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Abstract— We present LGMCTS, a framework that uniquely

combines language guidance with geometrically informed sam-

pling distributions to effectively rearrange objects according to

geometric patterns dictated by natural language descriptions.

LGMCTS uses Monte Carlo Tree Search (MCTS) to create

feasible action plans that ensure executable semantic object

rearrangement. We present a comprehensive comparison with

leading approaches that use language to generate goal rear-

rangements independently of actionable planning, including

Structformer, StructDiffusion, and Code as policies. We also

present a new benchmark, the Executable Language Guided

Rearrangement (ELGR) Bench, containing tasks involving in-

tricate geometry. With the ELGR bench, we show limitations

of task and motion planning (TAMP) solutions that are purely

based on Large Language Models (LLM) such as Code as

Policies and Progprompt on such tasks. Our findings advo-

cate for using LLMs to generate intermediary representations

rather than direct action planning in geometrically complex

rearrangement scenarios, aligning with perspectives from recent

literature. Our code and supplementary materials are accessible

at https://lgmcts.github.io/.

I. INTRODUCTION

Everyday tasks, such as “Set up the kitchen”, involve
organizing objects based on verbal instructions, a process
that is intuitive for humans but that presents a significant
challenge for robots. The semantic rearrangement problem
seeks to empower robots with the ability to reorganize a
scene according to linguistic descriptions. This challenge
necessitates that robots comprehend the task through natural
language, and address the corresponding Task And Motion
Planning (TAMP) problem effectively.

Traditionally, solving this problem requires formalizing se-
mantic rearrangement into a symbolic representation, clearly
defining the goal configuration or constraints, and using
formal planners such as STRIPS [1] and PDDL [2], or
search-based planners like MCTS [3] to devise a feasible
plan. Although effective, this approach demands expert-level
knowledge to abstract a problem into a formal representation,
limiting accessibility for average users.

To overcome this challenge, numerous recent studies have
sought to tackle the problem directly from linguistic inputs
and RGB-D observations [4]–[6]. One approach uses multi-
modality transformers to establish a correlation between
verbal descriptions and object positions using data generated
from the simulation. Following work such as StructDiffu-
sion [5] further improved this method by using a diffusion
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Fig. 1: Robotic Setup: a UR5e robot equipped with a RealSense
D455 camera. The task is to re-arrange the objects, which are
unknown to the robot, according to a natural language instruction.

model to build the multi-modality solution. However, a
common drawback of these methods is that they rely on an
offline training stage, which makes them applicable only to
trained object categories and spatial patterns.

With the advent of Large Language Models (LLMs),
models such as GPT [7] and Llama [8] have demonstrated
impressive potential in understanding complex scenarios
and exhibiting zero-shot planning capabilities. This has led
researchers to explore the utilization of LLMs in solving
language-based TAMP problems [9]–[11]. However, despite
specific considerations for the feasibility of plans proposed
by LLMs, it has been reported that these plans significantly
lag in executability and completeness when compared to
those crafted by a properly implemented traditional solver
designed for the task [12]. This observation has naturally led
researchers to seek methods that merge the user-friendliness
of LLMs with the robustness of traditional TAMP algorithms
such as PDDL, STRIPS, or MCTS. LLM-GROP [13] follows
this approach in rearrangement, employing LLMs to parse
user tasks from language into pairwise spatial relationship
specifications and then calling a sampling-based task and
motion planner [14] to generate the plan. A limitation of
LLM-GROP is that it can only handle pair-wise relationships,
and thus cannot perform complex rearrangement tasks. Au-
toTAMP [15] uses LLMs to translate natural language into
formal representations and then invokes a planner to tackle
the problem. AutoTAMP can solve a wide range of TAMP
tasks, but it does not apply to general semantic rearrangement
where the action space is not discrete and potentially large.

We present Language-Guided Monte-Carlo Tree Search
(LGMCTS), a new technique for executable semantic object
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rearrangement. Like its predecessors, AutoTAMP and LLM-
GROP, LGMCTS leverages LLMs for generating interme-
diate representations and employs a planner for formulating
feasible plans. A key novelty of LGMCTS is the integra-
tion of parametric geometric priors for spatial relationship
representations. LGMCTS facilitates more nuanced handling
of complex geometric relationships among multiple objects,
addressing scenarios that require organization beyond sim-
ple pairwise interactions such as configurations in lines or
rectangles. Additionally, LGMCTS takes a holistic approach
by simultaneously considering task planning (goal specifica-
tion) and motion planning (execution order and intermediate
steps). During planning, an obstacle relocation strategy is
used to handle obstacles that may block the execution. This
coordination ensures that plans are not only semantically
coherent but also practically executable, offering a balanced
consideration of goal achievement and operational efficiency.

