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Abstract. Quantum information can be used to achieve novel crypto-
graphic primitives that are impossible to achieve classically. A recent
work by Ananth, Poremba, Vaikuntanathan (TCC 2023) focuses on
equipping the dual-Regev encryption scheme, introduced by Gentry,
Peikert, Vaikuntanathan (STOC 2008), with key revocation capabilities
using quantum information. They further showed that the key-revocable
dual-Regev scheme implies the existence of fully homomorphic encryp-
tion and pseudorandom functions, with both of them also equipped with
key revocation capabilities. Unfortunately, they were only able to prove
the security of their schemes based on new conjectures and left open the
problem of basing the security of key revocable dual-Regev encryption
on well-studied assumptions.

In this work, we resolve this open problem. Assuming polynomial
hardness of learning with errors (over sub-exponential modulus), we show
that key-revocable dual-Regev encryption is secure. As a consequence,

for the first time, we achieve the following results:
— Key-revocable public-key encryption and key-revocable fully-

homomorphic encryption satisfying classical revocation security and
based on polynomial hardness of learning with errors. Prior works
either did not achieve classical revocation or were based on sub-
exponential hardness of learning with errors.

— Key-revocable pseudorandom functions satisfying classical revoca-
tion from the polynomial hardness of learning with errors. Prior
works relied upon unproven conjectures.

1 Introduction

Leveraging fundamental principles of quantum information to achieve crypto-
graphic notions, that are otherwise impossible to achieve classically, is an exciting
research direction. In the past few years, a dizzying variety of quantum crypto-
graphic primitives, termed as unclonable primitives, have been studied. Under-
lying the unclonable primitives is the no-cloning principle of quantum mechan-
ics [WZ82,Die82] which states that quantum states, unlike classical strings, can-
not be copied. The recent surge in the development of unclonable primitives has
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resulted in innovative approaches to tackle many real-world security challenges,
including protection against anti-piracy [Aar(09|, privacy concerns in blockchain
technology [AGKZ20]|, and provable deletion of cryptographic data from the
web |BI20,BL20].

We focus on the task of securely leasing or revoking cryptographic keys using
the tools of quantum information. Before precisely stating the problem that we
set out to address, let us consider two scenarios: (a) Imagine a manager needing
to temporarily delegate their duties, including access to sensitive encrypted data,
to their subordinate by sharing cryptographic keys. The challenge is ensuring
the subordinate’s access is revoked upon the manager’s return, a task that is
impossible to achieve with classical keys, (b) If a cryptographic key is stolen
from a device, unless the attacker has left a trace, it becomes challenging to
detect such an attack and report it.

Quantum information presents a unique approach of tackling both of the
above aforementioned problems.

OUR Focus. A major focus of our work is on protecting decryption keys.
Specifically, we focus on the popular dual-Regev public-key encryption scheme
of [GPV08] (also, referred to as the GPV encryption scheme), which has inspired
the design of many lattice-based cryptographic primitives [BGG+14,Mahl8,
BDGM20,Qua20]. A key-revocable dual-Regev public-key encryption scheme,
first introduced in [APV23], is the same as the dual-Regev scheme except that
we have the additional guarantee that the decryption keys can alternately be
represented as quantum states. Any user in possession of the quantum decryp-
tion key can decrypt ciphertexts just the way he would have been able to do if he
had a classical decryption key. The security guarantee stipulates that once the
user returns the quantum decryption key, they will lose the ability to decrypt
ciphertexts and in particular, we require that the semantic security of dual-
Regev encryption still hold. We refer the reader to Sect. 1.1 for a more detailed
description of the key-revocable dual Regev public-key encryption scheme.

KEY-REVOCABLE SECURITY OF DUAL-REGEV: MOTIVATION. Proving the
security of key-revocable dual-Regev encryption could lead to adding key revo-
cation capabilities to other cryptographic primitives. Indeed, [APV23] showed
that key-revocable dual-Regev encryption can be leveraged to prove the exis-
tence of fully homomorphic encryption and pseudorandom functions equipped
with key revocation capabilities. The structure of dual-Regev encryption was
crucially exploited in these applications.

There is also an aesthetic reason behind studying this problem. Dual-Regev
public-key encryption is an elegant construction that is taught in most graduate
classes on lattice-based cryptography. Understanding whether it satisfies key-
revocable security is a natural theoretical question.

The work of [APV23| attempted to prove the key-revocable security of dual-
Regev encryption. Unfortunately, they were only able to prove the security of
this construction based on a new unfounded conjecture. They leave the prob-
lem of proving the key-revocable security of dual Regev encryption on con-
crete computational assumptions as an important open problem. In this same
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work, inspired by the literature on certified deletion [BI20, HMNY21,BK22]|, they
define a stronger property called classical revocation: instead of the user being
asked to return the state, they are only asked to return a classical string that
certifies that the quantum decryption key has been deleted. After the state has
been deleted, as before, we require the semantic security of dual-Regev encryp-
tion to still hold. [APV23]| relied upon yet another new conjecture to show that
dual-Regev encryption satisfied classical key-revocation security. The reliance
on both these conjectures makes the current state of affairs rather unsatisfac-
tory. [APV23] left open the problem of basing key-revocation security of dual-
Regev encryption on well-studied cryptographic assumptions.

Main Result. In this work, we resolve this open problem. We show the following:

Theorem 1. Assuming polynomial hardness of learning with errors over sub-
exponential modulus', dual-Regev encryption is key-revocable. Moreover, this
scheme satisfies the classical revocation property.

Applications. By combining the above theorem with the applications of key-
revocable dual-Regev encryption in [APV23], we obtain the following results:

MAIN APPLICATION: We present the first result of key-revocable pseudorandom
functions based on the polynomial hardness of learning with errors and also
simultaneously satisfies classical revocation property. Prior work by [APV23]
relied upon unproven conjectures.

OTHER APPLICATIONS: We also achieve other applications that are in some
aspects better than the previous works.

1. We present the first result of key-revocable public-key encryption that is based
on polynomial hardness of learning with errors and simultaneously satisfies
classical revocation property. Prior works by [AKN+23, CGJL23| satisfied one
but not the other.

2. We present the first result of key-revocable fully homomorphic encryption that
is based on polynomial hardness of learning with errors and simultaneously
satisfies classical revocation property. Prior work by [CGJL23| achieved this
result from sub-exponential hardness of learning with errors.

MAIN TECHNICAL CONTRIBUTION: At the heart of our result is a new search-to-
decision reduction that reduces a quantum distinguisher that breaks the seman-
tic security of dual-Regev encryption into a quantum adversary that can solve
an inhomogeneous short integer solution (ISIS) problem. Our search-to-decision
reduction is qualitatively different from [APV23| who rely upon Goldreich-Levin
reduction over large finite fields. In addition to the fact that [APV23] relies

! By aggressively setting the parameters, it would suffice to just assume polynomial
hardness of learning with errors over quasi-polynomial modulus.
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upon a conjecture, their reduction necessarily? incurs a loss that is inversely
proportional to ¢, where ¢ is the size of the field. Since they need to set g to
be sub-exponential in the security parameter, this means that their reduction
suffers from sub-exponential loss. On the other hand, our ISIS solver only incurs
inverse polynomial loss, independent of q.

RELATED WORKS: It would be remiss not to discuss two other related prior
works.

Chardouvelis, Goyal, Jain, Liu [CGJL23| present instantiations of key-
revocable public-key encryption and fully homomorphic encryption. Moreover,
their schemes satisfy classical key-revocation security®. There are two advantages
of our work over theirs:

— They do not have any results on pseudorandom functions,
— They assume sub-exponential hardness of learning with errors whereas we only
assume polynomial hardness of learning with errors.

Besides that, our work fundamentally differs from their work, both in terms
of constructions and its analysis. Let us begin by highlighting the differences in
the construction.

At a high level, our construction is the same as the dual-Regev public-key
encryption scheme except for the quantum decryption key, whereas |[CGJL23|
builds a new encryption scheme inspired by noisy trapdoor claw-free functions
(NTCF) introduced by [BCM+21]. Specifically, they repeat many instantiations
of NTCFs in parallel and use that to build a key-revocable public-key encryption
scheme. The NTCF itself is instantiated using the (original) Regev public-key
encryption scheme.

Even the overall approach in the analysis is quite different: we do a reduc-
tion from decision LWE to SIS whereas they do a search-to-decision reduction for
LWE itself. In the analysis, we use Gaussian collapsing lemma [Por22| and intro-
duce a new lemma, lemma 6 which is distinct in our work. Given the fact that
the constructions are very different, unsurprisingly, the implementation details
also vary quite a bit in both the works. For instance, since they do parallel rep-
etition, their extraction method is more complicated since the adversary could
have broken any one of the instantiations.

