
Quantum Key-Revocable Dual-Regev
Encryption, Revisited

Prabhanjan Ananth1 , Zihan Hu2(B) , and Zikuan Huang3

1 UCSB, Santa Barbara, USA
prabhanjan@cs.ucsb.edu

2 EPFL, Lausanne, Switzerland
zihan.hu@epfl.ch

3 Tsinghua University, Beijing, China
hzk21@mails.tsinghua.edu.cn

Abstract. Quantum information can be used to achieve novel crypto-
graphic primitives that are impossible to achieve classically. A recent
work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on
equipping the dual-Regev encryption scheme, introduced by Gentry,
Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities
using quantum information. They further showed that the key-revocable
dual-Regev scheme implies the existence of fully homomorphic encryp-
tion and pseudorandom functions, with both of them also equipped with
key revocation capabilities. Unfortunately, they were only able to prove
the security of their schemes based on new conjectures and left open the
problem of basing the security of key revocable dual-Regev encryption
on well-studied assumptions.

In this work, we resolve this open problem. Assuming polynomial
hardness of learning with errors (over sub-exponential modulus), we show
that key-revocable dual-Regev encryption is secure. As a consequence,
for the first time, we achieve the following results:
– Key-revocable public-key encryption and key-revocable fully-

homomorphic encryption satisfying classical revocation security and
based on polynomial hardness of learning with errors. Prior works
either did not achieve classical revocation or were based on sub-
exponential hardness of learning with errors.

– Key-revocable pseudorandom functions satisfying classical revoca-
tion from the polynomial hardness of learning with errors. Prior
works relied upon unproven conjectures.

1 Introduction

Leveraging fundamental principles of quantum information to achieve crypto-
graphic notions, that are otherwise impossible to achieve classically, is an exciting
research direction. In the past few years, a dizzying variety of quantum crypto-
graphic primitives, termed as unclonable primitives, have been studied. Under-
lying the unclonable primitives is the no-cloning principle of quantum mechan-
ics [WZ82,Die82] which states that quantum states, unlike classical strings, can-
not be copied. The recent surge in the development of unclonable primitives has
c© International Association for Cryptologic Research 2025
E. Boyle and M. Mahmoody (Eds.): TCC 2024, LNCS 15366, pp. 257–288, 2025.
https://doi.org/10.1007/978-3-031-78020-2_9



258 P. Ananth et al.

resulted in innovative approaches to tackle many real-world security challenges,
including protection against anti-piracy [Aar09], privacy concerns in blockchain
technology [AGKZ20], and provable deletion of cryptographic data from the
web [BI20,BL20].

We focus on the task of securely leasing or revoking cryptographic keys using
the tools of quantum information. Before precisely stating the problem that we
set out to address, let us consider two scenarios: (a) Imagine a manager needing
to temporarily delegate their duties, including access to sensitive encrypted data,
to their subordinate by sharing cryptographic keys. The challenge is ensuring
the subordinate’s access is revoked upon the manager’s return, a task that is
impossible to achieve with classical keys, (b) If a cryptographic key is stolen
from a device, unless the attacker has left a trace, it becomes challenging to
detect such an attack and report it.

Quantum information presents a unique approach of tackling both of the
above aforementioned problems.

Our Focus. A major focus of our work is on protecting decryption keys.
Specifically, we focus on the popular dual-Regev public-key encryption scheme
of [GPV08] (also, referred to as the GPV encryption scheme), which has inspired
the design of many lattice-based cryptographic primitives [BGG+14,Mah18,
BDGM20,Qua20]. A key-revocable dual-Regev public-key encryption scheme,
first introduced in [APV23], is the same as the dual-Regev scheme except that
we have the additional guarantee that the decryption keys can alternately be
represented as quantum states. Any user in possession of the quantum decryp-
tion key can decrypt ciphertexts just the way he would have been able to do if he
had a classical decryption key. The security guarantee stipulates that once the
user returns the quantum decryption key, they will lose the ability to decrypt
ciphertexts and in particular, we require that the semantic security of dual-
Regev encryption still hold. We refer the reader to Sect. 1.1 for a more detailed
description of the key-revocable dual Regev public-key encryption scheme.

Key-Revocable Security of Dual-Regev: Motivation. Proving the
security of key-revocable dual-Regev encryption could lead to adding key revo-
cation capabilities to other cryptographic primitives. Indeed, [APV23] showed
that key-revocable dual-Regev encryption can be leveraged to prove the exis-
tence of fully homomorphic encryption and pseudorandom functions equipped
with key revocation capabilities. The structure of dual-Regev encryption was
crucially exploited in these applications.

There is also an aesthetic reason behind studying this problem. Dual-Regev
public-key encryption is an elegant construction that is taught in most graduate
classes on lattice-based cryptography. Understanding whether it satisfies key-
revocable security is a natural theoretical question.

The work of [APV23] attempted to prove the key-revocable security of dual-
Regev encryption. Unfortunately, they were only able to prove the security of
this construction based on a new unfounded conjecture. They leave the prob-
lem of proving the key-revocable security of dual Regev encryption on con-
crete computational assumptions as an important open problem. In this same
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work, inspired by the literature on certified deletion [BI20,HMNY21,BK22], they
define a stronger property called classical revocation: instead of the user being
asked to return the state, they are only asked to return a classical string that
certifies that the quantum decryption key has been deleted. After the state has
been deleted, as before, we require the semantic security of dual-Regev encryp-
tion to still hold. [APV23] relied upon yet another new conjecture to show that
dual-Regev encryption satisfied classical key-revocation security. The reliance
on both these conjectures makes the current state of affairs rather unsatisfac-
tory. [APV23] left open the problem of basing key-revocation security of dual-
Regev encryption on well-studied cryptographic assumptions.

Main Result. In this work, we resolve this open problem. We show the following:

Theorem 1. Assuming polynomial hardness of learning with errors over sub-
exponential modulus1, dual-Regev encryption is key-revocable. Moreover, this
scheme satisfies the classical revocation property.

Applications. By combining the above theorem with the applications of key-
revocable dual-Regev encryption in [APV23], we obtain the following results:

Main Application: We present the first result of key-revocable pseudorandom
functions based on the polynomial hardness of learning with errors and also
simultaneously satisfies classical revocation property. Prior work by [APV23]
relied upon unproven conjectures.

Other Applications: We also achieve other applications that are in some
aspects better than the previous works.

1. We present the first result of key-revocable public-key encryption that is based
on polynomial hardness of learning with errors and simultaneously satisfies
classical revocation property. Prior works by [AKN+23,CGJL23] satisfied one
but not the other.

2. We present the first result of key-revocable fully homomorphic encryption that
is based on polynomial hardness of learning with errors and simultaneously
satisfies classical revocation property. Prior work by [CGJL23] achieved this
result from sub-exponential hardness of learning with errors.

Main Technical Contribution: At the heart of our result is a new search-to-
decision reduction that reduces a quantum distinguisher that breaks the seman-
tic security of dual-Regev encryption into a quantum adversary that can solve
an inhomogeneous short integer solution (ISIS) problem. Our search-to-decision
reduction is qualitatively different from [APV23] who rely upon Goldreich-Levin
reduction over large finite fields. In addition to the fact that [APV23] relies

1 By aggressively setting the parameters, it would suffice to just assume polynomial
hardness of learning with errors over quasi-polynomial modulus.
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upon a conjecture, their reduction necessarily2 incurs a loss that is inversely
proportional to q, where q is the size of the field. Since they need to set q to
be sub-exponential in the security parameter, this means that their reduction
suffers from sub-exponential loss. On the other hand, our ISIS solver only incurs
inverse polynomial loss, independent of q.

Related Works: It would be remiss not to discuss two other related prior
works.

Chardouvelis, Goyal, Jain, Liu [CGJL23] present instantiations of key-
revocable public-key encryption and fully homomorphic encryption. Moreover,
their schemes satisfy classical key-revocation security3. There are two advantages
of our work over theirs:

– They do not have any results on pseudorandom functions,
– They assume sub-exponential hardness of learning with errors whereas we only

assume polynomial hardness of learning with errors.

Besides that, our work fundamentally differs from their work, both in terms
of constructions and its analysis. Let us begin by highlighting the differences in
the construction.

At a high level, our construction is the same as the dual-Regev public-key
encryption scheme except for the quantum decryption key, whereas [CGJL23]
builds a new encryption scheme inspired by noisy trapdoor claw-free functions
(NTCF) introduced by [BCM+21]. Specifically, they repeat many instantiations
of NTCFs in parallel and use that to build a key-revocable public-key encryption
scheme. The NTCF itself is instantiated using the (original) Regev public-key
encryption scheme.

