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Abstract. Unclonable cryptography utilizes the principles of quantum
mechanics to addresses cryptographic tasks that are impossible classi-
cally. We introduce a novel unclonable primitive in the context of secret
sharing, called unclonable secret sharing (USS). In a USS scheme, there
are n shareholders, each holding a share of a classical secret represented
as a quantum state. They can recover the secret once all parties (or at
least t parties) come together with their shares. Importantly, it should
be infeasible to copy their own shares and send the copies to two non-
communicating parties, enabling both of them to recover the secret.

Our work initiates a formal investigation into the realm of unclon-
able secret sharing, shedding light on its implications, constructions, and
inherent limitations.

— Connections: We explore the connections between USS and other
quantum cryptographic primitives such as unclonable encryption
and position verification, showing the difficulties to achieve USS in
different scenarios.

— Limited Entanglement: In the case where the adversarial share-
holders do not share any entanglement or limited entanglement, we
demonstrate information-theoretic constructions for USS.

— Large Entanglement: If we allow the adversarial shareholders to
have unbounded entanglement resources (and unbounded computa-
tion), we prove that unclonable secret sharing is impossible. On the
other hand, in the quantum random oracle model where the adver-
sary can only make a bounded polynomial number of queries, we
show a construction secure even with unbounded entanglement.
Furthermore, even when these adversaries possess only a polynomial
amount of entanglement resources, we establish that any unclon-
able secret sharing scheme with a reconstruction function imple-
mentable using Cliffords and logarithmically many T-gates is also
unattainable.

1 Introduction

Alice is looking for storage for her sensitive data. She decides to hire multi-
ple independent cloud providers and secret shares her data across them. Later
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on, Alice retrieves these shares and reconstructs the data. Everything went as
planned. However: what if the cloud providers keep a copy and sell shares of her
data to her competitor, Bob? How can Alice make sure that once she retrieves
her data, no one else can?

This is clearly impossible in the classical setting. The cloud providers can
always keep a copy of the share locally and later, if Bob comes along, sell that
copy to Bob. Nonetheless, this problem has been recently studied in the classical
setting by a recent work of Goyal, Song, and Srinivasan [GSS21] who introduced
the notion of traceable secret sharing (TSS). In TSS, if (a subset of) the cloud
providers sell their shares to Bob, they cannot avoid leaving a cryptographic
proof of fraud with Bob. Moreover, this cryptographic proof could not have
been generated by Alice. Hence, (assuming Bob cooperates with Alice), Alice
can sue the cloud providers in court and recover damages. Thus, TSS only acts
as a deterrent and indeed, cannot stop the cloud providers from copying the
secret.

However, in the quantum setting, the existence of no cloning theorem offers
the tantalizing possibility that perhaps one may be able to build an “unclonable
secret sharing” (USS) scheme. Very informally, the most basic version of a USS
can be described as follows:

— Alice (the dealer) has a classical secret m € {0,1}*. She hires n cloud
providers Py, ..., Py.

— Alice computes shares (p1,- -+, pn), which is an n-partite state, from m and
sends the share p; to the party P; (note that Alice does not need to store any
information like a cryptography key on her own).

— Given (p1,-- -, pn), it is easy to recover m. But given any strict subset of the
shares, no information about m can be deduced (i.e., it is an n-out-of-n secret
sharing scheme).

— The most important is the unclonability. For every i € [n], the party P;
computes a bipartite state ox,v,. It sends the register X; to Bob and Y,
to Charlie. Assuming that the message m was randomly chosen to be either
mq or my (where (mg,mq) is chosen adversarially), the probability that both
Bob and Charlie can guess the correct message must be upper bounded by a
quantity negligibly close to %

In other words, the parties Py, ..., P, must be unable to locally clone their
shares such that both sets of shares allow for reconstruction. Indeed, as we
mentioned, this is the most basic version of USS. Even this basic setting has a
practical significance: the servers which store Alice’s shares may not intentionally
communicate her shares with each other, because they belong to companies with
conflict of interest; but a malicious Bob may still buy a copy of Alice’s share from
each of them.

One can consider more general settings where, e.g., we are interested in
threshold (i.e., t-out-of-n) USS or, where a subset of the n parties might col-
lude in attempting to clone their shares. One can also consider the setting where
the parties Py, ..., P, share some entanglement (allowing them to use quantum
teleportation).
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Unclonable cryptography leverages the power of quantum information and
empowers one to achieve primitives which are clearly impossible in classical cryp-
tography. While a lot of efforts have been made towards various unclonable cryp-
tographic primitives including but not limited to quantum money [BB20,AC12,
Zhal7,Shm?22,1L.MZ23], copy-protection [Aar09,CLLZ21,AL20], tokenized sig-
natures [BS16, CLLZ21,Shm22] and unclonable encryption (UE) [Got02, BL20,
AK21,AKL+22, AKL23]|, the question of unclonable secret sharing had not been
studied prior to our work. Secret sharing is one of the most fundamental prim-
itives in cryptography and as such, we believe that studying unclonable secret
sharing is an important step towards laying the foundation of unclonable cryp-
tography. Our contribution lies in initiating a systematic study of USS.

Connection to Unclonable Encryption. The classical counterparts of unclon-
able encryption and (2-out-of-2) unclonable secret sharing are very similar. For
instance, both one-time pad encryption and 2-out-of-2 secret sharing rely on the
same ideas in the classical setting. One may wonder if UE and USS share similar
a relation. UE resembles standard encryption with one additional property: now
ciphertext is unclonable, meaning no one can duplicate a ciphertext into two
parts such that both parts can be used separately to recover the original plain-
text. At first glance, it might seem like UE directly implies a 2-out-of-2 USS. To
secret share m, the dealer (Alice) would generate a secret key sk, and compute
ciphertext pc, which encrypts the classical message m. One of the shares will
be pct while the other will be sk. Since p¢; is unclonable, this may prevent two
successful reconstructions of the original message.

However, the above intuition does not work if the two parties in (2-out-of-2)
USS share entanglement. In UE, the ciphertext p is a split into two compo-
nents and sent to Alice and Bob. Later on, the secret key sk is sent (without
any modification) to both Alice and Bob. However, in USS, the secret key sk
corresponds to the second share and might also be split into two register such
that one is sent to Alice and the other to Bob. This split could be done using
a quantum register which is entangled with the quantum register used to split
the cipher text pe. It is unclear if such an attack can be reduced to the UE
setting, where there is no analog of such an entangled register. In fact, we show
the opposite. We show that in some settings, USS implies UE, thus showing that
USS could be a stronger primitive.

Connection to Instantaneous Non-local Computation. It turns out that the
positive results on instantaneous non-local computation imply negative results
on USS in specific settings. The problem of instantaneous non-local computa-
tion [Vai03,BK11,Spel5,TH08, GC19] is the following: Dave and Eve would like
to compute a unitary U on a state pxy, where Dave has the register X and Eve
has the register Y. They need to do so by just exchanging one message simulta-
neously with each other. Non-local computation has connections to the theory
of quantum gravity, as demonstrated in some recent works [May19, May22]. Sup-
pose there is a unitary U for which non-local computation is possible then this
rules out a certain class of unclonable secret sharing schemes. Specifically, it
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disallows certain reconstruction procedures that are functionally equivalent to
U. In more detail, consider a USS scheme that is defined as follows: on input
a message m, it produces shares on two registers X and Y. The reconstruction
procedure! takes as input the shares and outputs m in both registers X and Y.
Any non-local computation protocol for such a reconstruction procedure would
violate the security of the USS scheme. Investigating both positive and negative
results of USS schemes could shed more light on the feasibility of non-local com-
putation. In this work, we adapt and generalize techniques used in the literature
on non-local computation to obtain impossibility results for USS.