To assess the efficacy of LGMCTS, we introduce the Ex-
ecutable Language-Guided Rearrangement (ELGR) bench-
mark, featuring over 1,600 varied language queries and robot
execution checks. Our evaluations indicate that LGMCTS
performs effectively on the ELGR benchmark, especially
in comparison with Code as policies and Progprompt in
terms of feasibility and semantic consistency of the generated
goals. LGMCTS also outperforms Structformer and Struct-
Diffusion in goal generation on the Structformer dataset.

II. RELATED WORKS
A. Learning-based Semantic Rearrangement

The semantic rearrangement problem consists of devising
a rearrangement plan that is both semantically congruent
with a given language description and physically feasi-
ble [16]–[18]. In recent years, this has gained increased
traction, particularly as a pivotal application in language-
driven robotics. CLIPort [4] took the initial step in this
direction by merging CLIP features with a Transporter
network. Yet, its design is limited to basic pick-and-place
tasks. Structformer [6] advanced the field using a transformer
model, by simulating rearrangements with hand-crafted rules
and connecting language tokens to object poses. Leveraging
Structformer’s dataset, StructDiffusion [5] introduced a pose
diffusion model to predict poses from language. Nonetheless,
a common shortcoming amongst all these methodologies is
their limitation to a single structure or pattern (e.g. circle,
line) that they have been trained on, making composite
patterns (e.g. rectangle + tower) a persistent challenge. More-
over, the rearrangement goals generated by these methods
can be inexecutable.

B. LLM-driven Task And Motion Planning
Recent advancements in LLMs [7], [8] have showcased

impressive performance across a broad spectrum of tasks.
There has been a growing interest in using LLMs for
TAMP [9]–[11], [13], [19]–[33], owing to their few-shot
and zero-shot reasoning ability [7], [34], [35]. Grounding
language into a sequence of plannable tasks/actions without
retraining LLMs was initially explored in [9]. Following

this, SayCan [10] was proposed to facilitate the conversion
of LLM-generated plans into robot-executable steps, though
it struggled with addressing task execution failures. Inner
Monologue [19] improved upon SayCan by incorporating
real-time feedback to adjust plan post-execution, yet Inner
Monologue is prone to generating suboptimal and infeasi-
ble plans. Instead of using LLMs to plan with predefined
skills, other approaches such as Code as policies [11] and
Progprompt [20] leveraged LLMs for policy code generation,
showcasing their potential in behavioral common sense and
sequential policy logic. However, they do not show promising
results on complex object rearrangement tasks requiring
more nuanced spatial context. This is due to the limitations
of LLMs’ planning ability over long horizon tasks [12], [28].

Owing to the drawbacks of the aforementioned works,
to offer a more reliable and interpretable planning pro-
cess, recent works [12], [15], [28], [29], [31] emphasize
translating natural language commands into intermediate
representations that are interpretable by traditional TAMP
algorithms. Text2Motion [23] uses LLMs to greedily plan a
skill sequence combined with a geometric feasibility planner
to ensure that the geometric dependencies are addressed.
However, Text2Motion’s hybrid LLM planner is less efficient
in large spaces than planners such as MCTS [3]. LLM-
GROP [13] translates language instructions to symbolic spa-
tial relationships with LLMs and employs a task and motion
planner named GROP [14] to perform the rearrangement.
Although GROP is optimized for efficiency and feasibility,
LLM-GROP is limited by its focus on simple object rear-
rangements due to its treatment of multi-object semantic re-
lationships as pairwise reasoning. AutoTAMP [15] employs
LLMs for generating and validating STL representation from
natural language and utilizes a formal STL planner [36] for
generating optimal trajectories. Although effective across a
spectrum of tasks, its applicability is limited in non-discrete
action spaces, as is the case in semantic rearrangement tasks.

To address these limitations, we introduce LGMCTS, a
new approach that incorporates parametric geometric priors
and that is guided by MCTS’s efficient exploration to provide
a feasible TAMP solution for complex rearrangement tasks.

