
Softening the Impact of Collisions in Contention Resolution

Umesh Biswas1, Trisha Chakraborty2, and Maxwell Young1

1 Department of Computer Science and Engineering, Mississippi State University, MS 39762, USA
ucb5@msstate.edu, myoung@cse.msstate.edu

2 Amazon Web Services, MN 55401, USA
trichakr@amazon.com

Abstract. Contention resolution addresses the problem of coordinating access to a shared communica-
tion channel. Time is discretized into synchronized slots, and a packet can be sent in any slot. If no packet
is sent, then the slot is empty; if a single packet is sent, then it is successful; and when multiple packets
are sent at the same time, a collision occurs, resulting in the failure of the corresponding transmissions.
In each slot, every packet receives ternary channel feedback indicating whether the current slot is empty,
successful, or a collision.

Much of the prior work on contention resolution has focused on optimizing the makespan, which is the
number of slots required for all packets to succeed. However, in many modern systems, collisions are also
costly in terms of the time they incur, which existing contention-resolution algorithms do not address.

In this paper, we design and analyze a randomized algorithm, COLLISION-AVERSION BACKOFF
(CAB), that optimizes both the makespan and the collision cost. We consider the static case where an
unknown n → 2 packets are initially present in the system, and each collision has a known cost C,
where 1 ↑ C ↑ n

ω for a known constant ω → 0. With error probability polynomially small in n, CAB
guarantees that all packets succeed with makespan and a total expected collision cost of Õ(n

↓
C). We

give a lower bound for the class of fair algorithms: where, in each slot, every packet executing the fair
algorithm sends with the same probability (and the probability may change from slot to slot). Our lower
bound is asymptotically tight up to a poly(log n)-factor for sufficiently large C.

Keywords— Distributed computing, contention resolution, collision cost.

1 Introduction

Contention resolution addresses the fundamental challenge of coordinating access by devices to a shared resource, which
is typically modeled as a multiple access channel. Introduced with the development of ALOHA in the early 1970s [1],
the problem of contention resolution remains relevant in WiFi networks [16], cellular networks [32], and shared-memory
systems [8,24].

Our problem is described as follows. There are n → 2 devices present at the start of the system, each with a packet
to send on the shared channel, and n is a priori unknown. For ease of presentation, we adopt a slight abuse of language
by referring to packets sending themselves (rather than referring to devices that send packets). Time proceeds in discrete,
synchronized slots, and each slot has size that can accommodate the transmission of a packet. For any fixed slot, the
channel provides ternary feedback, allowing each packet to learn whether 0 packets were sent, 1 packet was sent (a
success), or 2+ packets were sent (a collision). Sending on the channel is performed in a distributed fashion; that is, a
priori there is no central scheduler or coordinator. Traditionally, the contention-resolution problem focuses on minimizing
the number of slots until all n packets succeed, which is referred to as the makespan.

However, in many modern systems, collisions also have a significant impact on performance. In the standard cost
model, each collision can be viewed as a wasted slot that increases the makespan by 1, since no packet can succeed. Yet, in
many settings, a collision wastes more than a single slot, and we denote this cost by C.3 This cost can vary widely across
different systems. In intermittently-connected mobile wireless networks [36], failed communication due to a collision
may result in the sender having to wait until the intended receiver is again within transmission range. For WiFi networks,
a collision may consume time proportional to the packet size [6]. In shared memory systems, concurrent access to the
same memory location can result in delay proportional to the number of contending processes [8]. Thus, makespan gives
only part of the performance picture, since collisions may add to the time until all packets succeed.

3 We may also view C as an upper bound on the cost of a collision if there is some variance.

2 U. Biswas, T. Chakraborty, and M. Young

In this work, we account for the cost of collisions, in addition to the makespan. As we discuss later (see Section 3),
existing contention-resolution algorithms do not perform well in this setting. For instance, randomized binary exponential
backoff (BEB) [30], arguably the most popular of all contention-resolution algorithms, incurs a collision cost of ε(n C),
where C is the cost of a single collision. New ideas are needed to achieve better performance in this model.

1.1 Model and Notation

Our work addresses the case where an n → 2 number of packets are active at the start of the system. There is no known
upper bound on n a priori, and packets do not have identifiers. A packet is active if it is executing a protocol; otherwise,
the packet has terminated. Each packet must be successfully sent in a distributed fashion (i.e., there is no scheduler or
central authority) on a multiple access channel, which we now describe.

Multiple Access Channel. Time is divided into disjoint slots, where each slot is sized to accommodate a single packet.
In any slot, a packet may send itself or it may listen. For any fixed slot, if no packet is sent, then the slot is empty; if
a single packet is sent, then it is successful; and if two or more packets are sent, then there it is a collision and none
of these packets is successful. A packet that transmits in a slot immediately learns of success or failure; if it succeeds,
the packet terminates immediately. Any packet that is listening to a slot, learns which of these three cases occurred; this
is the standard ternary feedback model. Likewise, for any slot, a packet that is sending can also determine the channel
feedback; either the packet succeeded (which it learns in the slot) or it failed (from which the packet infers a collision
occurred). Packets cannot send messages to each other, and no other feedback is provided by the channel.

Metrics. A well-known measure of performance in prior work is the makespan, which is the number of slots required
for all n packets to succeed. An equivalent metric in the static case is, throughput, which is defined as the time for n
successes divided by the makespan.

In our model, each collision incurs a known cost of C, where 1 ↑ C ↑ n
ω, for a known constant ω→ 0.4 Given a

contention-resolution algorithm, the pertinent costs are: (i) the collision cost, which is the number of collisions multiplied
by C, and (ii) the makespan. Often we refer to “cost”, by which we mean the maximum of (i) and (ii), unless specified
otherwise.

Notation. Throughout this manuscript, lg(·) refers to logarithm base 2, and ln(·) refers to the natural logarithm. We
use logy(x) to denote (log(x))y , and we use poly(x) to denote x

y for some constant y → 1. The notation Õ denotes
the omission of a poly(log n) factor. We say an event occurs with high probability (w.h.p.) in n (or simply “with high
probability”) if it occurs with probability at least 1↔O(1/nc), for any tunable constant c → 1.

For any random variable X , we say that w.h.p. the expected value E[X] ↑ x if, when tallying the events in the
expected value calculation, the sum total probability of those events where X > x is O(1/nc) for any tunable constant
c → 1. In our analysis, the expected collision cost holds so long as the subroutine DIAGNOSIS (described later) gives
correct feedback to the packets, and this occurs with high probability.

1.2 Our Results

We design and analyze a new algorithm, COLLISION-AVERSION BACKOFF (CAB), that solves the static contention
resolution problem with high-probability bounds on makespan and the expected collision cost. The following theorems
provide our formal result.

Theorem 1. With high probability in n, COLLISION-AVERSION BACKOFF guarantees that all n packets succeed with a
makespan of Õ(n

↓
C), and an expected collision cost of Õ(n

↓
C).

How does this compare with prior results? For starters, consider SAWTOOTH-BACKOFF (STB), which w.h.p. has
an asymptotically-optimal makespan of ϑ(n), but incurs ε(n) collisions. The expected cost for CAB is superior to
STB when C is at least polylogarithmic in n. In Section 1.3, we elaborate on how our result fits with previous work on
contention resolution.

In a well-known lower bound in the standard cost model, Willard [35] defines and argues about fair algorithms. These
are algorithms where, in a fixed slot, every active packet sends with the same probability (and the probability may change
from slot to slot). Our lower bound applies to fair algorithms as follows.

4 Note that knowing C and ω implies only a lower (not upper) bound on n.

Softening the Impact of Collisions in Contention Resolution 3

Theorem 2. Any fair algorithm that w.h.p. has a makespan of Õ(n
↓
C) has w.h.p. an expected collision cost of ε̃(n

↓
C)

for C = ε(n2).

Since CAB is fair and guarantees w.h.p. a makespan of Õ(n
↓
C), our upper bound is asymptotically tight up to a

poly(log n)-factor for sufficiently large C. A more general form of our lower bound is given in Section 4, along with
additional discussion.

1.3 Why Care About Collision Costs?

Here, we discuss the potential value of our result and exploring beyond the standard cost model for contention resolution.

A Simple Answer. Prior contention-resolution algorithms that optimize for makespan suffer from many collisions. For
example, arguably the most famous backoff algorithm is BEB (despite its sub-optimal makespan [9]), which has ε(n)
collisions. Similarly, STB has asymptotically-optimal makespan, but also suffers ε(n) collisions [6]. Thus, these algo-
rithms have cost ϑ̃(n+nC). In contrast, the expected completion time for CAB is Õ(n

↓
C), which is superior whenever

C = poly(log n).
In the extreme, even a hypothetical algorithm that suffers (say, w.h.p.) a single collision would do poorly by compar-

ison if collisions are sufficiently costly. Specifically, such an algorithm pays C, which is asymptotically worse than the
expected completion time of CAB for C = ϖ̃(n2).

Perhaps the above is reasonable motivation (we think it is), but why not also consider the cost of successes?5 Below,
we argue that reducing collision cost remains important, and that adding a non-unit cost for successes does not seem
interesting from a theory perspective.

Connecting to the Standard Cost Model. Let us temporarily consider the implications of a cost model where a success
and a collision each have cost P → 1. In the standard cost model P = 1. In WiFi networks, both costs are also roughly
equal, where P ↗ 1 [6].

In this context, reconsider STB’s performance. Since, n packets must succeed, a cost of at least nP is unavoidable,
and the additional ϑ(nP) cost from collisions becomes (asymptotically) unimportant. (Indeed, any algorithm must pay
at least nP for successes; given this unavoidable cost, it does not seem interesting from a theory perspective to consider
a model where a success costs far more than a collision, since the cost from successes would dominate.) Likewise, CAB
must also pay at least nP , which is (asymptotically) no better than STB.

Does reducing collision costs matter here? Yes, and the value of our result is best viewed via throughput (recall
Section 1.1). STB has cn collisions, for some constant c > 0, and (ignoring empty slots) its throughput is less than
nP/(nP +(cn)P) < 1/(1+ c) < 1↔1/c; that is, the throughput is bounded away from 1 by a constant amount. Doing
a similar calculation for CAB, there is nP cost for n packets to succeed, plus O(n

↓
P), which accounts for collisions

and empty slots. Thus, the expected throughput is E[nP/T] where T is the completion time. Since, E[1/T] → 1/E[T],
we have E[nP/T] → nP/(nP + Õ(n

↓
P)) > 1↔ Õ(1/

↓
P).

Thus, for the standard cost model, with P = 1, our result is (unsurprisingly) not an improvement. However, as P

grows, our result provides better throughput in expectation, approaching 1. There are settings where we expect P to be
large, such as: wireless networks where P can be commensurate with packet size, routing in mobile networks where
communication failure increases latency [36], and shared memory systems where concurrent access to the same memory
location by multiple processes results in delay [8].

2 Related Work

There is a large body of work on the static case for contention resolution, where n packets arrive together and initiate the
contention resolution algorithm; this is often referred to as the static or batched-arrival setting. Bender et al. [9] analyze
the makespan for BEB, as well as other backoff algorithms; surprisingly, they show that BEB has sub-optimal makespan.

An optimal backoff algorithm is STB [26,28]. Since we borrow from STB to create one of our subroutines (discussed
further in Section 3.1), so we describe it here. Informally, STB works by executing over a doubly-nested loop, where
the outer loop sets the current window size w to be double the one used in the preceding outer loop. Additionally, for

5 Empty slots do not seem to warrant such consideration since, by definition, nothing is happening in such slots, and so a per-cost of 1 makes sense.

4 U. Biswas, T. Chakraborty, and M. Young

each such window, the inner loop executes over a run of lgw windows of decreasing size: w,w/2, w/4, ..., 1. For each
window, every packet chooses a slot uniformly at random (u.a.r.) to send in.