Agrawal, Kitagawa, Nishimaki, Yamada, Yamakawa [AKN-+23] present an
instantiation of key-revocable public-key encryption based on the existence of
any post-quantum secure public-key encryption scheme. They also present other
key-revocable notions, such as functional encryption, that are not covered in this
work. There are two advantages of our work over theirs:

— They do not prove the classical key revocation security of their scheme,

2 Their starting point is the classical Goldreich Levin reduction over finite fields by
Dodis et al. [DGT+10]. This reduction already suffers from a loss that is inversely
proportional to gq.

3 In fact, they satisfy a much stronger property where the communication with the
user can be completely classical.
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— They also do not provide any positive results on either fully homomorphic
encryption or pseudorandom functions.

Both the works, [CGJL23| and [AKN-+23|, come up with arguably more
involved constructions of key-revocable public-key encryption which make it
unwieldy to extend their techniques to get new applications.

1.1 Technical Overview

In this section, we give an overview of the main ideas and techniques underlying
our proofs.

Key-Revocable Dual-Regev Public-Key Encryption. We first recall the key-
revocable dual-Regev constructions from [APV23]. This part has been repro-
duced verbatim from their work.

— KeyGen(1*): Sample a matrix A € Zq*™ and a short trapdoor basis tda
for it. The (quantum) decryption key is a Gaussian superposition of ISIS
solutions, which is generated by the following procedure: Create a Gaussian
superposition of short vectors x, compute the image A - x (mod ¢) in the
second register to get

[9) = pe(¥)x) @ |A - x (mod q))

xEZZ”

where p,(x) = exp(—n||x||*/o?) is the Gaussian measure, for some o > 0,
and measure the second register to the Gaussian coset state

[y) = D pe(0)x)

x€EZy"
Ax=y (mod gq)

for some measurement outcome y € Zg‘.
Finally we set PK = (A,y), MSK = tda and psk = [¢)y).

— Enc(PK, u1): To encrypt a bit pu € {0,1}, sample a random string s & Z}
together with discrete Gaussian errors e € Z™ and ¢’ € Z, and output a
classical ciphertext CT given by

q m
CT = (sTA+eT,sTy+e’+,u- L§J> € Ly X Ly

— Dec(psk, CT): First apply the unitary U : |x)|0) — |x)|CT - (—x,1)T) on
input psk ®10)(0|, and then measure the second register in the computational
basis. Because psk is supposed to be the Gaussian coset state |¢y,), which is a
superposition of short vector x subject A -x =y, we obtain an approximation
of y- [4] from which we can recover p.
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— Revoke(PK, MSK, p) : Apply the projective measurement {|vy)(wy |, I — [ty )ty |}
onto p using the master secret key tda*. Output Valid if the measurement
succeeds, and output Invalid, otherwise.

Consider an efficient adversary A. It receives as input a state |¢)y) from the chal-
lenger and computes a state pr aux on two registers R and AUX. Subsequently,
the adversary returns system R to the challenger, while retaining system AUX
as quantum advice for subsequent steps. Informally speaking, we say that the
above scheme is secure if A wins both of the following events simultaneously
only with negligible probability:

— Revoke on the system R outputs Valid.
~ Using AuX, A can distinguish (sTA +eT,sTy+e¢ +[2]) versus
(STA +eT,sTy +¢)

Starting Point. Inspired by [APV23], we undertake the following approach. Sup-
pose there did exist an efficient adversary A that is successful in violating the
security of the above construction. We reduce A into an SIS solver B, which
is described as follows: it first runs A on input (A,y,[1y)) to obtain a state p
on two registers R and AUX. Then, B needs to be cleverly designed in such a
way that it recovers a short vector x¢ from R and a short vector x; from AuUx
satisfying the following properties:

- Axg =y, Ax; =y and,
— Xo 7£ X1.

Once both the vectors x¢ and x; are recovered then it simply sets the SIS
solution to be xg — x7.

While [APV23] set out on this route, they only managed to show such a
reduction based on a new conjecture. The core reason behind this is the fact
that it is challenging to be able to simultaneously recover two distinct short
solutions from two potentially entangled registers R and AUX. An attempt to
recover Xg from R could invariably disturb the part of the state on AUX such
that it is no longer possible to recover x;. Any approach we undertake should
tackle this challenge.

Our Approach. We propose a three-step approach to prove the security of key-
revocable dual-Regev encryption based on learning with errors.

— STEP 1. In the first step, we transform the intermediate state p (on R and
Aux) produced by A into a “good state" pgood. This step doesn’t need to
always succeed. We require two guarantees here: (a) this step aborts with
probability bounded away from 1 and, (b) conditioned on not abort, the
output of this step is a good state pgood such that the revocation on R succeeds
with non-negligible probability and Step 2 works.

4 [APV23] showed how to implement this projective measurement efficiently with the
trapdoor tda.
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— STEP 2. Suppose the output of Step 1 is pgood. We require that as long as
Pgood 18 @ good state then, from AUX, we should be able to recover a short
vector x; such that Ax; = y. More importantly, we should be able to recover
x; with overwhelming probability.

— STEP 3. We recover a short vector xg from the register R such that Axg = y.
Our hope is that xg and x; are distinct and if this is the case then x¢ — x1
is a non-trivial short solution in the kernel of A.

The easiest step to realize is Step 3. Suppose we have the guarantee that we
can recover x; from AUX with overwhelming probability. By invoking almost
as good as new lemma [Aarl6], we can show that the state p after Step 2 is
not disturbed by much. This means that Revoke still succeeds on R with inverse
polynomial probability. This further implies that measuring the register R yields
a short vector xg. Then using a simplified analysis of [APV23], we can argue that
Xo # X1, completing the proof.

We focus our attention on implementing Steps 1 and 2. Our main technical
contribution will lie in Step 2.

IMPLEMENTING STEP 1: To implement Step 1, we rely upon the threshold imple-
mentation technique introduced by Zhandry [Zha20|. Threshold implementation
is a technique employed to get an estimate of the success probability of a POVM
on a state. In our context, we employ this technique to test whether the adver-
sary acting upon AUX register of p is successful in violating the security of
key-revocable dual-Regev encryption scheme. Formally, we define the threshold
implementation operator TI 1oy where v is some inverse polynomial, with the
following properties:

1. TI 1oy is akin to a projector-like operator, collapsing the state to a y-good
state pgood capable of distinguishing between (sTA + eT,sTy +¢) and (u,r)
for u, r being sampled uniformly randomly with probability 2 (referred to as
a “y-good state") when TI%+7 outputs 1, or to some other state when TI%+7
outputs 0.

2. For a successful adversary, applying Tl1 . with an inverse polynomial v on
pauvx results in an output of 1 with noticeable probability.

3. Upon applying TI 1iy again on a y-good state, it yields an output of 1 with
probability 1.

To summarize, as long as A is a successful adversary, Tl 1iy collapses p into a
good state pgood With inverse polynomial probability.

IMPLEMENTING STEP 2: As mentioned earlier, implementing Step 2 is our main
technical contribution.

It was already shown by [APV23] that x; can be extracted from Aux. How-
ever, the success probability of their extraction mechanism was only inverse
polynomial which is insufficient for our purpose. Instead, we completely depart



264 P. Ananth et al.

from [APV23] and propose a novel extraction method. This high-level app-
roach is inspired by [CGJL23| although they study for a completely different
construction.

At a high level, our extractor proceeds by guessing each entry of x;, where x4
is a short solution mapping A to y, one coordinate at a time. For each coordinate,
we try all possible values and using the distinguisher, test which of our guesses
was correct. Recall that there are exponentially many short vectors that map
A to y. But once we apply the Gaussian collapsing lemma [Por22,L.MZ23], we
can replace the state |tby) with |x1). While recovering, say, the i" coordinate of
X1, we use the distinguisher on AUX to figure out whether the guess for the i**
coordinate was correct or not. However, this has to be handled with care. Since
the distinguisher has quantum auxiliary advice, we cannot keep hoping to run the
distinguisher again and again. After the first run, the state of the distinguisher
could be damaged making it useless for future iterations. So we need to come
up with a mechanism to check if a guess is correct or not while maintaining
the quantum state. Making crucial use of threshold implementation along with
techniques from lattice-based cryptography, we show how to implement this.

Our extractor is described as follows:

1. Initialize x = 0 as the output register.
2. For each position i € [m] and each guess g;, we test whether the i-th entry

X1 is g; by:

(a) Applying Tly, .. (,9;) on system AUX, where Tli_ (i, g;) is a threshold
implementation that ‘tests’ whether the state is 4’-good at distinguishing
between (STA +eT+c-i,sTy+ec g+ e’) (where ¢« 7Z, and i is the
unit vector on the i-th dimension) and (u,r) (where u &7y, r £ 7Z,).

