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Abstract

The Internet of Things (IoT) is frequently the epicenter of

cyberattacks due to its weak security. Prior works introduce

various techniques for analyzing the firmware of IoT devices

for bugs and vulnerabilities, especially through firmware

re-hosting. However, comparing the emulation outcomes of

different re-hosting approaches can be very challenging. In this

paper, we present Firmware Initialization Completion

Detection (FICD), a technique that enables the comparison

of full-system re-hosting approaches across their re-hosting

capabilities. In addition, prior works lack an important

capability; they do not focus on both the user and privileged

aspect of IoT firmware as a unit. Since prior work is not

capable of holistically analyzing (both the user and privileged

level) IoT firmware, we develop Pandawan, a framework that

enables the holistic re-hosting and analysis of IoT firmware

at scale. We use FICD to illustrate Pandawan’s re-hosting

improvements over the state-of-the-art, such as Firmadyne,

FirmAE, and FirmSolo on a dataset of 1,520 firmware images.

Our experiments show that Pandawan outperforms these

systems, by executing up to 6% more user level programs

and 21% more user code basic blocks, on average, than

these systems. Furthermore, Pandawan loads 9% more IoT

kernel modules and executes 26% more kernel module basic

blocks on average than FirmSolo. We also use Pandawan to

holistically analyze the firmware images by inspecting the

interactions (through system calls) of user level code with

kernel module code. Pandawan transforms the system call

information into seeds for the TriforceAFL kernel fuzzer to

analyze the kernel modules within the firmware images. The

TriforceAFL experiment on 479 firmware images with seeds,

discovered 16 bugs on 12 binary kernel modules, 6 of which

are previously unknown bugs. The bugs affect 8 closed and

4 open source kernel modules.

1 Introduction

The Internet of Things (IoT) has gained immense popularity

in the past decade. Billions of embedded devices and gadgets,

such as WiFi routers, IP cameras, and smart wearables fill

up tech store shelves and find their way into customers’

homes and businesses [26]. Despite its growth, the IoT is

infamous for its weak security. This is evident from impactful

cybersecurity attacks assisted by the IoT such as the Mirai [2],

Trickbot [33], and Meris [47] botnet attacks, which rattled the

Internet infrastructure’s foundations. Attackers exploited the

poor security posture of the IoT vendors’ devices, primarily

the use of weak passwords, hardcoded backdoors, and legacy

(outdated) software to compromise millions of devices and

gadgets [36]. Even though these security incidents raised

awareness about the security of the IoT, device vendors

still prioritize profit over protecting their products against

malicious actors [24]. Thus, it is imperative to improve

the security of these devices and gadgets to protect them

against cyber threats in the future. Fortunately, the research

community has already directed its focus on exposing bugs and

vulnerabilities in the firmware that runs on these IoT devices.

A subset of prior works in this research area conduct their

analysis directly on firmware running on physical IoT devices.

They either rely on a mobile or Web application [8, 19, 49] to

communicate with the IoT firmware or execute the firmware

within an emulated environment while forwarding memory

accesses to the actual device [12, 30, 50]. Other works that

eschew physical devices can be categorized into static and

dynamic analysis approaches. Both static analysis [13, 20]

and dynamic analysis such as firmware re-hosting [7, 28, 48]

are popular approaches that have lately dominated the IoT

firmware analysis landscape.

When considering Linux-based firmware, full-system

re-hosting (or emulation) techniques are the most popular.

Static analysis techniques generally suffer from a multitude

of false positives or false negatives [20]. Even though

re-hosting techniques revolutionized IoT firmware analysis, by

extending bug and vulnerability testing towards increasingly

sophisticated firmware, the field is characterized by the

absence of two important aspects.

First, the community lacks a mechanism to objectively

compare the capabilities of different re-hosting systems

beyond crude metrics (e.g., number of bugs found within 24



hours). However, to assess the re-hosting progress we need

to answer the following question:

Q: How can we quantify the forward progress of IoT

firmware analysis approaches in full-system re-hosting?

