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ABSTRACT. A novel basis of discrete analytic polynomials on a rhombic
lattice is introduced and the associated convolution product is studied.
A class of discrete analytic functions that are rational with respect to
this product is also described.

1. INTRODUCTION

Discrete complex analysis has drawn much attention in the recent years;
see for instance [14] and [15]. The first advances in this field are associated
with the works of J. Ferrand and R. J. Duffin ([9], [7]) who studied certain
discretizations of complex analytic functions on the integer lattice in the
complex plane C. From the beginning, one of the basic issues that arose in
the investigation of discrete analytic (DA for short) functions was that the
usual point-wise product of functions does not preserve discrete analyticity.
In spite of this, DA polynomials are well enough understood and several
different bases of DA polynomials on the integer lattice can be found in the
literature. Here, in addition to the above-cited works, one should mention
the work of D. Zeilberger [16] who first constructed a basis suitable for
”power” series expansions.

The situation with rational DA functions is more complicated. In [11] R.
Isaacs (who used a slightly different notion of discrete analyticity) formu-
lated a conjecture that every rational DA function is a polynomial. Isaacs’
conjecture was ultimately proved false by Harman [10]. However, these
works indicate that the class of DA functions, that are rational in the sense
of the point-wise product, is not rich enough for applications.

Another notion of DA rationality for functions on the integer lattice in C
is based on the Cauchy - Kovalevskaya extension of the point-wise product
from the real axis. It was introduced and studied in [2]. This approach
was inspired by [3], which dealt with another case of analyticity being in-
compatible with the point-wise product — hyperholomorphic functions of the
quaternionic variable.
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In more recent works [4] and [5], the convolution product ® of DA poly-
nomials on the integer lattice with respect to a certain ”standard” basis z(")
was considered instead. Although this setup proved to be more fruitful, it is
heavily dependent on the properties of the elementary difference operators

0af(2) = f(z+1) = f(2), Oyf(2) = f(z+1)— f(2).

The main goal of the present paper is to extend the notion of rationality
to the case of a rhombic lattice, where the difference operators do not seem
to be very helpful. As it turns out, the forward shift operator on the space
of DA polynomials can be adapted to the rhombic lattice case much more
easily.

One of the main ingredients is that every rational matrix-valued function
f(2), analytic in a neighborhood of the origin, can be represented as

f(z2) =D+ 20(I —2zA)7'B,

where A, B, C, D are matrices of suitable dimensions. Such representations,
called realizations, arose in linear system theory (see [12]) and proved quite
useful in the study of rational matrix-functions (e.g. [6]).

The paper is organized as follows. Section 2 provides the background on
discrete analyticity on rhombic lattices, most of which goes back to [8] and
[13]. In Section 3 the forward and backward shift operators are introduced.
Investigation of their properties (Theorem 3.2, Proposition 3.4) justifies the
terminology: they do resemble the shift operators in the complex analytic
case; see Remark 3.5. Section 4 contains the construction of the eigenfunc-
tion of the backward shift operator (Theorem 4.1). A power series expansion
of this eigenfunction in terms of a continuous parameter generates ” pseudo-
powers” of z that serve as a DA polynomial basis. Finally, in Section 5
the main definitions and results are presented. The convolution product
® of DA polynomials is set up in Definition 5.1, and Theorem 5.11 states
that ® -quotients of DA polynomials are precisely those DA functions that
admit realizations, thus justifying the notion of a ”rational DA function.”
The relationship between rational DA functions and rational functions of
the complex variable is formulated in Theorem 5.6. This relationship leads
to explicit formulas for products and inverses of rational DA functions in
terms of realizations. A characterization of rational DA functions in terms
of shift-invariance is stated as Theorem 5.12. Finally, an example of a ra-
tional DA function K, (z) is given (Example 5.13). This rational function
is a positive reproducing kernel that gives rise to a Hilbert space of DA
functions, to be investigated in a forthcoming publication.