The static setting has drawn attention from other angles. Bender et al. [10] examines a model where packets have
different sizes under the binary feedback model. Anderton et al. [6] provide experimental results and argue that packet
size should be incorporated into the definition of makespan, since collisions tend to cost time proportional to packet size.

To the best of our knowledge, our work is the first to propose an algorithm for minimizing collision cost, and so
it makes sense to start with the static setting. However, we note the dynamic setting has been addressed (under the
standard cost model), where packet arrival times are governed by a stochastic process (see the survey by Chlebus [20]).
Another direction that the research community has pursued is the application of adversarial queueing theory (AQT) [17]
to contention resolution; for examples, see [22,21,3,2]. Under the AQT setting, packet arrival times are dictated by an
adversary, but typically subject to constraints on the rate of packet injection and how closely in time (how bursty) these
arrivals may be scheduled. Even more challenging, there is a growing literature addressing the case where packet arrival
times are set by an unconstrained adversary; see [23,14,25]. Recent work in this area addresses additional challenges
facing modern networks, such as energy efficiency [29,15], malicious disruption of the shared channel [12,7,31,19,5,4],
and the ability to have a limited number of concurrent transmission succeed [13].

3 Technical Overview for Upper Bound

Due to space constraints, our proofs for the upper bound are provided in Section A of our appendix. However, we do
reference some well-known inequalities based on the Taylor series that are omitted here, but can be found in Section A.1.

Here, we present an overview of our analysis, with the aim of imparting some intuition the design choices behind
CAB, as well as highlighting the novelty of our approach. To this end, we first consider two natural—but ultimately
flawed—ideas for solving our problem.

Straw Man 1. An immediate question is: Why can we not use a prior contention-resolution algorithm to solve our
problem? For example, in the static setting, a well-known backoff algorithm, such BEB guarantees w.h.p. that all packets
succeed with makespan ϑ(n log n) [9]. Under BEB, the packets execute over a sequence of disjoint windows, where
window i → 0 consists of 2i contiguous slots. Every active packet sends in a slot chosen u.a.r. from the current window.
Unfortunately, a constant fraction of slots in each window i ↑ lg(n) +O(1) will be collisions. Each collision imposes a
cost of C leading to a collision cost of ε(nC). ↘≃

Despite yielding a poor result, this straw man provides three useful insights. First, we cannot have packets start with a
“small” window, since this leads to many collisions. Many backoff algorithms start with a small window, and will not
yield good performance for this same reason.

Second, we should seek to better (asymptotically) balance the costs of makespan and collisions. Under BEB, these
costs are highly unbalanced, being ϑ(n log n) and ε(nC), respectively. We may trade off between makespan and colli-
sion cost; that is, we can make our windows larger, which increases our makespan, in order to dilute the probability of
collisions.

Third, a window of size ϑ(n
↓
C) seems to align with these first two insights; that is, it appears to asymptotically

balance makspan and collision cost. To understand the latter claim, suppose that in each slot, every packet sends with
probability ϑ(1/(n

↓
C)). We can argue (informally) that, for any fixed slot, the probability of any two packets collid-

ing is at least
(
n
2

)
ϑ(1/n

↓
C)2 = O(1/C). Thus, over n

↓
C slots in the window, the expected number of collisions is

O(n
↓
C/C) = O(n/

↓
C), and each collision has cost C, so the expected collision cost is O(n

↓
C). Of course, this in-

formal analysis falls short, since collisions may involve more than two packets, and we have not shown that all n packets
can succeed over this single window (they cannot). Yet, this insight offers us hope that we can outperform prior backoff
algorithms by achieving costs that are o(nC).

How should we find a window of ϑ(n
↓
C)? Since n is unknown a priori, we cannot simply instruct packets to start

with that window size. It is also clear from the above discussion that we cannot grow the window to this size using prior
backoff algorithms. This obstacle leads us to our second straw man.

Straw Man 2. Perhaps we can estimate n and then start directly with a window of size ϑ(n
↓
C). A well-known “folklore”

algorithm for estimating n is the following. In each slot i → 0, each packet sends with probability 1/2i; otherwise, the
packet listens. This algorithm, along with improvements to the quality of the estimation, is explored by Jurdzinski et al.
[29], but we sketch why it works here.

Intuitively, when i is small, say a constant, then the probability of an empty slot is very small: (1 ↔ 1/2ε(1))n ↑
e
→ε(n) by Fact 1(a). However, once i = lg(n), then the probability of an empty slot is a constant: (1 ↔ 1/2lg(n))n =

Softening the Impact of Collisions in Contention Resolution 5

(1 ↔ 1/n)n → e
ε(1) by Fact 1(c). In other words, once a packet witnesses an empty slot, it can infer that its sending

probability is ϑ(1/n), and thus the reciprocal yields an estimate of n to within a constant factor.
At first glance, it may seem that we can estimate n, and then proceed to send packets in a window of size ϑ(n

↓
C).

Unfortunately, for each slot i ↑ lg(n), this algorithm (and others like it) will likely incur a collision, and thus the expected
collision cost is ε(C log n). To see why this is a problem, suppose that C = n

4. This implies that the expected collision
cost is ε̃(C) = ε̃(n4), while the makespan is at best O(n

↓
C) = O(n

↓
n4) = O(n3). That is, there is an n-factor

discrepancy between the expected collision cost and makespan, which grows worse for larger values of C; this approach
is not trading off well between these two metrics. ↘≃

Even though the above algorithm racks up a large collision cost, it highlights how channel feedback can provide
useful hints. If packets are less aggressive with their sending, we can reduce collisions while still receiving feedback that
lets us reach our desired window size of ϑ(n

↓
C).

3.1 Our Approach

Motivating Sample Size. Hoping to avoid the problems illustrated in our discussion above, all packets begin with an
initial current window size that can be “large”; the exact size we motivate momentarily. Recall that we aim for packets to
tune their sending probability to be ϑ(1/(n

↓
C)), so we are aiming for a window size of ϑ(n

↓
C). However, this must

be achieved with low expected collision cost. To do this, the packets execute over a sample of s slots. For each slot in the
sample, every packet sends with probability 1 divided by the current window size, and monitors the channel feedback.

What does this channel feedback from the sample tell us? Suppose we have reached our desired window size of
ϑ(n

↓
C). Then, the window size may be large relative to n, and so we should expect empty slots to occur frequently,

while successes do occur, but less often; the probability of success is approximately
(
n
1

)
(1/(n

↓
C)) ⇐ 1/

↓
C. To correctly

diagnose w.h.p. (using a Chernoff bound) that w = ϑ(n
↓
C), we rely on receiving ϑ(log n) successes. This dictates our

sample size to be s = ϑ(
↓
C log(n

↓
C)) = ϑ(

↓
C log(n)), since C ↑ n

ω.
The details behind this intuition are given in Section A.2 of our appendix, where we show that samples of size

ϑ(
↓
C log(n)) are sufficient to make correct decisions that tune the window size to be ϑ(n

↓
C). Furthermore, in Section

A.3 of our appendix, we show that the corresponding cost from this tuning is Õ(n
↓
C).

Motivating Initial Window Size. Suppose we are not at our desired window size. Then, the feedback from sampling
tells us what to do. If our current window size is too large (i.e., our sending probability is too low), then the number
of successes will be “small”, since most slots are empty, and we should decrease our window size. Else, if the current
window size is too small, (i.e., our sending probability is too high) then the number of successes is again “small”, since
most slots are collisions, and we should increase the window size. But wait, in the latter case, can we tolerate the cost of
the resulting collisions? In the worse case, the entire sample might consist of collisions, resulting in a potentially large
cost of s C = ϑ(C3/2 log n).

We remedy this problem by setting our initial window size to be C. Then, the probability of a collision in a fixed slot
is approximately

(
n
2

)
(1/C2) and so the expected cost is roughly T =

(
n
2

)
(1/C2) C = ϑ(n2

/C). Reasonaing informally,
if C > n, then T = O(n), and over the sample the expected cost is O(n

↓
C log(n)), as desired. Else, if C ↑ n, then even

if our sample does consist entirely of collisions, the resulting cost is ϑ(C
↓
C log n) = O(n

↓
C log n). This reasoning is

formalized in Lemma 13 of our appendix.
In light of the above, we emphasize that CAB does not avoid all collisions; in fact, many collisions may occur when

the collision cost is “small” (i.e., C ↑ n). However, as the collision cost grows “larger” (i.e., C > n), CAB expresses an
increasing aversion to collisions by having packets tune their respective sending probabilities such that we expect o(1)
collisions per sample. The cost analysis for sampling is given in Section A.3 of our appendix.

Borrowing from Sawtooth Backoff. By using sampling, ultimately a window size of ϑ(n
↓
C) is reached. At this point,

every active packet executes the analog of the final run of STB (recall Section 2). Specifically, each packet sends with
probability p = ϑ(1/(n

↓
C)), which we show is sufficient to have at least half of the active packets succeed (see Lemma

20). Then, the window is halved, and the process repeats where the remaining packets send with probability p/2. This
halving process continues until all packets succeed. By the sum of a geometric series, the number of slots in this process
is O(n

↓
C). Informally, the expected collision cost per slot is roughly

(
n
2

)
(1/(n

↓
C)2)C = O(1), and thus O(n

↓
C) over

all slots in the window. The analysis of cost is provided in Section A.4 of our appendix.

6 U. Biswas, T. Chakraborty, and M. Young

Fig. 1: Illustration of the ranges discussed in Section 3.2.

3.2 Our Algorithm and Overview of Analysis

This section describes and gives intuition for CAB, whose pseudocode is given in Figure 2. As stated in our model
(Section 1.1), when a packet succeeds it terminates immediate; for ease of presentation, we omit this from our pseudocode.

From a high-level view, each packet keeps track of a current window size, wcur; this size is critical, as it dictates the
per-slot sending probability of each packet, which is ϑ(1/wcur). Each packet keeps track of its own notion of a current
window. However, in each slot, since every packet is either listening or sending (and, thus, learning whether the slot
contained a success or a collision), all packets receive the same channel feedback and adjust their respective current
window identically (stated formally in Lemma 8). Therefore, for ease of presentation, we refer only to a single current
window.

Defining Ranges. In order to describe how CAB works, we define the six size ranges that the current window (or just
“window” for short), wcur, can belong to during an execution.

• ROCK-BOTTOM: [1, n).
• LOW: [n, 10n

↓
C).

• UNCERTAIN-LOW: [10n
↓
C, 200n

↓
C).

• GOOD: [200n
↓
C, 103n

↓
C).

• UNCERTAIN-HIGH: [103n
↓
C, 105n

↓
C).

• HIGH: [105n
↓
C,⇒).

These ranges are depicted in Figure 1. We note that the particular constants in these ranges are not special; they
are chosen for ease of analysis. To gain intuition, we now describe the events we expect to witness in the ROCK-
BOTTOM, LOW, GOOD, and HIGH ranges when CAB executes; we defer an in-depth discussion of UNCERTAIN-LOW
and UNCERTAIN-HIGH until the end of the next subsection.

The ROCK-BOTTOM range captures “tiny” window sizes, starting from 1 up to n ↔ 1. In this range, the probability
of sending exceeds 1/n, and we expect that most slots will be collisions. The next range is LOW, and it includes window
sizes from n to just below 10n

↓
C. This range represents a moderate increase in window size, allowing for more successes

than ROCK-BOTTOM, although there can still be many collisions. As discussed in Section 3.1, in ROCK-BOTTOM and in
the bottom portion of LOW, we can afford to have an single sample consist entirely of collisions, since C = O(n) (see
Lemma 16). However, lingering in these ranges would ultimately lead to sub-optimal expected collision cost.

The GOOD range spans from 200n
↓
C to just below 103n

↓
C. In this range, the window sizes are sufficiently large

that we expect o(1) collisions, along with handful of successes; notably, less successes than LOW. This turns out to be
a “good” operating range for the algorithm, where the balance between collision costs and makespan is achieved, as
discussed in Section 3 (i.e., our third insight after Straw Man 1).

