IOMMU Deterred Invalidation Vulnerability:
Exploit and Defense

Chathura Rajapaksha, Leila Delshadtehrani, Richard Muri, Manuel Egele, Ajay Joshi
Department of ECE, Boston University, {chath, delshad, rmuri, megele, joshi}@bu.edu

Abstract—Direct Memory Access (DMA) introduces a security
vulnerability as peripherals are given direct access to system mem-
ory, exposing privileged data to potentially malicious Input/Output
(I0) devices. Modern systems are equipped with an I0 Memory
Management Unit (IOMMU) to mitigate such DMA attacks. The
OS uses the IOMMU and IO page tables to map and unmap a
designated memory region before and after the DMA operation,
constraining each DMA request to the approved region. IOMMU
protection comes at the cost of reduced throughput in IO-intensive
workloads, mainly due to the high IOTLB invalidation latency.
The Linux OS eliminates this bottleneck by deferring the IOTLB
invalidation requests to a later time. This opens a vulnerability
window during which a memory region is unmapped but the
relevant IOTLB entry remains. In this paper, we present a proof-
of-concept exploit, empirically demonstrating that a malicious
DMA-capable device can use this vulnerability window to leak data
used by other devices. Furthermore, we propose hardware-assisted
mitigation for the deferred invalidation vulnerability by making
minor changes to the existing IOMMU hardware and OS software.
We implemented the proposed mitigation in the Intel IOMMU
implementation in QEMU and the Linux kernel. Our security
evaluation showed that our proposed mitigation successfully
mitigated the deferred invalidation vulnerability and provided
12.7% higher throughput compared to the strict invalidation mode.

Index Terms—IOMMU, DMA attacks

I. Introduction

Modern computing systems are complex with many
Input/Output (IO) devices such as Network Interface Cards
(NICs) and accelerators connected to them. Direct Memory
Access (DMA) allows IO devices to access system memory
directly without involving the Central Processing Unit
(CPU). However, DMA poses a threat to data confidentiality,
integrity and availability, as IO devices are given direct
access to system memory.

Attacks carried out by malicious DMA devices have been a
concern for the security of computing systems for more than
a decade [1], [2]. Trivial DMA attacks [1]-[4] were mitigated
with the introduction of the IO Memory Management Unit
(IOMMU) [5], [6]. The IOMMU allows IO devices to use
IO Virtual Addresses (IOVAs) to access the system memory.
The IOMMU uses 10 page tables maintained by the OS
to verify the read/write permission of each memory access
and translate IOVAs to Physical Addresses (PAs).

The device driver of a DM A-capable 10 device is responsible
for mapping and unmapping memory for DMA operations.
The IOMMU contains an IO Translation Lookaside Buffer
(IOTLB) to cache recently translated IOVA-to-PA mappings.
When the memory mapped for a DMA transaction is
unmapped, the OS first sends an invalidation request to
the IOMMU to invalidate the relevant IOTLB entries and
then updates the IO page tables to prevent the devices
from accessing the particular memory region. The IOTLB

invalidation is known to take several thousand cycles [7] and
becomes a bottleneck for high-throughput 10 operations.

To alleviate the effect of IOTLB invalidation on the 10
throughput, Linux has adopted deferred invalidation. In the
deferred invalidation mode, IOTLB invalidation requests are
batched, and a global IOTLB invalidation is performed every
10 ms or 256 invalidation requests. This deferred invalidation
opens a vulnerability time window during which a DMA
buffer is unmapped but the IOTLB entry for the buffer
access is still valid, allowing the IO device to still access the
physical address of the DMA buffer. As we demonstrate in
Section IV, a malicious IO device can use this vulnerability
window to read or write to the data of another device.

Over the last decade, two noteworthy software optimiza-
tions have been proposed [8], [9] to mitigate deferred invalida-
tion vulnerability. However, these solutions either struggle to
scale with increasing IO throughput demands [8] or suggest
optimizations tailored exclusively to network workloads, which
are incompatible with other IO workloads like storage [9].

In this paper, we present a proof-of-concept exploit and a
hardware-assisted mitigation for the IOMMU deferred invali-
dation vulnerability. We show, for the first time (to the best of
our knowledge), how a malicious DMA-capable 10 device can
use the deferred invalidation vulnerability to access the data
of another 10 device. Additionally, the exploit we present
is also applicable to the IOMMU sub-page vulnerability [10],
[11], another IOMMU-related known vulnerability.

