
Jl. of Computers in Mathematics and Science Teaching (2023) 41(3), 1–29

Promote Computational Thinking of Middle-School
Students Through SPARC-Integrated Science

Instruction

JIANLAN WANG
Texas Tech University, USA

jianlan.wang@ttu.edu

YUANLIN ZHANG
Texas Tech University, USA

y.zhang@ttu.edu

ARTHUR JONES
Texas Tech University, USA

arthur.l.jones@ttu.edu

RORY ECKEL
Texas Tech University, USA

rory.eckel@ttu.edu

JOSHUA HAWKINS
Texas Tech University, USA

joshua.hawkins@ttu.edu

DARREL MUSSLEWHITE
Lubbock-Cooper Independent School District, USA

dmusslewhite@lcisd.net

Despite the importance of computer science education and
computational thinking, there have been limited examples of
computer science education at K-12 classrooms that authen-
tically represents the work of computer scientists, especially
programming. One reason is the lack of a measurable defini-
tion of computational thinking and a programming language

mailto:jianlan.wang@ttu.edu
mailto:y.zhang@ttu.edu
mailto:arthur.l.jones@ttu.edu
mailto:rory.eckel@ttu.edu
mailto:joshua.hawkins@ttu.edu
mailto:dmusslewhite@lcisd.net

2 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

friendly to K-12 students. In this case study, we used a text-
based declarative programming language named SPARC
to integrate computer science into the topic of the atomic
structure. We also designed a rubric for the assessment of
computational thinking that included two categories of ab-
straction and programming. We examined the experiences of
two 8th-grade students representing those who have some ex-
perience with computer science and programming and those
without any experience. The findings support the feasibil-
ity of integrating computer science and science and exposing
middle-school students to text-based programming. We also
discussed the pedagogical concerns in light of the students’
challenges.

Keywords: computational thinking, abstraction, program-
ming, middle school, computer-integrated science instruction

INTRODUCTION

It is widely accepted the importance of integrating computer science
in K-12 education as an answer to the growing demand of highly compe-
tent workforce in the 21st century (Aho, 2012; Barr, Harrison, & Conery,
2011). However, such an integration rarely happens successfully (National
Research Council, 2010). Educators are facing several challenges. First,
there are few clear-cut learning outcomes entailed by computer science edu-
cation. Computational Thinking (CT) is believed to be a competence most
appropriately developed by computer science education (Weintrop, Be-
heshti, Horn, Orton, Jona, Trouille, & Wilensky, 2016; Wing, 2006; Wing
2011). However, it is loosely defined. Different studies define CT in unique
ways that meet their research objective and programming environments (Ba-
sawapatna, Koh, & Repenning, 2010; Marcu et al., 2010; Sengupta et al.,
2013; Werner, Denner, Campe, & Kawamoto., 2012). There seems to be
an agreement among various definitions that CT involves components like
modeling, abstraction, and algorithm. However, these concepts lack mea-
surable definitions or criteria for computer science education at the K-12
levels. The next generation science standards (NGSS) explicitly require CT
(National Research Council, 2012) but provide limited practical guidance
for teachers. Thus, K-12 educators are likely to either mistake computer sci-
ence for a mysteriously complex field beyond students’ competency or over-
simply it as a computer game for students’ entertainment.

SPARC-Integrated Science Instruction 3

Secondly, it is unclear whether computer science should be incorporat-
ed as a separate discipline or integrated into other K-12 curricula (Grover &
Pea, 2013). It is believed that computer science education can and should
start as early as middle school where students start to build their affinity
for computer science (Grover, Pea, & Cooper, 2014; Settle, Franke, Han-
sen, Spaltro, Jurisson, Rennert-May, & Wildeman., 2012). However, there
are few mandatory computer science courses at middle schools. Efforts of
integrating computer science mainly take place at elective courses or after
school programs (Kelleher, Pausch, & Kiesler, 2007; Grover, Pea, & Coo-
per, 2015; Werner et al., 2012) as if it is for a special group of students, such
as those who are interested in or good at science or mathematics. Scholars
claim that the essence of computer science, such as CT, overlaps with the
mentality of other core subjects like mathematical thinking or scientific rea-
soning (Sengupta et al., 2013; Weintrop et al., 2016). This underlying con-
nection suggests reciprocal benefits from the integration of computer sci-
ence and core subjects at middle schools. However, there is limited empiri-
cal evidence supporting that hypothesis. Unsurprisingly, computer science is
not a core subject at middle-school education.

Thirdly, there are limited declarative programming languages appro-
priate for middle-school students. Programming is a critical component in
computer science (Wing, 2011). However, few programming languages are
friendly to middle-school students that resemble the work of computer sci-
entists. Sophisticated languages like Java and Python are too complex for
programming novices like middle-school students (Grover & Pea, 2013).
Block-based graphic programming environments tailored for middle-school
students to design games or create animations normally use approaches of
“drag-and-drop”, “assembling graphic tiles”, or “selection from a drop-
down bar” (Maloney, Burd, Kafai, Rusk, Silverman, & Resnick, 2004;
Werner et al., 2012). Those approaches enhance students’ interest toward
computer science but may mislead their perception of computer scientists’
work as “clicking on the mouse”. In addition, bypassing the challenge of
programming may not help students develop core competences in computer
science, such as CT. It seems to be a challenge for computer science educa-
tors to find the balanced point between the engagement and authenticity in
students’ experience with computer science.

In this study, we tried to integrate computer science with middle-school
science through the language of SPARC. We designed a curriculum about
representing the atomic model with SPARC and piloted it with two 8th-grade
students through online instruction during the pandemic. Our research ques-
tions are:

4 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

Q1. How well did the students master the scientific content knowledge
involved in this SPARC unit?
Q2. What were the two students’ experiences with the computational-think-
ing tasks in this SPARC unit?
Q3. How did the two students perceive this SPARC unit?

THEORETICAL FRAMEWORK

SPARC as an answer set programming language

SPARC is an Answer Set Programming (ASP) language designed to
represent knowledge through a declarative approach (Balai, Gelfond, &
Zhang, 2013). Being declarative means that SPARC describes knowledge
in terms of objects and relations among them rather than a procedural se-
quence of actions. Correspondingly, an answer set is a set of objects that
satisfy certain relations. A typical example of ASP is the map coloring prob-
lem (Kowalski, 2014) that asks how to color each state of the united states,
given three colors, so that no two adjacent states have the same color. In this
problem, there are two objects of state and color. State has the values of the
name of the 50 states and color has the values of red, green, and blue. The
relation between the two objects in English is “States X and Y are adjacent,
then they have different colors” or “State X has the color of R, State Y is
adjacent to State X, then State Y has the color of non-R”. After translating
those statements into the language of SPARC, the system will return with
the visualization of the map of the united states with no two adjacent states
having the same color. The strength of SPARC is the use of simple logic
programming to solve complex problems.

