
Safeguarded Progress in Reinforcement Learning:
Safe Bayesian Exploration for Control Policy Synthesis

Rohan Mitta1, Hosein Hasanbeig2∗, Jun Wang3,
Daniel Kroening4*, Yiannis Kantaros3, Alessandro Abate1

1University of Oxford,
2Microsoft Research,

3Washington University,
4Amazon

alessandro.abate@cs.ox.ac.uk

Abstract

This paper addresses the problem of maintaining safety during
training in Reinforcement Learning (RL), such that the safety
constraint violations are bounded at any point during learning.
As enforcing safety during training might severely limit the
agent’s exploration, we propose here a new architecture that
handles the trade-off between efficient progress and safety
during exploration. As the exploration progresses, we update
via Bayesian inference Dirichlet-Categorical models of the
transition probabilities of the Markov decision process that
describes the environment dynamics. We then propose a way
to approximate moments of belief about the risk associated to
the action selection policy. We demonstrate that this approach
can be easily interleaved with RL and we present experimental
results to showcase the performance of the overall architecture.

1 Introduction
Traditionally, RL is principally concerned with the policy
that the agent generates by the end of the learning process. In
other words, the quality of agent’s policy during learning is
overlooked at the benefit of learning how to behave optimally,
eventually. Accordingly, many standard RL methods rely
on the assumption that the agent selects each available ac-
tion at every state infinitely often during exploration (Sutton,
Bach, and Barto 2018; Puterman 2014). A related technical
assumption that is often made is that the MDP is ergodic,
meaning that every state is reachable from every other state
under proper action selection (Moldovan and Abbeel 2012).
These assumptions might be reasonable, e.g., in virtual envi-
ronments where restarting is always an option. However, in
safety-critical scenarios these assumptions might be unrea-
sonable, as we may explicitly require the agent to never visit
certain unsafe states. Indeed, in a variety of RL applications
the safety of the agent is particularly important, e.g., when
using expensive autonomous platforms or robots that work
in the proximity of humans. Thus, researchers are paying
increasing attention not only to maximising a long-term task-
driven reward, but also to enforcing safety during training.

*The work in this paper was done at the University of Oxford.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work The general problem of Safe RL has been
an active area of research in which numerous approaches
and definitions of safety have been proposed (Brunke et al.
2021; Garcia and Fernandez 2015; Pecka and Svoboda 2014).
Moldovan and Abbeel (2012) define safety in terms of “ac-
tions availability”, namely ensuring that an agent is always
able to return to its current state. Chow et al. (2018a) pur-
sue safety by minimising a cost associated with worst-case
scenarios, when cost is associated with a lack of safety. Sim-
ilarly, Miryoosefi et al. (2019) define the safety constraint
in terms of the expected sum of a vector of measurements
to be in a target set. Other approaches (Li and Belta 2019;
Hasanbeig, Abate, and Kroening 2019a,b; Hasanbeig, Kroen-
ing, and Abate 2020; Cai et al. 2021) define safety by the
satisfaction of temporal logical formulae of the learnt policy,
but do not provide safety while training such a policy. Many
existing approaches are concerned with guarantees on the
safety of the learned policy, often under the assumption that
a backup policy is available (Coraluppi and Marcus 1999;
Perkins and Barto 2002; Geibel and Wysotzki 2005; Man-
nucci et al. 2017; Chow et al. 2018b; Mao et al. 2019). These
methods are applicable to systems if they can be trained on
accurate simulations, but for many other real-world systems
we instead require safety during training.

There has also been research on maintaining safety during
training. For instance, (Alshiekh et al. 2017; Jansen et al.
2019; Giacobbe et al. 2021) leverage the concept of a shield
that stops the agent from choosing any unsafe actions. The
shield assumes the agent observes the entire MDP (and any
opponents) to construct a safety (game) model, which is un-
available for many partially-known MDP tasks. The approach
by Garcia and Fernandez (2012) assumes a predefined safe
baseline policy that is most likely sub-optimal, and attempts
to slowly improve it with a slightly noisy action-selection pol-
icy, while defaulting to the baseline policy whenever a mea-
sure of safety is exceeded. However, this measure of safety
assumes that nearby states have similar safety levels, which
may not be the case. Another common approach is to use
expert demonstrations to learn how to behave safely (Abbeel,
Coates, and Ng 2010), or even to default to an expert when
the risk is too high (Torrey and Taylor 2012). Obviously, such
approaches rely heavily on the expert. Other approaches (Wen
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and Topcu 2018; Cheng et al. 2019; Turchetta, Berkenkamp,
and Krause 2016) are either computationally expensive or re-
quire strong assumptions on agent-environment interactions.
Crucially, maintaining safety in RL by efficiently leveraging
available data is an open problem (Taylor et al. 2021).

