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Abstract

Cold start delays are a main pain point for today’s FaaS
(Function-as-a-Service) platforms. A widely used mitigation
strategy is keeping recently invoked function containers
alive in memory to enable warm starts with minimal over-
head. This paper identi�es new challenges that state-of-the-
art FaaS keep-alive policies neglect. These challenges are
caused by concurrent function invocations, a common FaaS
workload behavior. First, concurrent requests present a trade-
o� between reusing busy containers (delayed warm starts)
versus cold-starting containers. Second, concurrent requests
cause imbalanced evictions of containers that will be reused
shortly thereafter. To tackle the challenges, we propose a
novel serverless function container orchestration algorithm
called CIDRE. CIDRE makes informed decisions to specula-
tively choose between a delayed warm start and a cold start
under concurrency-driven function scaling.CIDRE uses both
�ne-grained container-level and coarse-grained concurrency
information to make balanced eviction decisions. We evalu-
ate CIDRE extensively using two production FaaS workloads.
Results show that CIDRE reduces the cold start ratio and
the average invocation overhead by up to 75.1% and 39.3%
compared to state-of-the-art function keep-alive policies.
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1 Introduction

Serverless computing enables building and scaling applica-
tions by breaking monolithic applications into �ne-grained
functions [32]. Developers supply function logic while the
serverless provider performs the tasks of provisioning, scal-
ing, and caching backend servers on which the functions exe-
cute [28]. Serverless computing has become awell-established
paradigm, with FaaS (Function-as-a-Service) o�erings widely
adopted in commercial platforms (e.g., AWS Lambda [10],
Azure Functions [11]) and supported by open-source frame-
works (e.g., OpenWhisk [8], Knative [2], OpenLambda [44]).

FaaS workloads are fundamentally di�erent from tradi-
tional computing services. Serverless functions are ephemeral
and typically have short execution time, ranging from mil-
liseconds (ms) to seconds [49]. The transient nature of func-
tion execution poses signi�cant challenges to FaaS provisioning

decisions. Serverless functions are executed in isolated sand-
box environments such as virtual machines (VMs) [4] and/or
containers [43, 57]. A function startup process involves down-
loading and installing the environment (OS image, language
runtime, and dependencies) before the function code can be
executed. This “cold start penalty” can be substantial com-
pared to function execution time. It may experience delays up
to two orders of magnitude longer than a warm start [23, 52]
before function execution begins, ultimately a�ecting end-
to-end application performance and user experience.

Another challenge is that FaaS workloads are highly con-
current [6, 18, 19, 53]. It is not uncommon for a single func-

tion to spike up to thousands of requests concurrently [34].
To sustain the high concurrency, FaaS platforms provision
many containers replicated from the same function deploy-
ment [16, 53]. This workload behavior further exacerbates
the impact of cold starts on function invocation overhead.

A straightforward approach to alleviating cold starts is to
keep invoked function containers alive in host memory for a
con�gurable period of time [27, 49, 54, 55, 63]. By doing so,
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subsequent function invocation requests can directly execute
within the already-initialized containers, thereby reducing
startup latency. Caching is one of the most well-studied prob-
lems [3, 12, 25, 38, 39] in online computation. State-of-the-
art function keep-alive policies such as FaasCache [27] and
OpenFaaS [42] treat keep-alive as a traditional caching prob-
lem. Speci�cally, a caching-based keep-alive policy treats a
warm function as a cached object, a warm function execution
as a cache hit, and reclaiming a warm function as evicting an
object from the cache, with objectives of maximizing warm
starts (hits) and minimizing execution delay.

In this paper, by analyzing production FaaS workloads, we
identify challenges that the state-of-the-art (SOTA) function
keep-alive policies neglect. These challenges are caused by
concurrent function invocations, a common FaaS workload
behavior. Speci�cally, we make two key observations:
• Delayed warm starts: FaaS concurrency introduces a
new tradeo� between reusing a busy warm container (i.e.,
a delayed warm start that incurs a queuing delay) versus
creating a new container (that incurs a cold start delay).
Existing FaaS platforms neglect the subtle opportunity to
exploit busy warm containers in the face of concurrent
requests. This oversight leads to excessive cold starts and
more containers created, a�ecting the overall performance.
• Imbalanced evictions: FaaS concurrency causes imbal-
anced, bulk evictions of containers that might be soon
reused. Traditional caching-based keep-alive policies fail
to accurately capture �ne-grained container-level and coarse-
grained function-level behaviors. Ill-suited priorities su�er
suboptimal ordering of warm containers, resulting in less-
informed eviction decisions and ultimately contributing
to higher function invocation overhead.
To address the challenges, based on the observations, we

propose a novel serverless function container orchestration
algorithm called concurrency-informed delayed reuse and
eviction (CIDRE). CIDRE synergies two innovative and e�ec-
tive concurrency-aware orchestration policies listed below to
inform function container orchestration decisions through-
out the entire lifecycle, from function scaling to eviction.
• A better function scaling policy that maximizes the

utilization of warm containers. Informed by an intelli-
gent speculative scaling policy, CIDRE reuses busy warm
containers whenever it can reduce invocation delays. By in-
telligently deciding whether to (1) reuse a busy warm con-
tainer, (2) issue a cold start, or (3) do both simultaneously—
a techniquewe call conditional speculative scaling—CIDRE
optimizes function scaling to minimize functions’ invoca-
tion overhead and reduce the number of cold starts.
• A better cache eviction policy that minimizes unnec-

essary warm container evictions.CIDRE uses both �ne-
grained container-level information and coarse-grained
function-level information to determine which warm con-
tainers should be replacedwith cold starts to avoid evicting
containers that will be reused shortly.

Scheduler

Worker1 Worker2 Worker3

Fn1 Fn2 Fn3

Fn1 Fn3 Fn1 Fn1 Fn4

Warm Cold Cold IdleWarm Warm

Function 

cache
Fn2Fn2

Cold

Figure 1. Function invocation process. In this example, four func-

tion containers are cached, with three being actively used and one

in the idle state. Concurrent invocation requests to Function 1 (Fn1)

result in two warm starts (hits) and one cold start (miss), while

concurrent invocation requests to Fn2 see two cold starts.

We make the following contributions in this paper.
• We conduct comprehensive analyses on production FaaS
workloads and identify the challenges and the limitations
of traditional-caching-based function keep-alive policies
to address the challenges.
• We present a new tradeo� between delayed warm starts
and cold starts, and the notion of balanced evictions.
• We propose CIDRE with two e�ective techniques: a specu-
lative scaling policy and a concurrency-informed priority
eviction policy. To minimize invocation overhead, CIDRE
reuses busy containers whenever desirable during func-
tion scaling and uses comprehensive workload knowledge
to inform eviction decision.
• We implement CIDRE in OpenLambda [30, 44] and evalu-
ate CIDRE using production FaaS traces from Azure Func-
tions [49] and Alibaba Cloud Function Compute (FC) [1].
Results show that CIDRE reduces the cold start ratio and
the average invocation overhead by up to 75.1% and 39.3%
compared to SOTA FaaS keep-alive solutions.

Real-World Impact and Artifact Availability. CIDRE’s
speculative scaling has received adoption and is deployed
in production at Alibaba Cloud FC. CIDRE is open-sourced
and available at: https://github.com/nzc5ve/cidre_asplos25.

