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Analysis of truncated and censored data is a familiar part of actuarial practice, and so far 
the product-limit methodology, with Kaplan-Meier estimator being its vanguard, has 
been the main statistical tool. At the same time, for the case of directly observed data, 
the sample mean methodology yields both efficient estimation and dramatically simpler 
statistical inference. This paper shows that for truncated and censored data a sample 
mean approach is natural in estimation of the hazard rate (also called the force of 
mortality and failure rate), and note that in actuarial science this characteristic of a 
random variable is often of interest on its own. Further, the proposed sample mean 
approach allows us to understand what and why we can and cannot estimate for 
truncated and censored data. In particular, it is explained why in general only a 
conditional density can be estimated. Results are illustrated via simulated and real 
examples. 
This paper was funded through Grants from the CAS Grant, PI and the National Science 
Foundation (NSF) Grant DMS-1915845, PI. 

1. INTRODUCTION 

Survival analysis (also known as reliability theory, duration 
analysis, event history analysis or duration modeling) is a 
familiar topic for actuaries. One of the main notions of sur
vival analysis is the hazard rate function  of a contin
uous random variable  defined as 

Here  is the probability density of  and 
 is the survival function (which is equal 

to  where  is the cumulative 
distribution function). The hazard rate, which is also re
ferred to as the force of mortality, the intensity rate, the 
failure rate or the mortality of claims, quantifies the tra
jectory of imminent risk and, similarly to the probability 
density or the survival function, is the characteristic of 
a random variable. A discussion of the hazard rate can 
be found in actuarial texts Bowers et al. (1997), Dickson, 
Hardy, and Waters (2009), Cunningham, Herzoc, and Lon
don (2012) and Klugman, Panjer, and Willmot (2012). Fur
ther, there are available actuarial handbooks and softwares 
that contain information about more frequently used para

metric hazard rates, see Richards (2011), Nadarajah and 
Bakar (2013), Charpentier (2015) and R package “ActuDis
tns”, see also the monograph Rinne (2014) which is solely 
devoted to the hazard rates. 

Interest in hazard rates is the specific of survival analysis 
which differentiates it from the classical probability theory 
that traditionally characterizes a continuous random vari
able via its probability density. Another specific, which dif
ferentiates survival analysis from statistics, is that survival 
observations of  are typically modified by truncation and/
or censoring with main cases being the left truncation (LT) 
and right censoring (RC), see a discussion in Klugman, Pan
jer, and Willmot (2012), Frees, Derrig, and Meyers (2014), 
Roninson (2014) and Albrecher, Beirlant, and Teugels 
(2017). 

For the following discussion it is convenient to recall two 
classical examples of LTRC data. The first one is “Home-
Insurance” example when a home insurance policy has an 
ordinary deductible  and a policy limit on payment 
the available information is the payment on an insurable 
loss, and the random variable of interest  is the insurable 
loss. In a classical statistical setting one would observe a 
direct sample  from  and then use it to esti
mate either the survival function  or the probabil
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ity density  see the book Efromovich (1999). For the 
“Home-Insurance” example, we get information only about 
losses that exceed the deductible (and this creates the left 
truncation) and even for those we only know the minimum 
of the loss and the limit (and this creates the right censor
ing). This example of the LTRC data is so simple and well 
understood, that it is used in the SAS software manual (re
call that the iconic SAS software is primary created for bi
ological and medical applications). Another specific of the 
“Home-Insurance” example is that the deductible  is al
ways smaller than the limit  and this may not be the 
case in other applications. So let us recall another classical 
“Surgery” example (it will be complemented shortly by ca
sualty examples) when patients, who had a cancer surgery 
in the past, are checked during a study, that begins at some 
specific time (so-called baseline) and has a fixed duration, 
with the aim to evaluate the distribution of a time to the 
cancer relapse. In this case (compare with the “Home-In
surance” example)  is the time from the surgery to can
cer relapse, truncation  is the time from surgery to the 
baseline (beginning of the study), and censoring time  is 
the smallest among times from surgery to the end of the 
study or until a patient is no longer able or willing to par
ticipate in the study. Note that in the “Surgery” censoring 
may occur before truncation, for instance, moving from the 
area of the study or death from a reason other than cancer 
may occur before the baseline. Another important differ
ence between the two examples is that data in the “Home-
Insurance” example are collected via passive observations, 
while in the “Surgery” example observations are collected 
via a controlled experiment with a medical examination of 
participants at the baseline. In particular the latter implies 
that a participant with  is included in the study 
(not truncated by  As a result, in survival analysis lit
erature it is traditionally assumed that  is truncated by 

 only if  and this approach is used in the paper. 
Now recall that in the “Home-Insurance” example trunca
tion occurs if  and this is the definition of LT used, 
for instance, in Klugman, Panjer, and Willmot (2012). The 
difference in the definitions of LT may be critical for small 
samples of discrete variables, but in the paper we are deal
ing with continuous lifetimes when  More 
discussion of the LTRC and different statistical models may 
be found in Klein and Moeschberger (2003) and Gill (2006). 

