only
required for uncached text segments. Figure 1 illustrates
the difference between full autoregressive generation, KV
Cache, and Prompt Cache. We note that the performance
advantage becomes more pronounced as the size of cached
segments grows since the computation overhead of attention
states scales quadratically with input sequence size (Keles
et al., 2022; Tay et al., 2023) while the space and compute
complexity of Prompt Cache scales linearly with the size.

Two challenges arise when reusing attention states across
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(a) Autoregressive token generation

(b) Generation with KV Cache

(c) Generation with Prompt Cache

Figure 1. Comparison of LLM token generation methods, each showing three steps (@ to €). Each box indicates a token. Blue boxes
represent the prompt. (a) An LLM takes in a prompt (blue tokens) and predicts the next token () (@). It then appends the generated
token () to the prompt to predict the next token () (@). This process, called autoregressive, continues until a stop condition is met.
(b) KV Cache computes time attention states for the prompt only once (@) and reuses them in the following steps; (c) Prompt Cache
reuses the KV state across services to bypass prompt attention computation. Prompt Cache populates its cache when a schema is loaded
and reuses the cached states for prompts that are derived from the schema (@). Figure 2 further elaborates Step @.

prompts. First, attention states are position-dependent due to
the positional encoding in Transformers. Thus, the attention
states of a text segment can only be reused if the segment
appears at the same position. Second, the system must be
able to efficiently recognize a text segment whose attention
states may have been cached in order to reuse.

To tackle these two problems, Prompt Cache combines two
ideas. The first is to make the structure of a prompt ex-
plicit with a Prompt Markup Language (PML). PML makes
reusable text segments explicit as modules, i.e., prompt mod-
ule. Tt not only solves the second problem above but opens
the door for solving the first, since each prompt module can
be assigned with unique position IDs. Our second idea is our
empirical finding that LLMs can operate on attention states
with discontinuous position IDs. This means that we can
extract different segment of attention states and concatenate
them to formulate subset of meanings. We leverage this to
enable users to select prompt modules based on their needs,
or even update some prompt modules during the runtime.

We explain how Prompt Cache works in §3. In summary, an
LLM user writes their prompts in PML, with the intention
that they may reuse the attention states based on prompt
modules. Importantly, they must derive a prompt from
a schema, which is also written in PML. Figure 2 shows
a example prompt based on an example schema. When
Prompt Cache receives a prompt, it first processes its schema
and computes the attention states for its prompt modules.
It reuses these states for the prompt modules in the prompt
and other prompts derived from the same schema. In §4,
we report a prototype implementation of Prompt Cache on
top of the HuggingFace transformers library (Wolf et al.,
2020). While Prompt Cache can work with any Transformer
architecture compatible with KV Cache, we experiment
with three popular Transformer architectures powering the
following open-sourced LLMs: Llama2 (Touvron et al.,
2023), Falcon (Penedo et al., 2023), and MPT (MosaicML,

2023). We consider two types of memory for storing prompt
modules: CPU and GPU memory. While CPU memory can
scale to terabyte levels, it brings the overhead of host-to-
device memory copying. In contrast, GPU memory does
not require coping but has limited capacity.

Using the prototype, we conduct an extensive benchmark
evaluation to examine the performance and quantify the ac-
curacy of Prompt Cache across various long-context datasets
(§5). We employ the LongBench suite (Bai et al., 2023),
which includes recommendation and question-answering
(QA) tasks based on multiple documents. In our evaluation,
Prompt Cache reduces time-to-first-token (TTFT) latency
from 1.5X to 10x for GPU inference with prompt modules
on GPU memory and from 20x to 70x for CPU inference,
all without any significant accuracy loss. Additionally, we
analyze the memory overhead of the precomputed attention
states for each model and discuss directions for optimizing
the memory footprint of Prompt Cache. We subsequently
showcase several generative tasks, including personalization,
code generation, and parameterized prompts, to demonstrate
the expressiveness of the prompt schema and performance
improvement with negligible quality degradation.

In our present study, we mainly focus on techniques for mod-
ular attention reuse. However, we foresee Prompt Cache
being utilized as a foundational component for future LLM
serving systems. Such systems could incorporate enhanced
prompt module management and GPU cache replacement
strategies, optimizing the advantages of both host DRAM
and GPU HBM. Our source code and data used for evalua-
tion are available at github.com/yale-sys/prompt-cache.

2 BACKGROUND AND RELATED WORK

Prompt Cache builds on the ideas of the KV Cache, i.e., key-
value attention state reuse during autoregressive decoding in
LLMs. This section reviews autoregressive token generation
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in LLMs, explains how the incorporation of KV Cache
can speed up the token generation process, identifies its
approximations, and surveys recent work that leverages the
KV Cache for acceleration. We also briefly discuss other
existing techniques for accelerating LLM inference.

2.1 Autoregressive Token Generation

An LLM generates output tokens autoregressively (Radford
et al., 2018). It starts with an initial input, often called a
prompt, and generates the next token based on the prompt.
The model then appends the token to the prompt and uses it
to generate the next token. The generation process continues
until a stopping condition is met. This could be after a
predetermined number of tokens, upon generating a special
end-of-sequence token, or when the generated sequence
reaches a satisfactory level of coherence or completeness.
Importantly, in each step, the model takes the entire prompt
and tokens generated so far as the input, and repeat.

