Worst-Case to Average-Case Hardness of LWE:
An Alternative Perspective

Divesh Aggarwal', Leong Jin Ming?, and Alexandra Veliche?

! National University of Singapore, Singapore
divesh@comp.nus.edu.sg
ORCID: 0000-0002-3841-0262
2 Imperial College of London, London, U.K.
e04076790u.nus . edu
3 University of Michigan, Ann Arbor, MI, U.S.A.
avelicheQumich.edu
ORCID: 0000-0003-2788-9447

Abstract. In this work, we study the worst-case to average-case hardness of the Learning with
Errors problem (LWE) under an alternative measure of hardness — the maximum success prob-
ability achievable by a probabilistic polynomial-time (PPT) algorithm. Previous works by Regev
(STOC 2005), Peikert (STOC 2009), and Brakerski, Peikert, Langlois, Regev, Stehle (STOC 2013)
give worst-case to average-case reductions from lattice problems to LWE, specifically from the ap-
proximate decision variant of the Shortest Vector Problem (GapSVP) and the Bounded Distance
Decoding (BDD) problem. These reductions, however, are lossy in the sense that even the strongest
assumption on the worst-case hardness of GapSVP or BDD implies only mild hardness of LWE. Our
alternative perspective gives a much tighter reduction and strongly relates the hardness of LWE
to that of BDD. In particular, we show that under a reasonable assumption about the success
probability of solving BDD via a PPT algorithm, we obtain a nearly tight lower bound on the
highest possible success probability for solving LWE via a PPT algorithm. Furthermore, we show
a tight relationship between the best achievable success probability by any PPT algorithm for
decision-LWE to that of search-LWE. Our results not only refine our understanding of the computa-
tional complexity of LWE, but also provide a useful framework for analyzing the practical security
implications.
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1 Introduction

The Learning with Errors (LWE) problem has become one of the most important computational problems
in post-quantum cryptography and computational complexity over the last two decades. Since Regev
introduced this problem in 2005 [Reg09], the LWE problem has been used as the basis of a wide variety
of cryptographic primitives, as well as a tool for proving hardness results in learning theory [Reg06].
Formally, the LWE problem is defined as follows: The input consists of a uniformly random matrix
A~ Z;”X” and a vector b := As +e € Z,', where s € Z; is a secret vector chosen uniformly at random
from ZZ and e € Z;" is an error vector of small magnitude sampled according to a Gaussian distribution.
The goal is to output s. Here the positive integer p is called the modulus and n is the dimension. In his
seminal work, Regev related LWE to worst-case lattice problems that form the foundation of lattice-based

cryptography.

1.1 LWE and Computational Lattice Problems

Lattice Problems. A lattice L is a discrete additive subgroup of R™ that consists of all integer linear
combinations of m linearly independent vectors B = {by,ba, -, b,,} C R". Formally, it is defined as

LB):=<> zb;|Vie{l, . ,n},zcL
i=1

We call m the rank, n the dimension of the ambient space, and B a basis of the lattice. A lattice can
have many possible bases.

The two most important computational lattice problems are the Shortest Vector Problem (SVP) and
the Closest Vector Problem (CVP). In SVP, one is given a basis for a lattice and asked to output a
shortest non-zero lattice vector. We denote the length of a shortest non-zero vector of a lattice £ by
A1(L£). In the approximation variant of SVP, denoted by v-SVP for some v > 1, the goal is to output a
nonzero lattice vector whose length is at most yA;(£). In CVP, one is given a target vector and basis for
a lattice and asked to output a closest lattice vector to the target vector. Similarly, in its approximation
variant v-CVP, the goal is to output a lattice vector whose distance from the target vector is at most
times the minimum distance between the target vector and the lattice. There exists a polynomial-time
reduction from SVP to CVP, which preserves the dimension, rank, and approximation factor [GMSS99].

A closely related problem to CVP is the Bounded Distance Decoding (BDD) problem, denoted by
BDD,, for some a < % This is a promise problem in which the goal is to solve CVP under the promise
that the distance of the target from the lattice is at most aX;(L). Note that, by the triangle inequality,
this promise ensures that the closest vector to the target is unique. In our work, we only consider length
and distance in the standard Euclidean (¢2) norm.

Computational lattice problems are crucial because of their association with lattice-based cryptog-
raphy. Specifically, the security of numerous cryptographic systems such as [Ajt96, MR04, Reg06, MR09,
Reg09, Gen09,BV14] relies on the complexity of approximately solving lattice problems to within a poly-
nomial factor. Aside from cryptosystem design, since the 1980s, solvers for lattice problems have found
applications in cryptanalytic tools [Sha85, Bri83,LO85], algorithmic number theory [LLL82], and convex
optimization [Kan87, FT87].

Algorithms for Lattice Problems. Algorithms for CVP and SVP have been designed and studied ex-
tensively for decades. Kannan proposed an enumeration algorithm [Kan87] for CVP and hence for
all lattice problems, with a time complexity of n®™ and space requirement of poly(n). Micciancio
and Voulgaris introduced a deterministic algorithm for CVP with a time complexity of 22"t°(") and
space requirement of 2"T°(™) [MV13]. A few years later, Aggarwal, Dadush, Regev, and Stephens-
Davidowitz [ADRS14, ADRS15] presented the current fastest known algorithm for SVP and CVP, which
has a time and space complexity of 277°(") The best-known and proven runtime for an approximation
factor 4 = n¢ is approximately 2"/(¢+1) for constant ¢ > 0. For the current state of the art, we refer the
reader to [ALS20].



Hardness of Lattice Problems. Both v-SVP and 7-CVP are known to be NP-hard for nearly-polynomial
approximation n¢/1°21°2" for some constant ¢ > 0 [vEB81,DKRS03,Din02,Kho05,HR18,Mic12]. Through
a series of works, Aggarwal, Bennett, Golovnev, and Stephens-Davidowitz [BGS17,ASD18, ABGSD21],
demonstrated that approximating CVP and SVP to a factor v slightly greater than 1 is not achievable
in time 2°(™ under variants of the Exponential Time Hypothesis.

Worst-case to Average-case Reduction for LWE. The best known algorithm that solves LWE for dimension
n and modulus p runs in time p@("/logn) [BKWO0O0]. The decision variant of LWE is the one most
directly related to the security of lattice-based cryptography. In decision-LWE, the goal is to distinguish
between an LWE instance as described above and a uniform sample from Z;"X(”‘H). Regev [Reg09] gave
a polynomial-time reduction from BDD to LWE. Additionally, Regev gave a quantum polynomial-time
reduction from a decision variant of v-SVP, known as GapSVP, to BDD for v polynomial in the dimension
of the lattice. Peikert [Pei09] improved this result to a classical reduction from GapSVP., to LWE, albeit
with the modulus p becoming exponential in the dimension n. Later, Brakerski et al. [BLPT13] gave a
reduction from LWE with dimension n and modulus p exponential in n to LWE with dimension n? and
modulus p polynomial in n, thus allowing the modulus to shrink from exponential to polynomial.

Overall, these results give us a polynomial-time reduction from lattice problems (GapSVP, BDD) in
dimension n to LWE in dimension n? with modulus p polynomial in n. This means that even if we assume
that the currently best known algorithms for BDD or GapSVP are the best possible, this reduction only
says that LWE in dimension n cannot be solved faster than in 22(V™) time. This is a much worse lower
bound than one would expect based on the state-of-the-art algorithms for LWE [BKWO00]. This leads us
to the following natural question.

