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Analysis of truncated and censored data is a familiar part of actuarial practice, and so far
the product-limit methodology, with Kaplan-Meier estimator being its vanguard, has
been the main statistical tool. At the same time, for the case of directly observed data,
the sample mean methodology yields both efficient estimation and dramatically simpler
statistical inference. This paper shows that for truncated and censored data a sample
mean approach is natural in estimation of the hazard rate (also called the force of
mortality and failure rate), and note that in actuarial science this characteristic of a
random variable is often of interest on its own. Further, the proposed sample mean
approach allows us to understand what and why we can and cannot estimate for
truncated and censored data. In particular, it is explained why in general only a
conditional density can be estimated. Results are illustrated via simulated and real

examples.
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1. INTRODUCTION

Survival analysis (also known as reliability theory, duration
analysis, event history analysis or duration modeling) is a
familiar topic for actuaries. One of the main notions of sur-
vival analysis is the hazard rate function h*(z) of a contin-
uous random variable X defined as
X o f X(z)
h*(z) = SX(2) (1.1)
Here fX(z) is the probability density of X and
SX(z) := P(X > z) is the survival function (which is equal
to 1 — F¥(z) where F%(z) := P(X < z) is the cumulative
distribution function). The hazard rate, which is also re-
ferred to as the force of mortality, the intensity rate, the
failure rate or the mortality of claims, quantifies the tra-
jectory of imminent risk and, similarly to the probability
density or the survival function, is the characteristic of
a random variable. A discussion of the hazard rate can
be found in actuarial texts Bowers et al. (1997), Dickson,
Hardy, and Waters (2009), Cunningham, Herzoc, and Lon-
don (2012) and Klugman, Panjer, and Willmot (2012). Fur-
ther, there are available actuarial handbooks and softwares
that contain information about more frequently used para-

metric hazard rates, see Richards (2011), Nadarajah and
Bakar (2013), Charpentier (2015) and R package “ActuDis-
tns”, see also the monograph Rinne (2014) which is solely
devoted to the hazard rates.

Interest in hazard rates is the specific of survival analysis
which differentiates it from the classical probability theory
that traditionally characterizes a continuous random vari-
able via its probability density. Another specific, which dif-
ferentiates survival analysis from statistics, is that survival
observations of X are typically modified by truncation and/
or censoring with main cases being the left truncation (LT)
and right censoring (RC), see a discussion in Klugman, Pan-
jer, and Willmot (2012), Frees, Derrig, and Meyers (2014),
Roninson (2014) and Albrecher, Beirlant, and Teugels
(2017).

For the following discussion it is convenient to recall two
classical examples of LTRC data. The first one is “Home-
Insurance” example when a home insurance policy has an
ordinary deductible T* and a policy limit on payment C*,
the available information is the payment on an insurable
loss, and the random variable of interest X * is the insurable
loss. In a classical statistical setting one would observe a
direct sample X7,..., X} from X* and then use it to esti-
mate either the survival function S%"(z) or the probabil-
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ity density f*"(z), see the book Efromovich (1999). For the
“Home-Insurance” example, we get information only about
losses that exceed the deductible (and this creates the left
truncation) and even for those we only know the minimum
of the loss and the limit (and this creates the right censor-
ing). This example of the LTRC data is so simple and well
understood, that it is used in the SAS software manual (re-
call that the iconic SAS software is primary created for bi-
ological and medical applications). Another specific of the
“Home-Insurance” example is that the deductible T* is al-
ways smaller than the limit C*, and this may not be the
case in other applications. So let us recall another classical
“Surgery” example (it will be complemented shortly by ca-
sualty examples) when patients, who had a cancer surgery
in the past, are checked during a study, that begins at some
specific time (so-called baseline) and has a fixed duration,
with the aim to evaluate the distribution of a time to the
cancer relapse. In this case (compare with the “Home-In-
surance” example) X * is the time from the surgery to can-
cer relapse, truncation T* is the time from surgery to the
baseline (beginning of the study), and censoring time C* is
the smallest among times from surgery to the end of the
study or until a patient is no longer able or willing to par-
ticipate in the study. Note that in the “Surgery” censoring
may occur before truncation, for instance, moving from the
area of the study or death from a reason other than cancer
may occur before the baseline. Another important differ-
ence between the two examples is that data in the “Home-
Insurance” example are collected via passive observations,
while in the “Surgery” example observations are collected
via a controlled experiment with a medical examination of
participants at the baseline. In particular the latter implies
that a participant with X* > T™* is included in the study
(not truncated by 7). As a result, in survival analysis lit-
erature it is traditionally assumed that X* is truncated by
T* only if X* < T*, and this approach is used in the paper.
Now recall that in the “Home-Insurance” example trunca-
tion occurs if X* < T*, and this is the definition of LT used,
for instance, in Klugman, Panjer, and Willmot (2012). The
difference in the definitions of LT may be critical for small
samples of discrete variables, but in the paper we are deal-
ing with continuous lifetimes when P(T* = X*) = 0. More
discussion of the LTRC and different statistical models may
be found in Klein and Moeschberger (2003) and Gill (2006).

In addition to a number of classical casualty insurance
survival examples like fires, magnitudes of earthquakes or
losses due to uninsured motorists, discussed in the above-
mentioned classical actuarial books, let us mention several
others that have gained interest in the literature more re-
cently. The insurance attrition is discussed in Fu and Wang
(2014). Albrecher, Beirlant, and Teugels (2017) and
Reynkens et al. (2017) explore a number of survival analysis
examples arising in non-life reinsurance, in particular ex-
amples with lifetimes of insurance claims. Survival analysis
of the credit risk of a portfolio of consumer loans is another
hot topic when both banks and insurers are required to de-
velop models for the probability of default on loans, see a
discussion in Andreeva (2006), Malik and Thomas (2010),
Stepanova and Thomas (2002) and Bonino and Caivano

(2012). A comprehensive discussion of the longevity of cus-
tomer relations with an insurance company may be found
in Martin (2005). Survival analysis of foster care reentry is
another interesting example, see Goering and Shaw (2017).
Egger, Radulescu, and Rees (2015) and Yuan, Sun, and Cao
(2016) discuss the problem of directors and officers liability
insurance. Survival analysis of the lifetime of motor in-
surance companies in South Africa is presented in Abbot
(2015), while Lawless, Hu, and Cao (1995) analyze auto-
warranty data. There is also a vast literature devoted to the
mortality of enterprises and litigation risks related to IPOs
(Initial Public Offerings), see a discussion in Daepp et al.
(2015), Hakanson and Kappen (2016) and Xia et al. (2016).
Note that IPO examples are similar to the above-discussed
“Surgery” example. Indeed, in an IPO example time X*
from the onset of the IPO to its bankruptcy is the lifetime of
interest, truncation 7* is the time from the IPO’s onset to
the baseline of the study, while censoring C* is the smallest
among times from the onset to another reason of the IPO’s
death like merger, acquisition, privatization, etc. or the end
of the study. Note that C* may be smaller than 7* , and
this is why the example resembles the “Surgery”. Finally, let
us mention the problem of manufacturer warranties, see an
actuarial discussion in Hayne (2007) and Walker and Ceder-
burg (2013). A particular example with centrifuges will be
discussed in Section 5.