2.2 Key-Value Cache

Autoregressive token generation described above incurs
substantial computation due to the self-attention mecha-
nism being applied over the entirety of input during each
step. To ameliorate this, the Key-Value (KV) Cache mecha-
nism (Pope et al., 2022) is frequently used. This technique
computes the key and value embeddings for each token
only once throughout the autoregressive token generation.
To elaborate, denote a user prompt as a sequence of n to-
kens: si,...,s,, and the subsequently generated k tokens
as Sp+1,---,Sn+k. In naive autoregressive token genera-
tion, the attention states {(k1,v1),. .., (Kkntk, Untk)} are
fully recalculated at every step. In contrast, KV Cache ini-
tially computes attention states for the input, represented
by So = {(ki,vi)|i < n}, and caches them in memory.
This step is often referred to as the prefill phase. For every
subsequent step j < k, the model reuses the cached values
S; = {(ki,v;)|i < n+ j} to compute the attention state
(kntj,Vngt;) of the new token s, ;. This approach signifi-
cantly reduces the computation required for self-attention.
Specifically, the computation in each step, measured in
FLOPs for matrix operations, is reduced by a factor of 1/n.
The number of operations decreases from approximately
6nd? 4+ 4n%d to 6d? + 4nd, where d is a hidden dimension
size. After each step, the newly computed (ky,4;, Vn4;) at-
tention states are appended to the cache for subsequent use.
In causal language models, which account for most LLMs,
the use of KV Cache does not affect the model’s accuracy,
since the attention at position ¢ is computed based solely on
the tokens at positions located before ¢-th token.

The KV Cache has catalyzed further exploration into LLM
acceleration. Ensuing studies have either centered on refin-
ing memory management for KV Cache, as demonstrated

in paged attention (Kwon et al., 2023), on pruning super-
fluous KV Cache data (Zhang et al., 2023), or compressing
it (Liu et al., 2023b). There are some preliminary works
that explore KV Cache reuse across different requests as
well. (Feng et al., 2023) reuse memorized attention states
based on an embedding similarity metric. Paged attention
also demonstrates simple prefix sharing, where different
prompts with an identical prefix share KV Cache. However,
existing approaches are specific to certain scenarios, while
we investigate attention reuse for general LLM prompts.

2.3 Other Methods for Low-Latency LLLM Inference

Prompt Cache introduces an orthogonal optimization strat-
egy that augments existing systems dedicated to efficient
LLM inference. This includes systems that utilize multiple
GPUs for inference (Aminabadi et al., 2022) and those with
high-performance GPU kernels for softmax attention score
computation (Dao et al., 2022). Although our current fo-
cus is on achieving low-latency inference in LLMs, Prompt
Cache can also benefit systems aiming for high through-
put (Sheng et al., 2023) as well via reduced computation.

3 DESIGN OF PROMPT CACHE

The effectiveness of the KV Cache leads us to the next
question: Can attention states be reused across multiple
inference requests? We observe that different prompts often
have overlapping text segments. For example, identical “sys-
tem messages”’, or metaprompts are frequently inserted at
the beginning of a prompt to elicit desired responses from an
LLM. For another example, in many legal and medical ap-
plications of LLMs (Cui et al., 2023; Steinberg et al., 2021;
Rasmy et al., 2021), the same set of documents is often
provided as context to different prompts. Finally, reusable
prompt formats, i.e., prompt templates, are commonly used
by LLM applications in robotics and tool learning (Driess
et al., 2023; Qin et al., 2023), since most tasks are variations
of a few common task. In this section, we describe our
approach called Prompt Cache, which answers the above
question affirmatively. Prompt Cache improves computa-
tional efficiency through inter-request attention state reuse
by leveraging the shared segments in a structured manner.

3.1 Overview

The attention states of a text segment can only be reused
if the segment appears at the same position in the LLM
input. This is because transformer architectures integrate
unique positional embeddings into the (k, v) attention states.
This is not a problem for serving a single prompt using KV
Cache, because the same prompt text is located at the same
position, i.e., the beginning of the input, in all steps.

Shared text segments, on the other hand, can appear in differ-
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Figure 2. Reuse mechanism in Prompt Cache: (i) First, PML (§3.2) makes reusable prompt modules explicit in both Schema and Prompt.
A prompt module can have parameters like t rip—-plan. A prompt importing the module supplies a value (3 days) to the parameter
(duration). The prompt can include new text segments in place of excluded modules and parameters and at the end. (if) Second,
prompt module encoding (§ 3.3) precomputes attention states () for all modules in the schema and caches them for future reuse. (iif)
Third, when the prompt is served, Prompt Cache employs cached inference (§3.4): it retrieves the attention states cached for imported
prompt modules (), computes them for parameters ((3)) and new text segments (@), and finally concatenates them to produce the
attention states for the entire prompt ((3)). This figure is an elaboration of Step @ in Figure 1c.

ent positions in different prompts. To reuse their attention
states across prompts, a caching system must tackle two
problems. First, it must allow reuse despite a text segment
appearing in different positions in different prompts. Sec-
ond, the system must be able to efficiently recognize a text
segment whose attention states may have been cached in
order to reuse, when the system receives a new prompt.