Question 1. Ts there a tight reduction from worst-case lattice problems (such as BDD) to LWE that gives
a tighter lower bound on the runtime for solving LWE?

1.2 A Novel Perspective on Computational Hardness

In cryptography, security models often assume that all possible adversaries are computationally bounded,
based on the state-of-the-art capabilities of modern computers. Often, when we declare that a crypto-
graphic scheme is 256-bit secure, we intuitively understand that the fastest algorithm for successfully
breaking the cryptosystem runs in 22° units of time. What we typically require, however, is that any
algorithm that succeeds in attacking the cryptosystem with probability more than 272° cannot do so
in a “reasonable” amount of time.

Unpredictability Entropy. Motivated by this discrepancy, Aggarwal and Maurer [AM11] proposed a
different perspective on studying the complexity of a computational search problem. They introduced the
concept of unpredictability entropy for a computational problem, defined as follows. If p is the maximum
success probability of a probabilistic polynomial-time (PPT) algorithm that solves the problem, the
unpredictability entropy of the problem is logz(%).

Two closely related properties of a search problem also studied in [AM11] are witness compression
and oracle complexity. A search problem P is said to have witness compression w if there is a PPT
reduction from P to another search problem Q such that the problem Q has a solution/witness of length
w. The oracle complexity of the problem P is defined as the number of arbitrary YES/NO questions
needed to get a solution to the search problem, i.e. find a witness.

It was shown in [AM11] that unpredictability entropy, witness compression, and oracle complexity of
a computational problem are equal, up to lower order additive terms. Notice that these quantities are
all indicative of the number of bits in which the hardness of a computational problem can be captured.

The authors of [AM11] also gave a straightforward polynomial-time algorithm for both SVP and
CVP, that achieves a success probability of 9—n*/ 4’0(”2), showing that both these problems have unpre-
dictability entropy/witness compression/oracle complexity n?/4 + o(n?). These algorithms are straight-
forward adaptations of the LLL algorithm and Babai’s nearest plane algorithm [LLL82, Bab86]. If we
replace [LLL82] with the slide reduction algorithm [GN08, ALNSD20] with block length O(logn), this
still runs in polynomial time and reduces the search space, giving a success probability 2—6(n’/logn)
Despite the various algorithmic techniques available for solving lattice problems, none of these methods
appear to improve this further if we are restricted to PPT algorithms, even if we consider approximation



variants of the lattice problems with approximation factor « polynomial in the lattice dimension n. Ad-
ditionally, the close relationship between BDD,, and 7-SVP for é and v both polynomial in n [LMO09],
suggests that it is unlikely for a polynomial-time algorithm for BDD to do much better than current
algorithms. With this in mind, it is reasonable to conjecture the following.

Conjecture 1. For any constants ¢, ¢’ > 0, there exists k = k(c,¢’) > 0 such that no algorithm can solve
BDD; /., 7-SVP, and 7-CVP on an arbitrary lattice for approximation factor v = n¢ in time n® with

success probability better than g—n’/rlogn,

It is easy to see that any algorithm for solving LWE in polynomial time for modulus p and dimension n
has success probability at least p~™. This can be obtained by guessing the secret s uniformly at random
and then checking whether b — As is small. We ask the following natural question, which is a novel
perspective on the worst-case to average-case reductions for LWE.

Question 2. Assuming Conjecture 1, is there a lower bound close to p~ (")

solving LWE via a polynomial-time algorithm?

on the success probability of

In this work, we answer this question in the affirmative. Since the security of cryptosystems is based
on the hardness of decision problems, we need to adapt the question above and formulate the measure
of hardness of a decision problem in terms of the success probability of the best efficient (i.e. PPT)
algorithm.

One-Sided Error PPT Algorithms. This question has been well studied particularly in the context of
NP-hard problems, for which we expect any PPT algorithm to be able to distinguish only with a small
advantage. Some previous works, (such as [PP10], and the references therein) have explored the realm
of one-sided error probabilistic polynomial-time (OPP) algorithms for NP-hard decision problems. This
relies on the assumption that when the algorithm is presented with a NO instance, it consistently outputs
NO, while for a YES instance, the algorithm outputs YES with a small success probability a.

However, for decision problems like decision-LWE whose input is chosen according to a distribution,
we cannot hope to output NO with probability 1 even given a NO instance. This is because a NO instance
for this problem is just a random element from Z;"X (n+1) that will look like a YES instance with non-zero
probability. Thus, it is reasonable to adapt the notion of OPP algorithms to have two parameters «, 3
such that a > [, and the algorithm outputs YES with probability at least a;, when given a YES instance,
and with probability at most 8 when given a NO instance. We call such an algorithm an («, 3)-solver
for decision LWE. Using this notation, we ask the following natural question.

Question 3. Assuming that there is no PPT algorithm that succeeds in solving search-LWE with proba-
bility «, can we prove that there is no (a/, 8’)-solver for the corresponding decision-LWE problem with
o ~aand f < .

We also answer this question in the affirmative.

1.3 Our Contributions

In this paper, we show that if no PPT algorithm can solve BDD on a lattice of rank n with success
probability greater than 9—Q(n*/log ") then no PPT algorithm can solve search-LWE in n dimensions
with success probability greater than 2~%(%/1°67) Here n is the dimension of the lattice even if we
restrict the secret to be a binary vector. Informally, our first main result is the following.

Theorem 1. (informal) If no PPT algorithm can solve BDD,, for gap v € (0, %) with success probability

greater than Q(Q’"Q/"“Og”) for some k > 0, then no PPT algorithm can solve search-LWE for binary
secret and modulus p polynomial in the dimension n with success probability 9(2*”/’“0%'").

Note that the above statement can easily be extended to having the secret chosen uniformly at random
from ZZ using a standard randomization of the secret. We show this explicitly in Section 3.3.

We emphasize here that while our reductions are adaptations of similar reductions in the literature,
adapting these reductions to our setting required great care, since the number of oracle calls made in
the reductions is crucial. In particular, for a reduction from problem P to problem Q that makes k calls



to a solver for problem Q, an upper bound of § on the success probability for solving problem P in
polynomial time would imply an upper bound of §'/* on the success probability for solving problem Q in
polynomial time. So for our reductions, we needed to adapt known reductions, which make polynomially
many oracle calls, into reductions that make only one call to the oracle and then guess successfully
with a small probability. These reductions with a single oracle call are known as one-shot reductions.
This approach enables us to obtain meaningful bounds on the success probability of polynomial-time
reductions. We also remark that since Regev’s quantum reduction does not blow up the dimension, our
results do not have any novel implication in the quantum setting.

Our second main contribution is concretely relating the hardness of solving decision-LWE to that of
solving search-LWE using our new framework. In particular, we show that if no algorithm can solve search-
LWE on a lattice of rank n with modulus p in expected polynomial time with success probability close to
«, then there is no PPT algorithm that can solve decision-LWE for the same dimension and modulus and
answers correctly with probability close to a, outputs L with probability 1 — «, and answers incorrectly
with the remaining tiny probability. This relies on the assumption that § is large and close to 1, which
requires the oracle B to be correct with high probability when it does not output L. Intuitively, this
means that B admits defeat by outputting L far more often than it guesses the answer incorrectly. Using
this framework, we can informally state our second main result as follows.

