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Abstract

Over the past decade functional Magnetic Resonance Imaging (fMRI) has been intensively
used to study the complex functional network organization of the human brain and how it
changes in time. An fMRI machine produces 3-D time-course cerebral images that contain
hundreds of thousands of voxels and each voxel is scanned for hundreds of times. This
potentially allows the researchers to explore functional connectivity on a voxel-to-voxel
level, and also yields a number of serious statistical complications. First of all, the
high-dimension property of fMRI data turns it into Big Data. Further, the study of
functional brain network for so many voxels involves the problem of estimation of and
simultaneous inference for large-p-small-n cross-covariance matrices. Further, all problems
should be solved in the presence of notoriously large fMRI noise which often forces
statisticians to average signals over large areas instead of considering a network between
individual voxels. An attractive alternative to the averaging, discussed in the paper, is a
multiresolution wavelet analysis complemented by special procedures of estimating noise
and estimation and simultaneous inference for cross-covariance and cross-correlation
matrices for hundreds of thousands pairs of voxels, and it is fair to say that if wavelets have
not been already known, fMRI applications would necessitates their creation. Both task
and resting-state fMRI are considered, and lessons from the wavelet analysis of ultra-fast
and conventional neuroplasticity fMRI experiments are presented. The article is
self-contained and does not require familiarity with wavelets or fMRI.
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INTRODUCTION

Many brain diseases, such as Alzheimer’s and Parkinson’s diseases, Attention Deficit Hyper-

active Disorder, Epilepsy, Schizophrenia, Depression and Anxiety, have been shown to be

related to brain connectivity networks. Further, potential treatments of these diseases and

post-stroke complications may be found via understanding of how human brain functional

connectivity changes during experimental studies. See a discussion and reviews of available

literature in Anderson et al. (2010), Dimyan and Cohen (2011), Skidmore (2011), Faust et

al. (2015), Wee et al. (2016), Laird et al. (2017), Xue et al. (2017), and Papoutsi et al.

(2018). Further, the study of connectivity in healthy brain function is important topic in

network neuroscience, see a discussion and reviews in Honey et al. (2007), Bassett et al.

(2011), Goni et al. (2014), Sporns (2014), Thomas et al. (2014), Misic and Sporns (2016),

Bassett and Sporns (2017), Laird et al. (2017), and Mill et al. (2017).

Functional Magnet Resonance Imaging (fMRI) is a non-invasive technique for mapping

brain functions using blood-oxygenation-level-dependent (BOLD) contrasts. Its traditional

task is to detect brain areas activated by a stimulus, and the latter is a challenging problem

due to large noise and artifacts present in the data. Statistical analysis of fMRI is a familiar

topic in the literature with the main emphasis on a conventional problem of denoising images.

See a discussion in Logothetis et al. (2001), Lazar (2008), Lindquist (2008), Valdez-Jasso

(2010) and Ashby (2011).

Over the last decade, fMRI has been intensively used for analysis of functional connec-

tivity which defines pathways between brain regions that share functional properties and

traditionally defined via correlation between spatially remote neurophysiological events. Re-

gions of the brain do not have to be structurally (physically or anatomically) connected to

have functional connectivity, and a structural connection does not necessarily signify a func-

tional link. An example of functional connectivity between left and right motor cortices will

be presented shortly. fMRI may be used to study the brain functional connectivity based on

the induced stimulus by a task (task fMRI) or during a task-free experiment (resting-state

fMRI). Task fMRI is interested in dynamic of the connectivity during a sequence of short

resting and task (stimulus) performing periods. The aim of resting-state fMRI is in mapping
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the network behavior and study large-scale brain segregations and integrations that occur

due to the human brain ability to organize spontaneous fluctuations in the resting state.

While task and resting-state fMRI present many identical neuroscience challenges, they also

have fundamental differences that are reflected in statistical analysis (Di et al. 2013, Zhang,

S. et al. 2016, Mwansisya et al. 2017). For instance, in wavelet analysis different wavelet

transforms are recommended.

The paper is primarily devoted to explanation of the wavelet analysis of fMRI data. The

reader does not need to be familiar with either wavelets or fMRI. All required basics will

be explained in the next section via discussion of a special Ultra Fast fMRI experiment.

This section also sheds light on observed BOLD signals and large noise in conventional

fMRI data. Then next 3 sections are devoted to explanation of wavelet statistical analysis,

including evaluation of the noise level and estimation of and inference for large-p-small-n

cross-covariance and cross-correlation matrices. The results are illustrated via a task fMRI

study of neural plasticity. The final section is devoted to specifics of the resting-state fMRI.

ULTRA FAST TASK fMRI

The main goal of fMRI is to locate, map, and analyze neurons activity in the brain. A con-

ventional explanation of how MR scanner detects activity of neurons is as follows. Neurons

consume oxygen which is attached to hemoglobin molecules in the blood. When activity of

a neuron increases, it demands more oxygen which is locally delivered by increased flow of

blood. The supply of oxygen is always larger than the demand and this yields an increased

blood oxygen concentration near activated neurons. MR scanner can measure the change

in oxygenated blood due to the following phenomenon. Oxygen attached to the hemoglobin

molecule shields an iron atom and this makes the hemoglobin molecule almost magnetically

inactive. If oxygen is not attached, the hemoglobin’s iron makes the molecule paramagnetic.