2. PRELIMINARIES

In what follows, A is a rhombic lattice in the complex plane C — a mono-
hedral tessellation of C with unit rhombi. The sets of vertices, edges and
faces of A are denoted by V(A), E(A) and F(A), respectively. A track in A
is a sequence (Fy)necz in F(A), such that for every n € Z faces F,, and F 41



RATIONAL DA FUNCTIONS ON A RHOMBIC LATTICE 3

are adjacent and, furthermore, the edges shared by F),, with its neighbors
F,+1 and F,,_1 form two opposite sides of the rhombus Fj,. These shared
edges are referred to as ties of the track, and the rest are called rails of the
track. Note that any two ties of a track are parallel. The same cannot be
said, in general, about rails of a track.

The set of directions of the edges of A is denoted by E(A) :

EA) ={b—a: (a,b) € E(A)}.
Proposition 2.1. E(A) is a finite set.

Proof. The case of a square lattice is trivial. If the faces of A are not squares,
denote by « the radian measure of the acute angle in each of the rhombic
faces of A. If o/ is a rational number, say

a  m

— = —, where m,n €N,

T n

then connectedness of A implies that for a suitable ag € R
E(A) C {™@0th/m .k —0,1,... 20— 1}.
If a/7 is irrational, then every vertex of A necessarily has degree 4, and

lattice A is formed by parallel translations of a single track in the direction
of its ties, much like in the square lattice case. ([

Let a,b € V(A). A path in A from a to b is a finite sequence (29, 21, . .., 2N)
of vertices of A, where zy = a, zy = b, and for n = 1,..., N the vertices
zn—1 and z, are adjacent in A. A path from a to b is closed if a = b.

Given a function f : V(A) — C, the discrete integral of f over a path
v = (20,-..,2n) is defined by

N
0/‘f(szzz :5:: j?(Zn/1)2ﬁ-!f(Zn) (Zn __2»1_1)'
v n=1

Definition 2.2. Function f : V(A) — C is said to be discrete analytic
(DA) if for every closed path v in A

[ 15:=0
~

Note that a closed path of the form (a,b,c,d,a), where a # ¢ and b # d
forms a face of A; it is denoted simply by abed.

Theorem 2.3. Function f : V(A) — C is DA if, and only if, on every
face abed of A f(2) satisfies the discrete Cauchy - Riemann equation

f@ = 1) _ S - 5(d)
a—-c b—d

Proof. Since the integral over any closed path in A can be written as a sum
of integrals over faces, f(z) is DA if, and only if, for every face abed of A

foz=0,
abed
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which is equivalent to (2.3). O

As is clear from Definition 2.2, the integral of DA function f(z) over a
path ~ from a to b is independent of the choice of ~, hence a simplified

notation can be used: )
/ foz= / foz,
a v

where «y is any path in A from a to b.

Theorem 2.4. Let zg € V(A) be fized. If f(z) is a DA function, then so is

:/:féz.

Proof. Let abcd be a face of A. One has
F(a) = F(c) F(b)—F(d)

_a—c/ f<5z— /f(Sz
_HQb—c)+f a0t 1t Ja—b)
2(a—c)
_ fld)(e=d) + fle)(b—d) + f(b)(b—c)
2(b—d)
_ (f(a) = f(c))(a—b) L U ) — f(d))(c —d)
2(a—c¢) 2(b—d)
fla) =1,
= S0 (a—b+ d)+
c—d (f(b)— f(d) fla) = f(c)
* 2 ( b—d a—c ) =0
in view of Theorem 2.3 and the fact that abed is a rhombus. O

In what follows, two additional assumptions about the lattice A are made.
Firstly, 0 € V(A). Secondly, for every z € V(A) there is N € N and a path
(20,-..,2N), such that:

(2.2) Zn — 2p—1# 1, n=1,...,N -1,
(2.3) ZN — ZN_-1 =

A path with the properties (2.1) — (2.3) is said to be a leash of z of length
N.

Remark 2.5. The above assumptions can be satisfied with a suitable affine
linear transformation. Indeed, in view of Proposition 2.1, one can find an
infinite family of tracks in A that that have parallel ties. With a suitable
rotation, one can ensure that these ties are parallel to the real axis and,
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moreover, that every vertex in A lies to the left of infinitely many tracks in
the family.

3. SHIFT OPERATORS ON THE SPACE OF DA FUNCTIONS

Denote by H(\) the space of DA functions on A.