2 Background and Motivation

2.1 Overview of FaaS

Function Deployment and Invocation. A user deploys a
serverless function by pushing function code to a function
registry. A deployed function can be invoked, e.g., through
an HTTP URL. Each invoked function runs in a sandbox
environment, e.g., a container [22, 29] or a VM [4]. Without
loss of generality, we assume containers as the underlying
sandbox technique for function execution and isolation.
Function Lifecycle. A FaaS platform typically consists of a
scheduler and a cluster of workers (see Figure 1). Function
invocation requests are forwarded to a cluster of servers
through the scheduler. Each server in the cluster runs a
worker which is responsible for managing the lifecycle of
containers hosted on that server. Upon receiving multiple
concurrent invocation requests, the worker starts multi-
ple containers of the function to serve the requests (i.e.,
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concurrency-driven container scaling). The cold start process
involves downloading and installing the container image,
language runtime, and dependencies of the function before
the function code can be executed. When a function �nishes
execution, the worker may choose to keep its containers alive
in the server’s memory for a short period of time. A warm

start incurs a much smaller invocation overhead, as it reuses
an already provisioned container for request execution.

2.2 Real-World Workload Analysis

Quantifying Cold Start Overhead.We sampled 1, 267 cold-
started function invocations from a production FaaS work-
load collected in Alibaba Cloud FC. In the FC production en-
vironment, a cold start refers to the process of starting a new
container. This includes downloading/loading the container
image, initializing the language runtime, loading the func-
tion code and user data, and establishing any network/DB
connections. A warm start occurs when a function request
is executed in an available container. A warm start skips
image loading and runtime initialization butmay still involve

a warmup phase. A warmup phase during a warm start can
include tasks like JIT compilation, ML model downloading,
and establishing connections, which are request-driven.
Figure 2 shows the ratio of cold start latency to execu-

tion time. Among all cold starts, 40.4% of requests have a
ratio greater than 1 with non-trivial invocation overhead.
We also randomly sampled 750 unique functions from Day
1 of the Azure Functions workload [49]. The full trace con-
tains function invocation requests of 82, 375 unique func-
tions spanning 14 days. Given that the original dataset lacks
information about cold starts, we calculated the estimated
cold start latency by applying one of three scaling factors,
1<B/"�, 2<B/"�, and 3<B/"�, to the average allocated
memory [52]. We found that the estimated cold start over-
head follows the same distribution as that of the FC trace,
suggesting a huge impact of cold start cost on the end-to-end
function performance and user experience.
Quantifying Function-level Concurrency. Concurrent
invocation requests are common in FaaS applications such
as stateless image processing [48] and burst-parallel, stateful
work�ow processing [6, 26, 31]. Concurrent requests tar-
get the same function and are often issued at roughly the
same time, leading to the creation of multiple containers

Timeline

C0

T0
(R0)

T1
(R1)

Execute R0 

C1

te

Provision C1 

tp

tq

1 2 3a 3b

Execute R1 

Execute R1 A delayed 

warm start

A cold start

Figure 4. Concurrent invocation requests ('0 and '1) to the same

function � present a tradeo�. 1: '0 arrives at timestamp )0 and

a warm container �0 is already kept alive to directly serve '0; it

takes '0 a duration of C4 to execute. 2: A concurrent request '1 to

the same function arrives at )1, where )1 −)0 < C4 . 3: Serving '1
involves a decision making. 3a: reusing the busy container �0 will

incur a queuing delay of C@ ; 3b: provisioning a new container �1
to serve '1 will incur a cold start latency of C? . Then, the optimal

decision is to reuse �0 as C@ < C? .

in one or multiple servers (Fn1 in Figure 1). To quantify
this, we measured the request concurrency of a 30-minute
FC workload. As shown in Figure 3, the {90Cℎ%-ile, 99Cℎ%-
ile} concurrency is {120, 4,482}, respectively, suggesting that
real-world production FaaS workloads are highly concurrent.
The sampled set of 750 functions in the Azure Functions
workload exhibit a similar distribution pattern, although
the concurrency level of Azure Functions is slightly lower
than that of Alibaba Cloud FC. Since the Azure traces only
provide coarse-grained, minute-level concurrency informa-
tion, we modeled second-level concurrency by following the
concurrency distribution from FC traces.

2.3 Problems with Concurrent Invocation Requests

New Tradeo�.We �nd that concurrent invocations to the
same function introduce a new tradeo� as illustrated in Fig-
ure 4: reusing a busy container that is actively serving a
request incurs a queuing delay, while provisioning a new
container introduces a cold start latency. In the example
shown in Figure 4, invocation request '1 would have waited
for an extra duration of C? − C@ if the scheduler decides to
provision a new container �1 and waits for �1 to be fully
initialized before executing '1.
Traditional Caching Models. A caching policy is an algo-
rithm designed to determine, given a cache size and a work-
load of object access requests, whether or not to admit a new
object into the cache upon a miss, i.e., the admission policy,
and if so, which object to evict, i.e., the eviction or replace-
ment policy. Caching policy targets to achieve a particular
objective, e.g., to minimize the miss ratio or to maximize
the hit ratio. Existing FaaS platforms model the function
keep-alive problem as a classic caching problem [27, 42].
ProblemswithCaching-basedKeep-Alive.The new trade-
o� subverts the expectation of traditional-caching-based
keep-alive when it comes to function invocation overhead, i.e.,
the waiting time incurred before a function starts execution.
Traditional caching models ignore the compound impact of
function concurrency, and therefore, su�er from two main
problems. The two problems are logically correlated and can
signi�cantly a�ect workload performance.
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• Problem of Delayed Warm Starts: Traditional caching
policies such as GDSF (Greedy-Dual-Size-Frequency) [20]
and LRU have only two states for each request, a cache hit
or a cache miss. The new tradeo� under function concur-
rency introduces a new intermediate state between a true
“hit” (i.e., a warm start) and a true “miss” (i.e., a cold start)—
a delayed hit [9] (i.e., a delayed warm start, which reuses a
busy warm container but waits for a queuing delay before
the function can execute, as illustrated in Figure 4).
• Problem of Imbalanced Eviction: Concurrency causes
another interesting problem: a function can have multi-
ple containers kept alive; all containers associated with
a function construct an elastic, compound, logical object,
which can grow and shrink, driven by function concur-
rency. Traditional caching policies make independent evic-
tion decisions by evicting the least important objects but
are compound-object-oblivious. As such, blindly evicting
the least important functions may lead to imbalanced evic-
tion, thus a�ecting overall performance.
In the presence of function concurrency, the correlated

problems of delayed warm starts and imbalanced eviction
present a unique opportunity to further reduce function in-
vocation overhead. During concurrency-driven container
scaling, some requests could reuse a busy, warm container
with shorter waiting time than the case if the requests were
to be provisioned with new containers. Moreover, the FaaS
scheduler should be intelligent enough to dynamically bal-
ance the cache space allocated for each compound function
object. As a consequence of this gap, state-of-the-art caching-
based keep-alive policies fail to minimize function invocation
overhead, which we demonstrate next in §2.4.

2.4 What-If Analysis

In this section, we present a what-if analysis to quantify our
identi�ed tradeo� and to better understand its implications.
All experiments throughout the paper were conducted using
a warmed-up function cache.
Quantifying the Tradeo�. Our �rst what-if experiment
analyzes what the cost and bene�t would be if a GDSF-based
FaasCache has the option to reuse a busy container. We
replayed the 14.7 million function requests from the 750
sampled Azure functions (see Table 1) using a simulator de-
veloped by ourselves, which simulates a modi�ed version of
FaasCache. Since vanilla FaasCache does not reuse a busy

Table 1. Production workload statistics. AF: Azure Functions. FC:

Alibaba Cloud Function Compute. Rps: requests per second. GBps:

the aggregate memory size of all requests per second in GBs.