The HIGH range covers window sizes from 105n
↓
C and above. In this range, the window sizes are very large, leading

to a very low probability of collisions, which is good. However, there are also far-fewer successes compared to GOOD,
which means that lingering in this range would lead to a sub-optimal number of slots until all packets succeed.

Softening the Impact of Collisions in Contention Resolution 7

COLLISION-AVERSION BACKOFF

1 Initial window size wcur ⇑ C

2 repeat
3 #successes, #collisions ⇑ 0

4 COLLECT-SAMPLE(C, wcur)
5 DIAGNOSIS(#successes, #collisions, wcur)
6 until true;

7 Function COLLECT-SAMPLE(C, wcur):
8 #successes ⇑ 0

9 #collision ⇑ 0

10 for slot i = 1 to d
↓
C ln(wcur) do

11 Send with probability 1/wcur; otherwise, listen
12 if slot is a success then
13 #successes++
14 else if slot is a collision then
15 #collisions++

16 Function DIAGNOSIS(#successes, #collisions, wcur):
17 if #successes > 2d ln(wcur)

105 then
18 if #successes ↑ d ln(wcur)

20e then
19 if #collisions → d

→
C ln(wcur)
8e2 then

20 wcur ⇑ 2wcur

21 else
22 Execute RUNDOWN (wcur)
23 else
24 wcur ⇑ 2wcur

25 else
26 if #collisions → d

→
C ln(wcur)
8e2 then

27 wcur ⇑ 2wcur

28 else
29 wcur ⇑ wcur/2

30 Function RUNDOWN(wcur):
31 w0 ⇑ wcur

32 while wcur → 8
↓
C lg(w0) do

33 for each slot j = 1 to wcur do
34 Send packet with probability 2/wcur

35 wcur ⇑ wcur/2

36 for i = 1 to c ln(w0) do
37 for each slot j = 1 to w0 do
38 Send packet with probability 2/w0

Fig. 2: Pseudocode for COLLISION-AVERSION BACKOFF.

8 U. Biswas, T. Chakraborty, and M. Young

Fig. 3: The elimination of ranges as discussed in Section 3.2.

The UNCERTAIN-LOW and UNCERTAIN-HIGH ranges span [10n
↓
C, 200n

↓
C) and [103n

↓
C, 105n

↓
C), respec-

tively. Why do we have these ranges? They capture values of wcur where we cannot know w.h.p. exactly what will happen,
although we do prove that the algorithm is making “progress”. We will elaborate on this further after describing our
methods for sampling and interpreting channel feedback, which we address next.

Sampling and Diagnosing Feedback. CAB navigates these ranges by using two subroutines: COLLECT-SAMPLE and
DIAGNOSIS. As motivated earlier in Section 3.1, a sample is a contiguous set of d

↓
C ln(wcur) slots that are used by each

packet to collected channel feedback. Specifically, under COLLECT-SAMPLE, in each slot of the sample, every packet
sends independently with probability 1/wcur and records the result if it is a success or a collision.

Based on the number of successes and the number of collisions, DIAGNOSIS attempts to determine the range to
which wcur belongs. We discuss these thresholds in order to give some intuition for how DIAGNOSIS is making this
determination. To simplify the presentation, we omit discussion of UNCERTAIN-LOW and UNCERTAIN-HIGH until the
end of this section. The process by which CAB homes in on the range to which wcur belongs is depicted in Figure 3.

We begin with the first if-statement on Line 17. This line checks if the number of successes is at least a logarithmic
amount (in wcur); if so, this indicates that wcur cannot be in the HIGH range, which would yield far fewer successes (see
Lemma 13). Therefore, if meet the conditional on Line 17, it must be the case that wcur belongs to ROCK-BOTTOM, LOW,
or GOOD.

Line 18 checks whether the number of successes falls below a “large” logarithmic amount; if not, then we are seeing
a “large” number of successes that indicates wcur cannot be in ROCK-BOTTOM or in GOOD, and so must be in LOW
(see Lemma 10). Otherwise, the number of successes falls below this logarithmic amount, indicating that wcur is in the
ROCK-BOTTOM or in GOOD ranges. To discern between these two cases, Line 19 checks if the number of collisions
exceeds d

↑
C ln(wcur)
8e2

, which indicates wcur ⇓ ROCK-BOTTOM (see Lemmas 6, 7, and 9). Otherwise, wcur falls within the
GOOD and the job of DIAGNOSIS is complete — at this point, RUNDOWN will be executed.

How can an algorithm with low expected collision cost make a decision based on whether ϑ(
↓
C log(wcur)) collisions

occur? Recall that in this case, we are deciding between wcur ⇓ ROCK-BOTTOM and wcur ⇓ GOOD. We will only witness
this number of collisions when wcur is in the ROCK-BOTTOM range, where C ↑ n and so we can tolerate this cost.
Otherwise, as described above, wcur ⇓ GOOD and the expected number of collisions is only Õ(1/

↓
C) (see the discussion

preceding Lemma 11 in our appendix).
The remaining portion of DIAGNOSIS starts with the else-statement on Line 25. This line is executed only if the

conditional on Line 17 is not met; that is, we have very few successes. This can occur only if wcur ⇓ ROCK-BOTTOM or
wcur ⇓ HIGH. The former case is (again) diagnosed be checking whether there are many collisions (Line 26) and, if so, the
window is doubled; otherwise, we are in the latter case and the window is halved. Again, we only have many collisions if
wcur is in the ROCK-BOTTOM or lower portion of the LOW ranges, where C ↑ n and so we can tolerate this cost.

Softening the Impact of Collisions in Contention Resolution 9

What about the uncertain ranges? In UNCERTAIN-LOW, a sample will contain enough successes to satisfy Line 17.
However, it is unclear whether the number of successes will be “large” (if wcur is in the lower portion of UNCERTAIN-
LOW) or “moderate” (if wcur is in the upper portion of UNCERTAIN-LOW). In the former case, we fail Line 18, while in the
latter case, we satisfy Line 18. Despite this uncertainty, observe that we are nonetheless guaranteed to either double the
window or execute RUNDOWN. Either of these outcomes count as progress, since either wcur moves closer to GOOD by
doubling, or RUNDOWN is executed on a window of size ϑ(n

↓
C) (in contrast, halving wcur would be counterproductive).

The intuition behind UNCERTAIN-HIGH is similar. If wcur ⇓ HIGH, then we can show that the number of successes
fails Line 17 (see Lemma 13) and that, ultimately, we halve wcur. However, between GOOD and HIGH, this cannot be
shown w.h.p.; it may hold if wcur is close to the lower end of HIGH, but not hold if wcur is close to the upper end of GOOD.
So, instead, we argue that we either halve wcur or execute RUNDOWN. Either of these actions counts as progress, since
either wcur moves closer to GOOD, or RUNDOWN is executed on a window of size ϑ(n

↓
C).

Ultimately, we are able to show the following key lemma (in Section A.3 of our appendix):

Lemma 19. The executions of COLLECT-SAMPLE and DIAGNOSIS guarantee that w.h.p.: (i) RUNDOWN is executed
within O(

↓
C log2(n)) slots, and (ii) the total expected collision cost until that point is O(n

↓
C log2(n)).

All Remaining Active Packets Succeed. The final subroutine, RUNDOWN, is executed once wcur = ϑ(n
↓
C), and

it allows all active packets to succeed. In each slot of wcur, every packet sends with probability 2/wcur. Otherwise, the
current window size is halved and the remaining active packets repeat this process. This continues until the window size
reaches ϑ(

↓
C log(w0)) = ϑ(

↓
C log(n)), where the asymptotic equality holds by recalling that C = poly(n). Once

this smallest window in the run is reached, O(log n) active packets remain. To finish these packets, CAB performs an
additional ϑ(ln(n

↓
C)) = ϑ(ln(n)) windows of size ϑ(n

↓
C), where any remaining active packet sends in each slot

with probability ϑ(1/n
↓
C).

We prove the following lemmas (in Section A.4 of our appendix):

Lemma 21. When RUNDOWN is executed, w.h.p. all packets succeed within O(n
↓
C ln(n)) slots.

Lemma 22. W.h.p. the expected collision cost for executing RUNDOWN is O(n
↓
C ln(n)).

Finally, our upper bound in Theorem 1 follows directly from Lemmas 19, 21, and 22.

4 Technical Overview for Lower Bound

In this section, we provide an overview of our argument, which focuses on placing a lower bound on the expected collision
cost. Here, we highlight the key lemmas in our argument, and our full proofs are provided in Section B of our appendix.

We consider only the set of slots, S, in the execution of any algorithm where at least two active packets remain, since
we cannot have a collision with a single active packet. While we do not always make this explicit, but going forward, any
slot t is assumed to implicitly belong to S.

Let pi(t) denote the probability that packet i sends in slot t. Note that, if a packet has terminated, its sending
probability can be viewed as 0. For any fixed slot t, the contention in slot t is Con(t) =

∑n
i=1 pi(t); that is, the sum of

the sending probabilities in that slot.

When Contention is High. We start by showing that any algorithm that has even a single slot t with Con(t) > 2 must
have ε(C) expected collision cost, which is one portion of our lower bound. This is done by deriving an expression for
the probability of a collision in any fixed slot t as a function of Con(t), which is useful when Con(t) is “high” (see
Lemmas 23, 24, and 25 in Section B of our appendix).

When Contention is Low. What about an algorithm where all slots of the execution have “low” contention (i.e., Con(t) ↑
2)? Our previous expression is hard to work with in this case. So, we derive a different expression for the probability of a
collision in a fixed slot t, which can be useful for small values of Con(t):

Lemma 26. Fix any slot t and let Con(t) ↑ 2. The probability of a collision in t is at least (1
110)

(
Con(t)2 ↔

∑
i pi(t)

2
)
.

However, this expression requires some additional work to be deployed in our argument, as we now describe.
For any fixed slot t ⇓ S , let pmax(t) be the maximum sending probability of any packet in slot t. Similarly, let psec(t)

↑ pmax(t) be the next-largest sending probability of any packet in slot t; note that psec(t) = pmax(t), if more than one
packet sends with probability pmax(t).

10 U. Biswas, T. Chakraborty, and M. Young

Define ε(t) = psec(t)/pmax(t). Our analysis ignores any slot t where Con(t) = 0; that is, any slot where every
packet has a sending probability of 0. We give such slots to any algorithm for “free”; that is, we do not include them in
the cost of the execution. Thus, ϱ(t) is always well-defined, since pmax(t) > 0.

Why do we need ϱ(t)? It captures a sense of “balance”. For our purposes, the situation is most “unbalanced” when
exactly one packet has non-zero sending probability, while all other packets have zero sending probability; that is, when
the total value of Con(t) > 0 is due to a single packet. Clearly, in such slots, there can be no collision and, correspond-
ingly, ϱ(t) = 0. In our argument, ϱ(t) plays a key role in establishing the following:

Lemma 27. For any fixed slot t, Con(t)2 ↔
∑

i pi(t)
2 → ϱ(t)Con(t)2/2.

A natural extension of ϱ(t) is εmin, which is the minimum ϱ(t) over all slots t ⇓ S. As we show momentarily, our
lower bound is parameterized by ϱmin. The last component of our argument addresses the sum of the contention over all
slots in S:

Lemma 30. Any algorithm that guarantees w.h.p. that n packets succeed must w.h.p. have∑
t↓S Con(t) = ε(n).

We can now establish a lower bound for this low-contention case:

Lemma 31. Consider any algorithm A whose contention in any slot is at most 2 and guarantees w.h.p. a makespan of
Õ(n

↓
C). W.h.p. the expected collision cost for A is ε̃(ϱminn

↓
C).

Proof. Let X be a random variable that is |S| under the execution of A. Note that, since w.h.p. the makespan is Õ(n
↓
C),

it must be the case that w.h.p. X = Õ(n
↓
C).