Contributions We tackle the problem of synthesising
a policy via RL that optimises a discounted reward, while
not violating a safety requirement during learning. This pa-
per puts forward a cautious RL formalism that (1) assumes
the agent has limited observability over states and (2) in-
fers a Dirichlet-Categorical model of the MDP dynamics.
We incorporate higher-order information from the Dirichlet
distributions, in particular we compute approximations of
the (co)variances of the risk terms. This allows the agent to
reason about the contribution of epistemic uncertainty to the
risk level, and therefore to make better informed decisions
about how to stay safe during learning. We show convergence
results for these approximations, and propose a novel method
to derive an approximate bound on the confidence that the
risk is below a certain level. The new method adds a func-
tionality to the agent that prevents it from taking critically
risky actions, and instead leads the agent to take safer actions
whenever possible, but otherwise leaves the agent to explore.
The proposed method is versatile given that it can be added
on to any general RL training scheme, in order to maintain
safety during learning. Instructions on how to execute all the
case studies in this paper are provided on the GitHub page
(https://github.com/keeplearning-robot/riskawarerl).

2 Background
2.1 Problem Setup
Definition 2.1 A finite MDP with rewards (Sutton, Bach,
and Barto 2018) is a tuple M = ⟨S,A, s0, P,R⟩ where
S = {s1, s2, s3, ..., sN} is a finite set of states, A is a finite
set of actions, without loss of generality s0 is an initial state,
P (s′|s, a) is the probability of transitioning from state s to
state s′ after taking action a, and R(s, a) is a real-valued
random variable which represents the reward obtained af-
ter taking action a in state s. A realisation of this random
variable (namely a sample, obtained for instance during ex-
ploration) will be denoted by r(s, a).

An agent is placed at s0 ∈ S at time step t = 0. At every
time step t ∈ N0, the agent selects an action at ∈ A, and the
environment responds by moving the agent to some new state
st+1 according to the transition probability distribution, i.e.,
st+1 ∼ P (·|st, at). The environment also assigns the agent a
reward r(st, at). The objective of the agent is to learn how to
maximise the long term reward. In the following we explain
these notions more formally.

Definition 2.2 A policy π assigns a distribution over A at
each state: π(a|s) is the probability of selecting action a in
state s. Given a policy π, we can then define a state-value
function

vπ(s) = Eπ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
,

where Eπ[·] is the expected value given that actions are se-
lected from π, and 0 < γ ≤ 1 is a discount factor.

Specifically, this means that the sequence s0, a0, s1, a1, ...
is such that an ∼ π(·|sn) and sn+1 ∼ P (·|sn, an). The
discount factor γ is a pre-determined hyper-parameter that
causes immediate rewards to be worth more than rewards in
the future, as well as ensuring that this sum is well-defined,
provided the standard assumption of bounded rewards. The
agent’s goal is to learn an optimal policy, namely one that
maximises the expected discounted return. This is actually
equivalent to finding a policy that maximises the state-value
function vπ(s) at every state (Sutton, Bach, and Barto 2018).

Definition 2.3 A policy π is optimal if, at every state s,
vπ(s) = v∗(s) = maxπ′ vπ′(s).

Definition 2.4 Given a policy π, we can define
a state-action-value function vπ(s, a) = Eπ

[
∑∞

t=0 γ
tr(st, at)| s0 = s, a0 = a] , similarly to the

state-value function. This allows us to reinterpret the
state-value function as vπ(s) =

∑
a vπ(s, a)π(a|s), and

thus we can see that an optimal deterministic policy π must
assign zero probability to any action a that doesn’t maximise
the state-action value function.

2.2 Dirichlet-Categorical Model
We consider a model for an MDP with unknown transition
probabilities (Ghavamzadeh et al. 2015). The transition prob-
abilities for a given state-action pair are assumed to be de-
scribed by a categorical distribution over the next state. We
maintain a Dirichlet distribution over the possible values of
those transition probabilities: since the Dirichlet distribution
is conjugate, we can employ Bayesian inference to update the
Dirichlet distribution, as new observations are made while
the agent explores the environment.

Formally, for each state-action pair (si, a), we have
a Dirichlet distribution pi1a , pi2a , ..., piNa ∼ Dir(αi1

a ,
αi2
a , ...αiN

a ), where pi
a := (pi1a , pi2a , ..., piNa ), and the random

variable pija represents the agent’s belief about the transition
probability P (sj |si, a). At the start of learning, the agent will
be assigned a prior Dirichlet distribution for each state-action
pair, according to its initial belief about the transition prob-
abilities. At every time step, as the agent moves from some
state si to some state sk by taking action a, it will generate
a transition si

a−→ sk, which constitutes a new data point for
the Bayesian inference. From Bayes’ rule:

Pr(pi
a = qi

a|si
a−→ sk)

∝ Pr(si
a−→ sk|pi

a = qi
a)Pr(pi

a = qi
a)

= qika
∏
j

(qija )α
ij
a −1 = [

∏
j ̸=k

(qija )α
ij
a −1](qika )(α

ik
a +1)−1,

where {qija }Nj=1 belong to the standard N − 1 simplex. This
immediately yields

Pr(pi
a = qi

a|si
a−→ sk) = Dir(αi1

a , αi2
a , ..., αik

a + 1, ..., αiN
a ).