In addition to a number of classical casualty insurance 
survival examples like fires, magnitudes of earthquakes or 
losses due to uninsured motorists, discussed in the above-
mentioned classical actuarial books, let us mention several 
others that have gained interest in the literature more re
cently. The insurance attrition is discussed in Fu and Wang 
(2014). Albrecher, Beirlant, and Teugels (2017) and 
Reynkens et al. (2017) explore a number of survival analysis 
examples arising in non-life reinsurance, in particular ex
amples with lifetimes of insurance claims. Survival analysis 
of the credit risk of a portfolio of consumer loans is another 
hot topic when both banks and insurers are required to de
velop models for the probability of default on loans, see a 
discussion in Andreeva (2006), Malik and Thomas (2010), 
Stepanova and Thomas (2002) and Bonino and Caivano 

(2012). A comprehensive discussion of the longevity of cus
tomer relations with an insurance company may be found 
in Martin (2005). Survival analysis of foster care reentry is 
another interesting example, see Goering and Shaw (2017). 
Egger, Radulescu, and Rees (2015) and Yuan, Sun, and Cao 
(2016) discuss the problem of directors and officers liability 
insurance. Survival analysis of the lifetime of motor in
surance companies in South Africa is presented in Abbot 
(2015), while Lawless, Hu, and Cao (1995) analyze auto-
warranty data. There is also a vast literature devoted to the 
mortality of enterprises and litigation risks related to IPOs 
(Initial Public Offerings), see a discussion in Daepp et al. 
(2015), Håkanson and Kappen (2016) and Xia et al. (2016). 
Note that IPO examples are similar to the above-discussed 
“Surgery” example. Indeed, in an IPO example time 
from the onset of the IPO to its bankruptcy is the lifetime of 
interest, truncation  is the time from the IPO’s onset to 
the baseline of the study, while censoring  is the smallest 
among times from the onset to another reason of the IPO’s 
death like merger, acquisition, privatization, etc. or the end 
of the study. Note that  may be smaller than  , and 
this is why the example resembles the “Surgery”. Finally, let 
us mention the problem of manufacturer warranties, see an 
actuarial discussion in Hayne (2007) and Walker and Ceder
burg (2013). A particular example with centrifuges will be 
discussed in Section 5. 

Now let us explain the main motivation of the paper. For 
the case of direct observations  the empirical 
survival function (esf) 

is the main tool for estimation of the survival function. 
Here and in what follows  denotes the indicator func
tion. Note that (1.2) is the sample mean estimator because 

 and hence the esf is a nonpara
metric (no underlying model is assumed) estimator and 
it is unbiased because  Further, be
cause the esf is the sum of independent and identically 
distributed indicators, its variance is 

 and to realize this note that in 
(1.2) we are dealing with the sum of independent Bernoilli 
variables. Further, inspired by the sample mean esf, it is 
possible to propose a density estimator  motivated 
by the sample mean estimation, see Efromovich (1999, 
2010, 2018). 

The situation changes rather dramatically for the case 
of survival data. Kaplan and Meier (1958), for the case of a 
right censored sample  from the pair 

 proposed the fol
lowing product-limit (Kaplan–Meier) estimator, 

Here   are ordered pairs according 
to  that is  A modification of (1.3) 
for the case of LTRC data may be found in the above-men
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tioned texts, see for instance Klugman, Panjer, and Willmot 
(2012). While the texts present a number of really good ex
planations of the product-limit methodology, product-limit 
estimators are difficult for statistical inference. Indeed, for 
instance in (1.3) we are dealing with the product of depen
dent and not identically distributed random factors, and 
while one can take a (negative) logarithm to convert it into 
a sum (and the sum becomes close to the Nelson–Åalen 
estimator of the cumulative hazard), still actuaries, who 
took advanced graduate classes, may recall that while there 
exists the Greenwood estimator of the variance, deducing 
a closed form for the variance is complicated, and even 
proving consistency requires using the theory of counting 
processes, martingale arguments or other advanced statis
tical tools, see a discussion in Roth (1985), Flemming and 
Harrington (1991) and Gill (2006). 

The main aim of the paper is to explain that for left trun
cated and/or right censored data it is natural to begin sta
tistical analysis with nonparametric estimation of the haz
ard rate which can be done using a sample mean approach. 
The attractive feature of this approach is that it plainly ex
plains what can and cannot be estimated for LTRC data. In 
particular, it will be shown how LT and RC affect estimation 
of the left and right tails of the distribution. The paper also 
explains how to use graphics for statistical analysis of LTRC 
data. 

The rest of the paper is as follows. Section 2 explains 
LTRC model, introduces main notations, and develops 
probability formulas. It also sheds light on why estimation 
of the hazard rate is natural for LTRC data. Section 3 is de
voted to estimation of the hazard rate. Section 4 considers 
estimation of the probability density, and it explains why 
in general only characteristics of a conditional distribution 
may be estimated. Examples and a numerical study, illus
trating the proposed analysis of LTRC data, are presented in 
Section 5. Then, after the Conclusion, the reader may find 
the list of main notations used in the paper. 

2. LTRC MODEL AND PROBABILITY FORMULAS 

We begin with the probability model for the mechanism of 
generating a sample of size  of left truncated and right 
censored (LTRC) observations. The above-presented 
“Home-Insurance” and “Surgery” examples may be useful 
in understanding the mechanism, and in what follows we 
use notations of those examples. 

The LTRC mechanism of data modification is defined 
as follows. There is a hidden sequential sampling from a 
triplet of nonnegative random variables  whose 
joint distribution is unknown.  is the truncation random 
variable,  is the random variable of interest, and  is 
the censoring random variable. Right censoring prevents us 
from observing  and instead we observe a pair 
where  and  is the in
dicator of censoring. Left truncation allows us to observe 

 only if  To be more specific, let us describe 
the LTRC model of generating a sample 

 Suppose that  is 
the th realization of the hidden triplet and that at this mo

ment there already exists a sample of size  of LTRC ob
servations. If  then the th realization is 
left truncated meaning that: (i) The triplet  is 
not observed; (ii) The fact that the th realization occurred 
is unknown; (iii) Next realization of the hidden triplet oc
curs. On the other hand, if  then the 
LTRC observation     

 is added to the LTRC sample whose size be
comes equal to  The hidden sampling from the triplet 

 stops as soon as 
Because in what follows we are considering only left 

truncation and right censoring, we may skip terms left and 
right for truncation and censoring, respectively. 

