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Figure 1. Training-free conditional control of Stable Diffusion [44]. (a) FreeControl enables zero-shot control of pretrained text-to-
image diffusion models given various input control conditions. (b) Compared to ControlNet [59], FreeControl achieves a good balance
between spatial and image-text alignment, especially when facing a conflict between the guidance image and text description. Additionally,
FreeControl supports several condition types (e.g., 2D projections of point clouds and meshes in the bottom row), where it is difficult to
construct training pairs.

Abstract

Recent approaches such as ControlNet [59] offer users

fine-grained spatial control over text-to-image (T2I) diffu-

sion models. However, auxiliary modules have to be trained

for each spatial condition type, model architecture, and

checkpoint, putting them at odds with the diverse intents and

preferences a human designer would like to convey to the AI

models during the content creation process. In this work,

we present FreeControl, a training-free approach for con-

trollable T2I generation that supports multiple conditions,

architectures, and checkpoints simultaneously. FreeCon-

* indicates equal contribution

trol enforces structure guidance to facilitate the global

alignment with a guidance image, and appearance guid-

ance to collect visual details from images generated with-

out control. Extensive qualitative and quantitative exper-

iments demonstrate the superior performance of FreeCon-

trol across a variety of pre-trained T2I models. In partic-

ular, FreeControl enables convenient training-free control

over many different architectures and checkpoints, allows

the challenging input conditions on which most of the ex-

isting training-free methods fail, and achieves competitive

synthesis quality compared to training-based approaches.

Project page: https://genforce.github.io/freecontrol/.
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1. Introduction

Text-to-image (T2I) diffusion models [4, 42] have achieved
tremendous success in high-quality image synthesis, yet a
text description alone is far from enough for users to con-
vey their preferences and intents for content creation. Re-
cent advances such as ControlNet [59] enable spatial con-
trol of pretrained T2I diffusion models, allowing users to
specify the desired image composition by providing a guid-
ance image (e.g., depth map, human pose) alongside the text
description. Despite their superior generation results, these
methods [6, 30, 33, 55, 59, 62] require training an additional
module specific to each spatial condition type. Consider-
ing the large space of control signals, constantly evolving
model architectures, and a growing number of customized
model checkpoints (e.g., Stable Diffusion [44] fine-tuned
for Disney characters or user-specified objects [24, 46]), this
repetitive training on every new model and condition type
is costly and uneconomical.

Besides the high training cost and poor scalability, con-
trollable T2I diffusion methods face drawbacks that stem
from their training scheme: they are trained to output a tar-
get image given a spatially-aligned control condition com-
puted from the same image using an off-the-shelf model
(e.g., MiDaS [43] for depth maps, OpenPose [10] for hu-
man poses). This limits the use of many desired control
signals that are difficult to infer from an image (e.g., mesh,
point cloud). Further, the trained models tend to prioritize
spatial condition over text description, likely because the
close spatial alignment of input-output image pairs exposes
a shortcut. This is illustrated in Figure 1(b), where there is a
conflict between the guidance image and text prompt (e.g.,
an edge map of a sofa chair vs. “an avocado chair”).

To address the aforementioned limitations, we present
FreeControl, a versatile training-free method for control-
lable T2I diffusion. Our key motivation is that feature maps
in T2I models during the generation process already capture
the spatial structure and local appearance described in the
input text. By modeling the subspace of these features, we
can effectively steer the generation process towards a sim-
ilar structure expressed in the guidance image, while pre-
serving the appearance of the concept in the input text. To
this end, FreeControl includes an analysis stage and a syn-
thesis stage. In the analysis stage, FreeControl queries a
T2I model to generate as few as one seed image and then
constructs a linear feature subspace from the generated im-
ages. In the synthesis stage, FreeControl employs guidance
in the subspace to facilitate structure alignment with a guid-
ance image, as well as appearance alignment between im-
ages generated with and without control.