Thus, the posterior distribution is also a Dirichlet distribu-
tion. This update is repeated at each time step: the relevant
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information to the agent’s posterior belief about the transition
probabilities is the starting prior Dir(αi1

a , αi2
a , ...αiN

a ) and
the transition counts, keeping track of the number of times
that si a−→ sj has occurred. The agent’s posterior is then
(pi1a , pi2a , ..., piNa ) ∼ Dir(αi1

a , αi2
a , ...αiN

a ): from this distri-
bution, we can distill the expected value p̄ija of each random
variable pija , as well as the covariance of any two pija and pika
(therefore also the variance of a single pija ):

p̄ija = E[pija ] =
αij
a

αi0
a

, Cov[pija , p
ik
a ] =

αij
a (δ

jkαi0
a − αik

a )

(αi0
a )2(αi0

a + 1)
,

where αi0
a =

∑N
k=1 α

ik
a , and δjk is the Kronecker delta.

3 Risk-aware Bayesian RL for Cautious
Exploration

In this section we propose a new approach to Safe RL, which
will specifically address the problem of how to learn an opti-
mal policy in an MDP with rewards while avoiding certain
states classified as unsafe during training. The agent is as-
sumed to know which states of the MDP are safe and which
are unsafe, but instead of assuming that the agent has this
information globally, namely across all states of the MDP,
we postulate that the agent observes states within an area
around itself. This closely resembles real-world situations,
where systems may have sensors that allow them to detect
close-by dangerous areas, but not necessarily know about
danger zones that are far away from them. In particular, we
assume that there is an observation “boundary” O, such that
the agent can observe all states that are reachable from the
current state within O steps and distinguish which of those
states are safe or unsafe. The rest of this section is structured
as follows:

In Section 3.1, we define the risk ρm(s, a) over m steps
of taking an action a at the current state s. We then intro-
duce a random variable ϱm(s, a) representing the agent’s
belief about the risk; In Section 3.2, we leverage a method
from Casella and Berger (2021) to approximate the expected
value and variance of the random variable ϱm(s, a). We pro-
vide convergence results on the approximations of the expec-
tation and variance of ϱm(s, a); In Section 3.3, we show how
the Cantelli Inequality (Cantelli 1929) allows us to estimate
a confidence bound on the risk ρm(s, a); In Section 3.4, we
prescribe a methodology for incorporating the expectation
and variance of the risk into the local action selection during
the training of the RL agent.

3.1 Definition and Characterisation of the Risk
Given the observation boundary O, we reason about the risk
incurred over the next m steps after taking a particular ac-
tion a in the current state s, for any m ≤ O. However, note
that there is a dependence between the agent’s estimate of
such a risk and the use of that estimate to inform its action
selection policy. In order to solve this dilemma we fix a
policy over the m-step horizon, and calculate the correspond-
ing risk, given that policy. Similar to temporal-difference
learning schemes, this is done by assuming best-case action
selection, namely, the m-step risk ρm(s, a) at state s after

taking action a is defined assuming that after selecting action
a, the agent will select subsequent actions to minimize the
expected risk. Assuming that the agent is at state s, we define
the agent’s approximation of the m-step risk ϱ̄ m(s, a) by
back-propagating the risk given the “expected safest policy”
over m steps, as follows:

ϱ̄ n+1(sk, a) =


1 sk observed and unsafe
N∑
j=1

p̄kja ϱ̄ n(sj) otherwise;

(1)

ϱ̄ n(sk) :=

{
1 sk observed and unsafe
min
a∈A

ϱ̄ n(sk, a) otherwise;

(2)

ϱ̄ 0(sk) := 1(sk is observed and unsafe). (3)

We terminate this iterative process at n + 1 = m and once
we have calculated ϱ̄ m(s, a), for actions a ∈ A. Note that,
despite the use of progressing indices n, this is an itera-
tive back-propagation that leverages the expected values of
agent’s belief about the transition probabilities, i.e., p̄kja . Thus,
ϱ̄ m(s, a) is the agent’s approximation of the expectation of
the probability of entering an unsafe state within m steps
by selecting action a at state s, and thereafter by selecting
actions that it currently believes will minimize the probability
of entering unsafe states over the given time horizon.