This is the phenomenon which is used by MRI which allows us to analyze the Blood Oxygen

Level Dependent (BOLD) signal/effect rather then underlying activity of neurons. At the

same time, via simultaneous measurement of BOLD and electrical effects, it has been verified

that BOLD can be used to measure activity of neurons, see a discussion in Logothetis et al.
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(2001), Lazar (2008) and Ashby (2011).

Instead of going into details of fMRI, for our purposes it is better to explain everything via

a special Ultra Fast (UF) fMRI experiment when just one slice of human brain is screened.

The experiment was conducted by the UTSouthwestern medical school, see Valdez-Jasso

(2010). To detect brain activity, a participant is placed in the MR scanner and a visual

stimulus is used to activate neurons. During the first 15 seconds the patient is at rest.

After the rest, 5 seconds of visual stimulation, done by flash check board, are followed by 30

seconds of rest. Then this 5-30 seconds pattern of activation-rest is repeated. UF fMRI uses

a single slice of visual cortex to acquire BOLD signal every 50 milliseconds. The available

fMRI data are preprocessed using the standard software AFNI that removes effects of head

movement and physiological fluctuations in the signal time course, see Lazar (2008) and

Caballero-Gaudes and Reynolds (2017). However, as we will see shortly, the preprocessing

is not perfect and we still observe physiological and MR induced components in the BOLD

signals.

For each voxel from the slice the measured BOLD signal is an equidistant time series

Y (tl) = f(tl) + τεl, tl = δl, l = 1, 2, . . . , n. (1)

Here f(t) is a deterministic signal which may be written as the sum of a hemodynamic

response to visual stimuli (the component/signal of interest) plus unfiltered physiological

signals (like cardiac and respiratory) and drift (trend), δ is the period of collecting data, ε

is additive zero-mean and unit variance noise, and τ is the standard deviation of the fMRI

noise. Note that both f and τ are specific for each voxel. As we will see shortly, the very

small period δ in the UF fMRI allows us to zoom in on signals produced by MRI. We can also

refer to the time series as equidistant regression with f(t) = E{Y (t)} and τε being regression

error, see Efromovich (1999a). Because no information about shape of an underlying signal

f is available (after all, finding shapes is the main aim of the experiment), it is natural to

use an adaptive nonparametric curve estimation which is based solely on data and requires

neither information about shape/smoothness of f nor a manual adjustment of estimators,

see Efromovich (1999a,2018a).

For the considered setting, due to large number of observations and inhomogeneity of
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estimated signals, it is natural to use a series estimation based on wavelet bases because

wavelets are created for approximation of such signals. A thorough discussion of wavelets and

estimation procedures can be found in books Ogden (1997), Efromovich (1999a), Vidakovic

(1999) and Nason (2008). To briefly describe a procedure, let us for simplicity assume that

n is dyadic. Then an estimated signal f can be approximated by a wavelet series with n

terms,

f ′(t) =

n/2J∑
k=0

sJkφJk(t) +
J∑

j=1

n/2j∑
k=0

djkψjk(t). (2)

Here J is the number of used multiresolution components (scales). For our data we choose

J = 9 and this recommendation will be explained shortly. Functions φjk = 2−j/2φ(2−jt− k)

and ψjk = 2−j/2ψ(2−jt − k) are orthonormal and generated by dilation and translation

of a scaling function φ (also referred to as father wavelet) and a wavelet function ψ (also

referred to as mother wavelet). A scale function is integrated to one and a wavelet function

is integrated to zero. Further, sjk =
∫∞
−∞ f(t)φjk(t)dt and djk =

∫∞
−∞ f(t)ψjk(t)dt in (1) are

wavelet coefficients. There are many wavelet bases to choose from; see Vidakovic (1999) and

Nason (2008). To be specific, here wavelet basis Coiflet 5 is used.

For observed time series Y1, . . . , Yn any wavelet software (R and MATLAB are more

popular sourses) allows one to calculate via a discrete wavelet transform (DWT) empirical

wavelet coefficients {s̃jk, d̃jk} which are unbiased estimates of underlying wavelet coefficients

in (2). Next step is to estimate underlying wavelet coefficients by an estimator {ŝjk, d̂jk}.

Here adaptive nonparametric estimator of Efromovich (1999b), available in R software Efro-

movich (1999a), is used. This estimator combines excellent asymptotic properties for vast

classes of inhomogeneous functions with a reliable denoising for relatively small sample sizes.

The estimator uses unchanged empirical scaling coefficients ŝjk = s̃jk and it shrinks empirical

wavelet coefficients d̂jk = λjkd̃jk using data-driven shrinkage weights λjk ∈ [0, 1]. Calcula-

tion of shrinkage weights is rather involved, and description of the procedure is skipped

here because it can be found in the above-mentioned references. Finally, the denoised signal

(estimated regression function) can be written as

f̂(t) =

n/29∑
k=0

ŝ9kφJk(t) +
9∑

j=1

n/2j∑
k=0

d̂jkψjk(t). (3)
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Figure 1: Wavelet multiresolution decomposition of fMRI signal. Diagram (a) shows data

for a particular voxel which is scanned with the period of 2 seconds. Diagram (b) shows

data for the same voxel with the period of 50 milliseconds. Diagrams (c)-(g) exhibit results

of the wavelet multiresolution analysis of the signal shown in diagram (b). Diagram (c)

shows fMRI noise, diagram (d) shows cardiac signal, diagram (e) shows respiratory signal,

diagram (f) shows the hemodynamic response to visual stimuli, and diagram (g) shows the

fMRI drift. The vertical dotted lines in the diagram (f) show times of the visual stimulus

activation.