To address the need for secure, low-overhead DMA opera-
tions for high-throughput 10 workloads (e.g., GPU-intensive
computer games, multi-threaded writes to NVMe storage, 200
Gbps network), we propose a hardware-assisted mitigation for
the deferred invalidation vulnerability. Our solution reduces
the large 10 latency associated with strict invalidation
while providing the same level of security guarantee, by
preventing the reuse of stale IOTLB entries until the
IOTLB is invalidated. The proposed mitigation for deferred
invalidation vulnerability works at the IOMMU hardware
level, making it compatible with any DMA operation.

We demonstrate the proof-of-concept exploit on an x86
machine emulated by QEMU [12]. The emulated machine
contains two IO devices — a storage device connected through
AHCI and an Ethernet connection through an Intel 82574L
NIC — and an Intel IOMMU. We show that the malicious
NIC can take advantage of the deferred invalidation of its
unmapped memory to access data that was read from the
storage device. We also implement and evaluate the proposed
mitigation within the QEMU Intel IOMMU implementation
using the same QEMU setup we used for the exploit. The pro-
posed mitigation achieves 12.7% higher throughput compared

to the strict invalidation mode while providing the same
security guarantees. We chose QEMU for the implementation
and evaluation because support for an IOMMU is not available
in open-source hardware. Additionally, we demonstrate that
the variations in the average network throughput of QEMU
in different IOMMU modes follow the same trend as that of

a real hardware system (Section VI). In summary, we make

the following contributions:

1) We demonstrate that IOMMU deferred invalidation can
be used by a malicious DMA-capable device to leak
the DMA data of other devices that utilize the same
IOMMU. To the best of our knowledge, this is the
first published proof-of-concept exploit for the IOMMU
deferred invalidation vulnerability.

2) We propose a low-overhead, hardware-assisted mitigation
for the deferred invalidation vulnerability, which is
compatible with any DMA operation. The proposed
mitigation involves minor modifications to the existing
IOMMU hardware and Linux OS software.

3) We implement the proposed mitigation in QEMU and
open-source it' along with the proof-of-concept deferred
invalidation exploit.

II. Related work

The relevant IOMMU work can be divided into two main
categories: (1) DMA attacks or exploits in the presence of an
IOMMU ([10], [11], [13], [14], and (2) performance or security
[7]-]9], [15] improvements related to the IOMMU. Morgan
et al. [13], [14] demonstrated an IOMMU-bypass exploit by
updating the IO page tables at boot time before the IOMMU
is enabled using a malicious peripheral. Thunderclap [10]
explores how IOMMU protection is used in different OSes and
demonstrates several DMA attacks that exploit the sub-page
vulnerability in the IOMMU using a malicious DMA-capable
device. In the aftermath of Thunderclap, Linux added support
for software bounce buffers [16] as a mitigation to sub-page
vulnerabilities in IOMMU. Markuze et al. [11] extend the
sub-page vulnerability exploits demonstrated in Thunderclap
by characterizing different variants of sub-page vulnerabilities,
providing a complete picture of the attack surface. All
the aforementioned works exploit and analyze sub-page
vulnerabilities related to the IOMMU. In contrast, we focus on
the deferred invalidation vulnerability and demonstrate that

it can be exploited using a malicious DMA-capable device.

Markuze et al. [8] propose a software-based method
to provide complete IOMMU protection using a set
of permanently mapped pages (a.k.a. shadow buffers)
in the IOMMU, while achieving better IO throughput
compared to the IOMMU strict invalidation mode. Device
access is restricted to shadow buffers and DMAed data
is copied from/to these buffers, achieving byte-granular
protection. Shadow buffers mitigate the deferred invalidation
vulnerability because IOTLB invalidation is never required
due to permanently mapped DMA buffers used by the
devices. However, shadow buffers do not scale well with
growing 10 throughput demands due to their high CPU and

Lhttps://github.com/bu-icsg/IOMMU-DIV

memory overhead caused by copying DMAed data between
buffers and memory duplication. Markuze et al. proposed
DMA Aware Malloc for Networking (DAMN) [9] to alleviate
the overhead of shadow buffers specifically for network
workloads. DAMN selectively copies parts of the DMA buffer
that are processed by the OS kernel (e.g., Ethernet header).
DAMN is capable of achieving 10 throughput comparable to
the throughput of IOMMU in deferred mode. Unfortunately,
DAMN is only compatible with network 10 workloads, and
does not improve workloads such as storage and zero-copy I0.