Prior full-system Linux-based re-hosting works showcase

their progress and improvements over their predecessors by

relying on ad-hoc and coarse-grained metrics (e.g., number

of bugs or vulnerabilities found or networking connectivity

achieved [28, 48]). However, each re-hosting system adopts

a different design directly affecting the firmware execution

flow and the emulation performance (e.g., emulating both user

and kernel level code vs. emulating user level code only), thus

introducing disparity in the firmware emulation outcome. The

existing metrics are too generic to capture these discrepan-

cies and quantify the contribution of each system in the IoT

re-hosting landscape. Thus, to answer Q we first require met-

rics (e.g., programs executed, code coverage, kernel modules

loaded, etc.) that better reflect the systems’ re-hosting capa-

bilities. Importantly, such finer-grained metrics imply a new

challenge: At which point during the emulation should we

measure them to ensure an objective comparison between re-

hosting approaches? Clearly, relying on elapsed wall-clock

emulation time as the indicator for taking a measurement is

not sufficient, as emulation speed is directly impacted by a

re-hosting system’s design. Fundamentally, to enable objective

comparisons, we require a conceptual reference point (with

respect to system progress rather than wall-clock time) that

can be identified in any re-hosting system. Once this reference

point is reached, we can take the measurement (i.e., collect

the metrics) and perform the comparison. We discuss below

how it is possible to identify such a reference point to mark the

completion of the firmware initialization logic.

The second missing capability of full-system Linux-based

re-hosting is that current state-of-the-art systems target only

one aspect of IoT firmware; either its user level [7,28,46,48,55]

or its privileged (kernel) level aspect [1, 38, 55]. In real world

devices, though, both the user and privileged aspect of the

IoT firmware run cooperatively. To effectively analyze IoT

firmware code it is therefore important to follow a more holistic

approach that includes both aspects of the IoT firmware in the

re-hosting and analysis process.

On the surface it seems that FirmSolo [1] is readily capable

of holistic re-hosting since it builds kernels that can re-host

a variety of binary IoT kernel modules and also support IoT

user level code re-hosting due to the stable Linux system call

ABI. However by design, FirmSolo’s kernels are specifically

tailored to kernel module re-hosting. As a result, these kernels

might lack functionality (in the form of kernel symbols – func-

tions and data structures) required by user level firmware code

to execute successfully. Figure 2 in Section 3.2 describes such

an example as the capability to access a Memory Technology

Device (MTD) peripheral through a character device,

via the mtd_[open,read,write] functions. Since these

functions are not required nor accessed by kernel modules, the

aforementioned functionality will be omitted from FirmSolo’s

kernels. Then, if a user level program requires these functions

to execute successfully, it will fail. To mitigate these scenarios

it is crucial to identify and supplement FirmSolo’s kernels

with kernel functionality not used by the firmware’s kernel

modules, but required by user level firmware code to execute.

To address the aforementioned shortcomings, in this pa-

per, we present Firmware Initialization Completion

Detection (FICD), a technique that detects the reference point

at which the firmware’s initialization phase is complete during

emulation. FICD makes it possible to quantify the forward

progress in firmware re-hosting, by enabling the meaningful

comparison of different full-system re-hosting approaches

on metrics such as the number of user programs executed,

user and kernel code coverage, or number of kernel modules

loaded, up to that point. The reference point represents a con-

cept common to all full-system re-hosting approaches despite

their differences; the end of the firmware initialization phase.

Since the firmware operation is usually predetermined (e.g.,

network routing), IoT devices are primarily configured dur-

ing startup by the firmware’s configuration and bootup scripts.

Every full-system re-hosting approach will inevitably exe-

cute these scripts and thus undergo the firmware initialization

phase. Thus, the reference point detected by FICD can be used

to meaningfully compare these systems along a metric that can

showcase their contribution to re-hosting (e.g., code coverage).

In addition, to fill the void in holistic full-system firmware

re-hosting we introduce Pandawan, a re-hosting framework

that builds atop of (Py)PANDA [14, 17] and FirmSolo’s

firmware re-hosting capabilities to provide Operating System

(OS) level introspection and dynamic analysis of both user

and privileged (i.e., kernel module) firmware code. To achieve

holistic firmware re-hosting and analysis, Pandawan features

the Kernel Augmentation (KA) technique. KA first isolates

the kernel functionality typically included by vendors in their

IoT firmware kernels (in the form of kernel symbols). Then,

it builds Pandawan’s “augmented” kernels which contain this

functionality to enable the successful re-hosting of firmware

user level code and kernel modules alike.

To showcase the improvements of Pandawan over the

state-of-the-art, we rely on FICD to compare Pandawan,

Firmadyne, FirmAE and FirmSolo. For our experiments

we use a dataset consisting of 1,520 firmware images. Our

investigation shows that Pandawan outperforms Firmadyne,

FirmAE, and FirmSolo, by executing up to 6% more user level

programs and 21% more user code basic blocks, on average,

than these systems. In addition, Pandawan loads 9% more IoT

kernel modules and executes 26% more kernel module basic

blocks on average than FirmSolo.

