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Abstract

Group Fairness-aware Continual Learning (GFCL) aims to
eradicate discriminatory predictions against certain demo-
graphic groups in a sequence of diverse learning tasks. This
paper explores an even more challenging GFCL problem –
how to sustain a fair classifier across a sequence of tasks with
covariate shifts and unlabeled data. We propose the MacFRL
solution, with its key idea to optimize the sequence of learn-
ing tasks. We hypothesize that high-confident learning can
be enabled in the optimized task sequence, where the classi-
fier learns from a set of prioritized tasks to glean knowledge,
thereby becoming more capable to handle the tasks with sub-
stantial distribution shifts that were originally deferred. Theo-
retical and empirical studies substantiate that MacFRL excels
among its GFCL competitors in terms of prediction accuracy
and group fairness metrics. Our code and datasets are released
publicly at https://github.com/X1aoLian/MacFRL.

Introduction

Group Fairness-aware Continual Learning (GFCL) has re-
cently garnered significant attention due to its applications in
societal decision-making (Chowdhury and Chaturvedi 2023;
Truong et al. 2023b; Zhao et al. 2023). GFCL enables learn-
ing model to adapt to shifting data distributions, jointly opti-
mizing classification accuracy and group fairness (Mehrabi
et al. 2021). The key idea of GFCL is to eradicate superfi-
cial correlation between class labels and protected charac-
teristics, such as gender, age, or ethnicity (Malleson 2018),
across various tasks. To do that, Fair Representation Learn-
ing (FRL) has emerged as an important technique due to its
ease of implementation and reproduction (Oh et al. 2022;
Zhao et al. 2023; Chowdhury and Chaturvedi 2023; Truong
et al. 2023b). Given a sequence of tasks, FRL aims to rep-
resent data from any task into a shared latent space so that
1) the data representations are invariant across all tasks, en-
abling continual learning, and 2) the protected feature infor-
mation is not included, ensuring fair predictions.

Unfortunately, the existing FRL methods for GFCL
mostly suffer from two major drawbacks. First, they heavily
depend on the availability of labeled data, which are costly
and time-intensive to obtain across multiple tasks, making
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them non-sustainable over time. Second, they falter in han-
dling tasks with substantial covariate shifts. Consider, for ex-
ample, a hiring system with different occupations as tasks.
The FRL models require to learn very different representa-
tions to disentangle correlations between protected feature
(e.g., gender) and label (e.g., hire or not), which can vary
significantly across occupations. Enforcing an FRL model
learned from one occupation (e.g., marketing) to make pre-
diction on another very different occupation (e.g., engineer-
ing) may incur a brittle trade-off between stability and plas-
ticity (Kim et al. 2023). That is, the model either persists
in the previously learned representations and hence makes
highly unfair or inaccurate predictions in the new occupa-
tion, or it adapts to the new occupation completely and for-
gets how to make fair predictions on all previous tasks.

In this paper, we aim to overcome the two drawbacks at
once by exploring a new GFCL problem, namely, how to
sustain a fair classifier across a sequence of tasks with co-
variate shifts and unlabeled data?

Our key insight to resolve the problem is drawn from hu-
man learning behaviors. We argue that, like human-beings
who rarely handle tasks in arbitrary orders (Elman 1993),
GFCL should follow an optimized sequence – tasks with
data distributions similar to those previously seen by the
classifier should be prioritized, while tasks with substan-
tially different distributions should be deferred. Such op-
timized task sequence encourages high-confident learning,
where the classifier after learning from multiple prioritized
tasks can gradually become more knowledgeable to handle
the deferred task. We cast this insight into a novel GFCL
approach, termed Metric-agnostic continual Fair Represen-
tation Learning (MacFRL), which proceeds in three main
steps. First, a fair classifier is initialized with its training
dataset retained, and a set of subsequent tasks are fetched
in the buffer. Second, MacFRL gauges the distance between
the retained dataset and each buffered task, selecting the
most similar task as the next candidate to be learnt. A shared
representation space is induced from the classifier and the
selected task using domain adaptation with group fairness
constraints. Third, data instances predicted with high con-
fidence from the selected task are merged into the retained
dataset, enlarging the classifier’s knowledge scope to pre-
pare it for the less similar tasks. The learned task is then
replaced by an incoming task in the buffer. The second and



third steps iterates until the task sequence ends.

The remaining questions are 1) how to gauge task dis-
tance with no label in the selected task and 2) how to mea-
sure the prediction confidence. For 1), MacFRL employs an
elastic representation learning network with adaptive learn-
ing capacity, allowing it to operate without relying on any
specific distance metric. The task distance is measured by
the dynamics of learning invariant fair representations be-
tween the retained dataset and the selected task. If a highly
complex network is required for invariance extraction, their
distance is large. For 2), MacFRL uses density-based con-
fidence measurement based on the representations learned
from the elastic networks in different capacities, where the
predicted instances with high confidence are those falling
into high-density regions with the same predicted class.

