
Learning-Augmented Approximation Algorithms for
Maximum Cut and Related Problems

Vincent Cohen-Addad
Google Research

France
coheaddad@google.com

Tommaso d’Orsi∗
Bocconi University

Italy
tommaso.dorsi@unibocconi.it

Anupam Gupta†
New York University
New York NY 10012
anupam.g@nyu.edu

Euiwoong Lee
University of Michigan
Ann Arbor MI 48105
euiwoong@umich.edu

Debmalya Panigrahi
Duke University

Durham NC 27708
debmalya@cs.duke.edu

Abstract
In recent years, there has been a surge of interest in the use of machine-learned
predictions to bypass worst-case lower bounds for classical problems in combina-
torial optimization. So far, the focus has mostly been on online algorithms, where
information-theoretic barriers are overcome using predictions about the unknown
future. In this paper, we consider the complementary question of using learned
information to overcome computational barriers in the form of approximation
hardness of polynomial-time algorithms for NP-hard (offline) problems. We show
that noisy predictions about the optimal solution can be used to break classical
hardness results for maximization problems such as the max-cut problem and more
generally, maximization versions of constraint satisfaction problems (CSPs).

1 Introduction

The design and analysis of algorithms beyond the classical worst-case paradigm has been an active
area of research (see, e.g., the collection of surveys by Roughgarden [2020]). In recent years, this
has been accelerated by the success and widespread adoption of machine learning models across
application domains, leading researchers to ask: can we use machine-learned information to solve
typical instances of a problem better than what we can hope for in the worst case? This meta-question
has been particularly influential in the realm of online optimization, where the goal is to design
algorithms for inputs that are revealed sequentially over time. Indeed, assuming that the future unfolds
in a typical rather than worst-case manner, we can compensate for the information deficit of the online
algorithm with predictions learned based on past data, thereby helping it bypass information-theoretic
lower bounds. This principle has been successfully applied to a broad range of online problems, such
as caching [Lykouris and Vassilvitskii, 2021], rent-or-buy [Purohit et al., 2018], covering Bamas
et al. [2020b], network design Azar et al. [2022], scheduling Azar et al. [2021], matching Dinitz et al.
[2021], and many others (see related work for more references).

In this paper, we study the role of machine-learned predictions in offline NP-hard problems. For
offline problems, an algorithm has no information disadvantage compared to an optimal solution:
the disadvantage is computational. The NP-hardness of problems makes exact algorithms that run
in polynomial time unlikely. This has led to the field of approximation algorithms, where the goal
is to obtain polynomial-time algorithms that output solutions that are approximately optimal. In
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particular, an approximation algorithm for an optimization problem has an approximation factor of
α if the solution it produces on every instance is within a factor of α of that of an optimal solution.
The best approximation factor for an NP-hard offline problem is also subject to computational
barriers. For instance, for the classical MAXCUT problem, it is known that the approximation factor
of αGW ≈ 0.878 obtained in the celebrated work of Goemans and Williamson [1995] is the best
possible under the Unique Games Conjecture (UGC). This raises a natural question: can we use
machine-learned predictions to overcome computational barriers to approximation algorithms for
NP-hard problems?

1.1 Our Contributions

Suppose we are given a noisy prediction that is mildly correlated with an optimal solution for a given
problem instance. Can we use such a prediction to recover a better approximation to the optimal
solution than is possible without any prediction? For (strongly) NP-hard problems, we typically know
barriers for the best approximation factor α that can be achieved by polynomial-time algorithms.
Using a machine-learned prediction of an optimal solution, we seek to go beyond this barrier: to
obtain a polynomial-time algorithm with an approximation factor strictly better than α. The quantum
of improvement naturally depends on the quality of the prediction: if the prediction is ε-correlated
with the target solution, can we get an α+ f(ε) approximation?

To make these questions concrete, we first consider the MAXCUT problem in the learning-augmented
setting. Given an undirected, weighted graph, the MAXCUT problem asks for a bi-partition of the
vertices such that the total weight of edges in the cut is maximized. Assuming the widely-accepted
unique games conjecture, the Goemans-Williamson approximation bound of αGW ≈ 0.878 is the best
possible for a polynomial-time algorithm. But, suppose we are given a prediction for the optimal
max-cut that is independently correct for every vertex with probability 1/2 + ε, for any ε > 0. (Note
that random guessing achieves correctness of 1/2; so, we assume that the prediction is only ε-better
than random guesses.) Can this prediction be used to obtain an approximation factor better than αGW
in polynomial time? This question was posed by Svensson in his SODA 2023 plenary lecture.

Our first result is to unconditionally improve on worst-case performance for the MAXCUT problem
using an ε-correlated prediction. This answers the question posed by Svensson in the affirmative.
Specifically, we give an algorithm that obtains an (αGW + Ω̃(ε4))-approximate MAXCUT solution.
This also quantifies the dependence between the improvement in the approximation factor and
the correlation of the prediction with the actual optimal solution. Interestingly, we also relax the
independence requirement to just pairwise independence of the predictions on the vertices. This
is significant because in practice, the predictions for the different vertices are likely to be obtained
from a machine learning model or a human expert, either of which sources are unlikely to output
completely independent predictions for different vertices.

We further complement this result by considering another natural prediction model where instead of
a noisy prediction for every vertex, we get a correct prediction but only for an ε-fraction of randomly
chosen vertices. (To distinguish between these models, we call the former noisy predictions and
the latter partial predictions.) In this case, we obtain an (αRT + Ω(ε))-approximate solution to
MAXCUT, where αRT ≃ 0.858 is the approximation factor obtained by Raghavendra and Tan for the
MAXBISECTION problem [Raghavendra and Tan, 2012]. Note that αRT is slightly smaller than αGW,
but we get a better advantage of Ω(ε) instead of Ω(ε4).