Even the overall approach in the analysis is quite different: we do a reduc-
tion from decision LWE to SIS whereas they do a search-to-decision reduction for
LWE itself. In the analysis, we use Gaussian collapsing lemma [Por22] and intro-
duce a new lemma, lemma 6 which is distinct in our work. Given the fact that
the constructions are very different, unsurprisingly, the implementation details
also vary quite a bit in both the works. For instance, since they do parallel rep-
etition, their extraction method is more complicated since the adversary could
have broken any one of the instantiations.

Agrawal, Kitagawa, Nishimaki, Yamada, Yamakawa [AKN+23] present an
instantiation of key-revocable public-key encryption based on the existence of
any post-quantum secure public-key encryption scheme. They also present other
key-revocable notions, such as functional encryption, that are not covered in this
work. There are two advantages of our work over theirs:

– They do not prove the classical key revocation security of their scheme,

2 Their starting point is the classical Goldreich Levin reduction over finite fields by
Dodis et al. [DGT+10]. This reduction already suffers from a loss that is inversely
proportional to q.

3 In fact, they satisfy a much stronger property where the communication with the
user can be completely classical.
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– They also do not provide any positive results on either fully homomorphic
encryption or pseudorandom functions.

Both the works, [CGJL23] and [AKN+23], come up with arguably more
involved constructions of key-revocable public-key encryption which make it
unwieldy to extend their techniques to get new applications.

1.1 Technical Overview

In this section, we give an overview of the main ideas and techniques underlying
our proofs.

Key-Revocable Dual-Regev Public-Key Encryption. We first recall the key-
revocable dual-Regev constructions from [APV23]. This part has been repro-
duced verbatim from their work.

– KeyGen(1λ): Sample a matrix A ∈ Zn×m
q and a short trapdoor basis tdA

for it. The (quantum) decryption key is a Gaussian superposition of ISIS
solutions, which is generated by the following procedure: Create a Gaussian
superposition of short vectors x, compute the image A · x (mod q) in the
second register to get

|ψ〉 =
∑

x∈Zm
q

ρσ(x)|x〉 ⊗ |A · x (mod q)〉

where ρσ(x) = exp(−π‖x‖2/σ2) is the Gaussian measure, for some σ > 0,
and measure the second register to the Gaussian coset state

|ψy〉 =
∑

x∈Zm
q

Ax=y (mod q)

ρσ(x)|x〉

for some measurement outcome y ∈ Zn
q .

Finally we set PK = (A,y), MSK = tdA and ρSK = |ψy〉.
– Enc(PK, µ): To encrypt a bit µ ∈ {0, 1}, sample a random string s $←−Zn

q

together with discrete Gaussian errors e ∈ Zm and e′ ∈ Z, and output a
classical ciphertext CT given by

CT =
(
sᵀA+ eᵀ, sᵀy + e′ + µ · 'q

2
(
)

∈ Zm
q × Zq.

– Dec(ρSK,CT): First apply the unitary U : |x〉|0〉 → |x〉|CT · (−x, 1)ᵀ〉 on
input ρSK ⊗ |0〉〈0|, and then measure the second register in the computational
basis. Because ρSK is supposed to be the Gaussian coset state |ψy〉, which is a
superposition of short vector x subject A ·x = y, we obtain an approximation
of µ · ' q

2( from which we can recover µ.
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– Revoke(PK,MSK, ρ) : Apply the projective measurement {|ψy〉〈ψy|, I − |ψy〉〈ψy|}
onto ρ using the master secret key tdA4. Output Valid if the measurement
succeeds, and output Invalid, otherwise.

Consider an efficient adversary A. It receives as input a state |ψy〉 from the chal-
lenger and computes a state ρR,Aux on two registers R and Aux. Subsequently,
the adversary returns system R to the challenger, while retaining system Aux
as quantum advice for subsequent steps. Informally speaking, we say that the
above scheme is secure if A wins both of the following events simultaneously
only with negligible probability:

– Revoke on the system R outputs Valid.
– Using Aux, A can distinguish

(
sᵀA+ eᵀ, sᵀy + e′ + ' q

2(
)

versus
(sᵀA+ eᵀ, sᵀy + e′)

Starting Point. Inspired by [APV23], we undertake the following approach. Sup-
pose there did exist an efficient adversary A that is successful in violating the
security of the above construction. We reduce A into an SIS solver B, which
is described as follows: it first runs A on input (A,y, |ψy〉) to obtain a state ρ
on two registers R and Aux. Then, B needs to be cleverly designed in such a
way that it recovers a short vector x0 from R and a short vector x1 from Aux
satisfying the following properties:

– Ax0 = y, Ax1 = y and,
– x0 ,= x1.

Once both the vectors x0 and x1 are recovered then it simply sets the SIS
solution to be x0 − x1.

While [APV23] set out on this route, they only managed to show such a
reduction based on a new conjecture. The core reason behind this is the fact
that it is challenging to be able to simultaneously recover two distinct short
solutions from two potentially entangled registers R and Aux. An attempt to
recover x0 from R could invariably disturb the part of the state on Aux such
that it is no longer possible to recover x1. Any approach we undertake should
tackle this challenge.

Our Approach. We propose a three-step approach to prove the security of key-
revocable dual-Regev encryption based on learning with errors.

– Step 1. In the first step, we transform the intermediate state ρ (on R and
Aux) produced by A into a “good state" ρgood. This step doesn’t need to
always succeed. We require two guarantees here: (a) this step aborts with
probability bounded away from 1 and, (b) conditioned on not abort, the
output of this step is a good state ρgood such that the revocation onR succeeds
with non-negligible probability and Step 2 works.

4 [APV23] showed how to implement this projective measurement efficiently with the
trapdoor tdA.
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– Step 2. Suppose the output of Step 1 is ρgood. We require that as long as
ρgood is a good state then, from Aux, we should be able to recover a short
vector x1 such that Ax1 = y. More importantly, we should be able to recover
x1 with overwhelming probability.

– Step 3. We recover a short vector x0 from the register R such that Ax0 = y.
Our hope is that x0 and x1 are distinct and if this is the case then x0 − x1

is a non-trivial short solution in the kernel of A.

The easiest step to realize is Step 3. Suppose we have the guarantee that we
can recover x1 from Aux with overwhelming probability. By invoking almost
as good as new lemma [Aar16], we can show that the state ρ after Step 2 is
not disturbed by much. This means that Revoke still succeeds on R with inverse
polynomial probability. This further implies that measuring the register R yields
a short vector x0. Then using a simplified analysis of [APV23], we can argue that
x0 ,= x1, completing the proof.

We focus our attention on implementing Steps 1 and 2. Our main technical
contribution will lie in Step 2.

Implementing Step 1: To implement Step 1, we rely upon the threshold imple-
mentation technique introduced by Zhandry [Zha20]. Threshold implementation
is a technique employed to get an estimate of the success probability of a POVM
on a state. In our context, we employ this technique to test whether the adver-
sary acting upon Aux register of ρ is successful in violating the security of
key-revocable dual-Regev encryption scheme. Formally, we define the threshold
implementation operator TI 1

2+γ , where γ is some inverse polynomial, with the
following properties:

1. TI 1
2+γ is akin to a projector-like operator, collapsing the state to a γ-good

state ρgood capable of distinguishing between (sᵀA+ eᵀ, sᵀy + e′) and (u, r)
for u, r being sampled uniformly randomly with probability 2γ (referred to as
a “γ-good state") when TI 1

2+γ outputs 1, or to some other state when TI 1
2+γ

outputs 0.
2. For a successful adversary, applying TI 1

2+γ with an inverse polynomial γ on
ρAux results in an output of 1 with noticeable probability.

3. Upon applying TI 1
2+γ again on a γ-good state, it yields an output of 1 with

probability 1.

To summarize, as long as A is a successful adversary, TI 1
2+γ collapses ρ into a

good state ρgood with inverse polynomial probability.

Implementing Step 2: As mentioned earlier, implementing Step 2 is our main
technical contribution.

It was already shown by [APV23] that x1 can be extracted from Aux. How-
ever, the success probability of their extraction mechanism was only inverse
polynomial which is insufficient for our purpose. Instead, we completely depart
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from [APV23] and propose a novel extraction method. This high-level app-
roach is inspired by [CGJL23] although they study for a completely different
construction.