To demonstrate Pandawan’s utility in firmware analysis,

we use it to fuzz the kernel modules within the firmware

images. Fuzzing the entire system call interface would not be

efficient, since the majority of system calls (depending on the



arguments they are given) would target the core kernel code

instead of kernel module code. Thus, Pandawan targets only

the subset of system calls that result in the execution of code in

IoT kernel modules. To this end, Pandawan’s holistic analysis

approach fundamentally enables the tracing of system calls

invoked by user level programs which lead to kernel module

code execution. In turn, the traces expose entry points from

user level to kernel (module) level code. Pandawan uses the

entry point information to generate system call chains in a

format (seeds) compatible with the TriforceAFL [34] kernel

fuzzer to fuzz the kernel modules within the firmware images.

Pandawan collects traces for 479 firmware images. After

transforming these traces into seeds and providing them to

TriforceAFL, the fuzzer triggers 16 bugs on 8 closed and 4

open source kernel modules. Twelve of the bugs found are

previously known and six are previously unknown bugs.

In summary we make the following contributions:

• We introduce Firmware Initialization

Completion Detection, a technique that enables

the meaningful comparison of full-system re-hosting

approaches despite their discrepancies and quantify their

progress in the firmware re-hosting domain.

• We propose the Kernel Augmentation technique which

configures and builds kernels that contain functionality

usually included by IoT vendors in their privileged

firmware code, so that these kernels are conducive to

holistic firmware re-hosting and analysis.

• We present Pandawan, the prototype implementation of

Kernel Augmentation. Pandawan constitutes an OS

level introspection and dynamic analysis framework that

enables holistic (user and privileged level) re-hosting and

analysis of IoT firmware.

• To quantify Pandawan’s improvements over the state-of-

the-art we use FICD to compare it with Firmadyne, Fir-

mAE and FirmSolo re-hosting frameworks. Furthermore,

we use Pandawan’s holistic analysis capabilities to ana-

lyze the firmware images in our dataset. The information

collected is then used by the TriforceAFL kernel fuzzer to

analyze the kernel modules within the firmware images.

To further foster the research in this area, we will make

Pandawan’s source code publicly available1.

2 Background

Before discussing the design of Pandawan, we first provide

background information about full-system firmware re-hosting

and the systems we will reference throughout the paper;

PyPANDA, Firmadyne, FirmAE and FirmSolo.

2.1 Full-system Firmware Re-hosting

Full-system firmware re-hosting (or emulation) [18] is a tech-

nique used to run a binary firmware image without the need for

1https://github.com/BUseclab/Pandawan

the IoT hardware it was designed for. Particularly, the firmware

(image) code is executed within an emulated environment (e.g.,

QEMU [4]), where hardware accesses are handled by the em-

ulator. Full-system firmware re-hosting has become popular

mainly due to two major benefits; 1) allowing the emulation

of IoT firmware at scale, and 2) exposing firmware code to

dynamic analysis (e.g., fuzzing) and operating system level

introspection. However, full-system firmware re-hosting can

be challenging. A recurring issue in the IoT infrastructure is the

lack of standarization [15]. Particularly, the absence of com-

mon specifications and protocols leads to the production of

billions of devices with diverse and proprietary hardware (e.g.,

NVRAM and Wireless NICs). Hence, IoT firmware and specif-

ically its kernel component is dependent on each particular IoT

device’s System on Chip (SoC) and hardware peripherals.

Unfortunately, state-of-the-art emulators such as QEMU

only support a fraction of the hardware peripherals used

by IoT and embedded devices [18] and thus are unable

to emulate the IoT firmware kernels. As a result, current

full-system re-hosting approaches either target only user level

IoT firmware code [7,28,48] or the IoT kernel modules [1,38],

by substituting the original firmware kernel with a custom

kernel compatible with the emulators.

2.2 (Py)PANDA

One of the core foundations of Pandawan is PyPANDA [14],

a Python frontend to PANDA [17], an Operating System

(OS) level introspection framework built on top of QEMU.

Besides emulating IoT related architectures (e.g., ARM

and MIPS), (Py)PANDA also enables users to control the

guest code execution and inspect the guest’s internal state

(e.g., memory). The OS level guest introspection is possible

through a set of PANDA’s existing C/C++ plugins and through

PyPANDA’s Python plugin interface. These plugins unlock

unique capabilities not available in the upstream version of

QEMU, such as system call and basic block tracing, and guest

OS function hooking. Pandawan builds upon PyPANDA’s

Python interface to introduce new custom plugins and enable

holistic analysis and introspection of IoT firmware.

