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Abstract—The increasing deployment of robots alongside
humans necessitates sophisticated communication and motion
planning to ensure safety and task achievability in social
navigation scenarios. Existing methods often rely heavily on
historical data and extensive expert hand-coding, which limits
their scalability and generalizability. This paper introduces a
novel framework that models social navigation as a Markov
Decision Process (MDP), utilizing Conditional Abstraction Trees
(CATs) to learn dynamic abstract world representations and
policies that focus on critical aspects of interaction. In the offline
phase, the framework operates within a simulator, while in the
online phase, it deploys the learned representations and policies
in real-world scenarios for ongoing refinement and adaptation.
Integral to our approach is a Dynamic Bayesian Network (DBN)
based human sensor and belief model that accounts for humans’
imperfect perception to enhance the prediction of human
motion. We evaluated our method through extensive simulations
and user studies involving physical experiments, demonstrating
its effectiveness in managing critical interactions and ensuring
safety and task completion across various scenarios.

I. INTRODUCTION

The increasing integration of robots into human environ-
ments has highlighted the critical need for explicit commu-
nication [1] to ensure safe and efficient robot performance,
especially in close proximity to humans [2], [3], [4]. Previous
work [5] has laid the groundwork for joint communication
and motion planning, but two significant issues remained
unresolved. First, the planning process must account for
the highly stochastic nature of environments where human
presence introduces uncertainty, and robot actions themselves
are inherently stochastic. Second, the inclusion of robot
communication actions and human physical and mental states
significantly expands the planning space, making it compu-
tationally intractable. This paper aims to develop a planning
scheme that not only jointly optimizes the robot’s commu-
nication and navigational actions in stochastic settings but
also automatically learns an abstract world representation,
enhancing its ability to handle stochasticity and improve
scalability.

Robot motion planning has been extensively studied in
the robotics field [6], [7], yet the introduction of human
presence into the environment significantly jeopardizes the
safety and task achievability of the interaction [8], [5].
Predicting human motion in relation to robot actions is
essential but presents a complex and critical challenge. Some
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studies have developed human prediction models leveraging
historical data [9], [10], planning methods [11], [12], or the
geometrical aspects of natural human motion [13], [14] to
forecast human movement. However, these approaches often
overlook the influence of robot actions and communications
on human behavior, as well as the imperfect nature of human
observation. This oversight severely compromises the ability
of planning frameworks to effectively predict human motion,
leading to undesirable situations such as deadlocks or unsafe
encounters.

While employing a human prediction model is essential, it
significantly expands the planning state space by incorporat-
ing the human’s physical and mental states, which can render
the planning process intractable or computationally ineffi-
cient. This complexity highlights the need for abstract world
representations in robot planning [15]. However, conven-
tional abstraction methods that create uniform or static rep-
resentations are inadequate for dynamic environments [16].
Ideally, an abstraction should dynamically provide higher
precision around salient parts of the state space, such as when
the robot is in close proximity to a human or engaged in a
critical subtask, and remain coarse in less critical areas. Our
previous work has introduced conditional abstraction trees
to address this issue [17], starting with a coarse abstraction
and refining it as the agent interacts with the world. Yet,
the high levels of stochasticity and the dynamic nature of
human-robot interactions can still overwhelm this abstract
refinement process, leading to overly detailed representations
that defeat the purpose of abstraction. This identifies another
significant and critical gap in the literature for developing
a sophisticated, automatically constructed abstract world
representation that effectively captures the dynamic nuances
of human-robot interaction despite the highly stochastic
environment.

In this work, we model social navigation as a Markov
Decision Process (MDP) with a dual-phase approach: offline
and online. During the offline phase, we focus on learning
an abstract world representation alongside an abstract policy
for the robot’s communication and motion, employing Con-
ditional Abstraction Trees (CATs). This phase necessitates a
robust modeling of human behavior, for which we introduce
a Dynamic Bayesian Network (DBN) based sensor model
and belief model of humans. This model account for the
stochastic behavior of humans, including their imperfect
and noisy observations and varying levels of attentiveness
during interactions, thereby enhancing the accuracy of human
behavior predictions within the simulator.