Figure 1 presents multiresolution analysis of observed UF fMRI signal for a voxel in visual

cortex. Observations (1) are shown in diagram (b). Here we are dealing with a pronounced

signal which may be recognized despite the highly fluctuated noise. To get an idea how

a signal for this voxel could look like if a conventional fMRI was used which scans many

slices, the top diagram (a) exhibits the same signal where now every 40th observation is

shown, that is, images are taken every other second. A visual stimulus activates neurons
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and this triggers a process of blood oxygenation/deoxygenation measured by MR scanner,

and it may be expected to see a pronounced hemodynamic response function. Let us check

how the proposed wavelet analysis highlights the hemodynamic response and separates it

from nuisance components of the observed BOLD signal. Diagrams (c)-(g) show how the

adaptive wavelet estimator (3) performs. Let us describe these 5 diagrams in turn beginning

with the bottom diagram (g) showing the Drift (D) which is also may be referred to as the

trend. This component reflects a slowly changing level of blood oxygenation/deoxygenation

due to neuronal activity as well as due to possible slow changes in the MR scanner. This

component is present even if the brain is rested, its formula is f̂D(t) =
∑n/29

k=0 ŝ9kφ9k(t), and

we also see the drift in (3). In the terminology of a wavelet multiresolution analysis, drift is

the smooth component defined by estimated coefficients for scale functions on the coarsest

(here number 9) scale. Let us also note that drift removes a constant shift — all other

components of the multiresolution analysis are integrated to zero. Diagram (f) shows us the

hemodynamic response of neurons to visual stimuli, this is the primary signal of interest and

it is called Visual Response (VR) in Valdez-Jasso (2010). This component is defined as

f̂V R(t) =
9∑

j=7

n/2j∑
k=1

d̂jkψjk(t). (4)

Note that the hemodynamic response to visual stimuli is defined by 3 coarsest scales of the

wavelet function ψ. The VR looks like a detrended and then correctly smoothed version of

the conventional fMRI signal shown in the top diagram (a). Let us explain why VR occupies

3 coarsest wavelet scales. Recall that each session has 5 seconds of visual stimulation and 30

seconds of rest, and this creates the frequency pattern of VR and the corresponding wavelet

scales. Also note that the periodic structure of VR is clearly seen in diagram (f). Further,

it is easy to notice that a particular shape of VR changes from one session to another.

Further, according to Valdez-Jasso (2010) dramatic changes in hemodynamic responses of

participants were observed when taken at different days.

Diagram (e) shows us the Respiratory (R) activity. This is a physiological component

occurring on frequencies of breathing and this explains the name. Respiratory component is
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defined as

f̂R(t) =
6∑

j=5

n/2j∑
k=1

d̂jkψjk(t). (5)

Let us note that for a conventional fMRI, with the period of scanning in seconds, the respi-

ratory signal cannot be observed and will be part of a noise. This is one of the reasons why

UF fMRI is so instructive and sheds light on wavelet multiresolution analysis of fMRI.

Now let us return to visualization of diagrams (a) and (e)-(f). Note that magnitude of

the respiratory signal (e) is comparable with the hemodynamic response shown in diagram

(f). This is what explains a traditional sawlike shape of the curve in diagram (a). Diagram

(d) shows us Cardiac (C) activity. This is another physiological periodic component of UF

fMRI signal which occurs with the frequency of heart beats,

f̂C(t) =
4∑

j=3

n/2j∑
k=1

d̂jkψjk(t). (6)

For a conventional fMRI this component will be a nuisance, but it is nicely visualized in

denoised UF fMRI data. Finally, diagram (c) exhibits the Noise which is the total of signals

on the two finest scales. It represents the fMRI noise. As we see, the noise is relatively large

even when it is separated from physiological components. As about its distribution, Valdez-

Jasso (2010) shows that a typical Noise component is either white Gaussian or short-memory

Gaussian.

Now we are in a position to return to the problem of choosing the number J of multireso-

lution components. As we see from Figure 1, a good choice of J allows us to observe a signal

of interest (here the hemodynamic response) on scales separated from scales where nuisance

signals are located. Because all scales correspond to specific frequencies, knowing typical

frequencies for all involved signals is paramount in choosing the number of multiresolution

components.

Another important observation, related to the topic of Big Data (see a discussion of

fMRI Big Data in Fan, Han and Liu 2014), is about data-compression property of the used

wavelet estimator. For the studied data n = 4096 and the total number of non-zero wavelet

coefficients in the estimate (3) is 256. Specifically, 8, 27, 85 and 136 wavelet coefficients

define the Drift, Visual Response, Respiratory and Cardiac components, respectively. Similar
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numbers are observed for other voxels. The conclusion is that the elaborate Visual Response

is described by just 27 coefficients instead of 4096 underlying observations.

