
Unbreakable Decomposition in Close-to-Linear Time∗

Aditya Anand† Euiwoong Lee‡ Jason Li§ Yaowei Long¶ Thatchaphol Saranurak‖

Abstract

Unbreakable decomposition, introduced by [CLP+19, CKL+20], has proven to be one of the most powerful
tools for parameterized graph cut problems in recent years. Unfortunately, all known constructions require
at least Ωk

(
mn2

)
time, given an undirected graph with n vertices, m edges, and cut-size parameter k.

In this work, we show the first close-to-linear time parameterized algorithm that computes an unbreakable

decomposition. More precisely, for any 0 < ϵ ≤ 1, our algorithm runs in time 2O(k
ϵ
log k

ϵ
)m1+ϵ and computes a

(O(k/ϵ), k) unbreakable tree decomposition of the input graph, where each bag has adhesion at most O(k/ϵ).
This immediately opens up possibilities for obtaining close-to-linear time algorithms for numerous problems

whose only known solution is based on unbreakable decomposition.

1 Introduction

For the past two decades, the study of graph cut problems has been a highly active subarea of fixed-
parameter tractability (FPT) algorithms that has led to many powerful algorithmic techniques, including
important separators and shadow removal [CLL+08, MR14, CHM13, LM13], matroid-based kernelization
[KW12, KW14, CDK+21, HLW21, Wah22], treewidth reduction [MOR13], branching from half-integral solutions
[CPPW13, Gui11, LNR+14, IWY16, Iwa16, IYY18], and flow augmentation [KKPW21, KKPW24, KMP+24].

Recently, unbreakable decomposition has emerged as one of the most powerful techniques used by numerous
FPT algorithms [CLP+19, CKL+20, LSS22, PSS+22, SSS+24, SZ23, ILSS23, LSSZ19, AKP+22]. This
decomposition also generalizes the highly influential tree decomposition of bounded width to general graphs, in
the sense that unbreakable decomposition exists on arbitrary graphs, and the two concepts coincide on bounded-
treewidth graphs. See Section C.

We briefly define unbreakable decomposition here. Given a graph G and a vertex set X, a (q, k)-breakable
witness for X is a vertex cut (L,R) in G of size |L∩R| ≤ k where |L∩X|, |R∩X| > q. If there is no (q, k)-breakable
witness for X, then X is (q, k)-unbreakable. We say that X has adhesion σ if, for every connected component C
in G \X, the size of its neighborhood is at most |NG(C)| ≤ σ. A (q, k)-unbreakable decomposition with adhesion
σ is a tree decomposition of G where every bag is (q, k)-unbreakable and has adhesion at most σ. The quality of
the decomposition is measured by how small q and σ are compared to k.

This paper presents the first close-to-linear time FPT algorithm for computing unbreakable decomposition,
thereby removing the core bottleneck to close-to-linear time FPT algorithms for many graph cut problems.1

Below, we survey the development and impact of unbreakable decomposition.
History. In their breakthrough FPT algorithm for Minimum p-Way Cut2, Kawarbayashi and Tho-

rup [KT11] introduced the edge cut version of (q, k)-breakable witnesses. However, their algorithm for finding

∗The paper can also be accessed at https://arxiv.org/abs/2408.09368
†University of Michigan, Ann Arbor
‡University of Michigan, Ann Arbor. Supported in part by NSF grant CCF-2236669 and Google.
§Carnegie Mellon University
¶University of Michigan, Ann Arbor. Partially funded by the Ministry of Education and Science of Bulgaria’s support for INSAIT,

Sofia University “St. Kliment Ohridski” as part of the Bulgarian National Roadmap for Research Infrastructure.
‖University of Michigan, Ann Arbor. Supported by NSF Grant CCF-2238138. Partially funded by the Ministry of Education and

Science of Bulgaria’s support for INSAIT, Sofia University “St. Kliment Ohridski” as part of the Bulgarian National Roadmap for
Research Infrastructure.

1As per convention in the graph algorithms literature, given a graph with m edges, algorithms with near-linear, almost-linear, and

close-to-linear time have running time of O(m logO(1) m), O(m1+o(1)), and O(m1+ϵ) for any constant ϵ > 0, respectively.
2Given a graph G, this problem asks if we can delete k edges to disconnect G into at least p connected components. This problem

is often called Min k-Cut. But we choose to preserve k as a parameter in unbreakable decomposition.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1464

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/2408.09368

these witnesses is problem-specific. A year later, Chitnis et al. [CCH+16] presented a general algorithm for
finding (q, k)-breakable witnesses for both the edge cut and vertex cut versions, leading to FPT algorithms for
many problems including the terminal version of Minimum p-Way Cut and Unique Games, which in turn
generalizes Subset Feedback Vertex Set and Odd Cycle Transversal. Unfortunately, the top-down
divide-and-conquer technique used in [KT11, CCH+16] is ineffective in solving a prominent problem, namely,
Minimum Bisection.

To address this, Cygan et al. [CLP+19] introduced the concept of unbreakable decomposition, which allows
them to exploit (q, k)-unbreakable sets in a bottom-up manner using dynamic programming. Using this
technique, they successfully developed an FPT algorithm for Minimum Bisection. Later, in [CKL+20], Cygan
et al. significantly improved the construction in [CLP+19] by showing an FPT algorithm that constructs an
unbreakable decomposition with optimal unbreakability and adhesion parameters. This improvement resulted in
further applications.

Since then, unbreakable decomposition has become a core technique in various results within the field.
For instance, Lokshtanov, Saurabh, and Surianarayanan [LSS22] provided a polynomial-time construction of
unbreakable decomposition in the edge cut version and used it to settle a long line of work of [GLL18b, GLL18a,
KL20] by showing a (1+ ϵ)-approximation FPT algorithm for Minimum p-Way Edge-Cut when parameterized
by p (instead of the usual cut size). Other applications include model checking [PSS+22, LRSZ18, SSS+24],
connectivity oracles under vertex failures [PSS+22], and FPT algorithms for Multiway Node Hubs [SZ23],
Judicious Partitions [LSSZ19], Fair Bisection [ILSS23], and deletion to bounded degree graphs [AKP+22].

Bottleneck. Unfortunately, all known algorithms for constructing unbreakable decompositions share an
important drawback: their running time is far from linear in the size of the graph, in contrast to other key
algorithmic techniques such as important separators [Mar06], flow augmentation [KKPW24], treewidth reduction
[MOR13], and branching from half-integral solutions [IYY18]. The fastest known algorithm in literature still
takes at least Ω(mn2) time in a graph with n vertices and m edges [CLP+19]. See Table 1. Unbreakable
decomposition has thus become a common bottleneck for obtaining close-to-linear time FPT algorithms for many
of its applications. Indeed, Cygan et al. [CKL+20] has stated that whether unbreakable decomposition admits a
near-linear time construction is “an interesting and challenging open problem”.

This paper gives an affirmative answer to this question up to an arbitrarily small polynomial factor.
Furthermore, our unbreakability and adhesion parameters are optimal up to constant factors, almost matching
the optimal guarantees of [CKL+20].

Theorem 1.1. For any 0 < ϵ ≤ 1, there is a randomized algorithm that runs in time 2O(k
ϵ log k

ϵ)m1+ϵ and
computes with high probability a (O(kϵ), k)-unbreakable decomposition with adhesion O(kϵ).

Our decomposition also has O(log n) depth and satisfies the subtree unbreakability property (see Definition 3.3),
both of which are not satisfied by the decomposition with the best unbreakability parameters [CKL+20]. Both
properties are useful in applications. For example, the performance of the connectivity oracle of [PSS+22] crucially
relies on the subtree unbreakability property, and its space depends on the depth of the decomposition. [ILSS23]
also requires a low-depth decomposition.

As an almost immediate application of Theorem 1.1, we show the first close-to-linear time FPT algorithm for
Minimum p-Way Cut.

Theorem 1.2. For any 0 < ϵ < 1, there is a 2O(k
ϵ log k

ϵ)m1+ϵ time algorithm that decides if a graph G has a
p-Way Cut with at most k cut edges.

Prior to our work, [KT11] showed an algorithm with a running time of O(kk
O(k)

n2). This was improved by

[CCH+16] to O(2O(k2 log p)n2) and by [CKL+20] to O(2O(k log k)nO(1)), where the dependency on nO(1) is at least
Ω(mn2).

We believe that this is only the first of many such applications. Since there are numerous problems whose
only solution so far is using unbreakable decomposition, Theorem 1.1 removes the main obstacle and opens up
many exciting open problems listed in Section 8.

2 Technical Overview

Given parameters k and ϵ, we define σ = k+k
⌈
1
ϵ

⌉
and q = k+2σ. Our strategy is to recursively call the following

key subroutine: Given a graph H and a set of boundary vertices B ⊆ V (H), satisfying |B| ≤ 2σ, find a superset

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1465

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Reference Time Unbreakability Adhesion Depth Subtree? Vertex or
edge

[CLP+19] 2O(k2)n2m (2O(k), k) 2O(k) n Yes Vertex

[CKL+20] 2O(k log k)nO(1) (i, i) ∀i ≤ k k n No Vertex

[LSS22] nO(1) ((k + 1)5, k) k n No Edge

[ILSS23] 2O(k log k)nO(1) (9k, k) 8k O(log n) No Vertex

Thm 6.1
2O(k

ϵ log k
ϵ)m1+ϵ ((2

⌈
1
ϵ

⌉
+ 3)k, k) (2

⌈
1
ϵ

⌉
+ 2)k O(kϵ log n) Yes Vertex

2O(k
ϵ log k

ϵ)m1+ϵ (O(k/ϵ), k) O(k/ϵ) O(log n) Yes Vertex

Table 1: Known constructions of unbreakable decomposition. The “subtree?” column indicates whether the
decomposition satisfies the subtree unbreakability property (see Definition 3.3). The “vertex or edge” column
indicates whether each bag is unbreakable or (weaker) edge-unbreakable.

X ⊇ B such that

1. X is (q, k)-unbreakable,

2. X has adhesion 2σ, i.e., |NH(C)| ≤ 2σ for each connected component C in H \X,

3. X is 1
2 -balanced, i.e., |V (C)| ≤ |V (H)|/2 for each connected component C in H \X.

Given X, we will then create a node t in the tree decomposition, set the bag β(t) = X, and recurse on the graphs
C ∪NH(C) with the boundary NH(C) for every connected component C of H \X. Each recursive call will then
create a tree node with parent t.

By simply calling this subroutine on G and initial B = ∅, we would obtain an (q, k)-unbreakable decomposition
with adhesion 2σ and finish. The recursion depth is O(log n) by the 1

2 -balanced condition, so it suffices to show
a close-to-linear time algorithm for this key subroutine. In fact, we obtain the key subroutine only when |B| ≤ σ.
We will later show how to reduce the case of |B| > σ to the case when |B| ≤ σ at the end of this overview.

Suppose |B| ≤ σ. If we find a vertex set X1 that is (σ, k)-unbreakable, has adhesion σ, and is 1
2 -balanced,

then we can simply return X := X1 ∪ B, because X must be (σ + |B|, k)-unbreakable where σ + |B| ≤ q, has
adhesion σ + |B| ≤ 2σ, and is 1

2 -balanced.
Our key technical contribution (Theorem 5.1) is a fast algorithm for computing X1, i.e., an unbreakable

low-adhesion balanced set. We do this in two main steps. The first step computes an unbreakable balanced origin
X0, defined below. The second step, called the reducing adhesion step, will return the desired set X1 ⊇ X0.

Balanced Origin (Section 4). We say that a vertex set X is a 1
2 -balanced σ-origin if every superset X ′ ⊇ X

with adhesion σ must be 1
2 -balanced. We will compute a 1

2 -balanced σ-origin that is also (k, k)-unbreakable.
We first observe that we can obtain a 1

2 -balanced σ-origin W , with constant probability, simply by sampling
a random vertex set of size O(σ). This holds because, as shown in [FM06], with constant probability, W is even
a (12 , σ)-net which is a stronger notion. Let us assume that this event holds with certainty for simplicity.

Now, if W is also (k, k)-unbreakable, then we can return X0 ← W and be done. Else, there is a (k, k)-
breakable witness (L,R) for W . We can find such a witness simply by trying all partitions (WL,WR) of W
and checking if there is a cut of size k separating (WL,WR). This takes O(2|W |mk) = 2O(k/ϵ)m time. Assume
w.l.o.g. that |L| ≤ |R|. We update W ← (W \L)∪ (L∩R). Our key observation is that W remains a 1

2 -balanced
σ-origin (because |L| ≤ |V (H)|/2) and the size of W strictly decreases. Hence, this update can happen at most
O(σ) times before W becomes (k, k)-unbreakable. Thus, we obtain a (k, k)-unbreakable 1

2 -balanced σ-origin X0

in 2O(k/ϵ)m time.
Reducing Adhesion (Section 5). Our reducing adhesion subroutine (Lemma 5.1) is such that, given any

(k, k)-unbreakable set X0, it finds a superset of X0 that is (σ, k)-unbreakable and has adhesion σ.
Given this, we can obtain the desired set X1 by feeding a (k, k)-unbreakable 1

2 -balanced σ-origin X0 as the
input to the reducing adhesion subroutine. Then, the output X1 must be (σ, k)-unbreakable and have adhesion
σ. Also, X1 must be 1

2 -balanced, because X1 ⊇ X0 has adhesion σ and X0 is a 1
2 -balanced σ-origin.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1466

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

The high-level scheme of the reducing adhesion subroutine is as follows. We initialize T ← V (H) andX1 ← X0

and keep updating T and X1, while maintaining the following three invariants:

1. X0 ⊆ X1 ⊆ T ,

2. T has adhesion σ, and

3. X1 is (σ, k)-unbreakable.

We stop once X1 = T . Thus, X1 will be (σ, k)-unbreakable and has adhesion σ as desired.
Our approach for updating T and X1 is centered around an object called a (X1, T, k

′)-witness, which is a
vertex cut (L,R) of size |L ∩ R| ≤ k′ where |L ∩ T | > |L ∩ R| and X1 ⊆ R. This notion is similar to a (k′, k′)-
breakable witness for T , but it requires X1 ⊆ R and omits |R ∩ T | > |L ∩R|. Given a (X1, T, k

′)-witness (L,R),
our algorithm updates T by carving T along the witness: we set T ← (T \L) ∪ (L ∩R). Before carving, a vertex
v ∈ L \R is called (X1, T, k

′)-carvable.3

The carving operation maintains X1 ⊆ T because X1 ⊆ R. Thus, Invariants 1 and 3 are maintained. In fact,
X1 remains (k, k)-unbreakable because X1 has never been updated. We can also maintain Invariant 2 by making
the (X1, T, k

′)-witness lean (see Definition 5.5). The leanness is easy to ensure using max-flow computation; we
omit this detail here. The point of the carving operation is that it removes |(L \ R) ∩ T | ≥ 1 carvable vertices
from T \X1, progressing towards the goal of T = X1.

Our key structural lemma (Lemma 5.2) says that if X1 is (q1, k)-unbreakable for any q1 and there is no
(X1, T, q1 + k)-carvable vertex in T , then T is (q1 + k, k)-unbreakable. This lemma suggests a natural algorithm:
keep finding a (X1, T, 2k)-witness and carving T along it until T = X1 or no such witness is left. If the former
happens, we are done. Otherwise, if the latter happens, the lemma implies that T is (2k, k)-unbreakable, as X1

is (k, k)-unbreakable. Since T also has adhesion σ by induction, we can set X1 ← T and return X1.
While the above approach is correct, it is too slow. Indeed, a single carving operation might reduce the size

of T \X1 by only one. Thus, the process could take as large as Ω(n) iterations.
Reducing Adhesion Fast. To speed up, our key algorithmic tool is the disjoint-witness algorithm

(Lemma 5.5) that computes

• A vertex set Q that contains all (X1, T, k
′)-carvable vertices in T ,

• A collection C of disjoint (X1, T, k
′)-witnesses C where (L \ R) ∩ T ⊆ Q for all (L,R) ∈ C and∑

(L,R)∈C |(L \R) ∩ T | = Ωk′(|Q|/ log n).

Intuitively, the witnesses in C contains Ωk′(1/ log n)-fraction of all carvable vertices in T . The disjoint-witness
algorithm takes 2O(k′ log k′)m1+o(1) time and is based on the color coding technique in [CKL+20] combined with
the single source min-cut threshold algorithm introduced by [LP21], adapted to the vertex version by [PSY22].

For simplicity, we first explain how to compute X1 in Ok(m
1+o(1)

√
n) running time using a 2-level algorithm.

Our final algorithm reduces the factor
√
n to nϵ by having

⌈
1
ϵ

⌉
levels.