III. PRELIMINARIES

A. Problem Formulation
Semantic rearrangement is the task of rearranging a scene

according to a series of natural language descriptions. One
key insight here is that a goal described by language is
usually a distribution rather than a single position. For
example, “Put the mug at the right side of bowl” refers to
a uniform distribution among a region that is right to the
bowl. If we know the position distribution for each object,
we just need to sequentially sample the poses for each object.
The semantic rearrangement problem is then converted to a
sequential sampling problem.

With this insight, we define the task of semantic rearrange-
ment as follows. The robot is given as input a scene with
objects from a set OS = {o1,o2, . . . ,oN} and a command L,
where L is a pure natural language command that implies a



desired distribution list F = { fi : p(oi)→ fi|oi ↑ OR}, where
p(oi) refers to the position of object oi. Here, OR ↓ OS
denotes the objects requiring an action based on L, and
fi indicates the desired pose distribution for each object.
The objective is to identify an optimal action sequence,
A = (at)H

t=1, where each action at corresponds to moving an
object oi to a sampled position p(oi), with the objective to
achieve a goal arrangement aligning L, i.e., !oi↑OR fi(pi)> 0
and minimizing the number of action steps H. Noticeably,
A includes not only movements of objects o ↑ OR, but also
those of distracting objects, denoted as OD, with OD ↓ OS.

B. Monte Carlo Tree Search (MCTS)
We provide here a brief reminder of the MCTS [3]

technique. A typical MCTS algorithm iteratively builds a
search tree by performing the following four operations.
1) Selection. On a fully expanded node (all the children

nodes have been visited), MCTS selects to explore the
branch with the highest Upper Confidence Bound (UCB),

argmax
a

(
w( f (s,a))
n( f (s,a))

+C

√
log(n(s))
n( f (s,a))

)
, (1)

where f (s,a) is the child node of state s after action a,
w(·) and n(·) are respectively cumulative rewards and the
number of visits to a state.

2) Expansion. On a node that is not fully expanded, MCTS
selects an action that has not been attempted yet.

3) Simulation. Given a node and a selected action, MCTS
simulates a sequence of actions and receives a reward.

4) Back-Propagation. MCTS passes the terminal reward
to ancestor nodes to update their cumulative expected
rewards, which indicate the quality of the branch.

At each iteration, MCTS starts from the root node. When
all the child nodes of the current node are visited, MCTS
selects a child node with the UCB formula. When some child
nodes of the current node are unvisited, MCTS expands by
randomly selecting a new action and performing a simulation
to reach a new child node. The new node returns a reward,
which is back-propagated to all the ancestor nodes.

IV. METHOD

In a nutshell, LGMCTS starts by calling an LLM to parse
the language description L to a list of spatial distributions
F = { fi : p(oi)→ fi|oi ↑ OR}. Then it uses an MCTS-based
procedure to find a physically feasible action sequence A to
rearrange the scene according to distributions F .

A. Language Parsing & Object Selection
During the language parsing stage, we parse L into F =

{ fi : p(oi) → fi|oi ↑ OR}. Similar to previous methods [11],
we conduct an automated prompt engineering to guide the
LLM to perform the parsing. Fig. 2 showcases how prompt
engineering is implemented. Essentially, the language model
translates user requirements into structured goal configura-
tions and constraints that guide task execution.

Consider the example depicted in Fig. 2. First comes the
system prompt providing guidelines for the LLM to follow

Fig. 2: An example of language parsing. We are using GPT-4 [7]
in this work.

Fig. 3: Visualization of (x,y) prior for ‘line’ pattern. From left
to right: K = 0, K = 1, K = 2, K = 3, where K = |Osampled

R |, the
number of sampled object poses. White star marks are sampled
poses. When K = 0, the pose can be sampled anywhere. When
K = 1, it needed to sampled outside a circle region. After that, all
poses will be sampled along the line defined by the first two poses.

when interpreting user queries. Then, we need to provide
an object description such as semantic labels, colors, and
IDs for the objects in the scene. In practice, we use the
Recognize Anything Model (RAM) [37], [38] for producing
the semantic labels, and a color detector to determine the
colors of the objects in the scene. A unique ID is assigned
to each object (using for the whole planning). Finally, we
provide a user query describing the rearrangement goal. A
structured answer is returned from the LLM. LLM’s answers
suggest how many patterns there are and which objects
should be selected to form the pattern.