Lessons of UF fMRI for conventional fMRI. Conventional fMRI periodically screens

a large number of slices and, depending on the number of slices, for a particular voxel

the period may be from 0.5 to 2 seconds. For the period of 2 seconds, the reader may

compare signals (a) and (b) in Figure 1. The increased period clearly creates a number of

problems with the main one being estimation of the noise, and this jargon means estimation

of parameter τ in (1). A traditional wavelet estimator considers a signal at the first scale

as a white Gaussian noise with the standard deviation equal to τ . This is the idea of the

mad (sample median recalculated into standard deviation) procedure recommended in the

wavelet literature and supported by all wavelet softwares, see Efromovich (1999a) and Nason

(2008). This approach is valid for UF fMRI when signals are measured every 50 milliseconds,

but let us explain what happens for a conventional fMRI. The frequency of collecting data is

about 25 to 26 times less frequent, and hence for conventional wavelet analysis the first scale

will combine everything from scale 1 to scales 5 or 6 for UF fMRI. Returning to Figure 1

and formulas (5) and (6), we may conclude that both the respiratory and cardiac signals will

be present on scale 1. One possible remedy is to reduce number of slices and screen voxels

more frequently, see Henson et al. (1999) and Smith et al. (2015), but still physiological

components will be present on scale 1. As a result, a lot of attention in the literature has been

devoted to reducing the deterministic physiological noise via technological, bioengineering

and statistical improvements, see Lazar (2008), Welvaert and Rosseel (2013), Patel et al.

(2016) and Azmen and Azsen (2018).

Another important lesson of the UF fMRI, discussed in Valdez-Jasso (2010), is that phys-

iological components observed at different voxels, while originated by the same deterministic

sources, are not the same and not even scale-location transformations of each other. At the

same time, geometrically close voxels have a larger likelihood to exhibit similar physiological

patterns.

Finally, UF fMRI shows that the standard deviation τ of the pure MR noise is not the

same for all voxels, in other words, each voxel may have its own τ . This is a complication

that will be addressed shortly.
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NEUROPLASTICITY EXPERIMENT AS EXAMPLE OF

CONVENTIONAL TASK fMRI

Neuroplasticity, also known as brain plasticity and neural plasticity, is the ability of the

brain to change throughout an individual’s life, e.g., brain activity associated with a given

function can be transferred to a different location. There has been a growing interest in using

fMRI to study neuroplasticity, see a discussion in Thomas et al. (2007), Dimyan and Cohen

(2011), Sharma, Classen and Cohen (2013), Faivre et al. (2015), Pantano et al. (2015), and

Papoutsi et al. (2018).

Following Tung et al. (2013), let us present an example of a conventional task fMRI neu-

roplasticity experiment that will help us to explain wavelet analysis and its challenges. The

aim of experiment was to study changes in connectivity between left and right motor cor-

tices after right-hand button clicking training sessions, and it was conducted on twenty-four

healthy right-handed adult volunteers (participants) by the University of Texas Southwest-

ern Medical Center. Note that the left hemisphere (its motor cortex) is in charge of the

right hand, and it is of interest to understand the reaction (if any) of the right hemisphere.

The experiment included three scan runs: (1) A five-minute pre-training fMRI run when a

participant was instructed to just look at a white crosshair. Due to the five minute time and

the repetition time of 1 second, 300 observations of the BOLD signal were obtained for each

voxel; (2) A twenty-three-minute motor task period when a volunteer was asked to press by

a right-hand thumb a button three times when the color of the cross-hair changed. The color

change occurred every 27-32 seconds randomly and there were 40 stimulations. The motor

task period was divided into 4 parts and 340 observations of the BOLD signal were obtained

for each part. (3) A five-minute post-training fMRI run when a volunteer was instructed

to just look at a white crosshair. 21 axial slices were periodically screened and this yielded

repetition time, which is the time between successive scans of the particular volume of tissue,

of 1 second. Overall, 300 observations of the BOLD signal were obtained for each voxel per

each run. Further, available fMRI data were preprocessed using the standard software AFNI

and physiological fluctuations in the signal time course were removed by regressing out time

courses of the whole brain white matter, cerebral spinal fluid, and six motion vectors (Tung
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et al. 2013, Caballero-Gaudes et al 2017).

Now let us summarize information available for statistical analysis. For 1000 voxels in

each hemisphere, we have time series of BOLD signals for: pre-training (resting) run with 300

observations; four motor-task parts with 340 observations per part; post-training (resting)

run with 300 observations.

Because of the large number of interhemispheric voxel-pairs and large fMRI noise, a

standard and well accepted solution is based on averaging time series of images in each

hemisphere, calculating correlations for average images in pre- and post-training runs, and

then using a paired t-test for the 24 participants. The t-test supported a conjecture about

the increase in correlation after training sessions among the 24 participants and, as a result,

supported the conjecture about the brain plasticity (Tung et al. 2013). On the other hand,

the averaging made it impossible to study brain connectivity on voxel-to-voxel level.

WAVELET DECOMPOSITION FOR PLASTICITY EXPER-

IMENT

Efromovich and Smirnova (2014) made an attempt to analyze the plasticity fMRI data via

a wavelet approach on a voxel-to-voxel level.