Now let us make an interesting probabilistic remark 
about the sequential sampling. The random number  of 
hidden simulations, required to get a fixed number  of 
LTRC observations, has a negative binomial (also referred 
to as binomial waiting-time or Pascal) distribution which 
is completely defined by the integer parameter  and the 
probability  of success. On the other 
hand, if the total number  of hidden realizations is known 
(for instance, in the “Surgery” example this is the total 
number of surgeries), then the random number of partici
pants in the study has a binomial distribution which is com
pletely characterized by the above-mentioned probability 
of success and  trials. In our setting we are dealing with 
the former case and fixed  and the remark sheds addi
tional light on the LTRC model. 

In what follows it is assumed that the continuous and 
nonnegative random variable of interest  is independent 
of  while  and  may be dependent and have a 
mixed (continuous and discrete) joint distribution. 

Now we are ready to present useful probability formulas 
for the observed variables. Write, 

Here in the first equality the definition of truncation is 
used, the second equality is based on definition of the con
ditional probability, the third one uses notation 

for the probability to avoid the truncation and the fact 
that event  implies  and the 
last equality uses the independence of  and 

Differentiation of (2.1) with respect to  yields the fol
lowing formula for the mixed density, 

In (2.3) the second equality uses definition of the hazard 
rate, and let us explain the last equality. Write, 
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In (2.4) the first equality is based on the definition of trun
cation, the second equality uses notation (2.2) and the defi
nition of conditional probability, the third equality is based 
on the fact that events  and 

 are identical, and the fourth uses the in
dependence of  and  Relations (2.3) and (2.4) 
are verified. 

In its turn, (2.3) implies that for the hazard rate of the 
variable of interest  we get the following relation, 

While the top expression in (2.5) is a plain corollary from 
(2.3), the bottom one deserves a discussion. If 
then the truncation precludes us from recovering the left 
tail of the distribution of interest, while if 
then the censoring may preclude us from recovering the 
right tail of the distribution of interest. Further, as we will 
see shortly, the bottom line in (2.5) explains why in general 
we can estimate only a conditional distribution of  and 
this is exactly what Kaplan–Meier, Nelson–Åalen–Breslow 
and other known product-limit estimators do, see Gill 
(2006). 

Because the probability in (2.5) plays a pivotal role, let 
us stress that it can be expressed as 

and further 

If  is a continuous random variable, then in (2.7) we have 
 and the formula becomes enlightened. 

We may conclude that the probability  defined in 
(2.6), describes the complexity of LTRC and how it affects 
the quality of estimation. Let us explain the last sentence 
more deliberately. According to (2.5), if  then the 
hazard rate is equal to the density of observed variables di
vided by the probability  Density  can be es
timated with traditional accuracy known for direct observa
tions, but then it is divided by the probability  which 
always has vanishing tails created by LTRC (to realize that, 
look at (2.7)). This is what complicates estimation of the 
hazard rate as well as any other characteristic of the distri
bution of 

According to (2.5) the hazard rate is expressed directly 
via characteristics of observed variables. In particular, be
cause the probability  may be written as the expecta
tion  we can propose the follow
ing sample mean estimator of the probability, 

In (2.8) we are dealing with the sum of independent 
Bernoulli variables, and hence it is straightforward to con
clude that the sample mean estimator of  is unbiased 
and its variance is 

3. ESTIMATION OF THE HAZARD RATE FOR 
LTRC DATA 

While estimation of a survival function by step-wise esti
mators (like Kaplan–Meier or Nelson–Åalen–Breslow) is a 
familiar topic in classical statistics, developing smooth es
timates of the density or the hazard rate is a special topic in 
the modern theory of nonparametric curve estimation with 
recommended “smoothing” methods being kernel, spline 
and orthogonal series. An overview of these methods can 
be found in Efromovich (1999). Each method has its own 
advantages, and here we are using an orthogonal series 
method due to its universality defined by first expressing 
Fourier coefficients as the expectation of a function of ob
served variables and then using a corresponding sample 
mean estimator. A series approach, described in the next 
paragraph, will be first used for estimation of the hazard 
rate and then for estimation of the probability density. 

Suppose that we would like to estimate a continuous 
function  on interval  (our particular examples 
of  will be the hazard rate and the density). Set 

 and 
  for the cosine basis on 

 and note that the basis explicitly depends on the 
interval. Then on  the function  may be ap
proximated by a partial trigonometric sum, 

where 

are Fourier coefficients of   Further, sup
pose that we can suggest a sample mean estimator  of 
Fourier coefficients as well as a sample mean estimator 

 of the variance  Then the nonparametric sample 
mean estimator of the function  is defined as 

This is the estimator that will be used in this paper. Let 
us stress that: (i) For any problem the only statistical issue 
to be resolved is how to express Fourier coefficients of a 
function of interest as expectations; (ii) The estimator (3.3) 
is supported by the asymptotic theory discussed in Efro
movich (1999, 2010). 
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This section explains how to construct (3.3) for estima
tion of a hazard rate  over an interval  and 
the next section explores the case of density estimation. 

