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Abstract

Contrastive Learning (CL) plays a crucial role in molecular representation learning,
enabling unsupervised learning from large scale unlabeled molecule datasets. It
has inspired various applications in molecular property prediction and drug de-
sign. However, existing molecular representation learning methods often introduce
potential false positive and false negative pairs through conventional graph augmen-
tations like node masking and subgraph removal. The issue can lead to suboptimal
performance when applying standard contrastive learning techniques to molecular
datasets. To address the issue of false positive and negative pairs in molecular repre-
sentation learning, we propose a novel probability-based contrastive learning (CL)
framework. Unlike conventional methods, our approach introduces a learnable
weight distribution via Bayesian modeling to automatically identify and mitigate
false positive and negative pairs. This method is particularly effective because it dy-
namically adjusts to the data, improving the accuracy of the learned representations.
Our model is learned by a stochastic expectation-maximization process, which
optimizes the model by iteratively refining the probability estimates of sample
weights and updating the model parameters. Experimental results indicate that
our method outperforms existing approaches in 13 out of 15 molecular property
prediction benchmarks in MoleculeNet dataset and 8 out of 12 benchmarks in the
QM9 benchmark, achieving new state-of-the-art results on average.

1 Introduction

We investigate the problem of learning representations from molecules, a field known as molecular
representation learning (MRL). MRL has gained significant attention due to its critical role in enabling
learning from limited supervised data for applications such as molecular property prediction[29, 33,
5] and drug design [14, 20, 22]. Molecular representation learning involves creating models that can
derive meaningful and generalizable representations of molecules, which can then be used to enhance
various downstream applications. Among the most common methods in MRL is contrastive learning
(CL), which leverages large-scale unlabeled molecular datasets to learn robust representations. CL
works by contrasting different augmentations of the same molecule to ensure that the model learns to
recognize the essential features of the molecule, thereby improving performance on tasks such as
molecular property prediction and drug design.

With the success of contrastive learning methods in computer vision and multi-modality pretraining [7,
27], various contrastive learning approaches have been proposed for molecular representation learning.
MoICLR[33] introduces a contrastive learning framework specifically for molecular representation
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learning. It employs atom masking and edge removal as data augmentations, which enhances the
performance of Graph Neural Network (GNN) models on a variety of downstream molecular property
prediction benchmarks. In contrast, GraphMVP[20] incorporates both 2D topology and 3D geometry
during pre-training, though its downstream tasks primarily utilize 2D topology. These methods
highlight different strategies for applying contrastive learning to molecular data, focusing on unique
aspects of molecular structures to improve learning efficacy.

Although existing works have demonstrated the success of contrastive learning in molecular property
predictions, they still face a significant drawback: the reliability of "positive" and "negative" labels
in augmented molecule pairs. For example, MolCLR[33] uses augmentations like atom masking
and edge removal, which can lead to false negative pairs when molecules with similar structures
and chemical properties are labeled as negatives. Similarly, GraphMVP [20], which incorporates
both 2D topology and 3D geometry, can also mislabel structurally similar augmented molecules
as negatives due to its augmentation processes. These augmentations often remove parts of the
molecular graph, such as nodes, edges, and subgraphs, resulting in potentially incorrect pairings. This
issue is exacerbated by the large volume and extensive augmentations applied to molecular datasets,
naturally leading to numerous falsely aligned pairs.

The fundamental problem lies in the random nature of these augmentations. Existing molecular
contrastive learning methods assign hard positive and negatives to molecule pairs and do not account
for the probabilistic relationships between molecules. Figure 3 provides an example of false positives
and negatives resulting from graph augmentations in MolCL[33] ,where two distinct graph augmen-
tations are applied to enhance two different molecules. The augmented molecule pair originating
from the same molecule is categorized as positive, while other molecule pairs within the same batch
are considered negative. However, as illustrated in the figure, the correct contrastive learning setup
should consider molecules with structural similarities as positive pairs, even when they originates
from different molecules. In contrast, the same molecule subjected to different augmentation methods
may also be considered negative due to structural dissimilarities. Existing methods like MolCLR
[33] fail to maintain this distinction, where augmented pairs from the same molecule are always
treated as positive, while pairs from different molecules within the same batch are always treated
as negative, regardless of their structural similarity. This mislabeling results in false positives and
negatives, undermining the effectiveness of the contrastive learning process.
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Figure 1: Existing problem in molecular contrastive learning. Adopt node removal and edge
removal for molecular contrastive learning can lead to false positive and false negative problems.
Blue lines indicate positive pairs and yellowing lines indicate negative pairs. The numbers on each
line indicate the chemical similarity between the augmented pair of molecules. In this case, positive
pairs indeed have lower similarity than negative pairs.

To overcome the aforementioned issue, we introduce a generalization of existing contrastive learn-
ing frameworks for molecular representation learning with probabilistic modeling. Our approach
introduces data-pair weights as additional random variables, and dynamically infers optimal weights
to account for false positive and false negative pairs, which can effectively address the mislabeling
problem in previous methods. By incorporating a probability framework, we can effectively manage
the uncertainty in data pair assignments. Specifically, we introduce a novel Bayesian inference



methods with Bayesian data augmentation to automatically infer these weights through posterior
sampling. This allows us to optimize the model parameters efficiently using stochastic expectation
maximization.