Definition 3.1. The forward shift operator Z : H(A) — H(A) is defined
by

e

Theorem 3.2. The kernel and range of Z1 can be characterized as follows:

ker(Zy) = {0}, ran(Z:) = {f € H(A) : £(0) = O}.
Proof. Suppose first that f € H(A) is such that Z, f = 0. Then

f(z);f(o) :/Ozféz Vz e V(A).

Therefore, if a,b € V(A), then

b
f0) - s@=2 [ 15,
a
In particular, if the vertices a and b are adjacent, then

f(b) = f(a)

(3.1) —

= f(a) + f(b).

Now fix an arbitrary z € V(A), and let (zp,...,2n) be a leash of z. Then
(3.1) implies that

N
flz) = f(zl)m = = f(zn) H 1tz -2 _ 0,

1421 —20 n:11+Z”_Z”—1

since 1 + zy—1 — 2y = 0. Thus ker(Z;) = {0}.
As to the range of Z,, the inclusion

ran(Zy) C {f € H(A) : f(0) = 0}

follows immediately from Definition 3.1. To prove the opposite inclusion,
assume that g(z) is a DA function, such that g(0) = 0. One needs to show
that there exists a DA function f(z), such that Z; f = ¢g. This can be done
in a number of steps.
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Step 1. Let f: V(A) — C be given. Then f(z) is the pre-image of g(z)
under Z if, and only if, the relation

(32) f) A +u—v) = fu)(1+v—u)=2(g(u) —g(v))

holds on every edge (u,v) of A. Indeed, if f € H(A) is such that Z, f = g,
then for every pair uw,v € V(A) it holds that

f) — flu “
o) — 9(0) = Zy f(u)  Zo o) = LT [ g
In particular, if the vertices u and v are adjacent, then

f) = fu)  flv) + f(u
o(w) — (o) = LI SOOI, )
which is equivalent to (3.2). Conversely, if (3.2) holds on every edge of A,
then on every face ajazaszas of A one has (with ag := ay4):

4
/a1a2a3a4 foz = ; f(ak1)2+ f(ak) (ak’ - ak—l)

4
- Z (g(ak) —g(ag-1) — f(ak_l)z_ f(ak)> =0,
k=1

hence f(z) is a DA function. Now fix an arbitrary z € V(A) and choose a
path (20,...2zn) from zg = 0 to zy = z. Applying (3.2) to every edge of the
path, one gets

O L

N N
- Z f(zn—l)z— fzn) T Z f(zn_12+f(zn)(zn — Zn—1)
n=1 n=1
N
= (9(zn) — 9(zn-1)) = g(2) — 9(0) = g(2).
n=1

Step 2. Whenever z € V(A) has a leash of length 1, set
f(z) =9(z+1) —g(2).

Then (3.2) holds on every tie and every left rail of every track with horizontal
ties. To see this, note that the above equality is a special case of (3.2) with
u = z, v = z+ 1. Furthermore, if abed is a face of A, such that ¢ = b+ 1 and
d=a+1, then
(1+b—a)f(a)—(14+a—0)f(b)
=(g9(a+1)—g(a))1+b—a)—(9(b+1) —g(b))(1+a—b)
=(9(a+1) —g(0))(b+1—-a)—(9(b+1) —g(a))(a+1—b)+
+2(g(b) — g(a)).
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By Theorem 2.3,
gla+1)—g(b) gb+1)—g(a)

a+1-b  b+l—-a
hence (3.2) holds on the edge (a,b), as well.
Step 3. If abed is a face without horizontal edges, and if the value f(a) is
given, then there is a unique way to assign the values f(b), f(c), f(d) so that
(3.2) holds on all the edges of the face abed. Indeed, (3.2) holds on the edges

(a,b), (b,c) and (¢, d) if, and only if,
2(9(b) —g(a)) = (b—a+1)f(a)

1) = e, ,
o) = 200 =5®) — = b4 1)
fiay = 20@ =)~ e+ DI10)

In this case one has
2(g(c) — g(a)) = 2(g(c) — g(b)) + 2(9(b) — g(a))
=Mb—-—a+1)f(a)+(c—a)f(b)+ (c—b—1)f(c)
and, similarly,
2(g(d) —g(b)) = (c=b+1)f(b) + (d =) f(c) + (d — c = 1) f(d).
Since g(z) is a DA function, it follows from Theorem 2.3 that