At a high level, our extractor proceeds by guessing each entry of x1, where x1

is a short solution mappingA to y, one coordinate at a time. For each coordinate,
we try all possible values and using the distinguisher, test which of our guesses
was correct. Recall that there are exponentially many short vectors that map
A to y. But once we apply the Gaussian collapsing lemma [Por22,LMZ23], we
can replace the state |ψy〉 with |x1〉. While recovering, say, the ith coordinate of
x1, we use the distinguisher on Aux to figure out whether the guess for the ith

coordinate was correct or not. However, this has to be handled with care. Since
the distinguisher has quantum auxiliary advice, we cannot keep hoping to run the
distinguisher again and again. After the first run, the state of the distinguisher
could be damaged making it useless for future iterations. So we need to come
up with a mechanism to check if a guess is correct or not while maintaining
the quantum state. Making crucial use of threshold implementation along with
techniques from lattice-based cryptography, we show how to implement this.

Our extractor is described as follows:
1. Initialize x = 0 as the output register.
2. For each position i ∈ [m] and each guess gi, we test whether the i-th entry

x1 is gi by:
(a) Applying TI 1

2+γ′(i, gi) on system Aux, where TI 1
2+γ′(i, gi) is a threshold

implementation that ‘tests’ whether the state is γ′-good at distinguishing
between

(
sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′

)
(where c $←−Zq and î is the

unit vector on the i-th dimension) and (u, r) (where u $←−Zm
q , r $←−Zq).

(b) If the output is 1, set xi = gi.
(c) If the output is 0, skip to the next iteration.

3. Output x.

We argue that our extractor outputs x1 with nearly perfect probability if
TI 1

2+γ on ρAux outputs 1. Zhandry [Zha20] demonstrates that for two threshold
implementations concerning computationally indistinguishable tasks (e.g., dis-
tinguishing (sᵀA+ eᵀ, sᵀy + e′) from (u, r), and distinguishing (u,uᵀx1 + e′)
from (u, r)), their outputs are closely related. Now, considering each guess gi for
position i:
– If the guess is correct (i.e., the i-th entry of x1 is gi), the distribution(

sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′
)
is computationally indistinguishable from

the distribution (u,uᵀx1 + e′), and thus also from (sᵀA+ eᵀ, sᵀy + e′).
Given ρ′

Aux is a γ-good state, TI 1
2+γ′(i, gi) outputs 1 with 1−negl probability

if all other threshold implementations are ignored (i.e., applied TI 1
2+γ′(i, gi)

just after TI 1
2+γ).

– If the guess is incorrect, the distribution
(
sᵀA+ eᵀ + c · î, sᵀy + c · gi + e′

)

is computationally indistinguishable from (u, r). Consequently, any state pro-
vides no advantage as advice, and TI 1

2+γ′ outputs 1 with negl probability.
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Finally, we apply the quantum union bound to all measurements to demonstrate
that the probability of no error occurring during our testing procedure is 1−negl.

In the above proof, we omitted a major issue. Recall that in Step 1, we imple-
ment threshold implementation to project the state ρ onto a good state ρgood.
Moreover, this threshold implementation is designed to check if the adversary
can distinguish between the distributions (sᵀA+ eᵀ, sᵀy + e′) and (u, r). As
discussed above, at some point, in the intermediate hybrids we need to change
these distributions. Once we switch the distributions, the threshold implemen-
tation might only work with negligible probability. Our hope, in some cases
invoking learning with errors, is to argue that this does not happen. However, it
is not clear how to carry out this reduction. After all, the threshold implemen-
tation as defined by [Zha20] operates on a superposition of exponentially many
samples from a distribution and so, given just one sample from a distribution, it
is not possible to perform threshold implementation. We present a useful lemma
(in Sect. 5) where we argue that operationally, the guarantees of threshold imple-
mentation (including the output and the residual state) are not affected when
one distribution is replaced with another computationally indistinguishable dis-
tribution.

2 Preliminaries

We use standard notations throughout this work. We assume that the reader is
familiar with quantum computing and lattices. We refer the reader to the full
version [AHH24] for a complete presentation of this section.

2.1 Quantum Computing

We will use the following lemma.

Lemma 1 (Quantum Union Bound, [Gao15]). Let H be a Hilbert space. Let
ρ ∈ D(H) be a state and let Π1, . . . ,Πn ≥ 0 be sequence of (orthogonal) projec-
tions acting on H. Suppose that, for every i ∈ [n], it holds that Tr[Πiρ] = 1−εi,
for εi ∈ [0, 1]. Then, if we sequentially measure ρ with projective measurements
{Π1, I − Π1}, . . . , {Πn, I − Πn}, the probability that all measurements succeed
is at least

Tr[Πn · · ·Π1ρΠ1 · · ·Πn] ≥ 1 − 4
n∑

i=1

εi.

2.2 Lattices and Cryptography

We adapt notations from [APV23] and keep it same as much as we can. The
following subsection is copied verbatim from [APV23].

In this work, we mainly consider q-ary lattices Λ that that satisfy qZm ⊆
Λ ⊆ Zm, for some integer modulus q ≥ 2. Specifically, we consider the lattice
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generated by a matrix A ∈ Zn×m
q for some n,m ∈ N that consists of all vectors

which are perpendicular to the rows of A, namely

Λ⊥
q (A) = {x ∈ Zm : A · x = 0 (mod q)}.

For any syndrome y ∈ Zn
q in the column span of A, we also consider the coset

Λy
q (A) given by

Λy
q (A) = {x ∈ Zm : A · x = y (mod q)} = Λ⊥

q (A) + c,

where c ∈ Zm is an arbitrary integer solution to the equation Ac = y (mod q).

Definition 1 (Truncated discrete Gaussian distribution). Let m ∈ N,
q ≥ 2 be an integer modulus and let σ > 0 be a parameter. Then, the truncated
discrete Gaussian distribution DZm

q ,σ with finite support {x ∈ Zm ∩ (− q
2 ,

q
2 ]

m :
‖x‖ ≤ σ

√
m} is defined as the density

DZm
q ,σ(x) =

ρσ(x)∑

y∈Zm
q ,‖y‖≤σ

√
m

ρσ(y)
.

where ρσ(x) := exp(−π‖x‖2/σ2) is the Gaussian distribution.

We will use the following two results.

Lemma 2 (Noise smudging, [DGT+10]). Let y,σ > 0. Then, the statistical
distance between the distribution DZ,σ and DZ,σ + y is at most y/σ.

We use the following technical lemma on the min-entropy of the truncated
discrete Gaussian distribution, which we prove below.

Lemma 3 (min-entropy of the truncated discrete Gaussian, [APV23],
Lemma 2.10). Let n ∈ N and let q be a prime with m ≥ 2n log q. Let A ∈ Zn×m

q

be a matrix whose columns generate Zn
q . Then, for any σ ≥ ω(

√
logm), there

exists a negligible ε(m) such that

max
y∈Zn

q

max
x∈Zm

q , ‖x‖≤σ
√
m

Ax=y (mod q)






ρσ(x)∑

z∈Zm
q ,‖z‖≤σ

√
m

Az=y (mod q)

ρσ(z)






≤ 2−m+1 · 1 + ε

1 − ε
.

Theorem 2 (Gaussian-collapsing property, [Por22], Theorem 4). Let n ∈
N and q be a prime with m ≥ 2n log q, each parameterized by λ ∈ N. Let

√
8m <

σ < q/
√
8m. Then, the following samples are computationally indistinguishable
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assuming the quantum hardness of decisional LWEm
n,q,αq, for any noise ratio α ∈

(0, 1) with relative noise magnitude 1/α = σ · 2o(n) :
(
A $←−Zn×m

q , |ψy〉 =
∑

x∈Zm
q

Ax=y

ρσ(x) |x〉, y ∈ Zn
q

)
≈c

(
A $←−Zn×m

q , |x0〉, A · x0 ∈ Zn
q

)

where (|ψy〉,y) ← GenGauss(A,σ) and where x0 ∼ DZm
q , σ√

2
is a (truncated)

discrete Gaussian distribution.

2.3 Threshold Implementation and Its Approximate Version

In the subsection, we review some techniques called Threshold Implementation
[ALL+21], which is a simple extension of Projective Implementation [Zha20].

Theorem 3 (Threshold implementation, [ALL+21]). Let γ ∈ (0, 1) be a
parameter and let P = (P,Q) be a two-outcome POVM, where P has an eigen-
basis {|ψi〉} with associated eigenvalues {λi}. Then, there exists a projective
threshold implementation (TIγ(P), I − TIγ(P)) such that

– TIγ(P) projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy the property λi ≤ γ.

– I−TIγ(P) projects a quantum state into the subspace spanned by {|ψi〉} whose
eigenvalues λi satisfy the property λi > γ.

Unfortunately, the threshold implementation can, in general, not be effi-
ciently computable. However, inspired by the work of Marriott and Watrous
[MW05], Zhandry [Zha20] showed that the approximate version of the thresh-
old implementation can be implemented efficiently as long as the POVM is a
mixture of projective measurements. We first review the definition of mixture of
projective measurements.