Now let us explain the main motivation of the paper. For
the case of direct observations X7,..., X}, the empirical
survival function (esf)

SX'(z):=n"! ZI(Xl* > )
=1

(1.2)

is the main tool for estimation of the survival function.
Here and in what follows I(-) denotes the indicator func-
tion. Note that (1.2) is the sample mean estimator because
SX"(z) := E{I(X* > z)}, and hence the esf is a nonpara-
metric (no underlying model is assumed) estimator and
it is unbiased because E{S* (z)} = S*"(z). Further, be-
cause the esf is the sum of independent and identically
distributed indicators, its variance is V(S¥'(z))
=n"18%"(z)(1 — S*"(z)), and to realize this note that in
(1.2) we are dealing with the sum of independent Bernoilli
variables. Further, inspired by the sample mean esf, it is
possible to propose a density estimator fX*(a:) motivated
by the sample mean estimation, see Efromovich (1999,
2010, 2018).

The situation changes rather dramatically for the case
of survival data. Kaplan and Meier (1958), for the case of a
right censored sample (V1,A;),...,(V,, A,) from the pair
(V,A) := (min(X*,C*), I(X* < C*)), proposed the fol-
lowing product-limit (Kaplan-Meier) estimator,

§%(z):=1, z < Vs

5% (z):=0, > Viny;

3 i1 (1.3)

5% (@) = [ln —9)/(n i +1)]%0,

i=1
Vien <z = V.

Here (Vi,A(), I =1,2,...,n are ordered pairs according
to V;, that is Viq) < V{3) < ... < V(). A modification of (1.3)
for the case of LTRC data may be found in the above-men-
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tioned texts, see for instance Klugman, Panjer, and Willmot
(2012). While the texts present a number of really good ex-
planations of the product-limit methodology, product-limit
estimators are difficult for statistical inference. Indeed, for
instance in (1.3) we are dealing with the product of depen-
dent and not identically distributed random factors, and
while one can take a (negative) logarithm to convert it into
a sum (and the sum becomes close to the Nelson-Aalen
estimator of the cumulative hazard), still actuaries, who
took advanced graduate classes, may recall that while there
exists the Greenwood estimator of the variance, deducing
a closed form for the variance is complicated, and even
proving consistency requires using the theory of counting
processes, martingale arguments or other advanced statis-
tical tools, see a discussion in Roth (1985), Flemming and
Harrington (1991) and Gill (2006).

The main aim of the paper is to explain that for left trun-
cated and/or right censored data it is natural to begin sta-
tistical analysis with nonparametric estimation of the haz-
ard rate which can be done using a sample mean approach.
The attractive feature of this approach is that it plainly ex-
plains what can and cannot be estimated for LTRC data. In
particular, it will be shown how LT and RC affect estimation
of the left and right tails of the distribution. The paper also
explains how to use graphics for statistical analysis of LTRC
data.

The rest of the paper is as follows. Section 2 explains
LTRC model, introduces main notations, and develops
probability formulas. It also sheds light on why estimation
of the hazard rate is natural for LTRC data. Section 3 is de-
voted to estimation of the hazard rate. Section 4 considers
estimation of the probability density, and it explains why
in general only characteristics of a conditional distribution
may be estimated. Examples and a numerical study, illus-
trating the proposed analysis of LTRC data, are presented in
Section 5. Then, after the Conclusion, the reader may find
the list of main notations used in the paper.

2. LTRC MODEL AND PROBABILITY FORMULAS

We begin with the probability model for the mechanism of
generating a sample of size n of left truncated and right
censored (LTRC) observations. The above-presented
“Home-Insurance” and “Surgery” examples may be useful
in understanding the mechanism, and in what follows we
use notations of those examples.

The LTRC mechanism of data modification is defined
as follows. There is a hidden sequential sampling from a
triplet of nonnegative random variables (T*, X*, C*) whose
joint distribution is unknown. T'* is the truncation random
variable, X* is the random variable of interest, and C* is
the censoring random variable. Right censoring prevents us
from observing X*, and instead we observe a pair (V,A)
where V := min(X*,C*) and A := I(X* < C*) is the in-
dicator of censoring. Left truncation allows us to observe
(V,A) only if T* < V. To be more specific, let us describe
the LTRC model of generating a  sample
(T1, Vi, Av)y ..., (Th, Vi, Ay). Suppose that (T}, X3, C}) is
the kth realization of the hidden triplet and that at this mo-

ment there already exists a sample of size I < n of LTRC ob-
servations. If T}F > min(X}, C}) then the kth realization is
left truncated meaning that: (i) The triplet (T}, X}, C}) is
not observed; (ii) The fact that the kth realization occurred
is unknown; (iii) Next realization of the hidden triplet oc-
curs. On the other hand, if T} < min(X},C}) then the
LTRC observation (Tp1, Vit1, Aur) = (T, min(X}, CF),
I(X} < Cy)) is added to the LTRC sample whose size be-
comes equal to [ + 1. The hidden sampling from the triplet
(T*,X*,C*) stops as soonas !+ 1 =n.

Because in what follows we are considering only left
truncation and right censoring, we may skip terms left and
right for truncation and censoring, respectively.

Now let us make an interesting probabilistic remark
about the sequential sampling. The random number K of
hidden simulations, required to get a fixed number n of
LTRC observations, has a negative binomial (also referred
to as binomial waiting-time or Pascal) distribution which
is completely defined by the integer parameter n and the
probability P(T* < min(X*, C*)) of success. On the other
hand, if the total number & of hidden realizations is known
(for instance, in the “Surgery” example this is the total
number of surgeries), then the random number of partici-
pants in the study has a binomial distribution which is com-
pletely characterized by the above-mentioned probability
of success and k trials. In our setting we are dealing with
the former case and fixed n, and the remark sheds addi-
tional light on the LTRC model.