Specific contributions of this paper are as follows:

i) We explore a new GFCL problem with sustainable la-
beling effort, where only one task is labeled to initialize
the fair classifier, and all other tasks with shifted distri-
butions are unlabeled.

ii) We propose a novel MacFRL algorithm with optimized
task sequence to mitigate the stability and plasticity
trade-off. Task distances are measured through learning
dynamics of a tailored elastic network, making MacFRL
label independent and metric agnostic.

iii) We analyze the empirical risk bounds of the elastic net-
work design and the usefulness of task reordering, de-
ferred to Section 2 of supplementary material.

iv) Our empirical studies on eight benchmark datasets sub-
stantiate that MacFRL outperforms its five state-of-the-
art competitors on average by 12.7%, 42.8%, and 28.4%
in terms of prediction accuracy, demographic parity, and
equalized odds, respectively.

Preliminaries

Given a sequence of tasks {Ti | i = 0, 1, . . . , N}, in which
only the first task T0 = (X0,y0,p0) has labeled data, and
the other tasks {Ti = (Xi,pi)}

N
1 remain unlabeled. Let

Xi ∈ R
|Ti|×d and pi ∈ {0, 1}|Ti| denote the d-dimensional

instance vectors and the protected feature of the i-th task,
respectively, and y0 ∈ {0, 1}|T0| be the true labels of task
T0. Let the joint probabilities P(Yi, Pi) ̸= P(Yj , Pj) for any
i ̸= j, reflecting the shifting distributions across tasks.

At each round i, the model predicts a task Ti and returns
the predicted labels ŷi. After N rounds, the true labels of
all tasks are revealed ŷ1, . . . , ŷN . The goal of sustainable
group fairness learning is to learn a fair classifier f : X 7→
y with empirical risk minimization (ERM) constrained by
group fairness measurement (GFM), defined as:

min
f

E(Xi,yi)∈{Ti}
N
i=1

[yi ̸= f(Xi)], subject to

N∑

i=1

GFM(Ti) f ϵ,

(1)
where ϵ is the fairness threshold and the GFM constraint
can be implemented with demographic parity (DP) (Feld-
man et al. 2015), equalized odds (EO) (Hardt, Price, and
Srebro 2016; Alghamdi et al. 2022), or other metrics based

on the domain requirements. In this paper, we employ DP
and EO differences:

∆DP (Ti) = |P(Ŷi = 1 | Pi = 0) − P(Ŷi = 1 | Pi = 1)|,

∆EO(Ti) = max
Y ={0,1}

{|P(Ŷi = 1 | Pi = 0, Y ) − P(Ŷi = 1 | Pi = 1, Y )|},

where minimizing ∆DP ensures all groups enjoy equal
probability of being predicted as positive. Note, ∆DP fo-
cuses on the predicted results only, regardless of the predic-

tion accuracy (e.g., can incur many Ŷi ̸= Yi cases). To avoid
such cases, ∆EO requires the all groups have equal proba-
bilities to be classified (or misclassified) as positive, which
eliminates the negative affect.

Note, our method can be easily extended to handle multi-
class scenarios, including multiple protected features and
multiple label categories. First, if the data contains various
protected features, e.g., gender and age, the group fairness
difference for each feature is calculated, and the maximum
value among them is reported. Second, if a protected feature
or label consists of multiple classes, for instance (e.g., the
ethnicity feature includes various ethnic groups), the differ-
ence for each pair of ethnic groups is computed. The overall
fairness measure is determined by taking the largest differ-
ence among these pairs (Denis et al. 2021).

Proposed Approach

Unsupervised Domain Adaptation with Protected
Feature Obfuscation

In scenarios where new tasks arrive without labels and un-
der different distributions, our method ensures continuous
learning without performance degradation. We illustrate this
with an example involving two tasks in an unsupervised do-
main adaptation (UDA) regime (Ganin and Lempitsky 2015;
Madras et al. 2018a; Truong et al. 2023a), showcasing how
our approach adapts to these challenges. Specifically, let

R(i) denote a retained dataset at the i-th round, and the la-
beled T0 = R(0) for initialization. Given a new task Ti, UDA
seeks to learn a latent representation that aligns closely be-

tween R(0) and Ti, even in the presence of distributional
discrepancies. Let m = {0, 1} denote the task membership,

where m = 0 corresponds to instances originating from R(i)

and m = 1 to those from Ti. The target is for the model to
produce representations such that a classifier D : X 7→ m
is unable to distinguish the task membership of any instance.
A representation is considered task-invariant if a mapping ϕ
effectively obfuscates its task membership.