Trace # invoke reqs Rps (avg / min / max) GBps (avg / min / max)

24h AF 14,704,439 170 / 90 / 683 38.6 / 19.2 / 154.6
30m AF 3,231,319 1,795 / 1,158 / 4,551 804.5 / 502.1 / 2,014.7
30m FC 2,745,241 1,525 / 894 / 2,980 773.1 / 188 / 2,767

warm container, we modi�ed its policy so that, if a request
triggers a cold start (i.e., no idle warm containers are avail-
able to serve this request), the modi�ed policy will instead
route this request to a busy warm container that has the
shortest waiting time. This way, the modi�ed policy avoids
cold starts but enforces a queuing delay. Figure 5 quanti-
�es this tradeo�. Interestingly, the two CDF curves cross at
464ms. Around 69.4% of requests would have experienced sig-
ni�cantly shorter invocation delays (< 464 ms) if FaasCache
had reused a busy warm container instead of creating a new
container. On the other hand, there is a 30.6% possibility that
having a cold start would be the optimal choice.
We did the same experiment using the 30-minute FaaS

trace collected from Alibaba Cloud FC (Table 1). Figure 6
reveals a di�erent pattern: all cold start requests encounter
lower invocation overhead if FaasCache had opted to reuse
a busy warm container. This result suggests a larger oppor-
tunity space potentially exposed by this tradeo�.
What If Delayed Warm Start is Enabled? Next, we ana-
lyze the impact of reusing busy warm containers on function
invocation overhead. In this what-if experiment, we varied
the queue length of busy warm containers from 0 to 2 and ran
the same Azure Functions workload trace with a modi�ed
FaasCache. A queue length of ! means a FaasCache policy
that: (1) allows up to ! enqueued function requests on any
busy warm container, and (2) only creates a new container
when delayed warm start queues are �lled up for all busy
warm containers. An ! set to 0 means the vanilla FaasCache
policy, which always creates a new container if all warm
containers of the requested function are busy, representing
an extreme end in the tradeo� spectrum.

The overhead ratio of a request is the ratio of its wait time
and the sum of its wait time and execution time (Overhead
ratio = wait time

wait time+exe time ). Figure 7 shows the overhead ratio
averaged across all requests. Allowing each busy warm con-
tainer to enqueue up to one outstanding request reduces the
average overhead ratio by 9.3% compared to vanilla Faas-
Cache. Increasing the queue length from 1 to 2 results in a
higher average overhead ratio than vanilla FaasCache. One
should note that this policy, albeit sub-optimal, still outper-
forms FaasCache when the queue length is set to 1.

Observation 1

• For an incoming function request, the queuing delay on a

reused, busy, warm container might be shorter than the cold

start latency of creating a new container.
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• A new policy is needed to make informed decisions about

whether to choose a delayed warm start or a cold start.

What If Concurrency-Aware Eviction is Enabled? In
this experiment, we study the impact of concurrency-aware
eviction on function invocation overhead. FaasCache adopts
a GDSF-based keep-alive policy, which computes the priority
of each container using the following equation:

%A8>A8C~ = �;>2: + �A4@ ×
�>BC

(8I4
(1)

where �;>2: captures the recency of the function; �A4@ is
the aggregate number of invocations received by all cached
containers of a function; �>BC is the time required to provi-
sion the container; and (8I4 denotes the memory footprint
of the container. FaasCache evicts the containers with the
lowest priorities. Since all containers of a function have the
same�>BC , (8I4 , and �A4@, FaasCache would evict the oldest
and least-recently-used containers.
We modi�ed FaasCache’s eviction policy by incorporat-

ing a new metric  to represent concurrency and call it
FaasCache-C:

%A8>A8C~ = �;>2: + �A4@ ×
�>BC

(8I4 ×  
(2)

 denotes the number of warm containers currently cached
for a function. With the updated policy, a function with more
warm containers cached is more likely to be evicted, and the
priority of a function tends to increase if more of its contain-
ers are evicted. Figure 8 shows the average overhead ratio of
these two policies. Being concurrency-aware, FaasCache-C
exhibits a 11.8% reduction in the average overhead ratio com-
pared to vanilla FaasCache. Vanilla FaasCache tends to evict
an entire function or a substantial portion of it, likely because
these containers of victim functions happen to be clustered
towards the lowest-priority end of the priority queue. In
contrast, FaasCache-C leads to more balanced evictions with
a 9% higher warm start ratio than vanilla FaasCache.

Observation 2

• Traditional caching-based keep-alive policy that makes in-

dependent, container-level eviction decisions performs worse

than a simple, concurrency-aware eviction policy.

•We need to �nd a more e�ective priority policy that can

capture both container- and function-level behavior.
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2.5 Quantifying Theoretical Opportunity Space

In this section, we present an in-depth trace analysis to quan-
tify the opportunity space exposed by delayed warm starts.
Notations, De�nition, and Analysis Methodology.We
denote C0 as the arrival time of a newly arrived invocation
request for function 5 , C2 as 5 ’s cold start overhead, and C4
as the function execution time. We de�ne the opportunity
space window as [C0, C0 + C2 ]. We analyzed all invocation
requests in the 30-minute Azure Functions trace (Table 1).
For each new request for a function 5 with an opportunity
space window of [C0, C0 + C2 ], we calculated the completion
times C0 + C4 for all other requests associated with 5 . We
then identi�ed and counted how many of these requests
had completion times falling within the opportunity space
window of the current new request. When analyzing the op-
portunity space of each newly arrived request, we make two
assumptions. First, we assume that the new request always
causes the creation of a new container, i.e., a cold start, The
rationale behind this assumption is a what-if ananlysis: what
if there is a cold start, then how many delayed warm start
opportunities this request could get during the creation of
the cold-started container. Second, we assume that all other
requests associated with the same function in the trace have
ideally zero invocation overhead. The rationale behind this
assumption is that, unlike a simulation study, our theoretical
analysis relies solely on the request information from the
original trace and does not generate runtime information for
each request, such as whether it experiences a cold start or
a warm start. Therefore, we assume that all other requests,
regardless of whether they fall within the opportunity space
window, have ideally zero invocation overhead, that is, an
ideal warm start without any extra overhead1.
Analysis Results. Figure 9 shows the CDF of the number of
delayed warm start opportunities with varied cold start over-
head, speci�cally at 1.0×, 0.75×, 0.5×, and 0.25× the original
cold start overhead C2 . As C2 decreases, the opportunity space
window [C0, C0 + C2 ] becomes smaller, reducing the number
of delayed warm start opportunities. However, even with
a 0.25× original cold start overhead, about 60% of requests
still have more than 25 delayed warm start opportunities,
making them likely to bene�t from reduced queueing delays.

1We also tested the scenario where all other requests are assumed to be cold

starts and the trend remained nearly identical.
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Figure 10 depicts the CDF of the number of delayed warm
start opportunities with varied execution time, speci�cally
at 1.0×, 1.5×, and 2.0× the original execution time C4 . In-
terestingly, varying the execution time does not a�ect the
opportunity space [C0, C0 + C2 ]. This is because changing the
execution time only proportionally shifts the absolute posi-
tions of all request completion times, resulting in a uniform
shift across the entire trace as all request execution times
are adjusted simultaneously.

Observation 3

•While varying the cold start overhead impacts the poten-

tial opportunity space of delayed warm starts, varying the

execution time alone does not.

• Delayed warm starts exposes a big opportunity space to

reduce latency compared to cold starts.