Remark 3.1 We note that, in practice, an autonomous agent
can determine, with some certainty, whether a subset of its
observation are is safe to visit or not. Consider a mobile
robot that moves in an office environment and can deem
certain states as obstacles-to-avoid based on the received
signals from onboard sensors. It is straightforward to extend
the indicator function in (3) to a probability distribution, to
reflect agent uncertainty over such signals.

The term p̄kja = E[pkja ] is used as a point estimate of the
true transition probability tkja = P (sj |sk, a). The value of
ϱ̄ m(s, a) only relies on states which the agent believes are
reachable from s within m steps. In particular so long as
the horizon m is less than the observation boundary O, the
agent is able to observe all states which are relevant to the
calculation of ϱ̄ m(s, a), so specifically, 1(sj is unsafe) =
1(sj is observed and unsafe) for all relevant states sj . Please
refer to the extended paper (Mitta et al. 2023) for details.

3.2 Approximation of Expected Value and
Covariance of the Risk

In the previous section, we presented the underlying mecha-
nism for calculating an m-step expected risk. However, rely-
ing only on this expected value disregards the agent’s confi-
dence placed over this expectation: as a shortcoming of this,
the agent might be willing to take actions that have lower
expected risk, but which come with lower confidence as well.
Evidently this behavior can be unsafe, and we would prefer
the agent to employ its confidence in the decision-making
process. In the following, we formalize the underpinnings of
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how to incorporate a confidence approximation into the agent
action selection policy.

Let x denote the vector of variables xij
a where i, j

range from 1 to N and a ranges over A, i.e., x =(
(xij

a )i,j=1,...,N and ∀a∈A

)
. We assume that these indices are

ordered lexicographically by (i, a, j). This is because i and
a will be used to signify a state-action pair (si, a), and j
will be used to signify a potential next state sj . Introduce a
set of functions gnk [x] (we shall see they take the shape of
polynomials), defined as follows for each state sk:

gn+1(sk, a)[x] :=


1 if sk is observed and unsafe
N∑
j=1

xkj
a gn(sj)[x] otherwise;

gn(sk)[x] :=

1 if sk is observed and unsafe

gn
(
sk, argmin

a
ϱ̄ n
k (a)

)
[x] otherwise;

g0(sk)[x] := 1(sk is observed and unsafe).

Then we can write the risk (of selecting action a in state s,
over m steps) defined above as ρm(s, a) = gm(s, a)[t],
where t =

(
(tija )i,j=1,...,N and ∀a∈A

)
is a vector of all “true”

transition probabilities, namely tija = P (sj |si, a). We can
similarly write the agent’s approximation of the expected
risk, as described in Section 3.1, as ϱ̄ m(s, a) = gm(s, a)[p̄],
where similarly p̄ =

(
(p̄ija )i,j=1,...,N and a∈A

)
, and p̄ija is the

expected value of each random variable pija . We refer to the
actions specified by the argmin operators as the agent’s
expected safest action in each state over the next m steps.

Now, crucially, we can also define a new ran-
dom variable ϱm(s, a) = gm(s, a)[p], where p =(
(pija )i,j=1,...,N and ∀a∈A

)
. Since the pija s are random vari-

ables representing the agent’s beliefs about the true transition
probabilities tija , we in fact have that this random variable
ϱm(s, a) represents the agent’s beliefs about the true risk
ρm(s, a). In the following, we show that ϱ̄m(s, a) can be
viewed as an approximation of E[ϱm(s, a)], and we provide
and justify an approximation of Var[ϱm(s, a)] that is directly
correlated to agent’s confidence on E[ϱm(s, a)]. These ap-
proximations can be used by the agent to reason more accu-
rately about the true risk of selecting an action a in a state s,
over m steps, i.e., rm(s, a).

In order to construct approximations of the expectation
and the variance of Rm(s, a), we make use of the first-order
Taylor expansion of gm(s, a)[x] around x = p̄, following a
method by Casella and Berger (2021). The first-order Taylor
expansion is

gm(s, a) [x] = gm(s, a) [p̄] +
∑N

i,j=1

∑
b∈A

∂gm(s,a)

∂xij
b

(xij
b − p̄ijb ),

where the partial derivatives are also evaluated at p̄ and we
have disregarded the remainder term. Reasoning over the
random variables p for x:

gm(s, a) [p] ≈ gm(s, a) [p̄] +
∑N

i,j=1

∑
b∈A

∂gm(s,a)

∂xij
b

(pijb − p̄ijb ). (4)

We can then take the expectation of both sides, obtaining

E[gm(s, a) [p]] (5)

≈ E[gm(s, a) [p̄]] + E[
N∑

i,j=1

∑
b∈A

∂gm(s, a)

∂xij
b

(pijb − p̄ijb )]

= gm(s, a) [p̄] +
N∑

i,j=1

∑
b∈A

∂gm(s, a)