FreeControl offers significant strength over training-
based methods by eliminating the need for additional train-
ing on a pretrained T2I model, while adeptly adhering to
concepts outlined in the text description. It supports a

wide range of control conditions, model architectures and
customized checkpoints, achieves high-quality image gen-
eration with robust controllability in comparison to prior
training-free methods [20, 31, 37, 53], and can be read-
ily adapted for text-guided image-to-image translation. We
conduct extensive qualitative and quantitative experiments
and demonstrate the superior performance of our method.
Notably, FreeControl excels at challenging control condi-
tions on which prior training-free methods fail. In the mean-
time, it attains competitive image synthesis quality com-
pared to training-based methods while providing stronger
image-text alignment and supporting a broader set of con-
trol signals.

Our contributions. (1) We present FreeControl, a novel
method for training-free controllable T2I generation via
modeling the linear subspace of intermediate diffusion fea-
tures and employing guidance in this subspace during the
generation process. (2) Our method presents the first uni-
versal training-free solution that supports multiple control
conditions (sketch, normal map, depth map, edge map, hu-
man pose, segmentation mask, natural image and beyond),
model architectures (e.g., SD 1.5, 2.1, and SD-XL 1.0), and
customized checkpoints (e.g., using DreamBooth [46] and
LoRA [24]). (3) Our method demonstrates superior results
in comparison to previous training-free methods (e.g., Plug-
and-Play [53]) and achieves comparable performance with
prior training-based approaches (e.g., ControlNet [59]).

2. Related Work

Text-to-image diffusion. Diffusion models [22, 49, 51]
bring a breakthrough in text-to-image (T2I) generation. T2I
diffusion models formulate image generation as an iter-
ative denoising task guided by a text prompt. Denois-
ing is conditioned on textual embeddings produced by lan-
guage encoders [40, 41] and is performed either in pixel
space [7, 34, 42, 48] or latent space [19, 39, 44], followed
by cascaded super-resolution [23] or latent-to-image decod-
ing [16] for high-resolution image synthesis. Several recent
works show that the internal representations of T2I diffu-
sion models capture mid/high-level semantic concepts, and
thus can be repurposed for image recognition tasks [28, 58].
Our work builds upon this intuition and exploits the feature
space of T2I models to guide the generation process.

Controllable T2I diffusion. It is challenging to convey hu-
man preferences and intents through text description alone.
Several methods thus instrument pre-trained T2I models
to take an additional input condition by learning auxiliary
modules on paired data [6, 30, 33, 55, 59, 62]. One signif-
icant drawback of this training-based approach is the cost
of repeated training for every control signal type, model
architecture, and model checkpoint. On the other hand,
training-free methods leverage attention weights and fea-
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tures inside a pre-trained T2I model for the control of ob-
ject size, shape, appearance and location [9, 15, 18, 38, 57].
However, these methods only take coarse conditions such as
bounding boxes to achieve precise control over object pose
and scene composition. Different from all the prior works,
FreeControl is a training-free approach to controllable T2I
diffusion that supports any spatial condition, model archi-
tecture, and checkpoint within a unified framework.
Image-to-image translation with T2I diffusion. Control-
ling T2I diffusion becomes an image-to-image translation
(I2I) task [25] when the control signal is an image. I2I meth-
ods map an image from its source domain to a target do-
main while preserving the underlying structure [25, 36, 47].
T2I diffusion enables I2I methods to specify target domains
using text. Text-driven I2I is often posed as conditional
generation [8, 26, 33, 59, 61, 62]. These methods fine-
tune a pretrained model to condition it on an input image.
Alternatively, recent training-free methods perform zero-
shot image translation [20, 31, 37, 53] and is most rele-
vant to our work. This is achieved by inverting the input
image [32, 50, 56], followed by manipulating the attention
weights and features throughout the diffusion process. A
key limitation of these methods is they require the input
to have rich textures, and hence they fall short when con-
verting abstract layouts (e.g. depth) to realistic image. By
contrast, our method attends to semantic image structure by
decomposing features into principal components, thereby it
supports a wide range of modalities as layout specifications.
Customized T2I diffusion. Model customization is a key
use case of T2I diffusion in visual content creation. By
fine-tuning a pretrained model on images of custom ob-
jects or styles, several methods [5, 17, 27, 46] bind a dedi-
cated token to each concept and insert them in text prompts
for customized generation. Amid the growing number of
customized models being built and shared by content cre-
ators [2, 3], FreeControl offers a scalable framework for
zero-shot control of any model with any spatial condition.