In what follows it is assumed that the continuous and
nonnegative random variable of interest X* is independent
of (T*,C*) while T* and C* may be dependent and have a
mixed (continuous and discrete) joint distribution.

Now we are ready to present useful probability formulas
for the observed variables. Write,

P(V <v,A=1)
=P(X* <v,X* <C*T* < min(X*,C"))
P(X* < v, X* < C*T* <min(X*,C*))
P(T* < min(X*, C*))
=p 'P(X* <0, X*<C*T*< X%

=p! /va’ (2)P(T* < z < C*)dz.
0

(2.1)

Here in the first equality the definition of truncation is
used, the second equality is based on definition of the con-
ditional probability, the third one uses notation
p:=P(T" < min(X*,C")) (2.2)
for the probability to avoid the truncation and the fact
that event X* < C* implies min(X*,C*) = X*, and the
last equality uses the independence of X* and (T*, C*).
Differentiation of (2.1) with respect to v yields the fol-
lowing formula for the mixed density,
U3 (,1)
=p ' PT <v<CY)
= hX*(v)[p_ISX*(v)IP’(T* <wv<CY)
=X (WP(T <z < V).
In (2.3) the second equality uses definition of the hazard
rate, and let us explain the last equality. Write,

(2.3)
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P(T V)
= IP’(T < z < min(X*,C")
|T* < min(X*,C"))
=p 'P(T* < z,min(X*,C*) > z,
T* < min(X*,C"))
p 'P(T* < 2,C*>z,X*>x)
—p*lsX( )P(T* <z < C*)].
In (2.4) the first equality is based on the definition of trun-
cation, the second equality uses notation (2.2) and the defi-
nition of conditional probability, the third equality is based
on the fact that events min(X*,C*)>2 and
(X* > z,C* > z) are identical, and the fourth uses the in-
dependence of X* and (T*,C*). Relations (2.3) and (2.4)
are verified.
In its turn, (2.3) implies that for the hazard rate of the
variable of interest X* we get the following relation,
YAz, 1)/P(T<z<V)
whenP(T <z <V) >0,

(2.4)

Y (z) = (2.5)
not identified
whenP(T <z <V)=0

While the top expression in (2.5) is a plain corollary from
(2.3), the bottom one deserves a discussion. If P(T' < z) = 0
then the truncation precludes us from recovering the left
tail of the distribution of interest, while if P(V > z) =0
then the censoring may preclude us from recovering the
right tail of the distribution of interest. Further, as we will
see shortly, the bottom line in (2.5) explains why in general
we can estimate only a conditional distribution of X*, and
this is exactly what Kaplan-Meier, Nelson-Aalen-Breslow
and other known product-limit estimators do, see Gill
(2006).

Because the probability in (2.5) plays a pivotal role, let

us stress that it can be expressed as
P(z) =P(T<z<V)

_ . —lgoX* * (26)

=p 8" (2)P(T* <z <C%),

and further
Pz)=p 'F"@P(C 205" @)

if T* and C* are independent. ’

If C* is a continuous random variable, then in (2.7) we have

P(C* > z) = S¢ (z) and the formula becomes enlightened.

We may conclude that the probability P(z), defined in
(2.6), describes the complexity of LTRC and how it affects
the quality of estimation. Let us explain the last sentence
more deliberately. According to (2.5), if P(z) > 0 then the
hazard rate is equal to the density of observed variables di-
vided by the probability P(z). Density fV**(z, 1) can be es-
timated with traditional accuracy known for direct observa-
tions, but then it is divided by the probability P(z) which
always has vanishing tails created by LTRC (to realize that,
look at (2.7)). This is what complicates estimation of the
hazard rate as well as any other characteristic of the distri-
bution of X*.

According to (2.5) the hazard rate is expressed directly
via characteristics of observed variables. In particular, be-
cause the probability P(z) may be written as the expecta-
tion P(z) = E{I(T < z < V)}, we can propose the follow-
ing sample mean estimator of the probability,

P(z) = nilzI(Tl <z <V).
=1

(2.8)

In (2.8) we are dealing with the sum of independent
Bernoulli variables, and hence it is straightforward to con-
clude that the sample mean estimator of P(z) is unbiased
and its variance is

V(P(z)) =n"'P(a)[1 -

P(z)]. (2.9)

3. ESTIMATION OF THE HAZARD RATE FOR
LTRC DATA

While estimation of a survival function by step-wise esti-
mators (like Kaplan-Meier or Nelson-Aalen-Breslow) is a
familiar topic in classical statistics, developing smooth es-
timates of the density or the hazard rate is a special topic in
the modern theory of nonparametric curve estimation with
recommended “smoothing” methods being kernel, spline
and orthogonal series. An overview of these methods can
be found in Efromovich (1999). Each method has its own
advantages, and here we are using an orthogonal series
method due to its universality defined by first expressing
Fourier coefficients as the expectation of a function of ob-
served variables and then using a corresponding sample
mean estimator. A series approach, described in the next
paragraph, will be first used for estimation of the hazard
rate and then for estimation of the probability density.
Suppose that we would like to estimate a continuous
function g(z) on interval [a, a + b] (our particular examples
of g(z) will be the hazard rate and the density). Set
Po(z,a,a+ b) :=b~1/2 and ¥i(z,a,a+ b)
= (%)1/2 cos (M), j=1,2,... for the cosine basis on

[a,a + b], and note that the basis explicitly depends on the
interval. Then on [a,a + b] the function g(z) may be ap-
proximated by a partial trigonometric sum,

ZI/J’(/)J z,a,a+b),

z € [a,a+ b,

g(z,J,a,a+b): (3.1)

where

a+b
vi= [ g@)i(eaa+ b)de (3.2)

are Fourier coefficients of g(z), z € [a, a + b]. Further, sup-
pose that we can suggest a sample mean estimator ; of
Fourier coefficients as well as a sample mean estimator
¥; of the variance V(;). Then the nonparametric sample
mean estimator of the function g(z) is defined as
9(z,a,a+0b)
= Db /2
4+In(n)/2

+ Y I >4

=

0;)05%;(x, a,a +b), (3:3)

—_

z € [a,a + b].
This is the estimator that will be used in this paper. Let
us stress that: (i) For any problem the only statistical issue
to be resolved is how to express Fourier coefficients of a
function of interest as expectations; (ii) The estimator (3.3)
is supported by the asymptotic theory discussed in Efro-
movich (1999, 2010).
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This section explains how to construct (3.3) for estima-
tion of a hazard rate h*"(z) over an interval [a,a + b], and
the next section explores the case of density estimation.