(b) If the output is 1, set x; = g;.

(c) If the output is 0, skip to the next iteration.

3. Output x.

We argue that our extractor outputs x; with nearly perfect probability if
TI% 4~ O pAux outputs 1. Zhandry [Zha20] demonstrates that for two threshold

implementations concerning computationally indistinguishable tasks (e.g., dis-

tinguishing (sTA 4 eT,sTy + ¢’) from (u,r), and distinguishing (u,u™x; + ¢€’)

from (u, 7)), their outputs are closely related. Now, considering each guess g; for

position 7:

— If the guess is correct (i.e., the i-th entry of x; is g;), the distribution
(STA +eT+c- f, sTy +c-g; +¢ ) is computationally indistinguishable from
the distribution (u,uTx; +¢€’), and thus also from (sTA +eT,sTy +¢').
Given py,« is a y-good state, TI%JW/(Z', gi) outputs 1 with 1 — negl probability
if all other threshold implementations are ignored (i.e., applied TI% 4 (15.91)
just after TI%+7).

— If the guess is incorrect, the distribution (sTA +eT+c- i, sty +c-g; + e')

is computationally indistinguishable from (u, ). Consequently, any state pro-
vides no advantage as advice, and TI 1y outputs 1 with negl probability.
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Finally, we apply the quantum union bound to all measurements to demonstrate
that the probability of no error occurring during our testing procedure is 1 —negl.

In the above proof, we omitted a major issue. Recall that in Step 1, we imple-
ment threshold implementation to project the state p onto a good state pgood-
Moreover, this threshold implementation is designed to check if the adversary
can distinguish between the distributions (sTA +eT,sTy +¢€’) and (u,r). As
discussed above, at some point, in the intermediate hybrids we need to change
these distributions. Once we switch the distributions, the threshold implemen-
tation might only work with negligible probability. Our hope, in some cases
invoking learning with errors, is to argue that this does not happen. However, it
is not clear how to carry out this reduction. After all, the threshold implemen-
tation as defined by [Zha20]| operates on a superposition of exponentially many
samples from a distribution and so, given just one sample from a distribution, it
is not possible to perform threshold implementation. We present a useful lemma
(in Sect. 5) where we argue that operationally, the guarantees of threshold imple-
mentation (including the output and the residual state) are not affected when
one distribution is replaced with another computationally indistinguishable dis-
tribution.

2 Preliminaries

We use standard notations throughout this work. We assume that the reader is
familiar with quantum computing and lattices. We refer the reader to the full
version [AHH24| for a complete presentation of this section.

2.1 Quantum Computing

We will use the following lemma.

Lemma 1 (Quantum Union Bound, [Gaol5|). Let H be a Hilbert space. Let
p € D(H) be a state and let Iy, ..., II,, > 0 be sequence of (orthogonal) projec-
tions acting on H. Suppose that, for every i € [n], it holds that Tr[II;p| = 1 —¢;,
for e; € [0,1]. Then, if we sequentially measure p with projective measurements
{I1,,1- 11}, ... ,{II,,,1 — I1,.}, the probability that all measurements succeed
s at least

To(IT,, - IypIT, - IT,] > 14> &
1=1

2.2 Lattices and Cryptography

We adapt notations from [APV23] and keep it same as much as we can. The
following subsection is copied verbatim from [APV23].

In this work, we mainly consider g-ary lattices A that that satisfy ¢Z™ C
A C Z™, for some integer modulus ¢ > 2. Specifically, we consider the lattice
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generated by a matrix A € Zy*™ for some n,m € N that consists of all vectors
which are perpendicular to the rows of A, namely

AqL(A) ={xeZ": A-x=0 (mod ¢)}.

For any syndrome y € Zg in the column span of A, we also consider the coset
A¥(A) given by
— m . — _ gL
A(A)={x€Z™: A-x=y (mod q)} = A7 (A) +c,
where ¢ € Z™ is an arbitrary integer solution to the equation Ac =y (mod q).

Definition 1 (Truncated discrete Gaussian distribution). Let m € N,
q > 2 be an integer modulus and let 0 > 0 be a parameter. Then, the truncated
discrete Gaussian distribution Dzm , with finite support {xezZ™"n (-4, 4™
x|l < ov/m} is defined as the density

Po(X)

S pely)

yezyllyll<ovm

DZZ"‘,U (X) =

where p,(x) := exp(—||x||?/o?) is the Gaussian distribution.
We will use the following two results.

Lemma 2 (Noise smudging, [DGT+10]). Let y,0 > 0. Then, the statistical
distance between the distribution Dz, , and Dz , +y is at most y/o.

We use the following technical lemma on the min-entropy of the truncated
discrete Gaussian distribution, which we prove below.

Lemma 3 (min-entropy of the truncated discrete Gaussian, [APV23|,
Lemma 2.10). Letn € N and let q be a prime with m > 2nlogq. Let A € Zy™™
be a matriz whose columns generate Z7. Then, for any o > w(y/logm), there
exists a negligible (m) such that

( )

1
max max Po (%) < g—mtl. i

YELY xeZl, ||x||<ovm § ( po(z) | 1—¢
Ax=y (mod gq) m

z€ly’s|zl|[<ovm

Az=y (mod q)

Theorem 2 (Gaussian-collapsing property, [Por22|, Theorem 4). Let n €
N and q be a prime with m > 2nlogq, each parameterized by A € N. Let /8m <
o < q/\/8m. Then, the following samples are computationally indistinguishable
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assuming the quantum hardness of decisional LWqu@q, for any noise ratio a €
(0,1) with relative noise magnitude 1/a = o - 2°0)

(Aﬁzgm, [Wy) = > po(x)[x), yezg> e <A£Z:;Xm, |x0), A -xo eZ?;)
er;"
Ax=y

where (|1y),y) < GenGauss(A, o) and where xo ~ Dgp = is a (truncated)
discrete Gaussian distribution.

2.3 Threshold Implementation and Its Approximate Version

In the subsection, we review some techniques called Threshold Implementation
|ALL+-21], which is a simple extension of Projective Implementation [Zha20)|.

Theorem 3 (Threshold implementation, [ALL+21]). Let v € (0,1) be a
parameter and let P = (P, Q) be a two-outcome POVM, where P has an eigen-

basis {|1i)} with associated eigenvalues {\;}. Then, there exists a projective
threshold implementation (T, (P),I— TL,(P)) such that

~ TL,(P) projects a quantum state into the subspace spanned by {|¢;)} whose
etgenvalues \; satisfy the property \; < 7.

~ I-TL,(P) projects a quantum state into the subspace spanned by {|1);)} whose
eigenvalues \; satisfy the property A\; > 7.

Unfortunately, the threshold implementation can, in general, not be effi-
ciently computable. However, inspired by the work of Marriott and Watrous
[MWO05|, Zhandry [Zha20| showed that the approximate version of the thresh-
old implementation can be implemented efficiently as long as the POVM is a
mixture of projective measurements. We first review the definition of mixture of
projective measurements.

Definition 2 (Mixture of projective measurements). Let P = {P;}icz be
a collection of binary outcome projective measurements P; = (P;, Q;) over the
same Hilbert space 'H, and suppose that P; corresponds to outcome 1 and Q;
corresponds to outcome 0. Let D be a distribution over the index set T. Then,
Pp = (Pp,Qp) is the following mixture of projective measurements:

Pp = ZPr[i — D] P, and Qp = ZPr[i — D] Q.

i€l 1€L

In other words, Pp is the same as first sampling ¢ according to the distribution
D, and then applying the projective measurements P;.

For any mixture of projective measurements Pp, the approximate threshold
implementation satisfies the following properties.



268 P. Ananth et al.

Lemma 4 (Approximate threshold implementation, Theorem 6.2 in
|Zha20] and Corollary 1 in [ALL+21]). Let Pp = (Pp,Qp) be a binary out-
come POVM over Hilbert space H that is a mizture of projective measurements
over some distribution D. Let €,6,~v € (0,1). Then, there exists an efficient
binary-outcome quantum algorithm ATI%?DW, interpreted as the POVM element
corresponding to outcome 1, such that the following holds:

— For all quantum states p, T[‘r[ATI?;fS,;)ﬁ_5 p) > Tr[TL,(Pp) p] — 6.

— For all quantum states p, it holds that Tr[Tl,_o.(Pp) p'] > 1 — 20, where p'
s the post-measurement state which results from applying the measurement
A‘I’I%’fgf)’7 to p and obtaining outcome 1.

— The expected running time to implement ATI%?Q7 is proportional to poly(1/e,
log(1/6)), the time it takes to implement Pp, and the time it takes to sample
from D.