For a hazard rate of interest we can write 

Construction of a sample mean Fourier estimator  is 
straightforward and based on formula (2.5). Assume that 
the probability  defined in (2.6), is positive on 

 (note that otherwise we cannot restore the hazard 
rate  on that interval), and then write using (2.5), 

As soon as Fourier coefficients are written as expectations, 
we may estimate them by a corresponding sample mean es
timator, 

Here (compare with (2.8)) 

Note that  and hence this statistic can be used 
in the denominator of (3.6). 

For the variance  of  the sample mean 
structure of the Fourier estimator allows us to propose the 
following sample mean variance estimator 

Further, a straightforward calculation, based on using (2.5), 
shows that the theoretical variance  of Fourier estima
tor (3.6) satisfies the following relation, 

Using the obtained results in (3.3) we get the following haz
ard rate estimator, 

There are two important conclusions from (3.8) and (3.9). 
The first one is that, according to the recent theoretical re
sult of Efromovich and Chu (2018), no other Fourier esti
mator can have a smaller variance. This yields efficiency of 
the proposed sample mean Fourier estimator. The second 

one is pivotal for our understanding of what can and cannot 
be estimated. As we have mentioned earlier, the probability 

 has vanishing tails, and this is what, according to 
(3.9), may restrict our ability of reliable estimation of tails 
of the hazard rate. We will return to this issue shortly in 
Section 5 and then explain how to choose a feasible interval 
of estimation. 

Let us finish this section with a remark about using the 
proposed sample mean hazard rate estimator, together with 
formula 

for estimation of the conditional survival function 

 First, we fix a particular  and consider estimate 
(3.10) with Fourier coefficients (3.6) constructed for 

 This yields an estimator  
Now note that the used basis  satis
fies  and  when
ever  Using these facts we get the following plug-in 
sample mean estimate of the conditional survival func
tion, 

Note how simple this sample mean estimator of the condi
tional survival function is. 

Now let us look at the denominator (the sum in  on the 
right side of (3.12). It counts the number of cases (triplets 

 that are under observation at the moment 
The product-limit terminology would refer to this subset of 
cases as the risk set at the time  Keeping this remark in 
mind, we may realize that in (3.12) the sum in  is a gen
eralized (to LTRC setting) Nelson–Åalen estimator of the 
cumulative hazard, and then (3.12) is a generalized Nel
son–Åalen–Breslow estimator of the conditional survival 
density. Let us also recall that construction of the orig
inal Nelson-Åalen estimator was motivated by the prod
uct-limit methodology, risk sets and the theory of counting 
processes. Here we have used a sample mean methodology. 
Finally, let us note that to get formulas for the Nel
son–Åalen estimator, used in Section 12.1 of the actuarial 
text Klugman, Panjer, and Willmot (2012), one should re
place on the right side of (3.12) the indicator 

 by  to reflect the text’s de
finition of truncation based on the “Home-Insurance” ex
ample. 
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4. ESTIMATION OF THE CONDITIONAL 
PROBABILITY DENSITY 

The aim is to estimate a conditional density 

Note that for a fixed  the conditional density has standard 
density’s properties  and 

Let us explain why there is a difference in the possibil
ities to estimate the density and the conditional density 
of  Relation (2.5) implies the following formula for the 
probability density of the variable of interest 

As a result, it suffices to understand why in general the 
survival function  cannot be estimated. The latter 
almost immediately follows from formula (3.11) and the 
above-discussed estimation of the hazard rate. Indeed, we 
already know that LTRC can restrict us from estimation 
of the left tail of a hazard rate over some interval 
In its turn this makes impossible to estimate the survival 
function over that interval (of course, this conclusion is 
well–known in the survival analysis, see Klein and 
Moeschberger 2003 and Gill 2006). At the same time, for 
some  it may be possible to estimate the hazard rate 

 for  and then we may estimate the conditional 
survival function using the following relations, 

Formula (4.3) is pivotal. First it sheds light on why the con
ditional survival function may be estimated. Second, to
gether with (4.1) and (4.2) it implies that the conditional 
density of  may be written as 

Now recall our discussion in Section 3 that to estimate a 
function over an interval  we need to propose a 
sample mean estimator of its Fourier coefficients. Suppose 
that  is positive on an interval  Then Fourier 
coefficients of the conditional density (4.4) are defined as 

To propose a sample mean Fourier estimator, we need to 
rewrite (4.5) as an expectation. Using (4.4) we can write, 

The expectation on the right side of (4.6), together with 
(3.7) and (3.12), yield the following plug-in sample mean 
Fourier estimator, 

The Fourier estimator allows us to construct the nonpara
metric series estimator (3.3) of the conditional density. Let 
us comment on steps in its construction. First, estimates 
(4.7) of Fourier coefficients are calculated. Second, the cor
responding sample variances  are calculated (this is done 
similarly to (3.8)). Then the nonparametric estimator of the 
conditional density is defined as (compare with (3.10)) 

This estimator is nonparametric (no restriction on its shape 
is assumed) and completely data- driven. 

Further, the sample mean structure of Fourier estimator 
(4.7) allows us to get the relation, 

It is of interest to compare variance (4.9) for the conditional 
density with variance (3.9) for the hazard rate. Thanks to 
the factor  in (4.9), which vanishes as  increases, 
in general the right tail of the density has a better chance 
to be accurately estimated than the right tail of the hazard 
rate. At the same time, estimation of the right tail of the 
conditional density may be still challenging. To see this, 
consider as an example the case of continuous and in
dependent   and  For this case (2.7) yields 

 Then the integral on the 
right-side of (4.9) can be written as 

We can conclude that the ratio  de
fines precision in conditional density estimation, and van
ishing tails of the denominator  make the es
timation challenging. 
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5. EXAMPLES AND NUMERICAL STUDY 

The aim of this section is to explain how to use the pro
posed nonparametric estimators of the hazard rate and 
conditional density for LTRC data, as well as how to analyze 
graphics. A numerical study of the proposed estimators is 
also presented. 