It is worth mentioning that while MolCLR[33] authors introduced i-MolCLR[32] to address similar
issues by penalizing faulty negatives with a fingerprint-based similarity metric and a motif-level data
augmentation called fragment contrast, our method offers distinct advantages. Unlike i-MolCLR
which relies on direct fingerprint similarity, our approach introduces a novel probabilistic contrastive
learning framework. This framework dynamically infers weight distributions and optimizes through
stochastic expectation maximization, eliminating the need for explicit Tanimoto similarity calculations.
Our method addresses the issue of false negative pairs more fundamentally and efficiently, providing
a more robust solution for molecular contrastive learning.

In addition, our method is flexible and can be applied to different molecular representation learning
framework. In this paper, we first integrate our method into MolCLR [33] series model and benchmark
the performance on 2D non-charality MoleculeNet[35] dataset. We then integrated our method into
Uni-Mol[42] and evaluate its performance on MoleculeNet[35]. We also trained and evaluated our
model on the QM9 [28] dataset, following Equiformer [17]. With molecular property prediction tasks,
we aim to test our model’s ability in extracting useful features from molecular. Extensive experiments
show that our method outperforms all other molecular representation learning baselines, including
contrastive and non-contrastive methods.

The contributions of this paper can be summarized as follows:

* To tackle the challenges posed by false positive and negative pairs, we introduce a probability
method for molecular contrastive learning. By introducing different weights as random
variables to various false positive and negative pairs, we effectively mitigate the impact of
these erroneous pairs on the learning process.

 To optimize our probabilistic contrastive learning framework, we propose a novel and effec-
tive optimization algorithm based on Bayesian data augmentation and stochastic expectation
maximization, to simultaneously perform posterior inference and model optimization.

» Through extensive and large-scale experiments, we demonstrate enhanced performance
across multiple public benchmarks for molecular representation learning, validating the
effectiveness of our proposed method.

2 Methods

2.1 Learning Representations from Molecular Graphs

We begin by elucidating the foundational setup and notation in molecular contrastive learning.
Molecules can be represented as 2D or 3D graphs depending on datasets. 2D molecule graphs have
atoms as nodes and bond as edges. 3D molecule graphs additionally adds spacial positions of the
atoms. For simplicity, we adopt static atom positions in this paper.

In molecular representation learning, as illustrated in Figure 2, we start by randomly sampling a batch
of N molecules. Each molecule, represented as x;, undergoes stochastic augmentation strategies
to generate two augmented versions, denoted as (x;, x’;). These augmentations involve methods
such as atom masking, edge perturbation, and subgraph removal, transforming the original molecular
structure while preserving its core characteristics. Among the resulting 2/N augmented molecules,
each pair (x;,x’;) is treated as a positive pair, while the remaining 2(N — 1) augmented molecules
within the same batch are considered negative samples. This setup allows us to utilize contrastive
learning effectively by distinguishing between similar and dissimilar molecular structures. A neural
network encoder f(x; @), parameterized by 6, is employed to extract representation vectors z from
the augmented molecular samples. In this paper, we utilize three different types of encoders in various
experiments, as depicted in Figure 2 B, C, and D. These encoders include Graph Neural Networks
(GNNs) and Transformers, each providing unique advantages for capturing the intricate features of
molecular structures.

Let s;+ £ sim(z;,2’;) represent the similarity score between the positive pair (x;,x';) after the
encoder, and s;;,- = sim (z;, z;,) signifies the similarity score between the negative pair (x;,X}),
and sim(-, -) represents any positive-valued similarity metric. In this paper, we adopt the commonly
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Figure 2: (A) Molecular contrastive learning Molecules are represented as 2D or 3D molecule
graphs. Two stochastic augmentation strategies are applied to each graph, resulting in two aug-
mentations. A feature extractor is used to extract features and contrastive loss is used to maximize
the similarity of positive pairs and minimize the similarity of negative pairs B,C,D: Different ar-
chitectures used as feature extractors in different experiments. (B) Uni-Mol [42] architecture used
in MoleculeNet [35] Dataset experiment. (C) GCN [21] architecture from MolCLR [33] used in
Non-Chirality MoleculeNet [35] experiment. (D) Equiformer [17] architecture used in QM9 [28]
dataset experiment.
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temperature parameter.

2.2 Probability Weighted Contrastive Learning

We describe the proposed probability framework for molecular contrastive learning. In standard
contrastive learning, one tries to encode data samples to a latent space such that positive pairs stay
close to each other while negative pairs are pushed away. The contrastive loss function is:
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As mentioned, one issue of directly applying the contrastive learning into molecular representation
learning is the potential false positive and negative molecular pairs, as discussed in the introduction.
This could confuse the learning, ending up with sub-optimal representations. Is there a way to
automatically identify and differentiate these pair data? In the following, we propose a Bayesian
approach to address this issue that allows the algorithm for automatic inference of the degree of
positiveness and negativeness of data pairs, involving enhancing the standard contrastive loss by
incorporating learnable stochastic weights for all data pairs. To be more specific, we introduce local
learnable weights, denoted as w;" for each positive pair and w;,, for each negative pair. We then define
a weighted contrastive loss based on these introduced weights. This modification aims to mitigate the
issues by automatically assigning relatively lower weights (or no weights) to false positive and false
negative pairs;
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One problem with this formulation, however, is that it is not realistic to compute and store all the
weights in the learning process. This precaution arises from the quadratic growth in the number of
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weights to be calculated as the training data size increases. Furthermore, the random nature of our
augmentation method further adds complexity to the pre-calculation and storage of these weights.