To tackle these two problems, we combine two ideas. The
first is to make the structure of a prompt explicit with a
Prompt Markup Language (PML). As illustrated by Figure 2,
the PML makes reusable text segments explicit as modules,
i.e., prompt module. It not only solves the second problem
above but opens the door for solving the first, since each
prompt module can be assigned with unique position IDs.
Our second idea is our empirical finding that LLMs can
operate on attention states with discontinuous position IDs.
As long as the relative position of tokens is preserved, output
quality is not affected. This means that we can extract
different segment of attention states and concatenate them
to formulate new meanings. We leverage this to enable
users to select prompt modules based on their needs, or even
replace some meanings during the runtime.

Prompt Cache puts these two ideas together as follows. An
LLM user writes their prompts in PML, with the intention
that they may reuse the attention states based on prompt
modules. Importantly, they must derive a prompt from
a schema, which is also written in PML. Figure 2 shows
a example prompt based on an example schema. When
Prompt Cache receives a prompt, it first processes its schema
and computes the attention states for its prompt modules.
It reuses these states for the prompt modules in the prompt
and other prompts derived from the same schema.

We detail the design of PML in §3.2 with a focus on tech-

niques that maximize the opportunity of reusing. We explain
how Prompt Cache computes the attention states of prompt
modules in a schema in §3.3, and how it may affect the out-
put quality. We explain how Prompt Cache reuse attention
states from a schema for the service of a prompt in §3.4.

The modular KV cache construction in Prompt Cache bears
resemblance to the approximations observed in locally
masked attention (Beltagy et al., 2020; Tay et al., 2023),
which optimizes computations by setting a limited window
for attention score calculations rather than spanning its at-
tention across every token in its input sequence. Consider a
scenario within Prompt Cache where each prompt module
is encoded independently. Given that attention states are
strictly calculated within the confines of the prompt mod-
ule, this closely mirrors the setup of an attention mask that
screens out sequences external to the prompt module. There-
fore, the approximation made by Prompt Cache is to limit
the attention window to each prompt module. We note that
employing such attention masks does not necessarily reduce
output quality, as we will discuss in §5. In some contexts,
these masks may even introduce beneficial inductive biases
by effectively filtering out irrelevant information.

3.2 Prompt Markup Language (PML)

We next describe the key features of PML that is used to
define both schemas and schema-derived prompts.

3.2.1 Schema vs. Prompt

A schema is a document that defines prompt modules and
delineates their relative positions and hierarchies. Each
schema has a unique identifier (via the name attribute) and
designates prompt modules with the <module> tag. Texts
not enclosed by <module> tags or unspecified identifier
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are treated as anonymous prompt modules and are always
included in prompts that are constructed from the schema.

For an LLM user, the schema serves as an interface to create
and reuse attention states for prompt modules. The user can
construct a prompt from a schema, with the <prompt> tag.
This tag specifies the schema to use through the schema
attribute, lists the prompt modules to import, and adds any
additional (non-cached) instructions. For example, to import
the module miami from the schema in Figure 2, one would
express it as <miami/>. Prompt Cache will only compute
the attention states for the text that is not specified in the
schema, e.g., Highlights the surf spots in Figure 2,
and reuse attention states for the imported modules, e.g.,
trip-plan and miami, thereby reducing the latency.

3.2.2 Maximizing Reuse with Parameters

PML allows a prompt module to be parameterized in or-
der to maximize the reuse opportunities. A parameter is a
named placeholder with a specified length that can appear
anywhere in a prompt module in a schema. It is defined
using the <param> tag, with the name and len attributes
indicating its name and the maximum number of tokens
for the argument, respectively. When a prompt imports
the prompt module, it can supply a value to the parame-
ter. Figure 2 shows an example of a paramterized prompt
module (t rip-plan) and how a prompt would include the
prompt module and supply a value (3 days) to its argument
(duration). Augment values are not cached.

There are two important uses of parameterized prompt mod-
ules. First, it is common that a prompt module differs from
another only in some well-defined places. Parameters allow
users to provide specific arguments to customize the module
at runtime and still benefit from reusing. Figure 2 illustrates
this use case with trip-plan. This is especially useful
for templated prompts. Second, a parameter can be used to
create a “buffer” at the beginning or end of a prompt module
in the schema. This buffer allows the user to add an arbitrary
text segment in a prompt as long as the segment is no longer
than the parameter token length it replaces.

3.2.3 Other Features

Union modules: Certain prompt modules exhibit mutually
exclusive relationships. That is, within a set of modules,
only one should be selected. For instance, consider a prompt
that asks the LLM to suggest a book to read based on the
reader’s profile described by a prompt module. There could
be multiple prompt modules each describing a reader profile
but the prompt can include only one of them.

<union>
<module name="doc-en-US"> </module>
<module name="doc-zh-CN"> </module>

</union>

To accommodate these exclusive relationships, we intro-
duce the concept of a union for prompt modules. A union
of modules is denoted using the <union> tag. Prompt mod-
ules nested within the same union share the same starting
position ID. A union not only streamlines the organization
of the layout but also conserves position IDs used to en-
code prompt modules. Further, the system can utilize this
structure for optimizations, such as prefetching.

While parameterized modules and unions appear to be simi-
lar, they are different in two aspects. First, as we will show
in §3.3, parameters and union modules are encoded in differ-
ent ways. Second, they serve different purposes: parameters
are used for inline modifications to maximize the reuse of a
module, while union modules are intended for better prompt
structure and more efficient utilization of position IDs.