PO L pay 4 7 0) + S )
c—b+1 d—c—1
= 0+ () + ),
(a—b—1)f(ci:£<“)—(d—c—l)ﬂd;:l{(b) 0.
Since a —b=d — ¢ # 1, one has
fle) = fla) _ f(d) - f(b)
c—a d—1b
and
foz =
abed
But then
9(d) — g(a) = g(d) — g(c) + g(c) — g(b) + g(b) — g(a)
_flo) - f(d) | 16 fla)+f d)(a_d)
2 abed 2
:f(a);f(d)+f(a);rf(d(d_ )

and equality (3.2) on the edge (a,d) follows.
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Step 4. Proceeding as at Step 3, one can define f(z) on the vertices of any
face without horizontal edges that has a vertex with a leash of length 1.
This set includes, in particular, all vertices of A that have a leash of length
at most 2. By induction on the length of the shortest leash, one can extend
the definition of f(z) to the whole of V(A) in such a way that (3.2) holds
on every edge of A. O

Definition 3.3. The backward shift operator Z_ : H(A) — H(A) is de-
fined as follows: given f € H(A), Z_f is the unique element of H(A), such
that

ZyZ-f(2) = f(2) = f(0).

Proposition 3.4. Operator Z_ is a left inverse of Z,, and the kernel of
Z_ consists of constant DA functions.

Proof. Let f € H(A). In view of Theorem 3.2 and Definition 3.3, one has
24 Z-Zy f(2) = Zy f(2) = Z4 f(0) = Z4 f(2),
7.7, 1(:) = f(2).
As to the kernel of Z_, it follows immediately from Definition 3.3 that
Z f(z)=0 & [f(z)-f(0)=0 < [f(z)=/(0).
(]

Remark 3.5. The shift operators Z; and Z_ are ”discrete counterparts”
of the classical shift operators

f(z) = 2f(z) and f(z)Hf(Z);f(O)

on the space of continuous analytic functions in the open unit disk.

4. DISCRETE ANALYTIC POLYNOMIALS

Denote
S(A)={teC:t(1+b—a)=—2 for some (a,b) € E(A)}.
In view of Proposition 2.1, S(A) is a finite set. It is contained in the com-

plement of the open unit disk.

Theorem 4.1. Let t € C\ S(A). Then t is an eigenvalue of the operator
Z_. The corresponding eigenspace is one-dimensional; it is spanned by the
DA function ei(z), which is determined as follows: e;(0) = 1, and

N0 (14 2 — 251)
24+ t(1+ 21 — 2x)

(4.1) er(2)

k=1
for z # 0, where (29, 21, ..2N) S any path from zy = 0 to zy = z.

Proof. The proof is similar to that of Theorem 3.2. It can be broken down
into a number of steps.



RATIONAL DA FUNCTIONS ON A RHOMBIC LATTICE 9

Step 1. Let t € C\ S(A), and let e; : V(A) — C. Then e; € H(A) and
Z_e; = te; if, and only if, the relation
(4.2) et(u)2+t(1+v—u)) =e(v)(2+t(1+u—0v))
holds on every edge (u,v) of A. Indeed, if e;(z) is a DA function, then, by
Definition 3.3 and Proposition 3.4, equality
Z_ei(z) = tey(2),

is equivalent to

er(z) —er(0) = tZyei(2).

This last equality holds if, and only if, for every pair of adjacent vertices u
and v one has

er(u) — e (v) = t(Zyey(u) — Zypey(v)) =t <et(”);€t(“) + /u et5z)

(et(v) ; et(u) n er(v) *2‘ er(u) (u— v)) ;

which is equivalent to (4.2). Note, however, that if a function e;(z) satisfies
(4.2) on every edge of A, then it is automatically DA, since on every face
abced one then has

er(b) —ei(d)  ei(a) <2+t(1+b—a) 2+t(1+d—a)>

b—d  b—d\2+t(l+a—-b) 2+t(1+a—d)
B er(a)(4t + 2t2)
C2+t(l+a—-0)2+t(1+a—d)

er(a)(4t + 2t2)

T 2+tl+a-b)2+tl+b—2c))
_ela) (2+tA+b—a))(2+t1+c—b) 1) = ei(c) — ei(a)
S c—a\(2+t(l+a—-0)2+t(1+b—rc))  c—a
Step 2. Since t ¢ S(A), one can define a function e;(z) by e;(0) = 1 and
(4.1) for z # 0, where (zp, z1,...2yN) is some path from zp = 0 to zy = z.