Next, we show that our algorithmic framework is applicable beyond the MAXCUT problem. Con-
straint Satisfaction Problems (CSPs) are a broad class of optimization problems that includes
fundamental optimization tasks such as MAX-k-SAT, MAX-k-LIN, MAX-k-AND, etc. In particular,
2-CSPs are a subclass of CSPs where each constraint contains only two variables. This includes
problems such as MAXCUT, MAXDICUT, and MAX-2-SAT. A classical result of Arora et al. [1999]
showed that it is possible to obtain an approximation factor arbitrarily close to 1 for “dense” instances
of all 2-CSPs including MAXCUT. We show that ε-correlated predictions of the optimal solution is a
useful tool for dense instances of all 2-CSPs. In particular, we use the prediction to lower the “density
threshold” for obtaining an arbitrarily small approximation factor for dense instances of 2-CSPs. In
other words, the assumption on the density of the instance (which is a function of the prediction bias
and the approximation error) for our result in the learning-augmented setting is weaker than that of
Arora et al. [1999], i.e., our result applies to a broader set of instances.
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1.2 Related Work

In recent years, the abundance of data and the tremendous success of machine learning has led to a
variety of attempts at going beyond traditional worst-case analysis for combinatorial optimization by
taking advantage of learned information. In clustering, Ashtiani et al. [2016] introduced a setting
where an algorithm can query an external oracle (e.g., a machine learning model) to learn if a pair
of points are in the same cluster in the optimal clustering (same-cluster queries). The goal then is
to recover an optimal solution (or a sufficiently good approximation) while minimizing the number
of oracle queries. Tight bounds have been obtained for various clustering objectives in this setting,
from k-means [Ailon et al., 2018] to correlation clustering [Mazumdar and Saha, 2017]. Moreover,
robust settings that incorporate noise in the oracle answers have also been studied Larsen et al. [2020],
Del Pia et al. [2022]. Another line of work Ergun et al. [2022], Gamlath et al. [2022] considers
k-means and related clustering problems where the algorithm is provided noisy node labels. For
instance, Gamlath et al. [2022] showed that even when the labels provided by the oracle are correct
with a tiny probability (say 1%), it is possible to obtain a (1 + o(1))-approximation to the k-means
objective as long as the clusters are not too small.

A different line of work has aimed to incorporate machine-learned predictions in the design of online
algorithms (see, e.g., the surveys Mitzenmacher and Vassilvitskii [2020, 2022]). This model was
introduced by Lykouris and Vassilvitskii for the caching problem Lykouris and Vassilvitskii [2021]
and has since been studied in many problem domains such as rent or buy Purohit et al. [2018],
Gollapudi and Panigrahi [2019], Anand et al. [2020], covering Bamas et al. [2020b], Anand et al.
[2022], Gupta et al. [2022], scheduling Purohit et al. [2018], Wei and Zhang [2020], Bamas et al.
[2020a], Lattanzi et al. [2020], Mitzenmacher [2020], Azar et al. [2021], Cohen and Panigrahi [2023],
Lindermayr et al. [2023], Lassota et al. [2023], caching Lykouris and Vassilvitskii [2021], Wei [2020],
Jiang et al. [2022b], Bansal et al. [2022], matching Dinitz et al. [2021], Lavastida et al. [2021],
secretary problems Antoniadis et al. [2020b], Dütting et al. [2021], graph problems Antoniadis et al.
[2020a], Jiang et al. [2022a], Almanza et al. [2021], Antoniadis et al. [2023], Bernardini et al. [2022],
Anand et al. [2022], Fotakis et al. [2021], Azar et al. [2022], and many others. (The reader is referred
to ALP [2023] for a compendium of papers in this area.) The main goal in this line of work is to
overcome information-theoretic lower bounds for online problems using machine-learned predictions
about the unknown future.

Two recent works (concurrent and independent of ours) have considered the computational complexity
of MAXCUT and CSPs in the context of noisy predictions. The first of these is Bampis et al. [2024],
who tackle the problem of speeding up approximation schemes for dense CSP instances using noisy
predictions. Namely, they provide an algorithm that achieves a (1− ε) approximation whose running
time depends on the density of the instance and the error in the prediction. The algorithm runs in
polynomial time if the number of edges in the instance is Ω(n2/ log n), assuming the prediction label
of each vertex is correct with constant probability. The second work is by Ghoshal et al. [2024], who
consider both the partial and the noisy predictions models under full independence of the predictions.
They provide a (1−O((ε

√
∆)−1))-approximation for both models, where ∆ is the average degree of

the graph. Alternatively, they show that if the edges are weighted, the value of the solution computed
is at least opt−

√
n
∑

ij w
2
ijε

−1.

2 Preliminaries

The MAXCUT Problem. We start by describing the MAXCUT problem. In this problem, we are
given a weighted graph G = (V,E) represented by a (symmetric) n× n adjacency matrix A, where
Aij = wij , the weight of edge {i, j} if it exists, and 0 otherwise. (We assume the graph has no
self-loops, and hence A has zeroes on the diagonal.) We let Wi =

∑
j wij denote the weighted degree

of vertex i. We use D := diag(W1, . . . ,Wn) to denote the diagonal matrix with these weighted
degrees, and L = D − A to denote the (unnormalized) Laplacian matrix of the graph. Note that
x ∈ {−1, 1}n denotes a cut in the graph, and the quadratic form ⟨x, Lx⟩ =

∑
{i,j}∈E wij(xi − xj)

2

counts (four times) the weight of edges crossing the cut between the vertices labeled 1, and those
labeled −1.

3



The MAXCUT problem asks for the cut with maximum edge weight. Hence, MAXCUT can be
rephrased as follows:

MAXCUT(G) := max
x∈{−1,1}n

1/4 · ⟨x, Lx⟩.

We defer the formal definition of CSPs to Section 5.

The Noisy/Partial Predictions Framework. We describe the prediction models for the MAXCUT
problem. We extend the noisy predictions model to general Max-2-CSPs in Section 5.

1. In the noisy predictions model for MAXCUT, we assume there is some fixed and un-
known optimal solution x∗ ∈ {−1, 1}n. The algorithm has access to a prediction
vector Y ∈ {−1, 1}n, such that for each vertex i, Yi is the correct label x∗

i with
some (unknown) probability 1/2 + ε, and is the other (incorrect) label with probabil-
ity 1/2 − ε. Here we only assume pairwise independence; for any two vertices i and j,
Pr[i, j both give their correct labels] = (1/2 + ε)2.

2. In the partial predictions model for MAXCUT, the algorithm has access to a prediction
vector Y ∈ {−1, 0, 1}n such that for each vertex i, Yi is the correct label x∗

i with some
(unknown) probability ε and is 0 otherwise. Again, we only assume pairwise independence;
for any two vertices i and j, Pr[i, j both give their correct labels] = ε2.

3 MAXCUT in the Noisy Prediction Model

Recall that in the noisy prediction model, the predicted label of each vertex is its correct label in
a fixed max-cut with probability 1/2 + ε. Moreover, the labels are pairwise independent. One can
show that in this model, if one were to simply output the prediction itself, then its value would be
at least O(m/2 + ε2(opt −m/2)) for an unweighted graphs with m edges. But, this is generally
worse than the αGW · opt ≈ 0.878 · opt bound obtained by the Goemans-Williamson MAXCUT
algorithm. Our main result is to give an algorithm that uses a noisy prediction to outperform αGW in
the approximation bound by an additive poly(ε) factor:

Theorem 3.1 (Noisy Predictions). Given noisy predictions with a bias of ε, there is a polynomial-time
randomized algorithm that obtains an approximation factor of αGW + Ω̃(ε4) in expectation for the
MAXCUT problem.