Start by computing the set Q of (X1, T, 2k)-carvable vertices in T and the collection C of disjoint (X1, T, 2k)-
witnesses. There are two cases depending on whether |Q| ≤

√
n or not. If |Q| >

√
n, then we carve T along all

witness of C. Note that the size of T \X1 must decrease by at least
∑

(L,R)∈C |(L \R) ∩ T | = Ωk(
√
n/ log n). So,

this can happen at most Ok(
√
n log n) times. The total running time in this case is at most Ok(m

1+o(1)
√
n).

Next, suppose |Q| ≤
√
n. At a first glance, one may expect at most

√
n further iterations because there are

at most
√
n many (X1, T, 2k)-carvable vertices left. Unfortunately, we cannot find a way to show this (and leave

this as an open problem) since each carving operation might introduce new (X1, T, 2k)-carvable vertices. This
happens because the operation adds some new vertices into T . Even though |T \ X1| strictly decreases, there
might be too many iterations because it is possible that |T \X1| = Ω(n) while |Q| ≤

√
n.

Our solution is to use the extension of the key structural lemma (Lemma 5.2) above: for any set Y where
X1 ⊆ Y ⊆ T , if X1 is (q1, k)-unbreakable and there is no (X1, T, q1+k)-carvable vertex in Y , then Y is (q1+k, k)-
unbreakable. Since T \Q has no (X1, T, 2k)-carvable vertex, we can set X1 ← T \Q (satisfying Invariant 1). The

3The precise definition of carvable vertices (Definition 5.3) requires a technical condition that the witness is “connected” in some
sense. We omit this detail here.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1467

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

lemma implies that the new X1 is (2k, k)-unbreakable (satisfying Invariant 3) and |T \ X1| = |Q| ≤
√
n. After

this operation, the algorithm proceeds to the second level.
In the second level, we keep finding a (X1, T, 3k)-witness and carve T along it, until T = X1 or no such

witness is left. At the beginning of this level, |T \ X1| ≤
√
n, and so there are at most

√
n further iterations.

Once there is no (X1, T, 3k)-witness, we return X1 ← T . We conclude that X1 is (3k, k)-unbreakable by the key
structural lemma and X1 has adhesion σ by induction, as desired.

We can extend the above 2-level algorithm to 3 levels simply by replacing the
√
n threshold by two thresholds

n2/3 and n1/3. By extending this approach to
⌈
1
ϵ

⌉
levels, we can obtain X1 which is (

⌈
1
ϵ

⌉
k+k = σ, k)-unbreakable

and has adhesion σ in time Ok(m
1+o(1)nϵ) as desired.

When |B| > σ. We briefly discuss the case when σ < |B| ≤ 2σ. Suppose that there exists a (k, k)-breakable
witness (L,R) for B. Let X = (L ∩ R) ∪ B. Since |X| ≤ |B|+ k ≤ 2σ + k = q, X is trivially (q, k)-unbreakable.
Moreover, we can show that the adhesion of X is at most |B| − 1. That is, the size of the boundary strictly
decreases, making progress towards the case where |B| ≤ σ. So, while we have that X does satisfy Properties 1
and 2 but may not satisfy Property 3, this case may occur at most σ times before |B| ≤ σ. This is why the depth
of our decomposition has a factor of σ. In Section 6.1, we further improve the depth to O(log n).

The next case is when B is (k, k)-unbreakable. If we apply the reducing adhesion subroutine to B, we get a
set X2 which is (σ, k)-unbreakable and has adhesion σ. This means that each connected component in H \X2 has
a boundary size at most σ. Therefore, this reduces the problem to the previous case of |B| ≤ σ in close-to-linear
FPT time.

Organization: Section 3 contains basic definitions. Section 4 describes the construction of unbreakable
balanced origins. Section 5 describes our fast algorithm for reducing adhesion. Finally, using the tools from
these two sections as outlined above, Section 6 shows the construction of the unbreakable decomposition. As
an example of applications, Section 7 shows the close-to-linear-time FPT algorithm for p-Way Cut. We list
potential applications of our result and more open problems in Section 8.

3 Preliminaries

Throughout this paper, we use n to denote the number of vertices and m to denote the number of edges in a
graph. All graphs are undirected, unweighted, and connected unless otherwise stated, and hence we shall assume
m ≥ n− 1. Given a graph G and a subset of vertices U ⊆ V (G), G[U] denotes the subgraph induced on the set
of vertices U and EG(U) denotes the set of edges in E(G) whose both endpoints are in U , i.e. the set of edges in
G[U]. The set of neighbours of a vertex v in G is denoted by NG(v). We denote by NG(U) :=

⋃
v∈U NG(v) \ U

the set of neighbours of U . We omit the subscripts when the graph is clear from the context.
Vertex Cuts. A vertex cut (L,R) is such that L ∪ R = V (G), L \ R and R \ L are not empty, and there

is no edge between L \ R and R \ L. The size of the vertex cut (L,R) is |L ∩ R|. We emphasize that, we will
view (L,R) as an ordered pair, because in some definitions (e.g. Definitions 3.4 and 5.5), the order of (L,R) does
matter. Throughout Sections A and 4 to 6, we only consider vertex cuts (not edge cuts), so we usually write cuts
as an abbreviation of vertex cuts.

Vertex-Capacitated Graphs and Mincuts. We use G̃ to denote capacitated graphs with positive integral
vertex capacity function ρ : V (G̃) → Z+. For an arbitrary vertex set A ⊆ V (G̃), we define ρ(A) =

∑
v∈A ρ(v).

Given two disjoint vertex sets A,B ∈ V (G̃) such that there is no edge connecting A and B, an A-B cut is a cut
(L,R) with A ⊆ L\R and B ⊆ R\L, and an A-B mincut is an A-B cut that minimizes the (capacitated) cut size
ρ(L ∩ R). We use λG̃(A,B) to denote the (capacitated) size of an A-B mincut. To avoid clutter, when A = {a}
(resp. B = {b}) is a singleton vertex, we replace {a} with a (resp. replace {b} with b).

Balance, Adhesion and Unbreakability. For any vertex set X ⊆ V (G), X is α-balanced if each connected
component C of G \X has size |C| ≤ αn. The adhesion σG(X) of X in G, or simply the adhesion of X, is the
maximum, over connected components C of G \X, of the quantity |NG(C)|.

Definition 3.1. (Unbreakablility) A vertex set X ⊆ V (G) is (q, k)-unbreakable in G if every vertex cut
(L,R) of size at most k satisfies |L∩X| ≤ q or |R∩X| ≤ q. A (q, k)-breakable witness of X in G is a vertex cut
(L,R) of G of size as most k satisfying |L ∩X| > q and |R ∩X| > q.

By definition, X is (q, k)-unbreakable in G iff there is no (q, k)-breakable witness of X in G. Note that any set X
of size at most q is vacuously (q, k)-unbreakable.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1468

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

The core technical contribution of this paper (Theorem 5.1) is a close-to-linear time algorithm for computing
a vertex set that is simultaneously 1/2-balanced, unbreakable, and has low-adhesion.

Unbreakable Decomposition. Next, we define the key object of this paper.

Definition 3.2. (Tree Decomposition) A tree decomposition of a graph G is a pair (T, β), where T is a
tree and β : V (T) → 2V (G) is a mapping that assigns to every tree node t a subset β(t) ⊆ V (G), called a bag.
Furthermore, (T, β) satisfies the following.

• For each vertex v ∈ V (G), the set {t | v ∈ β(t)} induces a connected subtree of T .

• For each edge {u, v} ∈ E(G), there is a tree node t where u, v ∈ β(t).

A rooted tree decomposition is a tree decompositon (T, β) together with a designated root node r ∈ V (T).
For any node t ∈ V (T) with parent t′, the adhesion of a tree node t is σ(t) = β(t)∩ β(t′). We define σ(r) = ∅ for
the root r. The adhesion of T is |maxt∈T σ(t)|. For every t ∈ V (T), we also define the sets

γ(t) =
⋃

descendants s of t

β(s) and Gt = G[γ(t)]− EG(σ(t)).

Definition 3.3. (Unbreakable Decomposition) A (q, k)-unbreakable decomposition of G is a rooted tree
decomposition (T, β) where each bag β(t) is (q, k)-unbreakable in G. The decomposition admits the stronger
subtree unbreakability property if each bag β(t) is (q, k)-unbreakable in Gt.

The main goal of this paper (Section 6) is a fast algorithm for computing an unbreakable decomposition with
subtree unbreakability property and small adhesion.

For each tree node t, let α(t) = γ(t) \ σ(t). We say that a rooted tree decomposition (T, β) is compact if for
every node t ∈ V (T) for which σ(t) ̸= ∅, G[α(t)] is connected and NG(α(t)) = σ(t). This property is handy for
performing dynamic programming on tree decomposition, and we will exploit it in Section 7.

Single Source Vertex Mincuts. We will use an algorithm for computing single-source vertex min-cuts.
We start by defining the notion of disjoint cuts.

Definition 3.4. (Disjoint Cuts) Let C be a collection of cuts. The cuts in C are disjoint if for each pair of
different cuts (L,R), (L′, R′) ∈ C, L \R and L′ are disjoint.

A cut collection C is a set of cuts (L,R). Next, we define a mincut cover, which is the output of our single source
vertex mincuts subroutine.

Definition 3.5. (Mincut Covers) Consider a capacitated graph G̃ with a source vertex s and sink vertices T

such that {s}∪T is an independent set. A mincut cover K with respect to s and T in G̃ is a set of cut collections
C, which satisfies the following.

1. For each collection C ∈ K and cut (L,R) ∈ C, (L,R) is a t-s mincut for some sink t ∈ T .

2. For each sink t ∈ T , there exists a cut (L,R) in some collection C ∈ K such that t ∈ L \R.

3. Each collection C is a set of disjoint cuts.

The width of a mincut cover K is the number of collections C in K. To avoid clutter, we also use (L,R) ∈ K to
denote a cut (L,R) ∈ C for some collection C ∈ K.

Roughly speaking, the single source vertex mincuts subroutine receives a capacitated graph G̃ with one source
s, a set T of several sinks, and a parameter k, and outputs a small-width mincut cover K with respect to s and
T . In other words, we can obtain t-s mincuts for all t ∈ T , and these mincuts can be partitioned into a small
number of collections of disjoint cuts. We defer the proof of this result to Section A.

Theorem 3.6. Consider an m-edge capacitated graph G̃ with vertex capacity function ρ, a parameter k, a single
source vertex s and sink vertices T satisfying that {s} ∪ T is an independent set and each source/sink vertex has
capacity ∞. Let T ∗ be the set of sink vertices t with λG̃(t, s) ≤ k. There is a randomized algorithm that, with

high probability, computes a mincut cover K with respect to s and T ∗ which has width O(k log3 n). The running
time is O(km1+o(1)).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1469

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

4 Unbreakable Balanced Origins from Nets

Let us define a balanced origin, a vertex set where every low-adhesion superset must be balanced.

Definition 4.1. (Balanced Origin) Given a graph G, an α-balanced σ-origin is a vertex set X ⊆ V (G) such
that, for any vertex set X ′ ⊇ X with adhesion σ, X ′ must be α-balanced.

The goal of this section is to compute an unbreakable balanced origin.

Lemma 4.1. Given an m-edge graph G with parameters k, σ where k ≤ σ, there is a randomized algorithm that
computes a set X which is always (k, k)-unbreakable such that with constant probability, X is a 1

2 -balanced σ-origin.

The running time is 2O(σ)m.

The high-level idea of the algorithm for Lemma 4.1 is to first sample a net (Lemma 4.2) as the initial set and
keep updating the set as long as there exists a breakable witness until it becomes unbreakable in a straightforward
manner using Lemma 4.3. The properties of nets will then allow us to show that the final set is a 1

2 -balanced
σ-origin.

We now formally define the notion of (α, σ)-nets. This concept was introduced by [FM06] and is closely
related to the notion of detection sets [Kle04].

Definition 4.2. ((α, σ)-nets) A set W of vertices in a graph G is an (α, σ)-net if for every set of vertices S in
G of size at most σ, and for every connected component D of G \ S,

1. If |D| ≥ αn, then D has at least one vertex from W .

2. If |D| ≤ (1− α)n− |S|, then the set V (G) \ (D ∪ S) has at least one vertex from W .

We remark that we will only use the first property in our proof of Lemma 4.1 and in the whole paper.

Lemma 4.2. (Corollary 3.6 of [FM06]) Given a graph G, there exists an absolute constant c such that any
random subset W ⊆ V (G) of size cσα log 1

α is an (α, σ)-net with constant probability.

Lemma 4.3. Given an m-edge graph G with a set W ⊆ V (G) and parameters q, k, there is a deterministic
algorithm that either

• certifies that W is (q, k)-unbreakable in G, or

• outputs a (q, k)-breakable witness (L,R) of W in G.

The running time is O(2|W |km).

Proof. For each WL ⊆ W and WR = W \WL s.t. |WL|, |WR| > q, we compute a vertex mincut (L,R) that
separates WL from WR in G. If the cut size is at most k, then (L,R) is a (q, k)-breakable witness of W in G
by definition, and we terminate the algorithm with output (L,R). If there is no such (L,R) after checking all
(WL,WR), it must be the case that there is no (q, k)-breakable witness of W in G, so W is (q, k)-unbreakable in
G by definition.

Now we analyze the running time. The number of partitions (WL,WR) of W is at most 2|W |. For each of
them, we invoke a maxflow algorithm4 on G, which takes O(km) time. Hence the total running time is O(2|W |km).

We are now ready to prove Lemma 4.1.

Proof. [Proof of Lemma 4.1] Set α = 1
2 . Using Lemma 4.2, we first compute an (α, σ)-net W of G with size

|W | = O(σα log(1
α)) = O(σ). We initialize X(0) to be W , and then we will update this set iteratively as follows.

Let X(i) be the set of vertices right after the i-th iteration. For all i ≥ 0, we will maintain the invariant that for

4We can use the classic Ford-Fulkerson algorithm because we only want to obtain a mincut of size at most k or decide such mincut
does not exist.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1470

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

each vertex v ∈ W \X(i), the connected component in G \X(i) containing v has size at most n/2. Initially, the
invariant vacuously holds because X(0) =W and so W \X(0) = ∅.

At the i-th iteration, we use Lemma 4.3 to check whether X(i−1) is (k, k)-unbreakable in G or not. If it is
indeed (k, k) unbreakable, we set X = X(i−1) and terminate the whole algorithm with output X. Otherwise,
Lemma 4.3 will return a (k, k)-breakable witness (L,R) of X(i−1) in G. Without loss of generality, we assume L
is the smaller side, i.e. |L| ≤ |R|. Then we update X(i) = (X(i−1) \ L) ∪ (L ∩ R). Namely, we first remove the
part in the smaller side L, and then add L ∩R.

Now, we show that the invariant holds for X(i), assuming that X(i−1) already satisfies the invariant. Consider
a vertex v ∈W \X(i). First, if v ∈ L\R, the connected component Di of G\X(i) containing v satisfies Di ⊆ L\R,
so |Di| ≤ |L \R| ≤ n/2. From now, we consider the case that v ∈ R. In fact, we must have v ∈ R \L in this case
because L∩R ⊆ X(i) but v ∈W \X(i). Let Di be the connected component of G \X(i) containing v. Note that
Di ⊆ R\L because v ∈ R\L and L∩R ⊆ X(i). Furthermore, by the update rule, X(i−1)∩(R\L) = X(i)∩(R\L),
so Di is disjoint from X(i−1), which means Di is inside a connected component Di−1 of G\X(i−1) and in particular
|Di| ≤ |Di−1|. Again by X(i−1) ∩ (R \ L) = X(i) ∩ (R \ L), we know v ∈ W \X(i−1) combining v ∈ R \ L and
v ∈ W \X(i). Therefore, the invariant of X(i−1) gives that |Di−1| ≤ n/2, which implies |Di| ≤ |Di−1| ≤ n/2 as
desired.

At the end of the algorithm (we will discuss why it must end in the running time analysis), we obtain a
(k, k)-unbreakable set X such that for each vertex v ∈ W \X, the connected component in G \X containing v
has size at most n/2. Note that the unbreakability of X and the invariant always hold regardless of the success
probability of Lemma 4.2.

Next we show that X is a 1
2 -balanced σ-origin conditioned on the success of Lemma 4.2. Since Lemma 4.2 is

satisfied with constant probability, it would then follow that X is a 1
2 -balanced σ-origin with constant probability.

Let X ′ ⊇ X be a vertex set with adhesion σ. Consider a connected component D′ of G \ X ′, and assume for
contradiction that |D′| > n/2. We know that |NG(D

′)| ≤ σ since the adhesion of X ′, σ(X ′), is at most σ. Then
since |D′| > n/2, |NG(D

′)| ≤ σ and by the definition of (α, σ)-nets (property 1 of Definition 4.2), W has at least
one vertex from D′, say v. Then v ∈ W \X. However, by the invariant, the connected component D of G \X
containing v must have size |D| ≤ n/2, which implies that |D′| ≤ |D| ≤ n/2, a contradiction.