Note that definition (4.1) is actually path-independent because on every face
abced of A one has:

b—a=c—d, c—b=d-a,
24+t1+b—a)2+t(1+c—0>))
Q+t(l+a—b)2+t1+b—c))
X(2+t(1+d—c))(2+t(1+a—d)) _
Q+t(l+c—d)2+t(1+d—a))
Therefore, e;(z) satisfies (4.2) on every edge of A and is an eigenfunction of

Z_ associated with the eigenvalue ¢. It is also clear from (4.2) that such a
function is unique up to a multiplicative constant. O
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Remark 4.2. Denote by Sg(A) the complement of the set of eigenvalues
of the operator Z_. Using an approach that is quite similar to the proof of
Theorem 3.2, one can show that ¢ = —1 is not an eigenvalue of Z_, and hence
So(A) # (. On the other hand, according to Theorem 4.1, So(A) C S(A).
Depending on the lattice A, the inclusion can be proper, although in some
important cases, including the case of the square lattice, it is not. It is
assumed from now on that So(A) = S(A).

In view of (4.1), e;(z) is a rational function in ¢ (of degree depending on
z, in general), analytic in the complement of S(A) and, in particular, in the
open unit disk . Consider the Taylor expansion

(4.3) e(z) = Zt”z(”), teD,ze V(A).
n=0

Proposition 4.3. Taylor coefficients 2™ in the expansion (4.3) are DA
functions of z with the following properties:

(4.4) 20 =1 and W =2, wvneN,
in particular, 2V = z,
(4.5) Z_29 =0 and Z_z" =071 wvpeN,
(4.6) limsup {/]z(™| < 1.
n—oo
Moreover, 20 (1) @) form a linearly independent vector family in
H(A).

Proof. Discrete analyticity of (™ can be seen by differentiating the discrete
Cauchy - Riemann equation for e;(z) with respect to ¢. Substituting the
expansion (4.3) into the equality

er(z) — 1 =tZ1e(2),

one obtains (4.4). In particular,

4
2D = Zi1l= / 0z = z.
0
In view of Proposition 3.4, (4.5) holds, as well, and hence for a linear com-
bination CLQZ(O) + alz(l) + - aNz(N) one has
(2" (apz® + a1z + -+ anz™N0) = an, n=0,1,...,N,

implying linear independence of the family 2(0), (1) 2(2) . Finally, formula
(4.6) is a consequence of the Cauchy - Hadamard theorem. O

Definition 4.4. Elements of the subspace of H(A) spanned by

RORNCIRNCIN

are called DA polynomials.
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It should be mentioned here that the space of DA polynomials defined
above was originally introduced by Duffin in [8] using a different basis:

z
po=1, pn(z)= n/ Pn—10%.
0

5. CONVOLUTION PRODUCT AND RATIONAL DA FUNCTIONS

There is little difficulty involved in adapting the results of previous sec-
tions to the case of DA functions with matricial values. Such functions can
be viewed as matrices with DA entries, with the discrete integral and the
shift operators being applied entry-wise. The space of C™*"-valued DA
functions on V(A) is denoted by H(A)™*™. Matrix-valued DA polynomials
are introduced similarly.

Definition 5.1. The convolution product ® of a C"™*"-valued DA polyno-

mial
N
SWHE
n=0

with a C"**-valued DA function f (z) is given by
(o £z Z An(Z3f)(2

Similarly, if g(z) is a C**™-valued DA function, then
N

(9Op)(2) =Y (Z19)(2)An.

n=0

Note that the space of C-valued DA polynomials equipped with the con-
volution product ® is a commutative ring, where

Lm) o () — (mn).

Theorem 5.2. Let A € C™*™. Then the DA polynomial I, — zA is ®-
invertible in H(A)™ ™ if, and only if,

(5.1) S(A)no(A) =0.