In the online phase, we deploy the learned policy and



abstract world representation in a real-world scenario. This
deployment allows the planning framework to continue
updating the policy and refining the world representation
dynamically. To optimize the learning of the abstract world
representation and policy, we introduce the concept of local
and global CATs. Locally, we learn a CAT focusing on
immediate information relevant to the robot, such as potential
collisions with humans and other safety aspects of the
interaction. Globally, we learn a CAT that addresses broader
interaction dynamic like the robot’s goals and task accom-
plishments. These CATs are designed to interact dynamically
throughout both phases, enabling an effective capture of
the nuances of human-robot interaction. User studies and
subsequent results confirm the effectiveness of our method,
demonstrating significant improvements in the safety and
efficiency of human-robot interactions.

II. RELATED WORK

The development of human-robot communication in so-
cial navigation involves varying strategies from implicit
to explicit communication, each with distinct challenges.
Although various methods have been studied for robots to
implicitly communicate and influence human behavior [18],
environmental constraints can sometimes limit the robot’s
physical actions, making them inadequate for implicit com-
munication. This underscores the necessity for integrating
explicit communication alongside implicit methods. To ad-
dress this, a method presented in [19] employs large lan-
guage models (LLMs) to create adaptable robot motion
based on social contexts. This approach faces limitations in
generalizability and depends heavily on precise hand-coded
prompts, struggling with the translation of numerical world
orientations into text.

Another group of methods employs more sophisticated
formulations for communication planning via MDP and
Partially Observable Markov Decision Process (POMDP)
frameworks. For instance, the method presented in [20] uses
inverse reinforcement learning to develop a human model,
which it then leverages to optimize robot controls alongside
communication actions. However, this approach overlooks
the imperfect perception between humans and robots, assum-
ing flawless reception of communications and unrealistically
granting humans access to the robot’s future trajectories.
Similarly, the method proposed in [21] utilizes an Agent
Markov Model within a framework modeled as an POMDP.
While this method accounts for the robot’s imperfect per-
ception, it does not adequately address humans’ imperfect
observations. Furthermore, like the approach in [20], it relies
on historical data and extensive domain expert involvement
to account for the effects of robot communication on learned
human models, making these methods less scalable and
inapplicable in scenarios where such data is unavailable. In
contrast, the method presented in [22] introduces a frame-
work that relies less on historical data, using common prob-
abilistic robotics representations to dictate communication
content and timing. However, this approach does not jointly
optimize the robot’s navigational and communication actions

and primarily focuses on information acquisition rather than
influencing human behavior for safety. It accounts for the
robot’s imperfect observations but neglects the human’s, a
critical oversight in ensuring safety in social navigation.

Our work integrates both implicit and explicit communica-
tion with joint motion planning, while explicitly accounting
for the noisy and imperfect observations of human behavior.
Although our approach models social navigation as an MDP,
it does not depend on the availability of historical interaction
data. Instead, it utilizes interactions with a simulator during
the offline phase. Furthermore, our method requires minimal
to no expert input as the DBN parameters of human sensor
model are the only inputs needed and can be autonomously
learned. Moreover, our approach learns the robot’s policy and
an abstract world representation on-the-fly, thereby enhanc-
ing scalability and generalizability. While previous efforts
have explored abstraction in robot planning, none have
dynamically constructed conditional abstractions in real-time
as our method does. To the best of our knowledge, this work
is the first to propose a versatile robot planning framework
using automatically learned abstraction that effectively ad-
dresses the nuances, dynamics, and stochasticity of human-
robot interactions through the innovative use of local and
global CATs.

III. BACKGROUND

A. Markov Decision Processes

MDPs are defined as a tuple (S, A,T,R,7), where S
and A represent the state and action spaces. The transition
function 7 : S x Ax S — [0, 1] specifies the probabilities of
transitioning between states, while the reward function R :
S x A — R assigns a reward to an action taken in a specific
state. v is the discount factor that values future rewards. A
policy m, which maps states to actions, aims to maximize the
expected cumulative reward [23], [24]. Given the potential
complexity of the state space, state abstraction reduces the
state space dimensionality, mapping S to a reduced abstract
state space S through an abstraction function ¢ : S — S
[25], [26]. As the result of of the state abstraction, the
abstract MDP is defined as M = (S, A, T, R,~) derived via
¢. The abstract transition function 7 and reward function R
aggregate transitions and rewards from the concrete states,
weighted by a function w(s), where 3 1 w(s) =1