2.3 Firmadyne & FirmAE

Firmadyne [7] and FirmAE [28] are among the state-of-the-art

when it comes to full-system firmware re-hosting and dynamic

analysis approaches. Specifically, they are designed to emulate

the user level code of IoT firmware images and subject it

to various bug and vulnerability analyses, such as testing

against exploits from the Metasploit framework [39] or

fuzzing. By design, both systems replace the original firmware

kernels, which are incompatible with QEMU, with custom

pre-built kernels that can be booted under QEMU. Since both

the original IoT kernels and the pre-built kernels are based

on Linux, they share the same stable system call interface

required by user level firmware code to run.

Unfortunately, by relying on custom pre-built kernels,





1 [ncc_runtimecfg.c: 539 initRunTimeCfg()]

::: Total 4470 nodes, each node 24

bytes.

2 [ncc_runtimecfg.c: 540 initRunTimeCfg()]

::: Total 107280 byte for all nodes.

3 [ncc_runtimecfg.c: 207 loadCfg()] :::

Start loadCfg

4 [ncc_lz77.c: 509 flash2rootfs()] ::: BUG

ON!!

5 [ncc_lz77.c: 538 flash2rootfs()] ::: Load

Fail(/var/tmp/cfg.txt)

6 [ncc_runtimecfg.c: 213 loadCfg()] :::

flash2rootfs() fail!! restore to

default!!

7 [ncc_lz77.c: 621 rootfs2flash()] ::: BUG

ON!!

8 [ncc_runtimecfg.c: 215 loadCfg()] ::: Del

TAG default file!!

9 [ncc_lz77.c: 509 flash2rootfs()] ::: BUG

ON!!

10 ...

(a) Example firmware image serial log when

re-hosting with FirmSolo.

1 undefined4 loadCfg(void)

2 {

3 bool bVar1;

4 char *__stream;

5 ...

6 while( true ) {

7 (*pcVar7)(__stream);

8 LAB_004a73cc:

9 iVar3 = \

10 flash2rootfs("/tmp/cfg.txt");

11 if (iVar3 != 0) break;

12 bVar1 = true;

13 pFVar4 = \

14 fopen64("/dev/console","a");

15 if (pFVar4 != (FILE *)0x0) {

16 uVar2 = getpid();

17 ...

18 fclose(pFVar4);

19 }

20 ...

21 }

(b) Ghidra snippet of ncc’s loadCfg function

1 undefined4 rootfs2flash(undefined4

param_1)

2 {

3 bool bVar1;

4 FILE *pFVar2;

5 ...

6 if (pFVar2 == (FILE *)0x0) {...}

7 else {

8 ...

9 pFVar2 = \

10 fopen64("/dev/mtdblock4","wb");

11 if (pFVar2 != (FILE *)0x0) {

12 ...

13 return 1;

14 }

15 ...

16 }

17 fputs("BUG ON!!\n",pFVar2);

18 fclose(pFVar2);

19 return 0;

20 }

(c) Ghidra snippet of ncc’s rootfs2flash

function

Figure 2: An example of a firmware re-hosting with FirmSolo. The firmware targets the D-Link DIR-826L Wi-Fi router. The

figure provides the serial log output of the firmware under test as well as the Ghidra snippets of the loadCfg and rootfs2flash

functions called by the ncc user program during the firmware’s initialization.

example, the combination of both user and kernel code being

re-hosted may result in different emulation speeds and thus in

a different amount of overall code executed at the same point in

time compared to only user code emulation. Thus, simply us-

ing ad hoc comparative methods such as the wall-clock time as

the common denominator to assess the progress of re-hosting

systems does not produce objective results. Instead, FICD

aims to detect the point (I f in) during the emulation of Fimage

where its initialization phase has finished. At I f in, full-system

re-hosting approaches can be compared using different metrics,

such as the number of executed user level programs, user and

kernel code coverage, or number of kernel modules loaded,

which we call emulation-basedmetrics. In Section 5.5 we

use these emulation-based metrics to compare the emula-

tion progress of Pandawan, Firmadyne, FirmAE and FirmSolo.

However, these metrics can of course be supplemented with

additional ones depending on the analysis’ requirements (see

Section 6). We note that I f in is not fixed (in time) for any two

re-hosting systems, especially if their emulation speed varies.

The rationale behind FICD is that all the firmware activity up

to the I f in point is automated via the configuration and startup

scripts within Fimage’s file-system. Beyond I f in, there is none to

little automated activity occurring, since IoT firmware primar-

ily invokes new functionality (i.e., tasks), such as setting new

firewall rules or recording a video, based on its interactions

with external actors (i.e., human interaction [27]). We consider

detecting events that lead to new activity after I f in as a problem

orthogonal to this research and we leave it as future work.