The rest of this section is devoted to proving the above theorem. A basic distinction that we will
use throughout this section is that of ∆-wide and ∆-narrow graphs; these should be thought of as
weighted analogs of high-degree and low-degree graphs. We first define these and related concepts
below, then we present an algorithm for the MAXCUT problem on ∆-wide graphs in §3.1, followed
by the result for ∆-narrow graphs in §3.2. We finally wrap up with the proof of Theorem 3.1.

We partition the edges incident to vertex i into two sets: the ∆-prefix for i comprises the ∆ heaviest
edges incident to i (breaking ties arbitrarily), while the remaining edges make up the ∆-suffix for
i. We fix a parameter η ∈ (0, 1/2). We will eventually set ∆ = Θ(1/ε2) and η to be an absolute
constant. Recall that Wi =

∑
j∈[n] Aij is the weighted degree of i.

Definition 3.2 (∆-Narrow/Wide Vertex). A vertex i is ∆-wide if the total weight of edges in its
∆-prefix is at most ηWi, and so the weight of edges in its ∆-suffix is at least (1− η)Wi. Otherwise,
the vertex i is ∆-narrow.

Intuitively, a ∆-wide vertex is one where most of its weighted degree is preserved even if we ignore
the ∆ heaviest edges incident to the vertex.

We partition the vertices V = [n] into the ∆-wide and ∆-narrow sets; these are respectively denoted
V>∆ and V<∆. We define W>∆ :=

∑
i∈V>∆

Wi and W<∆ :=
∑

i∈V<∆
Wi, and hence the sum of

weighted degrees of all vertices is W :=
∑n

i=1 Wi = W>∆ +W<∆.

Definition 3.3 (∆-Narrow/Wide Graph). A graph is ∆-wide if the sum of weighted degrees of ∆-wide
vertices accounts for at least 1−η fraction of that of all vertices; i.e., if W>∆ ≥ (1−η)W . Otherwise,
it is ∆-narrow.
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3.1 Solving MAXCUT for ∆-wide graphs

For ∆-wide graphs, we show:

Theorem 3.4. Fix ε′ ∈ (0, 1). Given noisy predictions with bias ε, there is a polynomial-time
randomized algorithm that, given any ∆-wide graph, outputs a cut of value at least the maximum cut
minus (5η + 2ε′)W , where ∆ := O(1/(ε · ε′)2), with probability 0.98.

Since the graph is ∆-wide, most vertices have their weight spread over a large number of their
neighbors. In this case, the prediction vector allows us to obtain a good estimate r̂ of the optimal
neighborhood imbalance r∗ (the difference between the number of neighbors a vertex has on its
side versus the other side of the optimal cut). We can then write an LP to assign fractional labels to
vertices that maximize the cut value while remaining faithful to these estimates r̂; finally rounding
the LP gives the solution.

3.1.1 The ∆-wide Algorithm

Define an n× n matrix Ã from the adjacency matrix A as follows: for each row corresponding to the
edges incident to a vertex i, we set the entry Ãij = 0 if the edge (i, j) is in the ∆-prefix of vertex i;
otherwise, Ãij = Aij . Now, define an n-dimensional vector r̂ as follows:

r̂i =

{
1
2ε (ÃY )i if i is ∆-wide
0 if i is ∆-narrow

where Y is the prediction vector. Solve the linear program:

min
x∈[−1,1]n

⟨r̂, x⟩ s.t. ∥r̂ −Ax∥1 ≤ (ε′ + 2η)W. (1)

Let x̂ ∈ [−1, 1]n be the optimal LP solution.

Finally, do the following O(1/η) times independently, and output the best cut X∗ among them:
randomly round the fractional solution x̂ independently for each vertex to get a cut X ∈ {−1, 1}n;
namely, Pr[Xi = 1] = (1+x̂i)/2 and Pr[Xi = −1] = (1−x̂i)/2.

3.1.2 The Analysis

For a labeling x ∈ {−1, 1}n, the neighborhood imbalance for vertex i is defined as
∑

j Aijxj =

(Ax)i. This denotes the (signed) difference between the total weight of edges incident to i that
appear and do not appear in the cut defined by the labeling x. The maximality of the optimal cut
x∗ ∈ {−1, 1}n ensures that x∗

i · sign((Ax∗)i) ≤ 0 for all i; else, switching xi from 1 to −1 or
vice-versa increases the objective. Define r∗ := Ax∗ as the vector of imbalances for the optimal cut.

Lemma 3.5. The vector r̂ satisfies

E [∥r̂ − r∗∥1] := E

[
n∑

i=1

|r̂i − r∗i |

]
≤ O

(
W

ε
√
∆

)
+ 2ηW.

Proof. Observe that

E[Yi] = x∗
i · Pr[Yi = x∗

i ]− x∗
i · Pr[Yi = −x∗

i ] = x∗
i (1/2 + ε)− x∗

i (1/2 − ε) = 2εx∗
i .

Define Z := 1
2εY . Then, E[Z] = x∗, and so E[AZ] = r∗.

First, we consider a ∆-narrow vertex i. Since r̂i = 0, we have |r̂i − r∗i | = |r∗i | ≤ Wi. So summing
over all ∆-narrow vertices gives ∑

i∈V<∆

|r̂i − r∗i | ≤
∑

i∈V<∆

Wi ≤ ηW, (2)

since the graph is ∆-wide.

Now, we consider a ∆-wide vertex i. We have

|r̂i − r∗i | = |(ÃZ)i − r∗i | ≤ |E[(ÃZ)i]− r∗i |+ |(ÃZ)i − E[(ÃZ)i]|. (3)
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To bound the first term in the RHS of (3), recall that r∗i = E[(AZ)i]. Thus,

|E[(ÃZ)i]− r∗i | = |E[(ÃZ)i]− E[(AZ)i]| = ⟨(Ã−A)i,E[Z]⟩.

Since E[Z] = x∗ ∈ {−1, 1}n, we get

|E[(ÃZ)i]− r∗i | = (Ã−A)i · x∗ ≤ ∥(Ã−A)i∥1∥x∗∥∞ ≤ ηWi,

where in the last step, we used the fact that i is a ∆-wide vertex.