Definition 2 (Mixture of projective measurements). Let P = {Pi}i∈I be
a collection of binary outcome projective measurements Pi = (Pi, Qi) over the
same Hilbert space H, and suppose that Pi corresponds to outcome 1 and Qi

corresponds to outcome 0. Let D be a distribution over the index set I. Then,
PD = (PD, QD) is the following mixture of projective measurements:

PD =
∑

i∈I
Pr[i ← D]Pi and QD =

∑

i∈I
Pr[i ← D]Qi.

In other words, PD is the same as first sampling i according to the distribution
D, and then applying the projective measurements Pi.

For any mixture of projective measurements PD, the approximate threshold
implementation satisfies the following properties.
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Lemma 4 (Approximate threshold implementation, Theorem 6.2 in
[Zha20] and Corollary 1 in [ALL+21]). Let PD = (PD, QD) be a binary out-
come POVM over Hilbert space H that is a mixture of projective measurements
over some distribution D. Let ε, δ, γ ∈ (0, 1). Then, there exists an efficient
binary-outcome quantum algorithm ATIε,δP,D,γ , interpreted as the POVM element
corresponding to outcome 1, such that the following holds:

– For all quantum states ρ, Tr[ATIε,δP,D,γ−ε ρ] ≥ Tr[TIγ(PD) ρ] − δ.
– For all quantum states ρ, it holds that Tr[TIγ−2ε(PD) ρ′] ≥ 1 − 2δ, where ρ′

is the post-measurement state which results from applying the measurement
ATIε,δP,D,γ to ρ and obtaining outcome 1.

– The expected running time to implement ATIε,δP,D,γ is proportional to poly(1/ε,
log(1/δ)), the time it takes to implement PD, and the time it takes to sample
from D.

3 Definition: Key-Revocable Public-Key Encryption

A key-revocable public-key encryption is a type of public-key encryption. Con-
sider the case where the secret key holder wishes to temporarily give the secret
key to a third party and later wants to take it back while maintaining the security
i.e. the third party upon taken its key away, can’t decrypt any message later.
This is impossible in the classical case since the third party can always copy
the secret key locally. But we may achieve this functionality by representing the
secret key as a quantum state.

Definition 3 (Key-Revocable Public-Key Encryption [APV23]). A key-
revocable public-key encryption scheme consists of efficient algorithms (KeyGen,
Enc,Dec,Revoke), where Enc is a PPT algorithm and KeyGen,Dec,Revoke are
QPT algorithms defined as follows:

– KeyGen(1λ): given as input a security parameter λ, output a public key PK,
a master secret key MSK and a quantum decryption key ρSK.

– Enc(PK, µ): given a public key PK and plaintext µ ∈ {0, 1}, output a ciphertext
CT.

– Dec(ρSK,CT): given a decryption key ρSK and ciphertext CT, output a message
y.

– Revoke(PK,MSK, ρR): given as input a master secret key MSK, a public key
PK and quantum state ρR, output Valid or Invalid.

Correctness of Decryption. For µ ∈ {0, 1}, the following holds:

Pr
[
µ ← Dec(ρSK,CT) : (PK,MSK,ρSK)←KeyGen(1λ)

CT←Enc(PK,µ)

]
≥ 1 − negl.

Correctness of Revocation. The following holds:

Pr
[
Valid ← Revoke(PK,MSK, ρSK) : (PK,MSK, ρSK) ← KeyGen(1λ)

]
≥ 1 − negl.
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3.1 Security Definition

The security captures the case where the adversary is given the key and later
taken back. After that, if the key passes the revocation check the adversary is
asked to play a CPA like game that it is given either the ciphertext of a chosen
message or a random message. The adversary wins if it can distinguish between
these two cases.

Definition 4. A key-revocable public-key encryption scheme Σ = (KeyGen,Enc,
Dec,Revoke) is (ε, δ)-secure if, for every QPT adversary A with

Pr
[
Invalid ← ExptΣ,A(1λ, b)

]
≤ δ(λ)

for b ∈ {0, 1}, it holds that
∣∣∣Pr

[
1 ← ExptΣ,A(1λ, 0)

]
− Pr

[
1 ← ExptΣ,A(1λ, 1)

]∣∣∣ ≤ ε(λ),

where ExptΣ,A(1λ, b) is defined as Fig. 1.
If δ(λ) = 1 − 1

poly(λ) and ε(λ) = negl(λ), we simply say the key-revocable
encryption scheme is secure.

Fig. 1. Security Experiment
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4 Construction: Key Revocable Dual-Regev Encryption

The construction is exactly the same as the construction in [APV23]. We include
the construction here for completeness.

Construction 4 (Key Revocable Dual-Regev Encryption [APV23]). Let
n,m ∈ N and q ≥ 2 be a prime, each parameterized by λ ∈ N. Let
α,β,σ > 0 be parameters. The key-revocable public key scheme RevDual =
(KeyGen,Enc,Dec,Revoke) consists of the following QPT algorithms:

– KeyGen(1λ) → (PK, ρSK,MSK): Sample (A ∈ Zn×m
q , tdA) ←

GenTrap(1n, 1m, q) where GenTrap is the algorithm that generates the LWE
matrix with its trapdoor. Then generate a Gaussian superposition (|ψy〉,y) ←
GenGauss(A,σ)5 for some y ∈ Zn

q . Output PK = (A,y), ρSK = |ψy〉 and
MSK = tdA.

– Enc(PK, µ) → CT: to encrypt a bit µ ∈ {0, 1}, sample a random vector s ←
Zn
q and errors e ∼ DZm,αq and e′ ∼ DZ,βq and output the ciphertext pair

CT =
(
sᵀA+ eᵀ (mod q), sᵀy + e′ + µ · ' q

2( (mod q)
)

∈ Zm
q × Zq.

– Dec(ρSK,CT) → {0, 1} : to decrypt CT, apply the unitary U : |x〉|0〉 → |x〉|CT·
(−x, 1)ᵀ〉 on input |ψy〉|0〉, where ρSK = |ψy〉, and measure the second register
in the computational basis. Output 0, if the measurement outcome is closer
to 0 than to ' q

2(, and output 1, otherwise.
– Revoke(MSK,PK, ρ) → {3,⊥} : on input tdA ← MSK and (A,y) ← PK,

apply the measurement {|ψy〉〈ψy|, I − |ψy〉〈ψy|} onto the state ρ using the
procedure QSampGauss(A, tdA,y,σ)6. Output 3 if the measurement is suc-
cessful, and ⊥ otherwise.

From [APV23], this construction satisfies the correctness of decryption and
the correctness of revocation. In this work, we will focus on showing the con-
struction is in fact secure.

Theorem 5. Let n ∈ N and q be a prime modulus with q = 2o(n) and m ≥
2n log q, each parameterized by security parameter λ ∈ N. Let

√
8m < σ <

q/
√
8m and let α,β ∈ (0, 1) be noise ratios chosen such that β/α = 2o(n) and

1/α = 2o(n) · σ. Then, assuming the polynomial hardness of LWEm
n,q,αq with

sub-exponential modulus, the scheme RevDual = (KeyGen,Enc,Dec,Revoke) in
Construction 4 is a secure key-revocable public-key encryption scheme according
to Definition 4.

We organize the proof of Theorem 5 in the following way:

– In Sect. 5, we prove an important property for approximate threshold imple-
mentation, which allows us to do hybrid arguments between approximate
threshold implementation on computationally indistinguishable distributions.

– In Sect. 6, we present our construction for the almost perfect preimage extrac-
tor that lies in the heart of our result.

– In Sect. 7, we complete our proof of the above theorem.
5 The detailed description of GenGauss can be found in [APV23].
6 The detailed description of QSampGauss can be found in [APV23].
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5 Indistinguishability on Approximate Threshold
Implementation

Zhandry [Zha20] analyzed the relationship between the output distribution of
TIγ0(PD0) and TIγ1(PD1) (and ATIP,D0,γ0 and ATIP,D1,γ1) for some thresholds γ0
and γ1 on the same state for two computationally indistinguishable distributions
D0 and D1. However, in our work, we also care about the residual state after
applying the procedures. So we give a more precise analysis below.

In this section, we show how to leverage a (possibly not efficiently con-
structible) quantum state ρ on which ATIP,D0,γ and ATIP,D1,γ behave differently
to construct a QPT distinguisher (with auxiliary state ρ) for D0 and D1. This
can be viewed as an extension of Theorem 6.5 and Corollary 6.9 in [Zha20].