and w(s) € [0, 1]:
R(5,a) = Z w(8)R(s,a), (1)
s€PT1(8)
T(5,a,5) Z Z w(s)T (s,a,8").  (2)

s€Ep—1(3) s’€p—1(5")
B. Conditional Abstraction Trees

In many real-world domains, such as social navigation,
states are naturally expressed in terms of values of different
variables. One method to construct abstraction is by parti-
tioning the range of each state variable. Unlike trivial state
abstraction, conditional abstraction considers the abstraction
of one state variable contingent on the values of other state



variables [17]. As a result, the abstractions become dynamic,
adjusting as the agent’s state changes. A CAT structures
these conditional relations hierarchically. At its root, the CAT
begins with a coarse abstraction that encompasses a complete
range for each state variable. This initial coarse abstraction
is subsequently refined at the deeper levels of the tree, where
the leaf nodes represent the abstract states. Given a CAT, the
abstraction function ¢(s) : S — S, as detailed in Section III-
A, is a level-order tree search starting from the root. Below,
we provide the formal definitions of CATs, the refinement
function, and the search process.

Generally, a concrete state s € S can be defined as a set

of n state variables such that V = {v;|i = 1,...,n}. So
an abstraction node in a CAT is defined as © = {0;|i =
1,...,n}, where 6; is the the partitioned range for state

variable v;. Each abstraction node can be refined w.r.t. a
state variable v; through a function §(0, 4, f), which divides
the range of the partition 6; into f equal sub-ranges.

Definition 1: Let © = (61, ...,6,,) be an abstract state for
a domain with variables v1, ..., v,. We define the f-split re-
finement of © w.r.t. variable 7 as (0,4, f) = {©1,...,0/},
where 0; = [I, h] is partitioned into f new boundaries at least
||0]]/f values apart.

Next, we must define the relational properties between
two abstraction nodes, O, and Oy, to establish whether one
abstraction is a refinement of the other.

Definition 2: Given a set of abstractions V¥, for ©,, 0, €
W, O, is considered a refinement of ©,, denoted O, > O,
if for every i € [1,n], ° C 6¢ and O, is a direct refinement
of ©,, denoted Oy, > O, if 3i (#? C 6¢) and for all k # i,
0% = 0%

We can now formally establish a CAT as a tree structure,
denoted by &, that constructs and maintains a hierarchy of
conditional partitions represented by ©.

Definition 3: A conditional abstraction tree (CAT) is de-
fined as £ = {N,E}, where N is the set of nodes and
E is the set of edges. Each node in N corresponds to an
abstraction ©, s.t. N = {0©,,,|m € [1,n¢]}, where n¢ is the
cardinality of CAT and the root node of the tree is the initial
abstraction ©;,;;. Every parent ©, and child ©, nodes in
§ are connected via an edge e, s.t. e; = O, > O
Le = {0,|(VEk € [1,n¢])(Ok ¥ O,,)} is defined as the set
of leaf nodes representing the set of abstract states.

IV. PROBLEM FORMULATION

We formulate the social navigation problem as an MDP at
the concrete level. This formulation captures the dynamics
and interactions between human and robot agents within a
shared environment. Here are the key components of our
MDP:

o State Space S: The state space is divided into two
subsets: Sy for the human state variables and Sy for the
robot state variables. Thus, the complete state space is
expressed as S = Sy X Sgi, encompassing all variables
that define the positions, orientations, and other relevant
statuses of both humans and the robot.

Offline Phase

Online Phase

Environment

Deployment and
Replanning

]

[ CATs, R Policy, H Model

and Policy via CAT+RL

[ Learning Abstractions ]

Fig. 1. Overview of the proposed approach: The offline phase involves
interaction with a simulator featuring a robot model, motion planner, and a
DBN-based human sensor model for learning abstractions and policy. The
online phase depicts the deployment of learned CATs and policy in real-
world settings, allowing continual adaptation based on new interactions.

o Action Space A: The action space A encompasses the
robot’s actions, which are unified as A = A,UA.. Here,
A, denotes navigational actions, and A, represents
communication actions.

o Transition Model: The overall state transition prob-
abilities are given by the product of human-related
transitions Tz (s’ | s,a) and robot-related transitions
Tr(s | s,a), represented as T (s" | s,a) = Tu(sy |
s,a)-Tr(sy | s,a).

o Reward Function The reward function, R(s,a), as-
signed to the robot at each timestep, penalizes unneces-
sary robot movements and close proximity to humans to
ensure safety, while encouraging task accomplishment
for both the human and the robot.

o Discount Factor: The discount factor, denoted by v €
[0,1] quantifies the preference for immediate rewards
over future rewards.

