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The initial complete RP scheme as a binary
tree with 3-layers on [0, 1].

Starting from layer 3, we  prune
B(er,w7) since there are only 2 < 3
observations  available. We  keep

B(Ca,’wﬁ),B(C5,'LU5),B(C4,'LU4) as they
all contain at least m = 3 observations.

Moving to layer 2, B(es,ws) has the 6 ob-
servations required by itself and its child
B(cs, ws). Checking B(cz2,w2), it contains
only 6 observations so we prune its children
B(es,wa), B(es, ws).

Moving to layer 1, B(ei,w1) contains 15
observations, therefore there are sufficient
observations for B(eci,w1) and its children
B(ez,w2) , B(es,ws) and B(cs, ws). We
keep B(ei,w1) and its children, completing
the partitioning.

Given the final RP scheme B(er,w1),
B(cz,w2), B(es, ws) and B(cs, we), one pos-
sible random selection of the pseudo-inputs
X for the j = 1,...,N different additive
components (here N = 4) conditional on the
RP scheme is shown as colored dots. Points
with the same color belong to blocks on the
same layer.



X\

B

X X
B X







X\

\ X

7z X






X B








http://www.gaussianprocess.org
http://www.gaussianprocess.org
http://bitbucket.org/mpratola/openbt

SPARSE ADDITIVE GAUSSIAN PROCESS REGRESSION
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Figure 2: Example of data generated in the simulation study. The gray, bold, curve repre-
sents the true mean function f(z). Training and testing sets are represented as
black and red points. Panels (a) and (b) show the scenarios where the 50 data
points of the testing set are chosen at random or as the input location that is
closest to a randomly chosen point (0.5 in the example), respectively. The pos-
terior predictive functions of four models, fit on the training portion of the data,

are provided in both panels.

For each generated dataset, the models are fit on the training data and used to predict the
response on the testing data. For each point in the testing set, we compute the estimated
mean function g(z;) (see Section 3.2.6) and the 95% prediction interval (PI) for y;. The
performance of the estimators of the mean function is evaluated in terms of root mean
squared error (RMSE). To assess the appropriateness of the uncertainty quantification, we
compute the coverage of the Pls and compare it to the nominal prediction level. Finally, we
compare the methods in terms of the average value of interval scores, which is a summary
measure to assess the quality of prediction intervals (Gneiting and Raftery, 2007). Given a

(1 — @)100% PI for y; with extremes (I;,u;), the interval score at y; is defined as

2 2
Sal(li,uiyi) = (wi — l;) + E(Ei — )y < li) + E(%’ —ui)1(yi > uq).

We choose this metric to jointly evaluate a family of intervals in terms of precision (i.e.
the width of the intervals) and accuracy (i.e., the coverage of the true value). Notably, low

values of the score indicate good performance.
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4.2 Results

Figure 3 summarizes the resulting RMSEs, PI coverages and averages of the interval scores
across the 1000 generated datasets for the two scenarios.
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Figure 3: RMSE (top panels), coverage (central panels) and interval score (bottom panels)
over the 1000 simulated datasets. Panel (a) shows the results in the case where
the testing set is chosen at random over [0, 1]. Panel (b) shows the results in the

case where the testing set is chosen in a random interval with center uniformly
selected from [0.25, 0.75].

Panel (a) provides the results in the scenario where the testing set is selected at random.
In terms of RMSE, both the SAGP and SGP models perform better with larger values of m.
As expected, the full GP model attains the smallest RMSEs. The SAGP models with m =5
and 10 perform better than the SGP models with the same number of pseudo-inputs. For
m = 15, the median RMSEs in the SAGP and SGP models are similar, but the performance
of the SAGP model is more consistent across simulations (the upper quartile of SAGP with
m = 15 is considerably smaller than the one of SGP with m = 15). With the considered
configuration of the parameters, the BART model performs slightly better than the SAGP
model with m = 5, but worse than the SAGP model with m = 10 and m = 15. The coverage
of the 95% PIs is close to the nominal level for all the methods except for BART. The PIs
of the SAGP model appear to be slightly too narrow, as most of the coverages are a little
lower than .95. SGP and GP models show coverages perfectly matching the nominal value.
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Figure 4: (a) Out-of-sample MSE (on log,, scale) attained by different models fitted on 1
dimensional heart-rate dataset with m =5,10and L =1,...,6.
(b) Out-of-sample MSE (on log,( scale) attained by different models fitted on 2
dimensional temperature dataset with m = 5,10,15,20,25 and L =1,...,4. For
any L > 4, our pruning algorithm 1 will reduce it to L. = 4; for m = 25 our
pruning algorithm will reduce SAGP model to L = 3

www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml, US precipitation and
temperature (1895-1997) dataset).