2.6 Challenges of Exploiting the Tradeo�

One way to exploit the tradeo� is by accurately predicting
the costs associated with delayed warm starts and cold starts
to inform function scaling decisions. The cost of a function
cold start is relatively predictable since it consistently ac-
cesses the same container image data across cold starts [52].
Predicting the cost of a delayed warm start, however, is
challenging. The cost of a delayed warm start is the remain-
ing execution time of the current function request that is
being served by a busy warm container. The challenge is
two-fold: (1) Di�erent invocations of the same function may
have variable execution time. (2) Keeping track of this cost
requires �ne-grained bookkeeping with extra overhead. A
FaaS platform may have an enormous number of busy warm
containers with di�erent delayed warm start costs. Thus,
�nding the best busy warm container with the smallest cost
is cost-prohibitive for large FaaS deployments.
We analyze the variance of function execution time for

both the Azure and FC traces. We �nd that the majority of
functions in both workloads have a marginally high vari-
ance of 25%—this accounts for 68% of functions for the Azure
trace and 59% of functions for the FC trace. The observations
indicate that using historical knowledge to estimate function
execution time is error-prone. In fact, existing research sug-
gests that the function execution time may be correlated to
various factors such as input sizes [15, 37, 60] and function
memory footprint [24, 47]. Therefore, in this work, we make
a practical assumption that the execution time of a given
function is volatile.
The aforementioned challenge requires us to �nd a so-

lution that (1) can exploit the new tradeo� we identify in
§2 to inform function scaling decisions and (2) e�ectively
addresses the issue of function execution variance.

3 The CIDRE Orchestration Policy

Motivated by the observations from §2 and §2.6, we propose
the CIDRE function orchestration policy.
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Figure 11. CIDRE architecture. CIDRE organizes all cached warm

containers using a priority queue (PQ). In this example, CIDRE uses

(conditional) speculative scaling to serve Req2-4 by speculatively

choosing a busy warm container or a cold start, whichever has a

shorter queueing delay; CIDRE replaces two idle warm containers

of Fn2 and Fn5 with the lowest priority.

3.1 Design Overview

Figure 11 depicts the architecture of CIDRE and examples
of delayed warm start and cold start paths. A detailed dis-
cussion about individual components appears in the next
subsections, but the following gives a global picture of how
CIDRE works. The main component of a CIDRE-managed
function cache is a PQ structure, which sorts all busy and
idle warm function containers by their priority values (§3.3).
Unlike traditional caching models that process each request
independently, CIDRE incorporates function concurrency in
its orchestration policy spanning both function scaling and
eviction. Invocation requests targeting a speci�c function
may arrive in a burst, requiring the provisioning of multiple
containers to serve concurrent requests.

In Step 1a , when a function’s concurrent requests arrive,
CIDRE �rst dispatches requests to available idle containers.

In Step 1b , for the rest of requests for which CIDRE can-
not �nd idle containers, CIDRE performs speculative scal-
ing (SS) (§3.2) to determine whether to reuse a busy warm
container or use a newly created container, given the cur-
rent system state. The objective of SS is to minimize the
invocation overhead incurred while waiting for container

resources to become available. Step 1b occurs concurrently

with Step 1a . CIDRE then performs the following two steps
concurrently: CIDRE dispatches the outstanding requests to
a queue managed by the speculative scheduler to wait for
containers to become available (Step 2a ) while provisioning

new containers (Step 2b ); CIDRE then executes function
requests using containers that become available at the ear-
liest. For example, if the �rst two busy warm containers of
Fn1 become available sooner than the corresponding cold
starts, CIDRE would execute Req2 and Req3 of Fn1 to these
two just-vacant warm containers; then one cold start com-
pletes before the third busy warm container Fn1 �nishes
serving its current function request, therefore, CIDRE would
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execute Req4 in the newly created container. We discuss an
enhanced SS policy (conditional speculative scaling or CSS)
that minimizes the cold start waste in §3.2.
CIDRE’s CSS approach minimizes functions’ invocation

overhead with less cold starts. In existing FaaS platforms
such as OpenLambda [30] and OpenWhisk [45], the function
scheduler dispatches invocation requests to containers using
a prede�ned scheduling policy such as round-robin, where
the function workers (the PQ layer in Figure 11) are passively
serving requests dispatched from the scheduler. This design
results in higher invocation overhead and lower resource
utilization. In contrast, CIDRE is work-conserving by serving
requests whenever any busy/not-ready resources become
available. In Step 2c , CIDRE evicts some warm containers
from the lower-priority end of the PQ to provision new con-
tainers (§3.3). Note that Step 2c is concurrent with Step 2a

and 2b . Lastly, in Step 3 , CIDRE updates priorities for all
containers touched during previous steps (§3.3 and §3.4).

3.2 Speculative Scaling

Basic Speculative Scaling. CIDRE uses a simple yet ef-
fective technique called speculative scaling to address the
issue of function execution time variance. Instead of pre-
dicting the delayed warm start cost and the cold start cost,
CIDRE speculatively chooses between a delayed warm start
and a cold start. This strategy provisions new containers
while monitoring the state of busy warm containers that
are currently serving requests of the function. If any busy
warm container �nishes execution and becomes available,
the scheduler dispatches the pending request to that vacant
container without needing to wait for a new container to be
fully created. If otherwise the provisioning process of a new
container completes �rst, then the scheduler simply sends
the request to the newly created container.
Basic SS (CIDRE_BSS or BSS) provides a worst-case per-

formance guarantee: it guarantees that any function requests
will experience an invocation overhead at least as good as
that of a cold start. BSS achieves reduced invocation over-
head without relying on sophisticated, often error-prone,
cost modeling and prediction.
CIDRE_BSS has a drawback. It enforces a cold start for

each speculative waiting action. The containers provisioned
from these cold starts might become wasteful in hindsight if
they will not be reused soon, or in the worst case, be evicted
without being reused. Furthermore, cold starts evict existing
warm containers that might be reused shortly afterward,
causing cache thrashing and performance degradation. We
present an enhancement to BSS next.
Conditional Speculative Scaling. While BSS minimizes
the request waiting time, it might bewasteful to over-provision
containers that will not be used in the near future. A newly
provisioned container might stay idle without being invoked
for a while, suggesting that: (1) there are enough warm con-
tainers to sustain the requests for that particular function,

Algorithm 1 Conditional speculative scaling (CSS).

Input: Trigger to turn on/o� basic SS: �(( ; for the current request

targeting Function � : estimated execution time)ě , cold start time)Ħ ,

last created container’s idling time)ğ , and last busy warm container’s

waiting time)Ě .

1: if �(( = )AD4 then ² BSS has been enabled.

2: if )ğ > )ě then

3: �(( ← �0;B4 ² Disable BSS.

4: Perform a delayed warm start and update)ě and)Ě
5: else if )ğ f )ě then ² BSS path.

6: if a busy warm container becomes available �rst then

7: Perform a delayed warm start and update)ě and)ğ
8: else if the new container �nishes provisioning �rst then

9: Perform a cold start and update)ě

10: else ² BSS has been disabled.

11: if )Ě > )Ħ then

12: �(( ← )AD4 ² Re-enable BSS.

13: if a busy warm container becomes available �rst then

14: Perform a delayed warm start and update)ě and)ğ
15: else if the new container �nishes provisioning �rst then

16: Perform a cold start and update)ě

17: else if )Ě f )Ħ then ² Keep BSS disabled.