Theorem 2. (informal) If no algorithm can solve search-LWE for modulus p polynomial in the dimension
n with success probability o in expected polynomial time, then no PPT algorithm can solve decision-LWE
for the same modulus p and dimension n that outputs a correct answer with probability o and outputs 1
with probability 1 — .

To prove our second main result, we use a result by Levin [Lev12] This result is an improvement
of the original Goldreich-Levin Theorem in [GL89] which gives a tight relationship between the success
probability of finding a hard-core bit and that of inverting the corresponding one-way function. In our
work, we rigorously prove Levin’s result and generalise it from binary {0, 1} to Z,, for all but a few values
of p. This required considerable care and can easily find applications elsewhere, so we consider it to be
a contribution of independent interest.

Note that the statement of Theorem 2 is in terms of expected polynomial time, which is a crucial
aspect of the Goldreich-Levin Theorem used in our reduction. Because the runtime is polynomial only
in expectation, we cannot directly combine this result with that of Theorem 1.

We remark here that while the techniques used to prove our second main result are similar to those
used in [MM11], we do not require that the probability « of the decision-LWE oracle answering correctly
is non-negligible. Instead, we only require that « is sufficiently larger than the probability § of answering
incorrectly. In particular, this means that both o and § can be exponentially small. In our work, we also
explicitly quantify the loss in success probability for each of our reductions.

1.4 Paper Organization

We give the notation and mathematical background needed for our results and formally define the
computational problems discussed throughout the paper in Section 2. In Section 3, we prove our first
main result, where we use techniques from [Reg09] with new tweaks. In Section 4, we prove our second
main result, where we reduce the hardness of solving search-LWE to the hardness of solving decision-LWE
using our new framework [MW18]. We conclude with future directions and open problems in Section 5.

2 Preliminaries

Let T := R/Z denote the additive group of real numbers modulo the integers, i.e. the interval [0,1)
with addition modulo 1. R} and Z; denote the positive real numbers and positive integers, respectively,
which do not include zero. Let p be any positive integer (not necessarily prime). Z, := Z/pZ denotes
the ring of integers {0,1,...,p — 1} where addition and multiplication are performed modulo p. We
implicitly identify Z, with its natural embedding in Z whenever relevant. For any n € Z,, we denote
[n] := {1,...,n} to be all the integers between 1 and n, inclusive. We use (-,-) to denote the standard
dot product, so (x,y) = xTy for column vectors x,y where addition and multiplication are performed
according to the domain. We use lowercase boldface letters (such as v), to denote vectors, uppercase



boldface letters (such as B) to denote matrices, and calligraphic uppercase boldface letters (such as
A) to denote algorithms. We use ||-|| = ||-||, to denote the Euclidean norm. Throughout this paper, all
norms are assumed to be Euclidean unless specified otherwise. We say that an algorithm is efficient if
it runs in time polynomial in the size of the input, and use the terms “efficient” and “polynomial-time”
interchangeably throughout.

We will need the following standard lemma.

Lemma 1. Let Y,...,Y; be pairwise independent Bernoulli random variables where Pr[Y; = 1] = p for
1 <i<t. Then for any ¢ > 0,

t

1
P Y, —tp| <ctp| 21— ——.
|y =] 21 g

Proof. Let Y = Y1 + -+ + Y;. The expected value of YV is E[Y] = tp and the variance of Y is Var[Y] =
tp(1 — p). Then by the Chebyshev inequality, we have

tp(l—p) _1-p
c2t2p? c2tp

1
ctp

Pr[|Y —tp| > etp] < <

2.1 Learning with Errors

Definition 1 (LWE Distribution). Let ¢ be a probability density function on T, and s € ZZ denote
the unknown secret vector. The Learning with Errors (LWE) distribution Ag 4 is the distribution over
Z, xT obtained by choosing a € Z, uniformly at random and e € T according to ¢, then outputting

(a, % (a,s) +e).

The standard Learning with Errors problem has both search and decision variants, defined as follows.
Definition 2 (Search-LWE). The search variant of the Learning with Errors problem, search-LWE,, ,, 4,
is defined as: given a polynomial number of samples from the distribution As 4, recover the secret s € Z,, .

Definition 3 (Decision-LWE). The decision variant of the Learning with Errors problem, decision-LWE,, ;, 4,
is defined as: given a polynomial number of samples either from the distribution As ¢ or independent and
uniformly distributed samples from Z, xT, output

— YES if the samples are from the LWE distribution Ag 4, or
— NO if the samples are uniformly random over Z, xT.

Definition 4 (Binary-LWE). The Binary Learning with Errors problem,
binLWE,, p, ¢, is the search-LWE,, ;, 4 problem with the restriction that the secret s is uniform over {0,1}".
2.2 Lattices

Definition 5 (Lattice). Let B = {by,...,by,} C R" be a set of linearly independent vectors. The
lattice £ = L(B) generated by B is the set of vectors spanned by B over Z, i.e.

i=1

The basis B is usually expressed as a matriz B whose columns are the vectors of B and we write L(B) :=
L(B). Here m is the rank of the lattice as a free Z-module, and n is the dimension of the ambient space.

L(B) :

z—(zl,...,zn)TGZ”}CR".

Throughout this paper, we assume that the lattices are full-rank, meaning that n = m.



Definition 6 (Determinant). The determinant of lattice £ generated by B = (by,...,b,,) € R™*™ is

det(L) := 4/det(BTB).

Definition 7 (Dual Lattice). The dual lattice of £ is
LY ={xeR"|VveL (v,x)eZ}.

Given a basis matriz B € R™™ of a lattice £, we write B* to denote the corresponding basis matriz for
L*. This satisfies (B*) "B =1,,.

Definition 8 (Successive Minima). For any k € Z,, the k-th successive minimum of £ (in the
Euclidean norm) is

Me(L) :=inf{r e R | B(0,r) contains k linearly independent vectors},

where B(0,r) denotes the ball of radius r centered at the origin. In particular, A1 (L) is the length of any
shortest nonzero vector in L.

Definition 9 (Unique Closest Lattice Vector). For any vector v.€ R"™ whose distance from the
lattice L is less than A\1(L)/2, there is a unique closest lattice vector to v, which we denote by rkz (V).

2.3 Probability and Gaussians

Throughout this paper, we frequently use the standard normal distribution over the real numbers. We

use the standard notation N (u,0?) to denote the normal distribution with mean p and variance o2.

Definition 10 (Statistical Distance). Let ¢1 and ¢2 be probability measures on the space (X,F),
where X is the set of outcomes and F is the collection of events. The statistical distance (a.k.a total
variation distance) between ¢1 and ¢y is

A(¢1, ¢2) = f‘lele)T{Wl(A) — ¢2(A)|}-

In particular, when X = R",

A(r.6n) = 5 [ 16100) = da(lax

If X and Y are random variables with distributions ¢; and ¢9, respectively, we define A(X,Y) := A(¢1, ¢2).
It is immediate that statistical distance satisfies the triangle inequality. Another important property is
that it does not increase under the application of any (possibly random) function f [Vadl12], i.e.

A(f(X), f(Y)) < AX,Y). (%)

This means that for any algorithm A, the success probability of A on X differs from the success
probability of A on Y by at most A(X,Y).

Definition 11 (Gaussian Function). The Gaussian function of width s € Ry is ps : R" — R, given
by
x []12
ps(x) = eiW”?H .
For any countable subset A C R"™, we write ps(A) := Y c 4 ps(X). Furthermore, we denote p := py. For
any 'y € R", we define psy(x) := ps(x —y).