In contrast to the aforementioned works, we propose a
hardware-assisted alternative to strict invalidation. Our
solution can mitigate the deferred invalidation vulnerability
with a comparatively lower performance cost and it has
a broader applicability compared to DAMN [9] due to its
compatibility with any DMA workload, including storage
workloads. Furthermore, our solution is scalable compared
to shadow buffers [8] as it does not require additional CPU
time and memory to operate.

IIT. Background

The goal of this section is to familiarize the reader with the
IOMMU operation, security, and IO throughput performance
of different IOMMU modes. All experiments in this section
were conducted on CloudLab [17] machines. For network
throughput experiments, two machines with an Intel Xeon
Silver 4314 CPU, an Intel IOMMU and 244GB RAM were
connected through dual-port Mellanox ConnectX-6 NICs with
a 200 Gbps connection between them. Linux uses the IOMMU
in two modes: strict invalidation and deferred invalidation.
We first provide an overview of how the IOMMU operates;
then, we explain in detail about each IOMMU mode.

A. IOMMU Operation

OSes use the IOMMU to constrain the DMA of IO devices
to designated DMA buffers. When DMA is used for receiving
data from a device, the device driver first allocates the memory
for the DMA buffer. Then the driver requests the kernel to
map the physical address of the DMA buffer to an 10 virtual
address. The kernel does this by creating an 10 page table
entry in the IO page table for the device. Each page table
entry contains the IOVA-to-PA translation information and
access permission (read/write/both) for the PA. Furthermore,
address translation and access control through IO page tables
happen in 4 KB memory chunks called pages?.

Next, the device driver signals the device to initiate the
DMA transaction. The device accesses the DMA buffer using
the IOVA of the buffer, and the IOMMU performs the IOVA to
PA translation by walking the IO page table for the device and
verifying the access permission to the PA before completing
the translation. The IOMMU caches the recent IOVA-to-PA
translations along with access permission in an IOTLB.

Once the DMA operation is completed, the device should
no longer have access to the DMA buffer, so that the memory
can be reallocated without breaking data confidentiality
and integrity. For this purpose, the device driver unmaps

210 page size can vary depending on the OS and IOMMU hardware.

TABLE 1
#CPU cycles IOMMU needs to process an invalidation descriptor.
Avg Min | Max
Intel Xeon Silver 4314 @ 2.40GHz | 2548 | 1652 | 24394
AMD EPYC 7402P @ 2.80GHz 6968 | 420 | 38010
10MMU 140.398
Strict
IOMMU
Deferred 197.668
N
|0MM3 197.889
0 50 100 150 200 250

Throughput (Gbps)

Fig. 1. Linux TCP throughput over 200 Gbps Ethernet, measured
with 16 netperf [18] instances running in parallel for three different
IOMMU modes.

the DMA buffer and the OS kernel sends an invalidation
request to the IOTLB to invalidate the entry containing
the IOVA-to-PA translation of the DMA buffer.

B. Strict Invalidation

In this mode, IOTLB invalidation is performed strictly dur-
ing the IOVA unmapping process itself. IOTLB invalidation
is known to take more than 1000 CPU clock cycles [7]. We
conducted an experiment to confirm whether this is still true
with the modern IOMMU implementations. We determined
the IOTLB invalidation latency by instrumenting the Linux
kernel (6.4.0) source with RDTSCP instructions and measur-
ing the average cycle count taken by the IOMMU to process
a single invalidation descriptor. As shown in Table I, IOTLB
invalidation still has a high latency in both Intel (Xeon Silver
4314) and AMD (EPYC 7402P) systems. We show in subsec-
tion ITI-D that this high latency causes the IO throughput to
drop, especially in high-throughput 10 workloads where IOVA
mapping/unmapping happens millions of times per second.

C. Deferred Invalidation

To alleviate the aforementioned bottleneck, OSes have
adopted deferred invalidation. In this mode, IOTLB entries
are not invalidated strictly during the unmap process. Instead,
IOTLB invalidation descriptors are queued in a per-CPU
queue and all IOTLB entries belonging to an IOMMU domain
are invalidated when the number of the descriptors in the
queue exceeds 256 or every 10ms, whichever happens first?.
Note here that an IOMMU domain is a set of address map-
pings and access rights that can be shared by multiple devices
[6]. In most cases, each DMA-capable device is allocated its
own domain. Therefore, invalidation of an IOTLB entry can
be delayed by at most 10ms, leaving a time window during
which a device has access to a physical memory address that
may not belong to it. We discuss how a malicious device can
exploit this deferred invalidation vulnerability in Section IV.

x86 CPU 2 Cores SATA Intel
Storage 82574L
Linux 0S Device NIC
fio and netperf o Ble
| Intel IOMMU l

System Bus

System Memory ‘

Fig. 2. Overview of the QEMU-emulated system that was used for
IOMMU deferred invalidation proof-of-concept exploit.