Since the activity after the firmware initialization phase

is limited, I f in can be considered as any point during the

emulation of Fimage after it has stopped executing new tasks.

Specifically, FICD defines a grace period (or time frame) t f

during which the emulation of Fimage can stay alive while

Fimage does not execute any new tasks (to see how we choose

t f refer to Section 5.5). If during the emulation of Fimage, time

greater than t f elapses without executing a new task, FICD

marks that point as I f in. Here, metrics can be collected and

compared. Even though I f in might not be fixed (timewise)

between different full-system re-hosting approaches that

emulate Fimage, it will always represent Fimage’s end of

initialization phase (regardless of the re-hosting framework).

3.2 Holistic Re-hosting & Analysis

As discussed previously, there is currently no prior work that

supports holistic firmware re-hosting and analysis. At first

glance, FirmSolo (see Section 2.4) seems to be readily capable

of supporting holistic firmware re-hosting and analysis by

emulating both firmware user and kernel (i.e., kernel module)

code. On the contrary though, our investigations reveal that

FirmSolo’s FSk kernels lack importantuser-code-required

functionality required by user code to execute.

Specifically, the absence of the user-code-required

functionality in the FSk kernels might result in firmware user

code to either prematurely terminate its execution or exhibit

unwanted behavior, such as getting stuck in an infinite loop.

We provide a motivating example of such a case for D-Link

DIR-826L Wi-Fi router firmware in Figure 2a. The example

illustrates the serial console output of Fimage’s emulation

run, where the capability to access a Memory Technology

Device (MTD) through a character device is missing from

the FSk kernel. As a result, the ncc program which handles

the configuration of the IoT device and uses character devices



to interact with the MTD peripheral, gets stuck in an infinite

loop when executed in FirmSolo (lines 7-9 in Figure 2a).

Specifically, ncc executes the loadCfg function which in

turn calls the rootfs2flash function. We provide the Ghidra

decompilation snippets for these functions in Figures 2b

and 2c. The loadCfg function calls flash2rootfs within

an infinite loop (lines 6-21 in Figure 2b) and exits the loop

only when flash2rootfs returns a non zero value (line 11

in Figure 2b). The return value of flash2rootfs depends

on the successful opening of the /dev/mtdblock4 character

device (lines 9-14 in Figure 2c). The ability to access a MTD

peripheral through a character device is included in the kernel

via the CONFIG_MTD_CHAR configuration option. As none of

the firmware kernel modules use any functionality guarded

by CONFIG_MTD_CHAR, FirmSolo did not enable this config-

uration option in its FSk kernel. In Section 3.2.2, we explain

how Kernel Augmentation adds user-code-required

functionality (e.g., CONFIG_MTD_CHAR) required by user level

firmware programs to execute successfully, into Pandawan’s

kernels. Next, we detail Pandawan’s components.

3.2.1 Preprocessing

Based on our observations (see Section 5.3) vendors use sim-

ilar configuration parameters (options) to configure their IoT

firmware kernels (IoTk). In particular, it is common for privi-

leged firmware code of different IoT devices to share the same

capabilities, such as supporting MTD peripherals or network-

ing subsystems (i.e., netfilter), which are accessed by user

code. Thus, by knowing the configuration of the IoTk kernels of

firmware images we also acquire the user-code-required

functionality required by user code to execute. This

user-code-required functionality is crucial for firmware

images without a KALLSYMS entry. The KALLSYMS entry is a ta-

ble containing information about the kernel symbols exported

by the kernel (and thus about its configuration). The entry is op-

tionally embedded in the kernel binary if the kernel is compiled

with the CONFIG_KALLSYMS configuration option. We consider

the configuration of the IoTk kernels of firmware images with-

out a KALLSYMS entry partially known since the only source

about these images’ kernel configuration originates from

their kernel modules. Thus, to account for the missing kernel

configuration (and in turn user-code-required functional-

ity) from these firmware images, Pandawan collects popular

configuration options from the IoTk kernels of firmware

images with a KALLSYMS entry. Then, Pandawan enables these

options in its PWk kernels for the firmware images without

a KALLSYMS entry, to provide the user-code-required

functionality needed by user code to execute.

3.2.2 Kernel Augmentation

Component 1 is responsible for supplementing the FSk

kernel of Fimage with user-code-required functionality

generally used by user code. The product of component 1

is the PWk kernel for Fimage, which is conducive to holistic

firmware code emulation and analysis.

To produce the PWk kernel for Fimage, Pandawan follows

these five steps: S1 : Extract the file-system of Fimage and

gather metadata information, such as the KALLSYMS entry from

the IoTk kernel (if both the kernel and entry exist in Fimage).