3 Definition: Key-Revocable Public-Key Encryption

A key-revocable public-key encryption is a type of public-key encryption. Con-
sider the case where the secret key holder wishes to temporarily give the secret
key to a third party and later wants to take it back while maintaining the security
i.e. the third party upon taken its key away, can’t decrypt any message later.
This is impossible in the classical case since the third party can always copy
the secret key locally. But we may achieve this functionality by representing the
secret key as a quantum state.

Definition 3 (Key-Revocable Public-Key Encryption [APV23|). A key-
revocable public-key encryption scheme consists of efficient algorithms (KeyGen,

Enc, Dec, Revoke), where Enc is a PPT algorithm and KeyGen, Dec, Revoke are
QPT algorithms defined as follows:

- KeyGen(lA): given as input a security parameter A\, output a public key PK,
a master secret key MSK and a quantum decryption key psk.

— Enc(PK, p): given a public key PK and plaintext p € {0, 1}, output a ciphertext
CT.

— Dec(psk, CT): given a decryption key psk and ciphertext CT, output a message
Y.

— Revoke(PK, MSK; pRr): given as input a master secret key MSK, a public key

PK and quantum state pr, output Valid or Invalid.

Correctness of Decryption. For p € {0,1}, the following holds:
Pr {,u «— Dec(psk, CT) : (PK7M5K7PSK)<—KeyGen(1)\)j| > 1 — negl.

CT—Enc(PK,u)

Correctness of Revocation. The following holds:

Pr [Valid < Revoke(PK, MSK, psk) : (PK, MSK, psk) « KeyGen(l’\)] > 1 — negl.
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3.1 Security Definition

The security captures the case where the adversary is given the key and later
taken back. After that, if the key passes the revocation check the adversary is
asked to play a CPA like game that it is given either the ciphertext of a chosen
message or a random message. The adversary wins if it can distinguish between
these two cases.

Definition 4. A key-revocable public-key encryption scheme X = (KeyGen, Enc,
Dec, Revoke) is (e, 0)-secure if, for every QPT adversary A with

Pr [Invalid - Expt“‘(ﬁ,b)} < 5(\)
for b e {0,1}, it holds that
’Pr [1 — ExptE’A(lA,O)] —Pr [1 — Expt™ (17, 1)} ‘ < e(N),

where Expt®(1},b) is defined as Fig. 1.
If 6(\) = 1— m and €(A\) = negl()\), we simply say the key-revocable

encryption scheme is secure.

Expt™ (1, b) :

Initialization Phase:

— The challenger runs (PK, MSK, psk) < KeyGen(1?) and sends (PK, psk) to A.

Revocation Phase:

— The challenger sends the message REVOKE to .A.
— The adversary A returns a state pr.
— The challenger aborts if Revoke(MSK, PK, pr) outputs Invalid.

Guessing Phase:

— A submits a plaintext ;1 € {0,1} to the challenger.

— If b = 0: The challenger sends CT <« Enc(PK,u) to A. Else, if b = 1, the
challenger sends CT < C, where C is the ciphertext space of £ bit messages.

— Output b4 if the output of A is b4.

Fig. 1. Security Experiment



270 P. Ananth et al.

4 Construction: Key Revocable Dual-Regev Encryption

The construction is exactly the same as the construction in [APV23|. We include
the construction here for completeness.

Construction 4 (Key Revocable Dual-Regev Encryption [APV23|). Let
n,m € N and q > 2 be a prime, each parameterized by A € N. Let
a,B,0 > 0 be parameters. The key-revocable public key scheme RevDual =
(KeyGen, Enc, Dec, Revoke) consists of the following QPT algorithms:

- KeyGen(1*)  —  (PK,psk,MSK): Sample (A € Z!*™ tda)
GenTrap(1™,1™,q) where GenTrap is the algorithm that generates the LWE
matriz with its trapdoor. Then generate a Gaussian superposition (|1)y),y) <
GenGauss(A,0)° for some y € Z7. Output PK = (A,y),psk = [by) and
MSK = tda.

— Enc(PK,u) — CT: to encrypt a bit p € {0,1}, sample a random vector s «—
Zy and errors € ~ Dzm oq and €' ~ Dz g, and output the ciphertext pair
CT = (sTA +eT (mod q),sTy + € + p- |4] (mod q)) € ZJ* X Z,.

— Dec(psk, CT) — {0,1} : to decrypt CT, apply the unitary U : |x)|0) — |x)|CT-
(=x,1)T) oninput |1)y)|0), where psk = |1)y), and measure the second register
in the computational basis. Output 0, if the measurement outcome is closer
to 0 than to | 1], and output 1, otherwise.

— Revoke(MSK,PK,p) — {T,L} : on input tda «— MSK and (A,y) «— PK,
apply the measurement {|i)y)(Yy|, I — |ty)(y|} onto the state p using the
procedure QSampGauss(A,tda,y,o)®. Output T if the measurement is suc-
cessful, and 1 otherwise.

From [APV23], this construction satisfies the correctness of decryption and
the correctness of revocation. In this work, we will focus on showing the con-
struction is in fact secure.

Theorem 5. Let n € N and ¢ be a prime modulus with ¢ = 2°") and m >
2nlogq, each parameterized by security parameter X\ € N. Let V/8n < o <
q/V/8m and let a, 8 € (0,1) be noise ratios chosen such that §/a = 2°") and
l/a = 20(") . o Then, assuming the polynomial hardness of LWE?,q,aq with
sub-exponential modulus, the scheme RevDual = (KeyGen, Enc, Dec, Revoke) in

Construction 4 is a secure key-revocable public-key encryption scheme according
to Definition 4.

We organize the proof of Theorem 5 in the following way:

— In Sect. 5, we prove an important property for approximate threshold imple-
mentation, which allows us to do hybrid arguments between approximate
threshold implementation on computationally indistinguishable distributions.

— In Sect. 6, we present our construction for the almost perfect preimage extrac-
tor that lies in the heart of our result.

— In Sect. 7, we complete our proof of the above theorem.

® The detailed description of GenGauss can be found in [APV23].
 The detailed description of QSampGauss can be found in [APV23].
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5 Indistinguishability on Approximate Threshold
Implementation

Zhandry [Zha20]| analyzed the relationship between the output distribution of
Tl,,(Pp,) and Tl (Pp,) (and ATlp p, ~, and ATlp p, -,) for some thresholds 7o
and 71 on the same state for two computationally indistinguishable distributions
Dy and D;. However, in our work, we also care about the residual state after
applying the procedures. So we give a more precise analysis below.

In this section, we show how to leverage a (possibly not efficiently con-
structible) quantum state p on which ATlp p, - and ATlp p, ., behave differently
to construct a QPT distinguisher (with auxiliary state p) for Dy and D;. This
can be viewed as an extension of Theorem 6.5 and Corollary 6.9 in [Zha20|.

This result allows us to do hybrid arguments between ATlp p, ., and
ATlp p, , with exactly the same threshold parameter v for computationally
indistinguishable distributions Dy and D; even when an efficient quantum pro-
cedure is applied on the residual state after ATI. Notably, it applies even when
we need some classical advice to sample from Dy and D7, in which case, our
QPT distinguisher additionally takes the same classical advice and distinguishes
DO and Dl-

Lemma 5. Let P be a collection of projective measurements indexed by some set
Z. Suppose P can be implemented by a quantum circuit of size |P|. Let Do, D1 be
two efficiently sampleable distributions over Z. For any state p € D(H), denote
(b,p') « ATI%?DW(p) be the procedure that runs A‘I’I%fD’,y on state p, and gets an
output b and the post-measurement state p’. For any polynomial u, any quantum
state p and any (possibly quantum) predicate h : {0,1} x D(H) — {0,1} with
circuit size |h|, if

/ / €,0 N o__ / €,0 1
Pr [1b: ) = 110, ") = ATIS ()] = Pr [0, ) = 1100, p') = ATIE, L ()] | 2 5
Then there exists a quantum circuit C of size poly(A,1/€,1og(1/8), u,|P],|h|)
(which only uses the quantum circuits to implement P, h and to sample Dy, Dy
as a black box) such that

1

Pr[C(p,x)zb:bi{O,l}}——lz .

(1(A))? - poly(A, 1/€,log(1/6))

which is an inverse polynomial if p is a polynomial.

x~ Dy 2

Proof. The proof follows the same idea as the proof for Theorem 6.5 in [Zha20].
Roughly speaking, the output of ATI;;‘?DW can be approximated up to inverse
polynomial additive error given only polynomial samples from D. We refer the

reader to the full version [AHH24| for the full proof.