It is instructional to begin with visualization of different 
characteristics of a random variable used in nonparametric 
analysis. Figure 1, in its 4 diagrams, exhibits classical char
acteristics of two random variables supported on  and 
defined in Efromovich (1999, 18). The first one is called the 
Normal and its a normal distribution truncated onto 
The second one is called the Bimodal and it is a mixture of 
two normal distributions truncated onto  The top di
agram in Figure 1 shows the corresponding survival func
tions. Can you realize why the solid line corresponds to the 
Normal and the dashed line to the Bimodal? The answer 
is likely “no.” We may say that the distributions are pri
marily different in the area around 0.6 and have a bounded 
support, but otherwise the cumulative distribution func
tions are not very instructive. Further, we need dramatically 
magnify the tails to visually compare them. As a result, in 
statistics estimates of the cumulative distribution function 
are primarily used for hypothesis testing about an under
lying distribution. The two middle diagrams show the cor
responding hazard rates over two different intervals, and 
please pay attention to scales in the diagrams. Note how 
dramatically and differently right tails of the hazard rates 
increase. 

Let us explain why a bounded nonnegative variable (and 
all variables studied in actuarial applications are bounded 
meaning that  for some finite  must have a haz
ard rate that increases to infinity in the right tail. By its 
definition, the hazard rate of a nonnegative random vari
able  (not necessarily bounded) is a nonnegative func
tion which satisfies the following equality, 

Equality (5.1) follows from 
(recall (3.11)) and  As a result, the right 
tail of the hazard rate of a bounded random variable always 
increases to infinity. The latter may be a surprise for some 
actuaries because familiar examples of hazard rates are the 
constant hazard rate of an exponential (memoryless) distri
bution and monotonically decreasing and increasing hazard 
rates for particular Weibull distributions. Note that these 
are examples of random variables supported on  and 
in practical applications they are used for approximation of 
underlying bounded variables. 

The fact that the hazard rate of a bounded variable has 
a right tail that increases to infinity, together with formula 
(3.9) for the variance of the optimal estimator, indicate that 
an accurate estimation of the right tail of the hazard rate 
will be always challenging. 

Finally, the bottom diagram in Figure 1 shows us the cor
responding probability densities, and now we may realize 
why they are called the Normal and the Bimodal. Probabil

ity density is definitely the most visually appealing charac
teristic of a continuous random variable. 

We may conclude that despite the fact that analytically 
each characteristic of a random variable may be expressed 
via another, in a graphic they shed different light on the 
variable. It is fair to say that in a visual analysis the survival 
function is the least informative while the density is the 
most informative and the hazard rate may shed additional 
light on the right tail. The conclusion is important because 
in nonparametric statistical analysis graphics are used to 
visualize data and estimates, see a discussion in Efromovich 
(1999). 

Figure 2 introduces us to the LTRC data and also allows 
us to look at the reciprocal  of the probability 

 which, according to our previous 
sections, plays a pivotal role in the analysis of LTRC data. 
The data are simulated and hence we know the underlying 
distributions. The caption of Figure 2 explains the simula
tion and the diagrams. The LTRC resembles the “Surgery” 
example described in the Introduction when the censoring 
variable may be smaller than the truncation variable. The 
difference between the two top datasets is in the underlying 
distributions of  We clearly see from these diagrams 
that the data are left truncated, the latter is indicated by 
the left edge of datasets created by the inequality 
The data do not specify how severe the underlying trunca
tion is, at the same time the titles show that from 
LTRC observations only  in the top diagram and 

 in the diagram below are uncensored. We conclude 
that more than 20% of truncated realizations are censored. 
Further, we can tell that the support of T is about [0, 0.5] 
and the support of  goes at least from 0 to around 0.94. 
This allows us to speculate about a severe truncation of the 
underlying data. 

Now let us recall that the hazard rate and density es
timates, introduced in the previous sections, use statistics 

 As we will see shortly, these reciprocals exhibited 
in the bottom diagrams may help us to choose a feasible in
terval of estimation of the hazard rate and conditional den
sity. The third diagram shows us these reciprocals for all 
observed   while the bottom diagram shows 
only the reciprocals not exceeding 10. Note the different 
scales in the two diagrams, how rapidly the tails increase, 
and that for the Bimodal (the triangles) we can choose 
a larger interval of estimation than for the Normal (the 
crosses). 

Figure 3, using simulated data, explains how the pro
posed nonparametric sample mean estimation methodol
ogy performs. The top diagram shows us LTRC data which 
is simulated as in the second diagram in Figure 2 with 
being the Bimodal. In the diagram we see the familiar left 
edge created by the truncation. Further, note that there are 
practically no observations in the tails, and the left tail of 
observations is solely created by censored observations in
dicated by the crosses. We may conclude that it will be a 
complicated task to restore the underlying distribution of 
interest modified by the LTRC. 

