
IOMMU Deferred Invalidation Vulnerability:
Exploit and Defense

Chathura Rajapaksha, Leila Delshadtehrani, Richard Muri, Manuel Egele, Ajay Joshi
Department of ECE, Boston University, {chath, delshad, rmuri, megele, joshi}@bu.edu

Abstract—Direct Memory Access (DMA) introduces a security
vulnerability as peripherals are given direct access to system mem-
ory, exposing privileged data to potentially malicious Input/Output
(IO) devices. Modern systems are equipped with an IO Memory
Management Unit (IOMMU) to mitigate such DMA attacks. The
OS uses the IOMMU and IO page tables to map and unmap a
designated memory region before and after the DMA operation,
constraining each DMA request to the approved region. IOMMU
protection comes at the cost of reduced throughput in IO-intensive
workloads, mainly due to the high IOTLB invalidation latency.
The Linux OS eliminates this bottleneck by deferring the IOTLB
invalidation requests to a later time. This opens a vulnerability
window during which a memory region is unmapped but the
relevant IOTLB entry remains. In this paper, we present a proof-
of-concept exploit, empirically demonstrating that a malicious
DMA-capable device can use this vulnerability window to leak data
used by other devices. Furthermore, we propose hardware-assisted
mitigation for the deferred invalidation vulnerability by making
minor changes to the existing IOMMU hardware and OS software.
We implemented the proposed mitigation in the Intel IOMMU
implementation in QEMU and the Linux kernel. Our security
evaluation showed that our proposed mitigation successfully
mitigated the deferred invalidation vulnerability and provided
12.7% higher throughput compared to the strict invalidation mode.

Index Terms—IOMMU, DMA attacks

I. Introduction
Modern computing systems are complex with many

Input/Output (IO) devices such as Network Interface Cards
(NICs) and accelerators connected to them. Direct Memory
Access (DMA) allows IO devices to access system memory
directly without involving the Central Processing Unit
(CPU). However, DMA poses a threat to data con昀椀dentiality,
integrity and availability, as IO devices are given direct
access to system memory.

Attacks carried out by malicious DMA devices have been a
concern for the security of computing systems for more than
a decade [1], [2]. Trivial DMA attacks [1]–[4] were mitigated
with the introduction of the IO Memory Management Unit
(IOMMU) [5], [6]. The IOMMU allows IO devices to use
IO Virtual Addresses (IOVAs) to access the system memory.
The IOMMU uses IO page tables maintained by the OS
to verify the read/write permission of each memory access
and translate IOVAs to Physical Addresses (PAs).

The device driver of a DMA-capable IO device is responsible
for mapping and unmapping memory for DMA operations.
The IOMMU contains an IO Translation Lookaside Bu昀昀er
(IOTLB) to cache recently translated IOVA-to-PA mappings.
When the memory mapped for a DMA transaction is
unmapped, the OS 昀椀rst sends an invalidation request to
the IOMMU to invalidate the relevant IOTLB entries and
then updates the IO page tables to prevent the devices
from accessing the particular memory region. The IOTLB

invalidation is known to take several thousand cycles [7] and
becomes a bottleneck for high-throughput IO operations.

To alleviate the e昀昀ect of IOTLB invalidation on the IO
throughput, Linux has adopted deferred invalidation. In the
deferred invalidation mode, IOTLB invalidation requests are
batched, and a global IOTLB invalidation is performed every
10 ms or 256 invalidation requests. This deferred invalidation
opens a vulnerability time window during which a DMA
bu昀昀er is unmapped but the IOTLB entry for the bu昀昀er
access is still valid, allowing the IO device to still access the
physical address of the DMA bu昀昀er. As we demonstrate in
Section IV, a malicious IO device can use this vulnerability
window to read or write to the data of another device.

Over the last decade, two noteworthy software optimiza-
tions have been proposed [8], [9] to mitigate deferred invalida-
tion vulnerability. However, these solutions either struggle to
scale with increasing IO throughput demands [8] or suggest
optimizations tailored exclusively to network workloads, which
are incompatible with other IO workloads like storage [9].