Running Time. The bottleneck is applying Lemma 4.3 in each iteration. The number of iterations is at most |W |
since the initial set is X(0) = W and each update to the set decreases its size by at least 1. Therefore, the total
running time is O(2|W | · |W | · km) = 2O(σ)m (since σ ≥ k).

5 Reducing Adhesion of Unbreakable Sets

This subsection forms the main technical component of our unbreakable decomposition. Roughly speaking,
Lemma 5.1 shows, given an unbreakable set X0, in almost linear time, we can expand it to another set X which
is appropriately unbreakable and has small adhesion.

Lemma 5.1. Given an m-edge graph G with parameters 0 < ϵ ≤ 1, k ≥ 1 and q ≥ k, and an initial set X0 ⊆ V (G)
such that X0 is (q, k)-unbreakable, there is an algorithm that computes with high probability that a set X ⊇ X0

such that X is (q + k⌈ 1ϵ ⌉, k) unbreakable and has adhesion at most σ(X) = q + k⌈ 1ϵ ⌉. The running time is

exp(O((q + k
ϵ) log(q +

k
ϵ)))m

1+ϵ+o(1).

Before proving Lemma 5.1, we first give Theorem 5.1 which may be of independent interest. Roughly speaking,
Theorem 5.1 is a simple corollary of Lemma 4.1 and Lemma 5.1, which says we can compute a unbreakable balanced
vertex set with low adhesion efficiently.

Theorem 5.1. (Unbreakable Balanced Low-Adhesion Sets) Given an m-edge graph G with parameters
0 < ϵ ≤ 1 and k ≥ 1, there is a randomized algorithm that with high probability computes a set X ⊆ V (G)
such that X is (⌈1/ϵ⌉k + k, k)-unbreakable, 1/2-balanced and has adhesion ⌈1/ϵ⌉k + k. The running time is
exp(O(kϵ log

k
ϵ))m

1+ϵ+o(1).

Proof. We do the following O(log n) times. First, let X0 be an initial set by applying Lemma 4.1 on H with
parameters k and σ = ⌈1/ϵ⌉k+ k. Second, compute X by applying Lemma 5.1 on graph H with X0 as the initial
set and parameters ϵ, k, q = k. If X is 1/2-balanced, we terminate the whole algorithm, otherwise proceed to the
next iteration.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1471

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

To see the correctness, consider each of the O(log n) iterations. Lemma 4.1 guarantees that X0 is always (k, k)-
unbreakable and with constant probability, X0 is a 1/2-balanced σ-origin. Therefore, Lemma 5.1 guarantees
that, with high probability, X ⊇ X0 is (⌈1/ϵ⌉k + k)-unbreakable and has adhesion at most σ = ⌈1/ϵ⌉k + k.
Furthermore, because X0 is a 1/2-balanced σ-origin with constant probability, we have X is 1/2-balanced with
constant probability. It follows that with high probability, at least one of the O(log n) iterations will give a
1/2-balanced X.

In the following subsections, we will prove Lemma 5.1.

5.1 Witnesses and Carvable Vertices We will introduce concepts around witnesses and carvable vertices,
and then show several useful observations that eventually lead to the final algorithm for Lemma 5.1.

Definition 5.2. Given a vertex set T ⊆ V (G), the torso HT of T in G is a graph with V (HT) = T and
E(HT) = {{u, v} | {u, v} ∈ G or u, v ∈ N(D) for some connected component D of G \ T}.

Observe that HT has at most |E(G)|(σ(T))2 edges where σ(T) is the adhesion of T . We will refer to HT as
H when T is clear from the context. This notion of the torso graph HT was introduced by [CKL+20] for their
color coding step, and we will exploit it for our color coding step as well.

Definition 5.3. (Witnesses and Carvable Vertices) Given a vertex set T and a set of vertices X ⊆ T , we
say that a cut (L,R) in G is an (X,T, k′)-witness if

1. |L ∩R| ≤ k′,

2. |L ∩ T | > |L ∩R|, and

3. X ⊆ R.

We say that a (X,T, k′)-witness (L,R) is connected if HT [(L \ R) ∩ T] is connected. A vertex v is (X,T, k′)-
carvable if there exists a connected (X,T, k′)-witness where v ∈ L \R.

This definition of carvable vertices is similar to that in [KPS24]. The two differences are that instead of the
condition |L ∩ T | > |L ∩ R|, [KPS24] require |(L \ R) ∩ T | > α for some α ≫ k′, and they require that L \ R is
connected in G, instead of requiring that (L \R) ∩ T is connected in HT [(L \R) ∩ T].

The following structural lemma is crucial. It says that, for any vertex set T , if X ⊆ T is unbreakable and we
remove all carvable vertices from T to obtain the set Y , then Y is also unbreakable.

Lemma 5.2. For some arbitrary q, k where q ≥ k and a set Y such that X ⊆ Y ⊆ T , if X is (q, k)-unbreakable
and there is no (X,T, q + k)-carvable vertex in Y , then Y is (q + k, k)-unbreakable.

Proof. Suppose for contradiction that Y is not (q+ k, k) unbreakable. Then, there exists a vertex cut (L0, R0) of
size |L0 ∩R0| ≤ k where |L0 ∩Y | > q+ k and |R0 ∩Y | > q+ k. Since X is (q, k)-unbreakable, either |L0 ∩X| ≤ q
or |R0 ∩X| ≤ q. Without loss of generality, let us assume the former.

Observe that the vertex cut (L0, R1 = R0 ∪ (L0 ∩ X)) is a (X,Y, q + k)-witness. Let us verify the
three conditions. First, the cut size is |L0 ∩ R1| = |(L0 ∩ R0) ∪ (L0 ∩ X)| ≤ q + k. Second, we have
|L0 ∩ Y | > q + k ≥ |L0 ∩R1|. Last, we have X ⊆ R0 ∪ (L0 ∩X) ⊆ R1 by construction.

Next, we introduce a new notion within this proof. A cut (L,R) is a candidate-witness if

1. |L ∩R| ≤ q + k,

2. |(L \R) ∩ Y | > |(L ∩R) \ T |, and

3. X ⊆ R.

The notion of candidate-witness is “between” (X,Y, q + k)-witness and (X,T, q + k)-witness. More formally,
any (X,Y, q + k)-witness is a candidate-witness, because for any cut (L,R) we have |L ∩ Y | > |L ∩ R| iff
|(L \ R) ∩ Y | > |(L ∩ R) \ Y |, and additionally |(L ∩ R) \ Y | ≥ |(L ∩ R) \ T | because Y ⊆ T . Similarly,
any candidate-witness is a (X,T, q + k)-witness, because |(L \ R) ∩ T | ≥ |(L \ R) ∩ Y | > |(L ∩ R) \ T | which is
equivalent to |L ∩ T | > |L ∩R|.

Next, let (L∗, R∗) be a candidate-witness where |(L∗\R∗)∩T | is minimized. Note that (L∗, R∗) is well-defined
by the existence of the (X,Y, q + k)-witness (L0, R1).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1472

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Claim 5.4. HT [(L
∗ \R∗) ∩ T] is connected.

Given this claim, we obtain a contradiction as follows. As observed above, (L∗, R∗) is a (X,T, q+ k)-witness,
and by Claim 5.4, it is a connected (X,T, q + k)-witness. Since |(L∗ \ R∗) ∩ Y | > 0, there exists a vertex
v ∈ (L∗ \ R∗) ∩ Y . So, v is a (X,T, q + k)-carvable vertex in Y , which is a contradiction. It remains to prove
Claim 5.4. The proof of this claim is similar to the proof of Claim 3.8 in [CKL+20].

Proof. [Proof of Claim 5.4]Let C = {C1, C2, ..., Cq} denote the connected components of G[L∗ \ R∗]. We first
assume without loss of generality that each component Ci intersects T . Otherwise, let Γ denote the union of all
components Ci that are disjoint from T . Note that Γ is also disjoint from Y ⊆ T . Observe that the cut (L′, R′)
with L′ = L∗ \ Γ and R′ = R∗ ∪ Γ is still a (X,Y, q + k)-witness where |(L′ \ R′) ∩ T | = |(L∗ \ R∗) ∩ T | is still
minimum. So we can work with (L′, R′) instead.

Assume HT [(L
∗\R∗)∩T] is not connected. We will reach contradiction by showing another candidate witness

(L̂, R̂) where |(L̂ \ R̂) ∩ T | < |(L∗ \R∗) ∩ T |.
Let D1, D2 be a partition of (L∗\R∗)∩T such that there is no edge connecting D1 and D2 in HT [(L

∗\R∗)∩T].
Note that each Ci ∩ T induces a connected subgraph of HT , so we can write D1 and D2 in the form
D1 =

⋃
Ci∈C1

Ci ∩ T and D2 =
⋃

Ci∈C2
Ci ∩ T , where C1 and C2 partition C = {C1, C2, ..., Cq}.

The key observation is that, for any Ci1 ∈ C1 and Ci2 ∈ C2, we must have N(Ci1)∩N(Ci2) ⊆ T 5. Otherwise,
by the definition of HT , the existence of a vertex in (N (Ci1)∩N(Ci2)) \T implies that there is an edge in E(HT)
connecting some terminal t1 ∈ Ci1 ∩ T ⊆ D1 and some t2 ∈ Ci2 ∩ T ⊆ D2, contradicting the fact that there is no
edge between D1 and D2 in HT [(L

∗ \R∗) ∩ T].
Let C̃1 =

⋃
Ci∈C1

Ci and C̃2 =
⋃

Ci∈C2
Ci. From this key observation, we further have N(C̃1) ∩N(C̃2) ⊆ T ,

which implies
(N(C̃1) \ T) ∩ (N(C̃2) \ T) = ∅.

Since N(C̃1) ∪N(C̃2) = N(L∗ \R∗) ⊆ L∗ ∩R∗ (since C̃1 ∪ C̃2 = L∗ \R∗), we also have

(N(C̃1) \ T) ∪ (N(C̃2) \ T) ⊆ (L∗ ∩R∗) \ T.

Therefore, we have |N(C̃1) \ T | + |N(C̃2) \ T | ≤ |(L∗ ∩ R∗) \ T |. Also, |C̃1 ∩ Y | + |C̃2 ∩ Y | = |(L∗ \ R∗) ∩ Y | >
|(L∗ ∩ R∗) \ T |. Combining both, we have either |C̃1 ∩ Y | > |N(C̃1) \ T | or |C̃2 ∩ Y | > |N(C̃2) \ T |. Thus either
one of the cuts (C̃1 ∪N(C̃1), V (G) \ C̃1) or (C̃2 ∪N(C̃2), V (G) \ C̃2) is a candidate witness. However, since both

C̃1 and C̃2 intersect T , we have |C̃1 ∩ T |, |C̃2 ∩ T | < |(L∗ \R∗)∩ T |, which contradicts the minimality of (L∗, R∗).

5.2 Carve Terminals with Lean Witnesses In this section, we analyze the basic building block of our
algorithm for Lemma 5.1. We define the notion of lean witness, describe how to carve a terminal set given a lean
witness, and analyze how the adhesion and size of a terminal set changes. The notion of lean witness in this paper
essentially serves the same purpose as the term single bag lean witness introduced by [CKL+20].

Definition 5.5. An (X,T, k′)-witness (L∗, R∗) is lean if there exists a set of |L∗ ∩ R∗| vertex disjoint paths in
G[L∗] starting from every vertex in L∗ ∩R∗ and ending at L∗ ∩ T .

In this subsection, we will consider fixed X and T satisfying X ⊆ T . Therefore, we will use lean witnesses as an
abbreviation of lean (X,T, k′)-witnesses with arbitrary k′.

In Definition 5.6, we formally define the carve operation that carves the terminal set T with a lean witness.
Next, Lemma 5.3 shows that, roughly speaking, when we carve T with a lean witness, the adhesion of T will not
increase and the size of T will decrease.

Definition 5.6. (Carve with One Lean Witness) Given a terminal set T , we define the carve operation
with respect to a lean witness (L∗, R∗) to return the set T ′ = (T \ L∗) ∪ (L∗ ∩R∗).

5We emphasize that N(·) denote neighbors in G.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1473

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Lemma 5.3. Suppose we carve T with a lean-witness (L∗, R∗). Then the adhesion of the new terminal set

T ′ = (T \ L∗) ∪ (L∗ ∩R∗) is at most max(|L∗ ∩R∗|, σ(T)) and |T | − |T ′| ≥ |L∗∩T |
2max{1,|L∗∩R∗|} .

Proof. Consider a component C which is obtained after deleting T ′ from G, and let us bound |N(C)|. There
are two cases. In the first case, the component C is a new component, i.e. C ⊆ L∗ \ R∗. In this case, clearly
|N(C)| ≤ |L∗∩R∗|. In the second case, C ⊆ R∗ \L∗. Observe that in this case, C ⊆ D, where D was a connected
component of G \ T . Partition the boundary N(C) into N(C) \N(D) and N(C) ∩N(D).

First we claim that N(C) \ N(D) ⊆ (L∗ ∩ R∗) \ T , because N(C) \ N(D) ⊆ L∗ ∩ R∗ by the carving rule,
and any T -vertex in N(C) must belong to N(D). Next, by Definition 5.5, in G[L∗], there exists |L∗ ∩R∗| vertex
disjoint paths from L∗ ∩ R∗ to L∗ ∩ T . This means in G[L∗ \ (L∗ ∩ R∗ ∩ T)], there exists vertex-disjoint paths
starting from all vertices in (L∗ ∩ R∗) \ T to some vertices in (L∗ \ R∗) ∩ T . Consider the vertex-disjoint paths
starting from N(C) \N(D). We know each of them must go through N(D) \N(C) by the following reasons.

• Such paths end at T -vertices, so they must go through N(D).

• They cannot go through N(D) ∩N(C) because C ⊆ R∗ \ L∗ and N(C) ∩N(D) ⊆ R∗ ∩ T which is disjoint
from L∗ \ (L∗ ∩R∗ ∩ T).

Therefore, it means that |N(C) \N(D)| ≤ |N(D) \N(C)|. This in turn yields

|N(C)| = |N(C) \N(D)|+ |N(C) ∩N(D)|
≤ |N(D) \N(C)|+ |N(C) ∩N(D)|
= |N(D)| ≤ σ(T).

Lastly, observe that the reduction in the size of the terminal set |T | − |T ′| at least |L∗ ∩ T | − |L∗ ∩R∗|. Let
a = |L∗∩T | and b = |L∗∩R∗|. If a ≥ 2b, then a−b ≥ a

2 . Otherwise, because (L⋆, R⋆) is a witness, a−b ≥ 1 ≥ a
2b .

Therefore, |T | − |T ′| ≥ |L∗∩T |
2max{1,|L∗∩R∗|} . This completes the proof.

We need a slight extension of the carve operation, as instead of updating the terminal set with one lean-
witness, we will carve it using a collection of disjoint lean witnesses at once (see Definition 3.4 to recall the
definition of disjoint cuts).

Definition 5.7. (Carve with Disjoint Lean Witnesses) Given a terminal set T and a collection of disjoint
lean-witnesses (Li, Ri), i ∈ [z], the carve operation with respect to this collection is defined as replacing T by
T ∪ (

⋃
i∈[z] Li ∩Ri) \ (

⋃
i∈[z](Li \Ri) ∩ T).

Lemma 5.4. Suppose we carve the terminal set T with a set of disjoint lean witnesses {(Li, Ri)}, i ∈ [z]. Then
the adhesion of the new terminal set T ′ is at most max{maxi∈[z] |L∗

i ∩R∗
i |, σ(T)} and the size of T reduces by at

least
∑

i∈[z]
|L∗

i \R
∗
i |

2max{1,|L∗
i ∩R∗

i |}

5.3 Covering Carvable Vertices with Disjoint Witnesses Lemma 5.5 is the key lemma we prove in this
subsection. Broadly, it shows that one can (a) efficiently find the set of all carvable vertices, and (b) find a set
of disjoint lean witnesses that cover a large fraction of carvable vertices (a vertex v is covered by cut (L,R) if
v ∈ L \R).

Lemma 5.5. Given an m-vertex graph G, a terminal set T , a set X ⊆ T and a parameter k′ satisfying σ(T) ≤ k′,
there is an algorithm running in time 2O(k′ log k′)m1+o(1) that computes

• a set Q ⊆ T \X that includes all (X,T, k′)-carvable vertices in T , and

• a collection of disjoint lean (X,T, k′)-witnesses C s.t. (L \R) ∩ T ⊆ Q for each (L,R) ∈ C, and∑
(L,R)∈C

|(L \R) ∩ T | ≥ |Q|/γ,

where γ = 2O(k′ log k′) log n.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1474

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

In fact, Lemma 5.5 is a simple corollary of the below Lemma 5.6 and Lemma 5.10, where the former will
compute a collection disjoint witnesses (may not be lean) to cover a large fraction of carvable vertices, and the
latter will convert disjoint witnesses to disjoint lean witnesses.