Reciprocals  that do not exceed 10.5, are shown 
in the second diagram. Similarly to Figure 2, the circles and 
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Figure 1. Different characterizations of two distributions      
The names of distributions are the Normal (the solid line) and the Bimodal (the dashed line), see Efromovich (1999, 18). The distributions are supported on [0,1]. 

crosses correspond to uncensored and censored cases ex
hibited in the top diagram. The estimates help us to quan
tify complexity of the problem and choose a reasonable 
interval of estimation. Also recall that the underlying func
tion  is shown by triangles in Figure 2. The sec
ond diagram also exhibits the underlying survival function 

 (the solid line) as well as its Kaplan–Meier (the 
dashed line) and the sample mean (3.12) with  (the 
dotted line) estimates. Note that the corresponding scale 
is shown on the right vertical axis. The two estimates are 
practically identical and far from being perfect for the con
sidered sample size  and  uncensored 
cases. 

The third from the top diagram shows us the proposed 
estimate of the hazard rate (the dashed line) which, thanks 
to the simulation, may be compared with the underlying 
hazard rate (the solid line). The interval of estimation is 
chosen by considering relatively small values of estimated 

 The integrated squared error ISE=0.29 of the non
parametric estimate is shown in the subtitle. Overall the es
timate is good given the large range of its values. The esti
mate is complemented by pointwise and simultaneous, over 

the interval of estimation, confidence bands. The bands are 
symmetric around the estimate to highlight its variance 
(note that the hazard rate is nonnegative so we could trun
cate the bands below zero). Together with the estimate 

 the bands help us to choose a feasible interval of 
estimation. 

The fourth from the top diagram shows us an estimate 
of the hazard rate calculated for the larger interval than in 
the third diagram. First of all, compare the scales. With re
spect to the third diagram, the confidence bands are ap
proximately twice wider and the ISE is more than tenfold 
larger. The pointwise confidence band tells us that the left 
tail of the hazard rate is still reasonable but the right one 
may be poor. The chosen interval, and specifically 
are too large for a reliable estimation. The conclusion is 
that an interval of estimation should be chosen according 
to the estimate of  and then confirmed by confidence 
bands. 

The bottom diagram in Figure 3 shows estimation of the 
conditional density. Note that here, as we have predicted 
in Section 4, the interval of estimation may be larger than 
for the hazard rate estimation. In particular, for this data it 

Nonparametric Curve Estimation for Truncated and Censored Data Without Product-Limit

Variance 8

https://variancejournal.org/article/29467-nonparametric-curve-estimation-for-truncated-and-censored-data-without-product-limit/attachment/74495.jpg


Figure 2. Two simulated LTRC datasets     
The truncation variable  is Uniform(0,0.5) and the censoring variable  is Uniform(0,1.5). In the top diagram  is the Normal, in the second from the top diagram  is the Bi
modal (the Bimodal density is shown in Figure 1). Circles and crosses show uncensored  and censored  cases, respectively. The total number of observations is  and the 
number of uncensored observations is denoted as . The corresponding reciprocals of the probability  are shown by the crosses (the Normal case) and the triangles (the Bimodal 
case) in the two bottom diagrams. 

is possible to consider an interval defined by the range of 
observed values of  and then the confidence bands allow 
us to evaluate feasibility of that choice. The ISE=0.035 indi
cates that the estimator does a good job. Indeed, the esti
mate nicely shows the two modes and gradually decreasing 
tails. 

Figure 4 is similar to Figure 3 only here the underlying 
variable of interest is the Normal (its density is shown in 
Figure 1) and the censoring is motivated by presented in the 
Introduction “Home-Insurance” example when the censor
ing variable is larger than the truncation one (the simula
tion is explained in the caption). Note that again we have 
just a few observations in the tails. In particular, there are 
only 4 observations of  larger than 0.8. The left edge of 
the dataset looks familiar and it indicates a heavy underly
ing truncation. The hazard rate and conditional density es
timates look good but this should be taken with a grain of 
salt. The estimates correctly show the underlying shapes, 
but the confidence bands indicate the possibility of a large 
volatility. 

Now, after we have polished our understanding of how 
to analyze simulated data, let us consider Figure 5 where 
the auto-losses data from Frees (2009) are explored. The 

top diagram shows us the histogram of auto-losses scaled 
onto  The histogram is overlaid by our nonparametric 
estimates of the hazard rate (the horizontal dashed line) 
and the probability density (the solid line). Note that the 
two estimates complement each other and none is a plug-
in of another, the latter explains their slightly different 
messages. The hazard rate estimate indicates a possible 
exponential underlying distribution (recall that this dis
tribution has a constant hazard rate). Let us check this con
jecture. First, in the top diagram the dotted line shows us 
an exponential density with the sample mean rate (note 
that this is a parametric estimate). Our nonparametric den
sity estimate (the solid line) slowly oscillates around the 
exponential one. Further, let us add to the diagram the 
corresponding parametric exponential cumulative distribu
tion function (the long-dashed line) and its empirical esti
mate (the dot-dashed line). These two curves are multiplied 
by 6 for better visualization, we may observe a relatively 
large deviation near  and the classical nonparamet
ric Kolmogorov-Smirnov test yields the p-value 0.002 which 
does not support the conjecture about the exponential dis
tribution. Nonetheless, if we would like to choose a para
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Figure 3. Statistical analysis of simulated LTRC data when the censoring variable may be smaller than the                
truncation variable   
The underlying distribution of interest is the Bimodal and the underlying LTRC model is the same as in Figure 2. In the three bottom diagrams an underlying curve is shown by the 
solid line, a nonparametric estimate by the dashed line, pointwise and simultaneous 0.95-level confidence bands by dotted and dot-dashed lines, respectively. In the third and fourth 
diagrams  is the number of uncensored observations within the interval 

metric distribution to fit or model the data, then an expo
nential one may be a fair choice. 