Now, we bound the second term in the RHS of (3). Using Chebyshev’s inequality on the sum
(ÃZ)i =

∑
j ÃijZj , we get

Pr[|(ÃZ)i − E[(ÃZ)i]| ≥ λi] ≤
var((ÃZ)i)

λ2
i

.

Since the variables Zj are pairwise independent, the variance var((ÃZ)i) =
∑

j Ã
2
ijvar(Zj). The

variance of each Zj is O(1/ε2). For
∑

j Ã
2
ij , we know∑

j∈[n]

Ã2
ij = ∥Ãi∥22 ≤ ∥Ãi∥1 · ∥Ãi∥∞.

Note that the weight of any edge in the ∆-suffix of i is at most Wi/∆. Therefore, by our definition of
Ã, we have ∥Ãi∥∞ ≤ Wi/∆. Since Ãij ≤ Aij for all j ∈ [n], we also have ∥Ãi∥1 ≤ ∥Ai∥1 = Wi.
Applying these bounds, we get:

∑
j∈[n] Ã

2
ij ≤ W 2

i /∆. Therefore,

E[|(ÃZ)i − E[(ÃZ)i]|] ≤
√

var((ÃZ)i) ≤ O(Wi/(ε
√
∆)).

Summing over all ∆-wide vertices, we get

E
[ ∑
i∈V>∆

|r̂i − r∗i |
]
≤ O

(
W>∆

ε
√
∆

)
+ ηW>∆ ≤ O

(
W

ε
√
∆

)
+ ηW.

Combining with (2) for ∆-narrow vertices, we get

E [∥r̂i − r∗i ∥1] ≤ O

(
W

ε
√
∆

)
+ 2ηW.

Now using Markov’s inequality with Lemma 3.5, we get that setting ∆ = Ω(1/(εε′)2) for any fixed
constant ε′ > 0 ensures that we get a vector of empirical imbalances r̂ satisfying

∥r̂ − r∗∥1 ≤ (ε′ + 2η)W. (4)

with probability at least 0.99. (Since the 2ηW losses are deterministically bounded, we can use
Markov’s inequality only on the random variable

∑
i∈V>∆

|(ÃZ)i − E[(ÃZ)i]|.) Hence, when the
event in (4) happens, the vector x∗ is a feasible solution to LP (1).

Next, we need to analyze the quality of the cut produced by randomly rounding the solution of LP (1).
Recall that for the (unnormalized) Laplacian L and some x ∈ {−1, 1}n, the cut value is

f(x) := 1/4 · ⟨x, Lx⟩ = 1/4 · (⟨x,Dx⟩ − ⟨x,Ax⟩) = 1/4 · (W − ⟨x,Ax⟩). (5)

Lemma 3.6. For any ∆-wide graph, the algorithm from §3.1.1 outputs X∗ ∈ {−1, 1}n that satisfies

f(X∗) ≥ f(x∗)− (2ε′ + 5η)W

with probability at least 0.98.

Proof. Recall that the cut X∗ is the best among T := O(1/η) independent roundings of cut x̂.
Consider one of the roundings X , and write:

⟨X,AX⟩ = ⟨x̂, r̂⟩+ (⟨x̂, Ax̂⟩ − ⟨x̂, r̂⟩) + (⟨X,AX⟩ − ⟨x̂, Ax̂⟩). (6)

Let us first bound the expectation of each of the terms in the RHS of (6) separately.
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To bound the first term ⟨x̂, r̂⟩, note that given (4) (which happens with probability 0.99), the solution
x∗ is feasible for the LP in (1). This means the optimal solution x̂ has objective function value

⟨r̂, x̂⟩ ≤ ⟨r̂, x∗⟩ = ⟨r∗, x∗⟩+ ⟨r̂ − r∗, x∗⟩ ≤ ⟨x∗, Ax∗⟩+ ∥r̂ − r∗∥1∥x∗∥∞
≤ ⟨x∗, Ax∗⟩+ (ε′ + 2η)W. (7)

Next, we bound the second term (⟨x̂, Ax̂⟩ − ⟨x̂, r̂⟩) by

∥x̂∥∞∥Ax̂− r̂∥1 ≤ (ε′ + 2η)W, (8)

by feasibility of x̂ for the LP in (1). Finally, we bound the third term (⟨X,AX⟩ − ⟨x̂, Ax̂⟩), this time
in expectation:

E[⟨X,AX⟩]− ⟨x̂, Ax̂⟩ = 0. (9)

Chaining eqs. (7) to (9) for the various parts of (6), we get

E[⟨X,AX⟩] ≤ ⟨x∗, Ax∗⟩+ (2ε′ + 4η)W.

Moreover, using that ⟨X,AX⟩ ∈ [−W,W ], we get

Pr
[
⟨X,AX⟩ ≥ E[⟨X,AX⟩] + ηW

]
= Pr

[
⟨X,AX⟩+W ≥ E[⟨X,AX⟩] + (1 + η)W

]
≤ Pr

[
⟨X,AX⟩+W ≥ (1 + η/2)

(
E[⟨X,AX⟩] +W

])
≤ 1/(1+η/2).

If X∗ is the cut with the smallest value of ⟨X,AX⟩ among all the independent roundings:

Pr
[
⟨X∗, AX∗⟩ ≤ ⟨x∗, Ax∗⟩+ (2ε′ + 5η)W

]
≥ 1− (1/(1+η/2))T ≥ 0.99.

Substituting into the definition of f(·) completes the proof.

This proves Lemma 3.6, and hence also Theorem 3.4.

Deterministic Rounding. We observe that we can replace the repetition by a simple pipeage rounding
algorithm to round the fractional solution x̂ to an integer solution X∗ without suffering any additional
loss. Indeed, viewing ⟨x,Ax⟩ as a function of some xi keeping the remaining {x1, . . . , xn} \ {xi}
fixed gives us a linear function of xi (since the diagonals of A are zero). Hence we can increase or
decrease the value of xi to decrease ⟨x,Ax⟩ until xi ∈ {−1, 1}. Iterating over the variables gives the
result. However, this does not change the result qualitatively.

3.2 Solving MAXCUT for ∆-narrow graphs

Next, we consider ∆-narrow graphs. We show:
Theorem 3.7. For any ∆ ∈ N, there is a randomized algorithm for the MAXCUT problem with an
(expected) approximation factor of αGW + Ω̃(η5/∆2) on any ∆-narrow graph.