For a particular voxel the BOLD signal is observed every second with 300 observations

for the pre- and post-training fMRI runs, and 340 observations for the training runs. The

used Discrete Wavelet Transform (DWT) is based on a dyadic number n of observations,

and hence we choose n = 256 = 28 observations for each run (it will be explained later how

to use all observations). Further, following Efromovich (1999a) we rescale signals for all runs

onto the unit interval [0, 1]. Then an observed continuous BOLD signal Ỹ (t), t ∈ [0, 1] for

an fMRI run may be written as

Ỹ (t) =

n/25∑
k=1

s̃5kφ5k(t) +
5∑

j=1

n/2j∑
k=1

θ̃jkψjk(t). (7)

Here five wavelet scales are used in the decomposition, and this choice will be explained

shortly.
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Now we are in a position to explain how the wavelet expansion (7) allows us to define the

motor-response (MR) BOLD-component of interest which reflects either a neuron activity

during pre- or post-training runs or a hemodynamic response during training runs (the

motor signal). First, let us look at this issue via a traditional frequency approach, and then

comment on it via our experience with the UF fMRI. Each scale j in a wavelet multiresolution

decomposition corresponds to a specific frequency. In our case, because a signal is observed

every second, the corresponding frequency of each scale is 2−j. As a result, the frequency

of the first scale is 0.5 Hz, the second is 0.25 Hz, the third is 0.125, etc. During rest runs,

the traditional frequency bandpass for the BOLD-component of interest is 0.01-0.1 Hz, while

hemodynamic responses during training runs last 15-20 seconds and the stimuli occur every

27-32 seconds (Lazar 2008, Birn 2012, Tung et al. 2013). As a result, the observed MR

BOLD-component of interest may be written as a combination of scales 3, 4 and 5, namely

f̃MR(t) := B̃(t) :=
5∑

j=3

n/2j∑
k=1

θ̃jkψjk(t). (8)

This definition also follows from our previous UF fMRI analysis because in the plasticity

experiment the frequency of measurements for each voxel is 20 times slower, and this is why

in (8) everything shifts 4 scales down with respect to (4). The presented analysis explains

the choice of five wavelet scales.

Empirical wavelet coefficients θ̃jk are contaminated by noise. Namely, if

B(t) =
5∑

j=3

n/2j∑
k=1

θjkψjk(t) (9)

is the underlying BOLD-component of interest, then

θ̃jk = θjk + n−1/2τξjk. (10)

Here ξjk is a standard Gaussian random variable, n−1/2τξjk is the empirical fMRI wavelet

noise, and the reader may compare (10) with (1).

As we already know, the low-frequency component
∑n/25

k=1 s̃5kφ5k(t) represents the fMRI

background drift and is not of interest to us. Now let us turn our attention to the first

two wavelet scales. As we already know from the UF fMRI wavelet analysis, these two
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scales are now combine together all unfiltered physiological fluctuations and the empirical

fMRI noise of interest. We may also understand this from the frequency analysis. The

frequency of physiological fluctuations is typically greater than 0.2 Hz (Barrett et al. 2016),

and this is why these fluctuations are captured by the two finest scales. While we are not

interested in the signals on the two finest scales per se, the first scale is traditionally used to

estimate parameter τ by the above-mentioned procedure mad. Unfortunately, as it is shown

in Efromovich and Wu (2018), using this standard procedure significantly overestimates

the noise due to the presence of physiological components. The next section explains how

this issue may be resolved via taking into consideration the presence of relatively large

physiological components.

ESTIMATION OF NOISE IN CONVENTIONAL fMRI

In the wavelet context, the phrase “estimation of noise” means that we would like to estimate

the standard deviation τ of the noise in model (1) or equivalently in model (10). The

problem has a simple solution, via the mad procedure, for UF fMRI where the first scale

contains only the empirical noise, but as we also know it becomes extremely challenging for

conventional fMRI due to the presence of unfiltered physiological components on the first

scale, see a discussion in Chang and Glover (2009), Weissenbacher et al. (2009), Birn (2012),

He and Liu (2012), Welvaert and Rosseel (2013), Murphy, Birn and Bandettini (2013) and

Caballero-Gaudes and Reynolds (2017). A traditionally used approach is to assume that

everything is filtered out and then use mad for the first scale, see reviews in Efromovich

and Smirnova (2014), Smith et al. (2015), Patel and Bullmore (2016), Zhang, Z. et al.

(2016), Preti et al. (2017). The consequences are that the estimated τ may be dramatically

larger than an underlying one, and this may prevent us from feasible statistical analysis of

neuron connectivity on voxel-to-voxel level because a majority of active pairs of voxels will

be declared as nonactive. Further, a larger noise yields oversmoothed estimated signals, and

interesting examples and a discussion may be found in Efromovich and Wu (2018).

Now let us explain how the problem of estimation of the noise in the presence of a de-

terministic additive component, like an unfiltered physiological signal, may be solved. The
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underlying idea is that, according to the lessons of UF fMRI, for an active voxel there

may be a geometrically close voxel with a similar deterministic additive component. Us-

ing this fact we can regress finest scales of one voxel on another and then estimate τ .