S2 : Furthermore, to aid the loading process of additional ker-

nel modules, supplement PWk kernels (their code) with “stubs”

of symbols that are not present in the upstream kernel source

code, but required by Fimage’s kernel modules. S3 : Build the

upstream counterparts (UPkos) of open-source kernel modules

within Fimage’s file-system. The UPkos modules are compiled

with debugging information available (i.e., DWARF). We note

here that S3 and S4 will only executed for firmware images

that do not have an available KALLSYMS entry. We consider

the kernel configuration of firmware images with a KALLSYMS

entry to be “fully” known. Particularly, the entry reveals infor-

mation about the specific symbols needed by both the user and

kernel code in these images. In these cases, the respective con-

figuration options for these symbols (also used in the IoTk ker-

nels) will be added (by default) in S5 in the PWk kernels. S4 :

Invoke the Oracle process with the UPkos modules and either

the MIPS or ARM configuration option pool (depending on

Fimage’s architecture). The Oracle is a filtering process which

checks and removes configuration options from the MIPS or

ARM pools that affect the layout of kernel data structures used

by the UPkos modules (produced in S2 ). S5 : Finally, feed the

“safe” configuration options that remain from S4 to its kernel

configuration and build process to produce the PWk kernels.

3.2.3 Firmware Re-hosting & Analysis

In component 2 , Pandawan relies on the custom file-system

creation and network configuration logic of FirmAE [28] to

produce a dedicated PyPANDA script for Fimage (see Sec-

tion 4.2.3). We note here that the custom file-system also

supports Pandawan’s (and FirmSolo’s) kernel module load-

ing logic. Next, Pandawan uses the modified file-system, the

PWk kernel and the PyPANDA script to emulate Fimage un-

der PyPANDA and conduct a series of analyses on the target

firmware using PyPANDA’s plugins. Examples of the analyses

implemented are the collection of coverage about the user code

executed during the firmware emulation, such as the executed

program names and their executed QEMU Translation Block

(TB) addresses, and the tracing of system calls (i.e., ID and

arguments) invoked by user code during the emulation.

Furthermore, through its holistic re-hosting, Pandawan cap-

tures the interactions between the user code and kernel code.

This introspection provides information about the inner work-

ings of both the user and privileged code of Fimage, which can

then be used by dynamic analysis systems to thoroughly an-

alyze Fimage. Since prior works only focus on one aspect of

the firmware; either the user or the privileged level, they lack



insights about how both these firmware aspects actually work

together. Thus, these approaches have to resort to heuristics or

impose limitations during their firmware analysis. For example,

FirmSolo does not have the ability to extract information about

system calls that interact with the kernel modules. It is limited

only to fuzzing these modules through their IOCTL interface.

On the contrary, Pandawan does not suffer from these

limitations. Instead, Pandawan makes use of its OS intro-

spection capabilities to trace the system calls of processes

that lead to the execution of code in kernel modules. These

traces expose entry points (i.e., through the system calls and

their arguments) from user space to kernel space. Pandawan

relies on these entry points to detect kernel modules in Fimage

that communicate with user code through a socket or a file

descriptor such as iptables.ko and gpio.ko, respectively.

Next, Pandawan uses this information to create seeds for

a modified version of the TriforceAFL kernel fuzzer that

supports fuzzing MIPS and ARM IoT kernel modules, to

analyze the kernel modules in Fimage.

4 Implementation

In this Section, we discuss the implementation details behind

FICD and Pandawan.

4.1 Firmware Initialization Completion

Detection

FICD seeks to identify the reference point I f in in the emulation

of a firmware image where the firmware completed its

initialization phase. To this end, FICD considers that a

firmware image reached I f in if no previously unseen (i.e.,

unique) tasks are launched within t f seconds. We refer to t f as

the time frame parameter. To assess whether a task is unique,

FICD uses the Levenshtein2 edit distance (ed) to check the

similarity of a task executed at a given point in time with all

the tasks that have been executed prior to that point. We define

a task (t) as previously unseen if it has a similarity below a

certain threshold h (see Section 5.5) with all the previously

executed tasks. That is, t is previously unseen iff ∀ti ed(t,ti)<h

where ti refers to all tasks started before t. The use of ed rather

than strict equality is crucial to mitigate cases where nearly

identical tasks (e.g., /bin/iptables -t filter -F and

/bin/iptables -t nat -F) impact the discovery of the

I f in point. Our implementation of FICD uses a thread that

runs alongside the main emulation and evaluates the above

expression every five seconds. Once t f expired without a

previously unseen task being launched, FICD declares I f in

reached and signals that measurements can be taken.