USS also has connections to position verification, a well-studied notion in quan-
tum cryptography that has connections to problems in fundamental physics. We
discuss this in the next section.

1.1 Owur Results

In this work, our primary emphasis will be on n-out-of-n unclonable secret shar-
ing schemes as even though they are the simplest, they give rise to numerous
intriguing questions. Our results are twofold, as below.

’ Information-Theoretic ‘

Section 6.1

(b) (e)
/?—\
USSl S 3 UE S = o USSQ et Ussw(log A)
ection 6.¢ ection 5. P
trivial .
(a) (c) construction (d)

Section 5.1

Fig. 1. Relations between USS and UE in the information-theoretic regime.

Results on Information-Theoretic USS. We first examine the connections
between USS and UE and constructions of UE in the information-theoretic
regime. The first part of our results can be summarized by Fig. 1. In the figure,
USS; stands for information-theoretic USS, secure against adversarial parties
sharing unbounded amount of entanglement; we will explain why we call it USS;
later on. We first show that, even if we restrict adversaries in USS; to have a
polynomial amount of entanglement, it implies UE.

! In general, a reconstruction procedure need not output a copy of the secret twice
but using CNOT gates, we can easily transform any reconstruction procedure into
one that outputs two copies of the secret.
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Theorem 1 (direction (a) in Fig. 1, Sect. 6.3). Information-theoretic USS
that is secure against adversarial parties P sharing polynomial amount of entan-
glement implies UFE.

This leads us to ponder whether USS; and UE share equivalence, like their
classical counterparts do. Perhaps surprisingly, we show that this connection is
unlike to hold. We prove that USS; does not exist in the information-theoretic
setting. Since there is no obvious evidence to refute UE in the IT setting and
many candidates were proposed toward information-theoretic UE, our impossi-
bility stands in sharp contrast to UE.

Theorem 2 (direction (b) in Fig. 1, Sect. 6.1). Information-theoretic USS
that is secure against adversarial parties P sharing unbounded amount of entan-
glement with each other, does not ezist.

Facing the above impossibility, it seems like USS in the IT regime comes
to a dead end. To overcome the infeasibility result, we investigate USS against
adversarial parties with specific entanglement configurations. We consider the
case where every pair of P; and P; either shares unbounded entanglement or
shares no entanglement. In this case, we can define an entanglement graph, of
which an edge (4, j) corresponds to entanglement between P; and P;. Then, we
propose the natural generalization and define USS, for any d > 1:

USS;: Information-theoretic USS, secure against adversarial parties sharing
entanglement whose entanglement graph has at least d connected compo-
nents.

The above definition captures the case that there are d groups of parties; there
is unlimited entanglement between parties in the same group and no entangle-
ment between parties in different groups. This notation is not only for overcom-
ing the barrier, but also has practical interest: parties from different groups are
geographically separated or have conflict of interest, maintaining entanglement
between them is either too expensive or impossible. Note that the characteri-
zation of entanglement is only for adversarial parties, whereas honest execution
of the scheme does not need any pre-shared entanglement. We also like to note
that aforementioned USS; is also captured by the above definition when d = 1.

It is easy to see that the existence of USS, implies USS441 for any d > 1, as
having less entanglement makes attacking more difficult. However, since USS; is
impossible, can we construct USS, for some d? We complete the picture of USS
and UE by presenting the following two theorems.

Theorem 3 (direction (c) in Fig. 1, Sect. 5.2). UE implies USSy in the
information-theoretic setting. As a corollary, it implies USSy for any d > 1 in
the IT setting.

Theorem 4 (construction (d) in Fig. 1, Sect. 5.1). USS, exists for every
d = w(log \) in the information-theoretic setting, where \ is the security param-
eter.
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Along with Theorem 4, we proved a special XOR lemma of the well-known
monogamy-of-entanglement property for BB84 states [BB20, TFKW13], when
the splitting adversary is limited to tensor strategies. More precisely, we only con-
sider cloning strategies that apply channels on each individual qubit, but never
jointly on two or more qubits. Given a BB84 state, let p(n) be the probability of
the optimal tensor cloning strategy, that later two non-communicating parties
recover the parity simultaneously. p(1) = 1/2+1/21/2 was proved in [TFKW13].
In this work, we show that p(n) = 1/24+exp(—£2(n)), which demonstrates a XOR
hardness amplification for tensor strategies. We believe the proof of the theorem
will be of independent interest, as a more general version of the theorem (that
applies to any cloning strategies) will imply UE in the IT setting, resolving an
open question on unclonable encryption since [BL20].

These two theorems establish a clear distinction between USS; and USS, for
all d greater than 1. Furthermore, the latter theorem illustrates that as the value
of d becomes sufficiently large, it becomes feasible to achieve USS; within the
IT setting. Consequently, it implies that, at the very least, certain objectives
outlined in Fig. 1 can be constructed.

Lastly, as the final arrow in Fig. 1, does USSg or USS,,(15g 1) implies UE?

Remark 1 (direction (e) in Fig. 1). We do not have an answer yet. Nonetheless,
we assert that either USSy does not imply UE, or establishing this implication is
as challenging as constructing UE. The latter assertion arises from our existing
knowledge of USS,, (105 n)—demonstrating such an implication should, in turn,
furnish us with a means to construct UE within the IT framework.

Results on Computational USS. In this computational regime, adversarial
parties are computationally bounded; this in turn implies that the amount of pre-
shared entanglement is also computationally bounded. Unlike the comprehensive
picture presented in Fig. 1, our understanding here is more intricate. Specifically,
as demonstrated in Fig. 2, the feasibility or infeasibility hinges on factors such as
the computational complexity of USS schemes and the actual quantity of shared
entanglement among malicious parties.

Similar to the IT setting, the implication of USS; and UE still works (direc-
tion (a) in Fig.2). What is new here is that we present one impossibility result
and one infeasibility result on USS;.

Theorem 5 (Informal, impossibility (f) in Fig. 2, Sect. 6.2). USS whose
reconstruction function has only d T gates, can be attacked with adversarial
parties sharing O(2%) qubits of pre-shared entanglement.

Therefore, when the reconstruction has low T complexity, say d = log A, then
such USS does not exist even in the computational regime. Next, we present
a construction, in sharp contrast to the impossibility above. Quantum random
oracle [BDF+11], models the perfect (and unrealizable) cryptographic hash func-
tion. As it should behave as a truly random function, it can not have a small
number of T gates.
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impossibility (f) Section 6.2
construction (g) Full Version
USS; ———  UE
Section 6.3

(a)
trivial

Section 6.4
(h)

search-USS; ———— — 1-dim PV

Fig. 2. Relations between USS and UE in the computational regime.

Theorem 6 (construction (g) in Fig. 2, Full Version). USS that is secure
against query-efficient adversarial parties sharing an arbitrary amount of pre-
shared entanglement?®, exists in the quantum random oracle model (QROM).

As quantum random oracle is not realizable in general, we wonder whether
USS; can be constructed in the plain model. To the end, we show that USS;
implies a cryptographic primitive called 1-dimensional position verification that
is secure against parties sharing any polynomial amount of entanglement. Posi-
tion verification represents an actively explored research area. Despite all the
ongoing efforts, the development of a construction for position verification within
the standard model remains elusive. This underscores the formidable challenge
of devising USS;, when relying on computational assumptions.

Theorem 7 (direction (h) in Fig. 2, Sect. 6.4). USS that is secure against
adversarial parties having pre-shared entanglement, implies 1-dimensional posi-
tion verification that is secure against parties sharing the same amount of pre-
shared entanglement.