Let us explain this solution more formally for the plasticity example. Denote by Ỹ ′l :=∑2
j=1

∑n/2j

k=1 θ̃jkψjk(l/n) the sum of first and second wavelet scales for a voxel of interest, and

by Y ′l :=
∑2

j=1

∑n/2j

k=1 θjkψjk(l/n) the corresponding underlying deterministic component,

l = 1, . . . , n. According to the above-presented explanation, the deterministic component

may be explained by physiological factors and hence it should be close to the deterministic

component X ′l of a nearby voxel, more precisely it is reasonable to assume that Y ′l = βX ′l

(note that signals on the first and second scales are integrated to zero so there may be

only the scale/slope term β in the relation). As a result, we may regress the observed

Ỹ ′ := {Ỹ ′l , l = 1, 2 . . . , n} on the observed X̃ ′ := {X̃ ′l , l = 1, 2, . . . , n}. Note that here we are

dealing with the regression where the predictor is also observed with errors, the regression

errors are of the primary interest, and we can estimate the standard deviation τ of the regres-

sion error as explained in Efromovich (1999a) and Casella and Berger (2002). We know from

UF fMRI that the closer two voxels are, the more similar the physiological components are.

In order to avoid the slice timing issue and to align with the assumption, it is suggested to

choose a “nearby” voxel as the one with largest correlation among the 3 × 3 vicinity within

the same slice. Let us also note that the choice of a larger vicinity, tested in simulations and

on real data in Efromovich and Wu (2018), made no difference.

ESTIMATION OF CROSS-COVARIANCE MATRICES

Estimation of large-p-small-n sparse covariance matrices is one of the hottest topics in modern

statistics, and in part it is motivated by the exponentially growing microarray’s applications.

If X := (X1, . . . , Xp) is a p-variate random vector and given a sample X1, . . . ,Xn, the prob-

lem is to estimate the covariance matrix of X, see a comprehensive review in Cai (2017).

One of the specifics of the problem is that the main diagonal plays a special role here because

it contains relatively large variances, and in many applications all significant elements of the

matrix are near the diagonal. There is no such anchor in fMRI cross-covariance matrices
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because here we are typically interested in connectivity between different regions (cortices),

and in general estimation of and inference for cross-covariance matrices are more involved.

Nonetheless, the dramatically larger amount of statistical theory developed for covariance

matrices may serve as an inspiration and the model to follow. In this section wavelet-based

estimation of cross-covariance matrices is considered and an asymptotic result, matching

known ones for covariance matrices, is presented. Then the next section explains the proce-

dure of simultaneous inference with a fixed family-wise error.

To be specific in a wavelet expansion, we continue to use the plasticity example. Consider

an rth voxel and lth voxel in the right and left hemispheres, respectively, and assume that we

are interested in pairs (r, l) from a set N . In what follows indexes r and l explicitly indicate

that we are dealing with voxels from the right and left hemispheres. Then, following (9),

denote by Br(t) and Bl(t) underlying BOLD-components of interest,

Br(t) =
5∑

j=3

n/2j∑
k=1

θr,jkψjk(t), Bl(t) =
5∑

j=3

n/2j∑
k=1

κl,jkψjk(t), (11)

and note the new notation for wavelet coefficients. Following (10) introduce empirical wavelet

coefficients θ̃r,jk = θr,jk + n−1/2τrξr,jk and κ̃l,jk = κl,jk + n−1/2τlηl,jk, where ξr,jk and ηl,jk are

independent standard normal random variables. Using orthogonality of wavelet functions

and the Parseval identity, we can write that the cross-covariance σrl between Br(t) and Bl(t)

is

σrl :=

∫ 1

0

Br(t)Bl(t)dt =
5∑

j=3

n/2j∑
k=1

θr,jkκl,jk. (12)

Then the natural unbiased estimate of the cross-covariance is the plug-in estimate

σ̃rl :=
5∑

j=3

n/2j∑
k=1

θ̃r,jkκ̃l,jk = σrl+n
−1/2

5∑
j=3

n/2j∑
k=1

(τrκl,jkξr,jk+τlθr,jkηl,jk+n−1/2τrτlξr,jkηl,jk). (13)

Similarly to recent results on estimation of sparse covariance matrices, a number of

interesting theoretical results, that shed light on asymptotic estimation, may be established

for the cross-covariance. For instance, consider the case of a p1× p2 cross-covariance matrix,

denote by Nn the set of scales for the Bold-component of interest, and recall that in the

plasticity experiment n = 256 and N256 = {3, 4, 5}. Then a hard-threshold estimator

σ̂rl := I
(
|σ̃rl| >

√
2 ln(p1p2) n

−1/2v̂rl

)
σ̃rl, (14)
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where v̂rl := [
∑

j∈N
∑n/2j

k=1 (τ̂ 2r κ̃
2
l,jk+τ̂ 2l θ̃

2
r,jk)]1/2, is rate-minimax over a traditionally considered

in the covariance literature class of sparse matrices and under the matrix l1-norm used as a

loss function. More can be found in Efromovich and Wu (2018).

The minimax property of estimator (14) sheds light on several challenges in inference for

large-p-small-n cross-covariance matrices. First, even if n is large (in hundreds) but estimator

of τ does not take into account unfiltered physiological signals, no feasible simultaneous

inference, for instance simultaneous confidence intervals, may be obtained for all pairs of

voxels, see a discussion in Efromovich and Wu (2018). This is why accurate estimation of

the level of noise is paramount. Second, it is true that in other statistical applications the

sample size n = 256 may be considered as a large one and using the asymptotic theory

becomes feasible. In fMRI data this may no longer be the case due to the following. If we

return to (13), then the variance of σ̃rl is v2rl :=
∑5

j=3

∑n/2j

k=1 [τ 2r κ
2
l,jk + τ 2l θ

2
r,jk] + (7/32)τ 2r τ

2
l ,

and we can compare it with the above-defined v̂rl motivated by asymptotic theory. The term

(7/32)τ 2r ν
2
l may be comparable with the double sum and hence it cannot be ignored. It will

be explained shortly how to deal with this complication.