We leverage this idea to debias the protected feature in-
formation in latent representation as well. Consider any in-
stance x ∈ R

d+1 that includes the protected variable p ∈ P .
Upon its learned task-invariant representation ϕ(x), we train
a classifier g : X 7→ p that treats the protected feature
as target variable. A maximin game ensues between ϕ and
g (Zemel et al. 2013; Madras et al. 2018a; Rezaei et al.
2021), where g endeavors to maximize its prediction accu-
racy for p while ϕ strives to obfuscate g by minimizing its
performance. The crux of this adversarial setup lies in the
ability of g to predict g(x) = p by discerning demographic
information, such as p = 1 or p = 0, from the original x.



(a) Input Data Points (b) Latent Representations

Digit:0 Digit:4 Red Background Green Background

Figure 1: T-SNE visualization of (a) original data and (b) latent

representations of the Bias-MNIST dataset, adapted from Sec-

tion 4. Shape and color represent different digital types and back-

ground colors (i.e., protected feature), respectively. The dash line

indicates classification boundary. The classifier in (a) is biased, be-

cause the digits are classified based on their different background

color. Adversarial learning results in more fair classifier in (b),

where the protected feature information is obfuscated, with clas-

sifications made based on digital types (i.e., class labels).

However, if g struggles to predict the representation ϕ(x),
it indicates that the protected feature information has been
debiased from ϕ(x). We frame this intuition in an objective
function, defined as follows.

max
g,D

min
φ,f
LFairUDA = E(x,y)∈R(i)

[

ℓ(y, f(ϕ(x)))
]

− ¼1E(x,p,m)∈R(i)∪Ti

[

ℓ(m,D(ϕ(x))) + ¼2ℓ(p, g(ϕ(x)))
]

(2)

where f , D, and g are classifiers trained by treating the
groundtruth label y, task membership m, and protected fea-
ture p as target variables, respectively. The loss function
ℓ(·, ·) gauges the discrepancies between the true and pre-
dicted variables. Two positive parameters ¼1 and ¼2 balance
the scales of different terms. Note the minus sign that indi-
cates the maximization of the prediction losses on m and p.
After optimizing Eq. (2), we envision the learned represen-
tation ϕ(x) to i) satisfy f by enabling accurate prediction on

the labeled retained dataset R(i) and ii) obfuscate D and p
so as to make ϕ(x) a task-invariant and debiased represen-

tation of the original input x across R(i) and Ti. To validate,
we adapt experimental results from Section 4, as shown in
Figure 1. Digit numbers 0 and 4 after optimizing Eq. (2) are
represented in a latent space, where the superficial correla-
tion between protected features (i.e., background color) and
labels (i.e., digit types) is eliminated.

Elastic Fair Representation Learning Network

To avoid negative transfer, the model must select the new
task most similar to the current retained dataset distribu-
tion, even without labels. To achieve this, we propose the
elastic fair representation learning (EFRL) network, which
is tailored to intermediately gauges task-wise distances. A
key trait of our EFRL design is its adaptive learning capac-
ity (Ganin and Lempitsky 2015; Long et al. 2015), which
differs from traditional neural networks that mostly employ
static and predetermined architecture. Unlike traditional net-
works that use a fixed number of hidden layers for represen-

tation learning, the network depth of EFRL is a learnable
parameter. Intuitively, EFRL expands or contracts its depth
in response to the complexity of the task at hand. Specifi-

cally, if the incoming Ti is more distant from R(i) in terms of
protected feature distribution, a more complex mapping ϕ is
necessitated to satisfy the equilibrium of task-invariance and
fairness between them as outlined in Eq. (2). Hence, EFRL
responds by deepening its representation layers to approxi-
mate the required complex ϕ mapping.

To implement the intuition behind EFRL, we build an
over-complete neural network consisting of L layers (with
L sufficiently large). Each of its l-th layer is assigned with a

weight parameter ³(l). The output of each intermediate layer
is fed into the classifiers f , D, and g. The predictions from f ,

D, and g at the l-th layer are denoted as ŷ(l) = f (l)(ϕ(l)(x)),
m̂(l) = D(l)(ϕ(l)(x)), and p̂(l) = g(l)(ϕ(l)(x)), respec-

tively. The mapping ϕ(l) receives the representation learned
from the previous layer in a recursive formulation:

ϕ
(l)(x) = Ã

(

¹
¦
l ϕ

(l−1)(x)
)

, ϕ
(0)(x) = x, ∀l ∈ [L], (3)

where ¹l parametrizes the l-th representation layer and Ã de-
notes a non-linear activation such as sigmoid, ReLU, etc.