By Lemma 30, we have:

X∑

t=1

Con(t) → cn. (1)

for some constant c > 0. Let Yt = 1 if slot t ⇓ S has a collision; otherwise, Yt = 0. By Lemmas 26 and 27:

Pr(Yt = 1) → ϱ(t) · Con(t)2/220
→ ϱmin · Con(t)2/220

where the second line follows from the definition of ϱmin. The expected collision cost is:

X∑

t=1

P (Yt = 1) · C →
X∑

t=1

ϱminCon(t)2 · C
220

=
ϱmin · C

220

X∑

t=1

Con(t)2. (2)

By Jensen’s inequality for convex functions, we have:

∑X
t=1 Con(t)

2

X
→

(∑X
t=1 Con(t)

X

)2

(3)

Finally, the expected cost is at least:

ϱmin · C
220

X∑

t=1

Con(t)2 → ϱmin · C
220

(∑X
t=1 Con(t)

)2

X
by Equations 8 and 9

→ ϱmin · C
220

(
c
2
n
2

X

)
by Equation 7

= ε̃

(
ϱmin n

↓
C
)

where the second line follows by Equation 7, which was defined with regard to S, and so can be compared to Equation 8.
The last line follows since w.h.p. X = Õ(n

↓
C). ↘≃

Softening the Impact of Collisions in Contention Resolution 11

Given our analysis of the high- and low-contention cases, we have the following lower bound:

Theorem 4. Consider any algorithm that w.h.p. guarantees Õ(n
↓
C) makespan. Then, w.h.p., the expected collision cost

for A is ε̃(min{C,ϱminn
↓
C}).

What algorithms does our lower bound say something interesting about? We can start with our statement in Theorem
2. For a well-known lower bound with the standard cost model, Willard [35] defines and argues about fair algorithms.
These are algorithms where, in a fixed slot, every active packet sends with the same probability (and the probability
may change from slot to slot). Fair algorithms have ϱmin = 1, and for a sufficiently large collision cost—specifically,
C = ε(n2)—the lower bound becomes ε̃(n

↓
C). Given that CAB is fair and w.h.p. guarantees Õ(n

↓
C) makespan, we

thus have a lower bound that is asymptotically tight to a poly(log n)-factor with our upper bound.
Our lower bound also applies in a similar way to a generalized notion of fairness, where the sending probabilities of

any two packets are within some factor ς > 0. For example, if ς = ϑ(1), then ϱmin = ϑ(1). Indeed, we only need
such ς-fairness between the two packets with the largest probabilities for our lower bound to apply, although our bound
weakens as ς grows larger.

Another class of algorithms that our lower bound applies to is multiplicative weights update algorithms, where in
each slot every packet updates its sending probability by a multiplicative factor based on channel feedback in the slot.
Many of these algorithms are fair (such as [18,11,34,33,31,7,13]), but not all are (such as [11]). Our lower bound applies
in a non-trivial way to all such algorithms; that is, ϱmin > 0 given the update rules.

5 Conclusion and Future Work

We considered a model for the problem contention resolution where each collision has cost C. Our algorithm, COLLISION-
AVERSION BACKOFF, addresses the static case and guarantees w.h.p. that all packets succeed with makespan and ex-
pected collision cost that is Õ(n

↓
C).

There are several directions for future work that are potentially interesting. First, we would like to extend this cost
model to the dynamic setting (where packets may arrive over time) and design solutions. Many algorithms for the dynamic
case break the packet arrivals into (mostly) disjoint batches; however, this requires periodic broadcasting that can cause
collisions.

Second, for the lower bound, we believe (with some more work) that we can remove the poly(log n) factor. How-
ever, we would like to derive a more general lower bound. A significant challenge appears to be addressing algorithms that
set up slots where exactly one packet has non-zero sending probability, while all others have zero sending probability. For
example, an elected leader might “schedule” each packet their own exclusive slot in which to send (with probability 1).
Since there can be no collisions after such a schedule is implemented, it seems a lower bound argument must demonstrate
that establishing a schedule is costly.

Third, what if collisions are not fully dictated by the actions of packets? Some wireless settings are inherently “noisy”,
due to weather conditions, co-located networks, or faulty devices. Is there a sensible model for such settings and, if so,
can we reduce the cost from collisions?
Acknowledgements. We are grateful to the anonymous reviewers for their feedback on our manuscript. This work is
supported by NSF award CCF-2144410.

References

1. Abramson, N.: The ALOHA system: Another alternative for computer communications. In: Proceedings of the
November 17-19, 1970, fall joint computer conference. pp. 281–285 (1970)

2. Aldawsari, B.A., Chlebus, B.S., Kowalski, D.R.: Broadcasting on adversarial multiple access channels. In: Proceed-
ings of the IEEE 18th International Symposium on Network Computing and Applications (NCA). pp. 1–4 (2019)

3. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic broadcast on multiple access chan-
nels. In: Proceedings IEEE INFOCOM. pp. 1–5. IEEE (2010)

4. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access control for adversarial channels
with jamming. In: Proceedings of the International Colloquium on Structural Information and Communication Com-
plexity. pp. 89–100. Springer (2011)

5. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Packet latency of deterministic broadcasting in
adversarial multiple access channels. Journal of Computer and System Sciences 99, 27–52 (2019)

12 U. Biswas, T. Chakraborty, and M. Young

6. Anderton, W.C., Chakraborty, T., Young, M.: Windowed backoff algorithms for WiFi: Theory and performance under
batched arrivals. Distributed Computing 34, 367–393 (2021)

7. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop wireless networks. In:
Proceedings of the 27th ACM Symposium on Principles of Distributed Computing (PODC). pp. 45–54 (2008)

8. Ben-David, N., Blelloch, G.E.: Analyzing contention and backoff in asynchronous shared memory. In: Proceedings
of the ACM Symposium on Principles of Distributed Computing. pp. 53–62 (2017)

9. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for
simple channels. In: Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA). pp. 325–332 (2005)

10. Bender, M.A., Fineman, J.T., Gilbert, S.: Contention resolution with heterogeneous job sizes. In: Proceedings of the
14th Conference on Annual European Symposium (ESA). pp. 112–123 (2006)

11. Bender, M.A., Fineman, J.T., Gilbert, S., Kuszmaul, J., Young, M.: Fully energy-efficient randomized backoff: Slow
feedback loops yield fast contention resolution. In: Proceedings of the 43rd ACM Symposium on Principles of
Distributed Computing (PODC). p. 231–242 (2024). https://doi.org/10.1145/3662158.3662807

12. Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: How to Scale Exponential Backoff: Constant Throughput,
Polylog Access Attempts, and Robustness. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 636–654. SODA ’16 (2016)

13. Bender, M.A., Gilbert, S., Kuhn, F., Kuszmaul, J., Médard, M.: Contention resolution for coded radio networks. In:
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). pp. 119–130.
ACM (2022)

14. Bender, M.A., Kopelowitz, T., Kuszmaul, W., Pettie, S.: Contention resolution without collision detection. In: Pro-
ceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC). pp. 105–118 (2020)

15. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with log-logstar channel accesses. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing. pp. 499–508. STOC 2016
(2016)

16. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on selected
areas in communications 18(3), 535–547 (2000)

17. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. Journal of the
ACM (JACM) 48(1), 13–38 (2001)

18. Chang, Y., Jin, W., Pettie, S.: Simple contention resolution via multiplicative weight updates. In: Proceedings of the
Second Symposium on Simplicity in Algorithms (SOSA). pp. 16:1–16:16 (2019)

19. Chen, H., Jiang, Y., Zheng, C.: Tight trade-off in contention resolution without collision detection. In: Proceedings
of the ACM Symposium on Principles of Distributed Computing. pp. 139–149 (2021)

20. Chlebus, B.S.: Randomized communication in radio networks. Handbook of Randomized Computing 1, 401–456
(2001)

21. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Stability of the multiple-access channel under maximum broadcast
loads. In: Proceedings of the Symposium on Self-Stabilizing Systems (SSS). pp. 124–138. Springer (2007)

22. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple access channels in adversarial
environments. Distributed Computing 22(2), 93–116 (2009)

23. De Marco, G., Stachowiak, G.: Asynchronous shared channel. In: Proceedings of the ACM Symposium on Principles
of Distributed Computing. pp. 391–400. PODC ’17 (2017)

24. Dwork, C., Herlihy, M., Waarts, O.: Contention in shared memory algorithms. Journal of the ACM (JACM) 44(6),
779–805 (1997)

25. Fineman, J.T., Newport, C., Wang, T.: Contention resolution on multiple channels with collision detection. In: Pro-
ceedings of the 2016 ACM Symposium on Principles of Distributed Computing. pp. 175–184. PODC ’16 (2016)

26. Geréb-Graus, M., Tsantilas, T.: Efficient optical communication in parallel computers. In: Proceedings of the 4th
Annual ACM Symposium on Parallel algorithms and Architectures. pp. 41–48 (1992)

27. Goemans, M.: Chernoff bounds, and some applications. https://math.mit.edu/˜goemans/18310S15/
chernoff-notes.pdf (viewed May 2024) (Feb 2015)

28. Greenberg, R.I., Leiserson, C.E.: Randomized routing on fat-trees. In: Proceedings of the 26th Annual Symposium
on the Foundations of Computer Science (FOCS). pp. 241–249 (1985)

29. Jurdziński, T., Kuty!owski, M., Zatopiański, J.: Energy-efficient size approximation of radio networks with no colli-
sion detection. In: Proceedings of the 8th Annual International Conference (COCOON). pp. 279–289 (2002)

30. Metcalfe, R.M., Boggs, D.R.: Ethernet: Distributed packet switching for local computer networks. CACM 19(7),
395–404 (July 1976)

https://doi.org/10.1145/3662158.3662807
https://doi.org/10.1145/3662158.3662807
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf

Softening the Impact of Collisions in Contention Resolution 13

31. Ogierman, A., Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive MAC under adversarial SINR. In:
Proceedings of IEEE Conference on Computer Communications (INFOCOM). pp. 2751–2759 (2014)

32. Ramaiyan, V., Vaishakh, J.: An information theoretic point of view to contention resolution. In: 2014 Sixth Interna-
tional Conference on Communication Systems and Networks (COMSNETS). pp. 1–8. IEEE (2014)

33. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: An Efficient and Fair MAC Protocol Robust to Reactive Interference.
IEEE/ACM Transactions on Networking 21(1), 760–771 (2013)

34. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive Throughput in Multi-Hop Wireless Networks Despite
Adaptive Jamming. Distributed Computing 26(3), 159–171 (2013)

35. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2),
468–477 (May 1986)

36. Zhang, Z.: Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview and
challenges. IEEE Communications Surveys & Tutorials 8(1), 24–37 (2006)

14 U. Biswas, T. Chakraborty, and M. Young

Appendix

A Analysis for Our Upper Bound

In this part of the appendix, we provide our full proofs for our upper bound, which culminate in Theorem 1. We begin
in Section A.1 by addressing mathematical tools that are useful for our analysis. In Section A.2, we argue that w.h.p.
DIAGNOSIS correctly determines the current range and takes the correct action. We follow up in Section A.3 with a cost
analysis for the executions of COLLECT-SAMPLE. In Section A.4, we analyze RUNDOWN, showing that w.h.p. all packets
succeed, along with a bound on the expected cost. Finally, in Section A.5, we put all of these pieces together in order to
establish the correctness and bounds on the expected cost for COLLISION-AVERSION BACKOFF

For ease of presentation, our analysis assumes pessimistically that no packets succeed until they start executing
RUNDOWN. However, our results hold if we allow packets to succeed (and then terminate) earlier in the execution
COLLECT-SAMPLE, but this number is negligible (being Õ(

↓
n)).

A.1 Preliminaries

Throughout, we assume that n is sufficiently large. We make use of the following well-known facts.
Fact 1: The following inequalities hold.

(a) For any x, 1↔ x ↑ e
→x,

(b) For any 0 ↑ x < 1, 1↔ x → e
→x/(1→x),

(c) For any 0 ↑ x ↑ 1/2, 1↔ x → e
→2x.