1.2 Other Related Works

On Secret Sharing of Quantum States. Our work focuses on secret-sharing clas-
sical secrets by encoding them into a quantum state to achieve unclonability.
One may be curious about the relationship of our new primitive to the existing
studies on secret-sharing schemes where the secret messages are quantum states
to begin with.

In short, all the existing quantum secret sharing schemes fall short of satisfy-
ing one crucial property in our model: the requirement of no or low entanglement
for honest parties. Their unclonability also remains elusive, as they require much
more complicated structures on quantum states than ours. We provide a detailed

2 The adversary is polynomially bounded in queries but not in the pre-shared entan-
glement.
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discussion below and will carefully incorporate all the discussions into the sub-
sequent version.

In the paper, we consider a model where malicious parties can share some
amount of entanglement before attacking the protocol. As illustrated in Fig. 1
and Fig.2, the amount of entanglement (or more precisely, the entanglement
graph) plays an important role in both the construction and barriers of such
schemes. Therefore, we do not want the entanglement used in honest shares to
scale to the same order or surpass what adversaries can access. Our constructions
(Theorem 4 and Theorem 6) are based on unentangled quantum shares of single
qubits, thus no entanglement required.

[HBBY99] first proposed the idea of using quantum states to secret-share a
classical bit. Their idea is to use n-qubit GHZ states for an n-out-of-n secret
share scheme. However, an n-qubit GHZ state requires entanglement across n
quantum registers, which enforces shareholders to maintain entanglement with
each other. A subsequent proposal in [KKI99] followed a similar path but also
required a large amount of entanglement. The idea of using quantum state to
secret, share classical secrets was also discussed by Gottesman [Got00], but they
mostly focused on the lower bounds of general schemes (potentially requiring
entanglement): for example, how many qubits are required to secret-share one
classical bit.

There is another line of works on secret-sharing quantum secrets, including
[CGL99, Smi00] and most recently [CGLR23] by Cakan et al. Since the goal is to
secret-share a quantum state, entanglement is also necessary in these protocols.

2 Technical Overview

In this section, unless otherwise specified, we focus on 2-out-of-2 USS, with Share
and Reconstruct. Share takes as input a message m and outputs two shares pg, p1;
whereas Reconstruct takes two quantum shares and outputs a string. We assume
po, p1 are unentangled. When we consider impossibility results, all arguments
mentioned in this overview carry in the same way to the general cases; for con-
structions, we only require unentangled shares.

2.1 USS; Implies UE, UE Implies USS,

We first examine two directions (directions (a) and (c) in Figs. 1 and 2); that is,
how USS; implies UE and how UE implies USS,. We briefly recall the definition
of UE: it is a secret key encryption scheme with the additional property: there
is no way to split a quantum ciphertext into two parts, both combining with the
classical secret key can recover the original plaintext (with probability at least
1/2 plus negligible).

USS; implies UE, Sect. 6.3. Given a 2-out-of-2 USS, we now design a UE:

UE.Enc(k, m) takes as input a secret key k and a message,
1. it first produces two shares (p1, p2) < USS.Share(m),
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2. it parses k = (a,b), let the unclonable ciphertext be ct =
(p1, X Z%pyZ° X *). In other words, it sends out p; in clear, while having
p2 one-time padded by the key k.

Decryption is straightforward, by unpadding X®Z%p,Z®X¢® and applying
Reconstruct to (p1,p2). Correctness and semantic security follows easily. Its
unclonability can be based on the unclonability of USSy; indeed, the scheme
corresponds to a special strategy of malicious P; and P,. Suppose there exists
an adversary (A, B,C) that violates the above scheme, there exists (P, P2, B,C)
that violates the security of USS;.

P; and P5 share EPR pairs. Ps uses the EPR pairs to teleport ps to Py, with Ps
having random (a,b) and P; obtaining (p1, X?Z%p22°X%). As P, only has
classical information, it sends (a,b) to both B and C, while P; applies A on
(p1, X*Z’pyZ°X*) and shares the bipartite state with both B and C.

It is not hard to see that the above attacking strategy for USS; exactly corre-
sponds to an attack in the UE we proposed above: P; tries to split a ciphertext
while Py simply forwards the secret key k& = (a,b). Therefore, we can base the
unclonability of the UE on that of USS;, which completes the first direction.

UE implies USSs, Sect. 5.2. Recall that 2-out-of-2 USS, describes adversarial
parties who do not share any entanglement. We can simply set up our USSs
scheme as follows, using UE:

Share(m) takes as input a message m, it samples a key k for UE, and let |ct) be
the unclonable ciphertext of m under k; the procedure Share outputs the first
share as p; = k, and the second share as py = |ct).

As there is no entanglement between P; and P, P; with p; = k forwards the
classical information to both Alice and Bob. In the meantime, Py employs her
cloning strategy, which remains entirely independent of the key k. Consequently,
the unclonability of out USS, aligns with that of UE.

When we generalize the conclusion to n-out-of-n USSs, we first secret share
the targeted message m into n shares. For any two adjacent parties P;, P11
and the ¢-th share, the first part receives the key and the second one gets the
unclonable ciphertext. As long as all the malicious parties form at least two
connected components (as defined in USS,), there must be two adjacent parties
who do not have entanglement. Thus, we can incur the same logic to prove its
unclonability, basing on the unclonability of UE.

2.2 Construction of USS,, (0g 1)

For simplicity, we focus on an n-out-of-n USS, where n = w(log A) and no entan-
glement is shared between any malicious parties, which is a special case of a
general n-out-of-n USS, 14 ), for a larger n > w(log A). Our construction is
based on the BB84 states. Our scheme first classically secret-shares m into (n—1)
shares and encodes each classical share into a single-qubit BB84 state. One party
will receive the basis information 6 which contains (n—1) basis; every other party
will receive a BB84 state for the i-th classical share.
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Share(m): it takes as input a secret m € {0,1},
— it samples mq,--- ,my_1 conditioned on their parity equals to m;
— it samples 6 € {0,1}"~1;
— let the first (n — 1) shares be p; = H%

Reconstruction of shares is straightforward. After receiving all shares, one uses
the basis information 6 to recover all the classical shares m;; m then is clearly
determined by these m;.

To reason about the unclonability of our protocol, we first recall a theo-
rem on BB84 states, initially proposed by Tomamichel, Fehr, Kaniewski and
Wehner [TFKW13] and later adapted in constructing unclonable encryption by
Broadbent and Lord [BL20]. We start by considering a cloning game of single-
qubit BB84 states.

m;) (m;| H% and the last share

1. Areceives HY|z)(z|H? for uniformly random x, 8 € {0, 1}, it applies a channel
and produces opc. Bob and Charlie receive their registers accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover z; they win if
and only if both guess x correctly.

Lemma 1 (Corollary 2 when n = 1, [BL20]). No (unbounded) quantum
(A, B,C) wins the above game with probability more than 0.855.

Tomamichel, Fehr, Kaniewski and Wehner [TFKW13] and Broadbent and
Lord [BL20] studied parallel repetitions of the above cloning game?®. In the par-
allel repetition, n random and independent BB84 states are generated, which
encode an n-bit string x. The goal of cloning algorithms is to guess the n-bit
string « simultaneously. They showed that the cloning game follows parallel
repetition, meaning that the optimal winning probability in an n-fold parallel
repetition game is at most (0.855)".

Our proposed scheme also prepares these BB84 states in parallel, but hides
the secret m as the XOR of the longer secret. Indeed, the XOR repetition of the
BB84 cloning game has been a folklore and was considered as a candidate for
UE. More specifically, it is conjectured that the following game can not be won
by any algorithm with probability more than 1/2 + exp(—§2(n)):

XOR repetition of BB84 cloning games.