Nested modules: PML also supports nested modules to
express hierarchical prompt modules. That is, a prompt
module could include prompt modules or unions as compo-
nents. In prompts, nested modules are imported as modules
within modules as shown in Figure 8.

Compatibility with LL.M-specific template: Instruction-
tuned LLMs often adhere to specific templates to for-
mat conversations. For example, in Llama2, a single
interaction between the user and the assistant follows
the template: <s>[INST] [/INST]

assistant message </s>. Toreduce the effort required
to manually format the prompt schema to match such tem-
plates for different LLMs, we introduce three dedicated
tags: <system> for system-level prompts, <user> for
user-generated prompts, and <assistant> for exemplar
responses generated by the LLM. Prompt Cache dynami-
cally translates and compiles these specialized tags to align
with the designated prompt template of the LLM in use.

user message

3.2.4 Deriving PML from Prompt Programs

To simplify PML writing, Prompt Cache can automati-
cally convert prompt programs (Beurer-Kellner et al., 2023;
Guidence, 2023) from languages like Python into PML,
eliminating the need for manual schema writing. This is pri-
marily achieved using a Python API that transforms Python
functions into corresponding PML schemas. The conversion
process is straightforward: if statements become <module>
constructs in PML, encapsulating the conditional prompts
within. When a condition evaluates to true, the correspond-
ing module is activated. Choose-one statements, such as
if-else or switch statements, are mapped to <union> tags.
Function calls are translated into nested prompt modules.
Additionally, we have implemented a decorator to manage
parameters, specifically to restrict the maximum argument
length. This corresponds to the len attribute in the <param>.
This Python-to-PML compilation hides PML complexity
from the user provides better maintainability of the prompt.
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3.3 Encoding Schema

The first time the attention states of a prompt module are
needed, they must be computed and stored in the device
memory, which we refer to as prompt module encoding.
First, Prompt Cache extracts token sequences of a prompt
module from the schema. It then assigns position IDs to
each token. The starting position ID is determined by the
absolute location of the prompt module within the schema.
For instance, if two preceding prompt modules have token
sequence sizes of 50 and 60 respectively, the prompt module
is assigned a starting position ID of 110. An exception exists
for the union modules. Since prompt modules within the
union start from the same positions, their token sequence
size is considered with the size of the largest child.

From the token sequences of the prompt module and the
corresponding position IDs, these are then passed to the
LLM to compute the (k, v) attention states. We note that
the assigned position IDs do not start from zero. This is
semantically acceptable since white spaces do not alter the
meaning of the precomputed text. However, many existing
transformer positional encoding implementations, such as
RoPE, often require adaptations to accommodate discontin-
uous position IDs, which we will discuss in (§ 4.2).

For encoding parameterized prompt modules, we use the
idea that having white space in a prompt does not affect
its semantics. Parameters are replaced by a predetermined
number of <unk> tokens, equivalent to their len attribute
value. The position IDs corresponding to these <unk> to-
kens are logged for future replacement. When this module is
integrated into a user’s prompt and paired with the relevant
arguments, the token sequences of these supplied arguments
adopt the position IDs previously linked with the <unk>
tokens. The resulting (k, v) attention states then replace the
attention states initially allocated for the <unk> tokens. We
note that the length of the newly provided tokens can be
smaller than the specified parameter length, as trailing white
spaces do not change the semantics.

Attention masking effect: Prompt Cache confines atten-
tion score computation to the span of each prompt module,
masking the attention states across modules. This masking
effect can enhance or degrade output quality depending on
the semantic independence of the modules. For semantically
independent modules, masking reduces noise and improves
quality. However, for semantically dependent modules, it
can have the opposite effect. Therefore, each prompt mod-
ule should be self-contained and semantically independent
from other modules. One way to remove the masking effect
is to use a method we refer to as scaffolding. At the cost of
additional memory, we allow users to specify “scaffolds”,
which are sets of prompt modules that are encoded together
to share the attention span, in addition to their individual
attention states. When all prompt modules in a scaffold are

imported in a prompt, the attention states of the scaffold
overrides the individual attention states. Scaffolding trades
off additional memory for output consistency, which may
be useful for applications that need deterministic results.

3.4 Cached Inference

When a prompt is provided to Prompt Cache, Prompt Cache
parses it to ensure alignment with the claimed schema. It
verifies the validity of the imported modules. Then, as
illustrated in Figure 2, Prompt Cache retrieves the (k,v)
attention states for the imported prompt modules from the
cache (), computes those for new text segments (@ and
@), and concatenates them to produce the attention states
for the entire prompt (%)), replacing the prefill operation.

To detail the process, Prompt Cache starts by concatenating
the KV state tensors corresponding to each imported prompt
module in the prompt. For instance, when a user prompt
utilizes modules A, B, the concatenated KV tensor is formu-
lated as: (kc,ve) = (concat(ka, kp), (concat(va, vg)). It
is worth noting that the order of concatenation does not mat-
ter due to the permutation invariance of transformers (Dufter
et al., 2022). This step solely requires memory copy. Then,
Prompt Cache computes the attention states for the seg-
ments of the prompt that are not cached, specifically, token
sequences not defined in the schema and arguments for pa-
rameterized prompt modules. Prompt Cache first identifies
the position IDs of uncached texts based on their position
relative to other utilized prompt modules. For example, if
the text is situated between module A and B, it is assigned
the position ID starting from the concluding positions of
A, assuming gaps exist between the positions of A and B.
Augments for parameterized prompt modules are assigned
to the position IDs of <unk> tokens. Subsequently, the to-
ken sequences and position IDs are aggregated and passed
to the LLM using (kc,vc) as a KV Cache, to compute
the attention states for the entire prompt. It is important to
note that the computational complexity for generating sub-
sequent tokens remains consistent with that of KV Cache, as
prompt modules are not employed beyond the initial token.
In essence, Prompt Cache diminishes the latency involved
in producing the first token, or time-to-first-token (TTFT).