The solution to this MDP is defined by the robot policy  :
S — A, dictating the robot’s action. The policy 7 integrates
both navigational actions .4, and communication actions A..
A, in this context refers to high-level navigational actions,
such as transitioning from one abstract region to another. To
execute these high-level actions, a robot motion planner is
employed, which is integrated into the overall robot policy.
This integration ensures the downward refinability of the
robot’s high-level navigational ractions, while optimizing the
robot’s policy 7.

V. OUR APPROACH

A. Overview

The goal of this research is to develop a robust method
that enables the learning of local and global conditional
abstractions of world representation, as well as an abstract
policy for robot navigational actions and communications in
stochastic social navigation contexts. As Fig. 1 illustrates the
overall procedure of our proposed approach, our approach is
structured into two distinct phases: offline and online.
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Probabilistic Human Sensor Model and Belief Inference. (a) An example illustrating the interaction between a human and a robot, where the

effects of the robot’s actions and communications are probabilistically modeled over the human’s local neighborhood to infer the human’s belief about the
robot’s future location. (b) The Dynamic Bayesian Network (DBN) designed as the human sensor model. In this DBN, circles represent random variables,

while diamonds represent decision nodes.

During the offline phase, the robot engages with a simu-
lator to learn the necessary abstractions and abstract policy.
This simulation integrates various components, including a
robot model with a motion planner and a human sensor
and movement model. A key development in this phase is
the development of a DBN based human sensor and belief
model. This model probabilistically estimates human beliefs
regarding the robot’s future locations, which facilitates more
accurate predictions of human movements.

In the online phase, the learned local and global CATs
and the robot’s abstract policy are deployed to manage
interactions with the physical world. This phase allows the
robot to continue updating its policy and abstractions based
on new real-world interactions, ensuring continual improve-
ment and adaptation. Additionally, the human model remains
accessible during the online phase, providing opportunities
to update the DBN parameters of the human model based
on real-world samples.

B. Human Sensor Model

To model the stochastic behavior of a human in a social
navigation scenario, it is essential to account for how the
human observes the robot’s actions and communication. This
observation is further influenced by the human’s attention
toward the situation. By incorporating such a model, we can
probabilistically infer the human’s belief about the robot’s
future location. As depicted in Fig. 2 (a), we consider a
discrete local neighborhood for the human. Let £y be the
set of these discretized zones {l1,...,l;}. The goal is to
probabilistically infer the human’s belief for each region of
their local neighborhood, given the robot’s physical actions
and communication signals.

We employ a DBN architecture to probabilistically model
human observations, denoted as V. Fig. 2(b) illustrates the
influence diagram of this model, capturing the dependencies
and interactions between the key variables. According to the
diagram, human observation ¥ is influenced by two main
factors: a) the robot’s communication signals ¢, which is
a decision node influenced by the robot’s motion plan node

X~ and the intersection of its future path with the human’s
local neighborhood xr; and b) human attention ¥ 4, which is
affected by the human’s view of the scenario Wy, cognitive
workload Wy, and the robot’s communication from the
previous time slice.

The probability distribution over \I/tAH can be computed
as P(UT | Xt = 2o, Ui = 9, Ui = ¢w), using
the samples x¢, 9, and Y. The human’s view ¥y, can be
sampled based on the geometric configuration of the human,
the robot, and environmental factors such as obstacles. The
human’s cognitive workload vy can be sampled based on
visual evidence, for example, if the human is engaged in a
specific task such as looking at their phone. If samples of
Uy and iy are unavailable, other indicators such as active
eye contact ¥ between the human and the robot can serve
as evidence of human attention ¥ 4. With a sample of Vg,
the probability distribution over W4 can be inferred using
logical filtering.

