A neural circuit mechanism in medial entorhinal cortex for integrating event duration

Animals utilize interval timing—measuring time in the range of seconds to minutes—to plan and execute a wide
variety of behaviors, including foraging, capturing prey, and evading threats. In this project we have focused on
how medial temporal lobe structures might play a previously unrecognized role in interval timing by developing
novel timing paradigms that require more flexible, context-dependent learning (Fig. 1a,b). We have discovered
that medial entorhinal cortex (MEC), traditionally known for spatial memory, may also function as a timing
system. To test this hypothesis, we developed a temporal delayed nonmatch-to-sample task (tDNMS) in which
mice must learn to report whether pairs of odor stimuli are match or nonmatch in duration (Bigus et al, 2023,
bioRxiv). We combined this behavioral approach with cellular resolution 2-photon Ca?" imaging in MEC. Our
results show that from the start of each trial, elapsed time is encoded by the regular, sequential activity of
populations of MEC “time cells” (Fig. 1¢). In separate experiments we have shown that chemogenetic inactivation
of MEC is required for learning of the tDNMS task. This work underscores the critical role of the MEC in learning
more complex and flexible timing behaviors. In this abstract, we propose three key questions to pinpoint the
neural mechanisms in MEC that are the basis for this learning: First, what neural dynamics of MEC time cells
could support learning of timing behavior? To address this, we have measured single cell and population Ca®*
dynamics of MEC 695 time cells (33.8% of active neurons; 10 sessions in 6 mice) in behaving mice across learning
in the tDNMS task (Fig. 1¢). During initial training, MEC time cells tend to exhibit context-independent activity
across trial types. However, over learning across days as mice’s performance reaches an asymptote of ~75%
correct responses, these cells shift to display context-dependent firing, selectively responding to specific trial
types (Fig. 1b). To quantify this at the population level, we assessed the average signal correlation among MEC
time cells across different trial types, finding that the Pearson’s Correlation shifted 0.573 + 0.015 on day 1 and
0.418 £0.017 onday N (Z=6.77, p <0.001, Wilcoxon rank-sum) (Fig. 1d). Closer examination of the time cells'
sequences, sorted by peak firing within the trial, revealed reduced coherence in later phases—when sufficient
information to distinguish trial types becomes available (e.g., short-short versus short-long distinguishable by an
ideal observer around 7 seconds into the trial; see Fig 1e red line). We quantified this by creating population
vectors to track moment-to-moment variations in time cell activity across trial types. Compared to a null model
with randomized trial labels, actual data diverged from the null at critical trial points (Fig. 1e), indicating an
earlier and more marked divergence through learning (divergence was defined as the time point when the real
data increased above 0.1% of null distribution. For S-S vs S-L comparison: divergence shifted from 10.1 s to 9.3
s over learning. For S-S vs L-S comparison: divergence shifted from 7.2 s to 6.7 s over learning). Notably, in
training sessions structured without "long-long" stimuli, "long-short" trials were identified earlier, underscoring
the predictive dynamic that develops over learning in MEC time cells. Subsequent analyses with a support vector
machine—cross-validated using a leave-one-out method against a surrogate dataset generated by shuffling trial
identities 1,000 times—showed that most single trials could be decoded (mean accuracy across mice was 68%; p
<0.01 for 5 out of 6 mice; Fig. 1f), with accurate trial type identification occurring later in the trial as information
accumulated. Together, these results demonstrate that over learning, MEC time cells transition from a context-
independent to a context-dependent firing pattern, which corresponds with the animals' improved ability to
discriminate trial types as sufficient information accrues within each trial.

Next, we asked what circuit mechanism in MEC drives the time-locked sequential firing of MEC time cells?
Previous work suggests that the spatial firing patterns of MEC grid cells are driven by a continuous attractor
network (CAN) (Burak and Fiete, 2009; Stenola et al. 2012; Yoon et al. 2013; Gardner et al. 2022). In this model,
recurrent synaptic connectivity generates activity bumps localized on a 2D toroidal manifold. During navigation,
the CAN integrates synaptic inputs that encode the animal's running speed and direction, generating the spatial
firing patterns observed in grid cells. We hypothesized that during interval timing, MEC could be using nearly
identical CAN dynamics to integrate elapsed time (Issa et al. 2020). The CAN model predicts that neurons
maintain coherent relative phasic activity at all times due to local synaptic connections, even during non-task
periods like the intertrial interval (ITI) or during sleep. To examine this feature of functional network connectivity,
we measured the pairwise correlation structure of the population of MEC time cell activity as mice were engaged
in each trial during the tDNMS task and during nontask relevant phase of the ITI. Our results demonstrate that
pairs of time cells maintain their correlation during the timing task and also exhibit coherent activity during non-
task relevant periods, such as the intertrial interval (Fig. 1g). This suggests functional connectivity, wherein cells
with similar phase relationships during the task (i.e., cells that fire at comparable delay times) are likely connected



via net excitatory synaptic input, either reciprocally or through a common feedforward input. Conversely, cells
with distinct phase relationships (i.e., cells that fire at different delay times) tend to exhibit reciprocal net
inhibition. In our on-going work we are measuring signal and noise correlational structure over long time periods
and during sleep using single unit electrophysiological methods.

Finally, we investigated which cognitive strategy animals use to solve the tDNMS time task. The tDNMS
task could be solved in a number of ways and of particular interest is whether mice are timing the entire length of
the trial (since non-matching trial encompass a longer total duration), timing the individual stimuli presented to
search for a “go cue”, or employing the more abstract strategy of timing both stimuli and then performing an
explicit comparison. To address this question, we trained a regularized Poisson regression model with predictors
derived from potential “cognitive strategies” that animals might be employing in order to make a decision to lick
or not-lick on a given trial (Fig. 1h,i). The modeling approach provides an unbiased comparison between these
different potential strategies for solving the tDNMS task. We then evaluate the strategies by comparing the
resulting lick-probabilities to the observed behavior on held-out trials. We are able to fit each model to the
animals’ behavior and observe evidence that different mice may be employing distinct strategies to varying
degrees. However, the model that performs best, on average, suggests that mice are generally timing both stimuli
and identifying a “Go” cue rather than performing the explicit comparison step. Interestingly, mice that show
evidence of attending to the timing of both cues show increased performance during the decoding of trial type
(Fig. 1j). Finally, we are able to use the resulting lick-probabilities to draw from a non-stationary Poisson process
in order to model the predicted behaviors of potential probe trials (e.g. trials with longer inter-stimuli intervals),
forming the basis for future experiments which could provide further insight into which strategy mice are using.
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