For the case of ∆-narrow graphs, we do not use predictions; rather, we adapt an existing algorithm
for the MAXCUT problem for low-degree graphs by Feige et al. [2002] and its refinement due to
Hsieh and Kothari [2022]. Note that any graph with maximum degree ∆ is clearly ∆-narrow (even
when η = 1).

3.2.1 The ∆-narrow Algorithm

We show that Theorem 3.7 holds for the Feige, Karpinski, and Langberg (FKL) MAXCUT algo-
rithm [Feige et al., 2002]. We briefly recall this algorithm first. Consider the MAXCUT SDP with
triangle inequalities:

max
vi∈Sn ∀i∈[n]

∑
i<j∈[n]

Ai,j ·
(
1− ⟨vi, vj⟩

2

)
s.t. ∥avi − bvj∥22 + ∥bvj − cvk∥22 ≥ ∥avi − cvk∥22 ∀i, j, k ∈ [n], a, b, c ∈ {−1, 1}.

where Sn is the unit sphere of n dimensions. Let v̂ be an optimal solution to this SDP.
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Let g be a random vector where each coordinate is sampled independently from a standard normal
distribution. We use random hyperplane rounding from the MAXCUT algorithm of Goemans and
Williamson [1995] to round v̂ to x̂ ∈ {−1, 1}n as follows: if ⟨v̂i, g⟩ > 0, then x̂i = 1; else, x̂i = −1.

Now, define F = {i ∈ [n] : ⟨v̂i, g⟩ ∈ [−δ, δ]} for some δ = Θ(1/((∆/η)
√
log(∆/η))). We

partition Ni := [n]\{i} as follows: Bi := {j ∈ Ni\F : x̂j = x̂i}, and Ci := {j ∈ Ni\F : x̂j ̸= x̂i}
and Di := Ni ∩ F . We define F ′ ⊆ F as follows: i ∈ F ′ if i ∈ F and w(Bi) > w(Ci) + w(Di)
where w(S) :=

∑
j∈S Aij . In the final output X ∈ {−1, 1}n, we flip the vertices in F ′, namely

Xi = −x̂i if i ∈ F ′, else Xi = x̂i.

We now give an analysis for the FKL algorithm establishing Theorem 3.7.

The “local gain” for a vertex i ∈ F is defined as ∆i := (|Bi| − (|Di| + |Ci|))+, where z+ =
max(z, 0). We now state the following key lemmas:
Lemma 3.8. For any vertex i ∈ [n], Pr[i ∈ F ] = Ω(δ).

Proof. This lemma immediately follows from [Hsieh and Kothari, 2022, Fact 3].

Let i be a ∆-narrow vertex, and w ∈ Rn be its weight vector (wi = Aij for all j ∈ [n]) so that
Wi = ∥wi∥1. Let w′ ∈ Rn be the projection of w onto its top ∆ coordinates. The narrowness of i
implies that ∥w′∥1 ≥ η∥w∥1, which implies that

∥w∥22 ≥ ∥w′∥22 ≥ ∥w′∥21
∆

≥ η2∥w∥21
∆

.

It turns out that the analysis of Hsieh and Kothari [2022] still holds under the above bound between
ℓ1 and ℓ2 norms of weight vectors. So we have the following slight generalization of their Lemma 8.
Lemma 3.9 (extends Lemma 8 of Hsieh and Kothari [2022]). There is a large enough constant
C such that for any d ≥ 3 and δ = 1

Cd
√
log d

, for any vertex i whose weight vector w satisfies
∥w∥21 ≤ d∥w∥22, it holds that the expected local gain of a vertex i satisfies:

E[∆i|i ∈ F ] = Ω

(
Wi

d
√
log d

)
.

Proof. In Hsieh and Kothari [2022], the only place where the degree bound d is used is ∥w∥21 ≤
d∥w∥22 at the end of the proof of Lemma 7.

Proof of Theorem 3.7. Note that the value of the cut X exceeds that of x̂ by
∑

i∈F ′ ∆i, i.e.,

E[⟨X,LX⟩] = E[⟨x̂, Lx̂⟩] +
∑
i∈[n]

E[∆i|i ∈ F ] · Pr[i ∈ F ]

≥ E[⟨x̂, Lx̂⟩] +
∑

i:∆-narrow
E[∆i|i ∈ F ] · Pr[i ∈ F ].

Let the approximation factor of the cut x̂ output by the Goemans-Williamson algorithm be denoted
αGW and let opt be the size of the maximum cut. Then,

E[⟨x̂, Lx̂⟩] ≥ αGW · opt.
From Lemmas 3.8 and 3.9 with d = ∆/η2, we get

E[⟨X,LX⟩] ≥ αGW · opt + Ω

(
1

(∆/η2)
√

log(∆/η2)
·

∑
i:∆-narrow

Wi

(∆/η2)
√
log(∆/η2)

)
.

Since
∑

i:∆-narrow Wi ≥ ηW ≥ 2η · opt, we get

E[⟨X,LX⟩] ≥ (αGW + Ω̃(η5/∆2)) · opt.

3.3 Wrapping up: Proof of Theorem 3.1

For ∆-wide graphs, Theorem 3.4 returns a cut with value at least opt− (2η + ε′)W with probability
0.98. Since we can always find a cut of value αGW · opt, and opt ≥ W/2, this means the expected
cut value is at least

[
0.98 · (1− 6η− 2ε′) + 0.02 ·αGW

]
opt. And for ∆-narrow graphs, Theorem 3.7

finds a cut with expected value
[
αGW + Ω̃(η5/∆2)

]
· opt. Moreover, recall that ∆ = O(1/(εε′)2).

Setting η, ε′ to be suitably small universal constants gives us that both the above approximation
factors are at least αGW + Ω̃(ε4), which proves Theorem 3.1.
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4 MaxCut in the Partial Prediction Model

We now consider the partial prediction model, where each vertex pairwise-independently reveals their
correct label with probability ε. Intuitively, this prediction model provides more information than the
noisy prediction model since all predictions are guaranteed to be correct. Indeed, this is reflected
in out first bound: we show that since an ε2 fraction of the edges are induced by the vertices with
the given labels, it is easy to get an approximation ratio of almost αGW +Ω(ε2). (We give details in
Appendix A.)
Theorem 4.1. Given noisy predictions with a rate of ε, there is a polynomial-time randomized
algorithm that obtains an (expected) approximation factor of αGW + ε2 for the MAXCUT problem

Although the Ω(ε2) advantage in this theorem is already better than Ω̃(ε4) in Theorem 3.1, we ask if
can we do even better given the more informative predictions. Ideally, we could get an Ω(ε)-advantage
if the hyperplane rounding performs better than αGW for the edges with only one endpoint’s label
revealed. One naive way to achieve this is to hope that the rounding preserves the marginals; i.e.,
E[xi] = ⟨v0, vi⟩ for all i ∈ [n]. In that case, if we consider (i, j) where if vi = ±v0, the probability
that (i, j) is cut is exactly their contribution to the SDP (1− ⟨vi, vj⟩).
Since the hyperplane rounding does not satisfy this property, we use the rounding scheme developed
by Raghavendra and Tan [2012] for max-bisection that has an approximation ratio αRT ≈ 0.858
while preserving the marginals. The proof of this theorem is deferred to Appendix A.
Theorem 4.2 (Partial Predictions). Given partial predictions with a rate of ε, there is a polynomial-
time randomized algorithm that obtains an (expected) approximation factor of αRT + (1 − αRT −
o(1))(2ε− ε2) for the MAXCUT problem.