A straightforward baseline for calculating these weights can be envisioned as follows: we can consider
these weights in a binary fashion, with all weights initialized to one. In the learning process, if for
some positive pairs the similarity score falls below a specified threshold, we set the corresponding
weights to zero, marking these positive pairs as false positives. Conversely, if for some negative
pairs the similarity score exceeds a threshold, we set the associated weights to zero, indicating false
negatives. A challenge associated with this baseline method, however, lies in the establishment of a
rigid similarity threshold to create a binary division of weights between zero and one. This approach
proves less suitable for our molecular contrastive task as these heuristically chosen thresholds might
not be optimal.

To address this challenge, we propose a principled Bayesian approach that allows adaptively inferring
the optimal weights by Bayesian inference. Specifically, we treat the weights to be random variables
and assign appropriate priors to them. We consider two types of priors: a Bernoulli prior to model
weights as binary random variables and a Gamma prior to represent them as positive values. For
simplicity, we model positive weights using the Gamma distribution and negative weights using either
the Gamma distribution or the Bernoulli distribution, as expressed by the following formulas:

Option 1 - Gamma priors for continuous weighting:

w; ~ Gamma(ay,by), w;, ~ Gamma(a_,b_).

Option 2 - Bernoulli priors for selective weighting:

w; ~ Gamma(ay,by), w;, ~ Bernoulli(a_).

here, a, by, a_ and b_are shape and rate parameters for Gamma distribution and a_ is the
probability parameter for Bernoulli distribution.

With our reformulation, we can define a joint distribution over the global model parameter and local
random weight variables w; and w;, , as:
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One problem with the above formulation, however, is that posterior inference of the weights is
challenging, due to the lack of convenience posterior distributions.

Fortunately, inspired by [2], we can introduce an augmented random variable u; that is associated to
data point x;. Consequently, we can define an augmented joint posterior distribution of the random
variables 6, u, w, denoted as p ({w;" } , {w;; } ,0 | D) ', to be
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where u £ {uy,us, -+, uip| } andw £ {w;" } U{w;, }. Itis worth noting that this joint distribution
is equivalent to the original distribution (3), because (3) is recovered if one marginalize out the
auxiliary random variables u in (4). In other words, optimization thought (4) is equivalent to
optimization over (3). Consequently, we can perform learning and inference based on the augmented
posterior of p(0,u, w | D), which preserves a much convenient form for posterior inference. In the
following, we propose an efficient algorithm based on stochastic expectation maximization (stochastic
EM) to alternatively infer the local random variables w and optimize the global model parameter 6.

2.3 Efficient Inference and Learning with Stocastic Expectation Maximization

We propose a stochastic EM algorithm for efficient inference and learning of our model. Stochastic
EM [24] is a stochastic variant of the EM algorithm, which is an iterative method for finding the

'In the sense that marginalizing over the augmented random variables {w:r }and {w;k}in
p (0,0, {w]},{w;.} | D) gives back to the original p ({w;"}, {w;, },6; D). Thus, learning and infer-
ences on the two forms are equivalent.



maximum likelihood of model parameters in statistical models when data is only partially, or when
model depends on unobserved latent variables [41].

In our setting, the objective of stocastic EM is to maximize the posterior in equation 4. The basic idea
is to alternatively 1) optimizing model parameter 6 with fixed (u, w) and 2) sampling (u, w) with
fixed . To this end, we follow standard procedures in stochastic EM to divide the learning into three
steps: Simulation, Stochastic Expectation, and Maximization. Specifically, simulation corresponds to
sampling local random variables u and w for a batch of data; stochastic expectation then uses the
sampled auxiliary random variables to update the model parameter 8 by maximizing a stochastic
objective Q(8), defined as: Q¢11(0) = Q:(0) + \; (logp(0,u, w | D) — Q,(0)) at iteration ¢ + 1,
where {);} is a sequence of decreasing weights. And maximization corresponds to maximizing the
stochastic objective constructed in the previous step. In the following, we detail the three steps.

Simulation Given the joint posterior distribution in equation 3 and the current batch of data, the
posterior distributions of the local random variables u and w can be directly read out, which simply
follow Gamma or Bornoulli distributions of the following forms:

U | {w;‘,wi_k,ﬂ} ~ Gamma (au,bu + U/;'_Si+ + Zwi_k,sik_> ,Vi, and

w; | {u,0} ~ Gamma (1 + a,u;s;4 + by),and

Option 1: w;, | {u,0} ~ Gamma (a_, u;s;5,- +b_), Vi, k ®)
Option 2: w3, | {u, 8} ~ Bernoulli a-¢
ption 2: w;,. | {u, @} ~ Bernoulli (1 e a_euisik>

We use the Gamma prior because it naturally lends itself to conjugacy in the posterior, which
significantly eases the posterior sampling procedure. Also, it is known for its flexibility in shape and
scale to model positive continuous variables, which is suitable for sample weights in our setting.

Stochastic Expectation We then proceed to calculate the stochastic expectation based on the sim-
ulated local random variables above. For notation simplicity, we define Qo(6) = 0. Then we can
reformulate @Q;1(0) by decomposing the recursion, resulting in

t
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where 7 indexes the minibatch and the corresponding local random variables at the current time 7.