The hazard rate and density estimates, shown in the top 
diagram of Figure 5, can be considered as benchmarks for 
any LTRC modification. The middle diagram shows a sim
ulated LTRC modification of the losses, here the trunca
tion variable  is Uniform(0,0.5), the censoring variable 

 and  is Uniform(0,0.5). Circles 
and crosses show uncensored and censored losses, respec
tively. LTRC losses are overlaid by the scaled estimate of 

 (the solid line). We see the pronounced left edge of 
the truncated data, and notice the devastating truncation 
of the available observations from 1,085 to only 350 in the 
LTRC data. Further, among those 350 only 308 are uncen
sored. Also, look at the right tail where we have just a sin
gle observation with  larger than 0.8. As we already know, 

there is no way for us to restore the right tail based on just 
one observation. The estimated  quantifies complex
ity of the LTRC modification. The bottom diagram shows us 
the histogram of  uncensored realizations of  It 
has no resemblance to the underlying distribution shown 
in the top diagram, and this histogram explains how the 
LTRC modifies the data of interest. Note that if the LTRC is 
ignored, then the histogram in the bottom diagram points 
to the presumed underlying distribution of losses. The lat
ter clearly would be a mistake. On the other hand, the con
ditional density estimate (the solid line) and the hazard 
rate estimate (the dashed line) are good and similar to the 
benchmarks shown in the top diagram. Keeping in mind the 
truly devastating truncation and censoring of the underly
ing losses, the outcome is encouraging. 
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Figure 4. Statistical analysis of simulated LTRC data when the censoring variable is larger than the truncation                
variable  
The underlying  is the Normal, the truncation variable  is Uniform(0,0.5), and the censoring variable is  where  is Uniform(0,1.5). The context of diagrams is 
similar to Figure 3. 

Figure 6 exhibits a LTRC dataset “channing.” The top di
agram shows us available lifetimes. Its left edge looks fa
miliar, and it indicates heavy left truncation. Further, look 
at how many cases of censoring, shown by crosses, occur at 
or near the left edge. Further, we are dealing with an ex
tremely heavy right censoring when only 38% of observa
tions are uncensored (the number  of uncensored 
observations is shown in the title). Now let us look at the 
right edge of the LTRC data. First, note that it is parallel 
to the left edge. Second, the right edge is solely created by 
censored observations (shown by crosses). This tells us that 
the data are based on a study with a specific baseline and a 
fixed duration. In addition to that, we may say that a large 
number of observations were censored during the study for 
reasons other than the end of the study. The heavy LTRC 
is quantified by the estimated reciprocal of the probabil
ity  see the solid line in the top dia

gram. This estimate clearly indicates restrictions on a reli
able recovery of tails. 

The bottom diagram in Figure 6 allows us to look at the 
available  uncensored observations of  exhibited 
by the histogram. In the histogram we observe two modes 
with the right one being larger and more pronounced than 
the left one. The solid line shows us the estimated condi
tional density. Note how the estimate takes into account 
the LTRC nature of the data by skewing the modes with re
spect to the histogram. Recall that we have observed a sim
ilar performance in the simulated examples. 

Now let us look at another interesting LTRC dataset 
“centrifuge” presented in Figure 7, the structure of its di
agrams is identical to Figure 6. The data, rescaled onto 

 are based on a study of the lifetime of centrifuge’s 
conveyors used at municipal wastewater treatment plants. 
Conveyers are subject to abrasive wear (primarily by sand), 
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Figure 5. Auto-losses example   
The data are from Frees (2009), here only losses between $3,000 and $20,000 are used and then rescaled onto [0,1]. 

spare parts are expansive, and repair work is usually per
formed by the manufacturer. This is why a fair manufac
turer’s warranty becomes critical (recall our discussion of 
warranties in the Introduction). The aim of the study was to 
estimate the distribution of the lifetime of a conveyor. 

First of all, let us look at the available data shown in the 
top diagram. We see the pronounced right edge of the data 
created by crosses (censored lifetimes). It indicates the end 
of the study when all still functioning conveyors are cen
sored. At the same time, only two lifetimes (conveyors) are 
censored by times smaller than 0.6; this is due to malfunc
tioning of other parts of the centrifuges. Further, there is 
no pronounced left edge of the data which is typically cre
ated by truncation. These are helpful facts for the consid
ered case of small sample size  The top diagram also 
shows us the estimate of  (the solid line), and note 
that its scale is shown on the right vertical axis. It sup
ports our visual analysis of the data about a minor effect 
of the truncation and the primary censoring due to end of 
the study. Also note that there are no observed small life
times, and this forces us to consider estimates only for val
ues larger than 0.2. 

The bottom diagram in Figure 7 exhibits the hazard rate 
(the dashed line) and conditional density (the solid line) es
timates. Note how the intervals of estimation are chosen 
according to the estimated  shown in the top dia
gram. The density estimate is informative and it indicates 
two modes (note how again the estimate takes into account 
the LTRC modification with respect to the histogram of un
censored lifetimes). There is a plausible explanation of the 
smaller mode. Some municipal plants use more advanced 
sand traps, and this may explain the larger lifetimes of con
veyors. 