Note that [p, ps(x)dx = s™. Hence
. Ps
vs =
is a probability density function on R", which we call a continuous Gaussian of width s. Similarly,
we write v := v7. Since a sample from vs can be generated by taking n independent samples from the

1-dimensional Gaussian distribution, we assume that we can sample efficiently from v;.



Definition 12 (Discrete Gaussian). For any countable subset A for which ps(A) converges, Da s :
A — R, is the discrete Gaussian distribution on A defined by

s (X
Dy s(x):= s )
Definition 13 (Distribution ¥.). For any v € Ry, define the distribution ¥, : T — R, by

v )= 30 L ()

kEZ v

In other words, if X is distributed according to V., and Z ~ N (0, 3 ) then X is the image of Z modulo
1.

An important property used in [Reg09] is the fact that ¥z does not change much under a small
change in the parameter 5. In [Reg09], it was shown that the statistical distance between ¥z and
another distribution ¥, such that g is not too far from « is bounded by a scaling of the ratio g For our
reduction, we need a much tighter bound, so we instead use the ratio between the probability density
functions corresponding to ¥, and ¥g. Formally, we show the following.

Lemma 2. Let a € Ry and § := a(1l + ¢) for some € > 0. Denote the probability density functions of
distributions ¥, and Wg by go and gg, respectively. Then their ratio satisfies

for any x € R.

Proof. Suppose X and X’ are distributed according to ¥, and Ug, respectively. By definition, X is the
image of some Z with distribution N (0, 0‘2) modulo 1, and similarly, X’ is the image of some Z’ with

distribution N (() ) modulo 1. Then the ratio of the probability density functions f, and fs is the same
as the ratio of the probablhty density functions of Z and Z’ modulo 1. By this we obtain

z\2
%wp:aﬂf;_g ey _ ol+8) —mo (i)
9s(x) Le o o}
E
12
=(1+e)e 7”‘72(1 <1+5)2) <l+e.

2 1
—TI —5

1——1
The last inequality follows from the fact that f(z) := e “ ( (1“)2) is a scaling of the Gaussian
curve, so f(z) <1 for any value of x.

O

Now we prove a multiplicative analog of (x) for this ratio of probability density functions.

Lemma 3. Let X and Y be continuous random variables in R with probability density functions gx and
gy, respectively. Suppose that for some fized § > 0, their ratio satisfies

<4

for all . Then for any (invertible) function f:U —V and set S CV,

Pr[f(X) € S]
Prf7)eg =



Proof. Consider the set T* := {u eU | gi[[)}fz;‘]] > O}. This maximises the ratio lfj’i[[i’(g;]] over all T C U.

This enables us to write
Pr[f(X)eS] Pr[X e f1(9)] < max{Pr[X € T]} _ Pr[X e T
Pr[f(Y)e S] PrlY € f~1(S)] —7CU | Pr[Y € T] |  Pr[Y € T*]

By definition of the probability density function, we have

Pr[X € T% _ S 9x (2)dx < 6 [ gy (x)dx _
PrlY eT*] [, gv(x)dz = [ gy(z)dz

O

We remark that the statement can easily be extended to any randomised function f. This means that
for any algorithm A, the success probability of A on X differs from the success probability of A on Y by
at most a multiplicative factor of %. We will use Lemmas 2 and 3 in Section 3.2 for the reduction from
generised-LWE to standard search-LWE.

2.4 The Smoothing Parameter

For any lattice £, one can show that p; (L) converges for all ¢ > 0. In particular, the map s > p;,5(L\{0})
is a strictly decreasing continuous map on R, that satisfies lims 0 {p1/,(£\{0})} = 0 and
lim,_,0{p1/s(£\{0})} = oo. This enables us to define the following parameter.

Definition 14 (Smoothing Parameter). Let £ C R" be a lattice and e > 0. The smoothing parameter
of L with respect to € is

n(L) = inf{s € Ry | p1 (£7\{0}) < <},

By the above observation on the map s + py/5(£\{0}), the infimum in the definition above can be
achieved with equality. In fact, s = p1,5(L \ {0}) is a bijection from R to Ry with inverse € > 1.(L).

Observe that, using the properties of the Gaussian function and the fact that (p £)* = p~! £*, any
scaling of the smoothing parameter can be rewritten as

p-ne(£) = inf{ps € Ry [ p2 (L7\{0}) <&}
— inf{s’ € Ry | pu (L°\{0}) < ¢}
— inf{s’ € Ry | po (p~' £7\{0}) < £}
=n:(p L)
The following upper and lower bounds on the smoothing parameter will be used in our reduction.

Lemma 4. (Claim 2.13 from [Reg09]) For any n-dimensional lattice L and € € Ry we have

= m > mkf)

Lemma 5. (Lemma 3.1 from [GPVO08], adapted) For any n-dimensional lattice £ with basis B =
{b1,....,b,} and € € R we have

1 1
< . . — — .
N (L) _?el%f]({llblu} 7Tln <2n (1+ 5))

We remark that the original Lemma 3.1 in [GPV08] is tighter, as the maximum is over the Gram-Schmidt
orthogonolization of the basis vectors, by, ..., b,,, which satisfy ||bs||< ||b;| for all i € [n]. The original
statement takes the minimum of this maximum norm over all possible bases B of the lattice.

The following is an elementary bound on the shortest vector length in the dual lattice.



Lemma 6. (Theorem 3.2 from [Cai98], adapted) For any n-dimensional lattice L with basis B =
{b1,....,bn},

1
< max{||b;|| }.
As in the previous lemma, the statement above is weaker than the original statement in [Cai98], as it
uses the weaker bound given by ||b;||<||b;|| for all ¢ € [n], instead of the smallest maximum length of
the Gram-Schmidt orthogonolization of the basis vectors taken over all possible bases of the lattice. For
our purposes, it suffices to take the weaker versions of these bounds stated in the lemmas above.

2.5 Computational Lattice Problems

Definition 15 (SVP). Let v > 1. The y-approximate Shortest Vector Problem in the Euclidean norm,
GapSVP,,, is the decision problem defined as: given an instance (B, d) consisting of a basis matriz B of
a rank-n lattice L and distance parameter d > 0, output

— YESif M (L) <d, or
— NO if M (L) > ~d.

Definition 16 (BDD). The Bounded Distance Decoding problem, BDD,,, parameterized by an approz-
imation factor a € (0, %) is the search problem defined as: given a basis matriz B of a rank-n lattice L
and a target vector v € R™ with the promise that dist(v,L) < a- A1(L), find a lattice vector closest to

v, i.e. an x € L such that||v — x| < a- A (L).

Definition 17 (mod-BDD). Let p € Z; and o € (0, 3). The Modulo-p Bounded Distance Decoding
problem, BDD,, ;,, is the search problem defined as: given a basis matriz B of a rank-n lattice L and a
target vector v € R"™ with the promise that dist(v, L) < a- A\ (L), find the coefficient vector of a lattice
vector closest to v modulo p. i.e. if x € L is closest to v, then the expected output is B~1x (mod p) € Zg,

3 BDD to Search-LWE

We now formally state and prove our first main result.