Lemma 5.6. Given an m-vertex graph G, a terminal set T , a set X ⊆ T and a parameter k′ satisfying σ(T) ≤ k′,
there is an algorithm running in time 2O(k′ log k′)m1+o(1) that computes

• a set Q ⊆ T \X that includes all (X,T, k′)-carvable vertices in T , and

• a collection of disjoint (X,T, k′)-witnesses C s.t. (L \R) ∩ T ⊆ Q for each (L,R) ∈ C, and∑
(L,R)∈C

|(L \R) ∩ T | ≥ |Q|/γ0,

where γ0 = 2O(k′ log k′) log n.

Most of this subsection is devoted to prove Lemma 5.6. Before we start the proof, we explain on a high level
how the algorithm works - for ease of understanding, we focus only on obtaining the set Q. Let v ∈ T be an
(X,T, k′)-carvable vertex. Then, we know that there is a connected (X,T, k′) witness (L,R) with v ∈ L \R.

For simplicity, assume that |(L \R) ∩ T | = k′ + 1 and |(L ∩R) ∩ T | = k′. In Lemma 5.7 we show that there
is a set Y of at most O(k′3) vertices, such that for every edge (u, t) ∈ E(H) where u ∈ (L \ R) and t ∈ (R \ L),
we have t ∈ Y . Here H = HT is the torso of T in G. Roughly speaking, if we use color coding such that every
terminal in (L \R)∩ T is colored red, and every terminal in Y is colored blue, then when we contract all the red
vertices together, we can detect the cut (L,R) by computing a min-cut between the contracted red vertices and
the set X, which can be done using our single source min-cut subroutine, Theorem 3.6. The actual algorithm is
slightly more complicated to account for the general case when |(L \ R) ∩ T | < k′ + 1 - in this case, we need to
account for the terminals in L ∩ R ∩ T as well. In this case we use color coding with 3 colors, and modify the
graph slightly before applying our result on single source min-cuts.

Proof. The proof combines the color coding technique in [CKL+20] along with our single source mincuts
subroutine, Theorem 3.6. We remark that Theorem 6.1 of [KPS24] gives a similar result for a different notion of
carvable vertices: they give a deterministic algorithm, but our randomized algorithm based on Theorem 3.6 has
a better dependence on k′. In this proof, we use H to denote the torso HT of T in G.

Fix the sets of terminals to be colored. For the sake of analysis, for a vertex v ∈ T which is (X,T, k′)-
carvable, we fix a connected (X,T, k′)-witness (L∗

v, R
∗
v) with v ∈ L∗

v \R∗
v (recall the definition of connected witness

in Definition 5.3) satisfying NH((L∗
v \R∗

v)∩ T) ⊇ L∗
v ∩R∗

v ∩ T . Such a witness must exist by Observation 5.8 (we
defer its proof to Section B).

Observation 5.8. If there exists a connected (X,T, k′) witness (L,R), there exists an connected (X,T, k′) witness
(L′, R′) with (L′ \R′) ∩ T = (L \R) ∩ T further satisfying that NH((L′ \R′) ∩ T) ⊇ L′ ∩R′ ∩ T .

Because (L∗
v, R

∗
v) is a connected (X,T, k′)-witness, we know that H[(L∗

v \R∗
v)∩ T] is connected. We fix three

vertex sets Zv, Yv,Wv w.r.t. v as follows.

• Let Zv be an arbitrary subset of (L∗
v \ R∗

v) ∩ T of size min{k′ + 1, |(L∗
v \ R∗

v) ∩ T |} s.t. H[Zv] is connected
(i.e. when |(L∗

v \R∗
v) ∩ T | ≤ k′ + 1, we take the entire (L∗

v \R∗
v) ∩ T as Zv).

• Let Wv = L∗
v ∩R∗

v ∩ T be the terminals inside L∗
v ∩R∗

v.

• Let Yv = NH((L∗
v \R∗

v) ∩ T) \Wv be the H-neighbors of (L∗
v \R∗

v) ∩ T not falling in L∗
v ∩R∗

v.

Note that by definition, |Zv| ≤ k′ + 1, |Wv| ≤ k′, and by Lemma 5.7, |Yv| ≤ |Zv|(k′2) ≤ (k′ + 1)k′2 ≤ 2k′3.

Lemma 5.7. Let (L∗, R∗) be an (X,T, k′)-witness. For every vertex u ∈ (L∗ \ R∗) ∩ T there are at most k′2

vertices t ∈ (R∗ \ L∗) ∩ T such that (u, t) ∈ E(H).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1475

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Proof. Consider a vertex t ∈ (R∗ \ L∗) ∩ T s.t. (u, t) ∈ E(H). By the definition of H, it must be the case that
there exists a path in G from u to t with no internal vertex from T . Also since u ∈ L∗ \R∗ and t ∈ R∗ \ L∗, this
path must go through some vertex x ∈ (L∗ ∩ R∗) \ T . Let Cx be the connected component of G \ T containing
x. Observe that t ∈ N(Cx).

The number of possible t is at most k′2 because there are |(L∗ ∩ R∗) \ T | ≤ k′ possible choices of x and, for
each x, |N(Cx)| ≤ σ(T) ≤ k′ by the assumption in Lemma 5.6.

Color coding. We are now ready to apply the color coding step. The following result, also used in [CKL+20],
is essentially a deterministic fast algorithm for color coding.

Lemma 5.8. (Lemma 2.2 of [CKL+20], extension of [CCH+16]) Given a set U of size n and integers
0 ≤ a1 ≤ a2 ≤ a3 ≤ aℓ ≤ n, one can compute a family F of functions f : U → [ℓ] of size
2O((a1+a2+...al−1) log(a1+a2+...aℓ))O(log2 n) in time 2O((a1+a2+...aℓ−1) log(a1+a2+...aℓ))O(log2 n) such that for any
pairwise disjoint sets A1, A2, A3 . . . Aℓ of size at most a1, a2, a3 . . . aℓ respectively, there exists a function f ∈ F
such that f(xi) = i for every xi ∈ Ai, i ∈ [ℓ].

We apply Lemma 5.8 on the universe U = T with a1 = k′ + 1, a2 = k′ and a3 = 2(k′)3 to obtain a function
family F . For a function f ∈ F , we use f−1(1), f−1(2), f−1(3) ⊆ T to denote the terminals with color 1, 2 and 3
respectively. Furthermore, for a function f ∈ F and a terminal v ∈ T , we say that v is lucky w.r.t f if Zv ⊆ f−1(1),
Wv ⊆ f−1(2), and Yv ⊆ f−1(3). Note that by the guarantee of Lemma 5.8, for every (X,T, k′)-carvable terminal
v ∈ T , there must exist a function f ∈ F such that v is lucky with respect to f .

Compute single source mincuts. Now for every f ∈ F , we do the following. We first construct a
capacitated graph G̃ with vertex capacity function ρ.

• Start with the original graph G. For each non-terminal vertex v ∈ V (G) \ T , we set its capacity ρ(v) = 1.
For each vertex v ∈ T , if f(v) = 1, set its capacity ρ(v) = ∞, otherwise (i.e. f(v) = 2 or f(v) = 3) set its
capacity ρ(v) = 1.

• For each connected component C of H[f−1(1)], we add a super vertex tC with capacity ρ(tC) =∞ and add
edges from tC to each vertex in C ∪ (NH(C) ∩ f−1(2)).

• Add a super vertex s with capacity ρ(s) =∞, and add edges from s to each vertex in X.

Note that a vertex cut (L̃, R̃) in G̃ (with finite cut size) naturally corresponds to a vertex cut (L,R) in G where L

and R are obtained by dropping super vertices from L̃ and R̃ respectively. Therefore, when we have a cut (L̃, R̃)

(possibly with some subscripts and superscripts) in G̃, we use (L,R) (with the same subscripts and superscripts)
to denote its corresponding cut in G.

On the graph G̃, we run the single source mincut algorithm, Theorem 3.6, with the vertex s as the source,
the vertices TC = {tC | connected components C of H[f−1(1)]} as sinks, and the same parameter k′. Let

T ∗
C = {tC ∈ TC | λG̃(tC , s) ≤ k′}. The output is a mincut cover K̃f with respect to s and T ∗

C in G̃, and

the width of K̃f is O(k′ log3 n). The subscript f of K̃f means K̃f is with respect to function f .

The final output for Lemma 5.6. Let K be obtained by replacing each cut (L̃, R̃) ∈
⋃

f∈F K̃f with its
corresponding cut (L,R) in G. Then obtain another mincut cover Kwit by keeping only those cuts of K which are
(X,T, k′)-witnesses. The set Q ⊆ T is defined as

Q =
⋃

(L,R)∈Kwit

(L \R) ∩ T.

The collection C that will be output is the C ∈ Kwit that maximizes |
⋃

(L,R)∈C(L \R) ∩ T |.
Correctness of Lemma 5.6. First we show that, for each color function f ∈ F and each (X,T, k′)-carvable

vertex v ∈ T that is lucky with respect to f , there is an (X,T, k′)-witness (L,R) ∈ Kf with v ∈ L \R.

Lemma 5.9. Let v ∈ T be a (X,T, k′)-carvable vertex, and let f ∈ F be a function s.t. v is lucky w.r.t. f . Let
Cv be the connected component of H[f−1(1)] containing v. We have

1. the size of tCv
-s mincut in G̃, i.e. λG̃(tCv

, s), is at most k′, and

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1476

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

2. any tCv
-s mincut (L̃, R̃) in G̃ corresponds to a (X,T, k′)-witness (L,R) in G with v ∈ L \R.

We exploit the above Lemma 5.9 to prove this (we will prove Lemma 5.9 soon). First, we have tCv
∈ T ∗

C

because λG̃(tCv
, s) ≤ k′ as statement 1 in Lemma 5.9 says. Because K̃f is a mincut cover with respect to s and

T ∗
C in G̃, there is a tCv

-s mincut (L̃, R̃) in K̃f . By statement 2 in Lemma 5.9, the cut in G corresponding to

(L̃, R̃) is a (X,T, k′)-witness with v ∈ L \R.
Next, because every (X,T, k′)-carvable vertex v ∈ T is lucky w.r.t. some f ∈ F by Lemma 5.8, we know

Q includes all (X,T, k′)-carvable vertices in T . Also Q is disjoint from X because L \ R is disjoint from X for

all (L,R) ∈ K. Trivially C is a collection of disjoint cuts because each K̃f is a mincut cover. Lastly, we have

|
⋃

(L,R)∈C(L \R)∩T | ≥ |Q|/O(|F| · k′ log3 n) ≥ |Q|/(2O(k′ log k′) log n), because the width of K is O(k′ log3 n) · |F|.

Proof. [Proof of Lemma 5.9] We prove statements 1 and 2 separately.

Statement 1. When v is lucky with respect to f , by definition, the connected (X,T, k′)-witness (L∗
v, R

∗
v) with

v ∈ L∗
v \ R∗

v we fixed above has L∗
v ∩ R∗

v ∩ T = Wv ⊆ f−1(2). By the construction of G̃, vertices in L∗
v ∩ R∗

v are

all have capacity 1 in G̃, so ρ(L∗
v ∩R∗

v) = |L∗
v ∩R∗

v| ≤ k′.
Next, observe that removing L∗

v ∩ R∗
v will disconnect tCv

from s in G̃ due to the following reasons.
Recall that we only connect tCv to Cv ∪ (NH(Cv) ∩ f−1(2)) and only connect s to X, so it suffices to show
Cv ∪ (NH(Cv) ∩ f−1(2)) ⊆ L∗

v and X ⊆ R∗
v.

• We first prove Cv ∪ (NH(Cv) ∩ f−1(2)) ⊆ L∗
v. Note that Cv ⊆ (L∗

v \ R∗
v) ∩ T because we have blocked

all H-neighbors of (L∗
v \ R∗

v) ∩ T using colors 2 and 3 (more precisely, we have NH((L∗
v \ R∗

v) ∩ T) ⊆
Wv ∪ Yv ⊆ f−1(2) ∪ f−1(3)). Furthermore, we have NH(Cv) ∩ f−1(2) ⊆ L∗

v because NH(Cv) ∩ (R∗
v \ L∗

v) ⊆
NH((L∗

v \R∗
v) ∩ T) ∩ (R∗

v \ L∗
v) = NH((L∗

v \R∗
v) ∩ T) \Wv = Yv ⊆ f−1(3).

• We have X ⊆ R∗
v because (L∗

v, R
∗
v) is an (X,T, k′)-carvable witness.

Therefore, we can conclude that λG̃(tCv
, s) ≤ ρ(L∗

v ∩R∗
v) = |L∗

v ∩R∗
v| ≤ k′.

Statement 2. We will show that (L,R) is an (X,T, k′)-witness by verifying the properties stated in Definition 5.3

one by one (recall that (L,R) is the cut in G corresponding to (L̃, R̃)).
Properties 1 and 3 are easy to see.

1. |L ∩R| ≤ k′ is because λG̃(tCv
, s) ≤ k′

3. X ⊆ R because when constructing G̃, s is connected to all vertices in X.

To see property 2, i.e. |L ∩ T | > |L ∩R|, we consider two cases.

Case 1. The first case is |Zv| = k′ + 1. Note that Zv ⊆ Cv (since Zv ⊆ f−1(1) and H[Zv] is connected)

and Cv ⊆ (L \ R) ∩ T (since all vertices in f−1(1) ⊇ Cv has infinite capacity in G̃), so trivially we have
|(L \R) ∩ T | ≥ |Cv| ≥ |Zv| = k′ + 1 > k′ ≥ |(L ∩R) \ T |, which is equivalent to |L ∩ T | > |L ∩R|.

Case 2. The second case is Zv = (L∗
v \ R∗

v) ∩ T , which implies Cv = (L∗
v \ R∗

v) ∩ T by Cv ⊆ (L∗
v \ R∗

v) ∩ T
(shown in the proof of statement 1) and Zv ⊆ Cv. Recall that the witness (L∗

v, R
∗
v) we fixed above satisfies

NH((L∗
v \R∗

v)∩T) ⊇ L∗
v ∩R∗

v ∩T , i.e., Wv ⊆ NH(Cv).Combining Wv ⊆ f−1(2), we have Wv ⊆ NH(Cv)∩ f−1(2).

Thus, by the construction of G̃, we have Wv ⊆ L (since tCv
is connected to Wv) and Zv = Cv ⊆ L \R (since tCv

is connected to Zv, and Zv-vertices have infinite capacity), which implies

|L ∩ T | ≥ |Wv|+ |Zv| = |L∗
v ∩ T |.

Therefore, we have

|L ∩ T | ≥ |L∗
v ∩ T | > |L∗

v ∩R∗
v| ≥ λG̃(tCv

, s) = |L ∩R|,

where |L⋆
v ∩ T | > |L⋆

v ∩R⋆
v| is because (L⋆

v, R
⋆
v) is an (X,T, k′)-witness.

Finally, we have v ∈ Cv ⊆ L \R.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1477

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Running time of Lemma 5.6. The bottleneck is to call the single-source mincut subroutine Theorem 3.6
for each function f ∈ F . The total running time is |F| · k′m1+o(1) = 2O(k′ log k′)m1+o(1). This completes the proof
of Lemma 5.6.

Finally, we obtain Lemma 5.5 from Lemma 5.6 by making each witness from Lemma 5.6 to be lean using the
following lemma.

Lemma 5.10. Given an m-vertex graph G, a set of terminals T and a collection of disjoint (X,T, k′)-witnesses
C, there is an algorithm that computes, for each (L,R) ∈ C, a lean (X,T, k′)-witness (L′, R′) satisfying that
L′ \ R′ ⊆ L \ R and |(L′ \ R′) ∩ T | ≥ |(L \ R) ∩ T |/(k′ + 1). Furthermore, these new lean witnesses are disjoint.
The running time is O(k′m).

Proof. For each cut (L,R) ∈ C, we do the following. First, we construct a unit-capacitated graph G̃local. Initially,

G̃local = G[L] \E(G[L∩R]) and assign each vertex with capacity 1. Next, we create a super vertex vsrc as source
and connect vsrc to each vertex in L ∩ T . Also, we create a super vertex vsink as sink and connect vsink to each
vertex in L ∩R.

We compute an arbitrary vsrc-vsink mincut (L̃, R̃) in G̃local. To avoid clutter, in what follows we suppose

vsrc, vsink have been removed from L̃ and R̃. We define (L′, R′) by letting L′ = L̃ and R′ = R̃∪ (R \L). Note that
by the construction of G̃local, the mincut size |L̃∩ R̃| ≤ |L∩R|. We now show (L′, R′) satisfies the requirements.
We start with some simple observation.