The learned depth of EFRL is reflected by the dynamics of

the layer weights {³(1), . . . , ³(L)}. In this paper, we lever-
age Hedge BackPropagation (HBP) (Freund and Schapire

1997; Sahoo et al. 2018) to update the weight ³(l) for each
layer, with the updating function defined as follows.

³
(l) ← max

{

s

L
,

³(l)´L
(l)
EFRL

∑L

l=1 ³
(l)´L

(l)
EFRL

}

, ∀³(l) ∈ (0, 1), (4)

L
(l)

EFRL =
∑

T

[

ℓ
(

y, ŷ
(l))−¼1

[

ℓ
(

m, m̂
(l))+¼2ℓ

(

p, p̂
(l))]

]

. (5)

where T denotes a fixed number of training epochs across
all layers. The parameters ´ ∈ (0, 1) and s ∈ (0, 1) are the
discount rate and smoothing threshold of HBP, respectively,
which control the aggressiveness for updating layer weights.

It is trivial to observe from Eq. (4) that
∑

L ³(l) = 1. We
further draw comparison between Eq. (2) and Eq. (5) to ob-
serve that the EFRL network strives to expedite convergence
in the maximin optimization by instilling a competitive dy-
namic among representations derived from all intermediate
layers. This is achieved by weighting representations based

on their loss performance L
(l)
EFRL within an epoch window

of size T . Intermediate representations that ensure accurate
label prediction, task invariance, and debiasing of protected
features are prioritized, with higher weights assigned to the
layers producing these representations.

Intuition: the learning dynamics of EFRL network. We
conceptualize the layer weight dynamics during three EFRL
learning phases as follows. First, at initial stage, shallower
layers (denoted by smaller l) tend to dominate due to faster
convergence rates. This is attributed to the diminishing fea-
ture reuse phenomenon (Huang et al. 2016; Larsson, Maire,
and Shakhnarovich 2017), where deeper layers can dilute the



(a) R(0) → T1 (b) R(0) → T2 (c) R(1) → T2

Figure 2: Layer weight dynamics of EFRL network during

training. Three tasks T0 (i.e., R(0)), T1, and T2 are reduced

from the Bias-MNIST dataset, where R(0) is more similar
to T1 and distant from T2. Given different UDA settings, the
layers that converge with large weights are (a) shallow or (b)

deep. After learning , R(1) = R(0) ∪ T1 gleans knowledge
from it, and EFRL now (c) uses shallower layers for UDA.

semantic meanings of raw inputs through random parame-
ter initialization. Second, as learning progresses, deeper lay-
ers begin to take over by gradually increasing their associ-

ated weights ³(l). This is because deeper layers with expan-
sive learning capacity are adept at yielding representations
that obscure protected features and extract task-invariant in-

formation, i.e., enlarging ℓ(p, p̂(l)) and ℓ(m, m̂(l)), respec-
tively. This dual capacity empowers these layers to optimize
Eq. (5) at their respective depths. Third, in post-convergence

phase, the weights ³(l) of excessively deep layers (i.e., very
high l) remain minimal. Despite their depth, these layers ac-

crue substantial loss
∑

T L
(l)
EFRL over the epoch window. This

loss culmination results in an experiential (albeit discounted

by ´) decrease in the value of ³(l).

Verification of EFRL intuitions. We carry out both theo-
retical and empirical studies to rationale our EFRL design.
Theoretically, we derive Theorem 1 in Section 2.1 in Ap-
pendix, which suggests the existence of an optimal, inter-
mediate layer l⋆ ∈ [1, L], and that our EFRL network can
approximate a network trained with fixed-depth l⋆, while
knowing the exact value of l⋆ across all tasks is impossi-
ble beforehand. Experimentally, we follow the study by (He
et al. 2021) to visualize the dynamics of layer weights dur-
ing training, as shown in Figure 2. We make three observa-

tions. First, while the incoming task T1 is close to R(0), shal-
low layers would suffice to approximate a simple mapping
ϕ, with deeper layers stay non-activated. Second, enforcing

UDA from R(0) to a dissimilar task T2 is likely to incur neg-
ative transfer, as the EFRL network ends up with assigning
large weights on the deepest layers. Third, with T2 post-
poned after T1 learning, the shallower layers in EFRL can
approximate a comparatively simpler mapping ϕ, where the
deepest layer has a lower weight value. These observations
support using learned layer weights in EFRL to quantify the
relative distance between retained data and incoming tasks.
Note, an over-complete network adjusts model depth adap-
tively by HBP, focusing on learning dynamics rather than en-
hancing the learning capacity. While NAS (Liu et al. 2018)

offers a similar function, its higher computational cost limits
the efficiency in CL.