Given the samples over ' and W', we can infer the
probability distribution over Wi as P(TLT | o =
e, \Ilifl = 14). The conditional probability distributions
specified in the DBN reflect a design choice that can be
adapted based on the specifics of the scenario. It can be
manually defined based on domain knowledge or learned
from data through interaction history between the robot and
humans.

C. Human Belief

Once we could infer the probability distribution over
human’s observation ¥, we can now infer the humans belief
over robot’s future location. In the example of Fig. 2 (a), the
robot intends to go to its goal at G by following motion plan
mr. It’s communication signal ac, is perceived by human as
w which we modeled it through the inference tacks over
Uo. Now, we want leverage the estimate human observation
to infer human’s belief over robot’s future location. To do
so, we sample xtcﬂ, biased to the estimated probability
distribution over \I'tO“, denoted as 5:’5“1. Then, we use
the belief update formula below to infer the probability
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Fig. 3. This figure illustrates the interaction between local and global CATs. On the left, a global CAT is learned with respect to the TD-error dispersion
caused by task-related rewards. In the middle, a local CAT is learned based on safety-related rewards. On the right, the conceptual merging of detailed
information from the local CAT into the global CAT is shown, constructing a unified abstract world representation.

distribution over X?'l :

BOGT) = aPxd™ | X5 D PO I XD B()- )
X

Here, B(XtIH) represents the updated belief for X§+1’

P(x& | x4™) is the likelihood of observing x5! given
X5, P(X5T™ | x4) denotes the transition model, B(x}) is
the belief at the previous time step, and « is the normalization
factor. This belief update inference is repeated independently
for each region in the human’s local neighborhood L,
ultimately yielding a probability distribution for every region,
indicating whether or not the human believes the robot’s
future path will intersect with that region.

D. Human Movement Model

In a cooperative and rational social navigation scenario,
a human is likely to avoid regions they believe the robot
will occupy. Thus, we can represent the belief probability
distribution for each region of the human’s local neigh-
borhood, L, as an impassable region from the human’s
perspective. By sampling these impassable regions from
the belief distribution B(X’}“) for each region l; € Ly,
we can achieve a more accurate world representation from
the human’s viewpoint. Consequently, even with a deter-
ministic underlying human prediction model, this updated
world representation with impassable regions allows us to:
1) generate a probabilistic prediction of human movement
due to the probabilistic modeling of human beliefs and
impassable regions, 2) probabilistically model the effect of
the robot’s actions and communication on human behavior,
and 3) remain independent of a specific human movement
model, as a variety of movement models can be employed
within the proposed framework.

The process of modeling the imperfect observation ¥ of
the human over robot communication, deriving the human’s
belief B (XtIH) about the robot’s future location, incorporat-
ing the constraints of probabilistic impassable regions in the
human’s assumed world representation, and employing an
underlying human prediction model, together explain how
we derive the human transition model Tx (s | s, a).

E. Local and Global CATs

Conditional abstractions construct a world representation
based on samples gathered from the agent’s interaction
with the environment. Learning a CAT follows a repetitive
three-phase process: 1) the learning phase, where a coarse
abstraction is initialized, and an abstract policy is learned;
2) the evaluation phase, where the current abstraction is
assessed by interacting with the environment using the fixed
abstract policy; and 3) the refinement phase, where abstract
states that exhibit instability during the evaluation phase
are refined. It has been shown that the dispersion of TD-
errors for an abstract state is an effective criterion for
identifying unstable abstract states [17]. Dispersion can arise
from broader interaction dynamics, such as the robot’s goals
and task accomplishments, or from immediate information
relevant to the robot, like potential collisions with humans
and other safety aspects of the interaction. Relying on both
types of dispersion to create an abstract world representation
via a single CAT can result in overly detailed abstractions.
To address this, we introduce the concept of global and
local CATs, which are simultaneously learned as the agent
interacts with the environment.