In this paper, we present a proof-of-concept exploit and a
hardware-assisted mitigation for the IOMMU deferred invali-
dation vulnerability. We show, for the 昀椀rst time (to the best of
our knowledge), how a malicious DMA-capable IO device can
use the deferred invalidation vulnerability to access the data
of another IO device. Additionally, the exploit we present
is also applicable to the IOMMU sub-page vulnerability [10],
[11], another IOMMU-related known vulnerability.

To address the need for secure, low-overhead DMA opera-
tions for high-throughput IO workloads (e.g., GPU-intensive
computer games, multi-threaded writes to NVMe storage, 200
Gbps network), we propose a hardware-assisted mitigation for
the deferred invalidation vulnerability. Our solution reduces
the large IO latency associated with strict invalidation
while providing the same level of security guarantee, by
preventing the reuse of stale IOTLB entries until the
IOTLB is invalidated. The proposed mitigation for deferred
invalidation vulnerability works at the IOMMU hardware
level, making it compatible with any DMA operation.

We demonstrate the proof-of-concept exploit on an x86
machine emulated by QEMU [12]. The emulated machine
contains two IO devices — a storage device connected through
AHCI and an Ethernet connection through an Intel 82574L
NIC — and an Intel IOMMU. We show that the malicious
NIC can take advantage of the deferred invalidation of its
unmapped memory to access data that was read from the
storage device. We also implement and evaluate the proposed
mitigation within the QEMU Intel IOMMU implementation
using the same QEMU setup we used for the exploit. The pro-
posed mitigation achieves 12.7% higher throughput compared



to the strict invalidation mode while providing the same
security guarantees. We chose QEMU for the implementation
and evaluation because support for an IOMMU is not available
in open-source hardware. Additionally, we demonstrate that
the variations in the average network throughput of QEMU
in di昀昀erent IOMMU modes follow the same trend as that of
a real hardware system (Section VI). In summary, we make
the following contributions:
1) We demonstrate that IOMMU deferred invalidation can

be used by a malicious DMA-capable device to leak
the DMA data of other devices that utilize the same
IOMMU. To the best of our knowledge, this is the
昀椀rst published proof-of-concept exploit for the IOMMU
deferred invalidation vulnerability.

2) We propose a low-overhead, hardware-assisted mitigation
for the deferred invalidation vulnerability, which is
compatible with any DMA operation. The proposed
mitigation involves minor modi昀椀cations to the existing
IOMMU hardware and Linux OS software.

3) We implement the proposed mitigation in QEMU and
open-source it1 along with the proof-of-concept deferred
invalidation exploit.

II. Related work
The relevant IOMMU work can be divided into two main

categories: (1) DMA attacks or exploits in the presence of an
IOMMU [10], [11], [13], [14], and (2) performance or security
[7]–[9], [15] improvements related to the IOMMU. Morgan
et al. [13], [14] demonstrated an IOMMU-bypass exploit by
updating the IO page tables at boot time before the IOMMU
is enabled using a malicious peripheral. Thunderclap [10]
explores how IOMMU protection is used in di昀昀erent OSes and
demonstrates several DMA attacks that exploit the sub-page
vulnerability in the IOMMU using a malicious DMA-capable
device. In the aftermath of Thunderclap, Linux added support
for software bounce bu昀昀ers [16] as a mitigation to sub-page
vulnerabilities in IOMMU. Markuze et al. [11] extend the
sub-page vulnerability exploits demonstrated in Thunderclap
by characterizing di昀昀erent variants of sub-page vulnerabilities,
providing a complete picture of the attack surface. All
the aforementioned works exploit and analyze sub-page
vulnerabilities related to the IOMMU. In contrast, we focus on
the deferred invalidation vulnerability and demonstrate that
it can be exploited using a malicious DMA-capable device.