Maximization The stochastic
expectation objective (6) pro-
vides a convenient form for 1: Initialize 8;sett =1

stochastic optimization over 2: for a batch of molecules in loader do

Algorithm 1 Contrastive Learning with Stochastic EM

time, similar to online optimiza-  3: Augment each molecule x; into a pair (x;, x’;)
tion (Bent & Van Hentenryck, 4 Calculate positive/negative similarity scores s and s~
2005). Specifically, at each time for all the molecule pairs

t, we can initialize the param- 5 Initialize all the weights w™ and w™ to be one
eter 6 from the last step, and 6 for k = 1 to iter [4 in practice] do
update it by stochastic gradient  7: Sample u and w according to distributions
ascent on the log-likelihood, 8 end for

9

logp(0,u,,w, | D;) calcu- Calculate the weighted contrastive loss in equation 2 with
lated from the current batch of the sampled w on the current batch of data

data. To reduce variance, we 10: Update the model parameter by stochastic gradient de-
propose to optimize a marginal scent with the calculated weighted contrastive loss

version by integrating out 1l t=t+1

u, from p(@,u,,w,|D,;), 12: endfor

which essentially reduces to our

original weighted contrastive loss in equation (2). With the above steps, it is ready to optimize the
model by stochastic EM. The detailed steps are described in the Algorithm 1.

3 Related works



Contrastive Learning As a popular self-supervised learning paradigm, contrastive learning focuses
on learning semantically informative representations for downstream tasks [16, 3, 39, 9]. The most
widely used loss function is InfoNCE [25] which pulls in the representations between positive sample
pairs while pushing away that between negative sample pairs.

Molecular Representation Learning Representation learning on large-scale unlabeled molecules
attracts much attention recently. SMILES-BERT [31] is pretrained on SMILES strings of molecules
using BERT. Subsequent works are mostly pretraining on 2D molecular topological graphs [15, 29].
MOolICLR [33] applies data augmentation to molecular graphs at both node and graph levels, using a
self-supervised contrastive learning strategy to learn molecular representations. I-MolCLR [32] is a
improved version of MoICLR that uses new data augmentation and introduces weighted contrastive
learning for mitigating false pair problem. Further, several recent works try to leverage the 3D spatial
information of molecules, and focus on contrastive or transfer learning between 2D topology and 3D
geometry of molecules. For example, GraphM VP [20] proposes a contrastive learning GNN-based
framework between 2D topology and 3D geometry. GEM [5] uses bond angles and bond length
as additional edge attributes to enhance 3D information. Uni-Mol[42] is a universal 3D molecular
pretraining framework that significantly enlarges the representation ability and application scope in
drug design.

Noisy Pairs in Contrastive Learning Noisy data pair problem have been found and studied in
contrastive learning community. NLIP [11] enforces pairs with larger noise to be less similar in
embedding space to improve model training. [6]apply noise estimation component to adjust the
consistency between different modalities for action recognition task. RINCE [8] uses a ranked
ordering of positive samples to improve InfoNCE loss. [3] introduces a new debiased contrastive
learning loss function by transforming the distribution of negative samples. Matchdrop [34] designed
a new graph augmentation method to alleviate the false positive sampling problem by retaining the
most critical parts of the graph and augmenting the unimportant parts.

Stochastic Expectation Maximization Stochastic EM [24] stands as a pivotal algorithm in machine
learning and probabilistic modeling for large-scale Bayesian inference. Building upon the foundations
of the classical Expectation-Maximization (EM) algorithm [18], Stochastic EM offers an efficient
solution for parameter estimation in situations involving vast datasets or latent variables, e.g., to
maximize the log-likelihood of p(z, D | 0), where D is the dataset, z is the local random variable
and @ is the global model parameter. By leveraging the power of mini-batch sampling, Stochastic EM
strikes a balance between computational scalability and estimation accuracy. It has found widespread
utility in various domains, including clustering [1], topic modeling [40], and latent variable modeling
[41], making it an indispensable tool to cope with complex probabilistic models and extensive data
and a natural fit to our problem.

4 Experiments

We evaluate our method on molecular property prediction tasks. Our approach is designed to be a
versatile component that can be seamlessly integrated with various molecular property prediction
datasets and models. In this study, we integrate our model into three different existing models:
Uni-Mol[42]], I-MolCLR [32], Equiformer [17] and assess its performance on three distinct datasets:
MoleculeNet [35], MoleculeNet without chirality, and the QM9 [28] dataset. For all experiments, we
provide detailed experiment settings in Appendix C.

4.1 The MoleculeNet Dataset

MoleculeNet [35] is a popular benchmark for molecular property prediction, including datasets
focusing on different molecular properties, from quantum mechanics and physical chemistry to
biophysics and physiology. For a fair comparison, we integrated our method into Uni-Mol[42]
framework. We applied both the Gamma and Bernoulli versions of our method, as shown in Table
1. In our contrastive learning framework, we used the representation of the [CLS] token as the
final encoded representation, representing the entire molecule. Additionally, we incorporated the
original three-dimensional recovery loss as an extra loss function. The model was trained on the same
large-scale dataset, including 19 million molecules and 209 million conformations, as in the original
paper. We used the same evaluation metrics: ROC_AUC for classification tasks and RMSE and
MAE for regression tasks.



As shown in Table 1 and 2, our method outperforms Uni-Mol[42] and GEM [5], the current state-
of-the-art methods, with an average gain of 1.3 percent in classification tasks and 7.6 percent in
regression tasks. This substantiates that our approach facilitates more flexible training with a higher
tolerance for false positive and false negative data pairs, thereby enhancing the model’s performance
in molecular representation learning.