B. Parametric Geometric Prior
As mentioned in Section III-A, if we know the goal posi-

tion distribution for each object, the semantic rearrangement
problem can be converted to a sequential sampling problem.
There are multiple details we need to pay attention to in
this process. (1) The position distribution is not fixed but
varies with the progress of sampling. For example, if we
say objects A, B, and C need to be put into a line, and we
sample in the order of A, B, and C, then the distributions
of A and B are actually unbounded, and C must be placed
on the line defined by the positions of A and B. (2) The
position distribution should be collision-free. (3) One can
build a database for many different spatial distributions, but
we need to have a flexible mechanism to associate LLM’s
inferred distribution types with items in the database.

We show in the following how to compute the pose
distribution function fi(pi|PS,L) for each object oi in the set
OR during the sequential pose sampling process. Here, pi
denotes the pose (x,y,!) of an object oi, PS represents the
list of current poses for all objects in the scene, and L is the
natural language command.

We compute fi(pi|PS,L) as an element-wise product of



two components, a pattern prior function fprior(pi|PR,L) and
a boolean function ffree(pi|PS) of the workspace,

fi(pi|PS,L) = fprior(pi|PR,L)↔ ffree(pi|PS) (2)

In this equation, PR is the list of current poses of all
objects in OR. We note that PR is a subset to PS. The
function ffree(pi|PS) is set to 1 if pi is collision-free from the
remaining poses in PS, and to 0 otherwise. ffree is determined
by running a 2D collision simulation using point cloud
observations for each object oi ↑ OS.

Our primary focus is to determine fprior(pi|PR,L). To this
end, we employ an approach akin to the one described in
[10]. We maintain a database comprising a collection of
predefined prior functions. Each of these functions is linked
with one or more Sentence-BERT embeddings, acting as
keys. The function corresponding to the best matching key
is selected, as follows,

fprior(pi|PR,L) = f K
prior(pi|PR) with K = argmax

K↑database
(∀k ·∀(L))

Here, ∀k is the Kth key in the database, and ∀(L) is the
Sentence-BERT embedding generated from the language
instruction L. In summary, the most suitable prior function
from the database is selected based on ∀(L) .

We now delve into the definition of f K
prior(pi|PR) in the

context of our work. We use a unique model for representing
various distributions by employing parametric curves. A
parametric curve can be expressed as (x,y) = ∀(t,#), where
t ranges from 0 to 1 and # is a set of curve-defining
parameters. In our work, # is modeled as a function of
two 2D positions, denoted as #(p0, p1). Therefore, for each
pattern, we define two functions: ∀ and # .

Given that pattern prior fprior is used inside a sequential
sampling process (check Section IV-C for more details), the
prior distribution needs to be iteratively updated to capture
the history of sampling. Consequently, we further categorize
OR based on whether the objects have been sampled in
the current branch of the MCTS-Planner. Subsets Osampled

R
and Ounsampled

R denote the sampled and non-sampled objects,
respectively. Thus, OR = Osampled

R ↗Ounsampled
R .

The probability f K
prior(pi|PR)) of sampling a pose pi =

(xi,yi,!i) for next object oi ↑ Ounsampled
R is given as follows.

• If |Osampled
R |= 0 then (xi,yi,!i)→U , suggesting that the

first object can be placed arbitrarily.
• If |Osampled

R | = 1 then
√
(xi ↘ x0)2 +(yi ↘ y0)2 ≃ ∃ and

(xi,yi,!i)→U , imposing that the second object must be
sampled uniformly at a position that is distanced from
the first by at most ∃ .

• If |Osampled
R |> 1 then (xi,yi) = ∀

( |Osampled
R |
|OR| ,#(p0, p1)

)
+

% where % → G(0,&), here G represents a Gaussian
distribution with mean zero and variance & , and ! =
atan2(1,∀ ⇐(K

N )). ! represented the rotation angle of the
object.

Our parametric geometrical representation enables us to
model any geometric shapes that can be written into the

format of a parametric curve. In our current implementa-
tion, we defined shapes such as “line,” “circle,” “rectangle,”
“tower,” “spatial:left,” “spatial:right” and so on. Due to space
constraints, we refrain from elaborating on the definitions of
∀ and # for all these predefined patterns. Fig. 3 illustrates
an example of a parametric geometric prior. Noticeably, we
divide patterns into “ordered” and “unordered” based on
whether the pattern requires an execution sequence.