3. Preliminary

Diffusion sampling. Image generation with a pre-trained
T2I diffusion model amounts to iteratively removing noise
from an initial Gaussian noise image xT [22]. This sam-
pling process is governed by a learned denoising network
✏✓ conditioned on a text prompt c. At a sampling step t,
a cleaner image xt�1 is obtained by subtracting from xt a
noise component ✏t = ✏✓(xt; t, c). Alternatively, ✏✓ can be
seen as approximating the score function for the marginal
distributions pt scaled by a noise schedule �t [51]:

✏✓(xt; t, c) ⇡ ��trxt log pt(xt|c). (1)

Guidance. The update rule in Equation 1 may be altered by
a time-dependent energy function g(xt; t, y) through guid-

Figure 2. Visualization of feature subspace given by PCA. Keys
from the first self-attention in the U-Net decoder are obtained via
DDIM inversion [50] for five images in different styles and modal-
ities (top: person; bottom: bedroom), and subsequently un-
dergo PCA. The top three principal components (pseudo-colored
in RGB) provide a clear separation of semantic components.

ance (with strength s) [14, 15] so as to condition diffusion
sampling on auxiliary information y (e.g., class labels):

✏̂✓(xt; t, c) = ✏✓(xt; t, c)� s g(xt; t, y). (2)

In practice, g may be realized as classifiers [14] or CLIP
scores [34], or defined using bounding boxes [12, 57], atten-
tion maps [18, 37] or any measurable object properties [15].
Attentions in ✏✓. A standard choice for ✏✓ is a U-Net [45]
with self- and cross-attentions [54] at multiple resolutions.
Conceptually, self-attentions model interactions among spa-
tial locations within an image, whereas cross-attentions re-
late spatial locations to tokens in a text prompt. These two
attention mechanisms complement one another and jointly
control the layout of a generated image [9, 18, 38, 53].

4. Training-Free Control of T2I Models

FreeControl is a unified framework for zero-shot control-
lable T2I diffusion. Given a text prompt c and a guidance
image Ig of any modality, FreeControl directs a pre-trained
T2I diffusion model ✏✓ to comply with c while also respect-
ing the semantic structure provided by Ig throughout the
sampling process of an output image I.

Our key finding is that the leading principal components
of self-attention block features inside a pre-trained ✏✓ pro-
vide a strong and surprisingly consistent representation of
semantic structure across a broad spectrum of image modal-
ities (see Figure 2 for examples). To this end, we introduce
structure guidance to help draft the structural template of
I under the guidance of Ig . To texture this template with
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Figure 3. Method overview. (a) In the analysis stage, FreeControl generates seed images for a target concept (e.g., man) using a pretrained
diffusion model and performs PCA on their diffusion features to obtain a linear subspace as semantic basis. (b) In the synthesis stage,
FreeControl employs structure guidance in this subspace to enforce structure alignment with the input condition. In the meantime, it
applies appearance guidance to facilitate appearance transfer from a sibling image generated using the same seed without structure control.

the content and style described by c, we further devise ap-

pearance guidance to borrow appearance details from Ī, a
sibling of I generated without altering the diffusion process.
Ultimately, I mimics the structure of Ig with its content and
style similar to Ī.
Method overview. FreeControl is a two-stage method as il-
lustrated in Figure 3. It begins with an analysis stage, where
diffusion features of seed images undergo principal com-
ponent analysis (PCA), with the leading PCs forming the
time-dependent bases Bt as our semantic structure repre-

sentation. Ig subsequently undergoes DDIM inversion [50]
with its diffusion features projected onto Bt, yielding their
semantic coordinates Sg

t . In the synthesis stage, structure
guidance encourages I to develop the same semantic struc-
ture as Ig by attracting St to Sg

t . In the meantime, appear-
ance guidance promotes appearance similarity between I
and Ī by penalizing the difference in their feature statistics.