Now let us consider the problem of construction of simultaneous confidence sets for

elements of the cross-correlation matrix ρrl := σrl/[σrrσll]
1/2. Using (13), a plug-in estimation

may be used. To get simultaneous confidence sets for the estimator, we need to understand

how to evaluate large deviations for the error term on the right side of (13). As it was

explained earlier, for a typical n and levels of noise in fMRI data, we cannot assume that

the distribution of the error term is normal. At the same time, it is possible to show that

the distribution belongs to a class of sub-exponential distributions, and while this precludes

us from finding close formulas for confidence sets, an exponential upper bound may be

numerically computed as explained in Efromovich and Wu (2018).

We need to comment on two issues. The first one is that we declare an interhemispheric

neural pathway between two voxels as active if the corresponding cross-correlation exceeds

a specific threshold. In particular, Efromovich and Wu (2018) recommend the threshold

0.6, and this defines the inference procedure for a single pair of voxels. Results for other

thresholds may be found in that paper. The second issue is how to propose a simultaneous

inference for all p1×p2 pairs of voxels. Simultaneous inference is a well researched statistical
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problem and a number of solutions are suggested for the case when the inference for a single

test is proposed. Classical Bonferroni procedure is a standard tool, but Efromovich and Wu

(2018) show that for the case of large and sparse fMRI cross-correlation matrices the more

elaborate Holm procedure yields a significant edge in terms of activated pairs.
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Figure 2: The number of active interhemispheric neural pathways for each participant in the

neuroplasticity experiment during pre- and post-training. A neural pathway between two

voxels in different hemispheres is declared as active if, with the simultaneous 0.95 degree of

confidence over all considered neural pathways, the cross-correlation exceeds the threshold

level 0.6.

To shed light on how the proposed simultaneous inference performs for the plasticity

experiment, Figure 2 summarizes numbers of active pairs (pathways) for pre-training and

post-training sessions for each of 24 participants in the neuroplasticity experiment. Here

the simultaneous 0.95 degree of confidence (confidence coefficient) is used to find cross-

correlations exceeding threshold 0.6. The two top rows show statistics for patients with
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increased, from pre- to post-training, number of active pairs (note the different scales used

in these rows). These are cases that support the neural plasticity phenomenon. The bottom

row presents results for 8 participants with decreased number of active pathways. Note the

large volatility in the number of active pathways among the 24 young and healthy partici-

pants. Further, Efromovich and Wu (2018) show that even during task sessions reactions of

participants are remarkably different. This diversity during task fMRI sheds a new light on

complexity of the problem of describing neuron networks during resting-state fMRI discussed

in the next section.

WAVELET ANALYSIS FOR RESTING-STATE fMRI

Study of functional connectivity of the human brain at rest is another active area of fMRI

applications. One of the main findings is that brain regions can be synchronised in activity

despite the absence of any task or stimulus. Overview of recent developments in brain struc-

tural and functional resting-state connectomics, including a thorough discussion of fMRI

studies, may be found in Cabral, Kringelback and Deco (2017). State-of-the-art and per-

spectives of the dynamic functional connectomics are presented in Chen et al. (2017), Preti,

Bolton and Ville (2017) and Tachmasian et al. (2017). A review of network mechanisms

can be found in Mill, Ito and Cole (2017) and Liu et al. (2018), while Du, Fu and Calhoun

(2018) present a review of results and new challenges in using functional connectivity for

classification and prediction of brain disorders.

From statistical point of view, it is fair to say that while there are many common issues

and methods in analysis of task and resting-state fMRI, the latter is more challenging due to

the necessity to describe dynamically changing neural networks without underlying frame-

work of tasks and stimulus. Further, as we know from the previos sections, BOLD signals

and number of activated pairs of voxels is smaller during the rest while the level of noise is

the same. Interesting discussions of task versus resting-state fMRI may be found in Di et al.

(2013), Mwansisya et al. (2017), Shi et al. (2018), and Zhang S. et al. (2016).

To study dynamic functional connectivity in resting-stage fMRI, the most commonly used

analytic strategy is the sliding window methodology, where the connectivity between brain
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regions is computed as Pearson correlation between pairs of BOLD signals over a temporal

interval spanned by a rectangular window. This computation is repeated iteratively by shift-

ing the window by a specific step every time, see Mill, Ito and Cole (2017). Building on this

core framework, improvements in several directions have been developed: (i) Using different

window types (kernel functions); (ii) A frame-wise analysis where only moments when the

BOLD signal exceeds a threshold are retained for the analysis, and using temporal model-

ing, see Preti, Bolton and Van De Ville (2017); (iii) Activity in a set of regions of interest

is modeled using a multivariate Gaussian distribution with a mean vector and covariance

matrix that are allowed to vary as the experiment progresses. As the computation of the

covariance matrix might be difficult, imposing sparsity is recommended and a corresponding

discussion may be found in Xu and Lindquist (2015) and Wee et al. (2016b); (iv) Using

of regularization strategy to the precision matrix, the inverse of the covariance matrix, is

discussed in Allen et al., 2014, Wee et al. (2016) and Marusak et al. (2017). Further,

conditional rather than marginal independence may be enforced by limiting the amount of

non-zero coefficients of the precision matrix, which is expected to be particularly useful when

the number of observations (time points) at each node are limited, see Xu and Lindquist

(2015). Among other statistical methods used in data-driven classification and prediction,

let us mention spatial independent component analysis, independent vector analysis, support

vector machines, linear discriminant analysis, and artificial neural network, see a review in

Du, Fu and Calhoun (2018).