∂xij
b

E[(pijb − p̄ijb )]

= gm(s, a) [p̄] , (6)

where the above steps follow since the only random term in
the right-hand side is pijb , for which E(pijb ) = p̄ijb . Also, recall
that gm(s, a) [p] = ϱm(s, a) and gm(s, a) [p̄] = ϱ̄ m(s, a).
Thus, we have ϱ̄m(s, a) as an approximation of the expec-
tation of ϱm(s, a). For the approximation of the variance of
the agent’s believed risk, which is again a random variable,
we can write:

Var(gm(s, a)[p]) (7)

≈ E[(gm(s, a)[p]− gm(s, a)[p̄])2]

≈ E


 N∑

i,j=1

∑
b∈A

∂gm(s, a)

∂xij
b

(pijb − p̄ijb )

2
 (from (4))

=
N∑

i,j,s,t=1

∑
b1,b2∈A

∂gm(s, a)

∂xij
b1

∂gm(s, a)

∂xst
b2

Cov(pijb1 , p
st
b2)

=
N∑
i=1

∑
b∈A

N∑
j,t=1

∂gm(s, a)

∂xij
b

∂gm(s, a)

∂xit
b

Cov(pijb , p
it
b ) (8)

:= V̄ m(s, a), (9)

where V̄ m(s, a) is the approximation for the variance of
ϱm(s, a), i.e., V̄ m(s, a) ≈ Var(ϱm(s, a)), and the last line
follows from the fact that the covariance between two transi-
tion probability beliefs pijb1 and pstb2 is always 0, unless they
correspond to the same starting state-action pair (si, b). In
other words, Cov(pijb1 , p

st
b2
) = 0 unless i = j and b1 = b2.

Next, we show consistency of the estimate in the limit, and
the proof is available in the extended paper (Mitta et al. 2023).

Theorem 3.1 Under standard Q-learning convergence as-
sumptions (Watkins 1989), namely that reachable state-action
pairs are visited infinitely often, the estimate of the mean of
the believed risk distribution ϱ̄m(s, a) converges to the true
risk ρm(s, a), and it does so with the variance of the believed
risk distribution Var (gm(s, a)[p]) approaching the estimate
of that variance V̄ m(s, a). Specifically,

ϱ̄m(s, a)− ρm(s, a)√
V̄ m(s, a)

→ N (0, 1) in distribution.

3.3 Estimating a Confidence on the
Approximation of the Risk

So far we have shown that when the agent is in the state s,
for each possible action a, approximations of the expectation
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and variance of its belief ϱm(s, a) about the risk ρm(s, a)
can be formally obtained: we have denoted these two approx-
imations by ϱ̄m(s, a) and V̄ m(s, a), respectively. We now
describe a method for combining these approximations to ob-
tain a bound on the level of confidence that the risk ρm(s, a)
is below a certain threshold.

We appeal to the Cantelli Inequality, which is a one-
sided Chebychev bound (Cantelli 1929). Having computed
ϱ̄m(s, a) and V̄ m(s, a), for a particular confidence value

0 < C < 1 we can define Φ := ϱ̄m(s, a) +
√

V̄ m(s,a)C
1−C .

From the Cantelli Inequality we then have

Pr(ϱm(s, a) ≤ Φ) ≥ C.

Specifically, Φ is the lowest risk level such that, according
to its approximations, the agent can be at least 100 × C %
confident that the true risk is below level Φ. The exploration
mechanism can therefore leverage Φ to ensure that the re-
quired safety level is met. Please refer to the extended paper
(Mitta et al. 2023) for more details.

3.4 RCRL: Risk-aware Bayesian RL for Cautious
Exploration

In this section we propose an overall approach for safe RL,
which leverages the expectation and variance of the defined
risk measure to allow an agent to explore the environment
safely, while attempting to learn an optimal policy. In order
to select an optimal-yet-safe action at each state, we pro-
pose a double-learner architecture, referred to as Risk-aware
Cautious RL (RCRL) and explained next.

The first learner is an optimistic agent whose objective is to
maximize the expected cumulative return. The second learner
is a pessimistic agent that maintains a Dirichlet-Categorical
model of the transition probabilities of the MDP. In partic-
ular, this agent is initialized with a prior that encodes any
information the agent might have about the transition proba-
bilities. For each state-action pair (si, a) we have a Dirichlet
distribution pi1a , pi2a , ..., piNa ∼ Dir(αi1

a , αi2
a , ...αiN

a ). As the
agent explores the environment, the Dirichlet distributions
are updated using Bayesian inference.