4.1. Semantic Structure Representation

Zero-shot spatial control of T2I diffusion demands a unified
representation of semantic image structure that is invariant
to image modalities. Recent work has discovered that self-
attention features (i.e., keys and queries) of self-supervised
Vision Transformers [52] and T2I diffusion models [9] are
strong descriptors of image structure. Based on these find-
ings, we hypothesize that manipulating self-attention fea-
tures is key to controllable T2I diffusion.

A naı̈ve approach derived from PnP [53] is to directly
inject the self-attention weights (equivalently the features)
of Ig into the diffusion process of I. Unfortunately, this ap-
proach introduces appearance leakage; that is, not only the

structure of Ig is carried over but also traces of appearance
details. As seen in Figure 6, appearance leakage is partic-
ularly problematic when Ig and I are different modalities
(e.g., depth vs. natural images), common for controllable
generation.

Towards disentangling image structure and appearance,
we draw inspiration from Transformer feature visualiza-
tion [35, 53] and perform PCA on self-attention features
of semantically similar images. Our key observation is that
the leading PCs form a semantic basis; It exhibits a strong
correlation with object pose, shape, and scene composition
across diverse image modalities. In the following, we lever-
age this basis as our semantic structure representation and
explain how to obtain such bases in the analysis stage.

4.2. Analysis Stage

Seed images. We begin by collecting Ns images that share
the target concept with c. These seed images {Is} are gener-
ated with ✏✓ using a text prompt c̃ modified from c. Specifi-
cally, c̃ inserts the concept tokens into a template that is in-
tentionally kept generic (e.g., “A photo of [] with
background.”). Importantly, this allows {Is} to cover
diverse object shape, pose, and appearance as well as image
composition and style, which is key to the expressiveness of
semantic bases. We study the choice of Ns in Section 5.2.

Semantic basis. We apply DDIM sampling [50] to generate
{Is} and obtain time-dependent diffusion features {Fs

t} of
size Ns ⇥ C ⇥H ⇥W from ✏✓. This yields Ns ⇥ H ⇥
W distinct feature vectors, on which we perform PCA to
obtain the time-dependent semantic bases Bt as the first Nb
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Figure 4. Qualitative comparison of controllable T2I diffusion. FreeControl supports a suite of control signals and three major versions
of Stable Diffusion. The generated images closely follow the text prompts while exhibiting strong spatial alignment with the input images.

principal components:

Bt = [p(1)
t ,p(2)

t , ...,p(Nb)
t ] ⇠ PCA({Fs

t}) (3)

Intuitively, Bt span semantic spaces St that connect dif-
ferent image modalities, allowing the propagation of image
structure from Ig to I in the synthesis stage. We study the
choice of Ft and Nb in Section 5.2 and Section B.
Basis reuse. Once computed, Bt can be reused for the same
text prompt or shared by prompts with related concepts. The
cost of basis construction can thus be amortized over multi-
ple runs of the synthesis stage.

4.3. Synthesis Stage

The generation of I is conditioned on Ig through guidance.
As a first step, we express the semantic structure of Ig with
respect to the semantic bases Bt.
Inversion of Ig . We perform DDIM inversion [50] on Ig

to obtain the diffusion features Fg
t of size C ⇥H ⇥W and

project them onto Bt to obtain their semantic coordinates

Sg
t of size Nb ⇥ H ⇥ W . For local control of foreground

structure, we further derive a mask M (size H ⇥W ) from
cross-attention maps of the concept tokens [18]. M is set to
1 (size H ⇥W ) for global control.