1. We have L ∩ T ⊆ L̃, because vsrc connects to L ∩ T .

2. We have L ∩R ⊆ R̃, because vsink connects to L ∩R.

3. We have |L̃ ∩ R̃| ≤ |L ∩R| by the construction of G̃local.

Note that (L′, R′) is indeed a cut in G because L′\R′ has no edge to R′\L′. Concretely, R′\L′ = (R̃\L̃)∪(R\L),
and L′ \R′ has no edge to R̃ \ L̃ (because L′ \R′ = L̃ \ R̃) and R \ L (because L̃ \ R̃ ⊆ L \R by observation 2).

We first show L′ \R′ ⊆ L \R. Again we have L′ \R′ = L̃ \ R̃ by the definition of (L′, R′). Combining L̃ ⊆ L
and L ∩R ⊆ R̃, we have L̃ \ R̃ ⊆ L \R.

Second, we show that (L′, R′) is a (X,T, k′)-witness. First, we have |L′ ∩ R′| = |L̃ ∩ R̃| ≤ |L ∩ R| ≤ k′ by

observation 3. Next, |L′ ∩ T | = |L̃ ∩ T | ≥ |L ∩ T | > |L ∩ R| ≥ |L′ ∩ R′|, because (L,R) is an (X,T, k′)-witness
and observations 1 and 3. Finally, we have X ⊆ R′ because L′ \R′ ⊆ L \R.

Third, (L′, R′) is lean by the following reasons. Consider the maxflow in G̃local that certifies (L̃, R̃) is a

vsrc-vsink mincut. The flow paths correspond to |L̃ ∩ R̃| vertex disjoint paths in G[L̃] from L ∩ T (recall that vsrc

connects to L ∩ T) to L̃ ∩ R̃. By the definition of (L′, R′), these vertex disjoint paths show that (L′, R′) is lean.

Fourth, we show |(L′ \ R′) ∩ T | ≥ |(L \ R) ∩ T |/(k′ + 1). Because L̃ \ R̃ = L \ R, it suffices to show that

|(L̃\R̃)∩T | ≥ |(L\R)∩T |/(k′+1). By observation 1, we have L∩T = L̃∩T . Note that |(L̃\R̃)∩T | ≥ |L̃∩T |−|L̃∩R̃|.
Let a = |L̃∩T | = |L∩T | and b = |L̃∩R̃|. We have a = |L∩T | > |L∩R| ≥ b and b ≤ |L∩R| ≤ k′. Therefore, from
a ≥ b+1 and b ≤ k′, we have a− b ≥ a/(k′ +1). Namely, |(L̃ \ R̃)∩ T | ≥ |L∩ T |/(k′ +1) ≥ |(L \R)∩ T |/(k′ +1)

Finally, these new lean witnesses are disjoint because for each (L,R) ∈ C, its new lean witness (L′, R′) has

L′ = L̃ ⊆ L and L′ \R′ = L̃ \ R̃ ⊆ L \R. It is easy to check that the new lean witnesses satisfy Definition 3.4.

The whole algorithm just runs maxflow on the graphs G̃local for each cut (L,R) ∈ C. Because C is a collection

of disjoint cuts, the graphs G̃local are edge-disjoint, so we only runs maxflow on graphs of total size O(m). Since
all the maxflow value is bounded by k′ by observation 3, the can use the classic Ford-Fulkerson maxflow algorithm.
The total running time is O(k′m).

5.4 The Algorithm for Reducing Adhesion: Proof of Lemma 5.1 The algorithm for Lemma 5.1 is
described in Algorithm 1. At a high level, at any time, we maintain a set of terminals T and a set X. Initialize
T = V (G) and X = X0. During the algorithm, X keeps growing, and T is roughly shrinking. Additionally, we
maintain the invariant that T ⊇ X, X is appropriately unbreakable, and T has small adhesion. Once T = X, we
obtain an unbreakable X with small adhesion as desired.

To prove the correctess of Algorithm 1, we will show the invariant that, at the beginning of each phase ℓ,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1478

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 1 Reducing Adhesion

Input: A graph G with a paramter ϵ > 0 and a (q, k)-unbreakable set X0 ⊆ V (G).
Output: A (k⌈ 1ϵ ⌉+ q, k) unbreakable set X s.t. X0 ⊆ X ⊆ V (G) and σ(X) ≤ k⌈ 1ϵ ⌉+ q.
1: Initialize X ← X0 and T ← V (G)
2: for ℓ = 1 to ⌈ 1ϵ ⌉ do
3: Apply Lemma 5.5 on G,T,X and k′ = q + ℓk. Let Q and C be the output.
4: while |Q| ≥ n1−ℓϵ do
5: T ← carve T with C as in Definition 5.7.
6: Recompute Q and C by applying Lemma 5.5 on G, the new T , X, and k′ = q + ℓk.
7: end while
8: X ← T \Q
9: end for

10: Return X

1. X0 ⊆ X ⊆ T ,

2. X is (q + (ℓ− 1)k, k)-unbreakable,

3. T has adhesion σ(T) ≤ q + (ℓ− 1)k, and

4. |T \X| ≤ n1−(ℓ−1)ϵ.

Note that at the end of the algorithm, we have X = T by the stopping condition of the inner loop. Therefore,
once we prove the invariant, we immediately show the correctness of the final output X.

Let us give an intuition about the properties of X. On every phase, we always have X0 ⊆ X ⊆ T . When
the algorithm proceeds to the next phase, the unbreakability of X and adhesion of T are slightly relaxed by an
additive factor of k. But the set T \X significantly shrinks by a factor of nϵ. Intuitively, T \X contains set of
vertices that we might carve out from T . Once T \X = ∅, we have X = T and we are done.6

In what follows, we prove the invariant by induction. Trivially, the invariant holds at the beginning of the
first phase ℓ = 1. Now fix a phase 1 ≤ ℓ ≤ ⌈1/ϵ⌉, assuming the invariant holds at the beginning of this phase, we
show that it holds at the beginning of next phase ℓ+ 1.

Each time we compute Q and C by applying Lemma 5.5 (i.e. in Algorithm 1 and Algorithm 1), we have the
following two cases and we first discuss some useful observations in these two cases.

Case 1: |Q| ≥ n1−ℓϵ. In this case we carve T with C. By Lemma 5.5, C is a collection of disjoint lean (X,T, q+ℓk)-

witnesses. Let T ′ be the new T by carving the old T with C according to Definition 5.7. Note that we have∑
(L,R)∈C |(L \R) ∩ T | ≥ |Q|/γ by Lemma 5.5 where

γ = 2O((q+ℓk) log(q+ℓk)) log n,

and each (L,R) ∈ C has |L ∩R| ≤ q + ℓk because (L,R) is a lean (X,T, q + ℓk)-witness. By Lemma 5.4, we have
T ′ ⊇ X, σ(T ′) ≤ max{σ(T), q + ℓk} and

|T ′| − |T | ≥
∑

(L,R)∈C

|L \R|
2|L ∩R|

≥
∑

(L,R)∈C

|(L \R) ∩ T |
2|L ∩R|

≥ |Q|
2γ(q + ℓk)

≥ n1−ℓϵ

2γ(q + ℓk)
.

Case 2: |Q| < n1−ℓϵ. In this case, we grow X to be T \Q. We use X to denote the old X before update, and let

X ′ be the new X after the update. By Lemma 5.5, Q ⊆ T \X and Q includes all (X,T, q + ℓk)-carvable vertices
in T , so there is no (X,T, q + ℓk)-carvable vertex in X ′.

Now we verify the invariant at the end of phase ℓ (i.e. at the beginning of phase ℓ + 1). Again, we let X
denote the old X at the beginning of phase ℓ, and let X ′ denote the new X at the end of this phase.

6This dynamics resembles how the expander decomposition algorithms in [NS17, WN17] work. At the beginning of each phase in
these algorithms, the expansion parameter is slightly relaxed but the maximum balance of sparse cuts shrinks significantly.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1479

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1. We have X ′ ⊆ T because X ′ = T \Q. Also, X ⊆ X ′ because Q ⊆ T \X. Thus, by induction, X0 ⊆ X ⊆ X ′.

2. Because X ′ has no (X,T, q + ℓk)-carvable vertex and X is (q + (ℓ− 1)k, k)-unbreakable by assumption, X ′

is (q + ℓk, k)-unbreakable by Lemma 5.2.

3. By assumption, at the beginning of this phase, the adhesion of T is at most q + (ℓ − 1)k. Each time we
carve T into a new one (denoted by T ′), we have σ(T ′) ≤ max{σ(T), q+ ℓk} by Lemma 5.4. Thus, the final
T at the end of this phase has adhesion at most q + ℓk.

4. At the end of this phase, |T \X ′| is exactly the size of Q in case 2, so |T \X ′| ≤ n1−ℓϵ.

Lemma 5.11. Algorithm 1 runs in time exp(O((q + k
ϵ) log(q +

k
ϵ)))m

1+ϵ+o(1).

Proof. In each phase ℓ, we claim that case 1 will occur at most O(γ(q+ ℓk)nϵ) times due to the following reasons.
At the beginning of phase ℓ, we have |T | − |X| ≤ n1−(ℓ−1)ϵ. We have shown that each time we carve T in case

1, the size of T will drop by at least n1−ℓϵ

2γ(q+ℓk) . Therefore, after at most 2γ(q + ℓk)nϵ occurrences of case 1, the

differences between the size of T and the size of (the old) X will drop below n1−ℓϵ. Once this happens, the next
iteration of the inner loop will go into case 2 because Q ⊆ T \X.

Therefore, there are at most 2γ(q + ℓk)nϵ = exp(O((q + k
ϵ) log(q +

k
ϵ)))n

ϵ iterations of the inner loop in one

phase. Each iteration runs in time exp(O((q + k
ϵ) log(q +

k
ϵ)))m

1+o(1) (since the bottleneck is Lemma 5.6) and

thus the total running time of one phase is at most exp(O((q + k
ϵ) log(q +

k
ϵ)))mn

ϵ+o(1). Because there are at

most O(1/ϵ) phases, the total run-time of the procedure is exp(O((q + k
ϵ) log(q +

k
ϵ)))mn

ϵ+o(1) as well.

6 The Unbreakable Decomposition Algorithm

In this section, we show the main result of our paper, a fast algorithm to construct unbreakable decomposition.

Theorem 6.1. Given an n-vertex m-edge undirected graph G with a parameters k and 0 < ϵ ≤ 1, there is a
randomized algorithm that, with high probability, computes a (2⌈1/ϵ⌉k + 3k, k)-unbreakable decomposition with
adhesion 2⌈1/ϵ⌉k + 2k, which further has the following properties.

• The unbreakable decomposition is compact and admits subtree unbreakability.

• The depth of the decomposition is O(k log n/ϵ).

• The number of tree nodes is O(n) and the total bag size is O(kn/ϵ).

The running time is 2O(k
ϵ log k

ϵ)m1+ϵ+o(1). Alternatively, the algorithm can compute an (O(k/ϵ), k)-unbreakable
decomposition with adhesion O(k/ϵ), depth O(log n), and all the other properties as above in asymptotically the
same running time.

We now show the algorithm for computing an unbreakable decomposition with O(k log(n)/ϵ) depth. Later in
Section 6.1, we will discuss how to reduce the depth to O(log n) by modifying the algorithm slightly.

Proof. [Proof of Theorem 6.1] We fix a parameter σ = ⌈ 1ϵ ⌉k + k (which is an upper bound of the adhesion of
the set returned by Lemma 5.1). We will design a subroutine Decomp(H,B), which will receive as input an
undirected graph H with a boundary vertex set B ⊆ V (H) such that

1. |B| ≤ 2σ,

2. H \B is connected, and

3. NH(V (H) \B) = B.

We remark that condition 1 is relatively important, while conditions 2 and 3 are only for avoiding some corner
cases (so the reader may ignore them for now and come back when they are used). The output of Decomp(H,B)
is an unbreakable decomposition (T, β) of H in which the root bag β(r) contains B. Then the desired unbreakable
decomposition of G can be obtained by invoking Decomp(G, ∅). Without loss of generality, we assume G is
connected (otherwise, just work on each connected component separately). Thus it satisfies conditions 2 and 3.

In what follows, we first describe Decomp(H,B) and then show the output guarantees of this subroutine.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1480

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Algorithm 2 Decomp(H,B)

Input: Parameters k ≥ 1, 0 < ϵ ≤ 1 and σ = ⌈1/ϵ⌉k+ k. A graph H with a boundary vertex set B ⊂ V (H) such
that |B| ≤ 2σ.

Output: A rooted tree decomposition (T, β) of H such that B is contained in the root bag.
1: if σ + 1 ≤ |B| ≤ 2σ then
2: Apply Lemma 4.3 on B and H to check if B is (k, k)-unbreakable in H.
3: if Lemma 4.3 returns a (k, k)-breakable witness (L,R) of B in H then
4: X1 ← L ∩R and X ← B ∪X1.
5: else ▷ B is (k, k)-unbreakable in H
6: X ← apply Lemma 5.1 on graph H with B as the initial set.
7: end if
8: else ▷ |B| ≤ σ
9: X1 ← apply Theorem 5.1 on graph H with parameters ϵ, k.

10: X ← B ∪X1.
11: end if
12: if X = B then
13: Return a trivial decomposition (T, β) with a single bag V (H).
14: else ▷ X ⊃ B.
15: Initialize (T, β) with only the root node r whose bag is β(r) = X.
16: for each connected component D of H \X do
17: (TD, βD)← Decomp(H [D ∪NH(D)] \ E(H[NH(D)]), NH(D))
18: Update (T, β) by appending (TD, βD) to the root node r.
19: end for
20: Return (T, β).
21: end if

Description of Decomp(H,B). See Algorithm 2 for a pseudocode. We now explain the algorithm below.

Compute a “separator” X. We first compute a set X ⊆ V (G) according to the following two cases.

Case 1. If σ + 1 ≤ |B| ≤ 2σ, we will compute an unbreakable set X ⊇ B with adhesion smaller than |B| to
reduce the boundary size of the subproblems.

(a) If B has a (k, k)-breakable witness in H, find such a witness (L,R) using Lemma 4.3 (let X1 = L∩R), and
we let X = X1 ∪B.

(b) Otherwise, B is (k, k)-unbreakable in H. We apply Lemma 5.1 on graph H with B as the initial set, and
let X be the output set.

Claim 6.2. In Case 1, the set X is (2⌈1/ϵ⌉k + 3k, k)-unbreakable and has adhesion at most |B| − 1.

Proof. We first focus on case (a). X is trivially (2⌈1/ϵ⌉k+3k, k)-unbreakable because |X| ≤ |X1|+ |B| ≤ k+2σ =
2⌈1/ϵ⌉k+3k. To see that X has adhesion |B|−1, consider an arbitrary connected component D of H \X. Recall
that X = X1 ∪B, so

|NH(D)| = |NH(D) ∩X1|+ |NH(D) ∩ (B \X1)|,

and we will bound |NH(D) ∩X1| and |NH(D) ∩ (B \X1)| separately. Observe that |NH(D) ∩X1| ≤ |X1| ≤ k,
where |X1| ≤ k is trivially because X1 is a (k, k)-breakable witness. To bound |NH(D)∩ (B \X1)|, we look at the
connected componentD′ ⊇ D ofH\X1 (note thatD

′ is unique sinceX1 ⊆ X). We haveNH(D)∩(B\X1) ⊆ D′∩B
because NH(D′) ⊆ X1. Furthermore, |D′ ∩ B| ≤ |B| − (k + 1) because X1 is a (k, k)-breakable witness of B in
H. Therefore, |NH(D)∩ (B \X1)| ≤ |B| − (k+1). Putting it all together, |NH(D)| ≤ k+ |B| − (k+1) ≤ |B| − 1
as desired.

For (b), the claim holds simply by the guarantees of Lemma 5.1, which guarantees that X is (k⌈ 1ϵ ⌉ + k, k)-
unbreakable and has σ(X) = k⌈ 1ϵ ⌉+ k (which means σ(X) ≤ σ ≤ |B| − 1).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1481

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Case 2. If |B| ≤ σ, we will compute a balanced unbreakable set X ⊇ B (with adhesion at most 2σ) to
significantly reduce the graph size of the subproblems. We first compute X1 by applying Theorem 5.1 on graph
H with parameters ϵ, k, and then let X be B ∪X1.

Claim 6.3. In Case 2, the set X of H is (2⌈1/ϵ⌉k + 2k, k)-unbreakable and 1/2-balanced, and has adhesion at
most 2⌈1/ϵ⌉k + 2k.

Proof. Theorem 5.1 guarantees that, with high probability, X is (⌈1/ϵ⌉k + k, k)-unbreakable with adhesion at
most ⌈1/ϵ⌉k+ k. Because X = X1 ∪B, X is an (⌈1/ϵ⌉k+ k+ |B|, k)-unbreakable and 1/2-balanced set in H with
adhesion at most ⌈1/ϵ⌉k + k + |B|. Recall that |B| ≤ σ = ⌈1/ϵ⌉k + k, so the claim holds.