ASP normally has three aspects (Kowalski, 2014): 1) objects with do-
mains; 2) relations between objects; 3) knowledge or rules that specify rela-
tions. The three aspects in SPARC correspond to the sections of SORTS,
RULES, and PREDICATES respectively. Figure 1 is a SPARC example of
predation. The code in sorts describes that the objects in this example are
organisms that have a domain of two values, i.e., snake and eagle. The code
in predicates describes a general relation of “preysOn” between organisms,
which in English is “preysOn (X, Y) denotes that organism X preys on or-
ganism Y”. The code in rules describes the knowledge of specific relations,
which in English is that “eagles prey on snakes”. With those codes, SPARC
can answer questions like “do eagles prey on snake?”, i.e. “preysOn(eagle,
snake)”, and return with the answer of “yes”. Other questions that can be
answered are like “preyOn(X, snake)”. Here X or words with the first let-

SPARC-Integrated Science Instruction 5

ter capitalized (such as “What” or “Hello”) are interpreted by SPARC as
a variable. Therefore, organism names in rules are written in small letters
as “eagle” and “snake”. It is easy to see how SPARC can be analogous to
modeling in math or science. Take a linear algebraic relation of y=3x for
example, “Sorts” defines the range and domain of the two variables x and y,
“Predicates” defines a general linear relation of y=ax, and “Rules” defines
a specific format of the linear relation in terms of y=3x. In the next section,
we will discuss how we define CT using SPARC.

Figure 1. Example of a SPARC model about predation.

Computational thinking

CT was introduced by Wing (2006) as “computational thinking in-
volves solving problems, designing systems, and understanding human be-
havior, by drawing on the concepts fundamental to computer science” (p.
33). In her later work (Wing, 2011), she clarified that “computational think-
ing is the thought processes involved in formulating problems and their so-
lutions so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent” (p.1). Other definitions in-
clude CT being a thought process of formulating solutions to a problem that
can be represented by computational steps (Aho, 2012), an awareness of the
computational aspect of the world and the ability to use computer science
techniques to explore the computational nature of the world (Royal Soci-
ety, 2012), and an algorithmic approach with a high-level of abstraction for
problem solving (García-Peñalvo, & Cruz-Benito, 2016). Those definitions
give a general sense that CT as the way people solve problems like com-
puter scientists, but do not specify details like how problems are solved. The
terms like system, model, process, steps, and algorithm appear repetitively
in different definitions and sometimes are used interchangeably, which con-
figures a vague contour of CT that yields limited practical guidance to mid-
dle-school educators.

6 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

Further efforts have been taken to decompose CT. Weintrop et al.
(2016) proposed a taxonomy that broke down CT into four categories of
skills: data and information skills, modeling and simulation skills, computa-
tional skills, and system thinking skills. Those categories overlap with each
other. For instance, modeling and systematic thinking overlap because a
model is a system. Grover and Pea (2013) listed elements (Table 1) that “are
now widely accepted as comprising CT and form the basis of curricula that
aim to support its learning as well as assess its development” (p. 39). Like
the CT taxonomy, abstraction is believed to have multiple levels which are
defined variously in different areas. In information science, the different lev-
els of abstraction are the instances of being informed by an existing system,
the creation of new instances of informing, and the creation of new designs
for informing (Cohen, 2009). Regarding algorithm, abstraction has differ-
ent levels based on whether the algorithm is free to programming language
or not (Perrenet, Groote, & Kaasenbrood, 2005). The different levels of ab-
straction in software architectures are determined by the architectural struc-
ture and functionality (Medvidovic, Taylor, & Whitehead, 1996). The ambi-
guity from various definitions makes it an unwieldy task for K-12 teachers
to determine the learning objectives while implementing CT practices.

After synthesizing various definitions, we took into consideration two
factors while defining CT: 1) aligning CT with modeling in science educa-
tion (Hestenes, 1987); 2) narrowing down CT categories in existing frame-
works to a couple of practices achievable to middle-school students. As
illustrated in the previous section, the structure of SPARC is analogous to
modeling as they both aim to construct a generalizable relation between
variables. Two skills are critical in this process: abstraction and program-
ming. We define abstraction as a process of constructing a system of objects
and relations (i.e., a model) that represents generalizable rules of knowledge
as the solution to a certain problem. Different levels of abstraction require
various amounts of cognitive load. From a lower level to an upper one, it is
decreasing detailed information and increasing possibility of generalization.
Specifically, abstraction has three levels of symbolizing perceivable objects,
building relations connecting symbolic objects, building patterns involving
symbolic objects and relations that have the power of predicting (Table 1).
Teacher scaffolding is probably needed to protect students from the frustra-
tion of not being able accomplish a CT task. Scaffolding refers to partial
information imparted to students about significant steps of a task but is in-
sufficient to accomplish the task. We separated the two situations by using
(i) for with scaffolding and (ii) for without. We used the sign of “-” to indi-
cate that students failed a task and it was completely accomplished by the
teacher.

SPARC-Integrated Science Instruction 7

Programming is another important aspect of CT (Grover & Pea, 2013;
Wing, 2011). It represents programmers’ both grammatic ability that guar-
antees their communication with a computer language and algorithmic rea-
soning underlying problem solving. Linn (1985) described a chain of cogni-
tive accomplishments related to programming. The first link was compre-
hension, which was understanding the syntax of a program and the ability
to make minor changes. The second link was design, which was building a
program using procedural skills to solve a problem. The third link is prob-
lem-solving, which is transferring problem-solving skills to a new system.
Adopting Linn’s structure in middle school, Werner et al. (2012) designed
3 programming tasks with hierarchical difficulty levels, which were to ad-
just parameters in pre-established syntax known as “event handler” (Task
1), to adjust existing event handlers (Task 3), and to create new event han-
dlers (Task 2). In this study, we defined three levels of programming skills,
which were the awareness of the programming environment (i.e., SPARC
in this study), understanding the syntax of programming language, and be-
ing capable to manipulate the dynamic process of programming (Table 1).
Debugging was embedded in the third aspect as it guaranteed the success-
ful operation of SPARC. Like abstraction, programming tasks accomplished
with/without scaffolding were coded as (i) and (ii) respectively. The sign of
“-” indicated that a teacher programmed for the students.

Table 1
Theoretical structure and assessment criteria of computational thinking.

Component Levels Elements of CT (Grover &
Pea, 2013)

Abstraction
(Assessed from
written or verbal

articulation)

A1. Object: Be able to symbolize objects to
appropriate representations.
Accomplished by teacher: A1-
Accomplished by student with scaffolding: A1(i)
Accomplished by student without scaffolding: A1(ii)

•	 Abstractions and
pattern generalization

•	 Systematic processing
information

•	 Symbol systems and
representations

A2. Relation: Be able to correctly describe specific
relations between objects.
Accomplished by teacher: A2-
Accomplished by student with scaffolding: A2(i)
Accomplished by student without scaffolding: A2(ii)

A3. Pattern: Be able to correctly describe a general
pattern of relations of interest.
Accomplished by teacher: A3-
Accomplished by student with scaffolding: A3(i)
Accomplished by student without scaffolding: A3(ii)

8 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

Component Levels Elements of CT (Grover &
Pea, 2013)

Programming
(Assessed from

computer)

P1. Awareness of the programming environment:
Be able to input information at the appropriate places
of SORTS, RULES, PREDICATES, and QUERIES.
Accomplished by teacher: P1-
Accomplished by student with scaffolding: P1(i)
Accomplished by student without scaffolding: P1(ii)

•	 Algorithmic notions of
flow of control

•	 Conditional logic
•	 Debugging and

systematic error
detection

P2. Syntax of programming language: Be able to
use correct syntax for objects, variables, relations, and
questions.
Accomplished by teacher: P2-
Accomplished by student with scaffolding: P2(i)
Accomplished by student without scaffolding: P2(ii)

P3. Dynamic process of programming: Be able to
debug the program and successfully run the program.
Accomplished by teacher: P3-
Accomplished by student with scaffolding: P3(i)
Accomplished by student without scaffolding: P3(ii)