ATl may change the input state in an essential way even when it outputs 1
with overwhelming probability because ATl is not a projector. For example, let
a pure quantum state p be a superposition of eigenvectors (of Pp) |¢;) whose



272 P. Ananth et al.

eigenvalues \; satisfy the property \; > v + 10e. If we apply ATI;;‘?DN on p,
we will get outcome 1 with almost certainty, but the residual state p’ may lose
coherence and become closer to a mixture of |¢;).

When we know the ATl outputs 0 or 1 with overwhelming probability, it
is a good idea to minimize the disturbance by purifying ATI and performing
uncomputation, just like the famous gentle measurements. To be more precise,
we consider the projective version of ATI€’5D . Formally, ATI;;‘SD , can be written
as introducing poly(1/e,log(1/4)) ancillas initialized as |0), applying a unitary U
on the state, and then applying a projective measurement (|0)(0],|1)(1]) on the
output register of state to get the output. We will denote the binary-outcome

projective measurement (UT|0)(0|U, UT|1)(1|U) as ﬁ;(ﬁ[)ﬁ, the projective ver-
sion of ATI;;‘?D’,Y, which also has size poly(1/e,1log(1/6)). By definition, for any
quantum state p, the output distribution of running ATI on p along with enough

fresh ancillas is the same as the output distribution of running ATl on p (but
the residual states are different).

ATl 75 .
Roughly speaking, ATI; p, does the same thing as ATI;,’5D , except that
it uncomputes intermediate results. Notice that a quantum query to function

f is implemented as Uy : |z)|y) — |x)|y @ f(x)), whose inverse is exactly Uy.

. . —e,0
We can use the same proof technique in Lemma 5 to show that ATlp D,y Can

also be approximated by polynomial classical samples from D up to inverse
polynomial precision and thus we can also apply hybrid arguments between
ATlp p,~ and ATlp p, , for computationally indistinguishable distributions Dg
and D;. Formally,

Lemma 6. Let Hr, Hauvx be Hilbert spaces. Let P be a collection of projec-
tive measurements indexed by some set Z. Suppose P can be implemented by a
quantum circuit of size |P|. Let Dy, Dy be two efficiently sampleable distribu-

tions over Z. For any state p € D(Hg), denote (b,p’) «— ﬁ;?Dﬁ(p) be the

AT 15 . . ..
procedure that runs ATI;D’7 on state p along with enough fresh ancillas ini-
tialized to |0), and gets an output b and the post-measurement state p’. For
any polynomial u, any quantum state p and any (possibly quantum) predicate

h:{0,1} x D(Haux) — {0, 1} with circuit size |h|, if
no_ / A€ n o , ——€,8 1
[Pr [a(b, ¢') = 116, 9') — BTT5 5, (0)] = Pr [R(b, ') = 11(b, ") ATIP,Dlﬁ(p)” >
Then there exists a quantum circuit C of size poly(A,1/e,log(1/6), u,|P],|h])

(which only uses the quantum circuits to implement P, h and to sample Dy, Dy
as a black box) such that

$ 1 1
Pr [C(p, z)=b: b;‘{,g; }} - 5’ = ((X))3 - poly (A, 1/€,log(1/6))

which is an inverse polynomial if p is a polynomial.

Proof. We omit the proof as it’s almost the same as the proof of Lemma 5.
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6 Almost Perfect Extraction of Preimages

In this section, we show how to extract a short preimage of y with overwhelming
probability, given a good (quantum) distinguisher between the distribution of a
ciphertext of message ;1 and a uniform distribution. Our main contribution is an
extraction algorithm that is guaranteed to work with overwhelming probability, in
contrast to the extraction algorithm in [APV23] that only works with probability
inversely proportional to the field size.

Since a general quantum distinguisher can be a superposition of a good dis-
tinguisher and a useless distinguisher, we use (Approximate) Threshold Imple-
mentation to (approximately) test whether a given quantum distinguisher is
good before we apply the extraction algorithm. We need the following notations
before we formally define what is a good quantum distinguisher.

Threshold Implementation on a Quantum Distinguisher. For a quantum algo-
rithm A with auxiliary quantum state p, let projective measurements {73;4 =
(PA, Q) correspond to running A on x and the auxiliary state p. Suppose
that P corresponds to outcome 1 and Q! corresponds to outcome 0.

For two distributions Dy and Dy, denote (Dg, D7) to be the distribution of
(b, x) where b {0,1} and = ~ D,. We say that (A, p) is a y-good quantum dis-
tinguisher for distributions Dy and D with support & if and only if p passes the
projector TI1/2+7(77(“%0’D1)). Here, we abuse the notation to define the POVM

Pé)o,Dl) = (Pé)O7D1)7QE4DO,D1))7 such that

A Pb41+Qf)‘o _ erXPr[:L’HDl]P;‘—FZIeX Pr[a;<—D0]Q;:4

Fo.p1) = 2 2 ’

A _ A
Q(Do,Dl) =1- P(D(J’Dl)'

In other words, P(AD()’DI) = (P(ADO,D1)7QE4D0,D1)) is the POVM measurement

(where P(“E‘)O p,) corresponds to output 1 and Q{‘Do p,) corresponds to output 0)
that on any input quantum state p,

— Sample (b,x) ~ (Dy, D).

— Feed x and the input quantum state p into A, which outputs a guess b’.
— Output 1 if o' = b; 0 otherwise.

&
PA,(Do,D1),1/2+~"
can efficiently estimate whether the algo-

We denote the approximate version of Tl; /2+7(P(‘b0’ py)) as AT

. )
Roughly speaking, ATI;A’(D07D1)71/2+7

rithm A, along with the input quantum state as auxiliary, can distinguish
Dy and D; with advantage at least v. We denote the projective version of

.8 —€,0
ATIpa (Do, D1)1 /24 88 ATl A Dy, D1 17244
7 P(“‘BO, p,) Is actually a mixture of projective measurements for the distribution

(Do, D1) and a collection of binary outcome projective measurements Py, =
(QA, PAYifb=0and Py, = (P3, Q) if b=1.
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Some Important Distributions. The threshold implementation will be used to
test whether a quantum distinguisher works well on the following distributions.
The prime modulus ¢, the noise ratios o, 3 € (0,1) and n,m € N are all fixed
parameters that will be soon clear from the context. For matrix A € Zy*™, and
vectors y € Zg,x € Z;”,

— Denote DY to be the distribution of (A,y,sTA + eT,sTy + ¢’) where

lwe
3 n /
SHZq,eNDZZn,aq and e NDZq,Bq-

— Denote DuAn’H?' to be the distribution of (A,y,uT,u') where uZ;* and
u &7,

— Denote D2 to be the distribution of (A, Ax, uT, uTx+¢’) where ¢/ ~ Dz, 34
and uT =sTA +eT for s 277, e ~ Dzm ag-

— Denote Dg’x to be the distribution of (A, Ax,uT,uTx+e¢’) where ¢’ ~ Dz, 3,

and uiZZ".

For each of the above distribution D, we denote D(i, g;) to be the distribution
of (vi,va,v3+c- iT, v4 + ¢+ g;) where i is the unit vector with its it" coordinate
being 1, ¢ £ Z,, and (v1,va,Vvs,v4) ~ D. It is easy to generate a sample from
D(i, g;) given i,g; and a sample from D. Thus if we can efficiently distinguish
between D (i, g;) and D1 (i, g;), then on input (i, g; ), we can efficiently distinguish
between Dy and D1.

The adversary can be described as an unitary A acting on a Hilbert space

H="Ha, @ H, = Hr, ® Haux,-

— Hp, stores the secret key state given by the challenger.
— Hp, is initialized to a quantum advice.

— Hp, stores the state returned to the challenger.

— Hayux, is kept by the adversary.

We will omit A\ when it is clear from the context. We show the following result.

Theorem 6 (Almost Optimal Search-to-Decision Reduction with
Quantum Awuxiliary Input). Let n € N and q be a prime modulus with
g = 2°") and let m > 2nlogq, each parameterized by the security parameter
A € N such that m < poly()\). Let v/8m < o < q/v/8m and let o, 3 € (0,1) be
noise ratios with B/a = 2°" 27 < ag < negl(\) and ac /B < negl(\). Let
A = {(Ax Ay, V) }ren be any non-uniform quantum algorithm consisting of a
family of polynomial-sized quantum circuits and polynomial-sized advice states
vy € D(Hp,) which are independent of A and y.

Assume the decisional LWES' . cannot be solved by a quantum algorithm
running in time poly (X, o) with distinguishing advantage 1/poly(\, o). If there
exist functions e(\) = 1/poly(X), y(A) = 1/poly(N), §(A) = 27N and a QPT
distinguisher D such that (Fig. 2)

Pr [1 — SearchToDecisionExptA’D(lA)] =e(N).
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SearchToDecisionExpt” (1*):

anm

Sample A &
Generate (|¢y) y) < GenGauss(A, o).