Construct the decomposition. After computing the set X, we construct the decomposition (T, β) as follows. We
first consider the corner case that X = B, in which we return a trivial decomposition with V (H) as the only bag.

Claim 6.4. In the corner case X = B, we have |V (H)| ≤ 2σ, which implies V (H) is (2⌈1/ϵ⌉k+2k, k)-unbreakable
in H.

Proof. Note that only case 2 can lead to this corner case. Because from the input conditions 2 and 3, the adhesion
of X is exactly |B|, contradicting Claim 6.2 for case 1. Therefore, |X| = |B| ≤ σ and Claim 6.3 tells that X is
1/2-balanced. Combining that there is only one connected component D in H \ X (by input condition 2), we
have |V (H)| ≤ |D|+ |X| ≤ |V (H)|/2+σ, which means |V (H)| ≤ 2σ. Hence V (H) is trivially (2σ, k)-unbreakable
in H.

From now we assume X ⊃ B. We consider each connected component D of H \X, and solve a subproblem
Decomp(H [D ∪NH(D)] \ E(H[NH(D)]), NH(D))7 recursively which gives output (TD, βD) (note that this will
ensure the graphs of the subproblems are edge-disjoint). After solving all the subproblems, we create a node r as
the root of T corresponding to bag β(r) = X, and then append all (TD, βD) to r as child-subtrees.

Correctness. Let (T, β) be the output of Decomp(H,B).

(T, β) is an unbreakable decomposition. We now prove by induction that (T, β) from Decomp(H,B) is a
(2⌈1/ϵ⌉k + 3k, k)-unbreakable decomposition of H with adhesion 2⌈1/ϵ⌉k + 2k, further satisfying that the root
bag containing B.

We first consider the base case that Decomp(H,B) causes no further recursion, which means the set X is
trivially the whole V (H). Then trivially the output (T, β) is a tree decomposition with only a single bag, and
this bag is (O(k/ϵ), k)-unbreakable in H by Claim 6.2 and Claim 6.3.

Next, we consider the recursive subproblems that Decomp(H,B) invokes. Recall that each recursion
Decomp(H [D ∪NH(D)] \E(H[NH(D)]), NH(D)) relates to a connected component D of H \X, and we assume
all these recursions output child-subtrees (TD, βD) correctly. We verify the properties in Definitions 3.2 and 3.3
one by one to show the correctness of Decomp(H,B).

• Consider a vertex v ∈ V (H). If v /∈ X, then v is inside a unique connected component Dv of H \ X, so
only the child-subtree (TDv

, βDv
) may have bags containing v, and by the correctness of recursions, bags

containing v induce a connected subtree. If v ∈ X, any child-subtree (TD, βD) with bags containing v must
relate to a component D s.t. v ∈ NH(D) ⊆ X. Hence, v is inside the root bag of such child-subtrees
(TD, βD) (since NH(D) are the boundary vertices of the next recursion). By the construction of (T, β), bags
containing v induce a connected subtree.

• Each edge in E(H) will be covered by at least a bag in (T, β), because edges in H[X] are inside the root
bag of (T, β), and each of the rest of edges is inside some H[D ∪NH(D)] \ E(H[NH(D)]).

• All bags of (T, β) are (2⌈1/ϵ⌉k + 3k, k)-unbreakable in H by the following reasons, The new bag X is
(2⌈1/ϵ⌉k + 3k, k)-unbreakable in H by Claim 6.2 and Claim 6.3. each old bag is even (2⌈1/ϵ⌉k + 3k, k)-
unbreakable in some subgraph of H.

7In other words, H[D ∪NH(D)] \E(H[NH(D)]) is the subgraph of H induced by vertices D ∪NH(D) excluding edges with both
endpoints in NH(D).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1482

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

• To see that (T, β) has adhesion 2σ = 2⌈1/ϵ⌉k + 2k, it suffices to show that the root bag X of (T, β) has an
intersection of size 2σ with the root bag of each child-subtree (TD, βD). Indeed, observe that the intersection
is exactly NH(D), so it has size at most 2σ (since X has adhesion 2σ in H by Claim 6.2 and Claim 6.3).

The tree size and the total bag size. Next, we prove that (T, β) from Decomp(H,B) satisfies (1) |V (T)| ≤
|V (H)|, (2) the total bag size is at most O(|V (H)|σ) = O(|V (H)|k/ϵ). Recall that the definition of tree
decomposition guarantees the β(t) \ σ(t) for all t ∈ V (T) are disjoint. Hence (1) holds because each t ∈ V (T)
has non-empty β(t) \ σ(t) by Observation 6.5. Next, (2) is because

∑
t∈V (T) |β(t)| =

∑
t∈V (T) |β(t) \ σ(t)| +∑

t∈V (T) |σ(t)| ≤ |V (H)|+ |V (T)| · (2σ) = O(|V (H)|σ).

Observation 6.5. For each tree node t ∈ V (T), its bag β(t) is a strict super set of its adhesion σ(t), i.e.
β(t) ⊃ σ(t).

Proof. To see this, in the recursion step creating t, we have σ(t) = B. Furthermore, β(t) = V (H) if X = B (the
corner case) and β(t) = X if X ⊃ B, so always β(t) ⊃ σ(t).

The tree depth. We are now ready to show the depth of T is O(k log |V (H)|/ϵ). Consider a path from the root
(upside) to a leaf (downside) in the recursion tree. We divide this path into two parts, the upper part and the
lower part, at the upper most step Decomp(H ′, B′) such that |V (H ′)| ≤ 10k⌈1/ϵ⌉.

For the lower part, i.e. from the step Decomp(H ′, B′) to the leaf, trivially there are at most |V (H ′)| = O(k/ϵ)
steps (note that the tree decomposition of Decomp(H ′, B′) has at most |V (H ′)| nodes).

Consider the upper part. Each step Decomp(H ′, B′) on this part has V (H ′) > 10k⌈1/ϵ⌉. The number of
case-2 steps on the upper part is at most O(log n) by the following reasons. Let Decomp(H ′, B′) be a case-2 step
and Decomp(H ′′, B′′) be its sub-step on this path. Because X is 1/2-balanced and has adhesion 2σ by Claim 6.3,
we have |V (H ′′)| ≤ |V (H ′)|/2 + 2σ, which implies |V (H ′′)| ≤ 5|V (H)|/6 combining 2σ ≤ |V (H)|/3 (recall that
2σ = 2⌈1/ϵ⌉k + 2k and |V (H)| > 10⌈1/ϵ⌉k). Next, the number of consecutive case-1 recursive steps is at most σ,
because the earliest case-1 step has boundary size at most 2σ and the subsequent case-1 steps will keep reducing
the boundary size by Claim 6.2, until the boundary size drops below σ + 1. Therefore, the total length of the
upper part is at most O(log n) · σ = O(k log n/ϵ).

In summary the recursion depth is at most O(k log n/ϵ) +O(k/ϵ) = O(k log n/ϵ).

Compactness and subtree unbreakability. Finally, the compactness and subtree unbreakability of (T, β) simply
follow from the algorithm.

Running Time of Decomp(G, ∅). Observe that, at each level i, the total graph size of level-i steps is
O(m), because the recursive steps Decomp(Hi, Bi) at a level i are on edge-disjoint graphs Hi. Because there
are O(k log n/ϵ) levels, the total graph size of each level is O(km log n/ϵ). In each recursive step Decomp(H,B),

invoking Lemmas 4.1, 4.3 and 5.1 takes time 2O(k
ϵ log k

ϵ)|E(H)|1+o(1)+ϵ. In summary, the total running time of

Decomp(G, ∅) is 2O(k
ϵ log k

ϵ)m1+o(1)+ϵ.

6.1 Depth Reduction Finally, we discuss how to reduce the depth of the unbreakable decomposition from
O(k log n/ϵ) to O(log n), at a cost of bringing constant factors to the unbreakability and adhesion. Precisely, we
will show how to compute a (O(k/ϵ), k)-unbreakable decomposition with adhesion O(k/ϵ) and depth O(log n).

We will change Algorithm 2 slightly as follows.

1. We will set σ = 5⌈1/ϵ⌉k (instead of σ = ⌈1/k⌉+ k).

2. Before Line 1, we add a termination condition: if |V (H)| ≤ 10⌈1/ϵ⌉k, we return a trivial decomposition
(T, β) with a single bag V (H). We point out that after adding this new termination condition, the algorithm
will never go into Algorithm 2, because by Claim 6.4, there should be |V (H)| ≤ 2σ = 10⌈1/ϵ⌉k when we
reach Algorithm 2, which is impossible because of the new termination condition.

3. In Algorithm 2, we will check if B is (⌈1/ϵ⌉k + k, k)-unbreakable (instead of (k, k)-unbreakable). This will
lead to a new Claim 6.2:

• In Case 1, the set X is (O(k/ϵ), k)-unbreakable and has adhesion at most |B| − ⌈1/ϵ⌉k.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1483

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

The new claim can be shown in the same way as Claim 6.2. Roughly speaking, in case (a), X is (k+2σ, k)-
unbreakable and has adhesion at most |B| − ⌈1/ϵ⌉k. In case (b), X is (2k⌈1/ϵ⌉+ k, k)-unbreakable and has
adhesion 2k⌈1/ϵ⌉+ k ≤ σ ≤ |B| − ⌈1/ϵ⌉k.

Following the same argument in the proof of Theorem 6.1, it is not hard to see that the resulting decomposition
is (O(k/ϵ), k)-unbreakable and has O(k/ϵ) adhesion. It also has all the other properties stated in Theorem 6.1.
In particular, the depth reduces to O(log n) by the following reasons. Consider a path from the root to an
arbitrary leaf. The number of case-2 steps is at most O(log n) (note that there is no lower part because of the
new termination condition). The number of consecutive case-2 steps is at most σ/(⌈1/ϵ⌉k) = O(1), because every
case-2 step will reduce the adhesion by ⌈1/ϵ⌉k (from modification 3).

7 Application: Minimum p-Way Cut in Close-to-Linear Time

The goal of this section is to prove Theorem 1.2. We essentially use the same algorithm as that for Auxiliary
Multicut - Theorem 4.1 in [CKL+20], with some minor modifications. We remark that we give the full algorithm
only to show that the algorithm indeed runs in close-to-linear time - indeed, the algorithm in [CKL+20] itself does
run in close-to-linear time modulo the construction of the decomposition, though this is not analyzed explicitly.
Our algorithm is simpler to state since our unbreakable decomposition admits the subtree unbreakability property
(see Definition 3.3).

Given a graph G, parameters p and k, we need to decide if there exists a p-Way Cut of size at most k. Recall
that a p-Way Cut is a set of edges whose deletion creates p connected components. We begin by computing a
(q, k) unbreakable rooted tree decomposition with adhesion at most σ where σ ≤ q = O(kϵ) using Theorem 1.1,
where we set ϵ to be some small constant. Let r be the root of this rooted tree decomposition. The running time
for this step is 2O(k

ϵ log k
ϵ)m1+ϵ.

Equivalent formulation. Instead of checking if there exists a p-Way Cut of size at most k, equivalently,
we can check if there is some p-coloring of the vertex set such that the number of edges with differently colored
endpoints is at most k. Formally, in a graph H, a p-coloring of the vertex set is some function h : V (H) → [p].
The cost of the p-coloring cost(h) is the number of edges with differently colored endpoints. Given two functions
f : A → C and g : B → C where A ⊆ B, we say that g respects f if g agrees with f on every a ∈ A.
Recall (see Section 3) that given a node t in the rooted tree in the unbreakable decomposition, Gt is defined as
G[γ(t)] \E(G[σ(t)]). In words, Gt is the graph induced on all vertices contained in bags of the sub-tree rooted at
t, excluding the edges between the vertices in the adhesion σ(t).

Dynamic programming on tree decomposition. We use dynamic programming to solve the problem.
For each tree node t in the (unbreakable) tree decomposition, every I ⊆ [p] and every p-coloring f : σ(t)→ [p] of
the adhesion σ(t), we store an entry M [t, f, I] in our table M . M [t, f, I] is an integer value that denotes the cost
of the minimum cost p-coloring h : V (Gt)→ [p] in Gt that (a) respects f (b) colors some vertex of Gt with color
c for every c ∈ I an (c) has cost at most k in Gt. If there is no such coloring h, then we set M [t, f, I] =∞. Then
since for the root r, Gr = G and σ(r) = ∅, G has a p-Way Cut of size at most k if and only if M [r, fϕ, [p]] ≤ k,
where fϕ is an empty function (note that any coloring h respects the empty function).

We now explain how to compute each entry M [t, f, I]. Since we compute these values bottom up with respect
to the tree decomposition, we will inductively assume that we have already correctly computed the set of values
M [t′, (.), (.)] for every child t′ of t in the tree. Henceforth we assume that M [t, f, I] < ∞, if not, our algorithm
will discover this and set M [t, f, I] =∞. Fix a minimum cost p-coloring h satisfying the properties listed above,
such that M [t, f, I] = cost(h). Consider a restriction of this p-coloring h to β(t), the bag corresponding to node
t. Let g : β(t)→ [p] be this coloring.

Exploiting unbreakability. The first observation is that since β(t) is (q, k) unbreakable in Gt, the total
number of vertices of β(t) in all except one colored class of g is at most 3q - for otherwise, we would violate the
definition of unbreakability. We show this formally in the next lemma.

Lemma 7.1. There exists at most one c ∈ [p] such that there exist more than q vertices v ∈ β(t) for which
g(v) = c. Further, the total number of vertices which have color c′ ̸= c is at most 3q.

Proof. To prove the first part, suppose for contradiction that there exist c1, c2 ∈ [p] with c1 ̸= c2 such that there
exist sets D1 ⊆ β(t) and D2 ⊆ β(t) with g(v1) = c1 for any v1 ∈ D1 and g(v2) = c2 for any v2 ∈ D2 with both
|D1|, |D2| ≥ q + 1.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1484

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

Recall that we assumed that there exists a p-coloring h of Gt with cost at most k, whose restriction to β(t)
gives g. Let S1 = h−1(c1) and S2 = h−1(c2), where h

−1(ci) is the set of vertices v ∈ V (Gt) for which h(v) = ci,
i ∈ {1, 2}. Let S12 be the set of vertices in h−1(c1) which have some neighbor in h−1(c2) in the graph Gt. Since
the cost of h is at most k, we must have |S12| ≤ k. Now consider the vertex cut (L = S1, R = S12 ∪ S2) in Gt.
Indeed, (L,R) is a vertex cut since L∩R = S12 separates S1 \S12 from S2 in Gt. Also we have |L∩R| = |S12| ≤ k.
Finally, g is a restriction of h so it follows that D1 ⊆ L and D2 ⊆ R, and both |D1|, |D2| ≥ q + 1. Hence (L,R)
is a (q, k) breakable witness for β(t) in Gt, which is a contradiction since β(t) is (q, k) unbreakable in Gt (recall
that our unbreakable decomposition admits subtree unbreakability, see Definition 3.3).Thus every colored class
except one, say c, has at most q vertices.

Next, we show that the total number of vertices in β(t) colored differently from c is at most 3q. If this is not
the case, since |h−1(c′)∩ β(t)| ≤ q for each c′ ̸= c, we first observe that we can partition the set of colors [p] \ {c}
into two (disjoint) groups X1 ∪X2, such that there are at least q + 1 vertices of β(t) having colors from X1 and
X2.

For a set of colors X, let us define h−1(X) to be the set of vertices v ∈ V (Gt) such that h(v) ∈ X.
Then it follows that |h−1(X1)|, |h−1(X2)| ≥ q + 1. Similar to the previous part, let us define S′

1 = h−1(X1),
S′
2 = h−1(X2), and S

′
12 to be the set of vertices in S′

1 that have a neighbor in S′
2. Again, it must be the case that

(L = S′
1, R = S′

12 ∪ S′
2) is a (q, k) breakable witness for β(t) in Gt, which is a contradiction.

We guess the label of the color class c ∈ [p] which has the maximum number of vertices v ∈ β(t) satisfying
g(v) = c, then we can potentially have more than q vertices of that color, but not for any other color. Without
loss of generality and for simplicity of exposition let us assume that this color c is the color p.

Computing the table entries. To compute M [t, f, I], our goal will be to come up with a coloring
g∗ : β(t)→ [p], and a set It′ ⊆ I for each child t′ of t in the tree such that the following hold.

1. g∗ respects f

2. For every i ∈ I, either i ∈ It′ for some child t′ of t, or there exists some v ∈ β(t) such that g∗(v) = i.

Define the cost of g∗ as follows. Every edge e = {u, v} ∈ E(β(t)) \ E(σ(t)) contributes 1 to the cost. For
every child t′ of t, t′ contributes M [t′, g∗|σt′

, It′] to the cost, where g∗|σt′
denotes the restriction of g∗ to the set

σ(t′). Then observe that since we correctly computed the values M [t′, (.), (.)] for each child t′ of t, such a coloring
g∗ with minimum cost must have cost equal to M [t, f, I].