Not included in
this study

N/A •	 Efficiency and
 performance
 constraints
•	 Structured problem

decomposition
•	 Iterative, recursive, and

parallel thinking

Literature review

Research regarding computer science education has been mainly car-
ried out at the college level but not much in K-12 (Blikstein & Wilensky
2009; Hambrusch et al. 2009). Kelleher et al. (2007) examined the program-
ming environment of storytelling Alice in comparison to general Alice. Both
Alice environments involved the drag-and-drop format of programming,
which in the authors’ words were “removes the possibility for making syn-
tax errors” (p.1455). The difference was that generic Alice contextualized
programming in pre-established stories whereas storytelling Alice provided
high-level animations and a gallery of characters and scene elements that
allowed students to create their own stories. The pedagogical support was
story-based tutorials where students were walked through the process of
creating a story, so they were familiar with the programming environment
and procedure. The participants were 88 girls separated in two groups re-
ceiving generic and storytelling Alice respectively. It was found that both
groups were equally successful in understanding basic programming syntax
associated with Alice, such as events, loops, and parameters. The storytell-

SPARC-Integrated Science Instruction 9

ing Alice group demonstrated more engagement in terms of the time spent
on programming and expressed more interest in continuous use of Alice.

Basawapatna, Koh, & Repenning (2010) explored the use of scalable
game design at the middle school level. Scalable game design was flexible
to students of different levels in exposure to computer science, program-
ming skills, etc. The authors used the programming environment of Agent-
Sheets that allowed students to create games easily without worrying about
details of implementation. According to the authors, AgentSheets was also
powerful because it was compatible to advanced technology like artificial
intelligence and Java. CT was a learning outcome not clearly defined but
reified as specific patterns in different cases, like push and pull, absorption,
and diffusion. Thus, it was unclear what competences pertaining to scalable
game design were transferable or generalizable. From both observations and
a post-reflective survey, the authors found that scalable game designs were
entertaining to middle-school students. Other than interest, there was no as-
sessment of students’ cognitive competences. The authors also mentioned
that the pedagogies of peer collaboration and “cheat sheets” as supplemen-
tary learning materials. 	

Werner et al. (2012) designed Fairy assessment aimed to evaluate mid-
dle-school students’ CT. They used an environment, known as Alice, for a
computer game where users can control characters to accomplish tasks us-
ing drag-and-drop programming. They prepared three tasks that required
different levels of CT, which in this study referred to algorithmic thinking,
abstraction, and modeling. Task 1 assessed whether students understood the
basic framework of the environment, could place instructions at the correct
place, or recognized the need to change parameters. Task 2 assessed wheth-
er students understood the program’s default execution sequence and adjust
instructions accordingly using conditional logic. Task 3 assessed whether
students could create new instructions by adjust the program’s default ex-
ecution sequence. They applied those tasks with 311 students in elective
after-school classes. With the data, the authors claimed that the assessment
was a promising strategy because it was engaging and could successfully
gauge a range of CT. However, the authors did not define the concepts of
algorithm, abstraction, and modeling. For example, Task 3 was different
from Task 2 in the absence of “problem-solving”, yet Task 3 itself was a
“problem” that students needed to solve. Due to this ambiguity, it is hard to
transfer CT elements assessed in this study to other contexts with different
programming environments. In addition, the graphic drag-and-drop way of
programming was student-friendly but not authentic, which probably could
not prompt students to think like computer scientists.

10 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

Grover, Pea, & Cooper (2015) designed a computer science curriculum
for middle school called Foundations for Advancing Computational Think-
ing (FACT). In this study, CT as one learning outcome referred to the algo-
rithmic flow such as sequence, loop, and conditional logic. Pedagogy wise,
FACT was claimed to use the inquiry-based approach of 5E (i.e. engage,
explore, explain, elaborate and evaluate) and cognitive apprenticeship where
students worked on both teacher-directed assignments and open-ended proj-
ects to model solutions to computational problems. This study took place
in a middle-school classroom with 26 students receiving face-to-face in-
struction and another 28 students receiving online FACT in a self-paced and
collaboratively manner. The authors used a variety of assessment includ-
ing several multiple-choice tests as formative assessment, pre-post tests on
knowledge of algorithmic flow, a post test about transferring algorithm to
text-based programming like Java and Pascal, a post project, pre-post sur-
veys and post interviews on the perception of computer science. It was
found that FACT in both settings were equally effective in promoting stu-
dents’ algorithmic ability. Students were able to transfer the knowledge of
algorithmic flow to text-based programming but had problems with loops
and variables. The experience with FACT promoted students’ understanding
of the work of computer scientists. The authors did not specify how algo-
rithmic flow like sequence and loop was important to students in other disci-
plines. In addition, the transfer of knowledge indicated little about students’
performance in text-based programming.

There are even fewer studies about integrating computer science with
core middle-school subjects. Marcu et al. (2010) tried to integrate com-
puter science into an engineering project in a 4-week summer camp for
53 middle-school students. PicoCricket Kits were used in this project with
which the students were expected to create objects like a kinetic sculpture,
an amusement park, and a fairy tale house. The students were assigned the
roles of electric, software, design, and civil engineers who oversaw different
aspects of a project. Programming was semi-structured that students need-
ed to drag and drop codes in pre-established syntax. Besides role-playing
group work, pedagogical support included hands-on exploration, instan-
taneous support, and post project demonstration. As indicated by pre-post
surveys, the participants perceived the experience in this summer camp as
being fun and they felt that they learned something without specifying what
the thing was. Besides, the participants developed their understanding of
the work of engineers and computer scientists and shifted their attitudes to-
wards the two areas from negative (e.g. being boring and hard) to positive
(i.e. being fun and easy).

SPARC-Integrated Science Instruction 11

Sengupta et al. (2013) introduced the framework of integrating com-
puter science into middle science education using an agent-based visual
programming environment called CTSiM. In CTSiM, students used a drag-
and-drop interface to create their program where they arranged primitives
or manipulated parameters. This environment could visualize the enactment
of programming with the actions of an agent in science scenarios of Newto-
nian mechanics and an ecosystem in a fish tank. The students refined their
model based on the instantaneous feedback from the system about how the
agents operated or the comparison with the model created by experts. Ac-
cording to the authors, CTSiM could promote students’ understanding of
science content knowledge and programming constructs like loops and vari-
ables. They measured 24 middle-school students’ science content knowl-
edge and observed pre-post differences with the students (N=15) receiving
one-on-one scaffolding from researchers in the school library. There was no
measurement of CT.