D. IOMMU Performance

Figure 1 shows the effect of different IOMMU modes on the
maximum throughput of a multi-gigabit (200 Gbps) network
connection in a modern computing system. We observe that
the strict invalidation mode reduces the network throughput
by 28.97% compared to the deferred invalidation mode.

IV. Exploiting IOMMU Deferred Invalidation

In this section, we demonstrate how the deferred invalida-

tion vulnerability can be used by a malicious 1O device to leak
data of other devices. When the OS defers the invalidation
of an IOTLB entry, it can lead to two vulnerable scenarios:
(1) After receiving DMA data from a device, the OS kernel
unmaps the DMA buffer and then starts processing the data.
However, the device can still access the physical address of
the DMA buffer through a stale IOTLB entry. Such access
can enable “time of check to time of use” (TOCTTOU)
attacks for DMA-writable buffers, e.g., modifying a packet
after it passes firewall checks [9].
(2) After a device (device A) reads from a DMA buffer, the
OS frees the memory and may reallocate it immediately [19]
to another device (device B) that is performing DMA write.
As we show later in this section, this scenario can happen
commonly during the deferred invalidation time window.
This is a vulnerability as device A now has access to device
B’s data through the stale IOTLB entry.

At a high level, scenario (1) poses a threat to data integrity
while scenario (2) poses a threat to the confidentiality of
data. Below, we present a proof-of-concept exploit based
on the second scenario.

A. Threat Model

We assume there is a malicious DMA-capable device
connected internally to the system (e.g., a malicious
SmartNIC, third-party integrated accelerator). The rest of
the system including the IOMMU, other 10 devices, and OS,
works as expected and is trusted at all times. Furthermore,
we consider a system that is protected against boot time
DMA attacks [14]. The goal of the malicious device is to
snoop on the data accessed by other devices.

B. QEMU-based Proof-of-concept Exploit
System setup: We use a QEMU-emulated x86 machine with
the KVM hypervisor to demonstrate our proof-of-concept

3This is the behavior of the Linux kernel, other OSes may perform
invalidation using a different criteria.

(QEMU version 6.2.0). Figure 2 shows the high-level system
we used in QEMU. We have two devices connected to the sys-
tem through an Intel IOMMU: a malicious Intel 825741 NIC
and a victim SATA storage device. For this demonstration,
the emulated system runs Linux 6.4.0 in deferred IOMMU
mode with two CPU cores and 1 GB of memory. We used
a system with an Intel Xeon Silver 4114 CPU as the host.
Software setup: The first step for exploiting deferred
invalidation (with the second scenario) is to generate DMA
traffic for both NIC and the storage device simultaneously
so that a PA allocated for NIC gets reallocated to the
storage device within a deferred invalidation time window.
For this purpose, we used netperf [18] TCP_STREAM and
fio [20] random read benchmarks to generate DMA traffic
for the NIC and the storage device, respectively. We used
the QEMU event trace feature to confirm that PAs of the
NIC indeed get reallocated to the storage device frequently
within a deferred invalidation time window. We also required
a way to identify if the malicious DMA reads were able to
read the DMA data of the storage device. For this purpose,
we filled the storage device with a magic word (OxcOfecafe).
Malicious behavior: We integrated the malicious behavior into
the 825741 NIC by editing the relevant source code in QEMU.
We added the capability of maintaining a pool of IOVAs of
the DMA buffers used by the NIC for legitimate DMA reads.
Then, when the NIC performs a legitimate DMA access, we
follow it with a malicious DMA read request on a randomly se-
lected IOVA from the pool (which may or may not be success-
ful). If the malicious read request fails, we remove the IOVA
from the pool. In other words, we are trying to read the data at
IOVAs that were recently (and legitimately) used by the NIC,
hoping that the PA of the IOVA is mapped to another device
while the IOTLB entry of the legitimate access still remains.
Exploit: Figure 3 provides a detailed timeline of how the ma-
licious NIC was able to read the victim’s storage device DMA
data during a deferred invalidation window in our exploit. ()
The NIC device driver maps a memory region to the device
for DMA, starting at IOVA 0xff528000 which maps to PA
0xe670000. @ The NIC reads the data in the buffer through
DMA and the device driver unmaps and frees the memory.
However, IOTLB invalidation has not been performed yet (due
to deferred invalidation). (@) At this point, the OS kernel con-
siders PA 0xe670000 as unused and reallocates it to the storage
device to write data. @ Malicious NIC device reads the PA
0xe670000 through IOVA 0x{f528000, leaking the data of the
storage device. The IOTLB entries created at () and @) are
invalidated at () and ©), respectively. To check the exploit’s
functionality, we searched for the magic word, i.e., OxcOfecafe
in the results of successful malicious DMA reads from the NIC.
Observations: We consistently observed the magic word in
the malicious DMA read results when the exploit is running,
indicating a successful exploit. The root-cause analysis
for each reported leakage revealed two causes: 1) deferred
invalidation vulnerability, and 2) sub-page vulnerability [8],
[10], [11]. In other words, the malicious behavior of the NIC
is capable of exploiting both these vulnerabilities. We discuss
how sub-page vulnerability (which is not the main focus of
this paper) causes data leakage in the following sub-section.