We are now ready to generate I with structure guidance

to control its underlying semantic structure.
Structure guidance. At each denoising step t, we obtain
the semantic coordinates St by projecting the diffusion fea-

tures Ft from ✏✓ onto Bt. Our energy function gs for struc-
ture guidance can then be expressed as

gs(St;S
g
t ,M) =

P
i,j mijk[st]ij � [sgt ]ijk22P

i,j mij
| {z }

forward guidance

+ w ·
P

i,j(1�mij)kmax([st]ij � ⌧ t, 0)k22P
i,j(1�mij)

| {z }
backward guidance

,

where i and j are spatial indices for St, Sg
t and M, and w

is the balancing weight. The thresholds ⌧ t are defined as

⌧ t = max
i,j s.t. mij=0

[sgt ]ij (4)

with max taken per channel. Loosely speaking, [st]ij > ⌧ t

indicates the presence of foreground structure. Intuitively,
the forward term guides the structure of I to align with Ig in
the foreground, whereas the backward term, effective when
M 6= 1, helps carve out the foreground by suppressing spu-
rious structure in the background.

While structure guidance drives I to form the same se-
mantic structure as Ig , we found that it also amplifies low-
frequency textures, producing cartoony images that lack ap-
pearance details. To fix this problem, we apply appearance

guidance to borrow texture from Ī, a sibling image of I gen-
erated from the same noisy latent with the same seed yet
without structure guidance.
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Figure 5. Qualitative results for more diverse control conditions. FreeControl supports challenging control conditions not possible with
training-based methods. These include 2D projections of common graphics primitives, domain-specific shape models (point cloud, body

mesh, and humanoid), graphics software viewports (Blender and AutoCAD), and simulated driving environments (Metadrive).

Appearance representation. Inspired by DSG [15], we
represent image appearance as {v(k)

t }NaNb

k=1 , the weighted
spatial means of diffusion features Ft:

v(k)
t =

P
i,j �([s

(k)
t ]ij)[ft]ij

P
i,j �([s

(k)
t ]ij)

, (5)

where i and j are spatial indices for St and Ft, k is channel
index for [st]i,j , and � is the sigmoid function. We repur-
pose St as weights so that different v(k)

t ’s encode appear-
ance of distinct semantic components. We calculate {v(k)

t }
and {v̄(k)

t } respectively for I and Ī at each timestep t.
Appearance guidance. Our energy function ga for appear-
ance guidance can then be expressed as

ga({v(k)
t }; {v̄(k)

t }) =
PNa

k=1 kv
(k)
t � v̄(k)

t k22
Na

. (6)

It penalizes difference in the appearance representations and
thus facilitates appearance transfer from Ī to I.
Guiding the generation process. Finally, we arrive at our
modified score estimate ✏̂t by including structure and ap-
pearance guidance alongside classifier-free guidance [21]:

✏̂t = (1+s) ✏✓(xt; t, c)�s ✏✓(xt; t, ;)+�s gs+�a ga, (7)

where s, �s and �a are the respective guidance strengths,
and ; denotes the null token input.

5. Experiments and Results

We report extensive qualitative and quantitative results to
demonstrate the effectiveness and generality of our ap-
proach for zero-shot controllable T2I diffusion. We present
additional results on text-guided image-to-image translation
and provide ablation studies on key method components.

5.1. Controllable T2I Diffusion

Baselines. ControlNet [59] and T2I-Adapter [33] learn an
auxiliary module to condition a pretrained diffusion model
on a guidance image. One such module is learned for each
condition type. Uni-ControlNet [62] instead learns adapters
shared by all condition types for all-in-one control. Dif-
ferent from these training-based methods, SDEdit [31] adds
noise to a guidance image and subsequently denoises it with
a pretrained diffusion model for guided image synthesis.
Prompt-to-Prompt (P2P) [20] and Plug-and-Play (PnP) [53]
manipulate attention weights and features inside pretrained
diffusion models for zero-shot image editing. We compare
our method with these strong baselines in our experiments.
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Figure 6. Qualitative comparison on controllable T2I diffusion. FreeControl achieves competitive spatial control and superior image-
text alignment in comparison to training-based methods. It also escapes the appearance leakage problem manifested by the training-free
baselines, producing high-quality images with rich content and appearance faithful to the text prompt.