The studies reviewed above show that the efforts of integrating comput-
er science into middle schools have been focused on the affective learning
outcome in terms of students’ engagement or motivation toward computer
science. CT as the cognitive learning outcome has been seldom systemati-
cally measured or the measurement of CT cannot be generalized to different
programming languages. Besides, most of the studies used pre-post mea-
surement to reflect on the efficacy of a computer science project but left it a
black box how students interact with the project. Without that knowledge, it
is questionable to ascribe the pre-post difference, if any, to students’ experi-
ence with computer science. Grover and Pea (2013) pointed out that future
research regarding computer science at K-12 should be about the definition
of CT at K-12 and the integration of computer science and other subjects.
In this study, we scrutinized two middle-school students’ experience with a
SPARC-integrated science unit and their performance in CT tasks,

METHODS

Context and participants

We applied the method of case study (Ary et al., 2010) to examine in-
depth the experience of two eighth-grade students from a public middle
school in an urban district. Tyler (pseudonym) was a male Hispanic student
and Amber (pseudonym) was a female Hispanic student. Before participat-
ing in this project, neither of them had any experience with formal learn-

12 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

ing of computer science. SPARC and computer models were brand new to
them. Tyler claimed that he had used Java and Python before, but probably
at a superficial level because he originally referred to Python as “Raptor”.
Compared to Tyler, Amber had no experience with programming at all. This
project took place in one of their elective courses taught by Mr. C who had
participated in a workshop about SPARC. This course was given online due
to the COVID pandemic. The SPARC unit contained 8 lessons that lasted
for 4 weeks (Table 2). In each lesson, Mr. C video recorded his instruction
ahead of time that included the introduction of computer models built with
SPARC, the screenshot of his demonstration of programming in SPARC,
and the explanation of student tasks. Two undergraduate Teaching Assistants
(TA) major in computer science worked one-on-one with Tyler and Amber
respectively. They were both male. Their tasks were three-fold: 1) control-
ling the pace of the instructional video so the students would work on CT
tasks on their own before accessing the answer from Mr. C; 2) answering
the students’ questions about Mr. C’s instruction or CT tasks; 3) asking
questions so the students could talk out loud their reasoning while they were
working on the CT tasks.

Table 2
Eight lessons in the SPARC unit

Content

1 Introduction to computer science and computer modelling in the context of family
members.
Abstraction. Students accessed the Objects of family members (e.g. John, Peter,
Sarah, and Linda), Relations (e.g., John is the father of Sarah), and Rules (e.g.,
father(X,Y) denotes that X is the father of Y)
Programming. Students signed up for online SPARC, copied and pasted the syntax
provided,
e.g. “#people = {john, peter, sara, linda}.”, “father(#people, #people).”, “father(john, peter)”

2 Continuation with the model of family members by including the rule of “mother”.
Abstraction. Students expanded the model in Lesson 1 by including more objects and
the rule of “mother” (e.g., mother(X,Y) denotes that X is the mother of Y) and “parent”
Programming. Students typed new objects and rules (e.g., “parent(joann, linda)”) into
existing syntax and asked questions in Query about different rules, like “parent(joann,
linda)” that returned “yes”.

3 Introduction to variables
Abstraction. Students accessed words with the first letter capitalized as a variable that
meant what, like X, Who, and TheMotherofLinda. The note father(Who, peter) means
who is the father of peter,
Programming. Students asked questions in Query that contained variables. The upper-
case first letter features as a placeholder. They asked “father(Who, peter)” that returned
“Who = john”.

SPARC-Integrated Science Instruction 13

Content

4 Introduction to the if symbol “:-“
Abstraction. Students created “identical” relations for two different names such as
“father” and “dad”. The syntax, dad(X, Y) :- father(X, Y), means that X is the dad of Y
if X is the father of Y.
Programming. Students used the if symbol “:-“ in Rules to simplify the syntax.
They added the rule of “dad(X, Y) :- father(X, Y).” and asked questions in Query like
“dad(john, peter)” that returned “yes”.

5 Shifting from the context of family members to that of the atomic model and the
periodic table.
Abstraction. Students accessed the Objects of the first 20 elements in the periodic
table. The Relations are the unique symbol for each element. The Rule of symbolFor
(E, S) denotes that the chemical symbol of the element “E” is “S”.
Programming. Students inputted the symbols of the first 20 elements, such as
“symbolFor(hydrogen, h).” Then they asked queries about the symbols of specific ele-
ments. For example, the query “symbolFor(hydrogen, H)” returned “H=h”.

6 Expand the model from chemical symbol to atomic number
Abstraction. Students created the Relations of the atomic numbers of the same 20 ele-
ments by referring to the periodic table. The Rule of atomicNumber(E, N) denotes that
the atomic number of the element E is N.
Programming. Students inputted the atomic numbers of the first 20 elements, such
as “atomicNumber(carbon, 6).” Then they asked queries about the atomic numbers of
specific elements. For example, the query “atomicNumber(carbon, 6)” returned “yes”.

7 Expand the model by including proton number
Abstraction. Students created the Relations of the proton numbers of the same 20 ele-
ments by referring to the periodic table. The Rule of protonsOf(E, N) denotes that the
proton number of the element E is N. The atomic number of an element is the same as
its proton number. Thus, another rule is that protonsOf(E,N) = atomicNumber(E,N).
Programming. Students inputted the proton numbers of the first 20 elements, such
as “protonsOf(carbon, 6).”. Alternatively, they used the “if” syntax of “protonsOf(E,
N) :- atomicNumber(E, N).” to avoid reinputting the proton numbers. Then they
asked queries about the proton numbers of specific elements. For example, the query
“atomicNumber(carbon, X)” returned “X = 6”.

8 Expand the model by including neutron number and mass number
Abstraction. Students created the Relations of the mass number and neutron number
of the first 20 elements by referring to the periodic table. One set of Rules includes
neutronsOf(E,N) and massNumber(E,N). Another Rule is massNumber(E, N) =
protonsOf(E, N) + neutronsOf(E, N).
Programming. Students inputted the mas numbers of the first 20 elements, such
as “neutronsOf(carbon, 6).” They also learned the “and” symbol “,” and typed in
“massNumber(E, M) :- protonsOf(E, P), neutronsOf(E, N), M = P + N.” Then the
asked queries about the mass and neutron numbers of specific elements. For example,
the query “neutronsOf(carbon, N)” returned “N = 6”.

As shown in Table 2, we contextualized SPARC in the topics of fam-
ily members and the atomic model. The former was to engage students in
SPARC-based computer science with a “low-floor” topic with which they

14 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

were familiar. They were expected to understand what building a comput-
er model means, which in student-friendly language was to teach “dumb”
computers something that we know using their language. We selected the
latter because the atomic model was a key concept required by the 8th-grade
science standard in the state of Texas.

8.5 (A) describe the structure of atoms, including the masses, electrical charges,
and locations, of protons and neutrons in the nucleus and electrons in the
electron cloud (Texas Essential Knowledge and Skills, Grade 8)

The two students had learned the concepts about the atomic model from
their science courses. Contextualizing SPARC in this topic could reveal the
role of students’ content knowledge in their learning of SPARC and their
development of CT. During Abstraction, the focus was on knowledge rep-
resentation. The students could capitalize the first letter of names and ele-
ments based the regulation (e.g., “John”, “Carbon”). Meanwhile, they did
not need to worry about signs or punctuation, such as the period at the end
of a rule (e.g., “father(John, Peter)”, “protonsOf (Carbon, 6)”). The focus
during Programming was on the syntax so SPARC could function properly.
The students needed to follow the rules of SPARC rigorously, such as lower
cases for objects (e.g., “john”, “carbon”) and a period ending a rule (e.g.,
“father(john, peter).”, “protonsOf (carbon, 6).”).

Data collection and analysis

To answer the first research question, we conducted one-on-one pre-
interviews with the two students to assess their scientific content knowl-
edge. Five questions (Appendix) about the atomic model were adapted from
the released questions of Grade 8 State of Texas Assessments of Academic
Readiness (STARR). A periodic table was provided during the pre-inter-
view. These questions assessed the students’ ability of reading the periodic
table and their knowledge of the atomic structure, such as the relationship
between the numbers of protons, neutrons, and electrons. The students talk-
ed out loud their thinking while answering these questions. The interviewer
provided necessary support when the students could not recall key knowl-
edge. The entire interviews were video-recorded and later transcribed for
the analysis of the students’ scientific content knowledge. In addition, we
video recorded all the eight lessons when each student worked with an un-
dergraduate TA. The students’ content knowledge demonstrated in the vid-

SPARC-Integrated Science Instruction 15

eos was coded as D (Correct domain knowledge) or D- (Incorrect domain
knowledge). D and D- were coded by one expert in science education in the
research team.