In this case the ®-inverse of I, — zA is given by

(5.2)
N

(Im —zA)" @ =[] (2 (1+ 21, — 25-1)A) (2L + (14 25—1 — 2)A) 1Y),
k=1

where (zo, 21, ... 2N) 18 any path from zo =0 to zy = z.

Proof. Let r(z) = I, — zA and suppose that f is a left ®-inverse of r(z) in
H(A)™*™
(fOr)(z) = In,



12 D. ALPAY, Z. KAZI, M. TECALERO, AND D. VOLOK

or, equivalently,
(5.3) f(z)=In+Zif(2)A.
Then
F0) =Ly and Z_f() = f()A.
Let t be an eigenvalue of A with the associated eigenvector w # 0. Then
Z_f(z)w=tf(z)w.

If t € S(A), then (see Remark 4.2) f(z)w = 0, which leads to a contradiction
for z = 0. Thus the necessity of the condition (5.1) is established.

Conversely, suppose that (5.1) is in force and observe that (5.3) is equiv-
alent to f(0) = I, and

fw) 2L+ (1 +v—uA) = f(v)(2Ln + (1 +u—v)A)

holding on every edge (u,v) of A (compare with (4.2)). Exactly as in the
proof of Theorem 4.1, one may deduce that there exists a unique DA function
f(z) satisfying (5.3). Moreover, f(z) = (I, — 2A)~® is given by (5.2) (in
particular, this formula is path-independent). Since (I, — zA)~® commutes
with A, it is a right ®-inverse of r(z), as well. 0

Remark 5.3. If the spectral radius p(A4) < 1, then

(I —2A)7% = Z z(M A,

n=0

Definition 5.4. A matrix-valued DA function f(z) is said to be rational if
it can be represented as

f(z)=D+C(I—2A)"° 6 (2B),
where A, B, C, D are complex matrices of suitable dimensions, and
S(A)No(4)=0.
Such a representation is called a realization of f(z).

It may not be obvious from the above definition that a sum of matrix-
valued rational DA functions of suitable dimensions is itself rational. This
is settled in the proposition below.

Proposition 5.5. Let m,n € N. Let fi, fo € H(A)™*™ be rational DA
functions with given realizations:

fi(z) = Dy + Cj(I — 24)© @ (zB;), j=1,2.

Then fi(z) + f2(z) is a rational DA function, as well, which admits the
realization

o= eai-+(5 2))7 o ((3)
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Proof. 1t suffices to observe that
o (A 0N\ T (T -2A)® 0
Lo 4 - 0 (I —245)°)"

Definition 5.4 suggests that rational DA functions are closely related to
rational functions of the complex variable. One must treat this relation-
ship with caution, since a given rational function admits infinitely many
distinct realizations. A precise formulation of the relationship is stated in
the following theorem.

O

Theorem 5.6. Let m,n € N. The mapping

flz) = 7f(@) =Y ZF fo)tF
k=0

is a linear bijection from the space of C"™*"-valued rational DA functions to

the space of C™*"™-valued rational functions of the complex variable t that
have no poles in the set

P(A)z{té@:tzOor}teS(A)}.

For any realization

(5.4) f(z)=D+C(I-2A)"°0 (2B)
of a rational DA function f(z) it holds that
(5.5) 7f(t) =D +tC(I —tA)"'B.

Proof. From the identity
(I-2A)0 (I —-24)“=1
and Proposition 3.4 it follows that
Z (I —2A)7% = (I —-24)°A.
Therefore, for a rational DA function f(z) of the form (5.4) one has
D=f(0), and Z*f(0)=CA*'B VEkeN,

from which (5.5) and the surjectivity of the mapping 7 follow.
To verify the injectivity of 7, consider a rational function

D+C(I—-2zA)%® (2B)
in the kernel of 7, where A € C*** satisfies (5.1). Then
D=0and CA*'B=0 VkeN.
Consider

M =ran(B) + ran(AB) + ran(A?B) + - -- + ran(A“ ' B)
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— an A-invariant subspace of the finite-dimensional ker(C'). Since A satisfies
(5.1), for every edge (u,v) of A the matrix 2/y+(1+u—v)A is non-degenerate,
and the associated linear transformation of C* maps M bijectively to itself.
Therefore, In view of (5.2),

C(I—24)"°B=0
and
C(I—-2A)"°06 (2B)=Z(C(I —2A4)"®B) = 0.
0

Theorem 5.6 allows to extend the convolution product © to the case where
the factors are rational DA functions.