18: Perform a delayed warm start and update)ě and)Ě

and (2) the last cold start brought by BSS is wasted. On the
other hand, the newly provisioned containermight be evicted
before being invoked, suggesting that the current working
set is around other functions. Worse, a wasted cold start
causes the eviction of another function’s container, a�ecting
the performance of that function.
To address the problem, we propose an enhancement to

BSS, called conditional speculative scaling or CSS. Rather
than always provisioning a new container during the specu-
lative wait, CSS performs a cost-bene�t analysis to determine
if it is worth creating a new container for the new request.
Algorithm 1 presents the logic of our CSS policy. Start-

ing o�, CIDRE performs BSS with both the delayed warm
start path and cold start path enabled. CIDRE keeps track
of the idling time of the last container that has been created
via a cold start from the previous BSS process, de�ned as )8 .
Speci�cally,)8 measures the duration between the time when
the new container �nishes provisioning to the time when
it is reused. If )8 is longer than the expected execution time
of that function )4 (de�ned as the median of all historical
execution times of that function), it suggests that at least
one busy warm container may become available during the
idling period)8 (line 1-2). Thus, CSS determines that the pre-
vious cold start for that function is wasteful and could have
been avoided. Then CIDRE disables the cold start path and
will enforce this function to choose the delayed warm start
path for all its upcoming invocation requests (line 3-4). CSS
updates )4 and )3 (which is de�ned below) by incorporating
the new requests (line 4). Otherwise, CSS determines that it
might still be bene�cial to do BSS (line 5-9).
CSS may toggle the cold start path back on if CIDRE

predicts that none of the busy warm containers will become
available within a short time. CSS makes this decision by
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comparing two metrics: the duration that CIDRE waits to
�nd an idle container since the last request arrives, de�ned as
the delayed warm start cost, )3 , and the estimated container
provisioning time obtained using the median of all historical
cold start latency, de�ned as)? . Assuming the cold start path
is disabled for a function (line 10), CSS will re-enable the
cold start path if )3 is longer than )? . A longer )3 suggests
that the cost of a delayed warm start is greater than that of
a cold start, and thus, the system needs to provision more
warm containers to sustain the invocation requests for that
function. If so, CSS re-enables the cold start path (line 11-12)
and falls back to BSS (line 13-16). Otherwise, CSS determines
that it is still worth just doing speculative wait without the
need to enable the cold start path (line 17-18). All historical
data, including )8 , )4 , )? , and )3 , are collected using a 15-
minute sliding window, whose size is con�gurable.

A novel take of our enhanced CSS policy is that it evaluates

the probability that a cold start might be unnecessary using

a simple, lightweight, hint-based classi�cation. This method

mitigates potential cache thrashing, as previously described,

using a minimal set of metrics collected from historical execu-

tions. We evaluate the e�ectiveness of CSS in §5.1 and the
impact of di�erent historical sliding window sizes in §5.5.

3.3 Concurrency-Informed Priority

CIDRE evicts containers based on a new concurrency-informed
priority (CIP) model. CIDRE assigns each cached warm con-
tainer 2 a keep-alive priority. The priority is computed based
on: (1) its container-level statistics including its reuse time,
memory footprint, and the cold start latency, and (2) its
function-wise concurrency statistics including the aggregate,
function-wise invocation frequency, and the number ofwarm
containers of that function (Observation 2 in §2.4):

%A8>A8C~ = �;>2: (2) + �A4@(F (2)) ×
�>BC (2)

(8I4 (2) × |F (2) |
(3)

Containers are sorted by priority which is updated during
one of the following cases: (1) an idle warm container is used
to execute the request, which is a true warm start, (2) a busy
warm container is used to execute the request, in which case
a queuing delay will incur and we call it a delayed warm start,
and (3) a new container is provisioned and started due to
insu�cient resources, in which case some containers with
the lowest priorities are reclaimed to release the resources.
Container-level Statistics. Size(c) and Cost(c) of a con-
tainer 2 has the same de�nition as in FaasCache [27] (§2.4).
•Clock(c) captures the reuse recency of a container 2 .�;>2: (2)
is updated each time when 2 is invoked. When the cache is
not full, newly created containers start with a clock value of 0.
However, if CIDRE needs to evict some warm containers to
make space for a new container 2 , 2 is assigned a clock value
equal to the largest %A8>A8C~ value among all evicted con-
tainers: �;>2: (2) = max4∈Evicted %A8>A8C~ (4). This equation
guarantees that the new container will always have a mono-
tonically increasing clock value greater than those that are

evicted, akin to the idea of a logical clock [35]. When a new
request is served by a warm container, whether it is a true
warm start or a delayed warm start, the clock value of the
container is updated as the value of its current %A8>A8C~ (2)
before 2’s priority gets updated per Equation (3).
Function-level Statistics. Next, we discuss the intuition
behind function-wise concurrency statistics. F (2) returns a
set of all containers belonging to the same function as 2 .
• |F (c)| is the number of warm containers associated with
F (2). The intuition is that caching excess warm containers
for a function increases the likelihood of it occupying more
resources than necessary.
• Freq(F (c)) computes the average number of invocations
per minute for a function associated with F (2), providing
an approximation of the average concurrency of a function:

�A4@(F (2)) =
=F(2 )

C
(4)

Where =F(2 ) is the total number of invocations that the func-
tion associated with F (2) has ever received over its entire
history, and C denotes the total duration in minutes since the
�rst request of this function. Unlike traditional frequency-
based caching policies that use the reuse count as object
frequency (e.g., LFU and GDSF), �A4@(F (2)) measures a
function’s average invocation rate per minute. This method
allows �A4@(F (2)) to adapt well to changing patterns since
it can age stale containers with high reuse counts that may
no longer be useful. If a function’s warm containers are not
being used for an extended period, the value of �A4@(F (2))
will decay as C increases while =F(2 ) remains unchanged.
Consequently, warm containers of this function may have a
higher chance of eviction due to decreased priorities.

FaasCache’s frequency captures the aggregate number of
invocations across all warm containers for a function: a func-
tion with fewer warm containers tends to have a lower pri-
ority and is more likely to be evicted. CIDRE’s function-level
priority, in contrast, captures per-container frequency with
a denominator |F (2) |: with a �xed �A4@(F (2)), a smaller
�A4@ (F(2 ) )

| F (2 ) |
indicates that there are su�cient warm contain-

ers for this function. This suggests that retaining additional
containers in the cache is unnecessary.

3.4 CIDRE: Putting It All Together

Putting it all together (Figure 11), we have the complete
design of CIDRE container orchestration policy shown in
Algorithm 2. CIDRE handles each arrived request targeting
a function � in one of the following two cases.
• Case I: If there is an idle warm container in the cache,
CIDRE simply dispatches the request to this warm con-
tainer, resulting in a true warm start (best-case scenario).
After the request is served, CIDRE updates the priority for
the touched container (Subroutine UPDATE()).
• Case II: If the function cache does not have any available
warm container to serve the request, CIDRE triggers CSS
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Algorithm 2 CIDRE FaaS orchestration algorithm.

Input: Target function � . Priority queue %& for all warm containers.

Case I. If an idle warm container is found, serve the request directly.

UPDATE(%&, � ). ² PQ updated asynchronously.

Case II. If no available warm containers can be found:

Algorithm 1.

REPLACE(%&, � ) and UPDATE(%&, � ). ² PQ updated asynchronously.

Subroutine UPDATE(%&, � ): ² Update priorities.

For reused container 2 of � ,�;>2: (2 ) = %A8>A8C~ (2 ) .

For newly created container 2 of � ,

�;>2: (2 ) = maxě∈Evicted %A8>A8C~ (4 ) .