To answer the second question, we first divided the videos into CT
tasks and coded how each student worked on these tasks based on Table 1.
We did not code the parts when the students watched the instructional vid-
eos prepared by Mr. C. However, we paid attention to whether the student
copied the answer directly from the videos to accomplish a task. If they did
it, we coded that task with “-”. Take a task of Abstraction for example, one
student was asked to articulate the chemical symbol of hydrogen. If the stu-
dent answered that “You need to use the rule of symbolFor to describe that
the symbol for the element of hydrogen is H.”, this task would be coded
as “A2(ii)” because this student could build a specific Relation without the
support from the TA or the video. In another task of Programming about
the same topic, if a student typed in “symbolFor(hydrogen, H)” on his/
her SPARC platform and the system returned an error message. With the
prompt from the TA, this student added a period at the end of this sentence,
but the syntax was still erroneous. This student could not fix the problem
and then watched the video to realize that “H” should be “h”. This task
would be coded as “P3-” because this student was able to use the correct
format of syntax at the correct place but failed with debugging until refer-
ring to the video. Two of us coded each video separatively, tracked disagree-
ment, and met to reach an agreement. Cohen’s Kappa (Cohen, 1960) was
used to examine the inter-rater reliability. Finally, we calculated the percent-
ages of different codes of tasks. Not all the CT tasks were designed for the
highest level of Abstraction or Programming. For example, the task of “how
to represent the atomic number of Hydrogen” did not involve general pat-
terns (A3). Thus, we did not measure the students’ CT with the frequencies
of different levels of tasks, but the percentages of tasks not accomplished
by students (“-”), tasks accomplished by students with TA scaffolding (“i”),
and tasks accomplished by students without scaffolding (“ii”).

To answer the third question, we conducted one-on-one post interviews
with the two students. In this interview, we asked the two students about
three themes, including their opinions about integrating SPARC at middle
schools, their feedback to the SPARC unit, and their feedback to the in-
structional support from both the TA and Mr. C’s video. Some exemplary
questions were “Which aspect or concept of this SPARC unit did you find
most interesting? Most challenging?”, “We applied SPARC in the contexts
of both family members and the atomic model. Which context did you enjoy
more?”, and “Which one between Mr. C’s instructional videos and the TA’s

16 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

support did you find more helpful?”. We audio-recorded the post interviews,
transcribed students’ answers, and then compared between the two students
to draw the conclusions.

FINDINGS

In this section, we will use italic words for the direct quote of the con-
versations in the interviews and class videos with the TAs and the students’
work of programming on the SPARC platform. Our note will be in the
brackets of “[]”.

Q1. How well did the students master the scientific content knowledge
involved in this SPARC unit?

During the pre-interview, Tyler encountered difficulties in the first
question (Appendix). The interviewer helped Tyler locate the four elements
of Indium, Scandium, Aluminum, and Zinc in the periodic table. Tyler first
ruled out Option A because “I have never heard of neutrons being outside
of nucleus”. He hesitated about the meanings of the numbers in a cell of an
element and mistook the atomic mass (i.e., 45 for Scandium) for the proton
number. Then he read the numbers “2-8-9-2” at the bottom and stated that
“Every number is how many electrons are on the shell. The shell is every
ring around the nucleus”. Tyler added all the numbers together and conclud-
ed that the electron number is 21 rather than 45 for Scandium. He used this
method to rule out Options B and C. Tyler knew that Option D was the right
answer but did not know why. Then the interviewer had a conversation with
him as shown below

“Tyler: It has been a while since I have done this, I try to remember, is it
how you figure out the neutrons, use protons minus electrons? – [Fuzzy
memory]
Interviewer: Let’s work together to refresh your memory. What does the
inside of an atom look like?
Tyler: In the center you have the nucleus. That’s where the protons and
neutrons are. Outside the nucleus, the shells or rings, on the rings is the
electrons. – [Remember the atomic structure]
Interviewer: Is there a relationship between the numbers of protons, neu-
trons, and electrons?

SPARC-Integrated Science Instruction 17

Tyler: Yes, we have a bunch of equations to figure that out, but I cannot
remember a single one. I just remember the base of it. Are the protons and
neutrons the same? – [Cannot remember the relations between protons,
electrons, and neutrons]
Interviewer: Probably, do you have a reason for that?
Tyler: We have little letters for the equations, p for proton, n for nucleus,
and e for electrons, something is equal to whatever the other one is, but I
cannot remember them.
Interviewer: The number of protons is equal to the number of electrons. Do
you know why?
Tyler: It’s kind of opposite, it has to go into the neutrons? – [Probably did
not learn why]
Interviewer: What kind of charges do protons have?
Tyler: Protons are positive and electrons are negative. – [Remember the
charge types]
Interviewer: Then what if the numbers of protons and electrons are not
equal?
Tyler: The atom would be one way or the other, if there are more protons, it
would be a proton atom or positive atom.
Interviewer: Exactly, but atoms are neutral, what does that tell you?
Tyler: You have the numbers of protons and electrons, add them up, that’s
how many neutrons?
Interviewer: Do electrons have mass?
Tyler: I think so, I never came across that question before. – [Probably did
not learn why]
Interviewer: The mass of electrons can be ignored compared to that of
protons and neutrons. The number beneath the chemical symbol is the mass
number for an element, which is composed of the number of protons and
the number of neutrons. How do we figure out the neutron number once we
know the mass number and the proton or electron number?
Tyler: Mass number minus proton number. Now I remember.”

As shown in the conversation, Tyler probably learned the atomic model
from his science course by memorizing facts such as protons and neutrons
are inside the nucleus and electrons outside are on different shells. However,
his memory was fragmented and faded already. Tyler could not recall the
equations and did not take the prompts from the interviewer, which suggests
that he probably did not understand science meanings underneath those
equations. After the interviewer explained the equations about the atomic
model, Tyler was able to provide correct answers and reasoning for the rest

18 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

questions. The interviewer later asked Tyler what could be done to reinforce
his memory of the equations. Tyler answered that “For the equations, it is
hard to explain. I don’t have a certain way of remembering things. Really
to me, it’s just that I think about it, sometimes it pops out, sometimes I can-
not remember, like the equations. I know we have talked about this.” Thus,
it could be inferred that Tyler probably learned this topic by rote and did not
organize well the information received from the science teacher.