Markuze et al. [8] propose a software-based method
to provide complete IOMMU protection using a set
of permanently mapped pages (a.k.a. shadow bu昀昀ers)
in the IOMMU, while achieving better IO throughput
compared to the IOMMU strict invalidation mode. Device
access is restricted to shadow bu昀昀ers and DMAed data
is copied from/to these bu昀昀ers, achieving byte-granular
protection. Shadow bu昀昀ers mitigate the deferred invalidation
vulnerability because IOTLB invalidation is never required
due to permanently mapped DMA bu昀昀ers used by the
devices. However, shadow bu昀昀ers do not scale well with
growing IO throughput demands due to their high CPU and

1https://github.com/bu-icsg/IOMMU-DIV

memory overhead caused by copying DMAed data between
bu昀昀ers and memory duplication. Markuze et al. proposed
DMA Aware Malloc for Networking (DAMN) [9] to alleviate
the overhead of shadow bu昀昀ers speci昀椀cally for network
workloads. DAMN selectively copies parts of the DMA bu昀昀er
that are processed by the OS kernel (e.g., Ethernet header).
DAMN is capable of achieving IO throughput comparable to
the throughput of IOMMU in deferred mode. Unfortunately,
DAMN is only compatible with network IO workloads, and
does not improve workloads such as storage and zero-copy IO.

In contrast to the aforementioned works, we propose a
hardware-assisted alternative to strict invalidation. Our
solution can mitigate the deferred invalidation vulnerability
with a comparatively lower performance cost and it has
a broader applicability compared to DAMN [9] due to its
compatibility with any DMA workload, including storage
workloads. Furthermore, our solution is scalable compared
to shadow bu昀昀ers [8] as it does not require additional CPU
time and memory to operate.

III. Background
The goal of this section is to familiarize the reader with the

IOMMU operation, security, and IO throughput performance
of di昀昀erent IOMMU modes. All experiments in this section
were conducted on CloudLab [17] machines. For network
throughput experiments, two machines with an Intel Xeon
Silver 4314 CPU, an Intel IOMMU and 244GB RAM were
connected through dual-port Mellanox ConnectX-6 NICs with
a 200 Gbps connection between them. Linux uses the IOMMU
in two modes: strict invalidation and deferred invalidation.
We 昀椀rst provide an overview of how the IOMMU operates;
then, we explain in detail about each IOMMU mode.

A. IOMMU Operation
OSes use the IOMMU to constrain the DMA of IO devices

to designated DMA bu昀昀ers. When DMA is used for receiving
data from a device, the device driver 昀椀rst allocates the memory
for the DMA bu昀昀er. Then the driver requests the kernel to
map the physical address of the DMA bu昀昀er to an IO virtual
address. The kernel does this by creating an IO page table
entry in the IO page table for the device. Each page table
entry contains the IOVA-to-PA translation information and
access permission (read/write/both) for the PA. Furthermore,
address translation and access control through IO page tables
happen in 4 KB memory chunks called pages2.

Next, the device driver signals the device to initiate the
DMA transaction. The device accesses the DMA bu昀昀er using
the IOVA of the bu昀昀er, and the IOMMU performs the IOVA to
PA translation by walking the IO page table for the device and
verifying the access permission to the PA before completing
the translation. The IOMMU caches the recent IOVA-to-PA
translations along with access permission in an IOTLB.

Once the DMA operation is completed, the device should
no longer have access to the DMA bu昀昀er, so that the memory
can be reallocated without breaking data con昀椀dentiality
and integrity. For this purpose, the device driver unmaps

2IO page size can vary depending on the OS and IOMMU hardware.