C. Data Leakage Through Sub-page Vulnerability

IOMMU enforces access control at the page granularity [5]
while DMA buffers used by IO devices can be smaller than a
page. For example, the default Maximum Transmission Unit
(MTU) is 1500 Bytes for an Ethernet packet, which is mapped
to a DMA buffer when transferring the packet through the
Ethernet controller. This mismatch of granularity between
the IOMMU protection and DMA buffer allocations can
cause the DMA buffers of two devices to get mapped to the
same page. This opens up the so-called sub-page vulnerability
as each device is given access to the data of the other device.

The leakage through sub-page vulnerability can happen
in the following scenario. The storage device uses the first
half of a page as a DMA buffer to write device data. In
the meantime, a DMA buffer of the NIC gets mapped to
the second half of the same page. However, due to sub-page
vulnerability, a malicious read from the NIC to the first half
of the page will be successful, causing a storage data leak.

V. Hardware-assisted
Mitigation for IOMMU Deferred Invalidation Vulnerability

A. Overview

We propose a low-overhead, hardware-assisted mitigation
for the deferred invalidation vulnerability. This method offers
the same security guarantees as strict invalidation but with
a lower performance overhead. Implementing this mitigation
involves minor adjustments to existing OS software and
IOMMU hardware.

IOTLB invalidation latency: Prior work has shown IOTLB
invalidation latency as the cause for the high-performance
cost of strict invalidation [7], [9]. We take a step further and
analyze the IOTLB invalidation process and the factors that
may contribute to its high latency. To reduce the overall page
table walk latency, IOMMU implementations may cache inter-
mediate paging structure entries that are read during the page
table walk [5]. An IOMMU compatible with a 4-level 10 page
table may have up to three paging-structure caches. When
invalidating an IOTLB entry, relevant entries in the paging-
structure caches must be invalidated to maintain the accuracy
of the translations [5]. This process involves a cache lookup
and invalidation in each paging-structure cache. Furthermore,
IOTLB invalidation descriptors are provided to hardware
through a queue that resides in the system memory. Therefore,
the IOMMU performs a memory access to fetch the invali-
dation descriptor, which adds up to the invalidation latency.

B. Mitigation

The proposed mitigation stems from the observation that
exploiting the deferred invalidation vulnerability requires
a malicious device to reuse outdated IOTLB entries (see
Section IV). So rather than strictly performing IOTLB
invalidation, which significantly impacts performance (see
Section ITI-B), we suggest preventing the reuse of stale
IOTLB entries during the deferred invalidation window. We
propose to do this by adding an indicator bit to each IOTLB
entry. For an IOTLB entry, this indicator bit can be reset
when we don’t want any DMA request to use the IOTLB
entry (after unmapping it). We argue that this prevention of

g

T
I0MMU } } ! .
Domain 2 [Device driver map DMa | (Device driver /1 | Malicious NIC Domain 2
PA=0xe670000 to Read kernel unmap | 1 devicel read deferred
Intel IOVA=0xff528000 ea IOVA ' PA=0xe670000 invalidation
82574L ! pr—
NIC + $, . .
® @) ' ! ® /| ®oxff528000 -> 0xe670000, read
| T
I0MMU ' /Device driver map E Device driver /)/ Domain 3 (3)0xbfe9d000 -> 0xe670000, write
Domain 3 1| PA=0xe670000 to || PMA |11 "y arnel unmap || deferred
SATA 1 \JOVA=0xbfegdooo / | Write | ! IOVA invalidation
Storage H H
} ' ' '
: ® @ ®