Theorem 3. (BDD— search-LWE) Let a = «a(n) € (0,1) and v € (0,3). Suppose there ezists a
polynomial-time algorithm B that solves LWE,, on w, with probability q. Then there is a PPT algorithm
A that, given oracle access to B and a basis B for lattice L, solves any BDD., instance (L, x) where

1
3
. " ay 1 1
dist(L*,x) < ——————— - | =In | 2n <1 + )
max; e {| il } T ( €

with probability q(1+ §)~> — 6¢ for some € € (0, 5;) and constant § > 2.
In particular, using Conjecture 1, we assume that ¢ = 9—n*/rlogn Then setting 6 = 1 and ¢ = g—lﬁq,

we obtain

11 2 u2
146) 2 —6e=2q— —q=2"4¢=2"7len * =279%wew),
q(1+9) e=39" 164 q

So informally, this theorem says that if there is no efficient algorithm that solves BDD,, with proba-
bility 9—0(n?/log ") then there is no efficient algorithm for LWE,, 2 v, that succeeds with probability
270(n2/logn).

The proof consists of two parts and uses techniques inspired by Regev’s original reduction in [Reg09].
First we give a one-shot reduction from BDD to a generalised LWE problem in Section 3.1. Then we
adapt Regev’s reduction from this generalised LWE problem to search-LWEwith exponential modulus in
Section 3.2, using the multiplicative, rather than additive, difference in distributions. Lastly, we reduce
LWE with exponential modulus to binary LWE with polynomial modulus in Section 3.3.



3.1 BDD to Generalised LWE
Consider the following generalised version of LWE, as introduced by Regev in [Reg09].

Definition 18 (Generalised LWE). The Generalised Learning with Errors problem, denoted by LWE,, ,, p,
is defined as: given a polynomial number of samples from the distribution As 4 with modulus p, where ¢
belongs to the family of distributions D, recover the secret s € ZZ.

Note that in the definition above, any algorithm for the problem may know D, but is not given the
specific distribution ¢ € D. Furthermore in any instance of the problem, the input samples all come from
the same distribution ¢. For our proof, we are interested in the family of distributions

VUeo :={¥p|0< B <a}

To obtain the desired bound on the success probability, we would like to minimise the number of
calls to the oracle for our target problem. In the chain of reductions BDD, — BDD, , — LWE,, , w__
in [Reg09], a total of n calls is made to the algorithm for BDD, ,, each of which calls the oracle for
LWE,, p,w ., once. If we insist that the modulus is p = 2", then we can simplify our analysis by allowing
the BDDW_ algorithm to call the BDD, , oracle exactly once, so that the total number of calls to the LWE
oracle is exactly one.

In our one-shot reduction from BDD, to BDD, ,, we call the BDD, , oracle on the given BDD,
instance to obtain a coefficient vector that ideally corresponds to the closest lattice vector to the given
target v. We then shift the target vector v by this closest lattice vector and scale it down by p. Then
we run Babai’s nearest plane algorithm from [Bab86] on this shifted and scaled vector to find the closest
lattice vector to v within the specified distance. Intuitively, blowing up the modulus to be exponential
in the dimension n makes it easy for Babai’s nearest plane algorithm to find the exact lattice point we
are interested in. Now we formalise this idea.

Lemma 7. (BDD — Modulo-BDD) Let n € Zy,p = 2™, and v € (0, %) Suppose there is a polynomial
time algorithm B that solves BDD, , with success probability q. Then there exists a polynomial time
algorithm A with oracle access to B that solves BDD.,, with success probability q.

Proof. Let (B, v) be the given instance of BDD,. By definition, this defines a lattice £ = £(B) C R"
which satisfies dist(v, £) < - A1 (L£). Consider the following algorithm A:

Algorithm 1: BDD to Modulo-BDD Reduction
Input: BDD, instance (B, V).
Output: Lattice vector x € L.

Run B on (B, V) to get a vector z € Z,.

Compute v’ := %(v — Bz).

Run Babai’s Algorithm on (B, v’) to get a vector Bz’ € L.
Output the vector B(pz' + Z).

Since the oracle B and Babai’s Nearest Plane algorithm both run in time polynomial in the dimension
of the lattice n, this algorithm clearly runs in polynomial time.

Now we prove correctness and show that if B answers correctly, then A outputs a correct answer. If
oracle B answers correctly, it outputs zZ = z (mod p) for some coefficient vector z = B~ !x € £, where
x € L is a closest lattice vector to v. This means that

v —x| =[lv—Bazl| <v- (L)

The output of A is correct if and only if ||[v — B(pz' +Z)|| < v A1(L). Since ||[v — Bz|| < v A1 (£), it
is enough to show that z = pz’ + Z. Babai’s nearest plane algorithm from [Bab86] guarantees that the
output Bz’ satisfies

v — Bz'||< 2™ - dist(L, V).
Observe that since z = B~!x and x = Bz € L is a lattice vector, z € Z" must be an integer coefficient
vector. By definition, z = z (mod p) € Z, is also a coefficient vector. Combining these two facts and
observing that their coordinates can only differ by a multiple of p, we obtain that %(z —Z) e Z"is
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a coefficient vector. Hence B%(z — %) € L. By definition, dist(£,v') <||v/ — u]| for any lattice vector
u € L. This yields the bound

1 1
v —Bz'||< 2™ - dist(L,v') < 2" ||V = B—=(z—37)|| = 2" = |[v — Bz|| < v M\ (L),
p p
where the last inequality above follows from the assumption that p = 2”. Thus, the unique closest vector
to v/ is in fact B1(z —Z). Therefore, z’ = 1(z — Z), so we obtain z = pz’ + Z as desired. Since the oracle

B is correct with probability ¢ and the algorithm A4 always answers correctly in this case, the overall
success probability of algorithm A is at least q.
O

Note that in order for the reduction above to work, we need the modulus to be exponential p = 2".
We will reduce this exponential modulus to a polynomial one in Section 3.3. Before we proceed to the
second reduction, we introduce the following intermediate results.

Lemma 8. (Claim 3.8 from [Reg09]) Let L be a rank-n lattice, ¢ € R™, and € > 0. For any r > n.(L),
pr(L+c) € (r"det(L*)(1 —¢e),r" det(L)(1 + ¢)).

This bounds the Gaussian function of any lattice coset by the determinant of the dual lattice. The
following lemma bounds the statistical distance between two relevant distributions.

Lemma 9. (Corollary 3.10 from [Reg09]) Let L be a rank-n lattice, w,v € R™ be vectors, and r,s € Ry.
Define t := \/(r[[w][)2 + s2. Suppose that for some € € (0,3), we have n.(L) < 1/1/ % + (%HWH)2 Define
the random variable X := (w,v) + e, where the distribution of v is V.~ Dy, and e ~ N(O, %), and
let @ denote the distribution of X modulo 1. Also let Z ~ N (0, %) Then A(X,Z) < 4e, and hence
A(@, xpt) < de.

Now we implement the second reduction. Our algorithm requires additional data, namely samples
from a discrete Gaussian. We generate these samples using a subroutine from [BLP*13] as a black-box.
In [BLP'13], the authors give an efficient algorithm that, for any lattice and sufficiently large width,
outputs a sample from a discrete Gaussian distribution. Formally, they prove the following.