(QEMU version 6.2.0). Figure 2 shows the high-level system
we used in QEMU. We have two devices connected to the sys-
tem through an Intel IOMMU: a malicious Intel 82574L NIC
and a victim SATA storage device. For this demonstration,
the emulated system runs Linux 6.4.0 in deferred IOMMU
mode with two CPU cores and 1 GB of memory. We used
a system with an Intel Xeon Silver 4114 CPU as the host.
Software setup: The 昀椀rst step for exploiting deferred
invalidation (with the second scenario) is to generate DMA
tra昀케c for both NIC and the storage device simultaneously
so that a PA allocated for NIC gets reallocated to the
storage device within a deferred invalidation time window.
For this purpose, we used netperf [18] TCP_STREAM and
昀椀o [20] random read benchmarks to generate DMA tra昀케c
for the NIC and the storage device, respectively. We used
the QEMU event trace feature to con昀椀rm that PAs of the
NIC indeed get reallocated to the storage device frequently
within a deferred invalidation time window. We also required
a way to identify if the malicious DMA reads were able to
read the DMA data of the storage device. For this purpose,
we 昀椀lled the storage device with a magic word (0xc0fecafe).
Malicious behavior: We integrated the malicious behavior into
the 82574L NIC by editing the relevant source code in QEMU.
We added the capability of maintaining a pool of IOVAs of
the DMA bu昀昀ers used by the NIC for legitimate DMA reads.
Then, when the NIC performs a legitimate DMA access, we
follow it with a malicious DMA read request on a randomly se-
lected IOVA from the pool (which may or may not be success-
ful). If the malicious read request fails, we remove the IOVA
from the pool. In other words, we are trying to read the data at
IOVAs that were recently (and legitimately) used by the NIC,
hoping that the PA of the IOVA is mapped to another device
while the IOTLB entry of the legitimate access still remains.
Exploit: Figure 3 provides a detailed timeline of how the ma-
licious NIC was able to read the victim’s storage device DMA
data during a deferred invalidation window in our exploit. 1©
The NIC device driver maps a memory region to the device
for DMA, starting at IOVA 0x昀昀528000 which maps to PA
0xe670000. 2© The NIC reads the data in the bu昀昀er through
DMA and the device driver unmaps and frees the memory.
However, IOTLB invalidation has not been performed yet (due
to deferred invalidation). ( 3©) At this point, the OS kernel con-
siders PA 0xe670000 as unused and reallocates it to the storage
device to write data. 4© Malicious NIC device reads the PA
0xe670000 through IOVA 0x昀昀528000, leaking the data of the
storage device. The IOTLB entries created at 1© and 3© are
invalidated at 5© and 6©, respectively. To check the exploit’s
functionality, we searched for the magic word, i.e., 0xc0fecafe
in the results of successful malicious DMA reads from the NIC.
Observations: We consistently observed the magic word in
the malicious DMA read results when the exploit is running,
indicating a successful exploit. The root-cause analysis
for each reported leakage revealed two causes: 1) deferred
invalidation vulnerability, and 2) sub-page vulnerability [8],
[10], [11]. In other words, the malicious behavior of the NIC
is capable of exploiting both these vulnerabilities. We discuss
how sub-page vulnerability (which is not the main focus of
this paper) causes data leakage in the following sub-section.

C. Data Leakage Through Sub-page Vulnerability
IOMMU enforces access control at the page granularity [5]

while DMA bu昀昀ers used by IO devices can be smaller than a
page. For example, the default Maximum Transmission Unit
(MTU) is 1500 Bytes for an Ethernet packet, which is mapped
to a DMA bu昀昀er when transferring the packet through the
Ethernet controller. This mismatch of granularity between
the IOMMU protection and DMA bu昀昀er allocations can
cause the DMA bu昀昀ers of two devices to get mapped to the
same page. This opens up the so-called sub-page vulnerability
as each device is given access to the data of the other device.

The leakage through sub-page vulnerability can happen
in the following scenario. The storage device uses the 昀椀rst
half of a page as a DMA bu昀昀er to write device data. In
the meantime, a DMA bu昀昀er of the NIC gets mapped to
the second half of the same page. However, due to sub-page
vulnerability, a malicious read from the NIC to the 昀椀rst half
of the page will be successful, causing a storage data leak.