5 2-CSPs in the Noisy Prediction Model

In this section, we go beyond the MAXCUT problem and consider general 2-CSPs. In particular, we
extend Theorem 3.4 to this broader class of problems. Let us first define Max-2-CSPs (Constraint
Satisfaction Problems). Each constraint is a predicate on two variables: e.g., AND, OR, Not-Equals,
or Xor. We are given a collection of such constraints (each on two variables), and the goal is to
find an binary assignment to the variables that satisfy the maximum number of constraints. (E.g.,
if the predicate is Not-Equals, and constraints form the edges of some graph, we get the MAXCUT
problem.)

Formally, for a multi-index α ∈ [n]2 we denote by α(i) its i-th index and by xα the pair (xα(1), xα(2)).
For variables x1, . . . , xn , we then write χα(x) for the monomial

∏
i∈α xi . Given a predicate P :

{−1,+1}2 → {0, 1} , an instance I of the CSP(P) problem over variables x1, . . . , xn is a multi-set
of triplets (w, c, α) representing constraints of the form P (c1xα(1), c2xα(2)) = 1 where α ∈ [n]2 is
the scope, c ∈ {±1}2 is the negation pattern and w ≥ 0 is the weight of the constraint. For brevity we
often write P (c◦xα) in place of P (c1xα(1), c2xα(2)). We let W =

∑
(w,c,α)∈I w . We can represent

the predicate P as the multilinear polynomial of degree 2 in indeterminates xα(1), xα(2) ,

P (c ◦ xα) =
∑
α′⊆α

cα
′
· p̂(α′) · χα′(x) ,

where p̂(α′) is the coefficient in P of the monomial χα′(x) . Notice that this formulation does not
rule out predicates with the same multi-index but different negation patterns or multi-indices in which
an index appears multiple times. Given a predicate P , an instance I of CSP(P) with m constraints
and x ∈ {±1}n, we define

valI(x) :=
1

W

∑
(w,c,α)∈I

w · P (c ◦ xα) and optI := max
x∈{±1}n

valI(x) .

For instance, MAXCUT on a graph G = ([n], E) can be captured in this framework where P (x, y) =
(1− xy)/2, each edge (i, j) ∈ [n]2 yields a triplet (w, c, α) where w = 1, c = (1, 1) and α = (i, j).

In the noisy prediction model for CSPs, for an instance I of CSP(P), we assume there is some
fixed assigment x∗ with value valI(x∗) = optI . The algorithm has access to a prediction vector
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Y ∈ {±1}n such that predictions yi’s are 2-wise independently correct with probability 1+ε
2 for

unknown bias ε . We let Z = Y
2ε . With a slight abuse of notation we also write P (c ◦ Zα) even

though Z is a rescaled boolean vector.

For a literal i ∈ [n] and an instance I of CSP(P) we let Si := {(w, c, α) ∈ I |α(1) = i} . As
in Section 3.1.1, we can define ∆-wide literals and instances. For an instance I , we partition the
constraints in Si into two sets: the ∆-prefix for i comprises the ∆ heaviest constraints in Si (breaking
ties arbitrarily), while the remaining constraints make up the ∆-suffix for i, which we denote by S̃i.
We fix a parameter η ∈ (0, 1/2). We let Wi =

∑
(w,c,α)∈Si

wi .

Definition 5.1 (∆-Narrow/Wide). A literal i is ∆-wide if the total weight of its in its ∆-prefix is at
most ηWi, and so the weight of edges in its ∆-suffix is at least (1− η)Wi. Otherwise, the literal i is
∆-narrow. An instance I of CSP(P) is ∆-wide if

∑
i∈[n]
∆-wide

Wi ≥ (1− η)W .

We are now ready to state the main theorem of the section.
Theorem 5.2. Let P : {±1}2 → {0, 1} be a predicate. Let ε′ ∈ (0, 1) , η ∈ (0, 1/2) and
∆ ≥ O(1/(ε′ · ε)2). There exists a polynomial-time randomized algorithm that, given a ∆-wide I in
CSP(P) and noisy predictions with bias ε, returns a vector x̂ ∈ {±1}n satisfying

valI(x) ≥ optI − 5η −O (ε′) ,

with probability at least 0.98 .

The proof of Theorem 5.2 follows closely that of Theorem 3.4, and is deferred to Appendix B.2.

6 Closing Remarks

Our work suggests many directions for future research. One immediate question is to quantitatively
improve the exponent of ε for noisy predictions, and the constants. Here are some broader questions:

1. We assume that our noisy predictions are correct with probability equal to 1/2 + ε; we
can easily extend to the case where each node has a prediction that is correct with some
probability 1/2 + εi, and each εi ∈ Θ(ε). Can we extend to the case when we are only
guaranteed εi ≥ ε for every i?

2. For which other problems can we improve the performance of the state-of-the-art algorithms
using noisy predictions? As we showed, the ideas used for the ∆-wide case extend to more
general maximization problems on 2-CSPs with “high degree”, but can we extend the results
for the “low-degree” case where each variable does not have a high-enough degree to infer a
clear signal? Can we extend these to minimization versions of 2-CSPs?

3. What general lower bounds can we give for our prediction models? We feel that αGW +O(ε)
is a natural barrier. One “evidence” we have is the following integrality gap for the SDP used
in the partial information model; starting from a gap instance and an SDP solution exhibiting
opt ≤ αGW · sdp for the standard SDP (without incorporating revealed information), given
labels for an εn vertices, our new SDP simply fixes the positions of the corresponding εn
vectors, but doing that from the given SDP solution decreases the SDP value by at most O(ε)
in expectation, which still yields opt ≤ (αGW +O(ε))sdp. (Note that you can replace the
SDP gap with any hypothetical gap instance for stronger relaxations.)
Given that the partial predictions model is easier than the noisy predictions model and our
entire algorithm for the partial model is based on this SDP, this might be considered as a
convincing lower bound, but it would be nicer to have more general lower bounds against
all polynomial-time algorithms.