Table 1: ROC_AUC on molecular property prediction classification tasks (Higher is better)

Datasets BBBP | BACE | ClinTox | Tox21 | ToxCast | SIDER | HIV PCBA | MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 | 437929 | 93078
# Tasks 1 1 2 12 617 27 1 128 17
D-MPNN [37] 71.0 80.9 90.6 75.9 65.5 57.0 7.1 86.2 78.6
Attentive FP [36] | 64.3 78.4 84.7 76.1 63.7 60.6 5.7 80.1 76.6
N-Grampgp[19] 69.7 7.9 7.5 74.3 - 66.8 7.2 — 76.9
N-Gramxgp[19] | 69.1 79.1 87.5 75.8 - 65.5 8.7 - 74.8
PretrainGNN [10] | 68.7 84.5 72.6 78.1 65.7 62.7 79.9 86.0 81.3
GraphM VP [20] 72.4 81.2 79.1 75.9 63.1 63.9 77.0 - 7.7
GEM [5] 72.4 85.6 90.1 78.1 69.2 67.2 80.6 86.6 81.7
MolCLR [33] 72.2 82.4 91.2 75.0 — 58.9 78.1 — 79.6
Uni-Mol[42] 72.9 85.7 91.9 79.6 69.6 65.9 80.8 88.5 82.1
Ours (Gamma) 76.7 88.2 89.4 80.1 69.9 63.6 83.0 89.6 79.0
Ours (Bernoulli) 73.7 84.3 85.3 79.8 68.8 64.9 80.8 89.3 82.9

Table 2: Performance on molecular property prediction regression tasks (Lower is better)

Datasets ESOL FreeSolv Lipo | QM7 QMS QM9 MEAN (RMSE) | MEAN (MAE)
# Molecules 1128 642 4200 | 6830 21786 133885

# Metric RMSE| MAE]

D-MPNN [37] 1.050 2.082 0.683 | 103.5 0.0190 0.00814 | 1.272 34.509
GROVERIarge [29] | 0.895 2.272 0.823 | 92.0  0.0224 0.00986 | 1.33 30.67
MOolICLR [33] 1271 2594 0.691 | 66.8  0.0178 - 1.519 -
GraphM VP [20] 1.029 - 0.681 | - - - - -
GEM [5] 0.798  1.877 0.660 | 58.9  0.0171 0.00746 | 1.112 19.642
Uni-Mol[42] 0.788  1.480 0.603 | 41.8  0.0156 0.00467 | 0.957 13.940
Ours (Gamma) 0.775 1420 0.590 | 38.5 0.0142 0.00395 | 0.928 12.839
Ours (Bernoulli) 0.664 1.358 0.626 | 55.6  0.0154 0.0056 | 0.883 18.541

4.2 Non-Chirality version MoleculeNet

In order to make a fair comparison with I-MolCLR [32], we also integrated our method into MolCLR
[33] framework. MolCLR and I-MolCLR are 2D based methods, their experiments are conducted
on different version of MoleculeNet dataset that does not consider chirality. We adopted the same
dataset, augmentation, GNN-based encoder and other settings. As shown in Table 3, our method
outperforms I-MoICLR on 7 out of 9 downstream tasks and got an average of 2 points increase on
non-chirality MoleculeNet classification datasets.

Table 3: Comparison against i-MolCLR on non-chirality MoleculeNet dataset

Without Chirality | BBBP BACE ClinTox Tox21 SIDER HIV MUV | MEAN
I-MOLCLR [32] 76.4 88.5 954 79.9 69.9 80.8  90.8 83.1
Our Method 78.3 94.8 91.4 84.9 72,77 855 88.0 85.1

4.3 QM9 Dataset

The QM9 dataset [28] is another popular dataset in molecular property prediction, it consists of 134k
small molecules, and the goal is to predict their quantum properties. For this dataset, we choose
equiformer [17] as a baseline method. The data partition we use has 110k, 10k,and 11k molecules in
training, validation and testing sets. We use both our contrastive loss function and original minimize
mean absolute error(MAE) as training objectives.

As shown in 4, we get state of the art result in 8 out of 12 baselines. The increase is relatively
subtle compared with other dataset, we argue that this is due to the fact that QM9 is relatively small



regarding number of molecules in training set, and also the saturation on performance achieved by

different methods.
Table 4: Experiment results on QM9 dataset
Methods &) AE E_homo E_lumo It Cv G H R"2 1 10 ZPVE
GraphCL [39] 0.066 45.5 26.8 22.9 0.027 0.028 102 9.6 0.095 9.7 9.6 1.42
JOAOV2 [38] 0.066 45.0 27.8 222 0.027 0.028 99 92 0087 9.8 95 1.43
3D-MGP [12] 0.057 37.1 21.3 18.2 0.020 0.026 9.3 87 0092 86 8.6 1.38
Transformer-M [21] | 0.041 27.4 17.5 16.2 0.037 0.022 9.63 9.39 0.075 941 937 1.18
Equiformer [17] 0.046 30 15 14 0.011 0.023 7.63 6.63 0251 6.74 6.59 126
Ours 0.037 242 211 137 0022 0022 62 631 0082 7.22 940 1.09

4.4 Ablation Study

Distribution of similarity scores Our method is largely motivated by the observation that previous
MCL approaches neglect potential semantic dissimilarity between positive samples and that account-
ing for this phenomenon can improve learned molecule representations. In Figure A(See Appendix
A), we plot the distribution of similarity scores for both positive and negative samples. Figure A left
reveals that our method yields larger similarity scores with lower variance for positive pairs compared
to MolICLR [33] baseline which uses standard contrastive learning method. Figure A right reveals that
our method also mitigates the false negative problem in standard CL. It also shows that our method
sometimes assigns lower similarity scores to positive pairs. While it may seem counter intuitive
to assign lower similarity scores to positive samples, we argue that doing so is the very reason our
method captures dissimilarity between positive pairs. By allowing some degree of alignment between
the right set of negative examples, our method is able to minimize the inconsistencies between shared
context of related positives and negatives. This in turn allows us to learn an overall more coherent
representation space, resulting in increased robustness and downstream performance.