V. Hardware-assisted
Mitigation for IOMMU Deferred Invalidation Vulnerability
A. Overview

We propose a low-overhead, hardware-assisted mitigation
for the deferred invalidation vulnerability. This method o昀昀ers
the same security guarantees as strict invalidation but with
a lower performance overhead. Implementing this mitigation
involves minor adjustments to existing OS software and
IOMMU hardware.
IOTLB invalidation latency: Prior work has shown IOTLB
invalidation latency as the cause for the high-performance
cost of strict invalidation [7], [9]. We take a step further and
analyze the IOTLB invalidation process and the factors that
may contribute to its high latency. To reduce the overall page
table walk latency, IOMMU implementations may cache inter-
mediate paging structure entries that are read during the page
table walk [5]. An IOMMU compatible with a 4-level IO page
table may have up to three paging-structure caches. When
invalidating an IOTLB entry, relevant entries in the paging-
structure caches must be invalidated to maintain the accuracy
of the translations [5]. This process involves a cache lookup
and invalidation in each paging-structure cache. Furthermore,
IOTLB invalidation descriptors are provided to hardware
through a queue that resides in the system memory. Therefore,
the IOMMU performs a memory access to fetch the invali-
dation descriptor, which adds up to the invalidation latency.
B. Mitigation

The proposed mitigation stems from the observation that
exploiting the deferred invalidation vulnerability requires
a malicious device to reuse outdated IOTLB entries (see
Section IV). So rather than strictly performing IOTLB
invalidation, which signi昀椀cantly impacts performance (see
Section III-B), we suggest preventing the reuse of stale
IOTLB entries during the deferred invalidation window. We
propose to do this by adding an indicator bit to each IOTLB
entry. For an IOTLB entry, this indicator bit can be reset
when we don’t want any DMA request to use the IOTLB
entry (after unmapping it). We argue that this prevention of







References
[1] M. Becher et al., “Firewire: all your memory are belong to us,”

in CanSecWest Applied Security Conference, 01 2005.
[2] B. D. Carrier and J. Grand, “A hardware-based memory acquisition

procedure for digital investigations,” Digit. Investig., 2004.
[3] G. Beniamini, “Over the air: Exploiting broadcom’s wi-昀椀 stack

(part 2),” https://lwn.net/Articles/786558/, 2017.
[4] J. FitzPatrick and M. Crabill, “Stupid pcie tricks, featuring the

nsa playset,” in DEFCON 22, 2014.
[5] “Intel virtualization technology for directed i/o, revision 4.0,” 2022.
[6] “Amd i/o virtualization technology (iommu) speci昀椀cation, rev

3.07,” 2022.
[7] M. Malka et al., “Riommu: E昀케cient iommu for i/o devices that

employ ring bu昀昀ers,” in ASPLOS ’15, 2015, p. 355–368.
[8] A. Markuze et al., “True iommu protection from dma attacks: When

copy is faster than zero copy,” in ASPLOS ’16, 2016, p. 249–262.
[9] A. Markuze et al., “Damn: Overhead-free iommu protection for

networking,” in ASPLOS ’18, 2018.
[10] A. T. Markettos et al., “Thunderclap: Exploring vulnerabilities in

operating system IOMMU protection via DMA from untrustworthy
peripherals,” in NDSS’19, 2019.

[11] A. Markuze et al., “Characterizing, exploiting, and detecting dma
code injection vulnerabilities in the presence of an iommu,” in
EuroSys ’21, 2021.

[12] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
USENIX Annual Technical Conference, 2005.

[13] B. Morgan et al., “Bypassing iommu protection against i/o
attacks,” in ”LADC ’16, 10 2016, pp. 145–150.

[14] B. Morgan et al., “Iommu protection against i/o attacks: A
vulnerability and a proof-of-concept,” Journal of the Brazilian
Computer Society, vol. 24, 12 2018.

[15] N. Amit et al., “Iommu: Strategies for mitigating the iotlb
bottleneck,” in ISCA 2010, 2010, pp. 256–274.

[16] M. Rybczyńska, “Bounce bu昀昀ers for untrusted devices,”
https://lwn.net/Articles/786558/.

[17] D. Duplyakin et al., “The design and operation of CloudLab,” in
USENIX Annual Technical Conference (ATC), Jul. 2019, pp. 1–14.

[18] “Netperf – a network performance benchmark,”
https://github.com/HewlettPackard/netperf.

[19] J. Corbet, “Hot and cold pages,” https://lwn.net/Articles/14768/,
2002.

[20] J. Axboe, “Flexible i/o tester,” https://github.com/axboe/昀椀o.