4. Our models only assume pairwise independence between vertices: can we extend our results
to other ways of modeling correlations between the predictions? In addition to stochastic
predictions, can we incorporate geometric predictions (e.g., in random graph models where
the probability of edges depend on the proximity of the nodes)?
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Appendix

A Missing proofs for MAXCUT in the partial prediction model

Proof of Theorem 4.1. Given a graph G = (V,E) with the optimal cut (A∗, B∗) that cuts E∗ =
E ∩ E(A∗, B∗), let S be the set of vertices whose label is given, and let A = A∗ ∪ S, B = B∗ ∪ S.
Consider the following MAXCUT SDP that fixes the vertices with the revealed labels.

max
vi∈Sn ∀i∈[n]

∑
i,j∈[n]

Ai,j(1− ⟨vi, vj)⟩
2

s.t. vi = v0 ∀i ∈ A and vi = −v0 ∀i ∈ B.

Note that this is still a valid relaxation so the optimal SDP value sdp is at least opt. For each edge
e ∈ E∗, e ∈ E(A,B) with probability ε2; in other words, both of its endpoints will reveal their
labels. Let τ denotes the total weight of such edges, so that E[τ ] = ε2opt. Note that sdp ≥ opt for
every partial prediction.

Perform the standard hyperplane rounding. For each e ∈ E∗ ∩ E(A,B), the rounding will always
cut e. For all other edges, we have an approximation ratio of αGW. Therefore, the expected weight of
the cut edges is at least

E[τW + αGW(sdp− τW )] ≥ ε2opt + αGW(1− ε2)opt = (αGW + (1− αGW)ε2) · opt.
Proof of Theorem 4.2. Given a graph G = (V,E) with the optimal cut (A∗, B∗) that cuts E∗ =
E ∩ E(A∗, B∗), let S be the set of vertices whose label is given, and let A = A∗ ∪ S, B = B∗ ∪ S.
Let E′ be the set of the edges that are incident on A or B. Each edge cut in the optimal solution
will be in E′ with probability 2ε − ε2. Let τ be the total weight of the edges in E∗ ∩ E′ so that
E[τ ] = (2ε− ε2)opt. Guess the value of τ (up to a o(1) multiplicative error that we will ignore in
the proof), and consider the following MAXCUT SDP that fixes the vertices with the revealed labels
and requires a large SDP contribution from E′.

max
vi∈Sn ∀i∈[n]

∑
i,j∈[n]

Ai,j(1− ⟨vi, vj)⟩
2

s.t. vi = v0 ∀i ∈ A

vi = −v0 ∀i ∈ B∑
(i,j)∈E′

Ai,j(1− ⟨vi, vj)⟩
2

≥ τ.

Given the correctly guessed value of τ , the optimal solution is still feasible for the above SDP, so
sdp ≥ opt. We use Raghavendra and Tan [2012]’s rounding algorithm, which is briefly recalled
below.

• For each i ∈ [n], define µi ∈ [−1,+1] and wi ∈ Rn such that vi = µiv0 +wi and wi ⊥ v0.
Let wi = wi/∥wi∥. (wi = 0 if and only if vi = ±v0. Then define wi = 0.)

• Pick a random Gaussian vector g orthogonal to v0. Let ξi := ⟨g, wi⟩. Note that each ξi is a
standard Gaussian.

• Let the threshold ti := Φ−1(µi/2 + 1/2) where Φ is the CDF of a standard Gaussian.

• If ξi ≤ ti, set xi = 1 and otherwise set xi = −1.

Raghavendra and Tan showed that this rounding achieves an (αRT ≈ 0.858)-approximation for every
edge.

Consider an edge (i, j) ∈ E′ and without loss of generality, assume i ∈ B, which implies that
vi = −v0. The contribution of this edge to the SDP objective is µj/2 + 1/2. Note that Pr[xj = 1] is
exactly µj/2+ 1/2 and E[xj ] = (µj/2+ 1/2)− (1/2− µj/2) = µj . So, we get a 1-approximation
from this edge. Since other edges still have an αRT-approximation, the total expected weight of the
edges cut is at least

E[τ +αRT(sdp−τ)] ≥ (2ε−ε2)opt+αRT(1− (2ε−ε2))opt = αRT ·opt+(1−αRT)(2ε−ε2)opt.

Hence the proof of Theorem 4.2.

15



B Missing details for 2-CSPs

The goal of this section is to establish Theorem 5.2 for dense instances of 2-CSPs.

B.1 The 2-CSP Algorithm for Dense Instances

First observe that we may assume without loss of generality that each (w, c, α) appears exactly twice
in I . This is convenient so that for all x ∈ {±1}n , valI(x) =

∑
i∈[n]

∑
(w,c,α)∈Si

w · P (c ◦ xα) .

With a slight abuse of notation, for all (w, c, α) ∈ Si , we let

P (c ◦ (xi · Zα\i)) :=
∑

α′⊆α s.t.
α′(1)=i

p̂α′cα
′
xi · χα′\α′(1)(Z) +

∑
α′⊆α s.t.
α′(1) ̸=i

p̂α′cα
′
χα′(Z) ,

and

P (c ◦ xα\i) :=
∑

α′⊆α s.t.
α′(1)=i

p̂α′cα
′
χα′\α′(1)(x) +

∑
α′⊆α s.t.
α′(1) ̸=i

p̂α′cα
′
χα′(x) ,

We further define S̃i ⊆ Si to be subset of constraints in Si that are not part of the ∆-prefix of i .

We can now state the algorithm behind Theorem 5.2, which amounts to the following two steps.

1. Solve the linear program

max
x∈[−1,+1]n

∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦ (xi · Zα\i))

subject to

∑
i∈[n]

∆-narrow

∣∣∣∣∣∣
∑

(w,c,α)∈Si

wP (c ◦ xα\i)

∣∣∣∣∣∣+
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈Si\S̃i

wP (c ◦ xα\i)

∣∣∣∣∣∣
+
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈S̃i

w
(
P (c ◦ xα\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣ ≤ C(ε′ + 2η)W (10)

for some large enough absolute constant C > 0 . Let x̂ ∈ [−1,+1]n be the found optimal
solution.

2. Repeat O(1/η) times independently and output the best assignment X∗ : independently for
each i ∈ [n] set Xi = 1 with probability (1 + x̂i)/2 and Xi = −1 otherwise.