For a hazard rate of interest we can write

X (z) = ZOj’l/)j(l', a,a+b), z€la,a+b
=0
a+b N (34)
where 0; := / Y (2);(z, a,a + b)dz.

Construction of a sample mean Fourier estimator 9j is
straightforward and based on formula (2.5). Assume that
the probability P(z), defined in (2.6), is positive on
[a,a + b] (note that otherwise we cannot restore the hazard
rate h*' () on that interval), and then write using (2.5),

a+b
0;:= / X (x)yi(z, a,a + b)dzx

a+b fV*A(x, 1)¢j(z,a,a+ b)
- / P(z)
B IE{ AI(V € [a,a+b])y;(V,a,a+ b) }
P(V) '
As soon as Fourier coefficients are written as expectations,
we may estimate them by a corresponding sample mean es-
timator,

dz (3.5)

- nﬂzn:[AzI(Vz G [a,a + b])
=1 PW) (3.6)
x ¥i(Vi,a,a + b)]
Here (compare with (2.8))
PV = n S KT < Vi< VR),
l LT == Ve (3.7)

1=12,...,n.
Note that P(V;) > n~! and hence this statistic can be used
in the denominator of (3.6).

For the variance v, :=V(f;) of §;, the sample mean
structure of the Fourier estimator allows us to propose the
following sample mean variance estimator

5 e n_2i [AZI(VZ Ae [a,a + b])
=1 P(V)

~12
X ¢j(waa7a+b) - 9]:| :

(3.8)

Further, a straightforward calculation, based on using (2.5),
shows that the theoretical variance V(6;) of Fourier estima-
tor (3.6) satisfies the following relation,
. L a+b hX* (m)
n}]linoo nV(0;) =b /a B) dz.
Using the obtained results in (3.3) we get the following haz-
ard rate estimator,
X' (x,a,a + b)
~ 4+In(n)/2 R
= 00b 2 > [1(62 > 49)

Jj=

(3.9)

(3.10)

—_

X éj’t[)j(l’, a,a + b),
z € [a,a+b].
There are two important conclusions from (3.8) and (3.9).
The first one is that, according to the recent theoretical re-
sult of Efromovich and Chu (2018), no other Fourier esti-
mator can have a smaller variance. This yields efficiency of
the proposed sample mean Fourier estimator. The second

one is pivotal for our understanding of what can and cannot
be estimated. As we have mentioned earlier, the probability
P(z) has vanishing tails, and this is what, according to
(3.9), may restrict our ability of reliable estimation of tails
of the hazard rate. We will return to this issue shortly in
Section 5 and then explain how to choose a feasible interval
of estimation.

Let us finish this section with a remark about using the
proposed sample mean hazard rate estimator, together with
formula

§% (@) = exp (- /0 ’ WY (b)),

for estimation of the conditional survival function
SXIX>a(g) .= P(X* > 2| X* > a) = P(X* > z)/P(X* > a),
x > a. First, we fix a particular z > a and consider estimate
(3.10) with Fourier coefficients (3.6) constructed for
b:=a — a. This yields an estimator A¥"(t,a,z), t € [a, z].
Now note that the used basis {¢;(¢,a,z), t € [a,z]} satis-
fies ¥o(t,a,2) = (z —a) V% and [ v;(t,a,z)dt = 0 when-
ever j > 1. Using these facts we get the following plug-in
sample mean estimate of the conditional survival func-
tion,

(3.11)

S«X*|X">a(m)
= exp ( - / Y (8, a,:c)dt)

= exp [— fo(z — a)_1/2/ dt
4+In(n)/2 ) )
- > (I (67 > 49,)0;
=1

X [lw ¥;(t, a, as)dt)]

= exp(*éo(l‘ - a)1/2)
B 3 NIV, € [a,z])
_exp< Zzzle(TkSVISVk)>‘

=1

(3.12)

<.

Note how simple this sample mean estimator of the condi-
tional survival function is.

Now let us look at the denominator (the sum in k) on the
right side of (3.12). It counts the number of cases (triplets
(Tx, Vi, Ar)) that are under observation at the moment V;.
The product-limit terminology would refer to this subset of
cases as the risk set at the time V;. Keeping this remark in
mind, we may realize that in (3.12) the sum in [ is a gen-
eralized (to LTRC setting) Nelson-Aalen estimator of the
cumulative hazard, and then (3.12) is a generalized Nel-
son—Aalen-Breslow estimator of the conditional survival
density. Let us also recall that construction of the orig-
inal Nelson-Aalen estimator was motivated by the prod-
uct-limit methodology, risk sets and the theory of counting
processes. Here we have used a sample mean methodology.
Finally, let us note that to get formulas for the Nel-
son-Aalen estimator, used in Section 12.1 of the actuarial
text Klugman, Panjer, and Willmot (2012), one should re-
place on the right side of (3.12) the indicator
(T, < Vi < Vi) by I(T}, < V; < V) to reflect the text’s de-
finition of truncation based on the “Home-Insurance” ex-
ample.
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4. ESTIMATION OF THE CONDITIONAL
PROBABILITY DENSITY

The aim is to estimate a conditional density

fX*\X*>a($) — fXZ(ZC)
5% (a)
Note that for a fixed a the conditional density has standard
density’s properties FXIX>e () >0 and
ffooo fX*‘X*”(w)dm =1.

Let us explain why there is a difference in the possibil-
ities to estimate the density and the conditional density
of X*. Relation (2.5) implies the following formula for the
probability density of the variable of interest X*,

() - L@ 5T (@)
P(z)
whenever P(z) > 0.
As a result, it suffices to understand why in general the
survival function S*"(z) cannot be estimated. The latter
almost immediately follows from formula (3.11) and the
above-discussed estimation of the hazard rate. Indeed, we
already know that LTRC can restrict us from estimation
of the left tail of a hazard rate over some interval [0, a].
In its turn this makes impossible to estimate the survival
function over that interval (of course, this conclusion is
well-known in the survival analysis, see Klein and
Moeschberger 2003 and Gill 2006). At the same time, for
some a > 0 it may be possible to estimate the hazard rate
X" (z) for z > a, and then we may estimate the conditional
survival function using the following relations,
SXNX>a(g) .= P(X* > z|X* > a)
5@
- 5%(a)

= exp ( - /: hX*(t)dt),

z € [a, 00).