PA=0xe670000 is unmapped

Time

Fig. 3. Timeline for the deferred invalidation proof-of-concept exploit.

the reuse of a stale IOTLB entry incurs a lower performance
cost than an IOTLB invalidation during strict invalidation.
Functionality The indicator bit will be set to 1 when the
IOTLB entry is initialized. When the OS kernel unmaps an
IOVA, the IOMMU sets the indicator bit to 0 in the relevant
IOTLB entry. If during a memory access, we get an IOTLB hit
that has the indicator bit set to 0, the IOMMU returns a trans-
lation error, as this can happen only due to a malicious activity
or bug in the device, thereby mitigating the exploitation of
the deferred invalidation vulnerability. It is important to note
that the proposed mitigation still requires the OS to perform
deferred IOTLB invalidation, as the mitigation itself does not
perform IOTLB invalidation. In other words, our mitigation
relies on the IOMMU deferred invalidation mode, which is the
default mode of operation in Linux for Intel and AMD systems.
In summary, the proposed mitigation requires two actions: 1)
the OS software communicates the IOVA of a DMA buffer
to the IOMMU during its unmapping, and 2) the IOMMU
hardware marks the relevant IOTLB entry (if it exists) for
that IOVA as unusable by setting the indicator bit to 0.

C. Design and Implementation

When using our proposed mitigation approach, when we
have to reset the indicator bit during an IOVA unmap, we
must perform an IOTLB lookup, which requires the relevant
IOVA and the source ID of the device to which it is mapped.
The source ID serves as a unique identifier for each device con-
nected to the IOMMU, typically using the Bus:Device:Func-
tion (BDF) number for PCI/PCle devices. Therefore, the
main design question that we need to answer for implementing
the proposed mitigation is: How do we communicate the IOVA
and the source ID of the device to the IOMMU hardware when
unmapping it? We decided to include a dedicated memory-
mapped register (which we call HW_INV_REG) in the
IOMMU hardware to receive IOVA and source ID during their
unmap process. This requires minimal changes in both hard-
ware and software as IOMMU already has memory-mapped
configuration registers and the OS has the infrastructure in
place for accessing these registers. We have successfully imple-
mented this proposed mitigation in the QEMU Intel IOMMU
implementation and the Linux kernel version 6.4.0. Further
details regarding the specific hardware and software changes
necessary to implement this mitigation are discussed below.
IOMMU Hardware Modifications The Intel TOMMU
specification [5] limits the possible IOVA size to 56 bits for a
five-level 10 page table and 47 bits for a four-level 10 page

table. The QEMU Intel IOMMU implementation supports
a four-level 10 page table, allowing us to use 47 bits for the
IOVA. Hence, we are able to use a 64-bit control register
(HW_INV_REG) for capturing both IOVA and the 16-bit
source ID. Furthermore, a single bit was added to each IOTLB
entry as the indicator bit. Additionally, we changed the
QEMU Intel IOMMU behavior according to the functionality
of the mitigation as follows: When an IOTLB entry is first
initialized, the indicator bit is set to 1. When unmapping
an IOVA, OS writes the IOVA and relevant source ID to
HW__INV_REG. Upon this write, the IOMMU hardware
triggers an IOTLB lookup with the provided IOVA and source
ID. If the lookup was a hit with the indicator bit equal to 1,
the indicator bit in the IOTLB is reset to 0 (indicating that the
IOTLB entry is now unusable). If a translation request to the
IOMMU results in an IOTLB hit and the indicator bit in the
IOTLB entry is already 0, IOMMU returns a translation error.
OS Software Modifications We first define the address of
HW _ INV_REG in the Linux kernel Intel IOMMU driver.
Then we change the existing IOVA unmapping function in
Linux to concatenate the IOVA that is unmapped and its
corresponding source ID to a 64-bit word and write it to
HW_INV_REG.

