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The Supplementary Materials contain results of numerical analysis of the proposed data-driven spectral

density estimator g̃(λ, ŜC). Several experiments are considered in turn. In what follows we continue to

use terminology and notations of the paper.

In Experiment 1 the underlying time series {Xt} is ARMA(1,1) modelXt−0.5Xt−1 = 0.5(Zt+0.4Zt−1)

with standard Gaussian Zt ∼ N(0, 1). Note that the corresponding spectral density belongs to class

(3) as it is explained in the paragraph below line (3). Further, the distribution of Xt is normal with

variance 0.52 (Efromovich 1999, Sect. 5.2). Censoring variable C has a normal distribution which

is either N(2.1, 2), or N(0.8, 2), or N(0, 2). Accordingly, Assumption 2 holds because Xt has lighter

exponential tails than [SC ]3. The used censoring distributions create average censoring rates of 9%,

30%, and 50%, respectively, and we will refer to these rates as light, medium and heavy. Considered

sample sizes are n = 100, 300, and 500. For each censoring distribution and sample size, we simulate

a realization {(Xt, Ct), t = 1, 2, . . . , n} and repeat the simulation 1000 times. Then for each realization

we calculate a corresponding censored realization {(Vt,∆t), t = 1, 2, . . . , n}. For each simulation four

estimates are calculated. The first one is calculated by the Oracle-estimator based on an underlying

realization {Xt, t = 1, 2, . . . , n}, here the software of Efromovich (1999) is used. The second one is the
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proposed E-estimator which uses censored data {Vt,∆t, t = 1, 2, . . . , n}. The third estimator is a Naive

one that simply treats Vt as Xt and ignores censoring. According to the Introduction’s literature review,

the Naive estimator is one of the most widely used. The fourth estimator is again a special oracle. It

is the E-estimator that uses an underlying censoring survival function in place of its estimate, and we

refer to it as EO-estimator. This oracle will allow us to evaluate performance of the estimator (17) of

the survival function SC . After a particular simulation is done, we calculate empirical ISEs (integrated

squared errors) of the four estimates using a greed of 500 points on the interval [0, π]. The ISEs are

denoted as ISEO, ISEE, ISEN and ISEEO for the Oracle-estimate, E-estimate, Naive estimate and EO-

estimate, respectively. Then for each simulation ratios ISEE/ISEN, ISEE/ISEO and ISEE/ISEEO are

calculated. The first ratio compares E-estimator with Naive-estimator, the second ratio compares E-

estimator with Oracle estimator, and the third ratio tells us how well the proposed estimator (17) of

the survival function replaces an underlying survival function of a censoring variable in the E-estimator.

Table 1 shows us sample medians of 1000 ratios and corresponding mean absolute deviations (mad).

Table 1: Sample medians (mad) of ISE’s ratios for Experiment 1

n Censoring ISEE/ISEN ISEO/ISEE ISEEO/ISEE

100

Light 0.98 (0.06) 0.73 (0.11) 0.77 (0.08)

Medium 0.78 (0.07) 0.66 (0.12) 0.79 (0.09)

Heavy 0.74 (0.07) 0.51 (0.12) 0.82 (0.10)

300

Light 0.97 (0.05) 0.84 (0.10) 0.86 (0.05)

Medium 0.49 (0.07) 0.55 (0.13) 0.89 (0.05)

Heavy 0.41 (0.08) 0.30 (0.13) 0.93 (0.04)

500

Light 0.89 (0.08) 0.93(0.06) 0.96 (0.02)

Medium 0.38 (0.07) 0.54 (0.09) 0.98 (0.01)

Heavy 0.35 (0.06) 0.26(0.09) 0.98(0.01)

Let us look at the results. We begin with the Naive estimator which is currently a staple in statistical

analysis of censored time series. Corresponding results are shown in the third column. The Naive

estimator performs very well for the light censoring and smaller sample sizes, and due to its simplicity

it may be recommended for these cases. In other words, a light censoring can be ignored for small

samples, and this recommendation coincides with the literature cited in the Introduction. At the same

time, note that with increased sample size the relative efficiency of E-estimator with respect to Naive

estimator increases. The outcome changes dramatically for higher censoring rates. Here E-estimator

clearly dominates Naive estimator, and there is no doubt that ignoring censoring is not a feasible statistical

2



methodology for high rate censoring.