Based on the available data we cannot check the above-
made conjecture about the underlying origin of the smaller 
mode, but this issue leads us to a new and important re
search problem of regression for LTRC data. So far the main 
approach to solve this problem has been based on mul
tiplicative parametric Cox models, often called the pro
portional hazards models, see a discussion in Klein and 
Moeschberger (2003) and Frees (2009). It will be of interest 
to test the developed sample mean approach for solving the 
problem of nonparametric regression. 
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Figure 6. Analysis of LTRC data “channing” from R library KMsurv          
In the top diagram circles and crosses show uncensored and censored observations, respectively, and the solid line shows the estimate of . The histogram in the bottom dia
gram shows uncensored observations, and the histogram is overlaid by nonparametric estimates of the conditional density (the solid line) and the hazard rate (the dashed line). 

Now let us present results of a numerical study that 
compares the proposed sample mean estimators with those 
supported by R. Hazard rate and density estimators are 
available for censored data in R packages muhaz and 
survPresmooth, respectively. The numerical study is based 
on the following Monte Carlo simulations. The underlying 
distributions are either the Normal or the Bimodal shown 
in Figure 1, the censoring distributions are either Unif(0,
or exponential  with the rate (mean)  Considered 
sample sizes  are 100, 200, 300, 400, and 500. For each 
such experiment (i.e., a density, a censoring distribution, 
and a sample size), 500 Monte Carlo simulations are per
formed. Then for each experiment the empirical integrated 
squared error (ISEpl) of the product limit estimator sup
ported by R and the empirical integrated squared error (IS
Esm) of the proposed sample mean estimator are calcu
lated. For the hazard rate and the density the integrated 
squared errors are calculated over intervals  and 

 respectively. Then the median ratios (over 500 simu
lations) of ISEpl/ISEsm are shown in Table 1. Note that the 
ratio larger than 1 favors the sample mean estimator. 

As we see, the sample mean estimators of the hazard 
rate and the density perform well. Further, because they 
mimic asymptotically efficient estimators, their relative 

performance improves for larger sample sizes. Further, the 
performance of proposed estimators is robust toward 
changes in censoring distributions. 

CONCLUSION 

Left truncation and right censoring are typical data modi
fications that occur in actuarial practice. Traditionally, the 
distribution of interest is recovered via a product-limit es
timate of the conditional survival function. The present 
paper advocates complementing this approach with non
parametric sample mean estimation of the hazard rate and 
the conditional probability density. The attractive feature 
of the proposed hazard rate estimation is that it is non
parametric, completely data driven, and its sample-mean 
structure allows us to use a classical statistical inference 
developed for parametric sample mean estimators. Further, 
the presented theory shows that the key quantity in un
derstanding what can and cannot be done in restoring an 
underlying distribution of interest is the probability 

 which is nicely estimable by a sample mean 
estimator. Presented simulated and real examples explain 
how to analyze left truncated and censored data and illus
trate performance of the proposed nonparametric estima
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Figure 7. Analysis of LTRC data “centrifuge”      
The structure of diagrams is identical to Figure 6. 

tors of the hazard function and conditional probability den
sity. 

MAIN NOTATIONS 

 is the expectation,  is the probability 
of event  and  is the indicator of event  For a ran
dom variable   denotes its cumula
tive distribution function (cdf),  is the 
survival function, 

  is 
the conditional survival function. For a continuous 

 denotes its probability density, 
 is the conditional probability 

density,  is the hazard rate. 
 is the hidden underlying random variable of interest 

(the lifetime),  is the truncation variable,  is the cen
soring variable. Modified by censoring variables are 

 and the indicator of censoring 
 Given no truncation occurs, that is 
 the available left truncated and right 

censored (LTRC) triplet is  where  see de
finition of the LTRC mechanism in the second paragraph of 
Section 2.  denotes an avail
able sample from  In definition (1.3) of the prod
uct-limit Kaplan-Meier estimator,  
denote ordered pairs according to  that is 

An accent indicates an estimator (statistic). For instance, 
 is the estimator of corresponding Fourier coefficients 
 see (3.5) and (3.6),  is an estimator of the survival 

function  etc. In used series estimators, 

  de
note elements of the cosine basis on 

 denotes the probability to 
avoid truncation,  is the pivotal 
probability in analysis of LTRC, and  is the random num
ber of uncensored observations in an LTRC sample. 
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Table 1. Results of Monte Carlo simulations      

100 200 300 400 500 

Normal Unif(0,1.2) 1.07, 1.05 1.15, 1.08 1.22, 1.15 1.25, 1.20 1.25, 1.23 

Normal Unif(0,1.5) 1.09, 1.07 1.16, 1.14 1.25, 1.24 1.31, 1.28 1.31, 1.32 

Normal Exp(1) 1.12, 1.10 1.23, 1.21 1.29, 1.29 1.35, 1.37 1.36, 1.37 

Normal Exp(1.5) 1.18, 1.15 1.26, 1.24 1.31, 1.30 1.36, 1.38 1.38, 1.39 

Bimodal Unif(0,1.2) 1.18, 1.12 1.26, 1.22 1.38, 1.37 1.31, 1.31 1.32, 1.33 

Bimodal Unif(0,1.5) 1.19, 1.16 1.31, 1.28 1.35, 1.34 1.37, 1.39 1.37, 1.39 

Bimodal Exp(1) 1.20, 1.18 1.34, 1.32 1.35, 1.33 1.38, 1.41 1.38, 1.41 

Bimodal Exp(1.5) 1.22, 1.21 1.36, 1.33 1.37, 1.35 1.39, 1.40 1.39, 1.41 

An entry in the Table is written as “ ” where  and  are medians of 500 ratios ISEpl/ISEsm for the hazard rate and density estimates, respectively. 
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