Qualitative comparisons of GP, BART and SAGP are shown in Figure 6. For GP re-
gression we used MLE estimates with the Matern(5/2) kernel. For BART we use the default
settings (Chipman et al., 2010). For SAGP, we choose L = 3, m = 25 and calibrate the a, 8
of the noise prior in SAGP and the noise estimate in BART according to MLE of noise esti-
mate from GP. The GP model shows reasonable predictions, however, the prediction comes
with high predictive variance in locations away from the observations and especially near
the boundary (not shown). The predictive mean of BART shows it has a slight grid-like
artifact due to its decision tree construction. In addition, the shape of the response around
the mode is noticeably more rectangular than suggested by the other models.

This dataset provides us a 2-dimensional example where the data is limited, which is
actually a disadvantage for SAGP since the sparsification does not cut down the compu-
tational cost significantly yet some information is lost in the procedure. Nonetheless, the
SAGP method captures the major trends and even some of the extremal temperatures
close to 40 degrees centigrade. Compared to BART and GP, the SAGP model behaves
“in-between” these two methods and provides us with very competitive performance.

5.3 Ice Sheet Data

The Ice Sheet data is a larger 2-dimensional dataset but this time with noticeably uneven
sampling as discussed in Park and Apley (2018).The response is ice sheet thickness in meters
collected over a region of west Antarctica (Blankenship et al., 2004).We used the data from
1991, first converting the longitude and latitude into 2-dimensional Fuclidean coordinates
and standardizing the dataset to [0, 1]2.
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Figure 5: The panels show the observed HR values over time as black dots and results
about the fit of the SAGP model with m = 10 and L = 3. Panel (a) shows
the posterior means and the 95% Cls of the 7 additive components of the SAGP
model on 100 equispaced locations on the support of the data. Panel (b) shows
the posterior means and the 95% ClIs of the sole component in layer 1 (red), of
the components belonging to layer 1 and 2 (green) and of the complete model,
including components from layer 1, 2 and 3. Panel (c) provides the predictive
mean and the corresponding 95% prediction intervals.

A plot of the data and predictive fits for the GP (exponential correlation), laGP, BART,
treed GP (TGP; (Gramacy et al., 2007)) and SAGP models are shown in Figure 7. We
included TGP in this plot as we thought it may be helpful with the unevenly sampled data
but did not end up including it in our overall quantitative results below. For the SAGP
model, we show the fit obtained with L = 3, m = 10.

The fits obtained among these models show quite different behaviors. The full GP fit
possess extreme boundary behavior due to the lack of data near the boundary. The BART
model shows more noticeable grid-like artifacts in this dataset, but does not suffer from the
boundary effects seen with the GP. The TGP regression also does not exhibit boundary
effects but has much higher variability of the mean response in the data-rich region which
does not agree with the other models. The dynamic partitioning of TGP also introduces
considerable computational cost. The laGP model with its default settings and MSPE
criterion exhibits some degree of variability in the fitted mean response, particularly near
the boundaries, however, it is the most computationally efficient method.
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Appendix E. Diagnostic Statistics for the SAGP Model on 1000 Batches
of Simulated Dataset

Geweke's convergence diagnostic Heidelberger-Welch's convergence diagnostic
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Figure 9: The panels of box plots show the Geweke’s convergence diagnostic (Geweke et al.,
1991) and Heidelberger-Welch’s convergence diagnostic (Heidelberger and Welch,
1983) based on the MCMC sample of SAGP model, for parameter 'q(j) and o2,
calculated from the 1000 batches of simulated dataset from formula (11) with the
testing set is random or interval.

Appendix F. Heart Rate Dataset Analyzed by SAGP Model Fitted with
m =5 and L =4 (Figure 10)

30



SPARSE ADDITIVE GAUSSIAN PROCESS REGRESSION
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Figure 10: The panels show the observed HR. values over time as black dots and results
about the fit of the SAGP model with m = 5 and L = 4. Panel (a) shows the
posterior means and the 95% ClIs of the 15 additive components of the SAGP
model on 100 equispaced locations on the support of the data. Panel (b) shows
the posterior means and the 95% Cls of the sole component in layer 1 (red), of
the components belonging to layer 1 and 2 (green) , of the components belonging
to layer 1, 2, 3 and of the complete model, including components from layer 1,
2, 3 and 4. Panel (c) provides the predictive mean and the corresponding 95%
prediction intervals.
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