The first step to achieving a separable dispersion of TD
errors is to factorize the reward function at the concrete
level such that R(s,a) = Rusx(S,a) + Rgde(s,a). During
the evaluation process, the agent may encounter the same
abstract state 5 multiple times, resulting in a set of TD
errors logged for each component of the reward function.
The observed dispersion of TD errors under Ry, is defined
as Taer = {d3™ | m € [1,nvisieal}, Where nyisiea is
the number of visited abstract states during the abstraction
evaluation phase and d?*** denotes the set of logged task-
related TD errors for each visited abstract state. Similarly,
TD errors under Rg;q. is defined as Tgq. = {dSid¢ |
m € [1,Nyisitea]}» Where d'@sks denotes the set of logged
safety-related TD errors for each visited abstract state. Let
UnstableStates(I') denote a function that identifies the
set of unstable states in the form of node © in a CAT,
based on I'g and I'e.. For each visited abstract state in
sk and Tige, UnstableStates calculates the maximum



Algorithm 1: Offline Phase of Learning

1: initialize (jocq; and Cylobul

2: for episode = 1,ncp; do

3: S < reset ()

4:  for steps in episode do

5: Cmerged <~ Merge(87 Clocala Cglobal)

6: 5 < FindAbstract((merged, Oinit; )

7 Gc, ar < Choose navigation and communication
actions 7(3)

8: Translate a,. w.r.t. landmarks and transmit

9: s',7,done + ExecuteNavigation(a,)

10: s’ < FindAbstract (£, O, 5')

11: 7 < TrainPolicy” (5,5, a,7)

12: 5,5+ §',5

13:  if M needs refinement then

14: Tiasks Uside — Evaluate(M, &, T, Neyar)

15: refine (jocqr and Cgiopar based on I'yqp and I'giqe

16: return Cgiopai; Glocals T

normalized standard deviation (SD) of TD errors across all
actions and returns the states whose normalized SD exceeds
a given threshold ugp. During the refinement phase, unstable
states identified in I'wq are refined in the global CAT Cejopat,
while unstable states identified in I';4. are refined in the local
CAT (jocar- This refinement is performed using the refinement
function ¢, as defined in Sec. III-B, for each unstable abstract
state in both (iocar and Cgiobal-

Although we have explained how both local and global
CATs can be learned during the learning, evaluation, and
refinement phases, we still require a mechanism to construct
a unified CAT, referred to as the merged CAT (perged-
This merging is state-dependent, meaning that additional
refinements from the local CAT (o, are only added to the
global CAT (gobat When the human and the robot are in close
proximity, as shown in Fig. 3. In Fig. 3 (left), when R and
H are in close proximity, a more refined local representation
from the local CAT (joca, as shown in Fig. 3 (middle), is
required to ensure that the robot’s high-level actions are more
precise around the human. The merge function is denoted
as merge Zx Zx8S — Z, where Z is the CAT
space containing all possible conditional abstractions. To
implement this function, we first need a criterion for defining
close proximity. A suitable approach is to use the human’s
local neighborhood as the definition of close proximity. Thus,
when R is within H’s local neighborhood, the agents are
considered to be in close proximity. Given a state s, if R
and H are in close proximity, then we have two abstractions
for the concrete state s under Cjocar and Cgobal, denoted as
O1ocal and Ogjobal, respectively. If Oocq is finer than Ogopar, then,
for each state variable, Ogiopal is refined using the refinement
function ¢ until it reaches the same granularity as ¢ The
sub-tree added to Ogj0ba as a result of these refinements is
considered temporary and will be undone once the state s
changes.

FE. Overall Procedure

Algorithm 1 explains the overall procedure of our pro-
posed method. This phase begins by initializing the local
and global CATS, (et and Cgiopal, respectively (line 1).
In each step of the episode, the local and global CATs
are merged based on the current state s t0 form C(perged
(line 5). The abstract state 5 is then determined using the
FindAbstract function (line 6). The algorithm selects
navigation and communication actions, a, and a., from the
abstract policy 7 (line 7), and the communication action is
translated relative to the environment before being transmit-
ted. The navigation action is executed via the underlying
robot motion planner, resulting in the next state s’, a reward
7, and a termination condition (line 9). The abstract policy
is then updated using the TrainPolicy function (line
11). If model refinement is necessary (line 13), task- and
safety-related dispersions (I'sk and I'giqe) are evaluated, and
the local and global CATs are refined accordingly (lines
14). We set the algorithm to check the recent success rate
of the robot every ncneck episodes where the refinement
condition evaluates to true if the success rate is below some
threshold t,... The algorithm completes by returning the
refined abstractions (giopail, Cgiobal, and the learned abstract
policy 7.
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