This result allows us to do hybrid arguments between ATIP,D0,γ and
ATIP,D1,γ with exactly the same threshold parameter γ for computationally
indistinguishable distributions D0 and D1 even when an efficient quantum pro-
cedure is applied on the residual state after ATI. Notably, it applies even when
we need some classical advice to sample from D0 and D1, in which case, our
QPT distinguisher additionally takes the same classical advice and distinguishes
D0 and D1.

Lemma 5. Let P be a collection of projective measurements indexed by some set
I. Suppose P can be implemented by a quantum circuit of size |P|. Let D0,D1 be
two efficiently sampleable distributions over I. For any state ρ ∈ D(H), denote
(b, ρ′) ← ATIε,δP,D,γ(ρ) be the procedure that runs ATIε,δP,D,γ on state ρ, and gets an
output b and the post-measurement state ρ′. For any polynomial µ, any quantum
state ρ and any (possibly quantum) predicate h : {0, 1} × D(H) → {0, 1} with
circuit size |h|, if
∣∣∣Pr

[
h(b, ρ′) = 1|(b, ρ′) ← ATIε,δP,D0,γ

(ρ)
]

− Pr
[
h(b, ρ′) = 1|(b, ρ′) ← ATIε,δP,D1,γ

(ρ)
]∣∣∣ ≥

1

µ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ), µ, |P| , |h|)
(which only uses the quantum circuits to implement P, h and to sample D0,D1

as a black box) such that
∣∣∣∣Pr

[
C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1
(µ(λ))3 · poly(λ, 1/ε, log(1/δ))

which is an inverse polynomial if µ is a polynomial.

Proof. The proof follows the same idea as the proof for Theorem 6.5 in [Zha20].
Roughly speaking, the output of ATIε,δP,D,γ can be approximated up to inverse
polynomial additive error given only polynomial samples from D. We refer the
reader to the full version [AHH24] for the full proof.

ATI may change the input state in an essential way even when it outputs 1
with overwhelming probability because ATI is not a projector. For example, let
a pure quantum state ρ be a superposition of eigenvectors (of PD) |ψi〉 whose
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eigenvalues λi satisfy the property λi ≥ γ + 10ε. If we apply ATIε,δP,D,γ on ρ,
we will get outcome 1 with almost certainty, but the residual state ρ′ may lose
coherence and become closer to a mixture of |ψi〉.

When we know the ATI outputs 0 or 1 with overwhelming probability, it
is a good idea to minimize the disturbance by purifying ATI and performing
uncomputation, just like the famous gentle measurements. To be more precise,
we consider the projective version of ATIε,δP,D,γ . Formally, ATIε,δP,D,γ can be written
as introducing poly(1/ε, log(1/δ)) ancillas initialized as |0〉, applying a unitary U
on the state, and then applying a projective measurement (|0〉〈0|, |1〉〈1|) on the
output register of state to get the output. We will denote the binary-outcome
projective measurement (U†|0〉〈0|U,U†|1〉〈1|U) as ATI

ε,δ
P,D,γ , the projective ver-

sion of ATIε,δP,D,γ , which also has size poly(1/ε, log(1/δ)). By definition, for any
quantum state ρ, the output distribution of running ATI on ρ along with enough
fresh ancillas is the same as the output distribution of running ATI on ρ (but
the residual states are different).

Roughly speaking, ATIε,δP,D,γ does the same thing as ATIε,δP,D,γ except that
it uncomputes intermediate results. Notice that a quantum query to function
f is implemented as Uf : |x〉|y〉 → |x〉|y ⊕ f(x)〉, whose inverse is exactly Uf .
We can use the same proof technique in Lemma 5 to show that ATI

ε,δ
P,D,γ can

also be approximated by polynomial classical samples from D up to inverse
polynomial precision and thus we can also apply hybrid arguments between
ATIP,D0,γ and ATIP,D1,γ for computationally indistinguishable distributions D0

and D1. Formally,

Lemma 6. Let HR,HAux be Hilbert spaces. Let P be a collection of projec-
tive measurements indexed by some set I. Suppose P can be implemented by a
quantum circuit of size |P|. Let D0,D1 be two efficiently sampleable distribu-
tions over I. For any state ρ ∈ D(HR), denote (b, ρ′) ← ATI

ε,δ
P,D,γ(ρ) be the

procedure that runs ATI
ε,δ
P,D,γ on state ρ along with enough fresh ancillas ini-

tialized to |0〉, and gets an output b and the post-measurement state ρ′. For
any polynomial µ, any quantum state ρ and any (possibly quantum) predicate
h : {0, 1} × D(HAux) → {0, 1} with circuit size |h|, if
∣∣∣Pr

[
h(b, ρ′) = 1|(b, ρ′) ← ATI

ε,δ
P,D0,γ(ρ)

]
− Pr

[
h(b, ρ′) = 1|(b, ρ′) ← ATI

ε,δ
P,D1,γ(ρ)

]∣∣∣ ≥
1

µ(λ)
.

Then there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ), µ, |P| , |h|)
(which only uses the quantum circuits to implement P, h and to sample D0,D1

as a black box) such that
∣∣∣∣Pr

[
C(ρ, x) = b : b

$←− {0,1}
x∼Db

]
− 1

2

∣∣∣∣ ≥ 1
(µ(λ))3 · poly(λ, 1/ε, log(1/δ))

which is an inverse polynomial if µ is a polynomial.

Proof. We omit the proof as it’s almost the same as the proof of Lemma 5.
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6 Almost Perfect Extraction of Preimages

In this section, we show how to extract a short preimage of y with overwhelming
probability, given a good (quantum) distinguisher between the distribution of a
ciphertext of message µ and a uniform distribution. Our main contribution is an
extraction algorithm that is guaranteed to work with overwhelming probability, in
contrast to the extraction algorithm in [APV23] that only works with probability
inversely proportional to the field size.

Since a general quantum distinguisher can be a superposition of a good dis-
tinguisher and a useless distinguisher, we use (Approximate) Threshold Imple-
mentation to (approximately) test whether a given quantum distinguisher is
good before we apply the extraction algorithm. We need the following notations
before we formally define what is a good quantum distinguisher.

Threshold Implementation on a Quantum Distinguisher. For a quantum algo-
rithm A with auxiliary quantum state ρ, let projective measurements {PA

x =
(PA

x , QA
x )} correspond to running A on x and the auxiliary state ρ. Suppose

that PA
x corresponds to outcome 1 and QA

x corresponds to outcome 0.
For two distributions D0 and D1, denote (D0,D1) to be the distribution of

(b, x) where b $←− {0, 1} and x ∼ Db. We say that (A, ρ) is a γ-good quantum dis-
tinguisher for distributions D0 and D1 with support X if and only if ρ passes the
projector TI1/2+γ(PA

(D0,D1)
). Here, we abuse the notation to define the POVM

PA
(D0,D1)

= (PA
(D0,D1)

, QA
(D0,D1)

)7 such that

PA
(D0,D1)

=
PA
D1

+QA
D0

2
=

∑
x∈X Pr [x ← D1]PA

x +
∑

x∈X Pr [x ← D0]QA
x

2
,

QA
(D0,D1)

= I − PA
(D0,D1)

.

In other words, PA
(D0,D1)

= (PA
(D0,D1)

, QA
(D0,D1)

) is the POVM measurement
(where PA

(D0,D1)
corresponds to output 1 and QA

(D0,D1)
corresponds to output 0)

that on any input quantum state ρ,

– Sample (b, x) ∼ (D0,D1).
– Feed x and the input quantum state ρ into A, which outputs a guess b′.
– Output 1 if b′ = b; 0 otherwise.

We denote the approximate version of TI1/2+γ(PA
(D0,D1)

) as ATIε,δPA,(D0,D1),1/2+γ
.

Roughly speaking, ATIε,δPA,(D0,D1),1/2+γ can efficiently estimate whether the algo-
rithm A, along with the input quantum state as auxiliary, can distinguish
D0 and D1 with advantage at least γ. We denote the projective version of
ATIε,δPA,(D0,D1),1/2+γ as ATIε,δPA,(D0,D1),1/2+γ .