Now let us look at the fourth column that allows us to understand how the E-estimator performs with

respect to the Oracle-estimator that knows underlying time series {Xt}. In other words, here we may

observe the effect of censoring on spectral density estimation. There are two conclusions to make. The

former is that for the light censoring relative performance of the E-estimator improves as the sample size

increases. The latter is that for higher rates of censoring the E-estimator simply cannot compete with

the Oracle who knows the underlying uncensored time series.

Interesting outcomes are shown in the fifth column where the effect of estimate ŜC on the spectral

estimation is analyzed. Two outcomes to point upon are as follows. The former is well expected and

is supported by the theory - the estimator improves as the sample size increases. The latter is more

intriguing - the estimator improves for higher rates of censoring. The explanation is that ŜC is based on

censored observations, see (17), and hence it improves as the number of censored observations increases.

In Experiment 1 we fixed an underlying spectral density and then repeated the same simulation many

times. A natural question is how the estimator will perform for different underlying spectral densities.

There are two ways to answer this question. The former is to repeat several times Experiment 1 for

different spectral densities. The later is each time to use a new underlying spectral density from a family

of spectral densities and then look at outcomes for that family of spectral densities. Here we are using

the second approach that is utilized as follows.

In Experiment 2 we are simulating an underlying time series {Xt} from a Gaussian ARMA(1, 1)

model with standard deviation 0.5, only now for each simulation an underlying AR and MA coefficients

(a, b) are chosen uniformly from interval [0.2, 0.8]. Three different censoring distributions are N(2, 2),

N(0.8, 2), N(0, 2), and they impose light, medium, and heavy censoring. Results are exhibited in Table 2.

They are similar to Experiment 1, and this indicates robustness of the E-estimator toward an underlying

spectral density. Below the interested reader can find figures for particular simulations that are explained

in the captions. Each figure also exhibits the number m of uncensored observations.
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Table 2: Sample medians (mad) of ISE’s ratios for Experiment 2

n Censoring ISEE/ISEN ISEO/ISEE ISEEO/ISEE

100

Light 0.95 (0.09) 0.71 (0.14) 0.78 (0.09)

Medium 0.77 (0.09) 0.67 (0.15) 0.77 (0.12)

Heavy 0.70 (0.10) 0.55 (0.14) 0.79 (0.12)

300

Light 0.92 (0.08) 0.83 (0.14) 0.83 (0.08)

Medium 0.48 (0.09) 0.54 (0.15) 0.85 (0.09)

Heavy 0.40 (0.09) 0.32 (0.14) 0.91 (0.07)

500

Light 0.85 (0.10) 0.94(0.10) 0.94 (0.08)

Medium 0.37 (0.09) 0.57 (0.11) 0.97 (0.05)

Heavy 0.36 (0.09) 0.28(0.09) 0.97(0.05)

Now let is check robustness of the E-estimator toward censoring distributions. We continue to use the

approach of Experiment 2, only now in the new Experiment 3 censoring variable C has either Laplace(4.3,

2), or Laplace(1.5, 2), or Laplace(0, 2) distribution. The three censoring distributions impose light,

medium, and heavy censoring on the underlying Xt. A Laplace distribution has a classical light (expo-

nentially decreasing) tail, but still it is dramatically “heavier” than of a Normal distribution. Accordingly

the Assumption 2 holds. As we see, for classical Gaussian time series we have a rather wide class of cen-

soring distributions that satisfy Assumption 2.

Table 3: Sample medians (mad) of ISE’s ratios for Experiment 3

n Censoring ISEE/ISEN ISEO/ISEE ISEEO/ISEE

100

Light 0.81 (0.11) 0.79 (0.13) 0.78 (0.10)

Medium 0.63 (0.12) 0.71 (0.13) 0.79 (0.11)

Heavy 0.52 (0.13) 0.60 (0.14) 0.79 (0.11)

300

Light 0.74 (0.10) 0.84 (0.12) 0.84 (0.10)

Medium 0.51 (0.09) 0.58 (0.13) 0.87 (0.10)

Heavy 0.38 (0.09) 0.35 (0.11) 0.92 (0.08)

500

Light 0.68 (0.12) 0.92(0.09) 0.95 (0.09)

Medium 0.33 (0.10) 0.62 (0.09) 0.98 (0.08)

Heavy 0.27(0.09) 0.33(0.07) 0.99(0.08)

Let us look at the results exhibited in Table 3. The E-estimator performs very similar with respect to

the oracles. What is of interest here is that the heavier (with respect to Normal) tails of Laplace censoring
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distribution complicate using the Naive estimator for high rate censoring. Overall, we can conclude that

the E-estimator is robust and can be recommended for analysis of censored time series.