Note that in our work, language instruction L is typically
composed of multiple instructions that deal with different
subsets of objects. Specifically, L can be interpreted as a
list {Li} of sub-instructions Li . For example, L can be
a composite instruction: L = {L1,L2}, where L1 refers to
placing objects A, B, and C in a line, and L2 refers to placing
object A on the left of B. Each sub-instruction Li ↑ L is
associated with a subset of objects ORi ↓OR. In our example,
OR1 = {A,B,C} and OR2 = {A,B}. In the sequential sampling
process described before, we presented the case of a single
language instruction for simplicity, but the same process is
used for sampling poses given by a complex instruction.

C. Monte-Carlo Tree Search (MCTS) for TAMP

Fig. 4: A minimal example illustrates our MCTS-Planner’s aim
to arrange a table. The language description provided is: “Can you
please put the apple behind the spoon? And I also want the cup
at the right of the apple.” The top row displays the current scene
arrangement, while the bottom row shows the fprior and f f ree for the
object being manipulated. f = fprior ↔ f f ree. In spatial distribution
figures, black represents probability 0, and white probability 1.

As previously mentioned, our rearrangement problem can
be formulated as a sequential task. In each step, we sample
a pose pi for each object oi ↑ OR according to a pose
distribution fi selected by the LLM and computed as de-
scribed in Section IV-B. Once we complete all samplings,
all objects will have been placed in their desired locations.
However, this task cannot be executed by the robot in
a naive sequential order, as the rearrangements made in
previous steps may obstruct subsequent sampling. Therefore,
we propose a task and motion planner based on the MCTS
algorithm to simultaneously arrange the task and address
object relocation issues. The objective of our MCTS-Planner
is to fulfill all object position requirements defined by F , the
spatial distribution list. In the MCTS-Planner, we maintain a
tree where each node s in the tree comprises the current
objects’ poses, {p1, p2, ..., pN}, and the remaining object
spatial requirements Fr, where Fr ↓ F .



The MCTS-Planner operates through four phases: selec-
tion, expansion, simulation, and back-propagation, as de-
scribed in Section III-B, adhering to the methodology from
[39] except for the simulation stage. The reward for tran-
sitioning to a new state s is quantified by the reduction in
the number of spatial requirements, that is, |F |↘ |Fr|. This
reward structure mirrors the approach in [39], aiming to steer
the search towards branches that efficiently move objects
to their goal poses. The simulation phase is elaborated in
Algorithm 1. This phase begins with the MCTS state s
and an attempted action of placing an object oi in a pose
pi → fi, where fi is the pose distribution explained in the
previous section. If the targeted object oi is not reachable,
e.g. there exist some obstacles above it, a reachable obstacle
is randomly selected from those above it, and a collision-free
pose within the workspace is sampled for relocation (Lines
2-5). If oi is reachable, an attempt is made to sample its
pose with distribution fi (Line 7). If the sampled pose is
not collision-free, we will randomly choose an obstacle in
the collision and relocate it to a collision-free pose within
the workspace (Lines 9-13). Note that obstacle relocation
may add previously placed objects back to the requirement
list Fr. However, this obstacle relocation strategy increases
the robustness of our rearrangement planner, especially when
the environment is cluttered. Although MCTS operates as an
anytime search algorithm, our MCTS-Planner implementa-
tion returns the first solution it finds. Furthermore, we have
proved that the MCTS-Planner is probabilistically complete
within our specified framework in Proposition 4.1.

Fig. 4 presents an illustrative example of the MCTS-
Planner at work. Owing to space constraints, we will only
explore three simulation steps along the branch that yield a
feasible solution. In this scenario, the user requests, “Can
you please put the apple behind the spoon? And I also want
the cup to be at the right of the apple.” In response, the LLM
generates the spatial distribution list F = { f1, f2}, where f1
is for positioning the apple behind the spoon, and f2 is for
placing the cup to the right of the apple. Fig. 4(a) illustrates
the initial arrangement of objects. Given the dependency of
f2 on the apple’s position, K actions will be sampled for
f1, but none for f2 in this initial setup. Fig. 4(b) depicts the
outcome of an action of sampling a pose from f1, where the
apple is relocated according to f1. The dashed-line circles
represent the other K ↘ 1 actions originating from the root
node. After sampling f1, we are left with Fr = { f2} as shown
in Fig. 4(b), and an attempt is made to position the cup to the
right of the apple. However, the goal position is in collision
with the knife, so we need to relocate the knife. Fig. 4(c)
demonstrates the knife’s relocation, maintaining Fr = { f2}.
Ultimately, Fig. 4(d) showcases the final planning result.