Memory optimization in batch inference: Prompts are
usually served in a batch for better GPU utilization. Dif-
ferent prompts derived from the same schema may include
the same prompt modules, such as system prompts. This
opens up additional optimization opportunities by reducing
KV Cache redundancies in a batch. Paged attention (Kwon
et al., 2023) can resolve this issue by sharing the pointer
to the same prompt module across different prompts, in-
stead of duplicating the attention states. Here, the use of
Prompt Cache can implicitly improve system throughput by
allowing more prompts to be processed in parallel.
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4 IMPLEMENTATION

We build a Prompt Cache prototype using the Hugging-
Face transformers library (Wolf et al., 2020) in PyTorch
and comprises 3K lines of Python code. We aim to seam-
lessly integrate with an existing LLM codebase and reuse
its weights. We implement Prompt Cache to use both CPU
and GPU memory to accommodate prompt modules and
evaluate it on both platforms.

4.1 Storing Prompt Modules in Memory

We store encoded prompt modules in two types of memory:
CPU memory (host DRAM) and GPU memory (HBM). To
manage tensors across both memory types, we employ the
PyTorch (Paszke et al., 2019) memory allocator. Beyond
simply pairing CPUs with prompt modules in CPU mem-
ory and GPUs with GPU memory, we also enable GPUs
to access prompt modules stored in CPU memory. This
is done by copying the prompt modules from the host to
the device as needed. This process incurs a host-to-device
memory copy overhead. Nonetheless, it allows the GPU
to leverage the abundant CPU memory, which can scale
up to terabyte levels. As we will show in §5, the computa-
tional savings from Prompt Cache more than compensate
for the latencies caused by memory copy operations. Using
GPUs exposes trade-offs between memory capacity and la-
tency: GPU memory is faster but limited in capacity, while
CPU memory can scale easily yet incurs additional memory
copy overhead. It appears feasible to contemplate a caching
mechanism that leverages both CPU and GPU memory. We
leave the development of a system that incorporates cache
replacement and prefetching strategies to future research.

4.2 Adapting Transformer Architectures

Implementing Prompt Cache requires support for discon-
tinuous position IDs (§3.2). Although the Transformers
library currently does not offer these features, they can be
integrated with minor modifications. For instance, approxi-
mately 20 lines of additional code are needed for each LLM.
We outline the required adjustments:

Embedding tables: Early models like BERT (Vaswani
et al., 2023) and GPT-2 (Radford et al., 2018) use lookup
tables for mapping position IDs to learned embeddings or
fixed bias, requiring no alterations.

RoPE: LLMs such as Llama2 (Touvron et al., 2023) and
Falcon (Penedo et al., 2023) adopt RoPE (Su et al., 2021),
which employs rotation matrices for positional encoding in
attention computations. We create a lookup table for each
rotation matrix, enabling retrieval based on position IDs.

ALIiBi: Utilized in models like MPT (MosaicML, 2023)
and Bloom (Scao et al., 2022), ALiBi (Press et al., 2022)

integrates a static bias during softmax score calculations.
Analogous to RoPE, we design a lookup table to adjust the
bias matrix according to the provided position IDs.

We also override PyTorch’s concatenation operator for more
efficient memory allocation. PyTorch only supports con-
tiguous tensors, and therefore, concatenation of two tensors
always results in a new memory allocation. Prompt Cache
needs to concatenate attention states of prompt modules, and
the default behavior would lead to redundant memory allo-
cations. We implement a buffered concatenation operator
that reuses memory when concatenating tensors. This opti-
mization improves the memory footprint of Prompt Cache
and reduces the overhead of memory allocation.

5 EVALUATION

Our evaluation of Prompt Cache focuses on answering the
following three research questions: (i) What is the impact
of Prompt Cache on time-to-first-token (TTFT) latency and
output quality (§5.2 — §5.4), (ii) What is the memory storage
overhead (§5.5), and (iii) What applications are a good fit for
Prompt Cache (§5.6). We use the regular KV Cache (Pope
et al., 2022) as our baseline. Prompt Cache and KV Cache
share the exact same inference pipeline except for atten-
tion state computation. We use TTFT latency for compar-
ison, which measures the time to generate the first token,
as Prompt Cache and KV Cache have the same decoding
latency after the first token.