For each container 2 of � , =F(ę ) + + as in Eq. (4).

For newly created container 2 of � , | F (2 ) | increases by 1.

For each container 2 of each victim function associated with F(2 ) with

�F(ę ) evicted containers from %& , | F (2 ) | decreases by �F(ę ) .

For each container 2 touched in previous steps, update its priority

using Eq. (3).

Subroutine REPLACE(%&, � ): ² Perform container replacement.

For the newly created container 2 of � , compute

� = argminā′ ((ę f
∑ā′

ğ=1 (ğ ) , where (ę and (ğ are the required memory

size of cold-started container 2 and victim idle container (ğ , respectively.

Evict � idle warm containers with the lowest priorities from %& .

Create a new container of � .

(Algorithm 1). If CIDRE decides to provision a new con-
tainer during CSS, a container replacement is triggered
and Subroutine REPLACE() is called to evict � idle warm
containers with lowest priorities. CIDRE then updates the
priorities for all containers that are involved in this case.

Time Complexity. Since all the historical data used in Al-
gorithm 1 and the PQ are collected and updated periodically
and asynchronously, these steps are not on the critical path
of request scheduling. The primary responsibility of Algo-
rithm 1 is to decide when to turn on/o� the BSS based on the
collected historical data. The algorithm has a time complex-
ity of$ (1), and our measurement indicates that Algorithm 1
introduces a negligible overhead of 36us.

4 Experimental Methodology

Implementation.We have implemented CIDRE in Open-
Lambda [44], an open-source FaaS platform written in Go.
We implemented CSS in OpenLambda’s worker and function
management components. We added a new channel (a FIFO
queue) in each function manager to bu�er all requests that
do not immediately �nd an available warm container. The
implemented CSS strategy evaluates various metrics (§3.2)
to determine the most cost-e�ective way to execute the next
outstanding request from the head of the channel. CIDRE
then pulls that request and takes action as informed by Algo-
rithm 1. Compared to OpenLambda’s existing policy, our CSS
strategy is: (1) work-conserving as it serves requests using
any vacant resources that become available the earliest, and
(2) cost-e�ective as it conservatively stops provisioning new
containers if there are su�cient resources to serve requests.

We implemented the concurrency-informed priority (CIP)
cache eviction policy in OpenLambda’s worker component
by replacing its time-to-live keep-alive policy. CIDRE main-
tains updated container-level statistics within each container

instance and updated function-level statistics within Open-
Lambda’s function manager. For e�ciency, CIDRE updates
the PQ lazily: upon a cache eviction, the PQ is resorted based
on the latest container- and function-level statistics.
Production FaaS Traces. We sampled two large-scale FaaS
workloads from the 30-minute Azure Functions and the 30-
minute FC listed in Table 1. The new 30-minute Azure work-
load includes 330 sampled functions with around 598k invo-
cation requests, and the new 30-minute FCworkload includes
220 sampled functions with around 410k invocation requests.
All the function apps used in the experiments are collected
from two publicly available FaaS benchmarks [21, 33].
Compared Baselines. We compare CIDRE with a wide
range of classic and SOTA baselines listed below:
• TTL: a time-to-live keep-alive policy that evicts containers
based on container lifespan (10-minute expiration time),
which is OpenLambda’s default keep-alive policy.
• LRU: a least-recently-used (LRU) keep-alive policy that
evicts containers based on recency.
• FaasCache [27]: an e�ective function keep-alive policy
based on GDSF caching.
• RainbowCake [61]: a SOTA function pre-warming and
keep-alive technique that warms up containers and keeps
functions alive using layer-wise container sharing.
• IceBreaker [46]: a SOTA function pre-warming and keep-
alive policy that exploits server heterogeneity to optimize
the keep-alive cost.
• CodeCrunch [13]: a SOTA function keep-alive policy that
exploits function compression and server heterogeneity
to reduce the service time under high memory pressure.
• Flame [59]: a SOTA function keep-alive solution that uses
a globally centralized cache manager for managing func-
tion caching.
• ENSURE [50]: a SOTA FaaS auto-scaler, which dynami-
cally scales containers based on workload tra�c to reduce
cold starts and deactivates the unneeded containers to
improve resource management.
• O�line: an o�ine CIDRE function orchestration policy,
which utilizes future workload knowledge to make in-
formed scaling and eviction decisions. O�ine uses Be-
lady’s MIN [14] as its keep-alive policy, which evicts func-
tion containers that will be reused the furthest in the future.
O�ine makes informed scaling decisions by exhaustively
searching all busy warm containers in the current and
future cache state to �nd a container with the shortest
waiting time; if the cold start cost is lower than a delayed
warm start for all busy warm containers, O�ine starts a
new function container.

5 Evaluation

We evaluated our prototype CIDRE on a cluster of three
servers, each with 64GB RAM and 64-core Intel CPUs run-
ning Ubuntu 22.04.1 LTS. Due to its e�ectiveness and sim-
plicity, CIDRE_BSS has been deployed in Alibaba Cloud FC,
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Figure 12. Comparison with a series of baselines for various cache

sizes with a step of 20GB. In Figure 12(b) and 12(d), F: FaasCache, I:

IceBreaker, S: CIDRE_BSS, C: CIDRE.

serving 110k function invocation requests per second. To
test CIDRE’s e�ectiveness, we also evaluated a production-
quality CIDRE_BSS deployed in production FC platform.

5.1 Baseline Comparison

Invocation Overhead. Figure 12(a) and 12(c) show that
baseline policies spend a signi�cant amount of time waiting
for containers to be provisioned. CIDRE and CIDRE_BSS

have a much smaller average overhead ratio than all the
seven online baselines for all cache sizes, while the O�ine
achieves the highest e�ciency. CIDRE maintains a similar
improvement rate for other cache sizes.
CIDRE outperforms FaasCache and LRU (by up to 43.8%

and 47.0% for average invocation overhead ratio, respec-
tively), which both rely on caching-driven keep-alive for
container eviction, by taking it a step further and specu-
latively selecting delayed warm starts under concurrency.
RainbowCake uses �ne-grained, layer-based pre-warming
strategy to reduce the cold start cost. Pre-warming largely
relies on future workload prediction for performance im-
provement. Compared to existing whole-container-based
keep-alive policies (FaasCache and LRU), RainbowCake’s
layer-based warm-up strategy exposes higher chances of
container sharing, thus having smaller invocation overhead.
However, in highly concurrent workloads, the chances of
�nding enough available common layers in the cache get
signi�cantly reduced, and therefore, RainbowCake needs to
either wait for a common layer to become available or create
a new container, both of which incur a waiting time. There-
fore, CIDRE achieves up to 33.7% lower average invocation
overhead ratio compared to RainbowCake.
For an 100GB cache under the Azure workload, the invo-

cation overhead ratio accounts for an average of 43.2% and
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Figure 13. Invocation overhead and end-to-end service time of

di�erent systems with a 100GB cache.