Proposition 4.1: MCTS-Planner is probabilistic complete.
Proof: In the context of semantic rearrangement with

distribution list F , we consider a feasible sequence A⇒ that
moves objects to achieve a final state A f , where fi(A f [oi])>
0 for each object oi in set OR. We assert that as the number
of iterations K increases, the probability p that MCTS finds
a sequence meeting the goal approaches 1: limK⇑# p = 1.

Algorithm 1: Simulation
Input : s: an MCTS state,

fi: a pose distribution (place oi in a pose pi → fi).
Output: (o, p): a rearrangement action (place o in pose p).

1 if oi is not reachable then

2 Select a reachable object o that is blocking object oi;
3 p ⇓uniformSampling(o,s);
4 if p exists then return (o,p);
5 else return failure;
6 else

7 p ⇓sampling(oi,s, fi);
8 if collisionFree(oi, p,s) then return (oi,p);
9 else

10 o ⇓ Randomly choose an obstacle in collision;
11 p ⇓uniformSampling(o,s);
12 if p exists then return (o,p);
13 else return failure;

First, we prove that there is an action sequence A⇒
0 whose

actions can all be generated by MCTS-Planner. Note that in
MCTS-Planner, an action satisfies either of the two rules:
R1: Move an object oi to goal: it requires oi ↑ OR and the
new pose p satisfies goal pose requirements (i.e., fi(p)> 0);
R2: Obstacle relocation: the old pose p of the moved object
makes other objects not reachable or it lies in others’ goal
regions, i.e., ⇔ f ↑Fr, s.t. f (p)> 0 (Line 2, 10). We construct
A⇒

0 by reordering and deleting actions in A⇒ as follows: (1)
If an action in A⇒ satisfies R1 or R2, we add the action
to A⇒

0. Otherwise, we delay the addition until it satisfies the
rules; (2) If the action still cannot satisfy the rules before
we examine the next action in A⇒ for the same object, we
delete the former action. This process ensures A⇒

0 comprises
only MCTS-Planner viable actions, leading to the desired
arrangement A f .

Next, we prove that the probability for MCTS to find an
action sequence in the “neighborhood” of A⇒

0 approaches 1
as K increases. For each intermediate state s of A⇒

0, denote
(A⇒

0[s].o,A
⇒
0[s].p) the rearrangement action that A⇒

0 chooses at
s. Let r := (min1≃i≃|A⇒

0|Ci)/2|A⇒
0|, where Ci is the minimum

distance making the placement pose of the ith action of
A⇒

0 invalid (out of goal distribution or in collision). For an
intermediate state s of A⇒

0, let ps
r be the probability that

after K actions, there is an action moving A⇒
0[s].o to the

r↘neighborhood of A⇒
0[s].p. We have

lim
K⇑#

p ↖ lim
K⇑# !

s↑A⇒
0

ps
r ↖ lim

K⇑#
(1↘ (1↘ ∋r2

|W |N )K)|A
⇒
0|

where |W | is the size of the workspace. Specifically, the
second function indicates the probability of finding a feasible
action sequence, where the intermediate state object poses
are maintained in the neighborhood of those in A⇒

0. In the
third function, (∋r2)/(|W |N) is the lower bound of the
probability of choosing an action in s, moving A⇒

0[s].o to the
r↘neighborhood of A⇒

0[s].p and the base of the |A⇒
0| exponent

is a lower bound of ps
r. Since K is the only variable in the

third function, limK⇑# p = 1.



Method Line (4295) Circle (3416) Tower (1335) Dinner (2440)

LFSP* [11], [20] 41.16% 51.75% 88.80% 27.05%
Structformer [6] 47.24% 62.64% 99.10% 28.36%

StructDiffusion [5] 61.49% 81.41% 98.95% 69.38%
LGMCTS (Ours) 95.99% 95.25% 100% 100%

TABLE I: Efficacy of LFSP, Structformer, StructDiffusion, and
LGMCTS across diverse rearrangement tasks (task counts indi-
cated) from the Structformer dataset. *Due to budget constraints,
the LLM baseline LFSP are evaluated on 1150 (10%) randomly
selected scenes of the Structformer dataset.