Lemma 10. (Theorem 2.3 from [BLP*13], adapted) There exists a PPT algorithm DGS that, given a
basis B of an n-dimensional lattice L = L(B), a vector ¢ € R", and a parameter

~ In(2 4
r > max{|[b:|} - M7
i€[n] m

outputs a sample with distribution Dp ¢

Lemma 11. (Modulo-BDD — Generalised-LWE) Let € = £(n) € (0,34), ¢ = q(n), @ = a(n) € (0,1),
p=p(n) € Zy, v € (0, %), and k € Zy be a constant. Suppose there is a polynomial time algorithm B
that, given n* samples from Asw.,, solves LWE, , w_, with success probability q. Then there is a PPT
algorithm A with oracle access to B that, given (B*,x) corresponding to a lattice L* = L(B*) such that

dist(L£*,x) < %ﬁ for some
p (2 (05)
> — max{|b;||} - x| —In[2n |1+ -] |,
i) - < :

solves BDD,, , with success probability q — 6e.

Proof. Let (B*,x) be the given BDD, , instance. By definition, this defines a lattice L = L(B*) =
(L(B))* which is the dual lattice of £ = £(B). By Lemma 6, the parameter r is bounded by

p 1 1 P 1 1 ap
" T (2” (”a)) > e |0 (2) 2 e
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The last inequality here follows from the upper bound on € and the assumption that o < 1. Then for the
given parameters, the distance between the given vector and lattice is bounded by

AL
dist(£* %) < SPVT < VT VAN ey
r ap

Thus, (B*,x) is a valid instance of BDD, .
First we define a subroutine to efficiently sample from a discrete Gaussian distribution. Note that

since € € (0, ;) is a constant, we have 1 > 2 so the bound on r satisfies

D 1 1> 1
r>— -max{|b;||} - | —In[2n 1+ — > max{||b;||} -1/ —In(2n + 4).
Nai ie[n]{H I} T ( ( € ) iE[n]{H I} V ( )

This enables us to run the DGS algorithm from Lemma 10 on this r, the lattice £, and vector ¢ = 0 to
generate samples with distribution D, ,.

The idea for algorithm A is to use x to generate a polynomial number of samples from a distribution
¢ that is a good approximation of Agy,, for s = (B*) !k« (x) mod p and some B < «a. Recall that
ke~ (x) denotes the unique closest vector in the lattice £* to x. We call the oracle B on these generated
samples to obtain the secret vector s with probability close to q. We formally define algorithm A as
follows.

Algorithm 2: Modulo-BDD to Generalised-LWE Reduction
Input: (B* x) such that dist(L*,x) < %ﬁ.
Output: s € Z;.
for i€ {1,..,n*} do
Run the DGS sampler to obtain a vector v <— D ,.
Compute a := B~!'v mod p.

Sample some noise e < N (0, %)
Define b := 11) (x,v) +emod 1.
Define sample X; := (a, b).
end
Run B on Xq,..., X » ~ ® to get a vector s € ZZ.

Output s.

Since this sampling process is efficient and repeated a polynomial number of times, the overall algo-
rithm is efficient.

Now we prove the correctness of algorithm A. We claim that if B succeeds, A generates a good
approximation of samples from Ag g ,. Specifically, we show that the statistical distance between the dis-
tributions ® and As y, is €’ for some § < a. Given a polynomial number of samples from As v, the oracle
B is guaranteed to find s with probability g. If the oracle succeeds, its output is s = (B*) "1k« (x) mod p,
which is precisely the coefficient vector of the closest lattice vector x € £L* modulo p. Hence it is a solution
for the given BDD, ;, instance. Since the samples input to B are from an approximate distribution ® that
is ¢’ away in statistical distance from the true distribution Agy,, then by () the success probability
suffers a loss of ¢’. Hence, the algorithm A will succeed with probability g — &’.

We prove our claim by analysing the distributions of a and b for any generated sample X;. First we
show that the distribution of a € ZZ is close to uniform. Let ) denote the distribution of a produced in
the algorithm. Fix a € Z;‘. Then the probability that ) takes the value a is

1
p(pC+Ba) 05 (£+5Ba)
P = = = = =
r[Y = a] v<_PDlrL’T[v Ba mod p] (D) (D) ,

by definition of the discrete Gaussian. By Lemma 5, we have > pv/2 - .(£). Then since 7.(L) < r,
Lemma 8 implies

or (E —I—%Ba)

p

€ = -—,
1+e +1—s

Grdet(L)(1£e) 1 2 2
(L) rrdet (L) (1 £ 2) pn<1 ! ) |
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Then the statistical distance between ) and the uniform distribution U over Z;’ is bounded by

A U) = 1 > |Pr[y =a] - Prlid = a]|

IN

Here p € [0,1] is the fraction of values in Z; for which Pr[y] > Pr[if]. Since € € (0, 5;), we have
A(Y,U) < 2e.

Now we show that the distribution of the second component b of the sample X; is close to the
corresponding LWE distribution. We condition on a and consider the marginal distribution of b. Define

x' :=x — Kkz+(x). By construction, we have ||x’||< dist(L*, x) < %. Then we can write
1<x V>—|—e=1<m5*(x) v>+1<x’ v>—|—e (%)
P p Chop

Observe that since (B*)T = B~!, we can write
(ke (x),v) = kz-(x)TBB™'v
= k- (x)((B*) ") Bty
= ((B*) 'ree (%)) (B7'Y)
_ <(B*)_1f<;£* (x),B—1v>.
By construction, we have

(ke+(x),v) = <<B*)_1I€£* (x),B_1v> = (s,a) mod p,

so the first term in (#x) satisfies

}% (k= (x),v) = % (a,s) mod 1.

It remains to consider the second term in the expression (xx). Note that conditioned on a and since p
is fixed, the distribution of v is the same as the distribution D, s Ba . Let Z denote the distribution of
% <x’, v> +e mod 1 for v sampled from D,, o yBa - By construction, e is sampled according to N(O, "22—”7)

. (e .
Since H%x’ < \Tﬁ, we obtain

! > ! :%>rﬁ2p-ng(£)=ne(pﬁ)-

2 1 1
\/1+(1 IX/) r72+r72
r2 ayy || p

Here the last equality follows from rewriting the scaled smoothing parameter (see subsection 2.4 for the
proof). Then by Lemma 9, A(Z,¥g) < 4e, for

b= <r !
p

—x/

2
> + ((Jz\f'y)2 <Vary+a2y=ay/2y < a.
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Therefore, by the triangle inequality, the statistical distance between ® and Ay, is ¢’ = 2e4-4¢ = 6¢
for some 3 < «, as claimed.
O

An immediate corollary of this one-shot reduction is the following bound on the success probability
of any polynomial-time algorithm for BDD.

Corollary 1. (BDD — Generalised-LWE) Suppose there exists an polynomial-time algorithm A that
solves LWE,, p, 4, where ¢ is an unknown distribution from the family V<., with success probability g =
q(n). Then there is a polynomial-time algorithm B that, given oracle access to A, solves BDD, for gap

v € (0, 3) with probability q — 6 for some sufficiently small e = (n) € (0, 55).

Note that the additive loss in success probability can be written as a multiplicative factor:

/
q—E’:q(l—E):q(l—&).
q q

This probability only makes sense for 0 < ¢ — 6 < 1, which holds if € € (%1, %) To obtain a small
q

4, we would need € = {5. For our application, we are interested in the regime where
q= 2-0(n”/log ") so taking an appropriate e such as this, we can obtain a constant multiplicative loss in
success probability.

loss, say ¢ — &’ =

3.2 Generalised LWE to Standard LWE

In this section, we give a reduction from generalised LWE to LWE by adapting Lemma 3.7 from [Reg09] to
work with multiplicative, rather than additive, loss in success probability. In Regev’s reduction, we itera-
tively choose some Gaussian noise from a discrete interval to obtain some optimal noise that guarantees
an overwhelming success probability. Since we are concerned with polynomial-time adversaries and the
success probability itself, unlike the original reduction, we only sample noise from the interval exactly
once. Because we are limited to a single Gaussian noise sample, choosing the interval and parameters
requires considerable care.