Note that Fact 1(c) follows directly from Fact 1(b); however, the former is sometimes easier to employ, and we state it
explicitly to avoid any confusion. We also make use of the following standard Chernoff bounds, stated below.

Theorem 3. ([27]) Let X =
∑

i Xi, where Xi are Bernoulli indicator random variables with probability p. The follow-
ing holds:

Pr (X → (1 + ς)E[X]) ↑ exp

(
↔ς

2
E[X]
2 + ς

)
for any ς > 0

and

Pr (X ↑ (1↔ ς)E[X]) ↑ exp

(
↔ς

2
E[X]
2 + ς

)
for any 0 < ς < 1. ↘≃

Throughout, we use with high probability to mean with probability 1↔O(1/nω+1), where n
ω is an upper bound on

C (recall Section 1.1).
In our first lemma below, we prove an upper bound on the probability of a collision in any slot as a function of the

number of active packets. This result is a useful tool in our later arguments.

Lemma 1. Consider any slot t, where there exist m active packets, each sending with the same probability p, where
p < 1/m. The probability of a collision in slot t is at most 2m2p2

(1→mp) .

Softening the Impact of Collisions in Contention Resolution 15

Proof. Fix a time slot t. Let pi denote the probability that packet i sends in slot t and number of packets at the beginning
is m. The probability of collision in slot t is at most:

1↔ Pr(success in slot t)↔ Pr(empty slot in slot t)

= 1↔
(
m

1

)
p
1(1↔ p)(m→1) ↔

(
m

0

)
p
0(1↔ p)m

↑ 1↔mp(1↔ p)m ↔ (1↔ p)m

= 1↔ (1↔ p)m(mp+ 1)

↑ 1↔ e
→ mp

1→p (mp+ 1) by Fact 1(b)

↑ 1↔
(
1↔ mp

1↔ p

)
(mp+ 1)

↑ 1↔
(
1↔ mp

1↔mp

)
(mp+ 1) for mp < 1

= 1↔
(
mp↔ m

2
p
2

1↔mp
+ 1↔ mp

1↔mp

)

=
m

2
p
2

1↔mp
↔mp+

mp

1↔mp

=
m

2
p
2 ↔mp+m

2
p
2 +mp

1↔mp

=
m

2
p
2 ↔mp+m

2
p
2 +mp

1↔mp

=
2m2

p
2

(1↔mp)

which proves the claim. ↘≃

A.2 Correctness Analysis for DIAGNOSIS

In order to argue correctness for DIAGNOSIS, we give a case analysis for each of the ROCK-BOTTOM, LOW, GOOD,
and HIGH ranges. In each case, we provide the necessary bounds on successes and collision per sample, which allows
us to demonstrate that DIAGNOSIS correctly diagnoses the current range and performs the correct action. We start with
Lemmas 2, 3, 4, and 5, which establish lower and upper bounds on the number of successes in the ranges of LOW, GOOD,
and HIGH.

Lemma 2. For any window size wcur = xn
↓
C where x > 0 is a constant, the expected number of successes in a sample

of size d
↓
C ln(wcur) at most d ln(wcur)

x e
→1/(2x

↑
C).

Proof. Let Xi be an independent random variable where Xi = 1 when i-th slot in w contains a success, and Xi = 0
otherwise.

Pr(Xi = 1) =

(
n

1

)(
1

xn
↓
C

)(
1↔ 1

xn
↓
C

)n→1

↑ 1

x
↓
C
e
→(n→1)/(xn

↑
C) by Fact 1(a)

↑ 1

x
↓
C
e
→(n/2)/(xn

↑
C) since n → 2

=
1

x
↓
C
e
→1/(2x

↑
C)

16 U. Biswas, T. Chakraborty, and M. Young

Let X =
∑d

↑
C ln(wcur)

k=1 Xk, then the expected number of success:

E [X] ↑ E




d
↑
C ln(wcur)∑

k=1

Xk





=

d
↑
C ln(wcur)∑

k=1

E[Xk] by linearity of expectation

=
d
↓
C ln(wcur)

x
↓
C

e
→1/(2x

↑
C)

=
d ln(wcur)

x
e
→1/(2x

↑
C)

which proves the claim. ↘≃

Lemma 3. For any window size wcur = xn
↓
C where x > 0 is a constant, the expected number of successes in a sample

is at least d ln(wcur)
x e

→1/(x
↑
C).

Proof. Let Xi be an independent random variable where Xi = 1 when i-th slot in w contains a success, and Xi = 0
otherwise.

Pr(Xi = 1) =

(
n

1

)(
1

xn
↓
C

)(
1↔ 1

xn
↓
C

)n→1

→ 1

x
↓
C
e
→2(n→1)/(xn

↑
C) by Fact 1(c)

→ 1

x
↓
C
e
→1/(x

↑
C)
.

Let Xk be an independent random variable where Xk = 1 when k-th slot in the sample contains a success, and Xk = 0
otherwise. The expected number of successes in the sample is:

E [X] → E




d
↑
C ln(wcur)∑

k=1

Xk





=

d
↑
C ln(wcur)∑

k=1

E[Xk] by linearity of expectation

→ d
↓
C ln(wcur)

x
↓
C

e
→1/(x

↑
C)

=
d ln(wcur)

x
e
→1/(x

↑
C)

which proves the claim. ↘≃

Lemma 4. If wcur → an
↓
C, where a → 1 is a constant, then with probability at least 1↔ 1/nd↑ the number of successes

in a sample is at most (2d/a) ln(wcur), where d
↔ is an arbitrarily large constant depending on sufficiently large d.

Proof. Let x = a in Lemma 2, which implies that the expected number of successes in the sample is at most:

d ln(wcur)
a

e
→1/(2a

↑
C) ↑ d ln(wcur)

a
.

Let Xi = 1 if the i-th slot of the sample contains a success; otherwise, let Xi = 0. Let X =
∑d

↑
C ln(wcur)

i=1 Xi, and note
by the above that E[X] ↑ d ln(wcur)

a . By Theorem 3, with ς = 1 below, we have:

Softening the Impact of Collisions in Contention Resolution 17

Pr

(
X → (1 + ς)

d ln(wcur)
a

)
↑ e

→ (1)2d ln(wcur)
(1+2)a

= e
→ d ln(wcur)

3a

= w
→ d

3a
cur

↑ n
→ d

3a since wcur → n

= n
→d↑

where d
↔ can be an arbitrarily large constant, so long as d is sufficiently large. ↘≃

Our next lemma provides a useful lower bound on the number of successes.

Lemma 5. If n ↑ w ↑ bn
↓
C for a constant b → 10, then with probability at least 1 ↔ 1/nd↑ the number of successes

exceeds (d/2be) ln(wcur), where d
↔ is an arbitrarily large constant depending on sufficiently large d.

Proof. Let x = b in Lemma 3, which implies that the expected number of successes in the sample is at least:

d ln(wcur)
b

e
→1/(b

↑
C)

>
d ln(wcur)

e b

for any b → 10. Let Xi = 1 if the i-th slot of the sample contains a success; otherwise, let Xi = 0. Let X =∑d
↑

C ln(wcur)
i=1 Xi, and note by the above that E[X] → d ln(wcur)

be . By Theorem 3, with ς = 1/2, we have:

Pr

(
X ↑ (1↔ ς)

d ln(wcur)
be

)
↑ e

→ (1/2)2d ln(wcur)
(2+1/2)eb

= e
→ d ln(wcur)

10eb

= w
→ d

10eb
cur

↑ n
→ d

10eb

=
1

nd↑

where d
↔ can be an arbitrarily large constant, so long as d is sufficiently large. ↘≃

The next two lemmas pertain to the range of ROCK-BOTTOM. Lemma 6 shows that, when the window size is O(n/ log n),
the entire sample will consist of collisions. Unlike many of our other arguments, we cannot employ a Chernoff to establish
this fact. Lemma 7 handles the remainder of the ROCK-BOTTOM range, showing that much of the sample will consist of
collisions.

Lemma 6. Suppose that 1 ↑ wcur ↑ n
c lnn and n is sufficiently large and c → 1 is a constant. Then, with probability at

least 1↔ 1/nd↑ , the entire sample consists of collisions, where d
↔ depends on sufficiently large c.

Proof. For any fixed slot, the probability of a collision is at least 1 minus the probability of a success, minus the proba-
bility of that the slot is empty. In other words, the probability of a collision is at least:

1↔
(
1↔ c lnn

n

)n

↔
(
n

1

)(
c lnn
n

)(
1↔ c lnn

n

)n→1

→ 1↔ 1
ec lnn

↔
(

c lnn

ec(n→1) ln(n)/n

)
by Fact 1(a)

→ 1↔ 1
ec lnn

↔
(

c lnn

ec ln(n)/2

)
since n→1

n → 1
2 for n → 2

= 1↔ 1
nc

↔ c lnn

nc/2

→ 1↔ 1

nd↑
for n sufficiently large

which yields the claim. ↘≃

18 U. Biswas, T. Chakraborty, and M. Young

Lemma 7. Suppose n
c lnn < wcur ↑ n, where c → 1 is any constant. Then, with probability at least 1↔1/nd↑ , the sample

contains at least d
↓
C ln(wcur)/(8e

2) slots consists of collisions, where d
↔ is an arbitrarily large constant depending on

sufficiently large d.

Proof. Let the indicator random variable Xi = 1 if the i-th slot of the d
↓
C ln(wcur) slots contains a collision; otherwise,

let Xi = 0. The probability of a collision is lower bounded as follows.

Pr(Xi = 1) →
(
n

2

)(
1
wcur

)2 (
1↔ 1

wcur

)n→2

→
(
n

2

)(
1
wcur

)2 (
1↔ 1

wcur

)n

→
(
n(n↔ 1)
2w2

cur

)
e
→2n/wcur by Fact 1(c)

→ (n↔ 1)
2ne2

minimized when wcur = n

→ 1
4e2

since n→1
n → 1

2 for n → 2.

Let X =
∑d

↑
C ln(wcur)

i=1 Xi. The expected number of collisions in the sample of d
↓
C ln(wcur) slots is:

E [X] → E




d
↑
C ln(wcur)∑

i=1

Xi





=
d
↓
C ln(wcur)
4e2

by linearity of expectation.

We then employ Theorem 3, with ς = 1/2, to obtain:

Pr

(
X ↑ (1↔ ς)

d
↓
C ln(wcur)
4e2

)
↑ e

→ (1/2)2d
↓

C ln(wcur)
(5/2)4e2

= e
→ d

↓
C ln(wcur)
40e2

= w
→ d

↓
C

40e2
cur

↑ (n/c log n)→
d
↓

C
40e2

↑ n
→d↑

where d
↔ can be an arbitrarily large constant, so long as d is sufficiently large. ↘≃

Lemma 8. Under DIAGNOSIS, all packets witness the same number of empty slots, successes, and collisions.

Proof. In each slot, a packet is either sending or listening. First, consider the case where at least one packet sends. Each
such sending packet knows whether it succeeded (i.e., a success) or it failed (i.e., a collision). Each non-sending packet
listens and hears the success (i.e., a success) or the failure (i.e., a collision). Second, if no packet sends, then every packet
is listening and hears the same thing: silence. Therefore, in all cases, each packet witnesses the same outcome of the
slot. ↘≃

Lemma 8 guarantees that all packets are always in the same window (or have the same sending probability) when
executing DIAGNOSIS, and they always take the same action in an execution of DIAGNOSIS. The following lemmas
establish that DIAGNOSIS takes the correct action in each execution.

Lemma 9. With probability at least 1 ↔ O(1/nd↑), if wcur ⇓ ROCK-BOTTOM, then all packets double their window,
where d

↔ is an arbitrarily large constant depending on sufficiently large d.

Softening the Impact of Collisions in Contention Resolution 19

Proof. We do a case analysis. For the first case, consider that wcur ⇓ [1, n/(c lnn)) for some sufficient large constant
c → 1. By Lemma 6, with probability at least 1↔ n

→d↑ , all slots in the sample contain a collision. Therefore, w.h.p., the
if-statement on Line 17 is not entered and, instead, the matching else-statement on Line 25 is entered. Since all sample
slots are collisions, the if-statement on Line 26 is entered, and the window doubles.