In Linux, it is possible for multiple IOVAs to unmap at the
same time (by different threads), creating a race condition as
unmap operations contend for the HW__INV__REG register.
To avoid this, we acquire the existing mutex lock for writing
to the IOMMU CSRs and release it after the write.

VI. Evaluation

In this section, we evaluate the proposed mitigation for
the IOMMU deferred invalidation vulnerability, in terms of
security and network throughput. We used the same QEMU-
emulated system that we used for the proof-of-concept
exploit for the evaluation. We justify our use of QEMU for
performance evaluation by providing an 10 throughput trend
comparison between a QEMU-emulated system and a real
hardware system in Figure 4, where we show the normalized
network throughput of the QEMU-emulated system and a real
hardware system in different IOMMU modes. The network
throughput of both systems roughly follows the same trend.
Therefore, we argue that any network throughput performance
changes that we observe in QEMU due to our modifications
will follow the same trend in a real hardware system. We used
the same system setup and throughput numbers reported in
section ITI-D for the real hardware system. For the QEMU-

QEMU. M

=
»
B
2
>

=
N

i

(-]
050
R
oo
9!

Xt
00‘/

R

Normalized Network Throughput
o
©

V//
o % ¢ ;

S b
R o
PRXXK] p d 0
zozozoa/ 52 on® 0.73
RRRS ; nvw/ 0.67r7
RIS o302l 0K XX

0.6{ XXX [0 [0 BT

. RIS (KK Iodeed [leSodeds

RIS (304 [0 BRKET
RO e300l 0384 [odeoX
RIS [0 [0 BRKEE

0.4 KX oS0%esed [0 [Jeeden
S B B %
RIS oSodesed [0 KKK
BIRE] So%ode%e DoSodese! RIS

0.2] KX / Sovetene KXY KK

. RIS (RS 0984 oot

RIS [0 [004 BKE
DX X X! 496%%¢) 19.9.9.9 (959
sy TRy

0.0 L BKK777 1K 7 SN 8K /
No IOMMU IOMMU IOMMU Strict+SWBB

Deferred Strict

Fig. 4. Normalized network throughput of the real hardware machine and
the QEMU-emulated machine in different IOMMU modes and software
bounce buffers (SWBB) with strict mode (Strict+SWBB). Normalization

is done with respect to the throughput in deferred invalidation mode.

5.524

¢]

4.725

3.952 3.823

»

3.506 3.469

Throughput (Gbps)
N w

[=

Fig. 5. Network throughput performance of different IOMMU modes
and our proposed mitigation (HW-INV). We combined HW-INV with

SW bounce buffers (SWBB) to provide complete IOMMU protection.

emulated system, we used the hardware setup in section
III-D. The QEMU-based system has 8 CPU cores, 32GB
RAM, an Intel IOMMU, and an Intel 82574L NIC with KVM
enabled. All evaluations were conducted with Hyperthreading

and dynamic frequency scaling turned off in the host system.

A. Performance Evaluation

We used the QEMU setup mentioned above to evaluate
the performance impact of the proposed mitigation for the
deferred invalidation vulnerability. For each configuration, we
ran the 4 instances of netperf TCP__ STREAM benchmark for
10 seconds and accumulated the achieved throughput. This
experiment was conducted 10 times for each configuration
to get the average accumulated throughput. Four netperf
instances were used as they provided the maximum network
throughput in the deferred invalidation mode (baseline). As
shown in Figure 5, our mitigation (HW-INV) was able to
achieve 12.7% higher network throughput compared to the
IOMMU strict invalidation mode.

B. Security Evaluation

After implementing the proposed mitigation, we performed
a security evaluation to ensure that our exploit (described

in Section IV) is no longer effective, i.e., data leakage across
devices is not observed when our mitigation is present.
For this evaluation, we used the same setup used for the
proof-of-concept exploit. To account for randomness in the
proof-of-concept exploit, we performed the security evaluation
5 times for each configuration. Our evaluation showed that
our mitigation was able to block any data leakage due to
deferred IOMMU invalidations. However, we observed slight
data leakage (from the storage device). Our root-cause
analysis showed that this leakage was purely due to sub-page
vulnerability, which we observed for strict invalidation mode
as well. To address sub-page vulnerability, we relied on the
existing software-based mitigation in the Linux kernel, i.e.,
software bounce buffers [16], due to its low-performance
overhead. We then combined our proposed mitigation with
SW bounce buffers to provide complete IOMMU protection.
With this configuration, we no longer observed the leakage.