In the interview with Amber, she could not solve the questions either
at the beginning. The interviewer gauged her understanding of the atomic
model with the conversation below:

“Interviewer: Could you talk about your impression of the model of an
atom?
Amber: An atom is like a molecule. A molecule is made of protons, neu-
trons. It is like, atoms are around us, air and stuff like that. – [Misuse of
molecule]
Interviewer: You mentions protons and neutrons. How are they arranged or
located in an atom?
Amber: They are located in the middle of an atom. – [Remember the atomic
structure]
Interviewer: Protons and neutrons in the center. Anything else that can be
found in an atom?
Amber: Electron cloud, like rings round, that’s an electron cloud, an elec-
tron cloud is electrons.
Interviewer: Sounds great. Since you mentioned rings, electrons should
orbit the center, why do you think it is called a cloud?
Amber: Because it is made of all the electrons. It’s a certain amount on each
ring. – [Remember the term of electron cloud but does not understand it]
Interviewer: That makes sense. How about protons?
Amber: Atomic number, the atomic number matches proton. – [Remember
one relation]
Interviewer: Excellent. How about neutrons?
Amber: I got neutrons and protons mixed up. I know how to find the
protons, I don’t know how to find the neutrons. – [Cannot remember other
relations]
Interviewer: Do you think there is a relation between proton number and
neutron number?
Amber: There is a relationship, but I don’t know what it is. I know the
proton is the atomic number, and neutrons are like subtraction, I don’t know.
– [Fuzzy memory]

SPARC-Integrated Science Instruction 19

Interviewer: It’s OK. Do you know why proton is the atomic number? Or
you have been told that this is a fact?
Amber: Well, my science teacher told me one time, and I forgot. – [Probably
did not learn why]
Interviewer: It’s alright. Neutrons plus protons is equal to the atomic mass.
Which number in the cell of zinc is the mass number?
Amber: It is 45. D is correct, the proton is 30.
Interviewer: Why is the number of electrons also 30?
Amber: Good question, I don’t know. I forgot how to find the electrons. –
[Fuzzy memory]
Interviewer: Electrons are equal to protons.”

	
Similar to Tyler, Amber’s knowledge of the atomic model was frag-

mented. She could recall some concepts like electron cloud, protons, and
atomic number, but could not explain them well. She probably learned this
topic by rote and her memory of the facts about the atomic structure faded
as well. After receiving the instruction from the interviewer, Amber could
solve the rest questions with occasional consultation with the interviewer,
such as a question of “Do we have to use neutrons, protons to find elec-
trons?”. While being asked what could be done to reinforce her memory,
she was unsure but stated that “I don’t know. It depends. Some topics, I can
remember easily, some that make sense to me, but not the other.” The cases
of Tyler and Amber corresponded to a common challenge in science educa-
tion about how to reinforce students’ long-term memory of content knowl-
edge. We did not have any codes of “D-” during the entire SPARC unit. Nei-
ther Tyler nor Amber demonstrated any errors or difficulties with the topic
of the atomic model.

Q2. What were the two students’ experiences with the computational-thinking
tasks in this SPARC unit?

There were 54 CT tasks for Tyler and 54 ones for Amber. The Cohen’s
Kappa was 0.81 (p<0.001) between the two raters on the 108 tasks, which
justified the inter-rater reliability of the rubric (Table 1). We summarized
in Table 3 the percentages of different task codes from the two students. In
Tyler’s case, the percentages of the Abstraction tasks not accomplished by
Tyler (“-”), accomplished with TA support (“i”), and accomplished with-
out TA support (“ii”) were 3.1% (i.e., 1/32), 6.2% (i.e., 2/32), and 90.7%
(i.e., 29/32). The percentages of “-”, “i”, and “ii” for the Programming tasks

20 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

were 9.1% (i.e., 2/22), 22.7% (i.e., 5/22), and 68.2% (i.e., 15/22). The coun-
terparts in Amber’s case were 16.7% (i.e., 5/30), 33.3% (i.e., 10/30), and
50.0% (i.e., 15/30) for Abstraction tasks and 20.8% (i.e., 5/24), 54.2% (i.e.,
13/24), and 25.0% (i.e., 6/24) for Programming ones. Three patterns stood
out: 1) The percentage of “-” was lower than that of “i” and “ii”. Generally,
the SPARC unit was comprehensible to both students. 2) The percentages
of “-” and “i” increased and the percentage of “ii” decreased from Abstrac-
tion to Programming for both students. Programming tasks seemed to be
more difficult than Abstraction ones since both students needed more sup-
port from the TA or Mr. C’s instructional videos. 3) The percentages of “ii”
for both Abstraction and Programming in Tyler’s case were larger than their
counterparts in Amber’s case. This difference might stem from Tyler’s ex-
perience with programming that enabled him to accomplish CT tasks more
independently.

Table 3
Task codes between the two students

Abstraction

A1- A1(i) A1(ii) A2- A2(i) A2(ii) A3- A3(i) A3(ii)

Tyler 0 0 2 0 1 20 1 1 7

Amber 0 0 1 1 6 12 4 4 2

Programming

P1- P1(i) P1(ii) P2- P2(i) P2(ii) P3- P3(i) P3(ii)

Tyler 0 0 1 2 0 2 0 5 12

Amber 1 1 0 3 4 2 1 8 4

A close look into the tasks revealed that the difficulties in Abstraction
existed at the beginning when the two students built a model about family
members, especially when variables were first introduced. The conversation
below was an example in Lesson 4 when Amber worked with the TA on the
task of “whom John is the father of” when there were three children. The
expected answer was “father (john, Whom)” and “Whom” could be a capital
letter or any words with the first letter capitalized. Amber failed this task
probably because she was unfamiliar with the rule of abstraction associated
with SPARC. Tyler’s only “-” task in Abstraction was about family mem-
bers as well. After entering the topic of atomic model, Tyler could follow
the regulations to build SPARC models about an atom. In comparison, Am-
ber encountered more difficulties. For example, Amber stated that “atomic
number is E and N” when the task was to build a rule of “atomicNumber(E,

SPARC-Integrated Science Instruction 21

N)”. After the TA asked that “what do you mean by that?”, Amber answered
with “I don’t know how to word it” rather than the expected answer of “the
atomic number of an element E is the number N”.

“TA: How should I write a query to see whom John is the father of? Assuming
John is the father of those three children, how would I get that? – [A3 task]
Long pause from Amber
TA: We would be using variables for this. – [TA support]
Amber: Well, wouldn’t you put father, Linda, Sara, and Peter?
TA: What’s that?
Amber: Wouldn’t you put X? – [Miss the name of the rule]
TA: So we know John is the father of somebody, but we don’t know who
somebody is, so our rule is going to start with father obviously, and we
know we want to find whom John is the father of, so the first argument is
gonna be John, right? – [TA support]
Amber: Yes.
TA: So what would we put for the next part?
Long pause from Amber
TA: You mentioned X. – [TA support]
Amber: Father, parenthesis, X, X, X? – [Misunderstanding of “X” as a variable]
TA: There only needs to be one X at a time. John is the father of X and X
is the three children, so you don’t need three Xs. – [Task accomplished by
TA]”

In regard to Programming, Tyler had two “P2-” tasks with one about
family members and the other about the atomic model (Figure 2). In both
cases, Tyler copied complex rules directly from Mr. C’s instructional video.
As shown in Figure 2, the rule of “neutronsOf(E, N) :- massNumber(E, M),
protonsOf(E, P), N = M – P.” was to define “neutronsOf” with “massNum-
ber” and “prontonsOf”. It was one of the most challenging tasks in the en-
tire unit. Thus, it was not quite surprising that Tyler could not generate this
rule on his own. Tyler did not have any “P3-” and his “P3(ii)” was more
frequent than “P3(i)”, which suggests that he could debug his programming
anytime when there were errors with occasional support from the TA. In
comparison, Amber needed more support from the instructional video (“-
”) or the TA (“i”). There were only 6 out of 24 tasks where she could ac-
complish programming that worked properly. Amber’s difficulties with pro-
gramming varied. At the beginning of this unit, she was uncertain where she
should put rules or queries. Amber also had difficulties transferring her ex-
isting knowledge to a new context. For example, the first rule in the topic of

22 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

atomic model is “symbolFor (E, S)”. Amber could articulate the relation of
“symbolFor (hydrogen, h).” as “The symbol for the element of hydrogen is
H.” However, she could not correctly type this relation on SPARC even with
the prompt from the TA that “father (john, peter).” was the syntax for the re-
lation of “John is the father of Peter.” Amber improved her skill of program-
ming from practice. For example, Amber was more aware of common errors
like missing a period or the difference between upper- and lower-case letters
as she programmed more. Yet, she made more errors in programming and
needed TA support to fix them more frequently than Tyler did.