The LP above generalize the one in eq. (1), which comes as a special case where p̂α′ = 0 for all
α′ ⊂ α ∈ [n]2 . Indeed, since predicates contain only two literals, the program is linear.

B.2 The Analysis of the 2-CSP Algorithm

We obtain here the proof of Theorem 5.2.

Feasibility of the best assignment As in Lemma 3.5, we first prove that, in expectation over the
prediction Y , x∗ is a feasible solution to the program.
Lemma B.1. Consider the settings of Theorem 5.2. Then

E
∑
i∈[n]

∆-narrow

∣∣∣∣∣∣
∑

(w,c,α)∈Si

wP (c ◦ x∗α\i)

∣∣∣∣∣∣+
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈Si\S̃i

wP (c ◦ x∗α\i)

∣∣∣∣∣∣
+
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈S̃i

w
(
P (c ◦ x∗α\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣ ≤ W (2η +O(1/ε
√
∆)) .
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Proof. First, by definition of ∆-wide instance,

∑
i∈[n]

∆-narrow

∣∣∣∣∣∣
∑

(w,c,α)∈Si

wP (c ◦ x∗α\i)

∣∣∣∣∣∣ ≤ ηW .

Second, by definition for any ∆-wide vertex i,∣∣∣∣∣∣
∑

(w,c,α)∈Si\S̃i

wP (c ◦ x∗α\i)

∣∣∣∣∣∣ ≤ ηWi .

Hence it remains to show

E
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈S̃i

w
(
P (c ◦ x∗α\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣ ≤ O(W/(ε
√
∆) .

Now, recall that E[Yi] = 2εx∗
i and thus E[Z] = x∗. So for any (c, α) ∈ I , E[P (c ◦ Zα)] =

E[P (c◦x∗α)] by pair-wise independence of the predictions. Thus it suffices to study, for each ∆-wide
i, var

(∑
(w,c,α)∈Si

wP (c ◦ Zα\i)
)
. To this end, notice that for any α, α′ ∈ Si with α ∩ α′ = {i}

it holds

E
[
P (c ◦ Y α\i)P (c ◦ Y α′\i)

]
= E

[
P (c ◦ Y α\i)

]
E
[
P (c ◦ Y α′\i)

]
.

Moreover, since |α| = 2 , there are at most 4 distinct negation patterns. Therefore, by the AM-GM
inequality

var

 ∑
(w,c,α)∈S̃i

wP (c ◦ Zα\i)

 ≤
∑

(w,c,α)∈S̃i

O(w2) var
(
P (c ◦ Zα\i)

)
≤

∑
(w,c,α)∈S̃i

O

(
w2

ε2

)
where we used the fact that entries of Z are bounded by 1/ε and the coefficients of a boolean predicate
are bounded by 1 (by Parseval’s Theorem, see O’Donnell [2014]). By construction of S̃i , each
(w, c, α) ∈ S̃i must satisfy w ≤ Wi/∆ . Using Holder’s inequality

var

 ∑
(w,c,α)∈S̃i

wP (c ◦ Zα\i)

 ≤ O

(
W 2

i

∆ · ε2

)
.

We can use this bound on the variance in combination with Chebishev’s inequality to obtain, for
λ > 0 ,

P

∣∣∣∣∣∣
∑

(w,c,α)∈Si

w
(
P (c ◦ x∗α\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣ ≥ λ

 ≤ O

(
W 2

i

ε2 ·∆ · λ2

)
.

Let λ := O(Wi/(ε
√
∆)) . A peeling argument now completes the proof:

E

∣∣∣∣∣∣
∑

(w,c,α)∈Si

w
(
P (c ◦ x∗α\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣


≤ λ+
∑
t≥0

2t+1λ · P

∣∣∣∣∣∣
∑

(w,c,α)∈Si

w
(
P (c ◦ x∗α\i)− P (c ◦ Zα\i)

)∣∣∣∣∣∣ ≥ 2tλ

 ≤ O(λ) .

17



Analysis of the algorithm We can use Lemma B.1 to obtain our main theorem for CSPs.

Proof of Theorem 5.2. We follow closely the proof of Lemma 3.6. Consider one of the assignments
X ∈ {±1}n found in the second step of the algorithm. Recall x̂ ∈ [−1,+1]n denotes the optimal
fractional solution found by the algorithm. We may rewrite for each ∆-wide i and (w, c, α) ∈ S̃i∑

i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦Xα) =
∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

w
[
P (c ◦ (x̂i · Zα\i))

+ P (c ◦Xα)− P (c ◦ x̂α)

+ P (c ◦ x̂α)− P (c ◦ (x̂i · Zα\i))
]
. (11)

We bound each term in Equation (11) separately. First, notice that by Markov’s inequality and
Lemma B.1, with probability 0.99 , x∗ is a feasible solution to the LP. Conditioning on this event E∑

i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦ (x̂i · Zα\i)) ≥
∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦ (x∗
i · Zα\i))

=
∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦ x∗α)

+
∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

w
(
P (c ◦ (x∗

i · Zα\i))− P (c ◦ x∗α)
)

By Holder’s inequality and the fact that x∗ is feasible, for ∆-wide i,∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

w
(
P (c ◦ (x∗

i · Zα\i))− P (c ◦ x∗α)
)

≤
∑
i∈[n]
∆-wide

∣∣∣∣∣∣
∑

(w,c,α)∈S̃i

w
(
P (c ◦ Zα\i)− P (c ◦ x∗α\i)

)∣∣∣∣∣∣ ≤ (O(ε′) + 2η)W .

Since by construction x̂ is feasible, another application of Holder’s inequality also yields the following
bound on the third term,∑

i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

w
(
P (c ◦ (x̂i · Zα\i))− P (c ◦ x̂α)

)
≤ (O(ε′) + 2η)W .

For the second term in Equation (11), by construction of X we have E [P (c ◦Xα) | E ] = P (c ◦ x̂α).
Combining the three bounds, we get that

optI ≥ E

 1

W

∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦Xα)

∣∣∣∣∣∣∣∣ E
 ≥ optI − (O(ε′) + 4η) .

Applying Markov’s inequality on the random variable optI − 1
W

∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦Xα),

we get

P

 1

W

∑
i∈[n]
∆-wide

∑
(w,c,α)∈S̃i

wP (c ◦Xα) ≤ optI − (O(ε′) + 5η)

∣∣∣∣∣∣∣∣ E
 ≤ 1

1 + η

The theorem follows since we sample O(1/η) independent assignments X and pick the best.
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