4.2 Holistic Re-hosting & Analysis

Next we provide the implementation details behind Pandawan.

Since Pandawan uses FirmSolo as its foundation to configure

and build its PWk kernels,Pandawan reuses FirmSolo’s reverse

engineering and hybrid kernel configuration and build process.

2https://www.cuelogic.com/blog/the-levenshtein-algorithm

4.2.1 Preprocessing

Before proceeding to the execution of Pandawan’s compo-

nents we first execute the Preprocessing step. In this step we

pre-compute the user-code-required functionality that

needs to be included in the PWk kernels in component 1 to

support the successful re-hosting of user code. Specifically, we

extract the KALLSYMS kernel symbols (where available) from

all the available IoTk kernels in our dataset (950 kernels). Then,

we group the symbols into two sets SMIPS and SARM matching

the IoTk kernel architecture respectively. Next, we use

FirmSolo’s symbol-to-configuration-option mapping

mechanism to map each symbol s in SMIPS and SARM to the

corresponding configuration option that guards s’s implemen-

tation in the kernel source code. This yields two pools (sets) of

configuration options, one for MIPS (OMIPS) and one for ARM

(OARM). These pools represent the user-code-required

functionality that is added to the PWk kernels in component 1 .

4.2.2 Kernel Augmentation

In component 1 , Pandawan consumes a binary firmware

image Fimage as input and invokes the Kernel Augmentation

(KA) technique. The goal of KA is to produce the PWk kernels

that are conducive to holistic firmware code emulation and

analysis. The KA phase consists of five steps:

Step S1 In this step, Pandawan executes its metadata gath-

ering process for Fimage. This process extracts the file-system

of Fimage, metadata information such as IoTk’s KALLSYMS

symbol entry (if both IoTk and the entry are available) and

also maps these symbols to their corresponding configuration

options in the kernel source code.

Step S2 To improve its kernel module re-hosting ca-

pabilities, Pandawan implements the technique used by

EASIER [38] for loading out-of-tree kernel modules. Specif-

ically, Pandawan supplements the PWk kernels with “stubs”

of kernel symbols (not present in the upstream kernel source

code) required by Fimage’s kernel modules. Pandawan detects

these symbols in step S1 . The symbol stubs simply return

a NULL value and make the corresponding symbol available

to the kernel modules through the kernel’s EXPORT_SYMBOL

macro. Without these symbol stubs the kernel modules would

immediately fail to load during the kernel module loading

process. Next, if Fimage contains a KALLSYMS entry, Pandawan

immediately skips to step S5 .

Step S3 Pandawan executes its kernel build process to build

and acquire the upstream versions (UPkos) of open-source

kernel modules within Fimage (since Pandawan, like FirmSolo,

uses the upstream version of the IoTk kernel). The UPkos

kernel modules are compiled with debugging information

enabled (DWARF), required in step S4 .

Step S4 In this step, Pandawan invokes the Oracle process

whose goal is to provide the necessary user-code-required

functionality to each PWk kernel. First though, Oracle makes



sure to filter out any option o∈OMIPS (or OARM) that affects

the layout of kernel data structures used by the kernel modules

within Fimage. If the PWk kernel and Fimage’s kernel modules

do not agree about the layout of their common data structures,

then misaligned data structure member accesses and in turn

kernel module crashes might occur during emulation.

To this end, Oracle uses the DWARF information from

the UPkos kernel modules compiled in S3 and extracts the

data structures used by Fimage’s kernel modules. The intuition

behind this process is that both the UPkos modules and their

open-source counterparts within Fimage (if they are unmodified)

make use of the same data structures since they share the same

source code. Afterwards, Oracle parses the upstream kernel

modules’ source code and detects all the configuration options

(Oups) that modify the layout of the data structures (DS) used

by these modules (also used by their counterpart modules in

Fimage). These options are considered “unsafe” since, if they

were included in Pandawan’s kernel build process, they would

misalign the layout of these data structures. Next, Oracle pro-

ceeds to filter out any configuration options from OMIPS/ARM

that belong to the set Oups. We consider the remaining config-

uration options (Osa f e=OMIPS/ARM−OUP) as “safe” options

that can be included in Pandawan’s kernel build process

to supplement its kernels with the user-code-required

functionality. We note that Oracle cannot detect the data struc-

tures exclusively used by the proprietary kernel modules in

Fimage since these modules do not have a counterpart in UPkos.

However, these modules can indirectly benefit from the Oracle

process if they use any data structures in DS, since Oracle

prevents these data structures from becoming misaligned.