Figure 2. One “P2-” task from Tyler.

SPARC-Integrated Science Instruction 23

Q3. How did the two students perceive this SPARC unit?

In the post-interview, both students felt that computer science was im-
portant and should be incorporated in middle school. To them, computer sci-
ence was “to make computer learn something so it can answer questions
[Tyler]/ make a software [Amber]”. They both commented positively about
their experience with this SPARC unit. They perceived this unit as being in-
teresting. Specifically, they both found the section of Rules most interesting
and their reason was the same that Rules were the “computer language” to
represent the knowledge that they knew. This is like language learners be-
ing able to communicate with native speakers using their language, which
granted the leaners a sense of success. In addition, Tyler thought that Que-
ry was also interesting because “There are so many ways that you can ask
the same question.” While being further asked which topic between fam-
ily members and the atomic model was more appropriate to embed SPARC,
both students selected the atomic model because it was more sophisticated.
In Amber’s words, “Father and dad are basically the same words… with the
atomic model, you got to teach more knowledge to the computer.” For both
students, part of their interest towards SPARC seemed to come from their
sense of competence of presenting sophisticated knowledge using SPARC.

“Tyler: I also like rules because basically that’s a large part of teaching
computer something, that’s where you put on the major details that com-
puter knows the answer to the questions you are asking in query.
Amber: I think I find the rules most interesting. We are basically telling the
computer using the computer language, I guess. I kind of play the role as a
teacher and input the knowledge to computer.”

While being asked which aspect in the unit was most challenging, they
both mentioned “Predicates” because it contained different symbols that
required a stronger skill of programming, especially debugging. In Tyler’s
words, “If you mistype one little thing, if you make a capital letter a low-
er case and vice versa, one little thing messes up everything and it won’t
work… Debugging would be most challenging because you got to find little
bitty mistakes.” However, they held different attitudes toward this challenge.
Tyler enjoyed this challenge whereas Amber found this challenge less in-
teresting and would love to bypass it. This difference might because Tyler
“always enjoyed learning how things work” or he had experience with pro-
gramming.

24 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

“Tyler: I do enjoy it [debugging]. I think it’s something like solving the
mystery, because whenever the query would say all this stuff that we don’t
know what it means, I would have to figure out what it’s telling me to do
and where it’s telling me to do it, I would have to go through and figure that
out. I enjoy figuring that out.
Amber: When I did it [programming], I kept saying, wait, there was an
error. Sometimes it was frustrating… I prefer someone else fix the error for
me.”

As for the instructional strategy, they both preferred the instantaneous
support from the TA over Mr. C’s instructional video. Like Amber said “He
[the TA] kind of taught me through it and Mr. C just explained it. The TA
was more interactive.” Amber was unsure whether this SPARC helped her
understand the atomic model better. In comparison, Tyler acknowledged
that SPARC reinforced his memory of the atomic model through practice.

“Tyler: Yes, I think it [SPARC] did help. I remember in science we have
already done the periodic table and learned a lot at there, but we never did
any activities trying to memorize it…So I am thinking, if I had done SPARC
programming before that, it probably could have been much easier since I
memorized more of it.”

While being asked whether other students without experience with pro-
gramming would feel the same way, Tyler stated that “I think they [Other
students without programming experience] would like it [SPARC] because I
know some people dislike science more than STEM, because in STEM they
got to work with technology. In science, it was more answering questions
and all that. STEM is a little more active than science was. I feel it would
be more fun.” He believed that SPARC as a technology would make science
more interesting to some students.

Considering that Tyler had experience with Java and Python, we asked
for his opinion about programming with SPARC. First, he commented that
“Compare to Java and Python, I think SPARC is super easy. If [the sym-
bol] is the hardest part, but not that hard compared to Jave or Python.” He
believed that SPARC “can be kind of a step stone to Java or Python”. His
comment justified our hypothesis that SPARC is more friendly to middle-
school students and also represents the authentic work of computer scien-
tists. Tyler did not think that his programming experience with Java and Py-
thon could automatically transfer to the skill of programming with SPARC.
He began with not paying attention to “the stuff I was programming”, but
to “what the program was doing”. Once he got used to it, he started to “pay

SPARC-Integrated Science Instruction 25

more attention to what I was programming.” Based on Tyler’s comments, it
seemed that an effective integration of SPARC and science requires basic
knowledge of both areas. Thus, a reasonable sequence of integration prob-
ably is students learning SPARC in the context with which students are fa-
miliar, learning a scientific concept, and building a SPARC model of that
concept to strengthen the knowledge.

DISCUSSIONS AND IMPLICATIONS

This study describes our efforts of integrating computer science edu-
cation into middle schools through the programming language of SPARC.
Like many existing studies at the K-12 level (Basawapatna, Koh, & Repen-
ning, 2010; Marcu et al., 2010; Sengupta et al., 2013), we witnessed posi-
tive affective learning outcomes such as student engagement and interest. In
addition, we did see a cognitive learning outcome of the students’ compe-
tence of CT. We clearly defined a K-12 friendly version of CT as the com-
bination of Abstraction and Programming (Grover & Pea, 2013; Weintrop et
al., 2016; Wing, 2006; Wing 2011). The former is about the ability of iden-
tifying objects in a phenomenon, building relations among the objects, and
generalizing patterns. This is aligned with model building in science educa-
tion (Hestenes, 1987; Sengupta et al., 2013; Weintrop et al., 2016), which
was probably why Tyler felt that the SPARC unit strengthened his knowl-
edge of the atomic model. In other words, representing the atomic model
with SPARC is beyond the repetition of facts to the organization of the facts
in a logical order. The latter, programming, is about the communication us-
ing the computer language and algorithmic reasoning of following rigorous
steps to solve a problem. Based on the findings, around 80% of the CT tasks
were successfully accomplished by both students regardless of their prior
experience with programming (i.e., Tyler) or not (i.e., Amber). The differ-
ence lay in their spontaneity and independency while accomplishing a task.
Thus, it could be inferred that CT defined in this study was not only mea-
surable but also achievable to regular students. In addition, we believe that
our rubric (Table 1) for CT assessment is applicable to other text-based pro-
gramming languages.

 Our findings also suggest the feasibility of integrating SPARC with
middle-school science (Grover & Pea, 2013). Neither students demonstrated
any difficulties with applying SPARC in the context of the atomic model.
In fact, they preferred the atomic model over family members because it
granted them a stronger sense of success. Prior to this unit, both students
demonstrated the same pattern of fragmented memory and superficial un-

26 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

derstanding of the atomic model. This situation is common since the con-
tent knowledge required by national or state standards (e.g., Texas Essential
Knowledge and Skills) sometimes is limited to the memorization of basic
facts at the middle-school level. Tyler and Amber’s science teacher did not
teach them the mechanism behind the equations about proton, neutron, and
electron numbers probably because concepts like being electronically neu-
tral were beyond the standards. Thus, students would need opportunities to
apply an abstract concept when they are unlikely to observe its use in daily
lives. In this sense, integrating SPARC into science is probably more practi-
cal and beneficial than opening a separate course about computer science
alone. In this study, it was unclear how CT overlapped with scientific think-
ing demonstrated by the two students (Sengupta et al., 2013; Weintrop et al.,
2016). However, we observed the reciprocal benefits associated with this in-
tegration as computer modeling granted students the opportunity of knowl-
edge application and the context of science made computer science more
meaningful. Considering the importance of background knowledge (Marcu
et al., 2010; Sengupta et al., 2013), we would suggest using SPARC sequen-
tially after students have learned a scientific concept rather than parallelly at
their early access.