Formula (4.3) is pivotal. First it sheds light on why the con-

ditional survival function may be estimated. Second, to-

gether with (4.1) and (4.2) it implies that the conditional
density of X* may be written as

fX*\X*>a($)

_ F@)

5% (a)

B fV’A(m, )SX | X* >a( )

P(z)

1) exp(—

I
P@) (z > a),

whenever P(z) > 0.

I(z > a). (4.1)

(4.2)

(4.3)

I(z > a)

I(z > a) (4.4)

_ M Ju WX ()dt)

Now recall our discussion in Section 3 that to estimate a
function over an interval [a,a + b] we need to propose a
sample mean estimator of its Fourier coefficients. Suppose
that P(z) is positive on an interval [a, a + b]. Then Fourier
coefficients of the conditional density (4.4) are defined as

a+b
Kji= / FXE>2)pi(2, a,a + b)dz.

To propose a sample mean Fourier estimator, we need to
rewrite (4.5) as an expectation. Using (4.4) we can write,

(4.5)

(—Jznr e

/’”b[fVA z,1) exp(—
Ki=
e P(z)

xi(z,a,a+ b)} dz

AI(V € [a,a + b))
=& V)

xexp (— /V R (t)dt);(V,a,a + b)}

a

The expectation on the right side of (4.6), together with
(3.7) and (3.12), yield the following plug-in sample mean
Fourier estimator,

Rj=mnt zn: [AlI(Vl € [a,a+b])

ex AkI(Vk a V}D
X exp ( 2 —P(Vk) ) (4.7)
y ¢j(Vl,a,a+b)}.
P(V)

The Fourier estimator allows us to construct the nonpara-
metric series estimator (3.3) of the conditional density. Let
us comment on steps in its construction. First, estimates
(4.7) of Fourier coefficients are calculated. Second, the cor-
responding sample variances @; are calculated (this is done
similarly to (3.8)). Then the nonparametric estimator of the
conditional density is defined as (compare with (3.10))
f-X*\X*>a(x)
4+In(n)/2
LN [I(RD > 40k
j=1
x;(z,a,a+b)], =€ [a,a+b].
This estimator is nonparametric (no restriction on its shape
is assumed) and completely data- driven.
Further, the sample mean structure of Fourier estimator
(4.7) allows us to get the relation,
lim nV(&;)

n,j—00
_ 1 a+b fX*(:I:)SX*(m)
b[SX"(a)]? /a P(z)

It is of interest to compare variance (4.9) for the conditional
density with variance (3.9) for the hazard rate. Thanks to
the factor S*"(z) in (4.9), which vanishes as z increases,
in general the right tail of the density has a better chance
to be accurately estimated than the right tail of the hazard
rate. At the same time, estimation of the right tail of the
conditional density may be still challenging. To see this,
consider as an example the case of continuous and in-
dependent X*, T* and C*. For this case (2.7) yields
P(z) = p 'FT"(2)S° (2)S¥ (). Then the integral on the
right-side of (4.9) can be written as

/a+b fX*(E)SX* (m) e

) P(z)
:p/:w

@)
———dz
FT'(2)S% ()
We can conclude that the ratio fX (z)/[FT (x)S¢" (z)] de-
fines precision in conditional density estimation, and van-
ishing tails of the denominator F7"(x)S¢”" (z) make the es-
timation challenging.

= Rob (4.8)

(4.9)

dzx.

(4.10)

Variance 6



Nonparametric Curve Estimation for Truncated and Censored Data Without Product-Limit

5. EXAMPLES AND NUMERICAL STUDY

The aim of this section is to explain how to use the pro-
posed nonparametric estimators of the hazard rate and
conditional density for LTRC data, as well as how to analyze
graphics. A numerical study of the proposed estimators is
also presented.

It is instructional to begin with visualization of different
characteristics of a random variable used in nonparametric
analysis. Figure 1, in its 4 diagrams, exhibits classical char-
acteristics of two random variables supported on [0, 1] and
defined in Efromovich (1999, 18). The first one is called the
Normal and its a normal distribution truncated onto [0, 1].
The second one is called the Bimodal and it is a mixture of
two normal distributions truncated onto [0, 1]. The top di-
agram in Figure 1 shows the corresponding survival func-
tions. Can you realize why the solid line corresponds to the
Normal and the dashed line to the Bimodal? The answer
is likely “no.” We may say that the distributions are pri-
marily different in the area around 0.6 and have a bounded
support, but otherwise the cumulative distribution func-
tions are not very instructive. Further, we need dramatically
magnify the tails to visually compare them. As a result, in
statistics estimates of the cumulative distribution function
are primarily used for hypothesis testing about an under-
lying distribution. The two middle diagrams show the cor-
responding hazard rates over two different intervals, and
please pay attention to scales in the diagrams. Note how
dramatically and differently right tails of the hazard rates
increase.

Let us explain why a bounded nonnegative variable (and
all variables studied in actuarial applications are bounded
meaning that S%"(¢) = 0 for some finite ¢) must have a haz-
ard rate that increases to infinity in the right tail. By its
definition, the hazard rate of a nonnegative random vari-
able X* (not necessarily bounded) is a nonnegative func-
tion which satisfies the following equality,

/ X (2)dz = co.
0

Equality (5.1) follows from S*'(z) = exp(— [, A" (t)dt)
(recall (3.11)) and lim,_,,, S¥"(z) = 0. As a result, the right
tail of the hazard rate of a bounded random variable always
increases to infinity. The latter may be a surprise for some
actuaries because familiar examples of hazard rates are the
constant hazard rate of an exponential (memoryless) distri-
bution and monotonically decreasing and increasing hazard
rates for particular Weibull distributions. Note that these
are examples of random variables supported on [0, co), and
in practical applications they are used for approximation of
underlying bounded variables.

The fact that the hazard rate of a bounded variable has
a right tail that increases to infinity, together with formula
(3.9) for the variance of the optimal estimator, indicate that
an accurate estimation of the right tail of the hazard rate
will be always challenging.

Finally, the bottom diagram in Figure 1 shows us the cor-
responding probability densities, and now we may realize
why they are called the Normal and the Bimodal. Probabil-

(5.1)

ity density is definitely the most visually appealing charac-
teristic of a continuous random variable.

We may conclude that despite the fact that analytically
each characteristic of a random variable may be expressed
via another, in a graphic they shed different light on the
variable. It is fair to say that in a visual analysis the survival
function is the least informative while the density is the
most informative and the hazard rate may shed additional
light on the right tail. The conclusion is important because
in nonparametric statistical analysis graphics are used to
visualize data and estimates, see a discussion in Efromovich
(1999).