For the second case, consider wcur ⇓ [n/(c lnn), n). Either we (a) enter the first if-statement on Line 17, or we (b)
enter the matching else-statement on Line 25.

• Subcase (a). If the second if-statement on Line 18 is entered, then we note by Lemma 7, w.h.p., that we have at least
d
↓
C ln(wcur)/(8e

2) collisions, which means we double the window, as desired. Otherwise, we execute Line 23, and
the window doubles.

• Subcase (b). By Lemma 7 w.h.p. we have at least d
↓
C ln(wcur)/(8e

2) collisions, which means we enter the if-
statement on Line 26 and double the window.

In both cases, the packet doubles its window. ↘≃

Lemma 10. With probability 1 ↔ O(1/nd↑), if wcur ⇓ LOW, then all packets double their window, where d
↔ is an

arbitrarily large constant depending on sufficiently large d.

Proof. By Lemma 5 with b = 10, for w such that n ↑ w < 10n
↓
C, with probability at least 1 ↔ n

→d↑ the number of
successes exceeds d

20e ln(wcur). Therefore, the first if-statement on Line 17 is entered, but the next if-statement on Line
18 is not. Thus, Line 23 will be executed and so the window will double, as claimed. ↘≃

The following lemma places an upper bound on the number of collisions when the window is at least 200n
↓
C. This

allows us to argue that when we are in the GOOD and HIGH ranges, we avoid executing the lines in DIAGNOSIS that
would double the window.

We note that the next lemma gives a very loose upper bound on the number of collisions. In fact, if we expected
even a single collision in this range, our claimed upper bound would not hold. The careful reader will note that (in our
proof) the expected number of collisions is Õ(1/

↓
C); however, a loose upper bound that holds with high probability is

sufficient to construct the rules for DIAGNOSIS.

Lemma 11. With probability at least 1 ↔ 1/nd↑ , if wcur → 200n
↓
C, then the number of collisions in the sample is at

most (d/90) ln(wcur), where d
↔ is an arbitrarily large constant depending on sufficiently large d.

Proof. By Lemma 1, the probability of a collision in a slot is at most 2n2p2

(1→np) , where p ↑ 1/(200n
↓
C). Plugging in, we

obtain that the probability of collision is upper bounded by:

2n2
p
2

(1↔ np)
↑ 2n2(1/(200n

↓
C))2(

1↔ 1/(200
↓
C)
)

=
1

200C(1↔ 1/200)

↑ 1
100C

Let the indicator variable Xi = 1 if the i-th slot is a collision; otherwise, let Xi = 0. Let X =
∑d

↑
C ln(wcur)

i=1 Xi. The
expected number of collisions in the sample of d

↓
C lnwcur slots is:

E [X] ↑ E




d
↑
C ln(wcur)∑

i=1

Xi





=

d
↑
C ln(wcur)∑

i=1

E[Xi] by linearity of expectation

↑ d ln(wcur)

100
↓
C

↑ d ln(wcur)
100

20 U. Biswas, T. Chakraborty, and M. Young

Letting ς = 1/10 in Theorem 3, we have:

Pr

(
X → (1 + 1/10)

d ln(wcur)
100

)
↑ Pr

(
X → d ln(wcur)

90

)

↑ e
→ (1/10)2d ln(wcur)

2+(1/10)

↑ e
→ d ln(wcur)

210

↑ 1

wd↑
cur

↑ 1

nd↑
since wcur → n

where d
↔ can be arbitrarily large depending only on d. ↘≃

We now argue that DIAGNOSIS takes the correct action in each of the GOOD and HIGH ranges.

Lemma 12. With probability at least 1 ↔ O(1/nd↑), if wcur ⇓ GOOD, then all packets execute RUNDOWN, where d
↔ is

an arbitrarily large constant depending on sufficiently large d.

Proof. Since wcur ⇓ GOOD, this means that 200n
↓
C ↑ wcur ↑ 103n

↓
C. By Lemma 5 with b = 103, the number of

successes in the sample exceeds d lnwcur
2e 103

>
2d ln(wcur)

105
. Therefore, the if-statement on Line 17 is entered. By Lemma 4

with a = 200, the number of successes is at most 2d ln(wcur)
200 = d ln(wcur)

100 ↑ d ln(wcur)
20e ; thus, the if-statement on Line 18

is entered. By Lemma 11, the number of collisions is at most (d/90) ln(wcur) < d
↓
C ln(wcur)/(8e

2), so Line 19 is not
entered, and instead Line 21 is entered, which executes RUNDOWN. ↘≃

Lemma 13. With probability at least 1↔O(1/nd↑), if wcur ⇓ HIGH, then all packets halve their window, where d
↔ is an

arbitrarily large constant depending on sufficiently large d.

Proof. If wcur ⇓ HIGH, then wcur > 105n
↓
C. By Lemma 4 with a = 105, the number of successes is at most

(2d/105) ln(wcur). Thus, the else-statement on Line 25 is entered. By Lemma 11, the number of collisions is at most
(d/90) ln(wcur) <

d
↑

C ln(wcur)
8e2

, and so Line 28 is entered and the window is halved. The total error associated with the
lemmas invoked is O(1/nd↑). ↘≃

Finally, what about the “uncertain” intervals [10n
↓
C, 200n

↓
C) and (103n

↓
C, 105n

↓
C]? Our next two lemmas address

this aspect by showing that the DIAGNOSIS revises the current window towards the GOOD or executes RUNDOWN
directly.

Lemma 14. With probability at least 1 ↔ O(1/nd↑), if wcur ⇓ UNCERTAIN-LOW, then either the window doubles or
RUNDOWN is executed, where d

↔ is an arbitrarily large constant depending on sufficiently large d.

Proof. Since wcur ⇓ UNCERTAIN-LOW, we have that wcur ⇓ [10n
↓
C, 200n

↓
C). By Lemma 5 with b = 200 (the part of

UNCERTAIN-LOW where successes are most scarce), the number of successes in the sample still exceeds d lnwcur
400e , which

exceeds 2d ln(wcur)
105

, so Line 17 will be true. For the remaining lines that may be executed—Lines 18 to 24— we either
double the window (due to many collisions) or execute RUNDOWN, as claimed. ↘≃

Lemma 15. With probability at least 1 ↔ O(1/nd↑), if wcur ⇓ UNCERTAIN-HIGH, then either the window halves or
RUNDOWN is executed, where d

↔ is an arbitrarily large constant depending on sufficiently large d.

Proof. We prove this by ruling out all the ways in which wcur could (incorrectly) double.
Unlike our argument for wcur ⇓ GOOD, we cannot guarantee that Line 17 will be executed, since our window

might be large, say just shy of 105n
↓
C, (recall that UNCERTAIN-HIGH = [103n

↓
C, 105n

↓
C)), and we cannot prove

a sufficient number of successes. However, if we proceed to Line 25, then by Lemma 11, the number of collisions is at
most (d/90) ln(wcur), which means there are not enough collisions to meet the if-statement condition on 26, and thus the
window will not be doubled here.

Another way in which the window can (incorrectly) double is via Line 23. However, we only execute Line 23 if
Line 18 fails to hold; that is, in the case that the sample contains more than than d ln(wcur)

20e successes. However, by

Softening the Impact of Collisions in Contention Resolution 21

Lemma 4 with a = 103 (the part of UNCERTAIN-HIGH where successes are most likely), the sample contains at most
2d ln(wcur)

103
<

d ln(wcur)
20e successes, and so Line 18 will indeed execute.

Finally, in the case that Line 18 executes, we do not have enough collisions to satisfy Line 26, again by Lemma 11.
Thus, the window cannot double via Line 20

We have shown that, when wcur ⇓ UNCERTAIN-HIGH, either the window must halve, or RUNDOWN is executed, as
claimed. ↘≃

A.3 Cost Analysis for COLLECT-SAMPLE

The next lemmas establish bounds on the expected collision cost for executing COLLECT-SAMPLE. To this end, we
employ the results established above, which hold with probability at least 1↔ 1/nd↑ for as large a constant d ↔ → 1 as we
wish, depending only on sufficiently large d. Thus, the results in this section also hold with this high probability, and for
ease of presentation, we omit this from our technical lemma statements and arguments.

Lemma 16. If wcur ⇓ ROCK-BOTTOM ⇔ LOW, the execution of COLLECT-SAMPLE has O(n
↓
C ln(n)) expected colli-

sion cost.

Proof. We prove this using a case analysis.

Case 1: C → 2n. This captures all of ROCK-BOTTOM and the left endpoint of LOW. Here, even if the entire sample
consists of collisions, then the cost is at most:

(d
↓
C ln(wcur))C ↑ (d

↓
C ln(n

↓
C))2n

= O(n
↓
C ln(n))

Case 2: C > 2n. With high probability, wcur ⇓ LOW only if the initial window lies in LOW. (With high probability, we
cannot have started in ROCK-BOTTOM and moved up, since we start at a window of size C > n in this case.)

The probability of a collision is maximized when the window is smallest; that is, when the window has size C
(which is the initial window size), since w.h.p. the window only increases (given that we are in LOW). By Lemma 1, the
probability of a collision is at most:

2n2
p
2

1↔ np
↑ 2n2(1/C)2

1↔ n(1/C)
↑ 4n2

/C2 since C > 2n

where the equation from Lemma 1 is applicable, since p = 1/C < 1/(2n). Thus, expected cost is at most:
(
d

↓
C ln(wcur)

)(
4n2

C2

)
C =

4dn2 ln(wcur)↓
C

<
4dnC ln(wcur)↓

C
since C > 2n

= 4dn
↓
C ln(wcur)

= 4dn
↓
C ln(10n

↓
C) since wcur ⇓ LOW

= O(n
↓
C ln(n)) since C = O(poly(n))

as claimed. ↘≃

Lemma 17. If wcur ⇓ UNCERTAIN-LOW ⇔ GOOD ⇔ UNCERTAIN-HIGH, then the execution of COLLECT-SAMPLE has
O(

↓
C ln(n)) expected collision cost.

Proof. By Lemma 1 with m = n and p ↑ 1
n
↑
C , the probability of a collision is at most:

2m2
p
2

1↔mp
↑

2n2 1
n2C

1↔ n
n
↑
C

since this value is largest for p = 1
n
↑
C

=
2

C
(
1↔ 1↑

C

)

= O(1/C)

22 U. Biswas, T. Chakraborty, and M. Young

Let X =
∑d

↑
C ln(wcur)

i=1 Xi. The expected number of collisions in the sample of d
↓
C ln(wcur) slots is:

E [X] → E




d
↑
C ln(wcur)∑

i=1

Xi





=

d
↑
C ln(wcur)∑

i=1

E[Xi] by linearity of expectation

= O

(
d
↓
C ln(wcur)
C

)

= O

(
d ln(n)↓

C

)
since C = poly(n)

Thus, the expected collision cost is at most:

O

(
d ln(n)↓

C

)
C = O(

↓
C ln(n))

as claimed. ↘≃

Lemma 18. If wcur ⇓ HIGH, the execution of COLLECT-SAMPLE results in an O(
↓
C ln(n)) expected collision cost.

Proof. For HIGH, by using Lemma 1, we plug in the value m = n (number of packets) and p ↑ 1
105n

↑
C (sending

probability). The probability of a collision is at most:

2m2
p
2

1↔mp
↑

2n2 1
n21010C

1↔ n
105n

↑
C

since this value is largest for p = 1
105n

↑
C

=
2

1010C
(
1↔ 1

105
↑
C

)

= ϑ

(
1
C

)

We have a sample of size d
↓
C ln(wcur). Let X =

∑d
↑
C ln(wcur)

i=1 Xi. The expected number of collisions in the sample
of d

↓
C ln(wcur) slots is:

E [X] = E




d
↑
C ln(wcur)∑

i=1

Xi





=

d
↑
C ln(wcur)∑

i=1

E[Xi] by linearity of expectation

= O

(
d
↓
C ln(wcur)
C

)

= O

(
d ln(n)↓

C

)
since C = poly(n).