1. Avreceives H?|z)(x|H? for uniformly random z,6 € {0,1}", it applies a chan-
nel and produces ogc. Bob and Charlie receive their register accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover parity(z); they
win if and only if both guess correctly.

Although there is no evidence to disprove the bound for the XOR repetition so
far, the validity of the bound still remains unknown. In this work, we prove this

3 Indeed, [TFKW13] proved a stronger statement on a different game, which ultimately
implied the parallel repetition theorem, shown by [BL20].
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bound, when A is restricted to a collection of strategies. It applies C; on the i-th
qubit of the BB84 state and get 0](32)0; the final state oc = ), J](;)C. Note that
the lemma does not put any constraint on the behaviors of B or C.

Lemma 2 (An XOR lemma for BB84 cloning games, Sect. 5.1). When
A only applies a tensor cloning strateqy to prepare opc, the optimal success
probability in the XOR repetition of BB84 games is 1/2 + exp(—§2(n)).

Equipped with it, it is straightforward to show the unclonability of our protocol.

A proof for the XOR repetition. Finally, we give a brief recap on the proof for
Lemma 2.

For any A’s tensor strategy with channels C; applied on the i-th qubit of a
BB84 state, we recall the notation Ugg. This is the state produced from the i-th
qubit of the B884 state, when 6, x; was sampled uniformly at random. Let 01(3?0)
be the density matrix, describing the register that will be given to Bob, when

. (i,1)
z; = 0. We can similarly define o
there exists a constant ¢ > 0, either

, Ug"o) and ag’l). Lemma 1 tells us that,

TD(U](;’O), 0](;’1)) <ec or TD(US’O),US’I)) <ec.

This indicates that for every i, either Bob or Charlie can not perfectly tell the
value of x;, regardless of the channel C;. Furthermore, as the BB84 state has n
qubits, w.l.o.g. we can assume that the above holds for Bob, for at least n/2
positions.

In the XOR repetition, Bob eventually will receive ag’mi). We show that Bob
can not tell whether the parity of all m; is odd or even. More precisely, we will
show:

ol Y L (®og ) > L (®of3’ ”) <ot
7 mi

M1y Mp—1° seeyMn—1° i
M= i =

We connect the trace distance directly to the trace distance of each pair of states
TD(UI(;"O), Ug’l)) and demonstrate an equality (see Sect. 5.1):

1 iymy 1 1,m;
D Z on—2 <® 01(3 )>’ Z on—2 <® 01(3 )>

MY yeey My 1% i Y gy My — 1t
@dim;=0 Bimi=1

~I] ™™ (o—g”l ag”) .

Since every trace distance is bounded by 1 and there are at least n/2 terms in
the product smaller than ¢, we conclude the result.
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2.3 Impossibility of USS;

Since USS; implies UE, it is natural to consider building UE from USS;. Con-
structing UE in the basic model remained unresolved since [BL20]. Perhaps the
connections in the last section provide a new avenue for constructing UE. In this
section, we present two impossibility results (referred to as (b) in Fig. 1 and (f)
in Fig.2) that highlight challenges associated with USS;.

Information-theoretic USSy does not exist, Sect. 6.1. We begin by examining the
case of 2-out-of-2 USS; with unentangled shares, and our impossibility result
extends to the general case. Let us consider two malicious parties, P; and Ps, who
share an unlimited amount of entanglement. P receives the initial share, ps, and
teleports it to P;. This action leaves P, with a random one-time pad key, denoted
as (a,b) while P; now possesses (p1, X?Z?p2Z?X?). Now, P; aims to jointly
apply the reconstruction procedure to (pi, p2), but there’s a problem: P; lacks
all the necessary information, especially the one-time padded key. To address
this challenge, we recall the concept of port-based teleportation [THO8, BK11]| to
help P;.

Port-based teleportation allows one party to teleport a d-qubit quantum state
to another party, while leaving the state in plain. This is certainly impossible
without paying any cost, as it contradicts with special relativity. Two parties need
to pre-share about O(d2¢) EPR pairs, divided into O(2%) blocks of d qubits. After
the port-based teleportation, the teleported state will be randomly dropped into
one of the blocks of Py, while only P; has the classical information about which
block consists of the original state.

Equipped with port-based teleportation, P; teleports (p1, X Z%p, Z°X%) to
Po; it has the classical information ind specifying the location of the teleported
state. Py then runs Reconstruct o (I ® Z°X ) on every possible block among the
pre-shared entanglement, yielding O(2%) different values; even though most of
the execution is useless, the ind-th block will store the correct (classical) answer.
Finally, both P; and P, sends all their classical information to Alice and Bob;
each of them can independently determine the message. This clearly violates
the unclonability of USS;. Thus, for any 2-out-of-2 USS; whose shares are of
length d, there is an attacking strategy that takes time and entanglement of
order O(d2?) and completely breaks its unclonability.

We refer readers to Sect. 6.1 for the proof of a general theorem statement.

Impossibility of computationally secure USSy, with low-T Reconstruct, Sect. 6.2.
We now focus on the case when the reconstruction circuit can be implemented
by Clifford gates and logarithmically many T gates. Denote C to be the recon-
struction circuit. That is, on input two shares of the form pq, p2, the output is
the first bit of C(p; ® p2)CT = |m) (m| @ 7.

We let P5 teleport ps to P and they try to compute Reconstruct in a non-local
manner. In the previous attack, this is done by leveraging an exponential amount
of entanglement. To avoid this and make the attack efficient, we hope that P
can homomorphically compute on the one-time padded data (p;, X Z%p, Z° X ),
without decrypting it.
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Suppose C' is a Clifford circuit. We use the fact that the Clifford group is a
normalizer for the Pauli group (specifically, the X¢Z® operator). Let us assume
each py, py is of £ qubits. In other words, for any a,b € {0, 1} and Clifford circuit
C, there exists a polynomial-time computable a’, b’ € {0,1}%¢ depending only on
a,b and C, such that

Clp1 ® X Z8p 2P X C = X9 ZY C(p1 @ po)CT 2 X

Here a/,b" act as a bigger quantum one-time pad operated on C(p; ® po)CT =
Im) (m| ® 7.

Now P; measures the first qubit in the computational basis, yielding m @ af;
whereas P compute a’,b’ (and most importantly, af) from its classical informa-
tion a,b. They send their knowledge to both Alice and Bob, who later simulta-
neously recover m.

Next, let us consider the more general case where C consists of Clifford gates
and t number of T gates. The homomorphic evaluation of Clifford gates are as
before. However, the homomorphic evaluation of T gates are handled differently.

Let us consider one single T gate that applies to the first qubit. We consider
two identities, for any x, z € {0,1} and any single-qubit state |4}

(i) T(X"Z%) [) = (X" 2" P")T [¢),
(i) P(X7Z7) |v) = (X" Z"9%)P i)

Suppose, the current state is of the form X*Z%|¢) and we apply P*T to the
state. We would like to show that the resulting state is X Z¥ T |¢)) for some
a' € {0,1},b € {0,1}. We use the above identities:

(PzT) (XmZz) |w> Frog (4) pT (XzZzeBsz)T ‘w> me;(ii) XzZm@sz@mT |w> .
Note that P2 = P° = I. Thus, if we can learn  ahead, we can successfully homo-
morphic compute T on the encrypted data. However, in our case, x corresponds
to any bit in the one-time pad key a of any stage. P; has no way to learn x. This
is where the limitation of low-T gate comes from. Instead of knowing x ahead,
each time when a T homomorphic evaluation is needed, one simply guesses z’; as
long as = 2’ (which happens with probability 1/2), we succeed. Thus, P; only
guesses all s (for each T gate) correctly with probability 2. If ¢ is logarithmic,
our attack violates the security with inverse polynomial probability; therefore,
it rules out computationally secure USS; with a low-T Reconstruct procedure.