Figure 2 introduces us to the LTRC data and also allows
us to look at the reciprocal 1/P(z) of the probability
P(z) := P(T <z <V) which, according to our previous
sections, plays a pivotal role in the analysis of LTRC data.
The data are simulated and hence we know the underlying
distributions. The caption of Figure 2 explains the simula-
tion and the diagrams. The LTRC resembles the “Surgery”
example described in the Introduction when the censoring
variable may be smaller than the truncation variable. The
difference between the two top datasets is in the underlying
distributions of X*. We clearly see from these diagrams
that the data are left truncated, the latter is indicated by
the left edge of datasets created by the inequality T < V.
The data do not specify how severe the underlying trunca-
tion is, at the same time the titles show that from n = 300
LTRC observations only N = 237 in the top diagram and
N = 226 in the diagram below are uncensored. We conclude
that more than 20% of truncated realizations are censored.
Further, we can tell that the support of T is about [0, 0.5]
and the support of V goes at least from 0 to around 0.94.
This allows us to speculate about a severe truncation of the
underlying data.

Now let us recall that the hazard rate and density es-
timates, introduced in the previous sections, use statistics
1/P(V;). As we will see shortly, these reciprocals exhibited
in the bottom diagrams may help us to choose a feasible in-
terval of estimation of the hazard rate and conditional den-
sity. The third diagram shows us these reciprocals for all
observed V;, I = 1,...,n, while the bottom diagram shows
only the reciprocals not exceeding 10. Note the different
scales in the two diagrams, how rapidly the tails increase,
and that for the Bimodal (the triangles) we can choose
a larger interval of estimation than for the Normal (the
crosses).

Figure 3, using simulated data, explains how the pro-
posed nonparametric sample mean estimation methodol-
ogy performs. The top diagram shows us LTRC data which
is simulated as in the second diagram in Figure 2 with X*
being the Bimodal. In the diagram we see the familiar left
edge created by the truncation. Further, note that there are
practically no observations in the tails, and the left tail of
observations is solely created by censored observations in-
dicated by the crosses. We may conclude that it will be a
complicated task to restore the underlying distribution of
interest modified by the LTRC.

Reciprocals 1/P(V;), that do not exceed 10.5, are shown
in the second diagram. Similarly to Figure 2, the circles and
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Figure 1. Different characterizations of two distributions

The names of distributions are the Normal (the solid line) and the Bimodal (the dashed line), see Efromovich (1999, 18). The distributions are supported on [0,1].

crosses correspond to uncensored and censored cases ex-
hibited in the top diagram. The estimates help us to quan-
tify complexity of the problem and choose a reasonable
interval of estimation. Also recall that the underlying func-
tion 1/P(v) is shown by triangles in Figure 2. The sec-
ond diagram also exhibits the underlying survival function
SX"(z) (the solid line) as well as its Kaplan—-Meier (the
dashed line) and the sample mean (3.12) with a = 0 (the
dotted line) estimates. Note that the corresponding scale
is shown on the right vertical axis. The two estimates are
practically identical and far from being perfect for the con-
sidered sample size m =300 and N = 213 uncensored
cases.

The third from the top diagram shows us the proposed
estimate of the hazard rate (the dashed line) which, thanks
to the simulation, may be compared with the underlying
hazard rate (the solid line). The interval of estimation is
chosen by considering relatively small values of estimated
1/P(v). The integrated squared error ISE=0.29 of the non-
parametric estimate is shown in the subtitle. Overall the es-
timate is good given the large range of its values. The esti-
mate is complemented by pointwise and simultaneous, over

the interval of estimation, confidence bands. The bands are
symmetric around the estimate to highlight its variance
(note that the hazard rate is nonnegative so we could trun-
cate the bands below zero). Together with the estimate
1/P(v), the bands help us to choose a feasible interval of
estimation.

The fourth from the top diagram shows us an estimate
of the hazard rate calculated for the larger interval than in
the third diagram. First of all, compare the scales. With re-
spect to the third diagram, the confidence bands are ap-
proximately twice wider and the ISE is more than tenfold
larger. The pointwise confidence band tells us that the left
tail of the hazard rate is still reasonable but the right one
may be poor. The chosen interval, and specifically b = 0.83,
are too large for a reliable estimation. The conclusion is
that an interval of estimation should be chosen according
to the estimate of 1/P(v) and then confirmed by confidence
bands.

The bottom diagram in Figure 3 shows estimation of the
conditional density. Note that here, as we have predicted
in Section 4, the interval of estimation may be larger than
for the hazard rate estimation. In particular, for this data it
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Figure 2. Two simulated LTRC datasets

The truncation variable T* is Uniform(0,0.5) and the censoring variable C* is Uniform(0,1.5). In the top diagram X * is the Normal, in the second from the top diagram X * is the Bi-
modal (the Bimodal density is shown in Figure 1). Circles and crosses show uncensored A = 1 and censored A = 0 cases, respectively. The total number of observations is n and the

number of uncensored observations is denoted as N. The corresponding reciprocals of the probability P(V') are shown by the crosses (the Normal case) and the triangles (the Bimodal

case) in the two bottom diagrams.

is possible to consider an interval defined by the range of
observed values of V, and then the confidence bands allow
us to evaluate feasibility of that choice. The ISE=0.035 indi-
cates that the estimator does a good job. Indeed, the esti-
mate nicely shows the two modes and gradually decreasing
tails.

Figure 4 is similar to Figure 3 only here the underlying
variable of interest is the Normal (its density is shown in
Figure 1) and the censoring is motivated by presented in the
Introduction “Home-Insurance” example when the censor-
ing variable is larger than the truncation one (the simula-
tion is explained in the caption). Note that again we have
just a few observations in the tails. In particular, there are
only 4 observations of V larger than 0.8. The left edge of
the dataset looks familiar and it indicates a heavy underly-
ing truncation. The hazard rate and conditional density es-
timates look good but this should be taken with a grain of
salt. The estimates correctly show the underlying shapes,
but the confidence bands indicate the possibility of a large
volatility.