Comparisons with the Standard Contrastive Learning We conducted an ablation study to show-
case that our method of probablistic framework of contrastive learning has already achieved strong
emperical results and demonstrate the improvement brought by adding the 3D-aware loss functions
on MoleculeNet [35] classification dataset. We first examined the effect of adding the probabilistic
framework to the standard contrastive loss, and the 3D-aware loss functions as implemented in
Uni-Mol[42].

Table 5: Ablation Study on MoleculeNet Classification Datasets

BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV | MEAN
Standard CL 69.3 81.5 84.1 75.5 63.4 589 783 84.1 72.5 75.2
CL + 3D Loss 75.1 86.8 87.9 78.9 68.5 62.8 81.8  88.0 77.1 78.1
CL + Probabilistic Framework | 74.1 86.3 88.2 79.5 68.2 63.1 825 884 77.1 78.6
CL + Both 76.7 88.2 89.4 80.1 69.9 63.6 830 89.6 79.0 80.1

Table 5 presents the results of our ablation study. Incorporating the probabilistic framework resulted
in a great improvement of 3.4-point increase in ROC-AUC, significantly enhances the model’s
performance. On the other hand, introducing the additional loss component led to an increase in
ROC-AUC by 2.9 points, demonstrating its secondary role in enhancing the model’s performance.
When we adopt both of them, we can get the final ROC-AUC of 80.1 average on MoleculeNet
classification datasets.

Hyperparameters We also conducted an ablation study to determine the optimal hyperparameters
(e.g., ay, a_) on MoleculeNet classification datasets. We selected a4, a_, by, and b_ from the
range [1, 5, 10]. Table 6 indicates that our method achieves the best performance with a; = 5 and
a_ = by = b_ = 1. Tuning different hyperparameters affects performance, with an increase in a
from 1 to 5 leading to a 1.6 percent performance gain.

5 Conclusion

In this paper, we investigate an important yet unnoticed limitation of molecular contrastive learning,
where augmented graph data come with false positive and false negative data pairs. As a remedy, we
propose a principled solution to molecular contrastive learning by reformulating it into a probability



Table 6: Abalation studies on hyperparameters for MoleculeNet classification tasks

at 1 5 10 5 5 5 5
a_ 1 1 1 1 1 5 10
b+ 1 1 1 5 10 5 5
b_ 1 1 1 1 1 5 10
Avg. ROC-AUC (%) | 78.8 804 79.6 793 80.0 794 793

framework and introducing random weights for data pairs. With a Bayesian data augmentation
technique, the random weights can be efficiently inferred via sampling, and the model parameter can
be efficiently optimized via stochastic expectation maximization.

The effectiveness of our innovative approach has been proven through rigorous evaluations on
multiple molecular property prediction benchmarks. The results also showcase the wide-ranging
applicability and improved robustness of our proposed method over existing methods for learning
molecular representations.

We believe our method is a valuable addition to the literature on molecular contrastive representation
learning, which can further boost the performance of state-of-the-art molecular representation learning
models for drug design.
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A Similarity Score Distribution

Distribution of Scores for positive samples Distribution of Scores for negative samples

os 1

Figure 3: Similarity Scores — Similarity scores distribution for negative pairs in joint space after
pre-training with original MolCLR loss and our proposed loss is provided. Compared to Using
pretrained MolCLR model, our method yields similarity scores with lower mean and lower variance
for negative pairs. While MolCLR have two peaks of negatives similarity scores around 1 and 2.7,
our method concentrates them at only one peak of 1.Our method yields similarity scores with higher
mean and lower variance for positive pairs. Our method concentrates at higher levels as it allows for
some degree of semantic dissimilar between positives. The similarity scores are dot similarity, they
are not normalized to enhance the difference for visual purposes.

B Limitations

In this section, we discuss the limitations of our proposed EM-based algorithm for molecular
contrastive learning.

B.1 Assumptions and Robustness

Our approach relies on several strong assumptions, such as the independence of molecular features
and the noisiness nature of the input data. In practice, these assumptions may be violated, potentially
affecting the performance and robustness of the model. For instance, correlated features could lead to
biased estimates of weights, while unnoisy data might degrade the necessity to apply our method in
learning representations. Future work could explore methods to relax these assumptions and enhance
the model’s robustness to such violations.

B.2  Scope of Claims

The empirical results presented in this paper are based on experiments conducted on a specific set of
datasets: MoleculeNet and QM9. While these datasets are commonly used in molecular machine
learning research, they may not fully represent all possible application domains. Consequently, the
generalizability of our findings to other datasets or real-world scenarios might be limited. Further
validation on a broader range of datasets is necessary to confirm the wide applicability of our
approach.

Also, one limitation of our method is that the performance gains brought by the proposed architectural
improvements can depend on datasets and tasks. For small datasets like QM9, the performance gain
is not significant.