2.4 Barriers of USS; (Implication of PV)

To further demonstrate the challenge of building USS against entangled adver-
saries, we show that 2-party USS; implies a primitive called position verifica-
tion. Position verification (PV) has remained a vexing problem since its incep-
tion [CGMO09).

We briefly introduce the notion of position verification for the 1-dimensional
setting: two verifiers on a line will send messages to a prover who claims to be
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located at a position between the two verifiers. By computing a function of the
verifiers’ messages and returning the answers to the verifiers in time, the prover
ensures them of its location. However, two malicious provers may collude to
impersonate such an honest verifier by standing at the two sides of the claimed
position.

We demonstrate that 2-party USSy, even with the weaker search-based secu-
rity, will imply PV: the two verifiers in the position verification protocol will
generate secret shares (pg, p1) of a random string s; then they will each send the
messages po and p; respectively to the prover; the prover needs to reconstruct
s and send s to both verifiers in time. Any attack against PV can be viewed as
a two-stage strategy—one can perfectly turn the first-stage strategy in PV into
the shareholders’ strategy in USS and the second-stage strategy in PV into the
recoverers’ strategy in USS.

Despite many efforts, progress on PV in the computational setting against
entangled adversaries has unfortunately been slow. We do not even know of
any secure computational PV against adversaries with unbounded polynomial
amount of entanglement in the plain model, nor any impossibility result. More-
over, some recent advancement in quantum gravity has unveiled some connec-
tions between the security of position verification and problems in quantum
gravity [May19,May22] .

Any progress of USS; in the plain model will contribute towards resolving
this long-standing open problem and unveil more implications.

3 Preliminaries

3.1 Notations

We assume that the reader is familiar with the basic background from [NC10].
The Hilbert spaces we are interested in are C¢, for d € N. We denote the quantum
registers with capital bold letters R, W, X, ... . We abuse the notation and
use registers in place of the Hilbert spaces they represent. The set of all linear
mappings from R to W is denoted by L(R, W), and L(R) denotes L(R,R).
We denote unitaries with capital letters C, F, ... and the set of unitaries on
register R with U(R). We denote the identity operator on R with Ig; if the
register R is clear from the context, we drop the subscript R from the notation
Ir. We denote the set of all positive semi-definite linear mappings in L(R,R)
with trace 1 (i.e., set of all valid quantum states) by D(R). For a register R in
a multi-qubit system, we denote R to be a register consisting of all the qubits
in the system not contained in R. We denote Trgr(p) to be the state obtained
by tracing out all the registers of p except R. A quantum channel @ refers to a
completely positive and trace-preserving (CPTP) map from a Hilbert space H;
to a possibly different Hilbert space Hs.

3.2 Unclonable Encryption

Unclonable encryption was originally defined in [BL20] and they considered two
security notions, namely search and indistinguishability security, with the latter
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being stronger than the former. We consider below a mild strengthening of the
indistinguishability security due to [AK21].

Definition 1. An unclonable encryption scheme UE is a triple of efficient quan-
tum algorithms (UE.KeyGen, UE.Enc, UE.Dec) with the following procedures:

~ KeyGen(1*): On input a security parameter 1, returns a classical key sk*.

— Enc(sk,m): It takes the key sk and the message m for m € {0,1}P°Y) g5
input and outputs a quantum ciphertext p..

— Dec(sk, pet): It takes the key sk and the quantum ciphertext pet, it outputs a
quantum state T.

Correctness. The following must hold for the encryption scheme. For every
sk < KeyGen(1*) and every message m, we must have Tr[|m) (m|Dec(sk,
Enc(sk, |m) (m]))] > 1 — negl(}).

Unclonability. In the rest of the work, we focus on unclonable IND-CPA security.
The regular IND-CPA security follows directly from its unclonable IND-CPA
security. To define unclonable security, we introduce the following security game.

Definition 2 (Unclonable IND-CPA game). Let A € N*. Consider the
following game against the adversary (A, B,C).

— The adversary A generates mg,m; € {0,1}"N and sends (mg,m1) to the
challenger.

— The challenger randomly chooses a bit b € {0,1} and returns Enc(sk,mp) to
A. A produces a quantum state pgc on registers B and C, and sends the
corresponding registers to B and C.

— B and C receive the key sk, and output bits by and be respectively.

The adversary wins if by = be = b.

We denote the success probability of the above game by adv4 g c(A). We say
that the scheme is information-theoretically (resp., computationally) secure if
for all (resp., quantum polynomial-time) adversaries (A, B,C),

adv4 gc(A) < 1/2+ negl(X).

4 Definitions and Notations

4.1 Unclonable Secret Sharing

An (¢, n)-unclonable secret sharing scheme, associated with n parties Py, ..., Py,
consists of the following QPT algorithms:

4 In our construction, we require sk being a uniform random string. Such a UE scheme
can be constructed in QROM [AKL+22, AKL23|.
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— Share(1*,17,1t,m) — PR.R,--R,: On input security parameter A, n parties,
a secret m € {0,1}*, output registers Ry, Ro, -+, R,,.
- Reconstruct(pR;1 s+ PR, ): On input shares R} , ..., R;

i)

output a secret m.

When it is an n-out-of-n USS scheme, we ignore the input 1% in Share. In
the rest of the work, we will focus on constructions with unentangled shares
and impossibility results for entangled shared. For sake of clarity, we will use
p1,-+ , pn to denote these shares. We require the following properties to hold.

Correctness. We can recover the secret with probability (almost) 1, more for-
mally:

Pr[Reconstruct(p;,, -, pi,) = m|(p1,- -, pn) — Share(1*,1%,m) Nk > ] = 1 — negl(}\).

Soundness/Privacy. Given (at most) (t—1) shares, it is information-theoretically
impossible/computationally hard to recover the original message. Formally, for
any unbounded/QPT A, there exists a negligible function negl(-), for every m €
{0, 1}, for every A >0, 41,--- ,i:—1 € [n],

1
Pr['A(piu e 7pit—1) = m|(p17 T 7)0n) — Share(lAa 1n7m)] = 5 T negl(/\)

All our schemes satisfy information-theoretic soundness/privacy.

4.2 Indistinguishability-Based Security

In this work, we will mostly focus on the (n,n)-unclonable secret sharing case.
For simplicity, we call it n-party USS.

In this section, we define indistinguishability-based security for n-party USS.
The security guarantees that for any two messages mg, m1, no two reconstruct-
ing parties can simultaneously distinguish between whether the secret is mg or
my, given their sets of respective cloned shares. Formally, we define the following
experiment:

Expt(a:},8.0.0):

1. Let & be a quantum state on registers Auxy, ..., Aux,. For every i € [n], A;
gets the register Aux;.
2. Adv = ({A;}, B,C, €) sends (mg, m1) to the challenger such that |mg| = |my].

3. Share Phase: The challenger chooses a bit b & {0,1}. Tt computes
Share(1*,1™,my,) to obtain (py, ..., p,) and sends p; to A;.

4. Challenge Phase: For every i € [n], A; computes a bipartite state ox,v,.
It sends the register X; to B and Y; to C.

5. B on input the registers Xy, ..., X,,, outputs a bit bg. C on input the registers
Yy,..., Y, outputs a bit be.

6. Output 1 if by = b and be = b.
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Definition 3 (Information-theoretic Unclonable Secret Sharing). An
n-party unclonable secret sharing scheme (Share, Reconstruct) satisfies 1-bit
unpredictability if for any non-uniform adversary Adv = ({Ai}ie[n], B,C, 5), the
following holds:

1
PI’ |:1 “— EXpt({Ai},B,Cﬁf)} S 5 + negl()\)

Definition 4 (Computational Unclonable Secret Sharing). An n-party
unclonable secret sharing scheme (Share,Reconstruct) satisfies 1-bit unpre-
dictability if for any non-uniform quantum polynomial-time adversary Adv =

({Ai}icpn), B.C,€), the following holds:

1
Pr |1 Expt 4, | <5+ neglx
r1 = Bxpta s | < 5+ neel(d)
Claim. Existence of (n — 1)-party USS unconditionally implies n-party USS.