R-software with the E-estimator is available on request from the authors.
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Spectral Density and Its Estimates (n = 100, m = 94)

Figure 1: A realization of light censoring case with rate 6%, n = 100, AR = 0.5, MA=0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Figure 2: A realization of light censoring case with rate 30%, n = 100, AR = 0.5, MA=0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Figure 3: A realization of heavy censoring case with rate 39%, n = 100, AR = 0.5, MA=0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Spectral Density and Its Estimates (n = 300, m = 288)

Figure 4: A realization of light censoring case with rate 4%, n = 300, AR = 0.5, MA = 0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Spectral Density and Its Estimates (n = 300, m = 212)

Figure 5: A realization of medium censoring case with rate 29%, n = 300, AR = 0.5, MA=0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Spectral Density and Its Estimates (n = 300, m = 155)

Figure 6: A realization of heavy censoring case with rate 49%, n = 300, AR = 0.5, MA=0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data Vt and ∆t, and the blue dashed-dotted
line is the naive estimate based on Vt.
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Figure 7: A realization of light censoring case with rate 3%, n = 500, AR = 0.5, MA = 0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data, and the blue dashed-dotted line is the
naive estimate based on Vt.
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Figure 8: A realization of medium censoring case with rate 27.6%, n = 500, AR = 0.5, MA = 0.4. The
black solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on
Xt, the green dotted line is the E-estimate based on the censored data, and the blue dashed-dotted line
is the naive estimate based on Vt.

8



0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
0

.1
0

0
.2

0
0

.3
0

Spectral Density and Its Estimates (n = 500, m = 257)

Figure 9: A realization of heavy censoring case with rate 49%, n = 500, AR = 0.5, MA = 0.4. The black
solid line is the underlying spectral density; the red dashed line is the Oracle estimate based on Xt, the
green dotted line is the E-estimate based on the censored data, and the blue dashed-dotted line is the
naive estimate based on Vt.
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n Censoring MISEO MISEE MISEN Ratio1 Ratio2

100

Light 0.00051 0.00060 0.00063 0.9524 1.1764

Medium 0.00052 0.00107 0.00120 0.8916 2.0577

Heavy 0.00055 0.00262 0.00299 0.8673 4.7636

300

Light 0.00021 0.00023 0.00026 0.8846 1.0952

Medium 0.00022 0.00041 0.00077 0.5324 1.8626

Heavy 0.00020 0.00077 0.00206 0.3737 3.8500

500

Light 0.00014 0.00016 0.00019 0.8421 1.1428

Medium 0.00014 0.00028 0.00070 0.4000 2.0000

Heavy 0.00014 0.00057 0.00196 0.2908 4.0700

Table 4: Empirical MISEs and ratios for ARMA(1,1) with Normal censoring, AR = 0.3 and MA = 0.4.

n Censoring MISEO MISEE MISEN Ratio1 Ratio2

100

Light 0.0134 0.0135 0.0149 0.9020 1.0066

Medium 0.0140 0.0211 0.0261 0.8067 1.5111

heavy 0.0132 0.0253 0.0388 0.6527 1.9137

300

Light 0.0056 0.0056 0.0065 0.8648 1.0072

Medium 0.0053 0.0082 0.0162 0.5024 1.5348

heavy 0.0056 0.0159 0.0334 0.4762 2.8530

500

Light 0.0038 0.0038 0.0047 0.8085 1.0159

Medium 0.0038 0.0057 0.0143 0.3994 1.5040

Heavy 0.0039 0.0129 0.0316 0.4062 3.3290

Table 5: Empirical MISEs and ratios for ARMA(1,1) with Normal censoring, AR = 0.7 and MA = 0.4.
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n Censoring MISEO MISEE MISEN Ratio1 Ratio2

100

Light 0.0235 0.0256 0.0365 0.7027 1.0909

Medium 0.0237 0.0318 0.1128 0.2815 1.3426

Heavy 0.0234 0.0440 0.2369 0.1861 1.8858

300

Light 0.0111 0.0118 0.0192 0.6156 1.0639

Medium 0.0109 0.0138 0.0931 0.1487 1.2712

Heavy 0.0126 0.0242 0.2281 0.1061 1.9099

500

Light 0.0071 0.0077 0.0147 0.5238 1.0830

Medium 0.0068 0.0089 0.0806 0.1109 1.3094

Heavy 0.0070 0.0131 0.2140 0.0611 1.8780

Table 6: Empirical MISEs and ratios for ARMA(1,1) with Laplace censoring, random AR and MA.
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