Wavelet analysis, as it could be expected, has been extensively used in resting-state fMRI

studies, see a discussion and reviews in Smith et al. (2015), Patel and Bullmore (2016),

Zhang Z. et al. (2016) and Skidmore et al. (2017). Let us point upon some specifics in the

resting-state wavelet analysis. A majority of wavelet studies are done not using DWT but

maximal overlap discrete wavelet transform (MODWT), which is also may be found in the

literature under names undecimated (or nondecimated) DWT, stationary DWT, translation

(or time) invariant DWT, and redundant DWT, see Percival and Walden (2000). The main

attractive feature of MODWT for analysis of resting-state fMRI is that unlike the DWT,

MODWT is defined naturally for all samples sizes and not just dyadic. Further, MODWT

forms multiresolution analyses and preserves wavelet power spectrum under circular shifts.
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Further, MODWT is supported by all main wavelet software packages. Its drawback is

that MODWT is not orthonormal and highly redundant. Further, theoretically we know

dramatically less about statistical estimation and inference for MODWT, and this is an

interesting area of future research. At the same time, let us point upon empirical study in

Zhang, Z. et al. (2016) that compares using DWT and MODWT in a resting-state experiment

for 29 healthy controls and 29 participants with chronic schizophrenia. The authors conclude

that in detecting differences between the two groups, MODWT produces more stable results.

It is an open and interesting problem to expand the above-presented theoretical task-

fMRI results to resting-state fMRI. Another open and challenging problem is to use wavelet

analysis for solving change point resting-state problems discussed in Xu and Lindquist (2015).

CONCLUSION

The article reviews rapidly emerging fMRI wavelet applications in statistical analysis of the

dynamic functional networks of the human brain with a great potential to treat a number

of brain diseases. Functional magnetic resonance imaging is a powerful tool that may allow

us to analyze brain activity on a voxel level, but it is fair to say that this opportunity is

often skipped due to Big Data problem and large fMRI noise, and instead averaging over

large areas of interest is used. Wavelet analysis allows to resolve these issues and then study

functional networks on a voxel-to-voxel level. It is explained how wavelets help to solve the

problem of data reduction, filtering noise, estimation of and inference for large-p-small-n

matrices. In short, rephrasing the Voltaire’s “Si Dieu n’existait pas, il faudrait l’inventer,”

we may say that if wavelets did not exist, it would be necessary to invent them for fMRI.

Functional connectivity in the brain is studied via both task and resting-state fMRI

experiments. The latter presents its own challenges due to lower signal-to-noise ratio and

the necessity to follow the dynamic of functional connectivity in the absence of any task or

stimulus. As a result, even different wavelet transforms are recommended, and a problem of

finding change points becomes a central one. It is also fair to conclude that the theory of

wavelet analysis for resting-state fMRI is less developed and there is a growing need in its

development and making it on par with the wavelet theory for the task fMRI.
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Despite a great progress in improving the fMRI technology and creating smart softwares

for decreasing physiological and movement noise, this noise is still the main obstacle in

statistical analysis of fMRI data. The article explains how a standard regression procedure,

which exploits the presence of physiological noise, helps to estimate empirical wavelet noise.

The final remark is about future research. If the reader is thinking about joining re-

searchers working on fMRI applications, it is a right time to do this. From statistical point

of view, there are many interesting and open problems about efficient estimation of and

inference for maximal overlap discrete wavelet transform, or how to translate the emerging

family of theoretical results on estimation of large-p-small-n covariance/correlation matrices

proposed for analysis of microarrays into corresponding ones for fMRI. Simultaneous statis-

tical inference for hundreds of thousands pairs of voxels and developing the theory of change

point and sequential sampling are other attractive areas of research. Further, evolving fMRI

experiments create new statistical challenges. As an example, the article reviews results of

the neuroplasticity experiment for 24 healthy participants where everyone exhibited his own

personality with sometimes dramatic differences in reaction to the same tasks and stimulus.

This is what makes the problem of exploring the human brain so challenging and, keeping in

mind the potential for the treatment of brain diseases, so rewarding. Wavelets is an excellent

tool for analysis of fMRI, and they also may be used for analysis of electroencephalography

(EEG) and magnetoencephalography (MEG), see a discussion and reviews in Bruns (2004),

Muthukumaraswamy and Johnson (2004), Kiebel et al. (2005), Liao et al. (2013), Faust

et al. (2015), El-Samie (2018), Ishii et al. (2018), and van Viet et al. (2018). Functional

wavelet analysis of fMRI, EEG and MEG is another attractive topic of research, see Raz and

Turetsky (1999) and Morettin, Pinhero and Vidakovic (2017).
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