7 PA
(D0,D1)

is actually a mixture of projective measurements for the distribution
(D0, D1) and a collection of binary outcome projective measurements Pb,x =
(QA

x , PA
x ) if b = 0 and Pb,x = (PA

x , QA
x ) if b = 1.
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Some Important Distributions. The threshold implementation will be used to
test whether a quantum distinguisher works well on the following distributions.
The prime modulus q, the noise ratios α,β ∈ (0, 1) and n,m ∈ N are all fixed
parameters that will be soon clear from the context. For matrix A ∈ Zn×m

q , and
vectors y ∈ Zn

q ,x ∈ Zm
q ,

– Denote DA,y
lwe to be the distribution of (A,y, sᵀA + eᵀ, sᵀy + e′) where

s $←−Zn
q , e ∼ DZm

q ,αq and e′ ∼ DZq,βq.
– Denote DA,y

unif to be the distribution of (A,y,uᵀ, u′) where u $←−Zm
q and

u′ $←−Zq.
– Denote D̄A,x

lwe to be the distribution of (A,Ax,uᵀ,uᵀx+e′) where e′ ∼ DZq,βq

and uᵀ = sᵀA+ eᵀ for s $←−Zn
q , e ∼ DZm

q ,αq.
– Denote DA,x

gl to be the distribution of (A,Ax,uᵀ,uᵀx+e′) where e′ ∼ DZq,βq

and u $←−Zm
q .

For each of the above distribution D, we denoteD(i, gi) to be the distribution
of (v1,v2,v3 + c · îᵀ, v4 + c · gi) where î is the unit vector with its ith coordinate
being 1, c $←−Zq, and (v1,v2,v3, v4) ∼ D. It is easy to generate a sample from
D(i, gi) given i, gi and a sample from D. Thus if we can efficiently distinguish
betweenD0(i, gi) andD1(i, gi), then on input (i, gi), we can efficiently distinguish
between D0 and D1.

The adversary can be described as an unitary A acting on a Hilbert space
H = HAλ ⊗ HBλ = HRλ ⊗ HAuxλ .

– HAλ stores the secret key state given by the challenger.
– HBλ is initialized to a quantum advice.
– HRλ stores the state returned to the challenger.
– HAuxλ is kept by the adversary.

We will omit λ when it is clear from the context. We show the following result.

Theorem 6 (Almost Optimal Search-to-Decision Reduction with
Quantum Auxiliary Input). Let n ∈ N and q be a prime modulus with
q = 2o(n) and let m ≥ 2n log q, each parameterized by the security parameter
λ ∈ N such that m ≤ poly(λ). Let

√
8m < σ < q/

√
8m and let α,β ∈ (0, 1) be

noise ratios with β/α = 2o(n), 2−o(n) ≤ ασ ≤ negl(λ) and ασ/β ≤ negl(λ). Let
A = {(Aλ,A,y, νλ)}λ∈N be any non-uniform quantum algorithm consisting of a
family of polynomial-sized quantum circuits and polynomial-sized advice states
νλ ∈ D(HBλ) which are independent of A and y.

Assume the decisional LWEm
n,q,αq cannot be solved by a quantum algorithm

running in time poly(λ,σ) with distinguishing advantage 1/poly(λ,σ). If there
exist functions ε(λ) = 1/poly(λ), γ(λ) = 1/poly(λ), δ(λ) = 2−Θ(λ) and a QPT
distinguisher D such that (Fig. 2)

Pr
[
1 ← SearchToDecisionExptA,D(1λ)

]
= ε(λ).
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Fig. 2. The experiment SearchToDecisionExptA,D (
1λ

)
.

Then, there exists a quantum extractor E that takes as input A, y and system
Aux of the state ρR,Aux and outputs a short vector in the coset Λy

q (A) in time
poly(λ,σ, 1/γ) such that

Pr



x ∈ Λy
q (A)∩Bm(0,σ

√
m/2) :

A
$←− Zn×m

q

(|ψy〉,y)←GenGauss(A,σ)
ρR,Aux←Aλ,A,y(|ψy〉〈ψy|⊗νλ)

1←ATIγ/6,δ

PD,(DA,y
lwe

,D
A,y
unif

),1/2+γ
(ρAux)

x←E(A,y,Aux)



 ≥ 1 − negl(λ).

6.1 Construction of the Extractor

In the subsection, we formally define our quantum extractor E . E takes A,y and
the quantum state in Aux as input, and does the following:

Fig. 3. The quantum extractor E(A,y,Aux).
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By construction, the extractor runs in time poly(λ,σ,m, 1/ε, log 1
δ ) =

poly(λ,σ, 1/γ).

6.2 Analysis of the Extractor

Before we analyze the success probability of our extractor, we make crucial
observations on the distributions DA,y

lwe , DA,y
unif , D̄

A,x
lwe and DA,x

gl .

Lemma 7. For any x ∈ Bm(0,σ
√

m/2), the statistical distance between D̄A,x
lwe

and DA,Ax
lwe is at most negl(λ).

Proof. By noise smudging (Lemma 2), the statistical distance between the
distribution DZq,βq and the distribution of eᵀx + e′ where e′ ∼ DZq,βq and
|eᵀx| ≤ αqσm is at most ασm/β. Notice that for any x ∈ Bm(0,σ

√
m/2), when

e is sampled from DZm
q ,αq, |eᵀx| ≥ αqσm with probability at most 2−Ω(λ)(from

Banaszczyk’s tail bound [Ban93]).
Thus the statistical distance between D̄A,x

lwe and DA,Ax
lwe is at most ασm/β +

2−Ω(λ), which by our choice of parameters, is at most negl(λ).

Lemma 8. For integer i ∈ [m] and gi = xi, DA,x
gl (i, gi) = DA,x

gl .
For integer i ∈ [m] and gi ,= xi, DA,x

gl (i, gi) = DA,Ax
unif .

Proof. This follows directly from the definition, so we omit the proof.

Now we are ready to prove Theorem 6.

Proof. To prove Theorem 6, it suffices to prove that

Pr
[
1 ← GameA,D

0

(
1λ
)]

≤ negl(λ)

where GameA,D
0 is shown in Fig. 4.

Fig. 4. The game GameA,D
0

(
1λ

)
.
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Let’s consider the following sequence of hybrid distributions.

H0: This is the same as the game GameA,D
0

(
1λ
)
defined in Fig. 4.

H1: This is the following distribution:
1. Sample A $←−Zn×m

q .
2. Sample a Gaussian vector x′ ∼ DZm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATIγ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x ← E(A,y,Aux).
6. Output 1 if x /∈ Λy

q (A) ∩ Bm(0,σ
√

m/2); Otherwise, output 0.

H2: This is the following distribution:
1. Sample A $←−Zn×m

q .
2. Sample a Gaussian vector x′ ∼ DZm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATIγ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Compute x ← E(A,y,Aux).
6. Output 1 if x /∈ Λy

q (A) ∩ Bm(0,σ
√

m/2); Otherwise, output 0.

H3,k: This is the following distribution which replaces ATIε,δPD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′

in E with ATI
ε,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′ one by one (recall the description of

E defined in Fig. 3).
1. Sample A $←−Zn×m

q .
2. Sample a Gaussian vector x′ ∼ DZm

q ,σ/
√
2 and let y = A · x′ mod q.

3. Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
4. Compute b ← ATIγ/6,δ

PD,(DA,x′
gl ,DA,y

unif ),1/2+γ
(ρAux). Abort if b = 0.

5. Set x = 0, ε = γ/6, γ′ = γ − 3ε = γ/2, t = 0.
6. For each i = 1, 2, · · · ,m:

For each gi ∈ [−σ
√

m/2, · · · ,σ
√

m/2]:
i. Let Aux store the current state of the quantum distinguisher. t ←

t+ 1.
ii. If t ≤ k, run ATI

ε,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′ on the residual state

in register Aux along with enough fresh ancillas initialized to |0〉.
Otherwise, run ATI

ε,δ

PD,(DA,y
lwe (i,gi),D

A,y
unif ),1/2+γ′ on the residual state in

register Aux along with enough fresh ancillas initialized to |0〉 .
iii. If it outputs 1, set xi = gi, and move on to the next guess.
iv. If it outputs 0, move on to the next guess.

7. Output 1 if x /∈ Λy
q (A) ∩ Bm(0,σ

√
m/2); Otherwise, output 0.

We now show the following:
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Lemma 9. Assuming the quantum hardness of LWEm
n,q,αq, the hybrids H0 and

H1 are computationally indistinguishable,

H0 ≈c H1.

Proof. This follows directly from the Gaussian-collapsing property (Theorem 2)
for quantum distinguishers with auxiliary states.

Lemma 10. Assuming the quantum hardness of LWEm
n,q,αq, the hybrids H1 and

H2 are computationally indistinguishable,

H1 ≈c H2.

Proof. We prove the claim by contradiction.
Suppose H1 and H2 can be distinguished by a QPT algorithm B with advan-

tage 1/λc for a constant c > 0 and infinitely many λ. Fix one such λ.
By standard averaging argument, for at least 1

2λc fraction of (A,x′) sampled
according to A $←−Zn×m

q and x′ ∼ DZm
q ,σ/

√
2, B can distinguish the result of run-

ning step 3–6 of H1 on (A,x′), and the result of running step 3–6 of H2 on (A,x′)
with advantage at least 1

2λc . Let’s call those (A,x′) good. Then from Lemma 5,
there exists a quantum circuit C of size poly(λ, 1/ε, log(1/δ)) such that for each
good (A,x′), C(ρAux,A,x′, ·) can distinguish samples from

(
DA,x′

gl ,DA,y
unif

)
and

samples from
(
DA,y

lwe ,DA,y
unif

)
with advantage at least 1

poly(λ,1/ε,log(1/δ)) .