Sustaining Group Fairness with Task Reordering

The layer weights, computed using labels, protected at-
tributes, and task membership, can represent the model’s
depth through the largest weight. However, using only the
learned EFRL network depth to quantify similarity is insuf-
ficient, considering the case that two tasks require the same
number of layers for UDA with the current retained dataset

R(i). We propose to use weighted entropy Q (Guiaşu 1971)

for this scalar, defined as Q = −
∑L

l=1 l · ³
(l) log³(l). Con-

ceptually, a larger Q reflects two possible converged states –
either that 1) deep layers are with large weights thus domi-
nate the predictions or that 2) the weights of all layers fol-
low a uniform distribution. Otherwise if Q is small, all large
weights are converged to shallow layers, making deep lay-
ers trivial in learning representations. As such, a buffer with
size k is used to contain k new coming tasks with k values of
Q’s, each of which is resulted from training EFRL between

its corresponding task Ti and R(i). We can now prioritize
the task with the lowest Q value for UDA, transferring label

information from R(i) to Ti with respect to group fairness
constraints. Tasks with substantial distribution shifts are de-
ferred. Upon completion, the instances from the learned task

are assimilated into R(i) for knowledge augmentation, en-
riching the subsequent task selection and learning phases.
The size of the buffer balances the efficacy of task reorder-
ing and the sequential nature of CL.

There are two reasons for using a selective approach to

augment the retained dataset R(i). First, the default/orig-
inal task sequence may present in more harsh setting for
CL. In practice, most tasks waiting in the buffer could be

considerably distant from R(i), to the extent that no in-
stance fosters a task-invariant and debiased representation
between them. Enforcing UDA between two tasks with dif-
ferent distributions can lead to erroneous and unfair predic-
tions, which could cascade through subsequent tasks and
compromise the entire CL pipeline. Second, as our model
learns from an increasing number of tasks, the size of the
retained dataset increases sharply, potentially leading to un-
manageable memory overhead. To enable selective knowl-
edge augmentation for better task sequencing, we integrate
the instances predicted with high confidence, with the con-
fidence level gauged by margin (Elsayed et al. 2018; Yan,
Guo, and Zhang 2019):

max
x∼Ti

L
∑

l=1

³
(l)

∑

ŷ(l)=ŷj exp
[

− ∥ϕ(l)(x)− ϕ(l)(xj)∥2
]

∑

x
j∈N (x) exp

[

− ∥ϕ(l)(x)− ϕ(l)(xj)∥2
] , (6)

where Ti is the selected task. At the l-th layer, xj ∈ N (x)
is a data point in x’s nearest neighbors, predicted as ŷj =
f (l)(ϕ(l)(xj)). From a geometric perspective, the prediction
confidence of an instance correlates with its margin from
the decision boundary. Eq. (6) reflects this measurement. In
Eq. (6), an instance x garners high value (confidence) if 1)
it is close to its nearest neighbors, indicating dense cluster
(low denominator) and 2) its neighbors mostly fall within the
same class, signifying a large margin (high numerator). Inte-
grating instances with a large margin thus equates to choos-



ing those predicted with high confidence. The continuum
of EFRL training, task prioritizing, and selective knowledge
augmentation executes until the task sequence is exhausted.

Experiments

Data Sets. Eight real-world datasets from various domains
set up the benchmark, with their statistics summarized in
the table below. We follow (Le Quy et al. 2022) to define
the protected features. Details of the studied datasets are de-
ferred to Section 3 of supplementary material.

No. Dataset # Samples # Features # Tasks y|0 : 1 p|0 : 1

1 Adult 30010 15 12 75:25 32:68
2 KDD Census-Income 199523 41 9 94:6 52:48
3 Bank marketing 31647 17 12 88:12 40:60
4 Dutch census 42125 12 10 52:48 50:50
5 Diabetes 71236 50 9 54:46 46:54
6 Law School 14298 23 6 5:95 16:84
7 Bias-MNIST 60000 28× 28× 3 5 10: . . . :10 68:32
8 CelebA 100000 178× 218× 3 5 49:51 42:58

Table 1: Statistics of the 8 datasets.

Competitors. Five rival models are employed for compar-
ative study. ULLC (He et al. 2021) is a CL method which
only focuses on maximizing accuracy. Group fairness con-
straints are applied on learned representations after training.
FaDL (Zhang, Lemoine, and Mitchell 2018) employs ad-
versarial training to debias intermediate representation with
fully labeled data. FaIRL (Chowdhury and Chaturvedi 2023)
prevents forgetting in CL with data replay. Partial instances
from previous tasks are randomly sampled for later tasks. It
postulates full access to labels. UnFaIRL ablates FaIRL by
removing the labels of subsequent tasks. To wit the perfor-
mance skyline, we let the method Skyline jointly learn all
tasks in an offline, multi-task learning setting with full la-
bels, building an upper bound in both accuracy and fairness.

