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Abstract

BCART (Bayesian Classification and Regression Trees) and BART (Bayesian
Additive Regression Trees) are popular modern regression models. Their popularity
is intimately tied to the ability to flexibly model complex responses depending on
high-dimensional inputs while simultaneously being able to quantify uncertainties.
However, surprisingly little work has been done to evaluate the sensitivity of these
modern regression models to violations of modeling assumptions. In particular, we
consider influential observations and propose methods for detecting influentials
and adjusting predictions to not be unduly affected by such problematic data. We
consider two detection diagnostics for Bayesian tree models, one an analogue
of Cook’s distance and the other taking the form of a divergence measure, and
then propose an importance sampling algorithm to re-weight previously sampled
posterior draws so as to remove the effects of influential data. Finally, our methods
are demonstrated on real-world data where blind application of models can lead to
poor predictions.

1 Introduction

In the contemporary approach to data-driven problem solving, statistical models have received
increasing attention and popularity as a means for arriving at answers to complex research, science
and industry questions. As datasets have increased in size with the transition to the “big-data” era,
the complexity and scalability of statistical models have seen rapid advances. Popular models include
neural networks (Ghugare et al., 2014), random forests (Breiman, 2001) and localized Gaussian
Processes (Gramacy and Apley, 2015). In problems where uncertainty quantification is deemed
necessary, Bayesian methods have come to the fore, such as the Bayesian variants of neural networks
(MacKay, 1995), Bayesian localized GPs (Liu et al., 2020) and Bayesian Regression Tree models
(Chipman et al., 2010; Pratola, 2016; Horiguchi et al., 2021, 2022). However, there has been a
conspicuous disconnect in terms of tools that support the application of such complex models when
compared to their humble, small-dataset, low-dimensional ancestors.

For example, in linear regression, students are taught an extensive array of tools for validating
modeling assumptions in the classical setting, such as residual diagnostics, outlier detection and
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influence metrics (Weisberg, 2013). Surprisingly, such supporting tools have not received the same
attention in the development of modern variants of statistical models. The assumption, it seems, is
that in the big-data setting such issues are of lesser concern. We have found this assumption to be
incorrect.

Our focus in this paper is on Bayesian classification and regression tree (BCART) models (Chipman
et al., 1998), and the Bayesian Additive Regression Tree (BART) model of Chipman et al. (2010) in
particular. This class of models is currently receiving much attention in the research community (e.g.
Tan and Roy, 2019; Hahn et al., 2020; Pratola and Higdon, 2014; Horiguchi et al., 2022). Our work
arose out of a simple curiosity: can BCART or BART models be negatively affected by a problematic
observation, i.e. an observation that can be influential or is an outlier (or both)? We find that the
answer is yes, and investigate two perspectives to handle such problematic observations:

i. identification of problematic observations;
ii. model (posterior) adjustment given identified problematic observations.

In this work, we propose two approaches for the identification problem (i). First, a direct extension of
Cook’s distance to the regression tree model setting is outlined, and has the benefit of providing an
easy and sensible interpretation. Second, a divergence-based metric is proposed. For the adjustment
problem (ii), we explore two alternatives: the simple (but wasteful) dropped-observation approach,
and an importance-sampling approach that reweights posterior expectations to account for the
problematic observations without going so far as to completely remove them.

2 Influence Diagnostics for Trees

We now outline two diagnostic tests for the detection of problematic observations. The first is a direct
application of Cook’s distance to Bayesian regression trees, while the second is a divergence-based
approach. Throughout, we denote the parameters as Θ =

(
{T(j)}mj=1, {M(j)}mj=1, σ

2
)

where

m = 1 trees simplifies to BCART and M(j) = (µj1, . . .) are the terminal node parameters of tree j.

2.1 Conditional Cook’s Distance for Regression Trees

Conditioning on T, a single regression tree can be expressed in the usual linear form as g(x;T,M) =∑B
b=1 µbIb(x) where B is the total number of terminal nodes in the tree and Ib(x) is the indicator

function taking the value 1 when x maps to the hyperrectangle defined by terminal node b, and 0
otherwise. Then, one can express the Cook’s distance as

Di =
1

B︸︷︷︸
Tree Complexity

×
(ei
σ

)2

︸ ︷︷ ︸
Normalized Residual

×
n(i)

(n(i) − 1)2︸ ︷︷ ︸
Node Purity

(1)

where ei is the residual for observation i, and n(i) is the number of observations in the terminal
node to which observation i maps. Note here that in comparison to the classical Cook’s distance,
we have replaced σ̂ with the parameter itself, for which we have samples. This form of Di provides
helpful interpretations. For instance, it is a decreasing function of the number of terminal nodes,
B, but on the other hand it increases as node purity increases (i.e. as n(i) becomes small) and in
particular will blow-up when n(i) − 1 = 0. To arrive at an overall estimate, we take the posterior

mean, ̂E[Di|Y] = 1
N

∑N
k=1D

(k)
i where each D(k)

i is the conditional Cook’s distance for the kth
posterior sample as defined in equation (1). For the sum-of-trees BART model, we report the average
Di across all of the m tree’s in BART’s sum.