5.1 Evaluation Environment

We evaluate Prompt Cache on two CPU configurations: an
Intel 19-13900K accompanied by 128 GB DDR5 RAM at
5600 MT/s and an AMD Ryzen 9 7950X paired with 128
GB DDR4 RAM at 3600 MT/s. For our GPU benchmarks,
we deploy three NVIDIA GPUs: the RTX 4090, which is
paired with the Intel 19-13900K, and the A40 and A100, both
virtual nodes hosted on NCSA Delta, each provisioned with
a 16-core AMD EPIC 7763 and 224 GB RAM. We employ
several open-source LLMs, including Llama2, CodeLlama,
MPT, and Falcon. We use LLMs that fit within the memory
capacity of a single GPU (40 GB). We utilize the LongBench
suite (Bai et al., 2023) to assess TTFT improvements and
output quality changes. LongBench encompasses a curated
subsample of elongated data, ranging from 4K to 10K con-
text length, excerpts from 21 datasets across 6 categories, in-
cluding tasks like multi-document question answering (Yang
et al., 2018; Ho et al., 2020; Trivedi et al., 2022; Kocisky
et al., 2018; Joshi et al., 2017), summarization (Huang et al.,
2021; Zhong et al., 2021; Fabbri et al., 2019), and code
completion (Guo et al., 2023; Liu et al., 2023a). We defined
the documents in the LongBench datasets, such as wiki
pages and news articles, as prompt modules. We kept the
task-specific directives as uncached user text.
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Figure 3. GPU latency measurements: time-to-first-token (TTFT)
for eight LongBench datasets across three NVIDIA GPUs.

5.2 Latency Improvements on Benchmark Datasets

We measured the TTFT latency on both GPU and CPU using
Llama 7B, as shown in Figure 3 and Figure 4. In our GPU
evaluation, we used two memory setups: storing prompt
modules in either CPU or GPU memory. For CPU experi-
ments, we used CPU memory. Due to space constraints, we
present only 8 benchmarks. The complete benchmark from
21 datasets can be found in the Appendix.

5.2.1 GPU Inference Latency

We summarize our findings in Figure 3, evaluated on three
NVIDIA GPUs: RTX 4090, A40, and A100. Yellow bars
represent loading prompt modules from CPU memory, while
blue bars represent the case in GPU memory. There is a con-
sistent latency trend across the datasets since the LongBench
samples have comparable lengths, averaging 5K tokens.
We observe significant TTFT latency reductions across all
datasets and GPUs, ranging from 1.5x to 3x when using
CPU memory, and from 5x to 10x when employing GPU
memory. These results delineate the upper and lower bounds
of latency reductions possible with Prompt Cache. The ac-
tual latency reduction in practice will fall between these
bounds, based on how much of each memory type is used.

5.2.2 CPU Inference Latency

Figure 4 shows that Prompt Cache achieves up to a 70x
and 20x latency reduction on the Intel and AMD CPU,
respectively. We surmise that this disparity is influenced
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Figure 4. CPU latency measurements: time-to-first-token (TTFT)
for eight LongBench datasets across two CPUs.

by the difference in memory bandwidth in system setups
(5600MT/s DDR5 RAM on the Intel CPU versus 3600MT/s
DDR4 RAM on the AMD CPU). As expected, the latency is
higher for the datasets with a larger proportion of uncached
prompts, such as TriviaQA. Interestingly, CPU inference
benefits more significantly from Prompt Cache than GPU
inference does. This is attributed to the much greater la-
tency of attention computation in the CPU, especially as the
sequences become longer (e.g., lower FP16/FP32 FLOPs
compared to GPU). This indicates that Prompt Cache is
particularly beneficial for optimizing inference in resource-
constrained environments, such as edge devices or cloud
servers with limited GPU resources.

5.3 Accuracy with Prompt Cache

To verify the impact of Prompt Cache on the quality of
LLM response, without scaffolding, we measure accuracy
scores with the LongBench suite. To demonstrate general
applicability, we apply Prompt Cache to the three LLMs
having different transformer architectures (§4.2): Llama2,
MPT, and Falcon. The accuracy benchmark results shown
in Table 1 demonstrate Prompt Cache preserves the preci-
sion of the output. We use deterministic sampling where
the token with the highest probability is chosen at every
step so that the results with and without Prompt Cache are
comparable. Across all datasets, the accuracy of output with
Prompt Cache is comparable to the baseline.

5.4 Understanding Latency Improvements

Theoretically, Prompt Cache should offer quadratic TTFT
latency reduction over regular KV Cache. This is because,
while Prompt Cache’s memcpy overhead grows linearly
with sequence length, computing self-attention has quadratic
computational complexity with respect to sequence length.
To validate this, we tested Prompt Cache on a synthetic



Prompt Cache: Modular Attention Reuse for Low-Latency Inference

Dataset | Metric | Llama2 7B | Llama2 13B | MPT 7B | Falcon 7B
| | Baseline Cached | Baseline Cached | Baseline Cached | Baseline Cached
Narrative QA F1 19.93 19.38 20.37 19.94 10.43 11.33 7.14 8.87
2 Wiki Multi-Hop QA F1 16.63 13.95 14.59 17.69 10.44 13.70 14.42 15.07
MuSiQue F1 7.31 8.57 10.03 12.14 7.38 7.32 4.81 5.86
GovReport Rouge L | 24.67 25.37 28.13 28.18 26.96 27.49 22.39 23.40
QMSum Rouge L | 19.24 19.46 18.80 18.82 15.19 15.51 12.84 12.96
MultiNews Rouge L | 24.33 24.22 25.43 26.23 25.42 25.66 20.91 21.19
TriviaQA F1 13.04 12.33 23.19 22.38 10.57 9.17 13.31 11.42
Passage Retrieval Acc 7.50 4.25 9.08 6.50 3.03 3.85 3.00 3.45

Table 1. Accuracy benchmarks on LongBench datasets. We mark the outliers as bold, of which the performance is higher than 2.5

compared to the counterpart.
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Figure 5. Cache advantage: A comparison of computational and
caching overheads in GPUs and CPUs. While attention computa-
tion cost increases quadratically, the attention state memory copy
overhead (i.e., Prompt Cache) rises linearly. Here, GPUs load
prompt modules directly from CPU memory.