For each action a available in the current state s, the pes-
simistic learner computes the approximations ϱ̄m(s, a) and
V̄ m(s, a) of its belief ϱm(s, a) of the risk, over the next
m steps, associated to taking action a in s. The “risk hori-
zon” m is a hyper-parameter that, as discussed, should be set
to be at most the observation boundary O. The pessimistic
learner is initialized with two extra hyper-parameters Φmax

and C(n): Φmax represents the maximum level of risk that
the agent should be prepared to take, whereas C(n) is a
decreasing function of the number of times n that the cur-
rent state has been visited, which satisfies C(0) < 1 and
limn→∞ C(n) = 0. From Section 3.3, the agent can then
compute, for each action a, the value

Φ = ϱ̄m(s, a) +

√
V̄ m(s, a)C(n)

1− C(n)
, (10)

which can thus define a set of safe actions: these are all the
actions that the agent believes have risk less than Φmax, with

confidence at least C(n), namely

Asafe = {a ∈ A|Φ ≤ Φmax}.

In case there are no actions a such that Φ ≤ Φmax, the agent
instead allows

Asafe = {a ∈ A|ϱ̄m(s, a) = min
a′

ϱ̄m(s, a′)}. (11)

Finally, the agent selects an action a∗safe from the set of safe
actions according to the Q-values of those actions, e.g., using
softmax action selection (Sutton, Bach, and Barto 2018) with
some temperature T > 0:

Pr(a∗safe = a) =
eQ(s,a)/T∑

a∈Asafe
eQ(s,a)/T . (12)

The pseudo-code for the full algorithm is available in the
extended paper (Mitta et al. 2023).

Remark 3.2 RCRL focuses on ensuring safety in exploration,
prioritizing theoretical guarantees over traditional RL’s goal
of maximizing reward. While pushing exploration boundaries,
RCRL’s primary objective is to maintain agent safety rather
than maximizing expected rewards.

In summary, we effectively have two agents learning to
accomplish two tasks. The first agent performs Q-learning
to learn an optimal policy for the reward. The second agent
determines the best approximation of the expected value and
variance of each action, enabling it to prevent the first agent
from selecting actions that it cannot guarantee to be safe
enough (with at least a given confidence). When instead the
pessimistic agent cannot guarantee that any action is safe
enough, it forces the optimistic learner to go into “safety
mode”, i.e., to forcibly select the actions that minimize the
expected value of the risk, as per (11). From an empirical
perspective, implementing this concept of a “safety mode”
allows for continued progress, and pairs well with the defi-
nition of risk: namely, when the agent deems that a state is
too risky, it will go into this “safety mode” until it is back in
a state with sufficiently safe actions.

Finally, note that C(n) represents the level of confidence
that the agent requires in an action being safe enough for it to
consider taking that action. When the agent starts exploring
and C(n) is at its highest, the agent only explores actions that
it is very confident in. However, it may need to take actions
that it is less confident in order to find an optimal policy.
Thus, as it continues exploring, C(n) is reduced, allowing
the agent to select actions upon which it is not as confident.
However, in the limit, when C(n) → 0, we have that Φ =
ϱ̄m(s, a), which means that the agent never takes an action if
its approximation of the expected risk ϱ̄m(s, a) is more than
the maximum allowable risk Φmax.

4 Experiments
Details on the experiments are presented in the extended
paper Mitta et al. (2023).
BridgeCross - We first evaluated the performance of RCRL
on a Slippery Bridge Crossing example. The states of the
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Experiment |S| |A| Safety Setup Successes Fails # Ep.

BridgeCross

400 5 Prior 1, Φmax = 0.33 404.3 54.2 500
400 5 Prior 1, Φmax = 0.01 506.0 417.9 1500
400 5 Prior 2, Φmax = 0.33 424.3 32.1 500
400 5 Prior 2, Φmax = 0.01 384.6 0.5 500
400 5 Prior 3, Φmax = 0.01 407.4 14.4 500
400 5 Prior 3, Φmax = 0.003 421.3 1.1 500
400 5 QL with Penalty 414.6 990.5 1500
400 9 Prior 1, Φmax = 0.33 299.1 173.4 500
400 9 Prior 1, Φmax = 0.01 348.9 523.2 1500
400 9 Prior 2, Φmax = 0.33 444.7 38.9 500
400 9 Prior 2, Φmax = 0.01 17.6 14.5 500
400 9 Prior 3, Φmax = 0.01 391.7 15.4 500
400 9 Prior 3, Φmax = 0.003 430.0 2.2 500
400 9 QL with Penalty 367.9 1119.2 1500

Pacman
4000 5 Risk Horizon m = 2 234 77 311
4000 5 Risk Horizon m = 3 207 68 275
4000 5 QL with Penalty 0 1500 1500

Table 1: Average number of successes and failures. Bridge-
Cross: different priors and acceptable risks Φmax. Pacman:
varying risk horizon m.