Now, after we have polished our understanding of how
to analyze simulated data, let us consider Figure 5 where
the auto-losses data from Frees (2009) are explored. The

top diagram shows us the histogram of auto-losses scaled
onto [0, 1]. The histogram is overlaid by our nonparametric
estimates of the hazard rate (the horizontal dashed line)
and the probability density (the solid line). Note that the
two estimates complement each other and none is a plug-
in of another, the latter explains their slightly different
messages. The hazard rate estimate indicates a possible
exponential underlying distribution (recall that this dis-
tribution has a constant hazard rate). Let us check this con-
jecture. First, in the top diagram the dotted line shows us
an exponential density with the sample mean rate (note
that this is a parametric estimate). Our nonparametric den-
sity estimate (the solid line) slowly oscillates around the
exponential one. Further, let us add to the diagram the
corresponding parametric exponential cumulative distribu-
tion function (the long-dashed line) and its empirical esti-
mate (the dot-dashed line). These two curves are multiplied
by 6 for better visualization, we may observe a relatively
large deviation near # = 0.1, and the classical nonparamet-
ric Kolmogorov-Smirnov test yields the p-value 0.002 which
does not support the conjecture about the exponential dis-
tribution. Nonetheless, if we would like to choose a para-
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Figure 3. Statistical analysis of simulated LTRC data when the censoring variable may be smaller than the

truncation variable

The underlying distribution of interest is the Bimodal and the underlying LTRC model is the same as in Figure 2. In the three bottom diagrams an underlying curve is shown by the
solid line, a nonparametric estimate by the dashed line, pointwise and simultaneous 0.95-level confidence bands by dotted and dot-dashed lines, respectively. In the third and fourth

diagrams N is the number of uncensored observations within the interval [a, a + b]

metric distribution to fit or model the data, then an expo-
nential one may be a fair choice.

The hazard rate and density estimates, shown in the top
diagram of Figure 5, can be considered as benchmarks for
any LTRC modification. The middle diagram shows a sim-
ulated LTRC modification of the losses, here the trunca-
tion variable T is Uniform(0,0.5), the censoring variable
C*=T*40.2+05Z* and Z* is Uniform(0,0.5). Circles
and crosses show uncensored and censored losses, respec-
tively. LTRC losses are overlaid by the scaled estimate of
1/P(z) (the solid line). We see the pronounced left edge of
the truncated data, and notice the devastating truncation
of the available observations from 1,085 to only 350 in the
LTRC data. Further, among those 350 only 308 are uncen-
sored. Also, look at the right tail where we have just a sin-
gle observation with V larger than 0.8. As we already know,

Variance

there is no way for us to restore the right tail based on just
one observation. The estimated 1/P(z) quantifies complex-
ity of the LTRC modification. The bottom diagram shows us
the histogram of N = 308 uncensored realizations of V. It
has no resemblance to the underlying distribution shown
in the top diagram, and this histogram explains how the
LTRC modifies the data of interest. Note that if the LTRC is
ignored, then the histogram in the bottom diagram points
to the presumed underlying distribution of losses. The lat-
ter clearly would be a mistake. On the other hand, the con-
ditional density estimate (the solid line) and the hazard
rate estimate (the dashed line) are good and similar to the
benchmarks shown in the top diagram. Keeping in mind the
truly devastating truncation and censoring of the underly-
ing losses, the outcome is encouraging.
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Figure 4. Statistical analysis of simulated LTRC data when the censoring variable is larger than the truncation

variable

The underlying X * is the Normal, the truncation variable 7* is Uniform(0,0.5), and the censoring variable is C* = T* + Z* where Z* is Uniform(0,1.5). The context of diagrams is

similar to Figure 3.

Figure 6 exhibits a LTRC dataset “channing.” The top di-
agram shows us available lifetimes. Its left edge looks fa-
miliar, and it indicates heavy left truncation. Further, look
at how many cases of censoring, shown by crosses, occur at
or near the left edge. Further, we are dealing with an ex-
tremely heavy right censoring when only 38% of observa-
tions are uncensored (the number N = 176 of uncensored
observations is shown in the title). Now let us look at the
right edge of the LTRC data. First, note that it is parallel
to the left edge. Second, the right edge is solely created by
censored observations (shown by crosses). This tells us that
the data are based on a study with a specific baseline and a
fixed duration. In addition to that, we may say that a large
number of observations were censored during the study for
reasons other than the end of the study. The heavy LTRC
is quantified by the estimated reciprocal of the probabil-
ity P(z) = P(T < z < V), see the solid line in the top dia-

gram. This estimate clearly indicates restrictions on a reli-
able recovery of tails.

The bottom diagram in Figure 6 allows us to look at the
available N = 176 uncensored observations of V exhibited
by the histogram. In the histogram we observe two modes
with the right one being larger and more pronounced than
the left one. The solid line shows us the estimated condi-
tional density. Note how the estimate takes into account
the LTRC nature of the data by skewing the modes with re-
spect to the histogram. Recall that we have observed a sim-
ilar performance in the simulated examples.

Now let us look at another interesting LTRC dataset
“centrifuge” presented in Figure 7, the structure of its di-
agrams is identical to Figure 6. The data, rescaled onto
[0,1], are based on a study of the lifetime of centrifuge’s
conveyors used at municipal wastewater treatment plants.
Conveyers are subject to abrasive wear (primarily by sand),
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The data are from Frees (2009), here only losses between $3,000 and $20,000 are used and then rescaled onto [0,1].

spare parts are expansive, and repair work is usually per-
formed by the manufacturer. This is why a fair manufac-
turer’s warranty becomes critical (recall our discussion of
warranties in the Introduction). The aim of the study was to
estimate the distribution of the lifetime of a conveyor.

First of all, let us look at the available data shown in the
top diagram. We see the pronounced right edge of the data
created by crosses (censored lifetimes). It indicates the end
of the study when all still functioning conveyors are cen-
sored. At the same time, only two lifetimes (conveyors) are
censored by times smaller than 0.6; this is due to malfunc-
tioning of other parts of the centrifuges. Further, there is
no pronounced left edge of the data which is typically cre-
ated by truncation. These are helpful facts for the consid-
ered case of small sample size n = 56. The top diagram also
shows us the estimate of 1/P(v) (the solid line), and note
that its scale is shown on the right vertical axis. It sup-
ports our visual analysis of the data about a minor effect
of the truncation and the primary censoring due to end of
the study. Also note that there are no observed small life-
times, and this forces us to consider estimates only for val-
ues larger than 0.2.

Variance

The bottom diagram in Figure 7 exhibits the hazard rate
(the dashed line) and conditional density (the solid line) es-
timates. Note how the intervals of estimation are chosen
according to the estimated 1/P(v) shown in the top dia-
gram. The density estimate is informative and it indicates
two modes (note how again the estimate takes into account
the LTRC modification with respect to the histogram of un-
censored lifetimes). There is a plausible explanation of the
smaller mode. Some municipal plants use more advanced
sand traps, and this may explain the larger lifetimes of con-
Veyors.