Definition 5.7. Let m,n,k € N. Let f; € H(A)™ ™ and fo € H(A)"** be
rational DA functions. Define the convolution product f; ® fs by

f O fo=1"Hrf1-Th).

Remark 5.8. Note that in the case where f; or fs is a DA polynomial,
Definition 5.7 agrees with Definition 5.1, since

T2 —¢n,

In terms of realizations, the convolution product of rational DA functions
can be described more explicitly, as the following proposition shows.

Proposition 5.9. Let fi € H(A)™™ and fo € H(A)™ F be rational DA
functions with given realizations:

fi(z) = Dj + Ci(I — 24;)"" © (2B;), j=1,2,
then
(fi© fo)(2) =D+ C(I - 24)"° © (2B),

. Ao 0 . By
A= (3102 A1> , B= <31D2> ’

C = (D:iCy Ci), D=DDs.

where

Proof. In view of Theorem 5.6, it suffices to check that the rational matrix-
valued function 7f(¢)7 f2(t) admits the realization

()T f2(t) = D +tC(I —tA)™'B,

where A, B,C, D are given above. This is straightforward, since

1 (I—tAy 0o \!
(I=t4) _<—t3102 I-t4

B (I —tAy)~! 0
o (t([ — tAl)*lBng(I — tAQ)il (I — tA1>1> )
(|
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The question of ®-invertibility is to be addressed next. As follows from
Definition 5.7, a matrix-valued rational DA function f(z) has a rational ®-
inverse if, and only if, the rational matrix-function 7f(¢) is invertible and
7f(t)~! has no poles in the set P(A) of Theorem 5.6. In this case such a

(®-inverse is unique:
o) =mH=HB™).

A more explicit expression for the ®-inverse in terms of realizations is given
in the next proposition.

Proposition 5.10. Let n € N. Let f € H(A)™*™ be a rational DA function
with a realization
f(z)=D+C(I-2A)"°0 (2B).
Denote
A*=A-BD'C.
If
det(D) #0 and S(A)No(A*) =10,
then f(z) has a unique rational ®-inverse:
) =D'-D'C(I - 24%)"° ® (:BD™).

Proof. The statement follows from Proposition 5.9 by straightforward com-
putation. [l

The following theorem is the ”discrete counterpart” of the classical defi-
nition of rationality in terms of quotients of polynomials.

Theorem 5.11. Let f(z) be a matriz-valued DA function. Function f(z)
is rational if, and only if, there exists a C-valued DA polynomial p(z) # 0,
such that (pI ® f)(z) is a DA polynomial, as well.

Proof. The ”only if” part of the statement follows immediately from Theo-
rem 5.6, Definition 5.7 and the fact that 7 maps DA polynomials to ordinary
polynomials of one complex variable. As to the ”if” part, let p(z) #Z 0 be a C-
valued DA polynomial, of the minimal possible degree, such that (pI @ f)(2)
is a DA polynomial. It suffices to show that p(z) has a rational ®-inverse.

Suppose, to obtain a contradiction, that there exists A € P(A), such that
Tp(A) = 0. If A =0, then p(z) = 2 ® p1(z), where

_1 (™ot
= (M) = 2002
is a DA polynomial of degree deg(p1) = deg(p) — 1. Hence
plof=2_(plof)

is also a DA polynomial, in contradiction to the minimality of deg(p).
If A # 0, then } € S(A) and p(z) = (z — \) ® p1(z), where

pi(z)=7"" <tTp_(t))\>
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is a DA polynomial of degree deg(p;) = deg(p) — 1. Hence
plo f=(Zy = A)(pI© f)

and 1 1
()\[— Z_> (mlIof)= XZ—(pIQf)

is also a DA polynomial. Note that for every N € N the finite-dimensional

space My of DA polynomials of degree not exceeding N is invariant under

%I — Z_. Moreover, since % is not an eigenvalue of Z_ (see Remark 4.2),

the operator %I — Z_ maps My onto itself. Therefore, p1I @ f is a DA
polynomial, yet again in contradiction to the minimality of deg(p).