This is straightforward to see, by creating a dummy share.

4.3 Entanglement Graph

We will focus on the setting when there are multiple quantum adversaries with
shared entanglement modeled as a graph, that we refer to as an entanglement
graph. We formally define entanglement graphs below.

Definition 5 (Entanglement Graph). Let p be a n-partite quantum state
over the registers Xy,---,X,. Let pli] be the mized state over register X;
(i.e., pli] = Trx,(p)) and pli,j] be the mized state over the registers X;, X,
(i.e., pli,j] = Trx, x,(p)). An entanglement graph G = (V,E) associated with
(p,X1,...,X,,) is defined as follows:

- G is an undirected graph;

-V = {172’... ,n};

- E contains an edge (u,v) if and only if X,, and X, are entangled; or in other
words, there does not exist oy, 0y such that plu,v] = o, ® 0,.

Performing non-local operations on a state p, over the registers Xy, ..., X,, could
change the entanglement graph. For instance, performing arbitrary channels on
some X;, could remove some edges associated with the node 7; for example, a
resetting channel that maps every state to |0) (0|. However, on the other hand,
performing only unitary operations on each of Xy, ..., X, is not going to change
the entanglement graph.

Unless otherwise specified, we assume that the amount of entanglement
shared between the different parties is either unbounded for information-
theoretic protocols, or arbitrarily polynomial for computational protocols.

Definition 6. Let P = (Py,...,Py,) be the set of parties with p being the state
recetved by all the parties. That is, p is an n-partite quantum state over the
registers Xi,...,X, such that the party P; gets the register X;. We say that
G is the entanglement graph associated with P if G is the entanglement graph
associated with (p, X1,...,X,).
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Definition 7 (USS;). We say an information-theoretic/computational unclon-
able secret sharing scheme is a secure USSy scheme, if it has indistinguishability-
based security against all unbounded/efficient adversaries with pre-shared entan-
glement, whose entanglement graph has at least d connect components.

It is not hard to see that, USS; is a USS satisfying the regular indistinguishability
security.

5 Adversaries with Disconnected Entanglement Graphs

In this section, we give a construction of unclonable secret sharing with security
against quantum adversaries with disconnected entanglement graphs.

5.1 USS, (10g»): an Information-Theoretic Approach

We present an information-theoretic protocol in the setting when there are
w(log A) connected components. For simplicity, we consider the case when there
are (n + 1) parties and the entanglement graph does not have any edges. We
demonstrate a construction of USS in this setting, where the security scales with
n.

1. Share(1*,1"*+Y 'm € {0,1}):
(a) Sample uniformly random rq,...,7r, < {0,1} conditioned on @®;r; = m.
(b) Sample 64,...,6, — {0,1}.
(¢) For each i € [n]: let the i*" share be p; = H
share be p,11 = (01,...,6,).
(d) Output (p1,...,pnt1)-
2. Reconstruct(p1, ..., pnt1):
(a) Measure p,+1 in the computational basis to get (01,...,6,).
(b) For every i € [n], apply H% to p;. Measure the resulting state in the
computational basis to get r;.
(¢) Output ®;r; = m.

ri)(ri|H%. Let the (n+1)t"

Correctness and Soundness. We refer readers to the full version. Note that the
soundness only holds for n = 2(logn), i.e., the protocol should have at least
2(logn) shares.

Security. Consider the adversary to be Adv = ({4;}, B,C, &), where £ is a product
state. Henceforth, we omit mentioning £ = & ® - - - ® &,+1, where A; receives &;,
since we can think of & to be part of the description of A;.

For b € {0,1}, let (p!",..., p'", pny1) < Share(1*, 1"+ b)) where @;r; = b
and p; = H%|r;)(r;|H% and p,,1 = |01 ---60,)(0; - - - 0,]. Suppose upon receiving
pit, A; sends registers {X"} and {Y]"} respectively to B and C. We denote the
reduced density matrix on X[’ to be o, and on Y} to be (;*. We assume without
loss of generality that p,1 is given to both B and C since it is a computational
basis state.
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Define Sg and S¢ as follows:

Sg=1{ie€n] :TD(0},0;}) <0.86}
Se={ien] :TD(¢),¢) <0.86}

We prove the following claims.
Claim. Either |Sg| > [§] or [Sc| > [5].

Proof. We prove by contradiction; suppose it is not the case. Then there exists
an index i € [n] such that i ¢ Sg and i ¢ Sc. That is, TD (¢?,0}) > 0.86

and TD( ?,C}) > 0.86, meaning the optimal state distinguishing circuit can
distinguish ¢y, 0} with probability at least 0.93 = (1 + 0.86)/2. Similarly, the
optimal distinguishing probability for states ¢?,¢} is at least 0.93.

Using this, we design an adversary that violates the unclonable security of
single-qubit BB84 states [BL20, Corollary 2]. Let us first recall the security game

for the unclonability of single-qubit BB84 states:

1. Areceives H?|z){x|H? for uniformly random z, 6 € {0,1}, it applies a channel
and produces opc. Bob and Charlie receive their register accordingly.

2. Bob B and Charlie C apply their POVMs and try to recover x; they win if
and only if both guess x correctly.

Lemma 3 (Corollary 2 when A = 1, [BL20]). No (unbounded) quantum
(A, B,C) wins the game with probability more than 0.855.

We design an adversary (A, B,C) as follows, with winning probability 0.86 >
0.855, a contradiction.

— A receives as input an unknown BB84 state. It runs A; on the state to obtain
a bipartite state, which it shares with B and C.

— B and C in the security game of BB84 state will receive 6; from the challenger.

— B runs the optimal distinguisher distinguishing o9 and o}. Based on the
output of the distinguisher, it outputs its best guess of the challenge bit.
Similarly, Charlie runs the optimal distinguisher distinguishing ¢? and ¢}. It
outputs its best guess of the challenge bit.

By a union bound, the probability that one of B or C fails is at most 0.14 =
0.07 x 2. Thus, they simultaneously succeed with probability at least 0.86, a
contradiction.

Claim. The following holds:
1.

™ > 2,371 (@U) > _27}4 <®o—> < 0.86/55]

T1seeeyTnt

®iri=0 ®iri=1
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™ > 21—1<®C> > 21_1<®C> < 0.8615¢]

1oyt 1oyt

iTi= iTi=

Proof. We prove bullet 1 since bullet 2 follows symmetrically.

™| > 2n1—1 <®UF>’ Z ‘2:_1 <®0>

1

i 1
H TD (cr?, ail)
1€ESB

0.86/551

IN

IN

Here || - ||1 denotes the trace norm. In the above proof, we use the fact that

1&; 7ill = TL; 7l

Lemma 4. The above USS scheme satisfies indistinguishability security against
any adversaries with no shared entanglement; i.e., it is a secure USS,, scheme
(see Definition 7) with n = w(log \).