2.2 Kullback-Liebler Divergence Diagnostic

Recall the Kullback-Liebler divergence from distribution Q to P is defined as DKL(P ||Q) :=∫∞
−∞ log

(
dP
dQ

)
dP where DKL ≥ 0 with equality iff P = Q. In our context, we propose to take the

reference distribution to be the posterior involving all the data, P := π(Θ|Y), while the distribution
Q is taken to be the posterior when the potentially problematic data is held out. If we consider the
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simplest case of holding out a single obseration yi, then Q := π(Θ|Y−i). Then, the KL divergence
diagnostic has a simple Bayesian interpretation when evaluating the potential for observations to
be problematic: if DKL ∼ 0 then observation yi is not influential, whereas if DKL >> 0 then
observation yi is influential. The advantage is the KL diagnostic informs us about the sensitivity of
the entire posterior distribution to the problematic observation instead of only the mean function.

3 Adjusting Predictions via Importance Sampling

While one could use the proposed diagnostics to detect problematic observations and then refit the
model with such observations removed from the dataset, for Bayesian models this is a computationally
wasteful approach. Instead, Bradlow and Zaslavsky (1997) propose to estimate functions of interest,
g(Θ), using importance sampling as

E[g(Θ)|Y−i] =

∫
Θ

g(Θ)
π(Θ|Y−i)
π(Θ|Y)

π(Θ|Y)dΘ.

Let w(k)
(i) = π(Θ=Θ(k)|Y−i)

π(Θ=Θ(k)|Y)
∝ f(Y−i|Θ=Θ(k))

f(Y|Θ=Θ(k))
be the importance sampling weights of in-

terest when observation i is to be dropped and Θ(k) ∼ π(Θ|Y). Then, E[g(Θ)|Y−i] ≈∑N
k=1 w

(k)
(i) g(Θ(k))

/∑N
k=1 w

(k)
(i) , where the renormalization in the denominator removes the depen-

dence on the proportionality constant π(Y)/π(Y−i). Intuitively, this importance sampling approach
adjusts our posterior samples used in predicting g(Θ) as if we had instead sampled from π(Θ|Y−i).

3.1 Re-weighting BART Predictions

We can extend the idea of reweighting to draws from the additive tree model of BART. Recall that
the BART likelihood involving a sum-of-trees mean function can, conditionally, be equivalently
described by a single “super-tree” mean function (Horiguchi et al., 2021), that is

π(Θ|Y) ∝ f
(
Y|(T(1),M(1)), . . . , (T(m),M(m)), σ2

) m∏
k=1

π
(

(T(k),M(k))
)
π
(
σ2
)

= f
(
Y|S, σ2

) m∏
k=1

π
(

(T(k),M(k))
)
π
(
σ2
)
,

where S represents the analogous super-tree representation, i.e. g(x;S) ≡
∑m
k=1 g(x; (T(k),M(k))).

Note that the prior remains the same, even though we reinterpret the likelihood’s sum-of-trees as a
new, equivalent, single super-tree. Suppose again that yi is the problematic observation, observed at
input xi and let ηSl be the terminal node in S to which xi maps. Let X represent the hyperrectangle
defined by ηSl . Then we have the following.

Proposition: Let x be a prediction input of interest with corresponding predictor g(Θ) = E[y(x)|Θ].
Let Xj be the hyperrectangles in each tree j = 1, . . . ,m of the BART ensemble such that x ∈ Xj , ∀j.
Let X = ∩mj=1Xj be the hyperrectangle defined as the intersection of all the Xj’s, which corresponds
to the supertree terminal node ηSl to which x belongs. Suppose also that the input xi for influential
observation yi also maps to ηSl . Then to predict the response y(x) for all x ∈ X, the weights are

w
(k)
(i) (x) =

{
1

p(yi|µS,(k)
l ,η

S,(k)
l ,P

S,(k)
l ,σ2)

if |η(k)
jl | − 1 ≥ n0 for all j = 1, . . . ,m

0 otherwise

where η(k)
jl is the lth terminal node in tree j to which xi maps in the original sum-of-trees representa-

tion, n0 is the minimum # of observations for terminal nodes. We call this method int.