Method Canny HED Sketch Depth Normal

Self-Sim # CLIP " LPIPS " Self-Sim # CLIP " LPIPS " Self-Sim # CLIP " LPIPS " Self-Sim # CLIP " LPIPS " Self-Sim # CLIP " LPIPS "
ControlNet [59] 0.042 0.300 0.665 0.040 0.291 0.609 0.070 0.314 0.668 0.058 0.306 0.645 0.079 0.304 0.637
T2I-Adapter 0.052 0.290 0.689 - - - 0.096 0.290 0.648 0.071 0.314 0.673 - - -
Uni-ControlNet 0.044 0.295 0.539 0.050 0.301 0.553 0.050 0.301 0.553 0.061 0.303 0.636 - - -

SDEdit-0.75 [31] 0.108 0.306 0.582 0.123 0.288 0.375 0.135 0.281 0.361 0.153 0.294 0.327 0.128 0.284 0.456
SDEdit-0.85 [31] 0.139 0.319 0.670 0.153 0.305 0.485 0.139 0.300 0.485 0.165 0.304 0.384 0.147 0.298 0.512
P2P [20] 0.078 0.253 0.298 0.112 0.253 0.194 0.194 0.251 0.096 0.142 0.248 0.167 0.100 0.249 0.198
PNP [53] 0.074 0.282 0.417 0.098 0.286 0.271 0.158 0.267 0.221 0.126 0.287 0.268 0.107 0.286 0.347
Ours 0.080 0.322 0.724 0.078 0.321 0.561 0.090 0.322 0.611 0.090 0.321 0.576 0.086 0.322 0.642

Table 1. Quantitative results on controllable T2I diffusion. FreeControl consistently outperforms all training-free baselines in structure
preservation, image-text alignment and appearance diversity as measured by Self-similarity distance, CLIP score and LPIPS distance. It
achieves competitive structure and appearance scores with the training-based baselines while demonstrate stronger image-text alignment.

Experiment setup. Similar to ControlNet [59], we report
qualitative results on eight condition types (sketch, normal,
depth, Canny edge, M-LSD line, HED edge, segmentation
mask, and human pose). We further employ several previ-
ously unseen control signals as input conditions (Figure 5),
and combine our method with all major versions of Stable
Diffusion (1.5, 2.1, and XL 1.0) to study its generalization
on diffusion model architectures.

For a fair comparison with the baselines, we adapt the
ImageNet-R-TI2I dataset from PnP [53] as our benchmark
dataset. It contains 30 images from 10 object categories.
Each image is associated with five text prompts originally
for the evaluation of text-guided image-to-image transla-
tion. We convert the images into their respective Canny
edge, HED edge, sketch, depth map, and normal map fol-
lowing ControlNet [59], and subsequently use them as input
conditions for all methods in our experiments.

Evaluation metrics. We report three widely adopted met-
rics for quantitative evaluation; Self-similarity distance [52]
measures the structural similarity of two images in the fea-
ture space of DINO-ViT [11]. A smaller distance suggests
better structure preservation. Similar to [53], we report self-

similarity between the generated image and the dataset im-
age that produces the input condition. CLIP score [40] mea-
sures image-text alignment in the CLIP embedding space.
A higher CLIP score indicates a stronger semantic match
between the text prompt and the generated image. LPIPS

distance [60] measures the appearance deviation of the gen-
erated image from the input condition. Images with richer
appearance details yield higher LPIPS score.

Implementation details. We adopt keys from the first self-
attention in the U-Net decoder as the features Ft. We run
DDIM sampling on Ns = 20 seed images for 200 steps to
obtain bases of size Nb = 64. In the synthesis stage, we
run DDIM inversion on Ig for 1000 steps, and sample I and
Ī by running 200 steps of DDIM sampling. Structure and
appearance guidance are applied in the first 120 steps. �s 2
[400, 1000], �a = 0.2�s, and Na = 2 in all experiments.

Qualitative results. As shown in Figure 4, FreeControl is
able to recognize diverse semantic structures from all condi-
tion modalities used by ControlNet [59]. It produces high-
quality images in close alignment with both the text prompts
and spatial conditions. Importantly, it generalizes well on
all major versions of Stable Diffusion, enabling effortless
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upgrade to future model architectures without retraining.
In Figure 5, we present additional results for condition

types not possible with previous methods. FreeControl gen-
eralizes well across challenging condition types for which
constructing training pairs is difficult. In particular, it en-
ables superior conditional control with common graphics
primitives (e.g., mesh and point cloud), domain-specific
shape models (e.g., face and body meshes), graphics soft-
ware viewports (e.g., Blender [13] and AutoCAD [1]),
and simulated driving environments (e.g., MetaDrive [29]),
thereby providing an appealing solution to visual design
preview and sim2real.