(a) (b)

(c) (d)

Figure 1: The number of steps it takes the agent to get to the
rewarding state. Averaged over 10 experiments. Results for
RL and for RCRL across different priors and horizons.

MDP consist of a 20× 20-grid. The agent is initialized at q0
in the bottom-left corner (green). The agent’s task is to get
to the goal region without ever entering an unsafe state. In
particular, upon reaching a goal state, the agent is given a
reward of 1 and the learning episode is terminated; at every
other state it receives a reward of 0, and upon reaching an
unsafe state the learning episode terminates with reward 0.

We consider two cases regarding the action space. Case I:
We assume that at each time step the agent might move
into one of the 4 neighbouring states, or stay in its current
position; thus, the agent has access to 5 actions at each state,
A = {right , up, left , down, stay}. Case II: We consider a
larger action space that includes the diagonal actions as well,

i.e., |A| = 9. In both cases, if the agent selects action a ∈ A,
then it has a 96% chance of moving in direction a, and a 4%
chance of “slipping”, namely moving into another random
direction. If any movement would ever take the agent outside
of the map, then the agent will just remain in place. The agent
is assumed to have an observation boundary O = 2 steps.
Note that due to the slipperiness of the movement and the
narrow passage to reach the goal state, minimizing the risk is
not aligned with maximizing the expected reward.

We tested RCRL with 5 different combinations of a prior
and a maximum acceptable risk Φmax. The following addi-
tional hyper-parameters of the algorithm were kept constant:
the maximum number of steps per episode max steps =
400, the maximum number of episodes max episodes =
500 (although this was increased to 1500 in two cases when
the agent did not converge to near-optimal policy within the
first 500, cf. Table 1); the learning rate µ = 0.85; the dis-
count factor γ = 0.9; and the risk horizon m = 2. Recall
that a prior consists of a Dirichlet distribution pi1a , ..., piNa ∼
Dir(αi1

a , ..., αiN
a ) for every state-action pair (si, a). We con-

sidered three priors:

• Prior 1 – completely uninformative: in this case we as-
signed a value of 1 to every α. This yields a distribution
that is uniform over its support.

• Prior 2 – weakly informative: we assigned a value of 12
to the α corresponding to moving in the correct direction,
and a value of 1 to all other α’s. This gives a distribution in
between Prior 1 and 3 in degree of bias and concentration.

• Prior 3 – highly informative: we assigned a value of 96
to the α corresponding to moving in the correct direction,
and a value of 1 to all other α’s. This gives a distribution
that is highly concentrated, and for which the mean values
of the transition probability random variables are the true
transition probabilities of the MDP, and hence unbiased.

We tested the algorithm with all three priors and a max-
imum acceptable risk of Φmax = 0.01 and repeating each
experiment 10 times to take averages. We first discuss the
results for Case I. On average, the agent with the highly in-
formative prior (Prior 3) entered unsafe states 14.4 times (on
average), and always converged to near-optimality within
about 200 steps, successfully crossing the bridge 407.4 times.
For the other 78.2 episodes, the agent reached the episode
limit before crossing the bridge or entering an unsafe state.
The agent with Prior 2 interestingly only entered unsafe states
an average of 0.5 times per experiment, and converged to a
near-optimal policy within about 300 episodes, successfully
crossing the bridge 384.6 times. On the other hand, the agent
with Prior 1 only crossed the bridge less than 30 times. We
therefore increased the total number of episodes to 1500 and
tried again, yet still over half the time it did not converge to a
near-optimal policy (Figure 1b).

A similar pattern is observed for Case II, where the num-
ber of failed episodes tends to decrease as the prior becomes
more informative. Interestingly, the agent with Prior 2 also
exhibits a relatively low number of successful episodes. A po-
tential explanation for this could be the low acceptable risk
of Φmax = 0.01, as discussed in Remark 3.2. We then tested
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Prior 1/Case I with a more lenient maximum acceptable risk
of Φmax = 0.33, and found that the agent this time managed
to converge to near-optimality within around 200 episodes,
entering unsafe states 54.2 times and successfully crossing
the bridge 404.3 times. We also tested Prior 3/Case I with a
stricter Φmax = 0.0033 and found out that it entered unsafe
states only 1.1 times and succeeded 421.3 times, converg-
ing to near-optimality within 150 episodes. Similar observa-
tions were made for Case II. For instance, in Prior 2 with
Φmax = 0.33, the agent managed to increase the number
of successful episodes from 17.6 to 444.7 while slightly in-
creasing, as expected, the number of failures from 14.5 to
38.9. A more thorough analysis of these results is presented
in the extended paper (Mitta et al. 2023). Finally, we tested
Q-learning. Q-learning had almost no successful crossings
of the bridge in the first 500 episodes, so we ran it for 1500
episodes and found that it only converged to a near-optimal
policy about half the time, on average entering unsafe states
990.5 times and successfully crossing the bridge 414.6 times.
Discussion - Table 1 summarizes the number of successes
and failures for each agent. The first result of note is how
poorly Prior 1 performs with Φmax = 0.01 for both Case I
and Case II. It mostly fails to converge to near-optimal be-
haviour even with 1500 steps as presented in Figure 1b, in
fact seeming to converge slower than Q-learning. This oc-
curs because the maximum allowable risk is set too low for
the given prior. In particular, there are two main issues with
this. The first issue is a type of degenerate behaviour specific
to our algorithm and to the completely uninformative prior
with overly strict Φmax: given that the agent starts with no
information on the transition probabilities, it is unable to tell
which actions are safe and which are unsafe. In particular,
with Φmax at 1%, the first time the agent arrives at any state
s from which it can observe some unsafe state, it immediately
goes into safety mode as it judges that the risk of every action
is above 1%. Since it has no information on which action is
safest, it randomly selects an action.