Implementation of this proposition results in a different localized region, say X(k), for each of the
k = 1, . . . , N posterior realizations. This makes predictions more computationally expensive. A
practical alternative is to take some sort of “average” localized region as the single region to reweight,
simplifying posterior prediction calculations. A natural choice is the union of the individual regions,
say X = ∪Nk=1X(k). We refer to this method as union-int.
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4 Results

Our motivating example comes from a study of biomass fuels and the application of artificial
intelligence models to predicting the Higher Heating Value (HHV) of such fuels based on their
molecular makeup (Ghugare et al., 2014). Biomass fuels are the fourth largest source of energy,
with the most common sources being solid products such as wood and biomass pellets. However,
determining the HHV potential of a biomass fuel involves expensive and time-consuming calorimetric
experiments. Instead, a popular alternative is to use mathematical models to approximate the HHV
potential of a fuel source based on its makeup of key components. Ghugare et al. (2014) consider
a dataset involving n = 536 observations with covariates being the amount of carbon, hydrogen,
oxygen, nitrogen and sulfur present in the fuel, while the response is the HHV value measured in
MJ/kg. The dataset consists of 80 test-set observations and 456 training-set observations. We

Table 1: RMSE performance on the HHV test dataset.
default drop global int union-int GP MLP

training set 0.63 0.63 0.76 0.68 0.64 1.086 0.867
test set 1.22 0.98 1.21 1.11 1.06 0.942 0.987

applied BART to the training data using m = 50 trees. The RMSE performance of BART is
summarized in Table 1, where default is the regular BART fit, drop is the fit obtained by dropping
the influentials detected by the proposed diagnostics, global is the reweighting method of Bradlow
and Zaslavsky (1997), and int, union-int are the methods proposed in this paper (using the same
detected influentials as drop). In addition, the RMSE performance of Ghugare et al. (2014)’s Genetic
Programming (GP) and Multilayer Perceptron (MLP) models are also noted. The performance of
BART’s fit on the training dataset is very strong, decreasing somewhat for most of the reweighting
methods. We see union-int demonstrating the best performance, nearly matching the training
sample performance of the default BART fit. In comparison, BART’s default performance on
the test data is significantly worse, and trails the GP and MLP models. Again, union-int provides
the highest reduction in error for BART, bringing it close to the performance of GP and MLP on
the test data. The remaining gap here could likely be explained by the smooth, continous fits of the
GP and MLP models which would be a favourable characteristic for this dataset. The drop test set
performance suggests retraining BART with detected influentials removed is best when feasible.

Of particular interest in Ghugare et al. (2014) is the performance of the models at different regimes
of HHV. In particular, they note difficulty in predicting high-HHV performance, and breakdown their
performance summary into three ranges of HHV values: 0-16MJ/kg (5 observations), 16-25MJ/kg
(70 observations) and 25-36MJ/kg (5 observations). The performance in these ranges is summarized
in Table 2 for the default BART model as well as the drop and union-int methods. We see
that the pattern obtained confirms Ghugare et al. (2014) description of high HHV being particularly
hard to predict. Nonetheless, the union-int method improves on the default BART fit in all
three regimes, and in fact beats the drop performance in the 16-25MJ/kg range where most of the
observations lie. Still, it is hard to match the performance of GP and MLP in the 0-16MJ/kg and
25-36MJ/kg regimes, but in the high-HHV regime the drop method dominates.

Table 2: Range-wise RMSE performance on the HHV test dataset.
Range default drop union-int GP MLP

0-16MJ/kg 1.88 1.50 1.70 1.16 0.90
16-25MJ/kg 0.95 0.93 0.89 0.84 0.81
25-36MJ/kg 2.80 1.01 2.07 2.55 1.55

5 Conclusion

In this paper we proposed BART diagnostics for detecting influential observations, and devised
reweighting procedures that allow posterior BART samples to be reweighted once influential observa-
tions are identified. Overall, we have found a suprising amount of gains can be found by addressing
influential observations even though conventional wisdom suggests that highly flexible statistical
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learning models like BART are not affected by such problematic observations due to their localized
fits. In reality, when faced with large datasets and high-dimensional covariate spaces, the notion of
‘local’ is very much a misnomer. Therefore, careful application of BART should at minimum include
a diagnostic step to detect possibly problematic observations, upon which investigation, removal or
the reweighting procedures proposed here can be performed.
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