V. EXPERIMENTS
A. Baselines

We compare our approach with the following baselines.
Structformer [6]. It is a multi-modal transformer specifically
designed for language-guided rearrangement tasks.
StructDiffusion [5]. It employs a diffusion model combined
with a learning-based collision checker for pattern pose
generation.
LLMs as Few-Shot Planners [11], [20]. We integrate Code
as Policies and Progprompt into our evaluation pipeline,
where the former generates policy code and the latter
Pythonic code. As we cannot directly use the generated code,
to streamline the input to our TAMP planner, our setup
modifies the output as a sequence of actions (object IDs
and their target poses). Initially, LLM processes complete
scene details—including object names, IDs, textures, initial
poses, and region boundaries for the rearrangement. We then
instruct the LLM to take the natural language command and
produce the optimal action sequence that contains an ordered
list of object IDs and goal poses of the considered objects
for rearrangement. However, for evaluating the Structformer
dataset, we consider the structured goal specification pre-
available in the dataset as the input to the LLM as it can infer
the action plan from this intermediate representation. This
approach avoids redundancy, as generating a natural language
command would just restate the same specification for the
goal rearrangement. In evaluating both datasets, we provide
a few scenes as examples where the output format is clearly
defined to the LLM with ground-truth optimal sequence. This
baseline is named LLMs as Few-Shot Planners (LFSP).
Pose+MCTS. The Pose+MCTS (PMCTS) approach assumes
that a collision-free and semantically aligned goal pose is
provided. However, direct execution of this pose might be
hindered if the target space is already occupied. To address
this, we utilize MCTS to search for a viable plan to place
objects in their predetermined goal poses. MCTS is only
used as a motion planner. This method follows a two-step
approach of using goal poses independently of task planning.

B. Structformer Dataset
We use the test set from the Structformer dataset to

evaluate the goal pose generation ability. This dataset is
composed of approximately 11,500 rearrangement tasks,
categorized into four patterns: line, circle, tower, and dinner.
A rearrangement plan is considered successful if it adheres
to language constraints and is collision-free, except in the

“tower” task where collisions are inevitable. The “dinner”
task is approached as a composition of patterns, involving the
arrangement of items like plates, bowls, and utensils into a
“tower” for plates and bowls, with other items lined up beside
it. In both Structformer and StructDiffusion’s experimental
setup, object selection for rearrangement is based on the
object’s shape and size. Our evaluation setup does not involve
object selection based on shape and size. Hence, to adapt
them to our evaluation setup, we provide those two baselines
with ground-truth object selection. Since the tasks already
specify which objects to rearrange for the single pattern
rearrangement, based on language instructions, we did not
use the LLM parser in LGMCTS for this dataset.

As shown in TABLE I, LGMCTS demonstrated supe-
rior performance in all four rearrangement task categories,
achieving remarkable success rates as follows: 95.99% for
“line”, 95.25% for “circle”, and 100% for both “tower” and
“dinner”. LSFP performs the least among the baselines due to
the inability of LLMs to produce goal patterns with high ge-
ometric fidelity. While StructDiffusion showed improvement
over Structformer, it did not match LGMCTS’s effectiveness.
For a visual comparison, Fig. 6 illustrates LGMCTS’s suc-
cess in a “circle” task scene, highlighting its more actionable
goal poses that contribute to higher rearrangement success
rates. Conversely, Structformer and StructDiffusion tend to
generate goal arrangements with a higher collision risk,
leading to lower success rates. The evaluation of this dataset
strictly assesses the accuracy of collision-free geometric pat-
terns in goal poses, disregarding the executability of plans—a
notable limitation of the dataset. This limitation is addressed
through our proposed ELGR-Benchmark (refer to Section V-
C). PMCTS method is introduced through our benchmark
to solely verify the executability of plans. As PMCTS deals
with motion planning using collision-free ground-truth poses,
it was not included in further comparisons on this dataset due
to its inherent access to goal poses.