Generate pr, avx <= Ax Ay ([Yy) (y| @ va).

Let two-outcome projective measurements {2} correspond to running D on
samples x and the auxiliary state in Aux. We approximately test whether

Ll o

(D, pavx) is a y-good quantum distinguisher between the distributions DIwe and
D;Anlfy by running ATIV/60 on paux and output the result.

PD (DAY DAYy 1724+

lwe > unif

Fig. 2. The experiment SearchToDecisionExptA’D (1’\).

Then, there exists a quantum extractor £ that takes as input A, y and system
AUX of the state pr auvx and outputs a short vector in the coset Az’(A) m time
poly(\, 0,1/v) such that

A S gpxm
(|by),y)«—GenGauss(A,0)
Pr |x ¢ AZ(A) ﬂBm(O,J\/m_/2) : PR, Avx—Ax A,y ([%y) (Py [®VA) > 1-— negl()\)

1 ATIV/6:°
D (DAY pAy) 1/2+w(pAUX)

X(—g( ¥, AUX)

6.1 Construction of the Extractor

In the subsection, we formally define our quantum extractor £. £ takes A,y and
the quantum state in AUX as input, and does the following;:

E(A,y, Aux):

1. Setx:O 6:")//6 7/:7—36:’7/2.
2. Foreachi=1,2,-

For each g; € U\/m -0/ m/2

i. Let Aux store the current state of the quantum distinguisher.

ii. Run ATI77 (DAY (1,9,), DA 1/247
along with enough fresh ancillas initialized to |0).
iii. If it outputs 1, set x; = g;, and move on to the next guess.
iv. If it outputs 0, move on to the next guess.
3. Output x.

on the residual state in register Aux

Fig. 3. The quantum extractor £(A,y, AUx).
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By construction, the extractor runs in time poly(\, o,m,1/e, log%) =
poly(A, o,1/7).

6.2 Analysis of the Extractor

Before we analyze the success probability of our extractor, we make crucial

3 3 3 3 A7y A7y _A,X A,X
observations on the distributions D))", D, 7, D;,.” and Dgl .

A x

Lemma 7. For any x € B™(0,0+/m/2), the statistical distance between D,

and DA% s at most negl()).

Iwe

Proof. By noise smudging (Lemma 2), the statistical distance between the
distribution Dz, g, and the distribution of eTx + ¢’ where ¢’ ~ Dz 3, and
leTx| < agom is at most aom /3. Notice that for any x € B™(0,0/m/2), when
e is sampled from Dz 4, [€7x| > agom with probability at most 272N (from
Banaszczyk’s tail bound [Ban93]).

Thus the statistical distance between Da;_x and DQ[EAX is at most aom/ [ +
279N which by our choice of parameters, is at most negl(\).

A x

Lemma 8. For integer i € [m] and g; = x;, DA’x(i,gi) =Dy

gl
For integer i € [m] and g; # x;, D;A."x(i,gi) = DuAn}?x

Proof. This follows directly from the definition, so we omit the proof.
Now we are ready to prove Theorem 6.

Proof. To prove Theorem 6, it suffices to prove that
Pr [1 — Game)"? (1’\)} < negl(\)

where Gameg"D is shown in Fig. 4.

Gamey"” (11):

Sample A & Zp*™.
Generate (|¢)y),y) < GenGauss(A, o).
Generate pr, Avx < Ax,a,y([t0y) Yy @ va).

v/6,8 ey
Compute b < ATIPD,(DA’Y,DA=Y),1/2+7 (pauvx). Abort if b = 0.

Iwe unif

Compute x + E(A,y, Aux).
Output 1 if x ¢ AY(A) N B™(0,0/m/2); Otherwise, output 0.

SO W=

Fig. 4. The game Game{;"D (IA).
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Let’s consider the following sequence of hybrid distributions.

Ho: This is the same as the game Gameg"p (1’\) defined in Fig. 4.

Hq: This is the following distribution:

Sample A & Zy™™.

Sample a Gausslan vector x/ ~ DZm NG and let y = A - x’ mod q.

Generate pr, avx — Axay(|x) (x| ® VA)-

75 .
Compute b «— ATI;/;(DA v DAY, 1/2+w(pAUX>' Abort if b= 0.

lwe 2" unif

Compute x «+— E(A,y, AUX).
Output 1 if x ¢ AY(A) N B™(0,0+/m/2); Otherwise, output 0.

A

Hy: This is the following distribution:

Sample A & Zp*™.

Sample a Gaussian vector x' ~ D,,, o/V3 and let y = A - x’ mod q.
q b

Generate pr, avx — Aray () (x| 9 1),

7/6,8 i
Compute b « ATIPD (DA DAY, 1/2+7('0AUX)' Abort if b = 0.

unif

Compute x «+— E(A,y, AUX)
Output 1 if x ¢ A¥(A) N B™(0,0+/m/2); Otherwise, output 0.

A

Hs j: This is the following distribution which replaces ﬁ;’&

. 3 _6’5
in £ with ATIPD,(DQ’X/(i,Qi) Dumf ) 1/24~"

& defined in Fig. 3).

(DY (i,9:). D5 ) 1 /24~

one by one (recall the description of

Set x = 0, 6—7/6 fy :’y 3e=~/2,1t=0.
For each i =1,2,-
For each g; € a\/m e, oy/m)2]:
i. Let AuUX store the current state of the quantum distinguisher. ¢ «
t+ 1.
ii. If ¢ <k, run ﬁe

1. Sample A & Zp*™.
2. Sample a Gaussian vector x’ ~ D, o/yv2 and lety = A - x’ mod q.
q b
3. Generate pr, Aux < A/\’A7y(|x’><x’| R vy).
7/6,8 ey
4. Compute b « ATIPD (D DAY) 1244 (paux)- Abort if b = 0.
9.
6.

(DAx (1.9, DAY ) 121 O the residual state

in register AuX along with enough fresh ancillas initialized to |0).

. =60 . .
Otherwise, run ATI; (DR (1,.), DAY ) 1/24 OB the residual state in

Iwe

register AUX along with enough fresh ancillas initialized to |0) .
iii. If it outputs 1, set x; = g;, and move on to the next guess.
iv. If it outputs 0, move on to the next guess.

7. Output 1 if x ¢ AY(A) N B™(0,0+/m/2); Otherwise, output 0.

We now show the following:
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Lemma 9. Assuming the quantum hardness of LWEn"fq?aq, the hybrids Hy and
Hy are computationally indistinguishable,

HO e Hl.

Proof. This follows directly from the Gaussian-collapsing property (Theorem 2)
for quantum distinguishers with auxiliary states.

Lemma 10. Assuming the quantum hardness of LWquyaq, the hybrids Hi and
Hs are computationally indistinguishable,

H1 e H2.

Proof. We prove the claim by contradiction.
Suppose H; and Hy can be distinguished by a QPT algorithm B with advan-
tage 1/\° for a constant ¢ > 0 and infinitely many A. Fix one such .
1

By standard averaging argument, for at least 53z fraction of (A,x’) sampled

according to A & Zg™™ and x' ~ Dy /73 B can distinguish the result of run-
ning step 3-6 of H; on (A, x’), and the result of running step 3-6 of Hy on (A, x’)
with advantage at least 51-. Let’s call those (A,x’) good. Then from Lemma 5,
there exists a quantum circuit C of size poly(\, 1/¢,log(1/6)) such that for each

good (A,x"), C(pauvx,A,x,-) can distinguish samples from (Dg’x/ DA’y> and

» ~unif

Aay A7y 3 1
samples from (Dlwe ,Dunhc) with advantage at least boly (N1/elog(1/9)) "
_A,X/

fn’i?' by ourselves and Dﬁ;y ~s D) (from Lemma 7
and the choice of parameters), there exists a polynomial size quantum circuit C’

such that for each good (A,x’), C'(paux,A,%’,-) can distinguish samples from

Dgl"x/ and Dmx/ with advantage at least 1/A% for some constant d > 0.

Recall that the only difference in Ds"x, and Dlﬁéx/ is whether u is sampled
according to LWE or sampled uniformly. Now let’s show how to leverage the
fact to break LWE', ,, using this C’ (Algorithm 1). Notice that for all the good
(A, x'), line 3 passes with noticeable probability (by averaging arguments over
the eigenspaces) and the residual state after running ATI and obtaining outcome
1 is still a good distinguisher (by Lemma 4). So Algorithm 1 breaks decisional
LWE", ., efficiently if Lemma 10 doesn’t hold.

This ends our proof of the claim.