42.2% for IceBreaker and CodeCrunch, whileCIDRE achieves
an average invocation overhead ratio of 27.5%, a reduction of
36.3% and 34.8%, respectively. For the controlled experiment,
we ran IceBreaker and CodeCrunch on the same three-node,
homogeneous cluster. The homogeneous setting diminishes
the potential bene�t of IceBreaker’s sophisticated optimizer.
IceBreaker performs o�ine pro�ling to record the statistics
about cold start costs, execution time, and memory usage
of the entire workload and then runs optimization during
real-time workload replay [46].
ENSURE proposes an autoscaling method (FnScale) that

reserves additional capacity as “burst bu�ers” to handle
bursts of workload demand. However, proactively reserv-
ing additional containers under high concurrency, especially
with restricted global memory resources, can be challeng-
ing, thereby reducing the e�ectiveness of ENSURE. CIDRE
demonstrates a performance improvement of up to 38.8%

in average invocation overhead ratio compared to ENSURE.
Flame exploits workload skewness by evicting rarely invoked
cold functions but performs worse than CIDRE under high
concurrency and high load.
E�ectiveness of CSS. Figure 12(a) and 12(c) show that
CIDRE with CSS achieves consistently lower average over-
head ratio—reduced by 7.5%-17.6%—across all cache sizes
compared to CIDRE_BSS with only basic SS enabled. BSS
always creates a new container, even when opting for a de-
layed warm start, with the possibility that the new container
may or may not be reused later. In contrast, CSS adopts a
more conservative approach and chooses not to create a new
container when the cache has su�cient warm containers to
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Figure 15. Ablation study of

techniques in CIDRE.

handle new requests, thereby improving resource utilization
and reducing the overhead. Thus,CIDRE reduces the number
of (wasted) cold starts compared to CIDRE_BSS (Figure 12(b)
and 12(d)), leading to more e�cient use of the limited cache
space with a higher warm start ratio than CIDRE_BSS.
Cold Start Ratio.As shown in Figure 12(b) and 12(d),CIDRE
and CIDRE_BSS have dramatically smaller cold start ratios
compared to FaasCache and IceBreaker. By speculatively
waiting for busy warm containers and executing requests on
them, CIDRE and CIDRE_BSS e�ectively convert an enor-
mous amount of cold starts into delayed warm starts. For
example, CIDRE reduces the cold start ratio of FaasCache by
75.1% for a 100GB cache under the Azure workload.
End-to-End Service Time. Figure 13(c) and 13(d) show how
CIDRE and CIDRE_BSS help with improving the end-to-end
service time. Service time measures the time span from the
arrival of the request to the completion of the request. By
minimizing the invocation overhead,CIDRE andCIDRE_BSS
reduce the E2E service time as well, with CIDRE approach-
ing the best-case baseline O�ine. CIDRE, FaasCache, and
CodeCrunch have a 50Īℎ-ile (90Īℎ-ile) E2E service time of:
249.76 ms (438.32 ms), 342.23 ms (548.89 ms), and 330.50 ms
(542.43 ms) under the Azure workload, respectively.

5.2 CIDRE in Alibaba Cloud FC Production Cluster

We tested CIDRE in a production FC cluster by toggling the
BSS setting on and o�. The workload consists of around 410k
invocation requests sampled from the FC trace (Table 1). The
production cluster contains 37 bare-metal machines, each

having 384GB RAM and 104 CPUs, hosting 1,500 function con-

tainer instances, sharing a global resource pool with other FC
FaaS tenants. It follows the same production con�gurations
as the overall platform, ensuring low latency and high SLO.
The test exhibited a cold start ratio of 1.10% with BSS

disabled, consistent with production cold start statistics re-
ported in Flame [59]. Enabling BSS helps reduce the cold
start ratio by 34.5%, bringing it down to 0.72%. As shown
in Figure 14, BSS reduces the 99Īℎ-ile invocation overhead
(254.67 ms) by 10.01% compared to when BSS is disabled
(283 ms). This result demonstrates that CIDRE is simple and
e�ective, and is easily deployable to already sophisticated
production systems.

5.3 Ablation Study

Figure 15 shows the contributions of each technique of CIDRE
in reducing the invocation overhead with 100 GB cache. We
tested the following threeCIDRE con�gurations: (1)CSS_alone:
CIDRE with CSS enabled and CIP disabled, (2) BSS_alone:
CIDREwith basic SS enabled and CIP disabled, (3)CIP_alone:
CIDRE with CIP enabled and BSS/CSS disabled. CIP_alone
reduces the overhead of FaasCache by 3.6% due to more bal-
anced concurrency-informed evictions across all functions.
With a basic SS strategy, BSS_alone sees a huge improve-
ment in average overhead compared to CIP_alone, thanks to
more e�cient use of existing warm containers. CSS_alone
further reduces the average overhead by 12.5% compared
to BSS_alone. With both CSS and CIP enabled, CIDRE ex-
hibits a 6.1% reduction in average overhead compared to
CSS_alone, demonstrating the e�cacy of CIDRE’s overall
concurrency-informed orchestration strategy.

5.4 Concurrency-Driven Scaling
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Figure 16. Concurrency-driven scal-

ing. RPS: requests per second.

In this test, we var-
ied the average level
of concurrency and
measured the cor-
responding average
memory resource us-
age in gigabytes (GB)
given a concurrency
level. Figure 16 shows
the results with a
100GB cache. The
memory usage, i.e.,
the number of con-
tainers created, increases as the concurrency level scales
out across all four systems tested. CIDRE_BSS’s basic SS
policy has lower memory usage at all concurrency levels
when compared to FaasCache, since CIDRE_BSS’s specula-
tive waiting reduces the cold start ratio. As the concurrency
level increases, this gap becomes smaller as excessive cold
starts cause cache thrashing. CIDRE requires the least num-
ber of containers to sustain a burst of concurrent requests,
with a saving of up to 22% compared to FaasCache, under
the highest concurrency level. The reduction in created con-
tainers is because CIDRE disables the cold start path when
it detects potential cache thrashing where provisioning a
new container would cause the eviction of an existing warm
container that will be reused soon. With a more conservative
cold start control, CIDRE achieves a lower cold start ratio
than both FaasCache and CIDRE_BSS.

RainbowCake uses the least memory for handling concur-
rent requests when the average concurrency level is below
498.4, achieving memory savings of 24.7% and 5.6% at con-
currency levels of 166.1 and 415.3, respectively, compared
to CIDRE. However, this comes with signi�cantly higher
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cold start ratios, demonstrating an interesting tradeo� be-

tween performance (cold start ratio or invocation overhead)

and memory usage. At the highest concurrency level, Rain-
bowCake shows only 0.5% more memory usage than CIDRE.
At lower concurrency levels, RainbowCake bene�ts from
su�cient common layers in the cache for sharing, minimiz-
ing memory requirements for container layers. However, as
concurrency increases, incoming requests may not �nd idle
common layers available, leading to the creation of additional
containers and higher memory consumption.
The results can be explained from the classic spatial vs.

temporal locality perspective. RainbowCake introduces an
intermediate caching state at the memory space dimension,
sharing �ne-grained layers to reduce overall memory cost
and startup overhead. However, under high concurrency,
new layers or containers must be provisionedwhen no idle or
shareable layers are available, increasing memory usage. In
contrast,CIDRE introduces a new caching state that operates
in the temporal dimension, strategically waiting for a “delayed
hit” beyond traditional cache hit/miss decisions.

5.5 Sensitivity Analysis

Thus far we have focused on default con�gurations. In this
section we perform a sensitivity study to understand the
impact of various con�gurations on invocation overhead.
All experiments in this section were conducted using the
Azure workload with a 100 GB cache.
Estimated Execution Time Threshold.We �rst study the
impact of di�erent estimated execution time threshold Đě
on invocation overhead. We tested di�erent con�gurations
(mean, 25Īℎ%-ile, 50Īℎ%-ile, and 75

Īℎ
%-ile) of the historical

execution time used in CSS (Algorithm 1). Figure 17 plots the
invocation overhead ratio for the Azure workload. CIDRE
Mean and CIDRE 75

Īℎ
%-ile perform better than CIDRE_BSS

but worse than CIDRE 50
Īℎ
%-ile. This result suggests that a

25
Īℎ
%-ile threshold might be a little small while a 75Īℎ%-ile

could be too large. Therefore, we empirically selected the
50

Īℎ
%-ile as Đě throughout our evaluation.