If that randomly-selected action does not take the agent
closer to a risky state, then after updating the agent’s beliefs
about the transition probabilities for that action, it will believe
that action is the safest one from that state. Thus every time
it encounters that state again, it will always select that action,
never attempting any other actions. The state (13, 1) has been
visited significantly more often than any other state. This has
occurred because the first time the agent encountered that
state, it chose action stay, and as above, from then on always
chose stay in state (13, 1). This would cause the agent to
remain in (13, 1) until it slipped off of that state. For further
discussions refer to the extended paper (Mitta et al. 2023).
Pacman - We evaluated the performance of RCRL on a Pac-
man example. The agent (Pacman) must get to food tokens
without getting caught by the ghost. Note that because both
the agent and the ghost move through the maze, the Pacman
MDP has about 10 times more states than the BridgeCross,
and up to 5 times more possible next states at any given state.
Upon picking up the second piece of food, the agent is given
a reward of 1 and the learning episode stops. Every other
state incurs a reward of 0 and if the ghost catches Pacman,

the learning episode stops with reward 0. The agent has ac-
cess to five joystick actions at each state, A = {right , up,
left , down,no act} and will move in the direction selected,
or if that direction moves into a wall, then it will stay still.
The ghost will with 90% probability move in the direction
that takes it closest to the agent’s next location, and with
10% probability will move in a random direction. For this
setup, we assumed an observation boundary O = 3 and com-
pared two values of the risk horizon, m = 2, 3. We therefore
kept constant the other parameters and hyper-parameters: the
learning rate µ = 0.85; the discount factor γ = 0.9; the max-
imum number of steps per episode max steps = 400; the
maximum acceptable risk Φmax = 0.33; the prior, which we
set to be a completely uninformative prior as in the Bridge-
Cross example; the maximum number of episodes, which we
set as 1500 or the number of episodes before the total rate of
successful episodes exceeded 75%. As in Table 1, the agent
with a risk horizon of m = 2 steps exceeded a success rate
of 75% after 311 episodes, having failed 77 times. The agent
with the larger risk horizon of m = 3 only took 275 steps to
exceed that success rate, and only failed 68 times. Figures
1c–1d display the number of steps taken by the agent to win
(or 400 if they lose) for each agent, as well as the running
average number of steps over the previous 50 episodes.
Discussion - The improvement in performance from m = 2
to 3 is likely due to the increased foresight of the agent
leading it to move away from excessively risky scenarios
further in advance, potentially avoiding entering a state from
which entering a dangerous state is unavoidable. However,
it may also be simply due to the fact that increasing the
risk horizon leads to an overall increase in risk estimates,
which will naturally cause more actions to be considered
too risky and may reduce the number of failures. In other
words, we may have been in a situation where decreasing the
maximum acceptable risk Φmax would have led to similar
improvements, and the increase in risk horizon was behaving
functionally more like a decrease in Φmax. Both risk-aware
agents compare very favourably against the Q-Learning agent,
which did not succeed once across 1500 episodes.

5 Conclusions
We proposed a new approach, Risk-aware Cautious Rein-
forcement Learning (RCRL), to address the problem of safe
exploration in MDPs. A definition of the risk related to taking
an action in a given state has made use of the agent’s beliefs
about the MDP transitions and the safest available actions in
future states. We have approximated the expectation and vari-
ance of the defined risk and have derived a convergence result
that justifies the use of those approximations. We have also
shown how to derive an approximate bound on the confidence
that the risk is below a certain level. All these ingredients
comprise RCRL, a Safe RL architecture that couples risk es-
timation and safe action selection with RL. We tested RCRL
and showed that it significantly outperform on Q-learning,
both in terms of maintaining safety during exploration, as
well as of the rate of convergence to an optimal policy. As this
approach can be easily interleaved with other RL algorithms
we expect similar improvements against other baselines.
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