As shown in Figure 5, the proposed mitigation combined
with software bounce buffers mitigation (HW-INV+SWBB)
achieved a 10.2% throughput gain compared to the
combination of IOMMU strict mode and SW bounce buffers
(Strict+SWBB).

VII. Discussion

We demonstrated a proof-of-concept exploit for the
IOMMU deferred invalidation vulnerability and its mitigation
using a QEMU-emulated system. In this section, we briefly
discuss considerations for adapting the exploit and
mitigation to a real hardware system. Exploiting the deferred
invalidation in a real hardware system can be demonstrated
using an FPGA device (similar to Thunderclap [10]),
which we leave for future work. The IOTLB size should be
considered when reproducing our exploit in a real hardware
system as the [OTLB size of a real system can be considerably
smaller (32 [15]) than that of QEMU (1024). However, the
malicious device can still keep a translation in the IOTLB
by regularly using it so that it does not get evicted.

To implement the proposed mitigation in a real system,
we need access to the IOMMU hardware design. However,
this was not possible as there was no open-source IOMMU
implementation available. Instead, we used QEMU for
our implementation. Section VI details our experiments
that show how the IO throughput performance of a
QEMU-emulated system and a real system correlate.

VIII. Conclusion

We have demonstrated that the deferred invalidation
vulnerability can be exploited with a DMA-capable malicious
device. Operating systems use IOMMU strict invalidation
mode to mitigate the deferred invalidation vulnerability at the
cost of reduced 10 throughput for IO-intensive workloads. We
proposed an alternative, low-overhead mitigation for deferred
invalidation vulnerability with minimal changes to the existing
IOMMU hardware and OS software. Our proposed mitigation
achieved 12.7% higher network throughput compared to
strict invalidation mode in a QEMU-emulated system.

Acknowledgment
This work was funded in part by NSF Award 1916393.

[11]

[12]
[13]

[14]

References

M. Becher et al., “Firewire: all your memory are belong to us,”
in CanSecWest Applied Security Conference, 01 2005.

B. D. Carrier and J. Grand, “A hardware-based memory acquisition
procedure for digital investigations,” Digit. Investig., 2004.

G. Beniamini, “Over the air: Exploiting broadcom’s wi-fi stack
(part 2),” https://lwn.net/Articles/786558/, 2017.

J. FitzPatrick and M. Crabill, “Stupid pcie tricks, featuring the
nsa playset,” in DEFCON 22, 2014.

“Intel virtualization technology for directed i/o, revision 4.0,” 2022.
“Amd i/o virtualization technology (iommu) specification, rev
3.07,” 2022.

M. Malka et al., “Riommu: Efficient iommu for i/o devices that
employ ring buffers,” in ASPLOS ’15, 2015, p. 355-368.

A. Markuze et al., “True iommu protection from dma attacks: When
copy is faster than zero copy,” in ASPLOS ’16, 2016, p. 249-262.
A. Markuze et al., “Damn: Overhead-free iommu protection for
networking,” in ASPLOS ’18, 2018.

A. T. Markettos et al., “Thunderclap: Exploring vulnerabilities in
operating system IOMMU protection via DMA from untrustworthy
peripherals,” in NDSS’19, 2019.

A. Markuze et al., “Characterizing, exploiting, and detecting dma
code injection vulnerabilities in the presence of an iommu,” in
EuroSys 21, 2021.

F. Bellard, “Qemu, a fast and portable dynamic translator,” in
USENIX Annual Technical Conference, 2005.

B. Morgan et al., “Bypassing iommu protection against i/o
attacks,” in "LADC ’16, 10 2016, pp. 145-150.

B. Morgan et al., “lommu protection against i/o attacks: A
vulnerability and a proof-of-concept,” Journal of the Brazilian
Computer Society, vol. 24, 12 2018.

N. Amit et al.,, “lommu: Strategies for mitigating the iotlb
bottleneck,” in ISCA 2010, 2010, pp. 256—274.

M. Rybczynska, “Bounce buffers for untrusted devices,”
https://lwn.net/Articles/786558/.

D. Duplyakin et al., “The design and operation of CloudLab,” in
USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1-14.
“Netperf - a network performance benchmark,”
https://github.com/HewlettPackard /netperf.

J. Corbet, “Hot and cold pages,” https://lwn.net/Articles/14768/,
2002.

J. Axboe, “Flexible i/o tester,” https://github.com/axboe/fio.