As we can sample D

Lemma 11. Assume that the decisional LWE}' . cannot be solved by a
quantum algorithm running in time poly(\, o) with distinguishing advantage
1/poly(\, o).

The probability that hybrid Hsj outputs 1 and the probability that hybrid
Hs 111 outputs 1 are negl(\)/o close. Formally, for 0 < k < /2om?®/? —1,

[Pr[Hs k41 = 1] = Pr{Hs x = 1] < negl(A) /o

Proof. The proof is the same with the proof of Lemma 10 except that we apply
Lemma 6 instead of Lemma 5 and that we set the parameter p in Lemma 6 as
1/poly(A, o) instead of 1/poly(A). We omit the proof details.
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Algorithm 1: An algorithm to break decisional LWE}', . if Lemma 10
doesn’t hold
Input : Matrix A € Z;*™ and vector u € Z; (and quantum advice vy ).
Output: 0 or 1 (guess whether u is sampled from uniform or according to
LWEY',. aq)
1 Sample a vector x’ ~ Dz;n,a/\/é and let y = A - x" mod q.

2 Generate pgr, avx — Ax,ay (X)X | @ vy).
3 Test whether C'(pauvx, A,x’,-) can be used to distinguish samples from DA’X/

and samples from DA x! Wlth advantage at least 1/A? by running ATIY )‘d % on
it with threshold 1/2 + 4>\d If the ATl outputs 0 (it is not a good dlstmgulsher)7
output a random guess and abort.

4 Denote the residual state (if not abort) in register AUX as p/ax-

Sample €’ ~ Dz, gq.Let v := (A, Ax',uT,u™x’ +¢').

6 Run C'(paux, A,x’,v) and output the result.

<)}

Lemma 12. H; 5, 3/2 outputs 1 with negligible probability.

Proof. We first define Game1 (1)‘) in Fig. 5. It is the same as H3 VEoms/2 €Xcept
that it will output 1 if x # x" (which is implied by x ¢ AY(A)NB™(0,0+/m/2)),

so to prove Lemma 12, it suffices to prove that Game“f"D (lA) outputs 1 with
negligible probability.

Game P (1*):

Sample A &
Sample a Gaussian vector X' ~ Dy ., 5 and let y = A - x’ mod g.
”,

nxm
z<m,

Generate pr, avx + Ax A,y(|X/><X/| ® vx).

v/6,8 eh —
Compute b + ATI o ( X DAY s (pauvx). Abort if b = 0.

Set x = 0, 6—7/6 ~' —'y 3e =/2.
For each i =1, 2, -

For each g; € a\/m -0/ m/2

i. Let Aux store the current state of the quantum distinguisher.
ii. Run ATIPD,(Dg

SO W e

(g DAY )o1/2 4 on the residual state in register Aux

along with enough fresh ancillas initialized to |0).
iii. If it outputs 1, set x; = g;, and move on to the next guess.
iv. If it outputs 0, move on to the next guess.
7. Output 1 if x # x’; Otherwise, output 0.

Fig. 5. The game Gamef’p (1>‘).
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Notice that in step 6, we apply a sequence of projective measurements AT
and set each coordinate of x’ based on the measurement outcomes. By Quantum

Union Bound (Lemma 1), Pr [1 — GameA P (1)‘)} can be bounded by a union
of events that for x’ sampled according to DZ(T,U/\@, SubGame™*P (1*,4, 95, %)
outputs 1:

Pr [1 Gamefp (1 )}

42 Z Pr [1 — SubGame™P (1%, g;, x') : x' ~ DZ:{L,G/@}

ZZI m/2

where SubGame™? (1>‘, z,gi,x’) is defined in Fig. 6.

SubGame™'® (1*,4, g;, x'):

1. Sample A & Z7*™. Let y = A - x’' mod g.
2. Generate pr, avx < Ax,a,y (X ) (x| @vy).
3. Compute b + ATI7 68 (pauvx). Abort if b= 0.
7(D DY) 1/24~
4. Set x =0, 6—7/67—7 3e =/2.
5. Run ATI on the residual state in register Aux along

77,D (D (L gi), Dumf ) 1/24~'
with enough fresh ancillas initialized to |0).

6. Output 1 if (g,,j # x'; and ATl outputs 1) or (gj, = x; and ATI outputs 0); other-
wise, output 0.

Fig. 6. The game SubGame™'? (1*,4,9:,%).

Now let’s show for any fixed 1, g;, x/,
Pr [1 — SubGame™? (1’\,i,gi,x’)] < negl(\)/o (1)

Case 1: g; = x'; Consider the residual state p/, ,, of running step 3 and obtaining
b= 1. From Lemma 4, running AT|;’5 (D;\ ¥ Dﬁ,fy) L2 on p's ,x, we will obtain

1 with probability at least 1 — 34.

From Lemma 8, when g; = x';, Dg’x/ (1,9:) = DQ’x/. Thus the output distri-

bution of running ATI;’é (D8 DAP) /24 on py,« is exactly the same as that

unif

/
of running ATIPD (DA % (1.9, DAF) 120+ O PAux: Therefore,

umf

Pr [1 — SubGame*P (1’\,i,gi,x’)] < 36 < negl(\)/o.
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Case 2: g; # x'; Again consider the residual state p/y,, of running step 3 and

obtaining b = 1. From Lemma 8, when g; # x';, DQ’X (1,9:) = Df;’i?x = Df;’i?'.
: 6,5 / . . .

Thus when running A‘I’IPD’(DAy DAY 1/24+ on Py, we will obtain 1 with

unif > unif
probability exactly Pr [1 — SubGame™P (1>‘,i,gi,x’)].
As P(D DAY DAY) only has eigenvalue 1/2 < 1/2 4+ 4’ — € (any distinguisher

unif 2 unif

cannot do better than outputting a random guess when facing DuAn’H?' and DuAn’i?’),

from Lemma 4, running ATI;"; on any state, we cannot get 1

(DAY DL )1/ 24

unif 2 unif

with probability greater than §, which implies that
Pr [1 — SubGame™'P (1’\,i,gi,x’)} < 8 < negl(N)/o.
Summing up Eq. 1 and averaging over x’, we can get that
Pr [1 — Gamef’D (1>‘)}
o

[\V]

<4

< Z Pr [1 « SubGame™*? (1>‘,i,gi,x') cx ~ D,,. U/\@}
q b

gi=—oy/m/2

<negl()),

(2

—_

which ends the proof.

Recall that Hg is the same as the game Game{f"D (1*), Theorem 6 follows

directly from Lemma 9, Lemma 10, Lemma 11 over ©(om?/?) pairs of consecu-
tive hybrids, Lemma 12 and the observation that Hy = H3 g.

7 Proof of Theorem 5

We prove by contradiction. Let A be the QPT adversary and without loss of
generality, we assume that the adversary submits u = 0 and assume that

Pr [1 — ExptE’A(lA, 1)] — Pr [1 — ExptE’A(lA, 0)} =€(N),

where €()\) is inverse polynomial, Expt™**(1*,b) is defined as Fig.1 and ¥ =
(KeyGen, Enc, Dec, Revoke).

We decompose the adversary into two QPT algorithms A, D where given
input state |1y), A generates the state pr aux. After returning system R to the
challenger, D takes payx and responds to the challenge. Then A, D satisfy

Pr [1 — SecurityExptA’D(l/\, 1)} —Pr [1 — SecurityExptA’D(lA,O)] = €(\)

where Secu rityExptA’D is the experiment shown in Fig. 7, because the inefficient
revocation implements Revoke(MSK, PK, ).



282 P. Ananth et al.

SecurityExpt™ (1*,b):

Sample A & Zp*™.

Generate (|1y),y) < GenGauss(A, o).

Generate pr, avx < Ax A,y ([tVy) Yy @ vr).

Apply inefficient revocation on system R, if it fails, output Invalid.

If b = 0, sample (A,y,u’,u') ~ DY . If b= 1, sample (A,y,u’,u') ~ DY,
Run b’ < D(A,y,u", v, Aux) and output b'.

AN

Fig. 7. The experiment SecurityExpt™? (1/\, b).

Lemma 13. For adversary A, D that satisfy
Pr [1 — SecurityExptP (17, 1)] — Pr [1 — SecurityExptP (17, O)} =€(N),

they also satisfy
e(A)

Pr [1 — ATISecurityExptA’D’”(IA)} > ——~ —negl.

for~y= % where ATISecurityExptA’D s shown in Fig. 8.

ATISecurityExpt™ ™7 (1, b):

Sample A & Zg™™.

Generate (|1y),y) < GenGauss(A, o).

Generate pr, avx < AxAy ([0y) (Yy]| @ V).