Metrics. We use three metrics tailored for continual learn-
ing. For prediction accuracy, we use the average accu-
racy (Lopez-Paz and Ranzato 2017) across all tasks up to the

current task Ti, defined as Accuracy = 1/N
∑N

i Acc(Ti),
where Acc(Ti) returns the accuracy on Ti. We extend the
group fairness metrics ∆DP and ∆EO in CL contexts as fol-

lows: DP =
∑N

i |Éi∆DP (Ti)|, EO =
∑N

i |Éi∆EO(Ti)|,

and Éi = |Ti|/
∑N

i |Ti|, where ∆DP (Ti) and ∆EO(Ti) re-
turn the demographic parity and equalized odds differences
on the predicted Ti, respectively, as defined in Section 2.
|Ti| denotes the number of instances in Ti. Éi represents the
proportion of each task’s sample size in the entire dataset,
which alleviates the negative impact of different task sizes.
For multiple-class datasets such as Bias-MNIST, we fol-
low (Hardt, Price, and Srebro 2016) to take the most unfair
class that returns maximal EO value for calculation.

RQ 1: How does our MacFRL approach compare to
the state-of-the-art group fairness methods?

We make three observations from Table 2 and Figure 3. We
compare our MacFRL with three fairness-oriented competi-
tors, FaDL, FaIRL and UnFaIRL. To ensure level compar-
ison, confidently labeled instances are replayed across all

three methods. Against FaDL, MacFRL outperforms on all
8 datasets in terms of accuracy, exceeding FaDL by over
5% on KDD Census-income, Dutch, Diabetes, and
CelebA. MacFRL leads on 4 and 7 datasets for DP and
EO, respectively. Compared to FaIRL, MacFRL surpasses
in 20 out of 21 results, notably achieving an average DP re-
duction of 12.4%. While UnFaIRL matches our accuracy, it
falls short in DP and EO in 14 of 16 cases. Second, Sky-
line and ULLC, which are evaluated in less restrictive set-
tings, outperform our MacFRL only at minor margins. Sky-
line only outperforms MacFRL on both EO and accuracy
in 2 out of 8 datasets, with 1% and 5% increases, respec-
tively. MacFRL enjoys the highest accuracy with 93.9% and
lowest DP and EO with 2% and 9.6% on Law School, re-
spectively. ULLC only excels in accuracy on two datasets,
however, MacFRL outperforms ULLC in DP and EO by
decreasing them by 12.3% and 12.7% on average, respec-
tively. Third, in Bias-MNIST, MacFRL only ties with Sky-
line by achieving 92.9% prediction accuracy and 14.1% EO,
which outperforms all other methods on average by 3.0%
and 17.9%, respectively. In CelebA, MacFRL lowers the
values of DP and EO of ULLC, from 40.9% and 26.3% to
22.3% and 19.1%, respectively. FaDL outperforms MacFRL
in DP but sacrifices accuracy and EO, which are 9% and
16.2% lower, respectively. These results demonstrate the su-
perior generalization performance of our MacFRL on both
traditional tabular data and high-dimensional images in a CL
context with one-time labeling effort only.

RQ 2: How does similarity-based task reordering
sustain group fairness in continual learning?

We answer this question by comparing our MacFRL with
FaDL, FaIRL, and UnFaIRL. First, although none of the
three competitors use re-ordering, FaIRL performs worst,
with higher DP and standard deviations across all set-
tings, indicating its inability to ensure fairness and accu-
racy in new tasks with distribution shifts. Second, FaDL per-
forms better than FaIRL but stays inferior to our MacFRL.
MacFRL outperforms FaDL in 20 out of 24 settings. Partic-
ularly in Dutch census, the accuracy of FaDL is only
52.6% while that of MacFRL is 75.2%. Although FaDL
performs better accuracy on the first four tasks of Bank
marketing, its result declines after undergoing the learn-
ing of T4, and becomes worse than ours in Figure 3b. With-
out re-ordering, their learning process cannot avoid negative
transfer caused by T4. To compare, although our method
makes more mistakes during T1 and T2, these mistakes do
not impact the model performance on other tasks. Third, as
shown in Table 2, MacFRL outperforms UnFaIRL across
most settings and achieves higher accuracy on all datasets.
This advantage is especially evident in Diabetes and Law
School, where MacFRL achieves DP of 0.4% and 0.2%
compared to UnFaIRL’s 4.7% and 3.4%, respectively. These
results suggest that MacFRL can offer superior prediction
accuracy and group fairness because of the reorder method.



Table 2: Comparative results on 8 datasets with 3 metrics in mean ± standard deviation format. Bold values represent the best
results except for Skyline with less restrictive settings.

No. Dataset Skyline ULLC FaDL FaIRL UnFaIRL MacFRL

Evaluation Metric = Accuracy (↑) where higher values are better.