Thus, multiplying by C, we obtain that the expected collision cost is at most O(
↓
C ln(n)). ↘≃

Lemma 19. The executions of COLLECT-SAMPLE and DIAGNOSIS guarantee that: (i) RUNDOWN is executed within
O(

↓
C log2(n)) slots, and (ii) the total expected collision cost until that point is O

(
n
↓
C log2(n)

)
.

Softening the Impact of Collisions in Contention Resolution 23

Proof. We first bound the number of slots, and then we bound the expected collision cost.

(i) Bound on Number of Slots. By Lemmas 9, 10, and 14, DIAGNOSIS correctly doubles the window or executes RUN-
DOWN. Similarly, by Lemmas 13 and 15, DIAGNOSIS correctly halves the window or executes RUNDOWN. Therefore,
DIAGNOSIS is always making progress towards reaching GOOD.

How many window halvings or doublings are required to reach GOOD? We start at an initial window of size C, and
either GOOD is smaller—in which case, we must perform O(log(C)) = O(log(n)) samples—or larger—in which case,
we must again perform O(log(n

↓
C)) = O(log(n)) samples. Thus, the number of slots until GOOD is reached is at

most the sample size multiplied by this number of samples, which is O(
↓
C log2(n)). Then, by Lemma 12, RUNDOWN

is executed.

(ii) Bound on Expected Collision Cost. Let Si denote the collision cost for sample i when executing DIAGNOSIS, where
i = 1, ..., h, where h = O(log(n)) is the number of samples. Denote the total cost from collisions by S =

∑h
i=1 Si. By

Lemmas 16, 17, and 18, we have:

E[S] = O

(
hn

↓
C log(n)

)

= O

(
n

↓
C log2(n)

)

as claimed. ↘≃

A.4 Correctness and Cost Analysis for RUNDOWN

A single execution of lines 33 to 35 in RUNDOWN of COLLISION-AVERSION BACKOFF is called a run. In any run, all
packets operate over a window of size wcur and send themselves in each slot with probability 2/wcur. At the end of the
window, those packets that succeeded will terminate, while the remaining packets will carry on into the next window,
which has size wcur/2.

Our overall goal is to show that (roughly) a logarithmic in n runs are sufficient for all packets to succeed. To this
end, our next lemma (below) argues that in each run at least half of the remaining packets succeed. Again, throughout
this section, our results hold with a tunable probability of error that is polynomially small in n, and we omit this in our
lemma statements.

Lemma 20. Suppose m packets execute a window of RUNDOWN (wcur), where φ lnn ↑ m ↑ n, φ → 1 is a positive
constant, and wcur → 8m

↓
C. Then, at least m/2 packets succeed.

Proof. Fix a packet and calculate the probability of failing over the entire window of size 8m
↓
C. To do so, note that the

probability that this packet succeeds in a fixed slot is: (i) the probability that the packet sends in this slot, multiplied by
(ii) the probability that all other m↔ 1 packets remain silent. That is:

(
2
wcur

)(
1↔ 2

wcur

)m→1

.

Thus, the probability of failure in the slot is:

1↔
(

2
wcur

)(
1↔ 2

wcur

)m→1

.

24 U. Biswas, T. Chakraborty, and M. Young

It follows that the probability of failing over all wcur slots is:
(
1↔ 2

wcur

(
1↔ 2

wcur

)m→1
)wcur

↑
(
1↔ 2

wcur

1

e
4(m→1)

wcur

)wcur

by Fact 1(c)

↑
(
1↔ 2

wcur

1

e
4m
wcur

)wcur

↑ e
→ 2wcur

(wcur)(e4m/wcur) by Fact 1(a)

↑ e
→ 2

e4m/wcur

↑ 1

e
2

e4m/wcur

↑ 1

e

2

e4m/(8m
↓

C)

since this is maximized when wcur = 8m
↓
C

↑ 1

e

(
2

e1/(2
↓

C)

)

↑ 0.3 for all C → 1. (4)

For i = 1, ...,m, let the indicator random variable Xi = 1 if packet i fails over the entire window; otherwise, let Xi = 0.
We let X =

∑m
i=1 Xi, and note that:

E[X] ↑ E

[
m∑

i=1

Xi



m∑

i=1

E[Xi] by linearity of expectation

=
m∑

i=1

Pr(Xi = 1)

↑ 0.3m

By Theorem 3, letting ς = 2/3, we have:

Pr (X → (1 + ς)0.3m) = Pr (X → m/2)

↑ e
→(2/3)20.3m/(8/3)

= e
→m/20

↑ e
→(ϑ/20) lnn since m → φ lnn

= 1/nd↑
.

Therefore, with probability at least 1↔ 1/nd↑ , at least half of the packets succeed. ↘≃

Discussion of Lemma 20. We highlight that Lemma 20 applies to all windows in a fixed run. That is, in the first window
of the run we have m = n and wcur = kn

↓
C for some constant k → 8. In the second window of the run, we have

m ↑ n/2 and wcur = k(n/2)
↓
C. Referring to Line 32 of COLLISION-AVERSION BACKOFF, we see that this process—

whereby the number of packets is at least halved, and the window size is halved—stops once we reach a window in the
run with size less than ϑ(lg(w0)

↓
C), where w0 = ϑ(n

↓
C).

How many windows are in the run? That is, how many times can we halve our initial window of size w0 = kn
↓
C

before it drops below size lg(w0)
↓
C = lg(kn

↓
C)
↓
C? We solve for the number of runs j in:

kn
↓
C

2j
= lg

(
kn

↓
C
)↓

C

which yields j = lg(kn) ↔ lg lg(kn
↓
C). Since C = poly(n), this means j = lg(n) ↔ lg lg(n) + O(1). This implies

that, over these j windows in the run, n packets will be reduced to no more than n/2j = O(log n) packets by the final
window. Therefore, we have the following corollary.

Softening the Impact of Collisions in Contention Resolution 25

Corollary 1. The number of windows in the run in RUNDOWN is lg(n)↔ lg lg(n) +O(1), after which only O(log(n))
packets remain.

For the remainder of this section, all of the lemmas that we invoke hold with high probability in n, and thus we omit
this from most of our lemmas statements and arguments. We are now able to prove correctness and an upper bound on
the number of slots incurred by RUNDOWN.

Lemma 21. When RUNDOWN is executed, all packets succeed within O(n
↓
C ln(n)) slots.

Proof. By Lemmas 12, 14, and 15, RUNDOWN will execute with a window size w ⇓ [10n
↓
C, 105n

↓
C]. By Corollary 1,

RUNDOWN reduces the number of remaining packets to O(log n) and uses r = lg(n)↔ lg lg(n)+O(1) windows in the
run to do so. Thus, the number of slots RUNDOWN executes over is at most:

r∑

j=0

105n
↓
C

2j
= O

(
n

↓
C
)

by the sum of a geometric series.
Any remaining packets, of which there are O(log n), execute over a window of size w0 ⇓ [10n

↓
C, 105n

↓
C]. By

the same analysis used to reach Equation 4 in the proof of Lemma 20, each packet succeeds with probability at least 0.7.
Repeating this c ln(w0) ↑ c ln(n) times guarantees that all remaining packets succeed with an error bound of at

most:

(
7
10

)c ln(n)

↑ n
c ln(7/10)

↑ 1

nd↑

so long as c is sufficiently large. Finally, the number of slots incurred by this component of RUNDOWN is O(log2(n)).
↘≃

The next lemma establishes an upper bound on the expected collision cost for RUNDOWN.

Lemma 22. The expected collision cost for executing RUNDOWN is O(n
↓
C ln(n)).

Proof. By Lemmas 12, 14, and 15, RUNDOWN first executes with m = n and w0 ⇓ [10n
↓
C, 105n

↓
C]. By Lemma 20,

in each window of a run, the number of packets is reduced by at least a factor of 2, and then the window size halves. That
is, at the start of the i-th run, the number of packets is mi ↑ n/2i and the window size is wi = w0/2

i, for i → 0.
We employ Lemma 1, where pi = 2/wi. We have that the expected number of collisions over a window of size wi

in the run is at most:

(
2m2

i p
2
i

1↔mipi

)
wi =

(
2m2

i p
2
i

1↔mipi

)(
2
pi

)

=
4m2

i pi

1↔mipi

= O(m2
i pi)

26 U. Biswas, T. Chakraborty, and M. Young

By Corollary 1, there are r = lg(n) ↔ lg lg(n) + O(1) windows in the run. Summing up over these windows, by
linearity of expectation, the total expected number of collisions is:

O

(
r∑

i=0

m
2
i pi

)
= O

(
r∑

i=0

(
n

2i

)2
(

2
wi

))

= O

(
r∑

i=0

(
n

2i

)2
(
2i+1

n
↓
C

))

= O

(
r∑

i=0

(
n

2i
↓
C

))

= O

(
n↓
C

r∑

i=0

1
2i

)

= O

(
n↓
C

)

where the last line follows from the sum of a geometric series. Thus, multiplying this by C, we obtain that the expected
collision cost is O(n

↓
C).

Finally, in lines 36 to 38, the remaining O(log n) packets execute over a window of size w0, doing so O(ln(w0) =
O(ln(n)) times before succeeding, as established by Lemma 21. Certainly, each of the O(ln(w0)) executions has ex-
pected collision cost no more than that incurred by lines 32 to 35 (where we have n packets executing), and thus the
expected collision cost is O(n

↓
C ln(w0)) = O(n

↓
C ln(n)). ↘≃

A.5 Analysis of COLLISION-AVERSION BACKOFF

We wrap up our analysis of CAB by calling on our main lemmas from the previous sections.

Theorem 1 W.h.p. COLLISION-AVERSION BACKOFF guarantees that all packets succeed, the makespan is O(n
↓
C log(n)),

and the expected collision cost is O(n
↓
C log2(n)).

Proof. By Lemma 19, over the course of executing COLLECT-SAMPLE and DIAGNOSIS, w.h.p. CAB executes over
O(

↓
C log2(n)) slots and the expected collision cost is O(n

↓
C log2(n)). By Lemmas 21 and 22,w.h.p. when RUNDOWN

is executed in CAB, all packets succeed within O(n
↓
C ln(n)) slots and the expected collision cost is O(n

↓
C ln(n)).

Therefore, CAB guarantees that all packets succeed, the makespan is O(n
↓
C log(n)), and the expected collision cost is

O(n
↓
C log2(n)). ↘≃

B Lower Bound

We consider only the set of slots, S, in the execution of any algorithm where at least two active packets remain, since we
cannot have a collision with a single active packet. While we do not always make this explicit, but going forward, any
slot t is assumed to implicitly belong to S.

Let pi(t) denote the probability that packet i sends in slot t. Note that, if a packet has terminated, its sending
probability can be viewed as 0. For any fixed slot t, the contention in slot t is Con(t) =

∑n
i=1 pi(t); that is, the sum of

the sending probabilities in that slot.
We begin by arguing that any algorithm with contention exceeding 2 in any slot must incur an expected collision cost

of ε(C). We do this by deriving an upper bound on the probability of (i) a success and (ii) an empty slot, as a function of
contention. In turn, this provides a lower bound on the probability of a collision that is useful when contention exceeds 2,
allowing us to show ε(C) expected cost in Lemma 25.

Lemma 23. Fix any slot t. The probability of a success is at most e·Con(t)
eCon(t)

.

Softening the Impact of Collisions in Contention Resolution 27

Proof. Fix a slot t. For any sending probabilities pi(t), the probability of a success in slot t is:

∑

all j

(
pj(t)



all i ↔= j

(1↔ pi(t))

)

↑
∑

all j

(
pj(t)e

→
∑

all i ↔= j pi(t)
)

by Fact 1(a)

↑
∑

all j

(
pj(t)e

→(Con(t)→1)
)

since pj(t) ↑ 1

↑ Con(t)
eCon(t)→1

↑ eCon(t)
eCon(t)

which completes the proof. ↘≃

Lemma 24. Fix any slot t. If Con(t) > 2, then the probability of a collision is at least 1/10.