As we can sample DA,y
unif by ourselves and DA,y

lwe ≈s D̄A,x′

lwe (from Lemma 7
and the choice of parameters), there exists a polynomial size quantum circuit C′

such that for each good (A,x′), C′(ρAux,A,x′, ·) can distinguish samples from
DA,x′

gl and D̄A,x′

lwe with advantage at least 1/λd for some constant d > 0.
Recall that the only difference in DA,x′

gl and D̄A,x′

lwe is whether u is sampled
according to LWE or sampled uniformly. Now let’s show how to leverage the
fact to break LWEm

n,q,αq using this C′ (Algorithm 1). Notice that for all the good
(A,x′), line 3 passes with noticeable probability (by averaging arguments over
the eigenspaces) and the residual state after running ATI and obtaining outcome
1 is still a good distinguisher (by Lemma 4). So Algorithm 1 breaks decisional
LWEm

n,q,αq efficiently if Lemma 10 doesn’t hold.
This ends our proof of the claim.

Lemma 11. Assume that the decisional LWEm
n,q,αq cannot be solved by a

quantum algorithm running in time poly(λ,σ) with distinguishing advantage
1/poly(λ,σ).

The probability that hybrid H3,k outputs 1 and the probability that hybrid
H3,k+1 outputs 1 are negl(λ)/σ close. Formally, for 0 ≤ k ≤

√
2σm3/2 − 1,

|Pr [H3,k+1 = 1] − Pr [H3,k = 1]| ≤ negl(λ)/σ

Proof. The proof is the same with the proof of Lemma 10 except that we apply
Lemma 6 instead of Lemma 5 and that we set the parameter µ in Lemma 6 as
1/poly(λ,σ) instead of 1/poly(λ). We omit the proof details.
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Algorithm 1: An algorithm to break decisional LWEm
n,q,αq if Lemma 10

doesn’t hold
Input : Matrix A ∈ Zn×m

q and vector u ∈ Zn
q (and quantum advice νλ).

Output: 0 or 1 (guess whether u is sampled from uniform or according to
LWEm

n,q,αq)
1 Sample a vector x′ ∼ DZm

q ,σ/
√

2 and let y = A · x′ mod q.
2 Generate ρR,Aux ← Aλ,A,y(|x′〉〈x′| ⊗ νλ).
3 Test whether C′(ρAux,A,x′, ·) can be used to distinguish samples from DA,x′

gl

and samples from D̄A,x′

lwe with advantage at least 1/λd by running ATI1/λd+1,δ on
it with threshold 1/2+ 1

4λd . If the ATI outputs 0 (it is not a good distinguisher),
output a random guess and abort.

4 Denote the residual state (if not abort) in register Aux as ρ′
Aux.

5 Sample e′ ∼ DZq,βq.Let v := (A,Ax′,uᵀ,uᵀx′ + e′).
6 Run C′(ρ′

Aux,A,x′,v) and output the result.

Lemma 12. H3,
√
2σm3/2 outputs 1 with negligible probability.

Proof. We first define GameA,D
1

(
1λ
)
in Fig. 5. It is the same as H3,

√
2σm3/2 except

that it will output 1 if x ,= x′ (which is implied by x /∈ Λy
q (A)∩Bm(0,σ

√
m/2)),

so to prove Lemma 12, it suffices to prove that GameA,D
1

(
1λ
)
outputs 1 with

negligible probability.

Fig. 5. The game GameA,D
1

(
1λ

)
.
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Notice that in step 6, we apply a sequence of projective measurements ATI
and set each coordinate of x′ based on the measurement outcomes. By Quantum
Union Bound (Lemma 1), Pr

[
1 ← GameA,D

1

(
1λ
)]

can be bounded by a union

of events that for x′ sampled according to DZm
q ,σ/

√
2, SubGameA,D (

1λ, i, gi,x′)

outputs 1:

Pr
[
1 ← GameA,D

1

(
1λ
)]

≤4
m∑

i=1

σ
√

m/2∑

gi=−σ
√

m/2

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′) : x′ ∼ DZm
q ,σ/

√
2

]

where SubGameA,D (
1λ, i, gi,x′) is defined in Fig. 6.

Fig. 6. The game SubGameA,D (
1λ, i, gi,x

′).

Now let’s show for any fixed i, gi,x′,

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)
]

≤ negl(λ)/σ (1)

Case 1: gi = x′
i Consider the residual state ρ′

Aux of running step 3 and obtaining
b = 1. From Lemma 4, running ATIε,δ

PD,
(
DA,x′

gl ,DA,y
unif

)
,1/2+γ′

on ρ′
Aux, we will obtain

1 with probability at least 1 − 3δ.
From Lemma 8, when gi = x′

i, DA,x′

gl (i, gi) = DA,x′

gl . Thus the output distri-
bution of running ATIε,δ

PD,
(
DA,x′

gl ,DA,y
unif

)
,1/2+γ′

on ρ′
Aux is exactly the same as that

of running ATI
ε,δ

PD,
(
DA,x′

gl (i,gi),D
A,y
unif

)
,1/2+γ′ on ρ′

Aux. Therefore,

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)
]

≤ 3δ ≤ negl(λ)/σ.
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Case 2: gi ,= x′
i Again consider the residual state ρ′

Aux of running step 3 and
obtaining b = 1. From Lemma 8, when gi ,= x′

i, DA,x′

gl (i, gi) = DA,Ax′

unif = DA,y
unif .

Thus when running ATIε,δ
PD,(DA,y

unif ,DA,y
unif ),1/2+γ′ on ρ′

Aux, we will obtain 1 with

probability exactly Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)
]
.

As PD
(DA,y

unif ,DA,y
unif )

only has eigenvalue 1/2 < 1/2 + γ′ − ε (any distinguisher

cannot do better than outputting a random guess when facing DA,y
unif and DA,y

unif ),
from Lemma 4, running ATIε,δ

PD,(DA,y
unif ,DA,y

unif ),1/2+γ′ on any state, we cannot get 1
with probability greater than δ, which implies that

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′)
]

≤ δ ≤ negl(λ)/σ.

Summing up Eq. 1 and averaging over x′, we can get that

Pr
[
1 ← GameA,D

1

(
1λ
)]

≤4
m∑

i=1

σ
√

m/2∑

gi=−σ
√

m/2

Pr
[
1 ← SubGameA,D (

1λ, i, gi,x′) : x′ ∼ DZm
q ,σ/

√
2

]

≤negl(λ),

which ends the proof.

Recall that H0 is the same as the game GameA,D
0

(
1λ
)
, Theorem 6 follows

directly from Lemma 9, Lemma 10, Lemma 11 over Θ(σm3/2) pairs of consecu-
tive hybrids, Lemma 12 and the observation that H2 = H3,0.

7 Proof of Theorem 5

We prove by contradiction. Let A be the QPT adversary and without loss of
generality, we assume that the adversary submits µ = 0 and assume that

Pr
[
1 ← ExptΣ,A(1λ, 1)

]
− Pr

[
1 ← ExptΣ,A(1λ, 0)

]
= ε(λ),

where ε(λ) is inverse polynomial, ExptΣ,A(1λ, b) is defined as Fig. 1 and Σ =
(KeyGen,Enc,Dec,Revoke).

We decompose the adversary into two QPT algorithms A,D where given
input state |ψy〉, A generates the state ρR,Aux. After returning system R to the
challenger, D takes ρAux and responds to the challenge. Then A,D satisfy

Pr
[
1 ← SecurityExptA,D(1λ, 1)

]
− Pr

[
1 ← SecurityExptA,D(1λ, 0)

]
= ε(λ)

where SecurityExptA,D is the experiment shown in Fig. 7, because the inefficient
revocation implements Revoke(MSK,PK,σ).
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Fig. 7. The experiment SecurityExptA,D (
1λ, b

)
.

Lemma 13. For adversary A,D that satisfy

Pr
[
1 ← SecurityExptA,D(1λ, 1)

]
− Pr

[
1 ← SecurityExptA,D(1λ, 0)

]
= ε(λ),

they also satisfy

Pr
[
1 ← ATISecurityExptA,D,γ(1λ)

]
≥ ε(λ)

4
− negl.

for γ = 3ε
14 where ATISecurityExptA,D is shown in Fig. 8.