LLM BERT Falcon 1B Llama 7B Llama 13B
MB/token  0.03 0.18 0.50 0.78

LLM MPT 30B  Falcon40B Llama 70B  Falcon 180B
MB/token 1.31 1.87 2.5 4.53

Table 2. Memory overhead of caching a single token

dataset with varied sequence lengths, assuming all prompts
were cached. We compared the TTFT latency of Prompt
Cache to that of regular KV Cache using an Intel i9-13900K
CPU and two GPUs (NVIDIA RTX 4090 and A40) with the
Llama2 7B model. For both CPU and GPU, CPU memory
is used for prompt module storage.

Quadratic improvement: Our findings, presented in Fig-
ure 5, show that KV Cache’s latency increases quadratically
with sequence length, while Prompt Cache’s memory copy
cost grows linearly. This means that the latency advantage
of Prompt Cache (the gap between the two curves) expands
quadratically with sequence length. This difference is more
pronounced on CPUs than GPUs since CPUs experience

higher attention computation latencies, whereas the dispar-
ity between Prompt Cache’s overhead, i.e., host-to-device
memcpy in GPUs and host-to-host memcpy in CPUs is not
significant. With attention states with 5K tokens, latency for
host-to-host, host-to-device, and device-to-device memcpy
are respectively 3.79 ms, 5.34 ms, and 0.23 ms.

Effect of model size: Furthermore, as the model’s parame-
ter size grows, so does the computational overhead for KV
Cache. For example, moving from a 7B to 13B model at a
token length of 3K added 220 ms latency, whereas Prompt
Cache added only 30 ms. This difference stems from the
fact that LLM complexity also scales quadratically with hid-
den dimension size. For example, the FLOPS of attention
is 6nd? + 4n?d, for prefill operation. This suggests that
Prompt Cache’s advantage over KV Cache also quadrati-
cally increases with model size (i.e., hidden dimension).

End-to-end latency: Since Prompt Cache reduces only
TTFT, its impact on the time needed to receive the complete
LLM response diminishes as the number of generated to-
kens increases. For instance, on the RTX 4090 with Llama
7B for 3K context, Prompt Cache enhances TTFT from 900
ms to 90 ms, while the token generation time or the time-to-
subsequent-token (TTST) remains consistent between KV
Cache and Prompt Cache at an average of 32 ms per token,
regardless of the token length. Nonetheless, a quicker re-
sponse time contributes positively to the user experience and
the overall end-to-end latency (Lew et al., 2018; Liu et al.,
2023b), For instance, Given that Prompt Cache enhances
TTFT from 900 ms to 90 ms, this equates to the generation
of 25 more tokens within the same timeframe. Another
factor is that Prompt Cache enables sharing attention states
within the same batch, as we discussed in §3.4. Depending
on the workload characteristics, Prompt Cache can improve
overall throughput by utilizing the larger batch size enabled
by the reduced memory footprint. For example, suppose
there are 100 requests, each with a 2K token prompt. If all
prompts share the same 1K token module, Prompt Cache
can reduce the memory footprint by 50% when combined
with methods like paged attention, allowing for a larger
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User prompt

Baseline (GPU: 924ms, CPU: 75,976ms)

User prompt Baseline (GPU: 75ms, CPU: 4,725ms)

<unit.py/>

<user>

Create a main entry point for
the game, using Map, Player,
and Game classes.

</user>

map = Map(grid_size=100)

playerl = Player(player_id=1, name='Player 1')
player2 = Player(player_id=2, name='Plays )
game = Game(pl =[playerl, player2], map=map)
game.start_game()

Prompt Caching (GPU: 93ms, CPU: 861ms)

map = Map(grid_size=100)
= Play )

week"> Great! Based on your preferences, I have created
a 7-day travel plan for you to explore the vi-
brant city of Tokyo, Japan .. Day 1: Arrival and
Exploration of Tokyo * Arrive at Narita or Haneda
Airport and transfer to your hotel .. * Visit the
famous Shibuya Crossing ..

</travel-plan>

<user>
Create a travel plan
</user>

Prompt Caching (GPU: 54ms, CPU: 479ms)

Great, I'd be happy to help you plan your trip to
Tokyo, Japan! Here's a 7-day itinerary that in-
cludes .. Day 1: Arrival and Exploring Tokyo *
Arrive at Narita or Haneda Airport and take a
train or bus to your hotel * Visit the famous
Shibuya Crossing, ..

Figure 6. Code generation using Prompt Cache: Each source file
becomes a prompt module, allowing users to “import” files in their
prompt context with minimal overhead.

User prompt

Baseline (GPU: 216ms, CPU: 22,449ms)

<middle-school/>
<beginner/>
<studied-a-year-before/>
<auditory/>

The learner is a middle school student transi-

tioning from elementary school, .. They are at the
beginning stage of learning new subjects .. learn-
ing style, with a preference for auditory learn-
ing .. They are motivated by intrinsic factors, ..