Lemma 12. (Generalised-LWE — Search-LWE) Let « € Ry, p = p(n) € Zy, and € > 3 be a constant

parameter. Suppose there is an efficient algorithm B that solves LWE,, ,, w_, with success probability q. Then

there is a PPT algorithm A that, given oracle access to B, solves LWE,, , w._ with success probability at
v <

least W .

Proof. Suppose that A is given n* samples for some constant k € Z, , distributed according to A ¢ P
for some 8 < «. For notational convenience, let
§:=(1+¢)?—1=¢e?+2¢ and define

7 = {0,5@2,2 200, .., L5J5a2}

to be the set of integer multiples of §a? between 0 and o®. Consider the following algorithm A:

Algorithm 3: Generalised-LWE to Search-LWE Reduction
Input: Samples Xi, ..., X, ~ Ag w,-
Output: Secret vector s € Z,).

Sample v < Z uniformly at random.
for i€ {1,..,n*} do
Denote (a,b) := X;.
Sample some noise € < V7.
Define Y; := (a,b + e).
end
Run B on the generated samples Y71, ..., Y,» to get a vector s’ € ZZ .
Output s'.

14



Since sampling and transforming n* samples is efficient, and the oracle B is called once, A is efficient.

Now we prove correctness of 4. The algorithm is given samples of the form X; = (a,b) = (a, (a,s)+e),
where e has distribution Wg for some unknown 8 < a. The algorithm knows the value of «, so it attempts
to add noise from ¥ = in such a way as to obtain samples with noise distribution W,. In this way, it
generates samples of the form Y; = (a,b+¢) = (a, (a,s) + ¢’ + e) where the noise ¢’ + e has distribution
¥, for 0 := /2 +~. The error between the noise distribution ¥, generated by A and the target
distribution ¥, is determined by the given error parameter . Let 4’ be the smallest element of Z
satisfying v/ > a2 — 2. Then by construction of Z, we have 7/ < o? — 82 + da? = (§ + 1)a® — B2
By definition, since ¢ > %, we have 6 > 1. Together with the fact that 0 < 8 < «, this implies that
0 < a?—-p%2 < (6+1)a? - 3% < |[§]6a®. Hence, there exists such an element 4 in Z. There are

|Z|= wéa < § elements in Z, so the element v sampled by the algorithm is v = ' with probability at

least 5 Let o' := /3% + ~' denote the noise distribution parameter for this special element ~’. Consider
the ratio of the probability generating functions corresponding to ¥, and ¥, . Using Lemma 2 and the
bounds on v/, this is given by

ga<x) < o' \/624‘7/

ga’(x) @
2+ (6 + Da p) 1Es
S\/B J(; —5 :a 1+9 =v(1+4+e)2=1+e.

Then by Lemma 3, applying any function to this ratio of probability distribution functions cannot
increase the ratio. This implies that the success probability of A for noise distribution ¥, and the
success probability of A for noise distribution ¥, have the ratio

Pr[A succeeds for ¥,] q <1l+e
Pr[A succeeds for U,,]  Pr[A succeeds for vy = /] = ’

Hence, for this choice v = 7/, we know that A successfully outputs s’ = s with probability at least
Therefore the overall success probability of A is at least

1+5

11
Pr[A succeeds for v =] - Prly =] > ¢~ e qs)3~

O

Assuming the success probability of solving LWE,, , v, is ¢ = p~"/5108n for modulus p = 27, and
setting the error parameter to be € = 1, we obtain the following corollary.

Corollary 2. (Generalised-LWE — Search-LWE) Suppose there is no efficient algorithm A for IWE,, on v _,

with success probability 9—n’/rlogn—3 fm; some constant ¢ > 0. Then there is no efficient algorithm B for
LWE,, 2» w,, with success probability 27" /rlogn

3.3 Reducing the Modulus for Search-LWE

In [BLPT13], Brakerski et al. study the trade-off between the modulus and dimension of decision-LWE
instances. In particular, they give a reduction from decision-LWE to decision-LWE that reduces the
modulus arbitrarily while preserving the dimension and incurring only a small loss in advantage. Their
reduction can also be viewed as a search to search reduction that says the following.

Theorem 4. (Theorem 4.1. from [BLP"15], rephrased) Let n € Z, and a = a(n) € (0,1) such that L
is bounded by a polynomial in n. Then for some prime p = p(n) such that both p and £ are n®W | there
is a polynomial-time, one-shot reduction from LWE, 2n ., to binlWE, 2 , ¢ that preserves the success

probability.

Using the trivial reduction from binLWE to LWE for the same dimension, modulus, and noise distri-
bution, this result allows us to reduce the modulus from exponential to polynomial in n for LWE. For
completeness, we include this simple reduction below.

15



Lemma 13. (binLlWE,, p, o — LWE,, , 4) Suppose there exists an efficient algorithm B that solves LWE,, ;, 4
with success probability q. Then there is a PPT algorithm A that, given oracle access to B, solves
binLWE,, ,, » with success probability q.

Proof. Let Ag 4 be the input distribution for the given binLWE,, ,, , samples, where s € {0,1}" is a binary
secret vector. Consider the following algorithm A:
Algorithm 4: binLWE to LWE Reduction

Input: Samples X1, ..., Xpx ~ Ag o
Output: Secret vector s € Z,.

Sample a vector r < Z,, uniformly at random.
for i€ {1,...,n*} do

Denote (a,b) := X;.

Define Y; := (a,b + (a,r)).

end
Run B on the generated samples Y71, ..., Y,» to get a vector s’ € Zz .
Output s’ —r.

This algorithm transforms a polynomial number of samples and the efficient oracle B is called once,
so A is efficient. Now we prove correctness. Observe that each sample X; has b = (a, s) + e for some noise
e with distribution ¢, so the transformed samples have the form

Y. =(a,b+(a,r)) =(a,{a,s)+ (a,r)+e)=(a,(a,s+r)+e).

The oracle B succeeds in recovering the secret vector s’ = s + r with probability ¢, so with the same
probability A outputs the secret binary vector s =s’ —r.
O

4 Search-LWE to Decision-LWE

In this section, we show how to solve search-LWE given an oracle for decision-LWE, under the condition
that the oracle correctly responds YES far more often than it incorrectly responds YES. The formal
statement of our result is below. Several proofs in this section have been omitted for lack of space, so we
refer the reader to the full version (available online) for details.

Theorem 5. (Search-LWE— Decision-LWE) Let n,p, k € Z be such that p > 10 is polynomial in n and
k is a constant. Suppose that there exists an efficient algorithm B for decision-LWE, ,, 4 that,

— given n* LWE samples from As ¢, outputs YES with probability -,
— given n* random samples from Zy xT, outputs YES with probability J,

where v > 5p23. Then there is an algorithm A for search-LWE,, ,, s with oracle access to B that, given n*

samples, runs in expected polynomial time and

— outputs a correct answer with probability %’y and

— outputs L with probability 1 — %7.