Apply inefficient revocation on system R, if it fails, output Invalid.
Run ATIi;;

result.

A e

(DAY DAY) 14s where § = 27°™ on system Aux and output the

Iwe " unif 2

Fig. 8. The experiment ATISecurityExpt*P< (1>‘, b).

Proof. Suppose that revocation succeeds with probability p. The residual state
paux satisfies

€

1
E {Tr [P(DDAJ DA,y)pAUX |Revocation succeeds on R| > 29y

Iwe 2 unif
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By averaging argument and the definition of threshold implementation Theorem
3,
€

4p’

N

E {Tr [TI te (PEDDA,y DA',fy)) pAUX] |Revocation succeeds on R] >

Iwe 7

By Lemma 4, if we set § = 27©™) we have,

(DY D) 5+

Pr [ATI7gD;;S (pavx) = 1|Revocation succeeds on R]

,0

D (DA’y DA.’y
’ Iwe 2 unif

l .
=E {Tr {ATI;; )4 +7pAUX} |Revocation succeeds on R}

72

(SIS

Iwe 2 unif

>E {Tr [TI be (7783,;7y pAY ) pAUX} |Revocation succeeds on R] —0

>6 negl
~1p gl.

Using the above lemma we can construct Algorithm 2 for solving SISnmJMI o
problem using the adversary A, D. As for our choice of parameters, the hardness
of LWE]', ,, implies the hardness of SISZL’W7 vz Theorem 5 follows directly
from the correctness of Algorithm 2, which we show in the following claim.

Algorithm 2: SIS Solver(A)

Input: Matrix A € Z7*™.
Output: Vector x € Z™.
1 Generate a Gaussian state (|1)y),y) < GenGauss(A, o) with

Wy) = > pe(x)x)
x€Ly"
Ax=y (mod q)

for some vector y € Zg.
2 Run A to generate a bipartite state pr aux in systems Hr ® H,ux with
Hr =Hy"

6,0
3 Run ATI?/®
PP (DAY DY) 1/24~

4 Run the extractor £(A,y, AUX) from Theorem 6, and let x; € Z; denote

the outcome.
5 Measure system R in the computational basis, and let x¢ € Z; denote the

on system AUX, abort if the output is 0.

outcome.
6 Output the vector x = x; — Xgp.

Claim. Algorithm 2 solves SIqu’U Jam with inverse polynomial probability when

. n7
A, D is a successful adversary.

Proof. Suppose A, D is a successful adversary. To show that Algorithm 2 can
obtain a short non-zero solution x we prove the following two statements:



284 P. Ananth et al.

SimultExtractionExpt™'? (1’\):

Sample A & Zp*™.
Generate (|¢y),y) < GenGauss(A, o).
Generate pr, avx <= Axay([¢y)(dy| @ va).

v/6,8 . .
Run ATIPD,(D@éy,DA'y),1/2+7 on system AUX, abort if the output is 0.

unif
Run the extractor £(A,y, Aux) from Theorem 6, and let x; € Zj denote the
outcome. Abort if x1 € AY(A)NB™(0,0/m/2).
6. Apply inefficient revocation on system R, abort if it fails; Otherwise, output 1.

A

Fig. 9. The experiment SimultExtractionExpt™*? (1’\).

— The probability that on system AUX the extractor £ extracts a short preimage
x1 of y and revocation succeeds on R is inverse polynomial

: : ADxn ] 1
Pr [SlmultExtracUonExpt (1) 1} mySEVE
where SimulExtractionExpt is defined as Fig. 9.

— Suppose that revocation succeeds with probability £(A) conditioned on the
extraction being successful. Then instead of running revocation on R, if we
measure register R in computational basis and obtain result xq, the probabil-
ity that x¢ is a short preimage of y that is different from x; is e(\) — negl(\)
conditioned on the extraction being successful.

If both statements are true, by basic probability arguments we prove the claim.

The first statement follows from Lemma 13 and Theorem 6. Let
GoodDecryptor denote the event that we pass the ATI test on step 4. Let
RevocationSuc denote the event that the inefficient revocation succeeds on sys-
tem R on step 6. Let ExtractionSuc denote the event that x; is a short preimage
of y on step 5. Since step 4-5 and step 6 commute, by Lemma 13,

1
Pr [RevocationSuc A GoodDecryptor] = ———.
poly(})

By Theorem 6,
Pr [ExtractionSuc | GoodDecryptor] > 1 — negl(\).

By basic probability calculation,

1

Pr [RevocationSuc A ExtractionSuc] = ————.
| | poly ()
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Now we prove the second statement. We show that given a specific short
preimage x; of y and a state pr such that revocation succeeds on R with prob-
ability e()\), if we measure R under computational basis, we obtain a short
preimage X of y that is different from x; with probability e(\) —negl(\). Define
the set of short preimages S = {x|Ax =y, ||x|| < 0/Z} and

[

|vy) = (Z P;i(x)) > pe(x)lx)

xeS XES
be a ‘truncated’ Gaussian coset state. Consider the following projectors

= o = Y c5xx, |X)(X] is a projector that projects onto all short preimages
we want.

— Iy = [by,)(iby| is the approximate revocation projector. The trace distance
between II; and the actual revocation projector [¢)y)(1y| is negligible by
Banaszczyk’s tail bound [Ban93].

Suppose that A is a full-rank matrix, if Tr[|¢y)(¢y|pr] = € we have
Tr[Iopr] =Tr (111 Iopr]
>Tr[I11 pr| — negl(\)
=Tr[|vby) (bylpr] — negl(A)
=c — negl(\).

where the second inequality follows from Lemma 3. Note that A is full-rank with
1 — negl(\) probability. Combine all arguments above, we proof this claim.

8 Applications

Combining our result with [APV23], we obtain constructions for

— Public-Key Encryption with Classical Key Revocation.
— Key-Revocable Fully Homomorphic Encryption.
— Revocable Pseudorandom Functions.

8.1 Public-Key Encryption with Classical Key Revocation

A public-key encryption with classical key-revocation is a public-key encryption
such that whenever we want to perform key revocation:

— The lessee runs Delete on its quantum secret key psk and produce a classical
certificate 7.
— The lessor runs Revoke on input 7 and output Valid if it is a valid certificate.
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The security of such scheme captures the idea that if an adversary produces
a certificate m that passes the revocation then the remaining adversary cannot
distinguish between a ciphertext of chosen message from a random ciphertext.
In [APV23|, they built a public-key encryption with classical key-revocation
assuming the security of key-revocable Dual-Regev encryption. Combine with
our result, we obtain the following theorem.

Theorem 7. Assuming the polynomial hardness of LWE with sub-exponential
modulus. The scheme CRevDual = (KeyGen, Enc, Dec, Delete, Revoke) (Construc-
tion 2, [APV23]) is a secure public-key encryption with classical key-revocation
(Definition 7.1,7.2, [APV23]).

8.2 Key-Revocable Fully Homomorphic Encryption

A key-revocable fully homomorphic encryption is a fully homomorphic encryp-
tion with quantum key revocation just like the key-revocable Dual-Regev
Encryption. In [APV23], they built a key-revocable fully homomorphic encryp-
tion assuming the security of key-revocable Dual-Regev encryption. Meanwhile,
this construction can be adapted to feature classical revocation via techniques
used in public-key encryption with classical key-revocation mentioned above.
Combine with our result, we obtain the following theorem.

Theorem 8. Assuming the polynomial hardness of L\WE and SIS with sub-
exponential modulus. The scheme RevDualGSW = (KeyGen, Enc,Dec, Eval,
Revoke) (Construction 3, [APV23]) is a secure key-revocable fully homomor-
phic encryption (Definition 5.3, [APV23]). Meanwhile, this construction can be
adapted to feature classical revocation via (Construction 2, [APV23]).

8.3 Revocable Pseudorandom Functions

A key-revocable (or simply, revocable) pseudorandom function is a weak pseu-
dorandom function with its evaluation key revocable. The pu-security of such
scheme captures the idea that if the revocation succeeds, the remaining adver-
sary cannot distinguish between p images y; = PRF(21),y2 = PRF(22), -+ ,y, =
PRF(y,) from p random preimages xi,z2,--- ,2, and uniform random values
Y1,Y2, -+ ,Yu. Meanwhile, this construction can also be adapted to feature clas-
sical revocation. Combine with our result, we obtain the following theorem.

Theorem 9. Assuming the polynomial hardness of LWE and SIS with sub-
exponential modulus. The scheme (Gen,PRF,Eval, Revoke) (Construction ,
[APV23]) is a poly-secure revocable PRF scheme (Definition 9.2, 9.3, [APV23]).
Meanwhile, this construction can be adapted to feature classical revocation via
(Construction 2, [APV23]).
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