C. ELGR-Benchmark

Existing datasets for semantic object rearrangement, such
as Structformer, are limited in that they typically feature only
one pattern per scene and do not include crowded scenar-
ios. They also fail to address the challenge of feasibility,
particularly when starting configurations are infeasible like
one object being placed under another. To bridge these gaps,
we introduce ELGR-Bench (Executable Language-Guided
Rearrangement Benchmark), which incorporates scenarios
with infeasible starting configurations, including tasks that
require unstacking and appropriate placement of unstacked
objects before the actual rearrangement. Importantly, this
new benchmark presents a novel task termed the “multi-
pattern task”, which requires multiple pattern goals to be sat-
isfied during the rearrangement process. In this benchmark,
we are considering common shapes such as “line”, “circle”,
“rectangle” and “spatial” (left/right, front/behind, left/right
+ front/behind). For each scene, we randomly compose two
of the aforementioned patterns and create the multi-pattern
task. Success is measured based on the executability of the



Fig. 5: Real world demonstration with a UR5e robot. The language instructions for the five scenes are: (a) “Move all blocks into a circle;
while put the white bottle behind one block;” (b) “Put all boxes into a rectangle; and move the white bottle to the right of one box;”
(c) “Move bottles into a line; and formulate all phones into another line;” (d) “Formulate all yellow objects into a line;” (e) “Set all
phones into a line;”. The top row images show the initial scenes and the bottom ones show the results of using LGMCTS on the UR5e.
Dotted lines imply a shape pattern and red arrows indicate a spatial pattern (left, right, front, back). These real robot experiments show
that LGMCTS can parse complex language instructions and also deal with infeasible start configurations as well as pattern composition.

Fig. 6: Compared to Structformer and StructDiffusion, LGMCTS
ensures a collision-free goal arrangement in all experiments.

Method SRp SRep

LFSP [11], [20] 100% 45.2%
Structformer [6] n.a. n.a.

StructDiffusion [5] n.a. n.a.
PMCTS 82.9% 74.1%

LGMCTS (Ours) 90.9% 79.2%

TABLE II: SRep, the executable plan success rate, reflects both
planning success and the success of executing these plans, indicat-
ing if the final positions of objects meet the criteria set by language-
based constraints. SRp, a part of SRep, only tracks planning success,
with PMCTS and LGMCTS capped at 10,000 planning steps. If
planning with MCTS exceeds the limit, often due to dense object
placement in the scene, the motion planning is considered a failure.

generated plan and its adherence to semantic requirements.
ELGR-Bench builds upon the VIMA-Benchmark [40].

In our benchmark, we compared LGMCTS against two
baselines: LFSP and PMCTS, excluding Structformer and
StructDiffusion as they cannot handle composite geometric
patterns. LFSP, leveraging an LLM, plans goal poses and ac-
tion sequences simultaneously, while PMCTS, follows a two-
step method using a given goal pose and then using MCTS
for action planning. LGMCTS uniquely combines goal gen-
eration with action planning, aiming for more executable
outcomes. As shown in TABLE II, LFSP demonstrates a
100% planning success rate through LLM’s capability to
generate action plans based on natural language commands
and scene context. Nonetheless, over 50% of these plans
are inexecutable, as indicated by the SRep scores. LGMCTS,

however, manages a 90% success rate in generating action
plans, with about 80% being executable. This performance
not only underlines the limitations of LLMs in direct TAMP
solving but also showcases LGMCTS’s advantage over the
two-step PMCTS approach, even when PMCTS is provided
with accurate and feasible goal poses.

D. Real Robot Experiments
We qualitatively evaluated our system using a UR5e robot

equipped with a D455 depth camera. The setup of the robot
is shown in Fig. 1. We employed the Recognize-Anything-
Model (RAM) [37], [38] and an HSV-based color detector
to detect object semantics and colors. Selected queries and
their corresponding execution outcomes are presented in
Fig. 5. We considered five different language instructions
involving various objects and initial configurations. For ex-
ample, Fig. 5(b) illustrates the experiment with “Put all boxes
into a rectangle, and move the white bottle to the right
of one box.” This experiment involves pattern composition,
requiring simultaneous consideration of “line” and “to the
right of” constraint. Additionally, this scene presented an
infeasible initial configuration, necessitating the removal of
the yellow block before moving the gelatin box. Each exper-
iment presented distinct challenges; for more details, refer
to Fig. 5. These real-world robot experiments underscore the
capabilities of LGMCTS in complex real-world settings.

VI. CONCLUSION
We introduced LGMCTS, a new framework for tabletop,

semantic object rearrangement tasks. LGMCTS stands out by
accepting free-form natural language input, accommodating
multiple pattern requirements, and jointly solving goal pose
generation and action planning. Its main limitation is the
extended execution time for complex scenes, highlighting
the need for improved tree search efficiency. Future research
should focus on adapting LGMCTS to more complex rear-
rangement scenarios.
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