Notice that in particular, g itself is a coloring of minimum cost that satisfies these conditions. To find a coloring
of minimum cost (possibly different from g), we use color coding together with another dynamic programming
step. We start by describing the color coding step.

Color coding. For every edge e = {u, v} in E(β(t)) \ E(σ(t)), we say that e is crossing if g(u) ̸= g(v).
Similarly, for every child node t′ of t in the tree decomposition tree and adhesion σ(t′) ⊆ β(t), we say that σ(t′)
is crossing if there exists two vertices u, v ∈ σ(t′) such that g(u) ̸= g(v).

Lemma 7.2. The total number of crossing edges and crossing adhesions together is at most k.

Proof. The proof follows from the compactness (see Section 3) property of the decomposition. Compactness
implies that for each child t′ of t, G[α(t′)] = G[γ(t′)\σ(t′)] is connected and NGt′ (α(t

′)) = σ(t′). Also, the graphs
Gt′ = G[γ(t′)] \E(σ(t′)) are disjoint across all children t′ of t. If σ(t′) is crossing, then there must exist some two
vertices u, v ∈ σ(t′) such that g(u) ̸= g(v), and hence each crossing adhesion contributes 1 to the cost of h.

Similarly, every crossing edge e ∈ E(β(t)) \ E(σ(t)) contributes 1 to the cost of h. But the cost of h in Gt is
at most k, thus the total number of crossing edges and adhesions together is at most k.

Let A1, A2 . . . Ap be the set of all vertices of β(t) colored 1, 2 . . . p respectively in g. Let A∗ =
⋃p−1

i=1 Ai be the
set of vertices colored with colors 1, 2 . . . p− 1. Define B∗ ⊆ Ap as the set of all vertices v ∈ Ap for which there is
either (a) an edge {u, v} ∈ E(β(t)) \E(σ(t)) with u ∈ A∗ or (b) some child node t′ of t such that σ(t′) is crossing,
and v ∈ σ(t′).

Apply Lemma 5.8 to the sets A1, A2 . . . Ap−1, B
∗ to obtain a family of functions F . The running time is at

most 2O(q log q)n log2 n, since
∑k−1

i=1 Ai ≤ 3q by Lemma 7.1 and |B∗| ≤ qkσ ≤ q3, where σ is the adhesion of the
unbreakable decomposition. Then we know that there exists some function g′ ∈ F that agrees with g on these

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1485

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

sets. Henceforth we fix this g′ (we try every function from F). Before we proceed further, for every v ∈ σ(t), we
make g′ agree with f by setting g′(v) = f(v). Let us also assume that at least one vertex of β(t) is colored p in
g′ (note that this is true for g since p is the color with maximum frequency; hence this vertex can be included
in the color coding analysis to ensure this, but we avoid explicity stating this to avoid confusion). Now we set
I = I \ {p}.

Next, consider the graph H obtained as follows. The vertex set V (H) = β(t). We add into E(H) every edge
of E(Gt) \E(σt). Further for every child node t′ of t, we turn the adhesion σ(t′) into a clique. Formally, for every
u, v ∈ σ(t′) with u ̸= v we add the edge {u, v} to E(H).

Let H∗ be the subgraph of H induced on the vertices which are colored {1, 2 . . . p − 1} by g′, and let
{C1, C2 . . . Cℓ} be the connected components of H∗. We have the following observation.

Observation 7.1. For connected component Ci, i ∈ [ℓ], either g′ agrees with g on vertices of Ci or g(v) = p for
each v ∈ Ci.

Proof. Note that if an edge {u,w} ∈ E(H) is such that g(u) ̸= g(w), then by our color coding requirements,
g′(u) = g(u) and g′(w) = g(w). Also if g(u), g(w) ∈ [p− 1], then g′(u) = g(u) and g′(w) = g(w).

Consider two cases. The first case is when in g, each vertex of Ci is colored from the set of colors [p− 1]. In
this case, g and g′ agree on every vertex of Ci.

Otherwise, there exists a vertex of Ci that is colored with color p in g. We have two subcases now. Either
every vertex of Ci is colored p, or there is some edge {u,w} ∈ E(H) such that g(u) ∈ [p− 1] and g(w) = p. But
in the latter case, by construction, we have w ∈ B∗, and hence g′(w) = g(w) = p, which is a contradiction since
every vertex of Ci is colored from the set [p− 1] in g′.

Thus there exists an optimal coloring (the coloring g), which for each connected component Ci, i ∈ [ℓ], either
colors Ci consistently with g′ or colors every vertex of Ci with the color p. Equivalently, in order to compute
a coloring g∗ of minimum cost satisfying items 1 and 2, we start with the coloring g∗ = g′′ which colors every
vertex in β(t) with the color p, and then decide to flip some connected components Ci, i ∈ [ℓ], so that we change
the colors of vertices of Ci in g

∗ to color them consistently with g′.
For each component Ci, i ∈ [ℓ], define the cost of flipping as

flip(Ci) =
∑

{u,v}∈E(β(t))\E(σ(t))

I(u, v ∈ Ci and g
′(u) ̸= g′(v)) +

∑
{u,v}∈E(β(t))\E(σ(t))

I(u ∈ Ci, v /∈ Ci).

Essentially this is the cost for flipping Ci: we charge for all edges in the bag β(t) with differently colored
endpoints inside Ci, and for all edges which have exactly one endpoint in Ci (note that in this case the other
endpoint is colored p). Before we proceed further, we note that if a component Ci contains a vertex v ∈ Ci∩σ(t),
then since g′(v) = f(v) = g(v) ̸= p, this already fixes the decision for this component: we flip Ci.

Flipping components using dynamic programming. It now suffices to decide which subset of
components to flip. To accomplish this we will yet again use dynamic programming. For this, we need a few more
observations and definitions.

First, observe that every adhesion of a child node is a clique in H, and hence can intersect at most one Ci,
i ∈ [ℓ]. For each component Ci, let xi be the number of children t′ of the node t whose adhesion σ(t′) intersects
Ci. Arbitrarily order these child nodes by numbering them (i, 1), (i, 2), (i, 3) . . . (i, xi), so that t′i′,j′ refers to the
child node labelled (i′, j′). Thus σ(t′i′,j′) refers to the adhesion of the child node labeled (i′, j′). For simplicity,
let us assume that for every child node t′ of t, σ(t′) intersects some Ci, i ∈ [ℓ] - if not, this is easy to handle using
a simple modification to the dynamic programming.

Given a coloring ψ : β(t)→ [p], i ∈ [ℓ] and j ∈ [xi], a flip set F ⊆ [i] and assignments It′
i′,j′
⊆ I to each child

node numbered (i′, j′) satisfying either (a) i′ < i, or (b) i′ = i and j′ ≤ j, the i, j-partial cost of ψ is defined as
follows:

• Each component Ci′ , such that i′ ∈ F , contributes a cost of flip(Ci).

• Each child node t′i′,j′ such that either (a) i′ < i, or (b) i′ = i and j′ ≤ j contributes a cost
M [t′, ψ|σt′

i′,j′
, It′

i′,j′
] where ψ|σt′

i′,j′
is the restriction of ψ to σ(t′i′,j′).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1486

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

We create a dynamic programming table, whose each entry is of the form T [i][j][I0][b], i ∈ {0, 1, 2 . . . ℓ}, j ∈
{0, 1, . . . xi}, I0 ⊆ I, b ∈ {0, 1}. T [i][j][I0][b] denotes the minimum possible i, j-partial cost across all choices of
colorings ψ : β(t)→ [p], flip sets F ⊆ [i] and sets It′

i′,j′
⊆ I0 for all (i′, j′) such that either i′ < i or i′ = i, j′ ≤ j,

while maintaining the following properties.

• ψ is obtained from g′′ by flipping some subset of components with indices equal to F ⊆ [i].

• If b = 1, then i ∈ F , else i /∈ F .

• For each i′ ≤ i, if Ci′ ∩ σ(t) ̸= ∅, then i′ ∈ F .

• For every i0 ∈ I0, either there exists some vertex v ∈ β(t) with ψ(v) = i0, or there exists a child node of t
labelled i′, j′ with either (a) i′ < i or (b) i′ = i and j′ ≤ j such that v ∈ It′

i′,j′
.

The updates to T [i][j][I0][b] are natural. For the base cases, we set T [0][0][∅][0] = T [0][0][∅][1] = 0. For any
other set I0 and b′ ∈ {0, 1} we set T [0][0][I0][b

′] = ∞. If i > 0 and j = 0, there are two cases. If Ci ∩ σ(t) ̸= ∅,
then we set T [i][j][I0][0] = ∞. Else we just set T [i][j][I0][0] = max{T [i − 1][xi−1][I0][0], T [i − 1][xi−1][I0][1]}. In
either case we set T [i][j][I0][1] = max{T [i− 1][xi−1][I0 \ Ii][0], T [i− 1][xi−1][I0 \ Ii][1]}+ flip(Ci), where Ii is the
set of colors given to vertices in Ci in g

′.
For j > 0, if σ(t) ∩ Ci ̸= ∅ we set T [i][j][I0][0] =∞. Otherwise, we set

T [i][j][I0][0] = min
I′′
0 ⊆I0

M [t′i,j][f0][I
′′
0] + T [i][j − 1][I0 \ I ′′0][0].

In either case, we set

T [i][j][I0][1] = min
I′′
0 ⊆I0

M [t′i,j][f1][I
′′
0] + T [i][j − 1][I0 \ I ′′0][1].

Here f0 is the constant function that assigns to every vertex of σ(t′i,j) the color p, and f1 is the function that
colors each vertex of σ(t′i,j) the same color as that in g′.

Finally, we set M [t, f, I] to be min(T [ℓ][xℓ][I0][0], T [ℓ][xℓ][I0][1]}. Recall that in reality, we repeat this process
for every function g′ ∈ F from the color coding step: therefore we define M [t, f, I] to be the minimum over this
result for every function in F . If this quantity is more than k for every choice of the coloring from F obtained,
we just set M [t, f, I] to ∞.

Running time. The running time analysis is rather straightforward. Let us first analyse the run-time given
the unbreakable decomposition. Fix an entry M [t, f, I]. There are at most pO(σ) such entries for every tree node
t. To compute each entry, we first do a color coding step and a dynamic programming step which constructs the
table T . Let xt be the total number of children of t in the tree decomposition. Let ntv = |β(t)| be the number of
vertices in the bag and nte be the number of edges in E(β(t)) \ E(σ(t)).

The color coding step takes time O(2O(k
ϵ log k

ϵ)(ntv + nte) log
2 n).

There are at most (xt + ntv) · 2p · 2 = O((xt + ntv) · 2p) entries in the table T . Each entry is computed in
time O(2p). Thus the total running time to compute T is O((xt +ntv)2

p). Summing across all nodes t, using the
facts that

∑
t(ntv + nte) = O(m+ kn/ϵ) (

∑
t ntv ≤ O(kn/ϵ) is from Theorem 6.1 and

∑
t nte = O(m) is from the

nature of tree decomposition), and further noting that
∑

t xt = O(n) by Theorem 6.1, the total running time is

at most 2O(k
ϵ log k

ϵ)(m+ n) log2 n.
Finally, the unbreakable decomposition itself is computed using Theorem 6.1, and this is the bottleneck for

the running time. The running time of the entire algorithm is therefore 2O(k
ϵ log k

ϵ)m1+ϵ. This concludes the
run-time analysis.

8 Conclusion and Open Problems

Theorem 6.1 gives the first close-to-linear time FPT algorithm for unbreakable decomposition. Our decomposition
also has optimal unbreakability and adhesion parameters up to a constant factor. This removes the bottleneck to
fast FPT algorithms for numerous problems.

Below, we list some exciting potential applications that relied on unbreakable decomposition:

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1487

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

1. Can we find a Minimum Bisection of size k in Ok(m
1+ϵ) time, if it exists?

2. Can we improve the preprocessing time of the O(1)-update-time connectivity oracle under O(1) vertex
failures from [PSS+22] to close-to-linear time? What is the optimal trade-off for space and preprocessing
time when the update time is O(1)?

3. Let G be a graph that excludes a fixed topological minor. Can we decide whether G satisfies an FO+ conn
sentence or an FO+ DP sentence in O(m1+ϵ) time? This would be an improvement over the O(n3) bound
given by [PSS+22, SSS+24]. It is worth noting that there are already a linear time algorithm for deciding
an MSO2 sentence in bounded-treewidth graphs [Cou90], and a close-to-linear time algorithm for deciding
an FO sentence in nowhere dense graphs [GKS17].

Can our running time be improved further? More specifically, can one compute (O(k), k)-unbreakable

decomposition with adhesion O(k) in Ok(m logO(1)m) or Ok(m
1+o(1))) time?

Moreover, we can hope to remove the exponential dependency on k in the edge-cut version. As shown
in [LSS22], a (poly(k), k)-edge-unbreakable decomposition can be computed in polynomial time with no
exponential dependency on k. A near-linear time algorithm for computing an (poly(k log n), k)-edge-unbreakable
decomposition will likely imply a nice application, i.e., a near-linear time (1 + ϵ)-approximation FPT algorithm
for Minimum p-Way Edge-Cut parameterized by p, improving the polynomial running time of the algorithm
in [LSS22].

References

[AKP+22] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, MS Ramanujan, and Saket Saurabh. A fixed-parameter
tractable algorithm for elimination distance to bounded degree graphs. SIAM Journal on Discrete Mathematics,
36(2):911–921, 2022.

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Subcubic algorithms for gomory–hu tree in unweighted
graphs. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1725–1737,
2021.

[CCH+16] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Micha l Pilipczuk.
Designing fpt algorithms for cut problems using randomized contractions. SIAM Journal on Computing, 45(4):1171–
1229, 2016. Announced at FOCS’12.

[CDK+21] Parinya Chalermsook, Syamantak Das, Yunbum Kook, Bundit Laekhanukit, Yang P Liu, Richard Peng, Mark
Sellke, and Daniel Vaz. Vertex sparsification for edge connectivity. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1206–1225. SIAM, 2021.

[CHM13] Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM Journal on Computing, 42(4):1674–1696, 2013.

[CKL+20] Marek Cygan, Pawe l Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Micha l Pilipczuk, Saket Saurabh, and
Magnus Wahlström. Randomized contractions meet lean decompositions. ACM Transactions on Algorithms (TALG),
17(1):1–30, 2020.

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter algorithm for the
directed feedback vertex set problem. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 177–186, 2008.

[CLP+19] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Micha l Pilipczuk, and Saket Saurabh. Minimum bisection
is fixed-parameter tractable. SIAM Journal on Computing, 48(2):417–450, 2019.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Information and
computation, 85(1):12–75, 1990.

[CPPW13] Marek Cygan, Marcin Pilipczuk, Micha l Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut
parameterized above lower bounds. ACM Transactions on Computation Theory (TOCT), 5(1):1–11, 2013.

[CQ21] Chandra Chekuri and Kent Quanrud. Isolating cuts,(bi-) submodularity, and faster algorithms for connectivity. In
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021.

[FM06] Uriel Feige and Mohammad Mahdian. Finding small balanced separators. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, pages 375–384, 2006.

[GKS17] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of nowhere dense graphs.
Journal of the ACM (JACM), 64(3):1–32, 2017.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1488

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[GLL18a] Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for k-cut. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 113–123. IEEE, 2018.

[GLL18b] Anupam Gupta, Euiwoong Lee, and Jason Li. An fpt algorithm beating 2-approximation for k-cut. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2821–2837. SIAM,
2018.

[Gui11] Sylvain Guillemot. Fpt algorithms for path-transversal and cycle-transversal problems. Discrete Optimization,
8(1):61–71, 2011.

[HLW21] Zhiyang He, Jason Li, and Magnus Wahlström. Near-linear-time, optimal vertex cut sparsifiers in directed
acyclic graphs. In 29th Annual European Symposium on Algorithms (ESA 2021). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2021.

[ILSS23] Tanmay Inamdar, Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. Parameterized complexity
of fair bisection:(fpt-approximation meets unbreakability). In 31st Annual European Symposium on Algorithms (ESA
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2023.

[Iwa16] Yoichi Iwata. Linear-time kernelization for feedback vertex set. arXiv preprint arXiv:1608.01463, 2016.
[IWY16] Yoichi Iwata, Magnus Wahlstrom, and Yuichi Yoshida. Half-integrality, lp-branching, and fpt algorithms. SIAM

Journal on Computing, 45(4):1377–1411, 2016.
[IYY18] Yoichi Iwata, Yutaro Yamaguchi, and Yuichi Yoshida. 0/1/all csps, half-integral a-path packing, and linear-time

fpt algorithms. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 462–473.
IEEE, 2018.