Comparison with baselines. Figure 6 and Table 1 com-
pare our methods to the baselines. Despite stronger struc-
ture preservation (i.e., small self-similarity distances), the
training-based methods at times struggle to follow the text
prompt (e.g. embroidery for ControlNet and origami for all
baselines) and yield worse CLIP scores. The loss of text
control is a common issue in training-based methods due to
modifications made to the pretrained models. Our method
is training-free, hence retaining strong text conditioning.

In contrast, training-free baselines are prone to appear-
ance leakage, where the appearance of condition images
is leaked to generated images, resulting in worse LIPIS
scores. This is because the generated image shares latent
states (SDEdit) or diffusion features (P2P & PnP) with the
condition. For example, all baselines inherit the texture-less
background in the embroidery example and the foreground
shading in the castle example. Our method instead decou-
ples structure and appearance, thereby avoiding the leakage.

FreeControl PnP Pix2Pix-zero P2P+NTI

Pre-processing 127.00 0 1236.00 0
Inversion 25.36 31.96 32.57 87.51
Sampling 23.95 10.09 33.03 11.51

Total 176.31 42.05 1301.60 99.02

Table 2. Runtime for training-free methods

Inference efficiency. We further study the inference cost
of our method in comparison to training-free baselines.
Table 2 reports the average inference time using a single
Nvidia A6000 GPU. The inference has three stages: (1)
Pre-processing stage, where category-level information is
extracted (analysis stage in FreeControl and the computa-
tion of edit direction in Pix2Pix-zero) ; (2) Inversion stage,
for extracting the image-level latent representation from the
input condition; and (3) Sampling stage, for generating the
target image. FreeControl is slower than PnP (4.2⇥) and
P2P (1.8⇥), yet much faster than Pix2Pix-zero (0.14⇥).
When considering the reused basis and thus only counting
inversion and inference time, FreeControl can achieve 1.1⇥
that of PnP, 0.5⇥ that of P2P, and 0.75⇥ that of Pix2Pix-
zero, yet still generate diverse images.

5.2. Ablation Study

Effect of guidance. As seen in Figure 7, structure guid-
ance is responsible for structure alignment (�gs vs. Ours).
Appearance guidance alone has no impact on generation in
the absence of structure guidance (�ga vs. �gs,�ga). It
only becomes active after image structure has shaped up, in
which case it facilitates appearance transfer (�ga vs. Ours).
Choice of diffusion features Ft. Figure 8 compares results
using self-attention keys, queries, values, and their preced-
ing Conv features from up block.[1,2] in the U-Net decoder.
It reveals that up block.1 in general carries more structural
cues than up block.2, whereas keys better disentangle se-
mantic components than the other features.

Figure 7. Ablation on guidance effect. Top: “leather shoes”;
Bottom: “cat, in the desert”. gs and ga stand for structure and
appearance guidance, respectively.

Figure 8. Ablation on feature choice. Keys from self-attention of
up block.1 in the U-Net decoder expose the strongest controllabil-
ity. PCA visualization of the features are in the insets.

6. Conclusion

We present FreeControl, a training-free method for spa-
tial control of any T2I diffusion model with any condi-
tion. FreeControl exploits the feature space of pretrained
T2I models, facilitates convenient control over many archi-
tectures and checkpoints, allows various challenging input
conditions on which most of the existing training-free meth-
ods fail, and achieves competitive synthesis quality with
training-based approaches. One limitation is that FreeCon-
torl relies on the DDIM inversion process to extract interme-
diate features of the guidance image and compute additional
gradients during the synthesis stage, resulting in increased
inference time. We hope our findings and analysis can shed
light on controllable visual content creation.
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