1 Adult .799± .000 .780± .006 .720± .001 .651± .082 .728± .007 .733± .013
2 KDD Census-Income .944± .000 .792± .013 .678± .000 .605± .133 .714± .006 .722± .006
3 Bank marketing .891± .000 .710± .022 .684± .000 .580± .072 .722± .006 .730± .006
4 Dutch census .789± .000 .717± .011 .526± .000∗ .472± .116 .747± .001 .752± .001
5 Diabetes .618± .000 .565± .005 .459± .002 .501± .030 .584± .001 .590± .001
6 Law School .936± .000 .924± .006 .905± .000 .640± .088 .933± .001 .939± .002
7 Bias-MNIST .973± .087 .913± .062 .888± .066 N/A∗∗ .895± .078 .929± .088
8 CelebA .715± .005 .762± .002 .542± .058 .631± .024 .603± .021 .630± .032

Evaluation Metric = Demographic Parity (↓) where lower values are better.

1 Adult .062± .000 .127± .038 .155± .001 .160± .095 .122± .023 .042± .007
2 KDD Census-Income .003± .000 .170± .016 .067± .000 .122± .093 .041± .011 .020± .003
3 Bank marketing .016± .000 .049± .020 .032± .000 .138± .127 .022± .004 .046± .005
4 Dutch census .049± .000 .143± .015 .011± .001∗ .266± .246 .099± .002 .107± .005
5 Diabetes .043± .000 .042± .034 .037± .012 .137± .106 .047± .004 .004± .001
6 Law School .016± .000 .149± .018 .071± .000 .225± .153 .034± .001 .002± .000
7 Bias-MNIST .136± .022 .302± .071 .267± .054 N/A∗∗ .239± .061 .151± .010
8 CelebA .228± .017 .409± .001 .145± .012 .231± .016 .226± .008 .215± .005

Evaluation Metric = Equalized Odds (↓) where lower values are better.

1 Adult .163± .000 .214± .018 .218± .001 .196± .082 .210± .014 .178± .005
2 KDD Census-Income .220± .000 .256± .021 .087± .000 .168± .101 .163± .011 .077± .003
3 Bank marketing .209± .000 .153± .031 .131± .000 .124± .094 .143± .005 .122± .008
4 Dutch census .362± .000 .171± .016 .009± .000∗ .167± .155 .136± .001 .115± .007
5 Diabetes .038± .000 .078± .029 .027± .001 .073± .032 .060± .001 .022± .002
6 Law School .366± .000 .514± .025 .285± .000 .228± .133 .168± .002 .096± .001
7 Bias-MNIST .139± .043 .333± .110 .319± .092 N/A∗∗ .243± .098 .141± .100
8 CelebA .110± .008 .263± .002 .322± .016 .167± .019 .190± .011 .160± .012

∗∗ N/A indicates that FaIRL is not applicable on the Bias-MNIST dataset as it is tailored for binary classification, while Bias-MNIST has ten class labels.

∗: Note, FaDL suffers substantial tradeoff between accuracy and fairness; in settings where FaDL obtains the best DP/EO performance, it incurs substantial accuracy decrease.
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Figure 3: The trends of Accuracy (top row), Demographic Parity (middle row) and Equalized Odds (bottom row) of our MacFRL
approach and its 5 competitors on 5 datasets w.r.t. the input sequence of tasks.

RQ 3: How sensitive are the tuned parameters to
the tradeoff between accuracy and fairness?

We first evaluate the accuracy-fairness tradeoff on Bank

marketing by sweeping λ2 in [0.1, 0.08, 0.06, 0.04, 0.02].

Figure 4 shows the tradeoff curves (left to right) for all three
methods as λ2 decreases. This hyper-parameter also controls



the balance for FaIRL and FaDL, the same range is used.
FaDL demonstrates minimal sensitivity to changes in λ2,
maintaining stable accuracy but at the cost of lower fairness,
as indicated by small improvements in DP and EO. On the
other hand, FaIRL exhibits that its accuracy decreasing as
fairness improves, which is more sensitive to λ2 change. Our
method MacFRL also shows that the larger (small) λ2, the
better (worse) model fairness and the worse (better) model
accuracy. Moreover, MacFRL maintains the highest accu-
racy among the three methods while still improving fairness.
Second, experimental results of Bank marketing shown
in Table 3 demonstrate the impact of λ1. We can observe
that increasing λ1 from 0.01 to 0.05 improves fairness that
DP drops from 8.4% to 4.6% and EO from 7.9% to 6.4%.
However, the model tends to focus more on similar repre-
sentations with increasing λ1 to 0.5, degrading DP to 17.3%
and EO to 18.1% and accuracy to 71.3%. When λ1 achieves
1, the model collapses, with accuracy at 65%, DP at 59.8%,
and EO at 60.5%.