Note that here we do not make any assumptions on how large v and J, so they need not be negligibly
small. We prove this by making the following key observation: If solving search-LWE is hard, then it
is hard to determine the secret vector s from a given polynomial number of LWE samples of the form
(a,b= % (a,s)+e). Intuitively, this means that the function f4 = (A, %Aere) defined by these samples
is hard to invert, so it can be viewed as a one-way function. In their seminal work, Goldreich and Levin
show how to construct a hard-core predicate from any one-way function [GL89]. This tells us that if we
can find the inner product of s and a given vector r, then we can recover the secret vector s.

Inspired by this connection, we define an intermediate problem we call the Goldreich-Levin Learning
with Errors (GL-LWE) problem. We reduce search-LWE with polynomial modulus to GL-LWE, then
reduce this problem to standard decision-LWE under a reasonable condition.
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4.1 Search-LWE to GL-LWE

In [GL89], Goldreich and Levin showed that for any one-way function f, the function b(x, z) := (x,z) mod
2 is a hard-core predicate for the function g(x,z) := (f(x),z). Levin later improved this result in [Lev12)
and showed that the success probability of finding the hard-core predicate is determined by the success
probability of inverting the one-way function f. For the formal statement and full proof of Levin’s result,
we refer the reader to the full version of our paper.

We generalise Levin’s result from modulus 2 to modulus p > 10 using the natural generalisation of
a hard-core predicate for Z,, under a certain condition. We refer the reader to the full version for our
proof of this generalisation.

Lemma 14. Let n,p € Z such that p > 10 is polynomial in n and let f : ZZ — ZZ be an injective
one-way function. Suppose there is an efficient algorithm B that, given'y = f(x) for some x € ZZ and
random r € Z,,, guesses (X,r) mod p

— correctly with probability af,
— incorrectly with probability (1 — ), and
— outputs L with probability 1 — «,

where § > 1— %. The probability is taken over the randomness of r, and the randomness of the algorithm.
Then there is an algorithm A that runs in expected polynomial time, that given oracle access to B and
y = f(x) for some x € Z,, finds x correctly with probability #aﬂ and outputs L with probability

1

Now we apply this result to our study of the hardness of LWE. First we define an intermediate
worst-case problem inspired by the Goldreich-Levin theorem.

Definition 19 (Goldreich-Levin LWE). The Goldreich-Levin Learning with Errors (GL-LWE) prob-
lem, denoted by GL-LWE,, ,,  is defined as: given a polynomial number of samples from the distribution
As ¢, where s € Z,) is some fized secret, and a uniformly random vector r € Z,), find (s,r) mod p.

We use this to reduce (average-case) search-LWE to (average-case) decision-LWE. First note that
search-LWE trivially reduces to worst-case search-LWE: given LWE samples for a uniformly random secret
s, the reduction algorithm simply runs its oracle for worst-case search-LWE on the given samples and
succeeds in recovering s with the same probability. Now we interpret Lemma 14 as a reduction from
worst-case search-LWE to GL-LWE.

Corollary 3. (Search-LWE — GL-LWE) Let n,p,k € Z, such that p > 10 is polynomial in n. Suppose
that there is an efficient algorithm B for GL-LWE, , 4 that, given n* samples from As , for some fized

secret s € Z,,, and a uniformly random vector r € Z,,, outputs a guess for (s,r) mod p

— correctly with probability o*(*,
— incorrectly with probability o*(1 — 5*), and
— outputs L with probability 1 — o,

where * > 1 — %, The probability is taken over the randomness of s,r, and the randomness of the
algorithm. Then there is an algorithm A for search-LWE,, , ¢ that runs in expected polynomial time and,

given n* samples from As 4 for some fized secret s € Z,,

— correctly outputs s with probability 51172 af and

— outputs L with probability 1 — sp%aﬁ.

Proof. Consider the function fy : Z; — Z given by fy(s) := (A, %As + e), where the rows of A are
uniformly random vectors sampled from Z; and e is sampled according to distribution ¢. This can be
used as an injective function, because with high probability there is a unique s that satisfies the system
of equations determined by any given output (A, b) = (A, %As + e). Applying Lemma 14 gives us the
desired result.

O
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4.2 GL-LWE to Decision-LWE

Finally, we finish our chain of reductions by reducing our worst-case intermediate problem to decision-
LWE. In the following we show that if there is a (7, d)-solver (with v > §) for decision-LWE, then there
is an algorithm for GL-LWE that Corollary 3 can be instantiated with to complete the reduction from
search-LWE to decision-LWE.

Lemma 15. (GL-LWE — Decision-LWE) Let k € Z be a constant. Suppose that there exists an efficient
algorithm B for decision-LWE,, ;, 4 that,

— given n* LWE samples from As 4 for a uniformly random secret s,
outputs YES with probability -y,
— given n* random samples from ZZ X T, outputs YES with probability 6.

Then there is an algorithm A that, given oracle access to B and an instance of GL-LWE,, ,, 4 consisting
of nF samples from Ag ¢ for a fized secret s, outputs

— a correct answer with probability %7,
— a wrong answer with probability %5, and

— L with probability 1 — %’y - pTTl(S.

For the proof of Lemma 15, we refer the reader to the full version. Now we combine Corollary 3 and
Lemma 15 to obtain our second main result.

Corollary 4. (Search-LWE — Decision-LWE) Let n,p,k € Z4 be such that p > 10 is polynomial in n
and k is a constant. Suppose that there exists an efficient algorithm B for decision-LWE, , 4 that,

— given n* LWE samples from As 4, outputs YES with probability v,
— given n* random samples from Zy xT, outputs YES with probability J,

where v > 5p8. Then there is an algorithm A for search-LWE,, ,, 4 with oracle access to B that, given nk

samples, runs in expected polynomial time and

— outputs a correct answer with probability %’y and

— outputs L with probability 1 — %7.

Proof. Set a := w and 8 := W. Then we have a3 = %'y and a(l — f) = pTTlcS. By the

assumption that v > 5p2§, and since p > 10, we obtain

vy p—1 1
p v+ (p—-1) >1 5p2+p—1 > 1 5p

Consider the following algorithm 4: Given an instance of search-LWE, first run the algorithm from
Lemma 15 to solve the corresponding instance of GL-LWE. Then run the algorithm from Corollary 3 to
solve the corresponding GL-LWE instance. Finally, run the trivial algorithm to solve the given average-
case search-LWE instance. By Corollary 3, for these values of « and 3, this algorithm A outputs a correct
answer for the given instance of search-LWE with probability

1 1

W“@ = %77

and outputs L with the remaining probability.
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5 Conclusions and Future Directions

In this paper, we offer a new perspective on the computational complexity of lattice problems by revisiting
the notion of characterizing the hardness of a computational problem in terms of the maximum success
probability achievable by any probabilistic polynomial-time algorithm.

We show how characterising hardness in such a way enables us to obtain a much tighter reduction
from the worst-case BDD problem for lattices to the average-case search-LWE problem, as well as a tight
reduction from search-LWE to decision-LWE. (See Section 1.3 for precise statements.)

We believe that our work should motivate quantifying the hardness of computational problems —
especially those relevant to cryptography — using a similar metric. We emphasize that such reductions
will be very sensitive to the number of calls made to the oracle, since the success probability will decrease
exponentially with the number of oracle calls. For the reductions in this work, our main challenge was
to ensure that our reductions make a single call to the oracle, even if that meant the reduction succeeds
with a relatively small probability.
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