B.3 Privacy and Fairness

While our work does not specifically address issues of privacy and fairness, these are important
considerations for any machine learning model, especially those used in sensitive domains such
as healthcare. The potential for bias in molecular datasets, as well as privacy concerns related to
molecular data, are areas that require further exploration. Ensuring that our model adheres to ethical
standards and mitigates bias is an avenue for future work.
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Table 7: hyperparameter search space for MoleculeNet dataset

Hyperparameter Small Large HIV
Learning rate [be —b,8¢ — 5,1e — 4,4e — 4,5e — 4] | [2¢e — 5,1e — 4] | [2e — 5,5e — 5]
Batch size (32,64, 128, 256] 128, 256] 128, 256]
Epochs (40, 60, 80, 100] (20, 40] 2,5, 10]
Pooler dropout [0.0,0.1,0.2,0.5] [0.0,0.1] [0.0,0.2]
Warmup ratio [0.0,0.06,0.1] [0.0,0.06] [0.0,0.1]

C Training details for experiments

C.1 MoleculeNet dataset

Following Unimol, we report the detailed hyperparameters setup of during pretraining in 7. Molecular
pretraining runs on 4 A6000 GPUs, and the training time is about 48 hours. We split all the datasets
with scaffold split, which splits molecules according to their molecular substructure.

C.2 MoleculeNet Non-Chirality Analysis

We basically follow Mol-CLR on experiment settings. During pre-training, the GNN encoder maps
each molecular graph to a 512-dimensional embedding h. A projection head, modeled as an MLP
with a single hidden layer, transforms h into a 256-dimensional latent vector z. ReLU is utilized as
the non-linear activation function. The model undergoes pre-training over 50 epochs with a batch
size of 512, optimized via the Adam optimizer with an initial learning rate of 5 x 10~ and a weight
decay rate of 1 x 107°. A cosine learning rate decay schedule is applied throughout pre-training. For
most datasets, we use a scaffold-based data split; however, the QM9 subtask follows a random split
in line with the Mol-CLR methodology.

In the fine-tuning phase, the projection head is replaced with a randomly initialized MLP that maps h
to the target property prediction, while the pre-trained GNN encoder remains fixed. The fine-tuning
process spans 100 epochs per benchmark task, with hyperparameters tuned via random search on
validation sets, and results reported on test sets. Each benchmark is evaluated over three independent
runs, with average performance reported. The model implementation is based on PyTorch Geometric.

C.3 QMY Dataset Experiments

Data partitioning for the QM9 tasks follows the scheme utilized in the Equiformer. For tasks
predicting u, o, egomo, ELumo, Ae, and C',, our configuration includes a batch size of 64, 300
training epochs, a learning rate of 5 x 10~%, and Gaussian radial basis functions with 128 bases. The
architecture comprises six Transformer blocks, a weight decay of 5 x 1073, and a dropout rate of 0.2.
Mixed-precision training is employed for these tasks.

For the R? task, the setup consists of a batch size of 48, 300 epochs, a learning rate of 1.5 x 1074,
Gaussian radial basis functions with 128 bases, five Transformer blocks, a weight decay of 5 x 1073,
and a dropout rate of 0.1, executed in single precision.

The ZPVE task employs a batch size of 48, 300 epochs, a learning rate of 1.5 x 10~%, Gaussian radial
basis functions with 128 bases, five Transformer blocks, a weight decay of 5 x 1073, and a dropout
rate of 0.2, with single-precision training.

For the G, H, U, and U tasks, the setup includes a batch size of 48, 300 epochs, a learning rate
of 1.5 x 104, Gaussian radial basis functions with 128 bases, five Transformer blocks, with both
weight decay and dropout omitted, utilizing single precision.

All models were trained on a single A6000 GPU, with mixed-precision tasks requiring 81 GPU-hours
and single-precision tasks requiring 151 GPU-hours. Model complexity includes 11.20 million
parameters for configurations with six blocks and 9.35 million parameters for configurations with
five blocks.

The data partitioning approach adheres to the random splitting strategy outlined in the Equiformer
paper.
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D Comparison against other weight calculation methods

Here we show the comparison against using a simpler approach based on similarity scores. To
thoroughly investigate this, we designed ablation experiments using the chiral version of MoleculeNet
classification tasks and compared three different methods: 1. Bayesian Inference (Our Method):
In this approach, we calculate the weights using Bayesian inference, as described in our paper. 2.
Fingerprint-based Similarity: This method calculates the weights based on the similarity scores
derived from molecular fingerprints, similar to the approach used in I-MoICLR [32]. 3. Encoder-
based Similarity: Here, we first extract features of data pairs using encoders and then calculate their
similarity scores. These scores are then regularized to the [0, 1] range.

For methods 2 and 3 , we compute the weights using the following formulas:

w; =1—Xx Sim (z;, xy)

w; = X\ x Sim (2, 21)

In our experiments, we set (A = 1).

MoleculeNet Experiments | BBBP Tox21 ToxCast SIDER ClinTox BACE MUV HIV PCBA
Bayesian Inference 76.7+£20 80.1+£1.0 699+25 649+33 894+01 882+13 829+31 83.0+£1.7 829+0.5
Fingerprint Similarity 779 80.0 68.9 64.9 87.6 83.6 78.7 79.8 83.8
Encoder-based Similarity | 75.2 79.6 67.8 58.5 90.4 82.8 80.5 81.0 74.5

From these results, we observe the following:

1. While fingerprint-based similarity showed improvements in 2 out of 9 tasks compared to our
original method, but it did not perform as well overall. This indicates that they may not be flexible
enough to fully capture the complexities of molecular representations required for robust performance
across diverse tasks.