Proof. From Sect. 5.1, either [Sg| > [§] or |Sc| > [§]. We will assume without
loss of generality that |Sp| > [§]. From bullet 1 of Sect.5.1, it holds that B
can successfully distinguish whether it is in the experiment when the challenge
bit 0 was used or when the challenge bit 1 was used, with probability at most

H%(”), for some exponentially small function v in n. Thus, both B and C can

only simultaneously distinguish with probability at most H%(") This completes
the proof. 0O

5.2 USSy, for d > 2: from Unclonable Encryption

We present a construction of USS with security against quantum adver-
saries associated with any disconnected entanglement graph. In the construc-
tion, we use an information-theoretically secure unclonable encryption scheme,
UE = (UE.KeyGen, UE.Enc, UE.Dec). The resulting USS scheme is consequently
information-theoretically secure.



Unclonable Secret Sharing 149

1. Share(1*, 1", m) :
(a) Sample r1,--- 7, « {0,1}™].
(b) For each i € [n], let y; = ri; let yp, =md > - | 1.
(¢) For each i € [n]:
(a) Compute sk; < UE.KeyGen(1*). We denote the length of sk; to be
L=1(N).
(b) Compute |ct;) < UE.Enc(sk;,y;)
(d) For each i € [n]: let each share p; = (sk;—1,|ct;)); here we define skg = sk,.
(e) Output (p1,-- ,pn)
2. Reconstruct(py, -+, pn):
(a) For each i € [n],
i. Parse p; as (sk;—1, |ct;)). We define sk,, = sko.
ii. Compute y; < UE.Dec(sk;, |ct;))
(b) Output m=>"" | ;.

Theorem 8. The above scheme satisfies indistinguishability-based security
against adversaries with any disconnected entanglement graph. More precisely,
it is a secure USSg scheme (see Definition 7).

Proof. The correctness of the scheme follows from the correctness of UE decryp-
tion.

We now prove the security of the above scheme. Suppose we have an USS
adversary (A = (Ay,- -, Ayn), B,C,§) who succeeds with probability %—1—5 in Def-
inition 7, we construct an UE adversary (A’, B’,C’) who succeeds with probability
% + ¢ in Definition 2.

Let A receive as input an n-partite state £ over the registers Auxy, ..., Aux,
such that A; receives as input the register Aux;. Additionally, without loss of
generality, we can assume that A also receives as input the challenge messages
(mg, my), where |mg| = |my|. Let G = (V, E) be the entanglement graph asso-
ciated with (¢, Auxy,...,Aux,), where, V. = {1,...,n}. Since G is discon-
nected, there exists i* € [n] such that (i*,4* + 1) ¢ E. Let G; = (V4, E1) and
Gs = (Va, Es) be two subgraphs of G such that ViUV, =V, ViNVa =0, i* € V7,
1" +1 € V5. Moreover, G; and G are disconnected with each other. This further
means that £ can be written as {g, ® {q,, for some states g, ,&q,, such that
&, 1s over the registers {Aux;}iecy, and &g, is over the registers {Aux;}icv,-

We describe (A, B’,C’) as follows:

Description of A'. Fix i*, (mg, m1) (as defined above). Upon receiving a quantum
state |ct*) A’ does the following:

£
— It prepares quantum states g, (§G2)®2 .

It samples r; & {0,1}I™mol, where i € [n], subject to the constraint that

Pir; = mg.

— It submits (r;+, 7+ @ mo @ my) to the UE challenger and in return, it receives
|ct*). It sets |cti«y1) = |ct*).

— For every i € [n], generate sk; «— UE.KeyGen(1*); let sk, 1 = sk;.
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— For every i € [n] and ¢ # i*, generate |ct;) < UE.Enc(sk;,sh;).

— For every i € [n] and ¢ # i* + 1, define p; = (sk;—1, |ct;)).

— We need to define p;=y1 = (sk;=,|cti=y1)). However, as sk;« will only be
received by B’ and C’ in the UE security game later, we will enumerate
all possible values of sk;» and the corresponding computation result in the
subgraph Gs.

e For every z € {0,1}¢ (possible value of sk;-), compute {A;};cv, on

{pi}ievy, &G, to obtain two sets of registers {ng)}iegz and {Ygx)}iecr

— Compute {A;}icv, on {pilicy, and &g, to obtain two sets of registers
{Xi}ico, and {Yi}ieq, -

— Send the registers {X; }ieq, and {XEI)}iGGQ’IG{OJ}A to B’. Send the registers

{Yi}icq, and {Yz(x)}iEGg,xE{O,l}* to C'.

Description of B’ and C'. B’ upon receiving the secret key k (which is sk;+ ), com-
putes B on {X;};cqe, and {ng)}iegz to obtain a bit bg. C’ is defined similarly.
We denote the output of C’ to be b¢.

If the challenger of the UE security chooses the bit b = 0, then (A, B,C) in the
above reduction are receiving shares of mg; otherwise, they are receiving shares
of my. Thus, the success probability of (A, B,C) in Definition 7 is precisely the
same as the success probability of (A’, B’,C’) in Definition 2. O

6 Impossibilities and Barriers

In this section, we present two impossibility results on USS. Furthermore, we
present two implications of USS: namely, unclonable encryption and position
verification secure against large amount of entanglement. Since no construction
known for the latter two primitives, this further underscores the formidable
barriers of building USS.

6.1 Impossibility in the Information-Theoretic Setting

Theorem 9. Let P be a set of parties. Information-theoretically secure USS for
P is impossible if the entanglement graph for P is connected and in particular,
there is an edge from P; to everyone else.

Proof. The attack strategy is as follows. The n parties Py,--- , P, pre-share a
large amount of entanglement with one another. In the protocol, each P; receives
its share p;.

— Regular Teleportation Stage: all parties P;, where ¢ # 1 teleport their shares to
party P; via regular teleportation. Each P; obtains a measurement outcome
(ai, b,)

—~ Now P; holds a state in the following format: (I ® X%Z% ®
s Xon o Zbn) |W>P1 p,...p, Which can be represented as mixed states
(p1, X2 Zb%2py X2 202 ... X 7Zbnp X Zbn) That is, quantum one-time
padded shares from all other parties and its own share in the clear.
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— Port-Based Teleportation Stage:

e P, performs port-based teleportation for the state (I ® X*Z" ®
<o X On Zbn) |¥)p, p,...p, t0 P2. P obtains a measurement outcome that
stands for some index i;. Recall that by the guarantee of port-based tele-
portation, the index i; specifies the register of P, that holds the above
state in the clear, without any Pauli errors on top.

e P, will now remove the quantum one time pad information X2, Z%2 on
its share in the teleported state above. Since P, does not have information
about 41, it simply performs [ ® Z?2 X% @ [--- ® I on all exponentially
many possible registers that it may receive the teleported state from P;.

e Next P, performs port-based teleportation with Ps for all registers that
could possibly hold the state (I1QT® X Z% ® ... @ X Zbn) ) b, py...p, -
Thus, P, obtains an exponential number of indices about the registers
that will receive the teleported states on P5’s hands.

e P; accordingly, applies I @ I ® Z? X% ...1 on all the possible registers
that can hold the teleported state; performs a port-based teleportation
to P, with all of these registers and obtains a measurement outcome that
has a doubly-exponential number of indices®.

e Finally, P, receives the teleported states from P,_; and performs I ®
-1 ® Z% X% on all of them. One of these registers will hold the state
W>P1---Pn = (p1, -+ ,pn) in the clear. Then P, performs the reconstruc-
tion algorithm on all of these registers to obtain a large number of possible
outcomes. One of them will hold the correctly reconstructed secret s.

— Reconstruction Stage: now P, sends all its measurement outcomes to both
Bob and Charlie. All other P;’s send their indices information measured in the
port teleportation protocol. Bob and Charlie can therefore find the correct
index in P,’s measurement outcomes that holds s, by following a path of
indices.