Proof. By Lemma 23, the probability of a success in slot t is at most eCon(t)
eCon(t)

. The probability that slot t is empty is at
most


all j(1↔ pj(t)) ↑ e

→Con(t) by Fact 1(a). Therefore, the probability of a collision is at least:

1↔ eCon(t)
eCon(t)

↔ e
→Con(t) → 1↔ 2e

e2
↔ e

→2 since Con(t) > 2

→ 1/10.

as claimed. ↘≃

Lemma 25. Any algorithm that has Con(t) > 2 has an expected collision cost that is ε(C).

Proof. Let t be any slot where Con(t) > 2 in the execution of any algorithm. By Lemma 24, the probability of a collision
is at least 1/10. Therefore, the expected cost from collisions is at least C/10. ↘≃

Next, we need to consider algorithms with “low” contention in every slot; that is, Con(t) ↑ 2 for all t. As a stepping
stone, in Lemmas 26 we derive a lower bound on the probability of a collision that is a function of contention, and which
is easy to work with when contention is between 0 and 2.

Lemma 26. Fix any slot t and let Con(t) ↑ 2. The probability of a collision in t is at least (1
110)

(
Con(t)2 ↔

∑
i pi(t)

2
)
.

Proof. For ease of presentation, in this proof we write pi instead of pi(t). We restrict our analysis to collisions involving
only two packets; note that considering collisions involving three or more packets can only increase the probability of a
collision.

For the following analysis, we restrict all sending probabilities pi are at most 1/2; however, we will remove this
restriction momentarily. The probability of collision in slot t is at least:

1
2

(
p1p2

n

i=1

(1↔ pi) + p1p3

n

i=1

(1↔ pi) + ...+ p1pn

n

i=1

(1↔ pi)+

p2p1

n

i=1

(1↔ pi) + p2p3

n

i=1

(1↔ pi) + ...+ p2pn

n

i=1

(1↔ pi)+

.

.

.

pnp1

n

i=1

(1↔ pi) + pnp2

n

i=1

(1↔ pi) + ...+ pnpn→1

n

i=1

(1↔ pi)

)

28 U. Biswas, T. Chakraborty, and M. Young

where the leading factor of 1/2 comes from double counting terms (e.g., p1p2 and p2p1), which allows us to simply
below. Since each sending probability is at most 1/2, we can use Fact 1(c) to simplify in the following way.

→
(
1
2

)
e
→2Con(t)

(
p1

∑

j ↗=1

pj + p2

∑

j ↗=2

pj + · · ·+ pn

∑

j ↗=n

pj

)

=

(
1
2

)
e
→2Con(t)

(
p1

((
∑

all j

pj

)
↔ p1

)
+p2

((
∑

all j

pj

)
↔ p2

)
+ · · ·+ pn

((
∑

all j

pj

)
↔ pn

))

=

(
1
2

)
e
→2Con(t) ((

p1Con(t)↔ p
2
1

)
+

(
p2Con(t)↔ p

2
2

)
+ · · ·+

(
pnCon(t)↔ p

2
n

))

=

(
1
2

)
e
→2Con(t)

(
Con(t)(p1 + p2 + · · ·+ pn)↔

∑
p
2
j

)

→
Con(t)2 ↔

∑
i p

2
i

2e2Con(t)

→
Con(t)2 ↔

∑
i p

2
i

110
since Con(t) ↑ 2.

Finally, note that if we allow the sending probabilities to be larger than 1/2, this can only increase the probability of a
collision; therefore, our lower bound holds even when the sending probabilities are not restricted. ↘≃

Before making our next argument, consider a simple example with two packets, whose sending probabilities are
p1(t) = 1 and p2(t) = 1/100 in slot t. Observe that Con(t)2 ↔ (p21 + p

2
2) = 1/50 ↖ Con(t)2. However, here

ϱ(t) = 1/100, and it is true that Con(t)2 ↔ (p21 + p
2
2) → ϱ(t)Con(t)2. Lemma 27 below generalizes this inequality.

Lemma 27. For any fixed slot t, Con(t)2 ↔
∑

i pi(t)
2 → ϱ(t)Con(t)2/2.

Proof. For ease of presentation, in this proof we write pi instead of pi(t). Fix a slot t. Without loss of generality let the
summands of Con(t) be labeled in non-monotonic decreasing order: p1 → p2 → ... → pn. For part one of our argument,
we note that:

p1p2 → p
2
1ϱ(t) (5)

since ϱ(t) = p2/p1.
Part two of our argument proceeds as follows. For i → 2, for any p

2
i term removed from Con(t)2, we focus on a

‘leftover” term in Con(t)2 ↔
∑

i p
2
i of the form pi→1pi. For example, for p22 we have a leftover term p1p2, and we note

that p1p2 → p
2
2, since p1 → p2. Generalizing, the leftover term pi→1pi satisfies pi→1pi → p

2
i , since pi→1 → pi.

We tie things together by first noting:

Con(t)2 ↔
∑

i

p
2
i → p1p2 + p1p2 + p2p3 + p3p4 + ...+ pn→1pn

where we highlight that we need both p1p2 terms; one to offset the subtraction of p21 from Con(t), as discussed in part
one of our argument, and the other to offset the subtraction of p22 from Con(t), as discussed in part two of our argument.
For the subtraction of p2i for i → 3, we need only a single corresponding term pi→1pi to offset this. Thus, continuing from
above, we have:

p1p2 + p1p2 + p2p3 + p3p4 + ...+ pn→1pn

→ p
2
1ϱ(t) + p1p2 + p2p3 + p3p4 + ...+ pn→1pn by Equation 5

→ p
2
1ϱ(t) + p

2
2 + p

2
3 + ...+ p

2
n since pi→1pi → p

2
i for i → 2

→ ϱ(t)
∑

i

p
2
i since ϱ(t) ↑ 1 (6)

If
∑

i p
2
i → Con(t)2/2, then by the above:

Con(t)2 ↔
∑

i

p
2
i → ϱ(t)

∑

i

p
2
i by Equation 6

→ ϱ(t)Con(t)2/2.

Softening the Impact of Collisions in Contention Resolution 29

Else,
∑

i p
2
i < Con(t)2/2 and Con(t)2 ↔

∑
i p

2
i → Con(t)2/2 → ϱ(t)Con(t)2/2, given ϱ(t) ↑ 1. Either way, the

claim follows. ↘≃

For any algorithm A that executes over a set of slots I, we define total contention of A to be
∑

s↓I Con(t); that is,
the sum of contention over all slots of A’s execution. Note, for this definition, we are counting those slots during which a
single packet is active (for simplicity, we do not discuss this intermediate result in the overview of Section 4, so we were
able to restrict our attention to only the set S).

Lemma 28. Any algorithm that w.h.p. has n packets succeed has the property that the total contention over all slots in
the execution is at least n/16.

Proof. Assume the existence of an algorithm A that guarantees with probability at least 1 ↔ 1/n that all n packets
succeed, but has the property that the sum of contention over all slots of the execution is less than n/16.

For any packet u, define the lifetime contribution of u to be the sum of u’s sending probabilities over all slots of the
execution of A; denote this by LC(u). Call packet u “heavy” if LC(u) → 1/4; otherwise, u is “light”.

There must be less than n/4 heavy packets. Otherwise, the sum of the contention for all heavy packets is at least
(n/4)(1/4) → n/16, which contradicts the existence of A. Therefore, at least (3/4)n packets are light.

Consider any light packet u. Let p(t) denote the probability of that u sends in slot t specified arbitrarily by A. The
probability that u succeeds in slot t is at most p(t); therefore, the probability that u fails in slot t is at least 1↔ p(t). Over
the execution of A, the probability that u does not succeed is at least:



t

(1↔ p(t)) → e
→2

∑
t p(t) by Fact 1(c)

→ e
→2·LC(u)

.

Since LC(u) < 1/4, then the probability of failure is at least:

e
→2LC(u) → 1↔ 2LC(u) by Fact 1(a)

→ 1↔ 2(1/4)

→ 1/2.

Thus, there is a packet that with probability at least 1/2 does not succeed over the execution of A, which is a contradiction.
↘≃

Lemma 29. Consider any algorithm that guarantees w.h.p. that all packets succeed. Consider the portion of the execu-
tion during which only one active packet remains. W.h.p., the sum of the contention over this portion of the execution is
O(log n).

Proof. Let u be the last packet to succeed. Let I be the set of slots during which u is the only remaining active packet.
Let p(t) denote the probability of that u sends in slot t ⇓ I specified arbitrarily by the algorithm. Since it is the only
active packet, the probability that u succeeds in slot t is p(t); therefore, the probability that u fails in slot t is 1 ↔ p(t).
Over the execution of A, the probability that u does not succeed is at most:



t↓I

(1↔ p(t)) ↑ e
→

∑
t↗I p(t) by Fact 1(a)

Note that for
∑

t↓I p(t) = O(log n), this probability of failure is polynomially small in n. ↘≃

Lemma 30. Any algorithm that guarantees w.h.p. that n packets succeed must w.h.p. have
∑

t↓S Con(t) = ε(n).

Proof. By definition,
∑

t↓S Con(t) is at least the total contention in Lemma 28 minus the sum of the contention in
Lemma 29, which is at least: (n/16)↔O(log n) = ε(n). ↘≃

Lemma 31. Consider any algorithm A whose contention in any slot is at most 2 and guarantees w.h.p. a makespan of
Õ(n

↓
C). W.h.p. the expected collision cost for A is ε̃(ϱminn

↓
C).

30 U. Biswas, T. Chakraborty, and M. Young

Proof. Let X be a random variable that is |S| under the execution of A. Note that, since w.h.p. the makespan is O(n
↓
C),

it must be the case that w.h.p. X = O(n
↓
C).

By Lemma 30, we have:

X∑

t=1

Con(t) → cn. (7)

for some constant c > 0. Let Yt = 1 if slot t ⇓ S has a collision; otherwise, Yt = 0. By Lemmas 26 and 27:

Pr(Yt = 1) → ϱ(t) · Con(t)2/220
→ ϱmin · Con(t)2/220

where the second line follows from the definition of ϱmin. The expected collision cost is:

X∑

t=1

P (Yt = 1) · C →
X∑

t=1

ϱminCon(t)2 · C
220

=
ϱmin · C

220

X∑

t=1

Con(t)2. (8)

By Jensen’s inequality for convex functions, we have:

∑X
t=1 Con(t)

2

X
→

(∑X
t=1 Con(t)

X

)2

(9)

Finally, the expected cost is at least:

ϱmin · C
220

X∑

t=1

Con(t)2 → ϱmin · C
220

(∑X
t=1 Con(t)

)2

X
by Equations 8 and 9

→ ϱmin · C
220

(
c
2
n
2

X

)
by Equation 7

= ε̃

(
ϱmin n

↓
C
)

where the second line follows by Equation 7, which was defined with regard to S, and so can be compared to Equation 8.
The last line follows since w.h.p. X = Õ(n

↓
C). ↘≃

We now state our lower bound, which follows directly from Lemmas 25 and 31.

Theorem 4. Consider any algorithm that w.h.p. guarantees Õ(n
↓
C) makespan. Then, w.h.p., the expected collision cost

for A is ε̃(min{C,ϱminn
↓
C}).

Addressing Theorem 2, note that for fair algorithms, ϱmin = 1. Recall that our analysis ignores any slot t where all
packets have sending probability 0 (i.e.,Con(t) = 0), giving such slots to the algorithm for free. Given that ϱmin = 1,
ε̃(min{C,ϱminn

↓
C}) = ε̃(n

↓
C) when C = c

↔
n
2 for a sufficiently large positive constant c↔.

	Softening the Impact of Collisions in Contention Resolution-8pt