(a) Accuracy vs DP (b) Accuracy vs EO

Figure 4: Results of accuracy-fairness tradeoffs on Bank

marketing sweeping over a range of λ2.

λ1 0.01 0.03 0.05 0.1 0.5 1

Bank marketing
Acc .745 .740 .730 .721 .713 .650

DP .084 .055 .046 .122 .173 .598

EO .079 .070 .064 .142 .181 .605

Table 3: Results of accuracy-fairness tradeoffs on Bank

marketing sweeping over a range of λ1

Related Work

Fair Representation Learning (FRL) Fairness issues in
data-driven models arise at various stages, including data
preparation, model training, and user interaction (Mehrabi
et al. 2021). FRL methods focus on ensuring fair predic-
tive modeling by extracting debiased intermediate represen-
tations from biased raw data, as introduced by (Zemel et al.
2013). While FRL can address both group and individual
fairness, our study emphasizes group fairness, aiming for eq-
uitable treatment of protected demographic groups (Malle-
son 2018; Barocas and Selbst 2016). Later studies (Louizos
et al. 2015; Moyer et al. 2018; Jaiswal et al. 2018; Xu
et al. 2018; Madras et al. 2018b; Amini et al. 2019) lever-
aged deep generative models, using discriminators to distin-
guish protected groups. Adversarial training for group fair-
ness has been explored since (Edwards and Storkey 2016;

Beutel et al. 2017; Madras et al. 2018a; Elazar and Goldberg
2018; Zhang, Lemoine, and Mitchell 2018), aiming to ob-
fuscate protected feature information. However, most exist-
ing FRL methods focus on a single task (Barrett et al. 2019)
and struggle with adapting to tasks with distribution shifts.
Recent studies (Jing, Xu, and Ding 2021; Singh et al. 2021;
Paul et al. 2022; Deka and Sutherland 2023) propose align-
ing intermediate representations across tasks based on simi-
larities. Modeling shifted distributions as a weighted combi-
nation of training data is proposed in (Mandal et al. 2020) to
minimize worst-case fairness loss. However, these methods
rely on controlled task-wise distances, which may not hold
as tasks diverge significantly in continual task sequences,
leading to fair adaptation failures.

Continual Learning (CL) CL aims to build systems that
learn incrementally (Kirkpatrick et al. 2017; Li and Hoiem
2017; Rolnick et al. 2019; Hao et al. 2013; Mitchell et al.
2018; Abujabal et al. 2018), addressing catastrophic forget-
ting, where new knowledge disrupts previously learned in-
formation. CL methods generally fall into three categories:
First, regularization-based methods, which regularize model
parameters to avoid drastic updates, searching for Pareto-
effective solutions that balance performance across tasks,
thus mitigating forgetting (Kirkpatrick et al. 2017; Aljundi,
Chakravarty, and Tuytelaars 2017; Shmelkov, Schmid, and
Alahari 2017; Li and Hoiem 2017; Aljundi et al. 2018). Sec-
ond, rehearsal methods, which store instances from previous
tasks in external memory (i.e.,the retained dataset) for joint
training with current task instances (Gepperth and Karaoguz
2016; Schaul et al. 2016; Rebuffi et al. 2017; Lopez-Paz
and Ranzato 2017; Rolnick et al. 2019; Hayes, Cahill, and
Kanan 2019). Third, model expansion, which expands the
model by increasing the network size (Li et al. 2019; Rao
et al. 2019; Zhao et al. 2022), or designing sub-networks for
each task (Ke, Liu, and Huang 2020; Mallya and Lazebnik
2018; Serra et al. 2018; Wang et al. 2020). Recent works
address gradient interference between tasks via scaled gra-
dient projection (Saha and Roy 2023) or leverage pre-trained
models (PTMs) instead of random initialization (McDonnell
et al. 2024). However, most CL methods prioritize classi-
fication accuracy over group fairness. FaIRL (Chowdhury
and Chaturvedi 2023) addresses both issues using task re-
hearsal but assumes all tasks are fully labeled. Our MacFRL
removes these assumptions, requiring labels from one initial
task, making the CL more cost-effective and sustainable.

Conclusion

This paper presents MacFRL, a novel algorithm to sustain
group fairness in continual learning, with all incoming tasks
unlabeled. The key idea of MacFRL lies in its strategic task
reordering inspired by human learning, prioritizing similar
tasks to glean knowledge and become gradually more capa-
ble to handle the originally deferred, more dissimilar tasks.
We analyzed the theoretical risk bounds of MacFRL to ra-
tionalize the design of task sequence optimization. Extensive
experiments on eight benchmark datasets substantiate the vi-
ability, effectiveness, and sustainability of MacFRL in both
accuracy and group fairness metrics.
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