O

Remark 2. The above strategy can be easily converted into a strategy where the
underlying entanglement graph is connected (but may not be a complete graph)
and every pair of connected parties share (unbounded) entanglement. The similar
idea applies by performing regular teleportation and port-based teleportation via
any DFS order of the graph. Thus, we have the following theorem.

Theorem 10. Let P be a set of parties. Information-theoretically secure USS
for P is impossible if the entanglement graph for P is connected.

6.2 Impossibility with Low T-gates for Efficient Adversaries

Our impossibility result above in the information-theoretic setting requires expo-
nential amount of entanglement between the parties. We also present an attack

5 For P;,2 < i < n, the measurement outcome will have its size grow in an exponential
tower of height 1.



152 P. Ananth et al.

that can be performed by efficient adversaries, albeit on USS schemes with
restricted reconstruction algorithms.

We would like to mention that a similar result has already been shown in
[Spel5] in the context of instantaneous non-local computation; we rediscovered
the following simple attack for unclonable secret sharing. We also extend the
attack to an n-party setting whereas [Spel5] considers only 2 parties.

Theorem 11. Let P be a set of parties and if the entanglement graph for P
is connected, then there exists an attack using polynomial-time and polynomial
amount of entanglement on any USS scheme where the procedure Reconstruct
consists of only Clifford gates and O(log \) number of T gates.

We refer readers to the full version for the proof.

6.3 USS Implies Unclonable Encryption

Theorem 12. Unclonable secret sharing with IND-based security against adver-
saries with (bounded) polynomial amount of shared entanglement and connected
pre-shared entanglement graph implies secure unclonable encryption.

We will first look at the 2-party case, which can be easily extended to the n(> 2)-
party case.

Proof. Assume a secure USS = (USS.Share, USS.Reconstruct) with IND-based
security, we construct the following UE scheme:

1. KeyGen(1*,1™1): samples a random sk « {0,1}?¢, where £ = £(\) is the
number of qubits in each share generated by USS.Share(1*,1/™! .). Output
sk.

2. Enc(sk,m) :

(a) compute (p1, p2) < USS.Share(1*, 11"l m).
(b) sample random (a, b) « {0,1}2. Use them to quantum one-time pad the
second share py to obtain X?Z%p,ZbX®.
(¢) compute s < (a,b) ® sk
(d) Output ct = (p1,X*Z0paZ"X?, 5).
3. Dec(ct, sk):
(a) parse ct = (p1, ph, 8);
(b) compute (a,b) — s P sk;
(c) output m « USS.Reconstruct(py, X¢Z°p,ZX®).

Correctness. The correctness easily follows from the correctness of the underlying
USS scheme.
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Security. Suppose we have UE adversaries (A, B,C) that wins in the IND-based
UE security game, we can construct adversary (A’ = (Ay,Az),B’,C’) for the
USS IND-based security.

Before receiving the shares from the challenger, A; and As agrees on a ran-
dom strong r « {0,1}2‘. When receiving the shares, Ay teleports its share py
to A; and obtains Pauli errors (a, b).

A;p gives (p1,,7) the UE adversary A. Ay computes sk’ « (a,b) @ r.

In the USS challenge phase, A sends sk’ to both B’ and C’. The UE adver-
saries A has finished giving the bipartite it generated from (p1,r) state oz ¢ to
B and C.

Then B’ feeds B with sk’ as the secret key in the UE security game (and C’
feeding sk’ to C,respectively), and outputs their output bit bg, be as the answer to
USS game. Since the classical part in the unclonable ciphertext is the classical
information (a,b) masked by a uniformly random sk, the reduction perfectly
simulates the above scheme by first giving the UE adversary A a uniformly
random string r and later feeding B,C with r & (a, b).

Extending to n-party case. We can change the scheme to sample a longer sk €
{0, 1}2(»=D? and let the unclonable ciphertext be (py, X*2Zb2 po 702 X2 ... XnZbn
PnZPn X s = (ay,by, -+, an,by) ® sk).

In the reduction, when receiving the shares, A;,7 # 1 teleports its share p;
to A; and obtains Pauli errors (a;, b;). The rest of the reduction follows easily.

O

Theorem 13. Unclonable secret sharing with IND-based security against adver-
saries with disconnected entanglement graph, where one of the parties receives
as a share a quantum state and all other parties receive classical shares (in other
words, computational basis states), implies secure unclonable encryption.

Proof. In the case where only one party has a quantum share, the others classical
shares, we can easily modify the above construction to have a UE scheme from

uss:

1. KeyGen(1*,1!™1): samples a random sk «— {0,1}(»=D¢ where £ = £()) is
the number of qubits/bits in each share generated by USS.Share(1*, 1™ .).
Output sk.

2. Enc(sk,m) :

(a) compute (p1,%2,- - ,Yn) < USS.Share(1*, 11" m). y1,--- , 5, are binary
strings.
(b) sample random sk < {0, 1}
(c) Output ct = (p1, ).
3. Dec(ct, sk):
(a) parse ct = (p1, 3);
(b) compute (y1,- - ,yn) < S @ sk;
(¢) output m « USS.Reconstruct(p1,y1,- -+ ,Yn)-

(=1 Compute s — (Y1, yYn) © sk
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Security. Suppose we have an UE adversary (A, B,C) that wins in the IND-
based UE security game with probability % + &, we construct an adversary
(A" = (Aq, -+ Ap,),B,C’") that wins in the USS IND-based security game with
probability % + e. Thus, if the USS scheme is secure then ¢ has to be negligible.
We describe Ay, - -+, A, as follows.

Before receiving the shares from the challenger, Ay, --- , A, agrees on a ran-
dom string 7 « {0,1}(»=D¢,

A gives (p1,7) to the UE adversary A. A;, for i # 1, when receiving the
classical share y; from the challenger, computes sk, « y; ® r;, where 7; is the
(i — 1)-th block of length-¢ string in r.

In the USS challenge phase, each A;, for i # 1, sends skj to both B’ and C’.
A; sends the bipartite state o ¢ to B’ and C’, where o ¢ is the output of A.

Then B’ feeds B with sk’ = (skj, - - - ,sk},) as the secret key in the UE security
game (and C’ feeding sk’ to C, respectively), and outputs their output bit bs, be
as the answer to USS game. Since the classical part in the unclonable ciphertext
is the classical information (ys,- - ,y,) masked by a uniformly random sk, the
reduction perfectly simulates the above scheme by first giving the UE adversary
A a uniformly random string r and later feeding B, C with r® (ya,- - , yn). Thus,
the advantage of (A’, B’,C’) in breaking the USS security game is precisely the
same as the advantage of (A, B,C) breaking the UE security game.

6.4 Search-Based USS Implies Position Verification

The definition of quantum position verification is in the full version.

QPYV with Pre-shared Entanglement. In QPV, we also consider different adver-
sarial setup such as: (1) (Pp,P1) do not have pre-shared entanglement; (2)
(Po, P1) can share a bounded/unbounded polynomial amount of entanglement;
(3) (Py, P1) can share unbounded amount of entanglement. We also divide the
settings into computational and information-theoretic.

Theorem 14. 2-party USS (computational/IT resp.) with search-based security
implies 1-dimensional QPV (computational/IT, resp.), where the two adversarial
provers in the QPV protocol pre-share the same amount of entanglement as the
two parties in the USS protocol do.

The following theorem demonstrates from another point of view the barrier
of constructing secure protocols against entangled adversaries for USS in the
IT setting. Even if we consider computational assumptions, the development
in building secure QPV protocols against entangled adversaries has been slow,
which indicates further evidence on how challenging USS can be in the entangled
setting.

Theorem 15 ([BK11,BCF+14]|). Quantum position verification is impossible
in the information theoretic setting if we allow the adversaries to preshare entan-
glement.

We leave the proof to the full version.
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