[KKPW21] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation i: directed
graphs. arXiv preprint arXiv:2111.03450, 2021.

[KKPW24] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation ii: Undirected
graphs. ACM Transactions on Algorithms, 20(2):1–26, 2024.

[KL20] Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation fpt algorithm for min-k-cut. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 990–999. SIAM, 2020.

[Kle04] Jon Kleinberg. Detecting a network failure. Internet Mathematics, 1(1):37–55, 2004.
[KMP+24] Eun Jung Kim, Tomáš Masař́ık, Marcin Pilipczuk, Roohani Sharma, and Magnus Wahlström. On weighted

graph separation problems and flow augmentation. SIAM Journal on Discrete Mathematics, 38(1):170–189, 2024.
[KPS24] Tuukka Korhonen, Micha l Pilipczuk, and Giannos Stamoulis. Minor containment and disjoint paths in almost-

linear time. arXiv preprint arXiv:2404.03958, 2024.
[KT11] Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is fixed-parameter tractable.

In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 160–169. IEEE, 2011.
[KW12] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization.

In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pages 450–459. IEEE, 2012.
[KW14] Stefan Kratsch and Magnus Wahlström. Compression via matroids: a randomized polynomial kernel for odd cycle

transversal. ACM Transactions on Algorithms (TALG), 10(4):1–15, 2014.
[LM13] Daniel Lokshtanov and Dániel Marx. Clustering with local restrictions. Information and Computation, 222:278–

292, 2013.
[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai Yingchareontha-

wornchai. Vertex connectivity in poly-logarithmic max-flows. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 317–329, 2021.

[LNPS23] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak. Near-linear time approx-
imations for cut problems via fair cuts. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 240–275. SIAM, 2023.

[LNR+14] Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket Saurabh. Faster
parameterized algorithms using linear programming. ACM Transactions on Algorithms (TALG), 11(2):1–31, 2014.

[LP20] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows. In 2020 IEEE 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 85–92. IEEE, 2020.

[LP21] Jason Li and Debmalya Panigrahi. Approximate gomory–hu tree is faster than n–1 max-flows. In Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1738–1748, 2021.

[LRSZ18] Daniel Lokshtanov, MS Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing cmso model checking to
highly connected graphs. In 45th International Colloquium on Automata, Languages, and Programming (ICALP
2018). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018.

[LSS22] Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approximation scheme for min
k-cut. SIAM Journal on Computing, (0):FOCS20–205, 2022.

[LSSZ19] Daniel Lokshtanov, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Balanced judicious bipartition is
fixed-parameter tractable. SIAM Journal on Discrete Mathematics, 33(4):1878–1911, 2019.

[Mar06] Dániel Marx. Parameterized graph separation problems. Theoretical Computer Science, 351(3):394–406, 2006.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1489

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

[MOR13] Dáaniel Marx, Barry O’sullivan, and Igor Razgon. Finding small separators in linear time via treewidth
reduction. ACM Transactions on Algorithms (TALG), 9(4):1–35, 2013.

[MR14] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the cutset.
SIAM Journal on Computing, 43(2):355–388, 2014.

[NS17] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-case update time: adaptive,
las vegas, and O(n1/2−ϵ)-time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1122–1129, 2017.

[PSS+22] Micha l Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Toruńczyk, and Alexandre Vigny. Algo-
rithms and data structures for first-order logic with connectivity under vertex failures. In 49th International Collo-
quium on Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2022.

[PSY22] Seth Pettie, Thatchaphol Saranurak, and Longhui Yin. Optimal vertex connectivity oracles. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 151–161, 2022.

[Ree97] Bruce Reed. Tree width and tangles: a new connectivity measure and some applications. Surveys in combinatorics,
241:87–162, 1997.

[SSS+24] Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M Thilikos, and Alexandre Vigny. Model
checking disjoint-paths logic on topological-minor-free graph classes. In Proceedings of the 39th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 1–12, 2024.

[SZ23] Saket Saurabh and Meirav Zehavi. Parameterized complexity of multi-node hubs. Journal of Computer and System
Sciences, 131:64–85, 2023.

[Wah22] Magnus Wahlström. Quasipolynomial multicut-mimicking networks and kernels for multiway cut problems. ACM
Transactions on Algorithms (TALG), 18(2):1–19, 2022.

[WN17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case update time. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1130–1143, 2017.

A Single Source Vertex Mincuts

In this section, we show how to compute single source vertex mincuts. Our proof is based on previous algorithms
for computing min-cut thresholds in graphs. Given a graph G, a single source s ∈ V (G), a set of targets T ⊆ V (G)
and a parameter µ, the single source min-cut threshold problem asks to find the set of all targets t ∈ T such that
the size of the (t, s) edge/vertex min-cut is at most λ. [LP21] showed an algorithm for the edge version using
minimum isolating cuts [LP20, AKT21]. Later, [PSY22] generalized this to the vertex version using minimum
isolating vertex cuts [LNP+21, CQ21]. Their algorithm works on unit-capacity graphs, but it is easy to see that
this generalizes to capacitated graphs. For our setting, we need a slightly different notion in that we need exact
min-cuts instead of approximate min-cuts: but this can be ensured easily by running the threshold algorithm
for each parameter µ from 1 to k by paying a factor of k in the running time, which we can indeed afford. For
completeness, we give the complete proof for our setting, and we follow the simpler proof shown in [LNPS23].

Theorem A.1. Consider an m-edge capacitated graph G̃ with vertex capacity function ρ, a parameter k, a single
source vertex s and sink vertices T satisfying that {s} ∪ T is an independent set and each source/sink vertex has
capacity ∞. Let T ∗ be the set of sink vertices t with λG̃(t, s) ≤ k. There is a randomized algorithm that, with

high probability, computes a mincut cover K with respect to s and T ∗ which has width O(k log3 n). The running
time is O(km1+o(1)).

We will use the isolating vertex cuts subroutine stated in Theorem A.3. Recall that a C is collection of disjoint
cuts if the cuts (L,R) ∈ C have mutually disjoint L \R.

Definition A.2. (Isolating Cuts) Consider a capacitated graph G̃ with terminals W ⊆ V (G̃) that form an
independent set. For each terminal w ∈W , an isolating cut of w with respect to W is an arbitrary w-(W \ {w})
mincut.

Theorem A.3. (Isolating Vertex Cuts [LNP+21, CQ21]) Given a capacitated graph G̃ with terminals

W ⊆ V (G̃) that form an independent set, there is an algorithm that computes a collection C of disjoint cuts
satisfying that

• for each w ∈W , there is a (L,R) ∈ C which is an isolating cut of w;

• each (L,R) ∈ C is an isolating cut of some w ∈W .

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1490

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

The running time is m1+o(1).

We note that the disjointness of the isolating cuts from Theorem A.3 can be seen easily following the algorithm
in [LNP+21].

Algorithm 3 Single Source Vertex mincut

Input: a capacitated graph G̃ with a parameter k, a source vertex s and sink vertices T .
Output: A set C of vertex cuts.
1: Initialize Γ to be an empty vertex set and K to be an empty mincut cover.
2: for k′ = 1, 2, ..., k do
3: for j = 1, 2 . . . O(log2 n) do
4: Initialize K′ to be an empty mincut cover.
5: for i = 0, 1, 2 . . . ⌊log n⌋, r = 2i do
6: Sample each sink vertex in T \ Γ with probability 1

r independently into a set T ′.
7: W ← T ′ ∪ {s}
8: Let Ciso be the collection of isolating cuts of W in G̃ (use Theorem A.3)
9: Let C collect the cuts (L,R) ∈ Ciso which has size k′ and is an isolating cut of some sink t ∈ T ′ ⊆W

10: Add C into K′.
11: end for
12: For each cut (L,R) ∈ K′, Γ← Γ ∪ (L \R) ∩ (T \ Γ)
13: K ← K ∪K′

14: end for
15: end for
16: return K

Proof. [Proof of Theorem 3.6]
The single source vertex mincut algorithm is described in Algorithm 3 in details. In what follows, we prove

that K is a mincut cover with respect to s and T .
Instead of directly verifying K satisfies the properties in Definition 3.5, we will first show Lemma A.1.

Lemma A.1. With high probability, at the end of each phase k′ of the outer loop, Γ exactly collects all sink vertices
t with λG̃(t, s) ≤ k

′, i.e., at the beginning of each phase k′, T \Γ exactly contains sink vertices with λG̃(t, s) ≥ k
′.

Proof. We will use induction. Note that initially this claim holds at the beginning of the first phase k′ = 1. To
enable the induction, fix an arbitrary phase 1 ≤ k′ ≤ k, and we will show that this claim holds at the end of
phase k′ with high probability, assuming that it holds at the beginning of phase k′.

For each single iteration j of the middle loop, let T̃j collect all sink vertices t ∈ T \ Γ s.t. λ(t, s) = k′ at the

beginning of iteration j, and let ℓj be a random variable denoting the size of T̃j . Claim A.4 says that E[ℓj] will
drop by a factor of Ω(1/ log n) in each iteration j of the middle loop. Therefore, after O(log2 n) (with sufficiently
large hidden constant) iterations j, in expectation the number of sink vertices t ∈ T \Γ s.t. λ(t, s) = k′ is at most
1/poly(n). By Markov’s inequality, with high probability, the number of sink vertices t ∈ T \ Γ s.t. λ(t, s) = k′

at the end of phase k′ is 0.

Claim A.4. For each iteration j, we have E[ℓj+1] ≤ ℓj(1− Ω(1/ log n)).

Proof. At the end of each iteration j, we define a random variable

αj =
∑
C∈K′

∑
(L,R)∈C

|(L \R) ∩ (T \ Γ)|

We will see in a moment that E[αj] ≥ Ω(ℓj). Providing this, the number of new sink vertices added to Γ in
Algorithm 3 at the end of iteration j is at least Ω(ℓj/ log n) in expectation, because each vertex in T \ Γ will be
counted at most O(log n) times in αj (at most once in each collection C because Theorem A.3 return a collection

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1491

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

of disjoint cuts). Note that these new sink vertices added into Γ are all T̃j-vertices (since all cuts in K′ have size
k′), we conclude that E[ℓj+1] ≤ ℓj − Ω(ℓj/ log n).

It remains to show E[αj] ≥ Ω(ℓj). Fix a sink vertex t ∈ T̃j , and let (L∗, R∗) denote the t-s mincut that
minimizes |L∗ \R∗|. By the submodularity of vertex cuts, we have Observation A.5.

Observation A.5. Any t-s mincut (L,R) has L \R ⊇ L∗ \R∗

We consider the size scale rt = 2⌊|(L
∗\R∗)∩T̃j |⌋ (i.e. rt is roughly the size of (L∗ \ R∗) ∩ T̃j). Regarding the

sample process in Algorithm 3 of this size scale rt, we define an event Qt in which t is sampled but the other sink
vertices in (L∗ \R∗) ∩ T̃j are not. Trivially Qt happens with probability

1

rt
· (1− 1

rt
)|(L

∗\R∗)∩T̃j |−1 = Ω(1/rt) = Ω(1/|(L∗ \R∗) ∩ T̃j |).

Note that (L∗ \ R∗) ∩ (T \ Γ) = (L∗ \ R∗) ∩ T̃j because each t ∈ (L∗ \ R∗) ∩ (T \ Γ) has λG̃(t, s) by the
induction hypothesis and the fact that (L∗, R∗) has size k′. Providing this, whenever Qt happens, we must have
(L∗ \ R∗) ∩ T ′ = {t}, which means (L∗, R∗) is a t-(W \ {t}) cut. Therefore, the isolating cut (L,R) ∈ Ciso of
t ∈ T ′ ⊆W computed in Algorithm 3 has size exactly k′, which means in Algorithm 3, (L,R) will be added into
C′. By Observation A.5,

|(L \R) ∩ (T \ Γ)| ≥ |(L∗ \R∗) ∩ (T \ Γ)| = |(L∗ \R∗) ∩ T̃j |.

In summary, with probability Ω(1/|(L∗\R∗)∩T̃j |), the cut (L,R) will contribute |(L\R)∩(T \Γ)| ≥ |(L∗\R∗)∩T̃j |
to αj . In other words, (L,R) contributes Ω(1) to E[αj]. Repeating this argument for all t ∈ T̃j , we can conclude

that E[αj] ≥ Ω(|T̃j |) = Ω(ℓj).

We are ready to verify that K is a mincut cover with respect to s and T .

• To prove property 1, we argue that at phase k′, each cut (L,R) in each collection C (obtained in Algorithm 3)
is a t-s mincut for some t ∈ T ∗.

Recall that the cut (L,R) we add into C has size k′ and is an isolating cut of some sink t ∈ T ′ ⊆W . Observe
that t ∈ T ′ ⊆ T \ Γ from Algorithm 3. Combining it with Lemma A.1 and the fact that Γ only grows, we
have λG̃(t, s) ≥ k

′. Because (L,R) has size k′, (L,R) is a t-s mincut and t ∈ T ∗.

• Consider property 2. By Lemma A.1, at the end of the algorithm, Γ = T ∗. Property 2 follows the update
rule of Γ (i.e. Algorithm 3).

• Property 3 is because Theorem A.3 returns a collection of disjoint cuts.

Lastly, the width of K is bounded by the number of inner loops, which is at most O(k log3 n).
Regarding the running time, the bottleneck is calling Theorem A.3. We invoke Theorem A.3 O(k log3 n)

times, each of which takes m1+o(1) time. Hence the total running time is O(km1+o(1)).

B Omitted Proof

Proof. [Proof of Observation 5.8] Our strategy is to improve (L,R) to (L′, R′) with (L′ \R′)∩T = (L\R)∩T with
additional guarantees: (1) each connected component C of G[L′ \R′] intersects T , and (2) NG(L

′ \R′) = L′ ∩R′.
As we show next, this is indeed possible. Then for each v ∈ L′ ∩ R′ ∩ T , v ∈ NG(C) for some component C of
G[L′ \ R′]. Furthermore, because C intersects T , we have v ∈ NH(C ∩ T), which implies v ∈ NH((L′ \ R′) ∩ T)
and we are done.

We can obtain (L′, R′) with the two additional guarantees as follows. First, let Γ denote the union of all
components in G[L \R] that are disjoint from T . The cut (L1, R1) with L1 = L \ Γ and R1 = R ∪ Γ is obviously
a witness satisfying the first extra property, and we have (L1 \ R1) ∩ T = (L \ R) ∩ T . Next, consider the cut
(L2, R2) with L2 = (L1 \ R1) ∪ N(L1 \ R1) and R2 = V (G) \ (L1 \ R1). It is still a witness satisfying both the
first and second extra properties, and trivially (L2 \R2)∩T = (L1 \R1)∩T . Finally, take (L2, R2) as the desired
(L′, R′).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1492

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

C Connection to Tree Decomposition with Bounded Width

Here, we argue that unbreakable decomposition generalizes tree decomposition with bounded width to general
graphs.

By definition, a graph G has bounded treewidth if and only if there exists a tree decomposition of G with
bounded width, i.e., all bags have bounded size. So we cannot hope for this decomposition to exist in an arbitrary
graphs. In contrast, for any k ≤ q, (q, k)-unbreakable decomposition exists for every graph [CKL+20].

We will show that, on a graph with bounded treewidth, every unbreakable decomposition is precisely a tree
decomposition with bounded width. To prove this, we need the following well-known fact (see e.g. [Ree97]).

Proposition C.1. Let G be a graph with treewidth at most k. Let X be any vertex set of size s. Then, there
exists a vertex cut (L,R) of size k where |L ∩X|, |R ∩X| > s/3.

Now, we formally prove our claim.

Corollary C.1. Let G be a graph with treewidth at most k. Let (T, β) be a (q, k)-unbreakable decomposition of
G. Then, each bag of T has size |β(t)| ≤ 3q for all tree node t. That is, the width of T must be at most 3q.

Proof. Suppose for contradiction that there is a tree node t whose bag β(t) contains more than 3q vertices. By
Proposition C.1, there is a vertex cut (L,R) of size k where |L ∩ β(t)|, |R ∩ β(t)| > q. This contradicts that β(t)
is (q, k)-unbreakable.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited.1493

D
ow

nl
oa

de
d

02
/2

8/
25

 to
 2

4.
6.

55
.1

18
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Technical Overview
	Preliminaries
	Unbreakable Balanced Origins from Nets
	Reducing Adhesion of Unbreakable Sets
	Witnesses and Carvable Vertices
	Carve Terminals with Lean Witnesses
	Covering Carvable Vertices with Disjoint Witnesses
	The Algorithm for Reducing Adhesion: Proof of thm:reducingadhesion

	The Unbreakable Decomposition Algorithm
	Depth Reduction

	Application: Minimum p-Way Cut in Close-to-Linear Time
	Conclusion and Open Problems
	Single Source Vertex Mincuts
	Omitted Proof
	Connection to Tree Decomposition with Bounded Width