Historical Sliding Window Sizes. We evaluate how vary-
ing the amount of historical data impacts the invocation
overhead for CSS. To do this, we examined di�erent sliding
window lengths (all, 5 minutes, 10 minutes, and 15 minutes)
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Table 2. Sensitivity experiment for di�erent execution times. CR:

cold start ratio (%). WR: warm start ratio (%). DR: delayed warm

start ratio (%).

Method CR (1.0× / 1.5× / 2.0×) WR (1.0× / 1.5× / 2.0×) DR (1.0× / 1.5× / 2.0×)

CIDRE 18.5 / 22.3 / 27.6 37.5 / 22.1 / 8.5 44.0 / 55.6 / 63.9
FaasCache 74.4 / 82.2 / 92.6 25.6 / 17.8 / 7.4 N/A
LRU 78.3 / 85.5 / 93.2 21.7 / 14.5 / 6.8 N/A

for collecting historical data for CSS as outlined in Algo-
rithm 1. Figure 18 shows the invocation overhead ratio for
each time window. Collecting all available historical data
results in the lowest overhead ratio. Using 10-minute and
15-minute time windows slightly underperforms compared
to the all-data con�guration. The results suggest that the 10-
minute and 15-minute windows yield reasonably acceptable
performance. Therefore, we chose a 15-minute sliding win-
dow for historical data collection throughout the evaluation.
Inter-Arrival Times. Next, Figure 19 shows the impact of
di�erent IAT levels on invocation overhead. We varied the
IAT factor from 0.5× to 2×, where 1× means the original
workload’s IAT behavior, and a longer (shorter) IAT means a
lower (higher) average load. As the load increases (reduced
IAT), the invocation overhead increases and the warm start
ratio reduces. CIDRE achieves a warm start ratio of 60.4%,
39.5%, and 15.0% under the IAT level of 2×, 1×, and 0.5×,
respectively. However, CIDRE’s performance bene�t holds
consistently against other baselines across all IAT levels.
Function Execution Time. Next, we explore how di�erent
execution times impact the invocation overhead. We varied
the inputs for each function to adjust the execution time
to 1.0×, 1.5×, and 2.0× of the original execution time. For
this analysis, we present performance metrics in terms of
invocation overhead rather than invocation overhead ratios,
which can be in�uenced by execution time. Figure 20 and
Table 2 show the invocation overheads and their breakdowns
for each execution time. As the execution time increases, the
likelihood of incoming requests �nding an idle container
for a warm start decreases. This results in a higher cold
start ratio (Table 2) and an increase in average invocation
overhead (Figure 20). With delayed warm starts for CIDRE,
70.4%, 71.4%, and 69.9% of non-warm starts were executed
as delayed warm starts for execution times of 1.0×, 1.5×,
and 2.0×, respectively. These results are consistent with the
analysis of the delayed warm start opportunity space shown
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in Figure 10 (§2), indicating that while varied execution times
may shift completion times, they do not fundamentally alter
the overall distribution of delayed warm start opportunities.
Number of Intra-Container Threads. Finally, we exam-
ined the impact of varying number of intra-container threads.
An Ċ -thread function container is capable of handling Ċ

simultaneous requests, and a new container will only be
provisioned if the maximum allowable number of threads
Ċ or the maximum memory limit is reached. We compared
FaasCache and CIDRE with function containers con�gured
for 1 to 8 threads. The 1-thread con�guration serves as the
baseline (our default setting), representing the method in
which each container processes only one request at a time.
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number of intra-container threads.

Figure 21 shows
the invocation over-
head ratio for Faas-
Cache and CIDRE

across various thread
con�gurations. As the
number of threads
increases, both Faas-
Cache and CIDRE

show a decrease in
the average overhead
ratio. By allowing multiple requests to be processed in paral-
lel within the same container, a larger number of requests can
utilize available CPU resources for execution as warm starts,
leading to a signi�cant reduction in the cold start ratio and
the average overhead ratio. Although CIDRE chooses a de-
layed warm start only when containers reach their maximum
thread capacity, it consistently achieves a lower average over-
head ratio compared to FaasCache across all thread numbers.
This enhancement occurs because CIDRE e�ectively min-
imizes invocation overheads by enabling more cold starts
to be executed as delayed warm starts with reduced latency.
This result demonstrates that CIDRE’s speculative scaling re-
mains e�ective even when function containers are equipped
with additional CPU power.

6 Related Work

Mitigating Cold Start Costs. A line of work focuses on
optimizing the cold start costs of serverless functions [4, 5, 7,
23, 27, 40, 41, 46, 49, 50, 52, 56]. A common practice to tackle
cold start penalty is to cache provisioned function sandboxes
in memory [51, 55]. RainbowCake [61] shares container lay-
ers from idle warm containers to speed up the cold start.
Icebreaker [46] exploited heterogeneous function hosts to
reduce the keep-alive cost. SAND [5] and Pagurus [36] share
and reuse container runtimes to alleviate cold starts. Re-
searchers proposed to use snapshot loading [7, 16, 17, 23, 52]
to jump start function cold start from disk images. CIDRE
exploits a new tradeo� and optimizes function scaling and
eviction spanning the entire serverless function lifecycle.

Latency-aware Caching. Atre et al. [9] found that tradi-
tional caching policies fail to minimize latency in the pres-
ence of delayed hits, where under high throughput, multiple
I/O requests to the same object queue up before an outstand-
ing cache miss is resolved [58]. Delayed warm starts in FaaS
may seem similar to delayed I/O hits as both involve delayed
accesses to cached objects. However, they are fundamen-
tally di�erent: (1) Root causes and contexts: Delayed hits
stem from the slow process of loading missed objects from
a backing store into the cache, while delayed warm starts
are caused by FaaS concurrency. (2) Impacts: Delayed hits
cause latency increase for subsequent “hits” accumulated in
the queue, while delayed warm starts present opportunities
for reducing the invocation latency.
Delay Scheduling. Zaharia et al. [62] proposed delay sched-
uling, which addresses the tension between fair-sharing
scheduling and data locality for traditional MapReduce clus-
ter computing workloads. Enforcing a task to wait for a
limited time on a busy slot could expose better data locality.
CIDRE’s speculative scaling is similar in that CIDRE im-
poses a delay when scheduling serverless function requests
for “better container locality”. CIDRE’s speculative scaling
is di�erent from delay scheduling in that it tackles new chal-
lenges of how to balance cold starts vs. delayed warm starts
to avoid cache thrashing and resource wastage in a novel
context of highly concurrent FaaS workloads.

7 Conclusion

The key insight of this paper is that function keep-alive
should be optimized for FaaS concurrency behavior. We iden-
tify a new tradeo� between delayed warm starts and cold
starts. Intelligently reusing busy warm containers not only
reduces the latency but also reduces cold starts, leading to
improved warm start ratios and cost-e�ective function scal-
ing. We also �nd that function keep-alive must consider both
container-level statistics and function-level concurrency to
inform eviction decisions.We builtCIDRE atop OpenLambda
and evaluated it using production workloads. Results show
that CIDRE signi�cantly outperforms state-of-the-art FaaS
keep-alive solutions. CIDRE’s speculative scaling policy has
been adopted by Alibaba Cloud Function Compute. Deploy-
ing CSS in production is part of our future work.
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