Fig. 8. The experiment ATISecurityExptA,D,ε
(
1λ, b

)
.

Proof. Suppose that revocation succeeds with probability p. The residual state
ρAux satisfies

E
[
Tr

[
PD
(DA,y

lwe ,DA,y
unif )

ρAux

]
|Revocation succeeds on R

]
≥ 1

2
+

ε

2p
.
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By averaging argument and the definition of threshold implementation Theorem
3,

E
[
Tr

[
TI 1

2+
ε
4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]
|Revocation succeeds on R

]
≥ ε

4p
.

By Lemma 4, if we set δ = 2−Θ(λ) we have,

Pr

[
ATI

γ
6 ,δ

PD,(DA,y
lwe ,DA,y

unif ), 12+γ
(ρAux) = 1|Revocation succeeds on R

]

=E
[
Tr

[
ATI

γ
6 ,δ

PD,(DA,y
lwe ,DA,y

unif ), 12+γ
ρAux

]
|Revocation succeeds on R

]

≥E
[
Tr

[
TI 1

2+
ε
4

(
PD
(DA,y

lwe ,DA,y
unif )

)
ρAux

]
|Revocation succeeds on R

]
− δ

≥ ε

4p
− negl.

Using the above lemma we can construct Algorithm 2 for solving SISmn,q,σ
√
2m

problem using the adversary A,D. As for our choice of parameters, the hardness
of LWEm

n,q,αq implies the hardness of SISmn,q,σ
√
2m, Theorem 5 follows directly

from the correctness of Algorithm 2, which we show in the following claim.
Algorithm 2: SIS_Solver(A)
Input: Matrix A ∈ Zn×m

q .
Output: Vector x ∈ Zm.

1 Generate a Gaussian state (|ψy〉,y) ← GenGauss(A,σ) with

|ψy〉 =
∑

x∈Zm
q

Ax=y (mod q)

ρσ(x) |x〉

for some vector y ∈ Zn
q .

2 Run A to generate a bipartite state ρR,Aux in systems HR ⊗ Haux with
HR = Hm

q .
3 Run ATIγ/6,δ

PD,(DA,y
lwe ,DA,y

unif ),1/2+γ
on system Aux, abort if the output is 0.

4 Run the extractor E(A,y,Aux) from Theorem 6, and let x1 ∈ Zn
q denote

the outcome.
5 Measure system R in the computational basis, and let x0 ∈ Zn

q denote the
outcome.

6 Output the vector x = x1 − x0.

Claim. Algorithm 2 solves SISmn,q,σ√
2m with inverse polynomial probability when

A,D is a successful adversary.

Proof. Suppose A,D is a successful adversary. To show that Algorithm 2 can
obtain a short non-zero solution x we prove the following two statements:
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Fig. 9. The experiment SimultExtractionExptA,D (
1λ

)
.

– The probability that on systemAux the extractor E extracts a short preimage
x1 of y and revocation succeeds on R is inverse polynomial

Pr
[
SimultExtractionExptA,D(1λ) = 1

]
=

1
poly(λ)

.

where SimulExtractionExpt is defined as Fig. 9.
– Suppose that revocation succeeds with probability ε(λ) conditioned on the
extraction being successful. Then instead of running revocation on R, if we
measure register R in computational basis and obtain result x0, the probabil-
ity that x0 is a short preimage of y that is different from x1 is ε(λ)− negl(λ)
conditioned on the extraction being successful.

If both statements are true, by basic probability arguments we prove the claim.
The first statement follows from Lemma 13 and Theorem 6. Let

GoodDecryptor denote the event that we pass the ATI test on step 4. Let
RevocationSuc denote the event that the inefficient revocation succeeds on sys-
tem R on step 6. Let ExtractionSuc denote the event that x1 is a short preimage
of y on step 5. Since step 4–5 and step 6 commute, by Lemma 13,

Pr [RevocationSuc ∧ GoodDecryptor] =
1

poly(λ)
.

By Theorem 6,

Pr [ExtractionSuc |GoodDecryptor] ≥ 1 − negl(λ).

By basic probability calculation,

Pr [RevocationSuc ∧ ExtractionSuc] =
1

poly(λ)
.
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Now we prove the second statement. We show that given a specific short
preimage x1 of y and a state ρR such that revocation succeeds on R with prob-
ability ε(λ), if we measure R under computational basis, we obtain a short
preimage x0 of y that is different from x1 with probability ε(λ)−negl(λ). Define
the set of short preimages S =

{
x|Ax = y, ‖x‖ ≤ σ

√
m
2

}
and

|ψ′
y〉 =

(
∑

x∈S
ρ σ√

2
(x)

)− 1
2 ∑

x∈S
ρσ(x)|x〉

be a ‘truncated’ Gaussian coset state. Consider the following projectors

– Π0 =
∑

x∈S,x0=x1
|x〉〈x| is a projector that projects onto all short preimages

we want.
– Π1 = |ψ′

y〉〈ψ′
y| is the approximate revocation projector. The trace distance

between Π1 and the actual revocation projector |ψy〉〈ψy| is negligible by
Banaszczyk’s tail bound [Ban93].

Suppose that A is a full-rank matrix, if Tr[|ψy〉〈ψy|ρR] = ε we have

Tr[Π0ρR] ≥Tr[Π1Π0ρR]
≥Tr[Π1ρR] − negl(λ)
≥Tr[|ψy〉〈ψy|ρR] − negl(λ)
=ε − negl(λ).

where the second inequality follows from Lemma 3. Note that A is full-rank with
1 − negl(λ) probability. Combine all arguments above, we proof this claim.

8 Applications

Combining our result with [APV23], we obtain constructions for

– Public-Key Encryption with Classical Key Revocation.
– Key-Revocable Fully Homomorphic Encryption.
– Revocable Pseudorandom Functions.

8.1 Public-Key Encryption with Classical Key Revocation

A public-key encryption with classical key-revocation is a public-key encryption
such that whenever we want to perform key revocation:

– The lessee runs Delete on its quantum secret key ρSK and produce a classical
certificate π.

– The lessor runs Revoke on input π and output Valid if it is a valid certificate.
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The security of such scheme captures the idea that if an adversary produces
a certificate π that passes the revocation then the remaining adversary cannot
distinguish between a ciphertext of chosen message from a random ciphertext.
In [APV23], they built a public-key encryption with classical key-revocation
assuming the security of key-revocable Dual-Regev encryption. Combine with
our result, we obtain the following theorem.
Theorem 7. Assuming the polynomial hardness of LWE with sub-exponential
modulus. The scheme CRevDual = (KeyGen,Enc,Dec,Delete,Revoke) (Construc-
tion 2, [APV23]) is a secure public-key encryption with classical key-revocation
(Definition 7.1,7.2, [APV23]).

8.2 Key-Revocable Fully Homomorphic Encryption

A key-revocable fully homomorphic encryption is a fully homomorphic encryp-
tion with quantum key revocation just like the key-revocable Dual-Regev
Encryption. In [APV23], they built a key-revocable fully homomorphic encryp-
tion assuming the security of key-revocable Dual-Regev encryption. Meanwhile,
this construction can be adapted to feature classical revocation via techniques
used in public-key encryption with classical key-revocation mentioned above.
Combine with our result, we obtain the following theorem.
Theorem 8. Assuming the polynomial hardness of LWE and SIS with sub-
exponential modulus. The scheme RevDualGSW = (KeyGen,Enc,Dec,Eval,
Revoke) (Construction 3, [APV23]) is a secure key-revocable fully homomor-
phic encryption (Definition 5.3, [APV23]). Meanwhile, this construction can be
adapted to feature classical revocation via (Construction 2, [APV23]).

8.3 Revocable Pseudorandom Functions

A key-revocable (or simply, revocable) pseudorandom function is a weak pseu-
dorandom function with its evaluation key revocable. The µ-security of such
scheme captures the idea that if the revocation succeeds, the remaining adver-
sary cannot distinguish between µ images y1 = PRF(x1), y2 = PRF(x2), · · · , yµ =
PRF(yµ) from µ random preimages x1, x2, · · · , xµ and uniform random values
y1, y2, · · · , yµ. Meanwhile, this construction can also be adapted to feature clas-
sical revocation. Combine with our result, we obtain the following theorem.
Theorem 9. Assuming the polynomial hardness of LWE and SIS with sub-
exponential modulus. The scheme (Gen,PRF,Eval,Revoke) (Construction 5,
[APV23]) is a poly-secure revocable PRF scheme (Definition 9.2, 9.3, [APV23]).
Meanwhile, this construction can be adapted to feature classical revocation via
(Construction 2, [APV23]).
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