The success of this SPARC unit also supports the feasibility of expos-
ing middle-school students to programming. Despite its complexity (Grover
& Pea, 2013), programming cannot be ignored because it is a critical part
of computer scientists’ work (Wing, 2011). Both Tyler and Amber referred
to programming as a challenge. Although Amber disliked programming, es-
pecially debugging, she managed this skill gradually with the support from
the TA. She accomplished 79.2% of the programming tasks, but probably
was unaware of that achievement. Compared to reiterating how complex
programming could be, Amber might need the meta-cognition more about
her competence of programming. We do not argue that programming has to
be mandatory to all middle school students. However, we also disagree with
depriving students of the chances of programming when they have the po-
tential to manage this skill. The importance roots in how teachers can shield
students from the frustration of debugging before they have been used a new
computer language. SPARC has the advantage over other text-based pro-
gramming languages (e.g., Java) because it is simple. The “low floor” strat-
egy of starting with the model of family members could be effective for stu-
dents to concentrate on the basics of programming. Another helpful strategy
is the separation between Abstraction and Programming. Deemphasizing the
rigor of syntax would ease learners’ anxiety from constructing a computer
model directly on a programming platform.

SPARC-Integrated Science Instruction 27

Acknowledgement

This work is supported by the National Science Foundation (NSF) of
the United States under grant number 1901704 to Texas Tech University.
The opinions, findings, and conclusions or recommendations expressed are
our own and do not necessarily reflect the views of the National Science
Foundation.

References

Aho, A. V. (2012). Computation and Computational Thinking. Computer Jour-
nal, 55(7), 832- 835. doi:10.1093/comjnl/bxs074.

Ary, D., Jacobs, L. C., Razavieh, A., & Sorensen, C. (2010). Introduction to Re-
search in Education (8th edtion). Thomson Learning, Belmot, CA: Wad-
sworth.

Balai, E., Gelfond, M., & Zhang, Y. (2013). Towards answer set programming
with sorts. In International Conference on Logic Programming and Non-
monotonic Reasoning (pp. 135-147). Springer, Berlin, Heidelberg.

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital
age skill for everyone. Learning & Leading with Technology, 38(6), 20-23.

Basawapatna, A. R., Koh, K. H., & Repenning, A. (2010). Using scalable game
design to teach computer science from middle school to graduate school.
In Proceedings of the fifteenth annual conference on Innovation and tech-
nology in computer science education (pp. 224-228). ACM.

Blikstein, P., & Wilensky, U. (2009). An atom is known by the company it
keeps: A constructionist learning environment for materials science using
agent-based modeling. International Journal of Computers for Mathemati-
cal Learning, 14(2), 81-119.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational
and Psychological Measurement, 20(1), 37-46.

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, can-
ons, and evaluative criteria. Qualitative sociology, 13(1), 3-21.

García-Peñalvo, F. J., & Cruz-Benito, J. (2016). Computational thinking in pre-
university education. In Proceedings of the Fourth International Conference
on Technological Ecosystems for Enhancing Multiculturality (pp. 13-17).
ACM.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the
state of the field. Educational researcher, 42(1), 38-43.

Grover, S., Pea, R., & Cooper, S. (2014). Remedying misperceptions of comput-
er science among middle school students. In Proceedings of the 45th ACM
technical symposium on Computer science education (pp. 343-348). ACM.

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a
blended computer science course for middle school students. Computer Sci-
ence Education, 25(2), 199-237.

28 Wang, Zhang, Jones, Eckel, Hawkins, and Musslewhite

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science
learning in middle school. In Proceedings of the 47th ACM technical sym-
posium on computing science education (pp. 552-557). ACM.

Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., & Hosking, A. L.
(2009). A multidisciplinary approach towards computational thinking for
science majors. ACM SIGCSE Bulletin, 41(1), 183-187.

Hestenes, D. (1987). Toward a modeling theory of physics instruction. American
journal of physics, 55(5), 440-454.

Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007). Storytelling alice mo-
tivates middle school girls to learn computer programming. In Proceedings
of the SIGCHI conference on Human factors in computing systems (pp.
1455-1464). ACM.

Kowalski, R. (2014). Logic programming. In Handbook of the History of Log-
ic (Vol. 9, pp. 523-569). North-Holland.

Linn, M. C. (1985). The cognitive consequences of programming instruction in
classrooms. Educational Researcher, 14(5), 14-29.

Medvidovic, N., Taylor, R. N., & Whitehead Jr, E. J. (1996). Formal modeling of
software architectures at multiple levels of abstraction. ejw, 714, 824-2776.

Marcu, G., Kaufman, S. J., Lee, J. K., Black, R. W., Dourish, P., Hayes, G. R., &
Richardson, D. J. (2010). Design and evaluation of a computer science and
engineering course for middle school girls. In Proceedings of the 41st ACM
technical symposium on Computer science education (pp. 234-238). ACM.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., & Resnick, M. (2004).
Scratch: a sneak preview [education]. In Proceedings. Second International
Conference on Creating, Connecting and Collaborating through Comput-
ing, 2004. (pp. 104-109). IEEE.

National Research Council. (2010). Report of a workshop on the scope and na-
ture of computational thinking. Washington, DC: The National Academies
Press.

National Research Council. (2012). A Framework for K-12 science education:
Practices, crosscutting concepts, and core ideas. Washington, DC: The Na-
tional Academies Press.

Perrenet, J., Groote, J. F., & Kaasenbrood, E. (2005). Exploring students’ under-
standing of the concept of algorithm: levels of abstraction. ACM SIGCSE
Bulletin, 37(3), 64-68.

Royal Society (2012). Shut down or restart: The way forward for computing in
UK schools. [2016, May 24] https://royalsociety.org/~/media/education/
computing-in-schools/2012-01- 12-computing-in-schools.pdf

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Inte-
grating computational thinking with K-12 science education using agent-
based computation: A theoretical framework. Education and Information
Technologies, 18(2), 351-380.

Settle A, Franke B, Hansen R, Spaltro F, Jurisson C, Rennert-May C, Wildeman
B (2012) Infusing computational thinking into the middle- and high-school
curriculum. In: Proceedings of the 17th ACM conference on Innovation and
technology in computer science education. ACM, New York, pp 22–27

SPARC-Integrated Science Instruction 29

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilen-
sky, U. (2016). Defining computational thinking for mathematics and science
classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy per-
formance assessment: measuring computational thinking in middle school.
Proceedings of the 43rd ACM technical symposium on Computer Science
Education, SIGCSE (pp. 215-220). New York, NY, USA: ACM

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3),
33–36.

Wing, J. (2011). Research notebook: Computational thinking—What and why?
The Link Magazine, Spring. Carnegie Mellon University, Pittsburgh. Re-
trieved from http://link.cs.cmu.edu/article.php?a=600