Thus 7p(t) does not vanish on the set P(A). But then the rational function
#(t) has no poles in P(A), the polynomial p(z) has a rational ®-inverse, and,
finally,

f=Ho@Elof)
is a rational DA function. O

Another useful characterization of DA rationality is in terms of shift in-
variance. For a rational DA function f(z),

Zif(2) =20 [f(2),
hence the space of matrix-valued rational DA functions (of given dimensions)
is forward shift invariant. It is also backward shift invariant, since for

f(z)=D+C(I—24)"%® (2B)
one has
Z_f(z)=CI—-2zA)"°B=CB+0C(Z,Z_(1 —zA)"°)B
=CB+C(I—2A)°0® (24AB).
Theorem 5.12. Let m,n € N, and let f € H(A)™ ™. DA function f(z)
is rational if, and only if, the column space of f(z), {f(z)w : w € C"}, is

contained in a finite-dimensional space of C™-valued DA functions that is
Z_-invariant.

Proof. The ”only if” part of the statement follows from the Caley - Hamilton
theorem, since for

f(z2)=D+C(I—-2A)"°®(2B)
one has
ZEf(z)=C(I - 2A)"®A*'B VkeN
and, therefore,
dimspanc{Z* f(2)w : k € Z,,w € C"} < 0.

As to the 7if” part, let M be a finite-dimensional subspace of H(A)™,
such that
{fRHlw:weC"}CM and ZMCM.
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Choose a basis f1(2), f2(2),..., fn(z) of M and consider the C"™*"-valued
DA function

F(z):= (fiz) falz) - fn(2)).
Then there exists a matrix A € CV*V | such that
Z_F(z)=F(z)A.
Suppose, to obtain a contradiction, that A has an eigenvalue ¢t € S(A). Then
(tI — Z_)F(z) = F(2)(tIy — A).

If w is an eigenvector of A associated with the eigenvalue ¢, then F(z)w =0
because ¢ is not an eigenvalue of Z_ (see Remark 4.2). This contradicts the
linear independence of the columns of F(z). Thus A satisfies (5.1). Further-
more, one has

F(2)—F(0)=Z,Z_F(z)=F(z) ® (zA),
F(z)® (I —zA) = F(0),
F(z)=C(I - 2z4)7°,

where C' = F(0). Since the column space of f(z) is contained in M, there
exists a matrix B € CV*"_such that

f(z)=F()B=C(I-2A)"°B=CB+C(I —24)"° ® (2AB).
O
It remains to provide a non-trivial example of a rational DA function.

Example 5.13. Let w € V(A) be fixed and let M > 1. Consider the DA
function

<L) g
z w
Ku(z) = Z Mn
n=0

(in view of (4.6), the series converges absolutely for every z € V(A) to a
function that is DA by Theorem 2.3). If K,(z) were a rational DA function,
then

" (n)
TKy(t) = Z M eg/m(w),

n=0

o

which, in view of (4.1), is a rational function of the complex variable ¢ and
has no poles in P(A). Taking into account the fact that eg(w) = 1, one may
conclude that there exist matrices A, B, C' satisfying (5.1) and such that

ei(w) =1+tC(I —tA)"'B.

In particular,

@
—o =CA™B ¥neN.
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Hence, rational or not, function K, (z) can be represented as
oo
Ky(2) = Ky(z) =1+ Y _zMCA™ !B,
n=1

Observe that

oo
ZMKy(z) =Y 2WCA™™ 1B Ym e N.
n=0
By the Caley-Hamilton theorem, there is N € N and ag,...,ay_1 € C such
that

N—-1
AN =",

7=0
hence

N .

ZN T Kw(2) = a1 2% Ku(2).

J=1

Let

M = spanc{Z’ K(2):j=0,1,...,N}.

Then M is a Z_-invariant subspace of H(A) of dimension at most N +1 that
contains Ky (z). By Theorem 5.12, K,,(2) is indeed a rational DA function,

Ky(z) = 1 (e,g/M(w)> .
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