Based on the available data we cannot check the above-
made conjecture about the underlying origin of the smaller
mode, but this issue leads us to a new and important re-
search problem of regression for LTRC data. So far the main
approach to solve this problem has been based on mul-
tiplicative parametric Cox models, often called the pro-
portional hazards models, see a discussion in Klein and
Moeschberger (2003) and Frees (2009). It will be of interest
to test the developed sample mean approach for solving the
problem of nonparametric regression.
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Figure 6. Analysis of LTRC data “channing” from R library KMsurv

In the top diagram circles and crosses show uncensored and censored observations, respectively, and the solid line shows the estimate of 1/P(V'). The histogram in the bottom dia-

gram shows uncensored observations, and the histogram is overlaid by nonparametric estimates of the conditional density (the solid line) and the hazard rate (the dashed line).

Now let us present results of a numerical study that
compares the proposed sample mean estimators with those
supported by R. Hazard rate and density estimators are
available for censored data in R packages muhaz and
survPresmooth, respectively. The numerical study is based
on the following Monte Carlo simulations. The underlying
distributions are either the Normal or the Bimodal shown
in Figure 1, the censoring distributions are either Unif(0,c)
or exponential Exp(\) with the rate (mean) A. Considered
sample sizes n are 100, 200, 300, 400, and 500. For each
such experiment (i.e., a density, a censoring distribution,
and a sample size), 500 Monte Carlo simulations are per-
formed. Then for each experiment the empirical integrated
squared error (ISEpl) of the product limit estimator sup-
ported by R and the empirical integrated squared error (IS-
Esm) of the proposed sample mean estimator are calcu-
lated. For the hazard rate and the density the integrated
squared errors are calculated over intervals [0,0.8] and
[0, 1], respectively. Then the median ratios (over 500 simu-
lations) of ISEpl/ISEsm are shown in Table 1. Note that the
ratio larger than 1 favors the sample mean estimator.

As we see, the sample mean estimators of the hazard
rate and the density perform well. Further, because they
mimic asymptotically efficient estimators, their relative

Variance

performance improves for larger sample sizes. Further, the
performance of proposed estimators is robust toward
changes in censoring distributions.

CONCLUSION

Left truncation and right censoring are typical data modi-
fications that occur in actuarial practice. Traditionally, the
distribution of interest is recovered via a product-limit es-
timate of the conditional survival function. The present
paper advocates complementing this approach with non-
parametric sample mean estimation of the hazard rate and
the conditional probability density. The attractive feature
of the proposed hazard rate estimation is that it is non-
parametric, completely data driven, and its sample-mean
structure allows us to use a classical statistical inference
developed for parametric sample mean estimators. Further,
the presented theory shows that the key quantity in un-
derstanding what can and cannot be done in restoring an
underlying distribution of interest is the probability
P(T < z < V) which is nicely estimable by a sample mean
estimator. Presented simulated and real examples explain
how to analyze left truncated and censored data and illus-
trate performance of the proposed nonparametric estima-
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LTRC Lifetimes and Estimate of 1/P(V), n=56, N =48
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Figure 7. Analysis of LTRC data “centrifuge”

The structure of diagrams is identical to Figure 6.

tors of the hazard function and conditional probability den-
sity.

MAIN NOTATIONS

E{-} is the expectation, P(A) := E{I(A)} is the probability
of event A and I(A) is the indicator of event A. For a ran-
dom variable X, F*(z) := P(X < z) denotes its cumula-
tive distribution function (cdf), S%(z) := P(X > z) is the
survival function,
SXIX>a(z) .= P(X > z|X > a) = S¥X(z)/S%(a), z>a is
the conditional survival function. For a continuous X,
fX(z) := dFX(z)/dx denotes its probability density,
fXX>e(z) .= fX(x)/S%(a) is the conditional probability
density, h¥(z) := fX(x)/S%¥(z) is the hazard rate.

X* is the hidden underlying random variable of interest
(the lifetime), T* is the truncation variable, C* is the cen-
soring variable. Modified by censoring variables are
V:=min(X*,C*) and the indicator of censoring
A:=I(X* <(C*). Given no truncation occurs, that is
T* < min(X*,C*), the available left truncated and right
censored (LTRC) triplet is (T', V, A) where T := T'*, see de-
finition of the LTRC mechanism in the second paragraph of
Section 2. {(T1, V1, A1), ..., (Th, Vo, Ay)} denotes an avail-
able sample from (7, V, A). In definition (1.3) of the prod-
uct-limit Kaplan-Meier estimator, (V(;,Aq),l=1,2,...,n
denote ordered pairs according to V;, that s
Vi < - < V-

An accent indicates an estimator (statistic). For instance,
9j is the estimator of corresponding Fourier coefficients
0;, see (3.5) and (3.6), SX" is an estimator of the survival
function SX°, etc. In used series estimators,
Yo(z,a,a+b) :== b2
¥j(z,a,a +b) := (2/b)}/2 cos(mj(z — a)/b), j=1,2,... de-
note elements of the cosine basis on [a,a + b].

p:=P(T* < min(X*,C*)) denotes the probability to
avoid truncation, P(z):= P(T <z <V) is the pivotal
probability in analysis of LTRC, and N is the random num-
ber of uncensored observations in an LTRC sample.
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Table 1. Results of Monte Carlo simulations

X* c* n
100 200 300 400 500

Normal Unif(0,1.2) 1.07,1.05 1.15,1.08 1.22,1.15 1.25,1.20 1.25,1.23
Normal Unif(0,1.5) 1.09,1.07 1.16,1.14 1.25,1.24 1.31,1.28 1.31,1.32
Normal Exp(1) 1.12,1.10 1.23,1.21 1.29,1.29 1.35,1.37 1.36,1.37
Normal Exp(1.5) 1.18,1.15 1.26,1.24 1.31,1.30 1.36,1.38 1.38,1.39
Bimodal Unif(0,1.2) 1.18,1.12 1.26,1.22 1.38,1.37 1.31,1.31 1.32,1.33
Bimodal Unif(0,1.5) 1.19,1.16 1.31,1.28 1.35,1.34 1.37,1.39 1.37,1.39
Bimodal Exp(1) 1.20,1.18 1.34,1.32 1.35,1.33 1.38,1.41 1.38,1.41
Bimodal Exp(1.5) 1.22,1.21 1.36,1.33 1.37,1.35 1.39,1.40 1.39,1.41

An entry in the Table is written as “h, d” where h and d are medians of 500 ratios ISEpl/ISEsm for the hazard rate and density estimates, respectively.

Variance
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