2. Encoder-based Similarity performed worse than both the Bayesian inference method and the
fingerprint-based similarity approach, further suggesting that using a direct similarity-based method
does not necessarily yield better results.

These findings suggest that while simpler methods may work in some cases, they do not outperform
our proposed Bayesian inference method which can dynamically adapt and provide better alignment of
positive and negative pairs. Thus, our approach is essential for achieving state-of-the-art performance
across various molecular property prediction benchmarks.

E Protein-ligand binding task

We also conducted the protein-ligand binding pose prediction task. This is one of the most important
tasks in structure based drug design. The task is to predict the complex structure of a protein binding
site and a molecular ligand. We need to consider how ligand lays in the pocket, that is, the 6 degrees
(3 rotations and 3 translations) of freedom of a rigid movement.

Following Uni-Mol, the molecular representation and pocket representation are firstly obtained from
their own pretraining models by their own conformations; then, their representations are concatenated
as the input of an additional 4-layer Transformer decoder, which is finetuned to learn the pair distances
of all heavy atoms in molecule and pocket. Then, with the predicted pair-distance matrix as a scoring
function, we first randomly place the ligand and then optimize the coordinates of its atoms by directly
back-propagation the loss between current pair-distance and predicted pair-distance.

We evaluate our method using the metric binding pose accuracy. Specifically, we keep the pocket
conformation fixed, while the ligand conformation is fully flexible. We evaluate the RMSD(root
mean squared distance) between the prediction and the ground truth. Following previous works, we
use the percentage of results below predefined RMSD thresholds as metrics.

The binding pose accuracy results are shown in Table. Not surprisingly, our model again outperforms
all the baseline methods, achieving state-of-the-art results with our Gamma-prior version model.
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Table 8: Performance on binding pose prediction.

Methods 10A]15A]20A]30A [50A
Autodock Vina[30, 4] | 44.21 | 57.54 | 64.56 | 73.68 | 84.56
Vinardo [26] 41.75 | 57.54 | 62.81 | 69.82 | 76.84
Smina [13] 4737 | 59.65 | 65.26 | 74.39 | 82.11
Autodock4 [23] 21.75 | 31.58 | 35.44 | 47.02 | 64.56
Uni-Mol[42] 43.16 | 68.42 | 80.35 | 87.02 | 94.04
Ours (Bernoulli) 48.77 | 70.18 | 78.95 | 85.26 | 94.04
Ours (Gamma) 45.61 | 69.47 | 80.70 | 88.42 | 96.84

Table 9: ablation study on a,, and b,,

Gy 1 5 10 1 5 10 1 5 10
by, 1 1 1 5 5 5 10 10 10
Avg ROC_AUC% | 804 80.2 80.1 80.6 80.7 80.2 803 &80.1 80.5

F More ablation on a,, and b,

Here we conducted an ablation study on the choice of a, and b,. Generally speaking, the choice
of a,, and b,, will not influence the experiment results to a large margin, the top performance is at
ay = by, = 5.
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NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the key contributions of the paper,
including the development and evaluation of the proposed EM-based algorithm for molecular
contrastive learning, as well as the comparison with baseline methods.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated "Limitations" section where it discusses the
strong assumptions made in the model, such as the independence assumptions and the
potential impact of noisy data. It also reflects on the scope of the claims, emphasizing that
the results are based on experiments conducted on specific datasets.

. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes a detailed presentation of all theoretical results, with each
theorem and lemma clearly numbered and cross-referenced. All assumptions are explicitly
stated within the statements of the theorems, and complete proofs are included in the main
text.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details on the experimental setup, including
dataset descriptions, preprocessing steps, model architectures, hyperparameter settings, and
evaluation metrics. Additionally, the paper outlines the exact procedures followed during
experimentation and includes detailed pseudocode in the appendix. These disclosures ensure
that the main experimental results can be reproduced and verified independently.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to both the data and the code. Detailed
instructions are included in the supplemental material, covering the exact commands and
environment settings needed to reproduce the results. The data access instructions encompass
steps for obtaining the raw data, preprocessing methods, and generating the necessary
datasets. Scripts to reproduce all experimental results, including those for the proposed
method and baselines, are provided. Any deviations or omitted experiments are clearly
stated with justifications.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [TODO]
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10.

11.

12.

13.

Justification: The paper provides comprehensive details on the experimental setup, including
specific data splits, hyperparameters, and their selection pro-cess. It also covers the type of
optimizer used and all other relevant parameters. These details are presented clearly in the
appendix of the paper.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The paper does not report error bars, confidence intervals, or statistical signifi-
cance tests for the experimental results. Instead, all the experiments are carried out for three
times and the average is reported.

. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the computer resources required
for each experiment. It specifies the type of compute workers (GPU), memory usage, and
the time of execution for each experimental run.

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There is no consider of ethics according to the NeurIPS Code of Ethics.
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: There is no societal impact discussed in the paper.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors have cited the original, paper that produced the code package or
dataset, included the license and provided the copyright and terms of services.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The authors have cited the original paper that produced the code package or
dataset, stated its’ versions, included the license and provided the copyright and terms of
services.
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Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve studying participants
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