<essay/>
gh-intrinsic-motivation/>

Prompt Caching (GPU: 65ms, CPU: 686ms)

<user>
Concisely describe the learn-
er’s profile.

</user>

The learner is a middle school student transi-
tioning from elementary school, .. They are at the
beginning stage of their learning journey .. The
learner's preferred learning style is auditory, ..
they have a high intrinsic motivation for ..

Figure 7. Personalization example: Six categories each have five
traits. Traits in the same category are grouped in <union>.

working batch size and thus higher throughput.

5.5 Memory Overhead

The memory overhead associated with Prompt Cache is
proportional to the aggregated number of tokens cached.
This overhead can be determined by referencing both the
prompt schema and the target LLM. In Table 2, we eluci-
date the memory overhead on a per-token basis, under the
assumption of utilizing a 16-bit precision for floating points.
For compact models, such as Falcon 1B, caching a docu-
ment containing 1K tokens would require approximately
180 MB of memory. If there are hundreds of prompt mod-
ules, the combined memory consumption would range in the
tens of gigabytes—a quantity within the memory confines
of server-grade GPUs. Conversely, for larger models like
Llama 70B, caching a 1K length module would command a
substantial 2.5 GB of memory per document, which leaves
CPU memory as the only option for prompt module storage.
Given these considerations, compression methods for atten-
tion states (Zhang et al., 2023) remain an avenue for future
research in prompt caching techniques.

5.6 Applications of Prompt Cache

We demonstrate the expressiveness of PML with example
use cases that require more complicated prompt structures
and advanced features (§3.2) than the LongBench bench-

Figure 8. Parameterized prompts: The <travel-plan> is re-
configured at runtime while maintaining caching efficiency, offer-
ing flexible prompt structuring.

marks: (/) multiple modules in a query, (if) union, and (iii)
parameterization. Furthermore, these tasks underscore the
notable latency reduction as the number of cached tokens
increases in such complicated use cases. Across use cases,
we provide a qualitative assessment of the output by jux-
taposing cached and non-cached generation, showcasing
that Prompt Cache maintains output quality, along with
the latency reductions achieved by Prompt Cache. We use
Llama2 7B and store prompt modules in the local memory
(i.e., GPU memory for GPU inference). The full schema for
these tasks is available in Appendix B.

5.6.1 Code Generation

LLMs are commonly used for code generation (Guo et al.,
2023; Liu et al., 2023a), aiding programmers in either as-
sisting with or directly generating code. Currently available
methods, such as Copilot (GitHub, 2023), typically focus on
individual source files. Prompt Cache, however, can extend
this to multiple files leveraging a modular nature of source
code. For instance, each class or function could be a dis-
tinct prompt module. Figure 6 illustrates multi-source code
generation using CodeLlama 7B (Roziere et al., 2023). We
treat individual classes like Unit, Map, Game, and Player
as prompt modules in our schema for game programming.
Users can then include these prompt modules whenever they
need them in the code. There is a 4 x improvement in TTFT
latency on GPUs while the output remains identical.

5.6.2 Personalization

Figure 7 shows the latency benefits and the output quality of
Prompt Cache in a personalization use case. Personalization
is integral to many recommender systems (Wu et al., 2023),
finding prominent applications in LLM contexts such as ed-
ucation, content recommendations, and targeted marketing.
We highlight the efficacy of feature-based personalization
through Prompt Cache. Here, personalization hinges on
a defined set of features. Each feature is represented as a
distinct prompt module, with relationships between features
denoted using union tags such as grade level, proficiency,
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learning history, learning style, and assessment type.

5.6.3 Parameterized Prompts

In Figure 8, we show a trip planning use case leveraging
parameterization (§3.2). The schema used in this use case
encompasses one adjustable parameter to specify the trip
duration along with two union modules to select the desti-
nation. Users can reuse the templated prompt with custom
parameters, enjoying lower TTFT latency and the same
quality of LLM response enabled by Prompt Cache.

6 CONCLUSIONS AND FUTURE WORK

We introduce Prompt Cache, an acceleration technique
based on the insight that attention states can be reused across
LLM prompts. Prompt Cache utilizes a prompt schema to
delineate such reused text segments, formulating them into a
modular and positionally coherent structure termed “prompt
modules”. This allows LLM users to incorporate these
modules seamlessly into their prompts, thereby leveraging
them for context with negligible latency implications. Our
evaluations on benchmark data sets indicate TTFT latency
reductions of up to 8 x on GPUs and 60x on CPUs.

For future work, we plan on using Prompt Cache as a build-
ing block for future LLM serving systems. Such a system
could be equipped with GPU cache replacement strategies
optimized to achieve the latency lower bound made possible
by Prompt Cache. Different strategies for reducing host-
to-device memory overhead can also be beneficial, such as
the integration of compression techniques in the KV cache,
or utilization of grouped query attention. Another promis-
ing exploration GPU primitives for sharing attention states
across concurrent requests, as we breifly discussed in §3.4.
This can not only reduce the TTFT latency but also time-per-
output-token (TPOT) latency by packing more requests into
a single batch. Finally, Prompt Cache can directly accelerate
in-context retrieval augmented generation (RAG) methods,
where the information retrieval system basically serves as
a database of prompt modules. Prompt Cache can be par-
ticularly useful for latency-sensitive RAG applications in
real-time question answering and dialogue systems.
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