Step S5 Finally, Pandawan includes the Osa f e options in

its kernel build process. Next Pandawan produces the PWk

kernels which are conducive to both user and kernel (in the

form of binary kernel modules) code re-hosting. For images

that contain KALLSYMS in their kernels, Oracle is redundant

as Pandawan simply obtains all the necessary configuration

options corresponding to the symbols in KALLSYMS during S1 .

4.2.3 Firmware Re-hosting & Analysis

The goal of component 2 of Pandawan is to initiate an em-

ulation run using a modified version of Fimage’s file-system

(Ff s ), the PWk kernel and a dedicated PyPANDA script and

analyze Fimage using PyPANDA’s plugins. Component 2 is a

two-pronged process; 1) Pandawan creates the Ff s file-system

and PyPANDA script for Fimage, and 2) it holistically emulates

and analyzes Fimage’s code with PyPANDA and TriforceAFL.

File-system and PyPANDA script creation. At first,

Pandawan uses the custom file-system and network config-

uration process of FirmAE to create the Ff s file-system and

set the network connectivity of Fimage. Specifically, the custom

file-system creation process proceeds as follows. Similar to

FirmAE and FirmSolo, Pandawan uses binwalk3 to extract

Fimage’s file-system, but ensures that it supports Pandawan’s

kernel module loading logic. The Ff s file-system also contains

a custom serial console binary, which Pandawan uses to issue

commands to the emulated firmware (e.g., run TriforceAFL’s

fuzzing harness). Since the original startup scripts within the

Ff s file-system are responsible for loading any of the kernel

modules, Pandawan has to ensure that these scripts do not load

the kernel modules that crashed during the hybrid kernel build

process in S5 . Pandawan applies any kernel module substitu-

tions in-place, meaning that if a kernel module c that crashed

during S5 has a substitution s (i.e., a counterpart in UPkos),

then c is replaced by s within Ff s, else c is deleted from Ff s

altogether. Thus, when a startup script attempts to load c during

emulation, it will either load s instead or no module at all.

To infer the networking configuration of Fimage, Pandawan

initiates an emulation run with the Ff s file-system, the PWk

kernel and QEMU. During emulation, Pandawan gathers in-

formation about the networking interfaces (e.g., bridge mode)

and IP configuration of Fimage. Finally, Pandawan embeds

Fimage’s network configuration within a PyPANDA script, used

to emulate and analyze Fimage with PyPANDA and its plugins.

Pandawan also addresses kernel module crashes that occur

during its re-hosting experiments (see Section 5.3). In these

cases, Pandawan first uses FirmSolo’s data structure layout

recovery mechanism to address the errors. If the crashes per-

sist then Pandawan, during the creation of Ff s, substitutes the

crashing modules with their counterparts inUPkos (if they exist)

else it removes the crashing modules from Ff s entirely.

Holistic Re-hosting & Analysis. Next, Pandawan initiates

a firmware emulation run using the PWk kernel, the Ff s

file-system and PyPANDA. During emulation, Pandawan

enables the OS introspection (Py)PANDA plugins osi_linux

(enabled by default), coverage, and syscalls_logger to

analyze Fimage. Primarily, the information collected are the

executed program names, their executed QEMU Translation

Blocks (TBs), and the system calls (ID and arguments) that

were invoked by user code during the emulation. We note

here that we modified PyPANDA’s coverage plugin, in its

summary mode, to not only provide information about the

programs and the number of unique TBs executed, but also the

addresses of the TBs along with their origin (e.g., the program

itself or the symlink target if the program is a link). Pandawan

also introduces two additional custom plugins; the FICD and

the SyscallToKmodTracer.

As the name suggests the former plugin implements

the FICD technique in Pandawan, while the goal of

the SyscallToKmodTracer is to showcase Pandawan’s

utility in holistic firmware analysis. Specifically,

SyscallToKmodTracer traces system calls invoked by

user code that lead to the execution of code in kernel modules.

These traces expose entry points from user level to kernel level,

3https://github.com/ReFirmLabs/binwalk



which Pandawan transforms into seeds for the TriforceAFL

kernel fuzzer to analyze the binary kernel modules. Essentially,

Pandawan leverages the hooking infrastructure of PyPANDA

to hook all system calls. Upon entering a system call, the

corresponding hook triggers and Pandawan stores information

about the execution context at the time (i.e., the current

process name, its pid and creation time) and correlates the

running system call (ID) with that context. Keeping track of

the different execution contexts and their running system

calls is mandatory, since the kernel can alternate between

different contexts via context switches. Pandawan uses this

information to detect the context in which the kernel module

code is executed in and also the system call that led to the

execution of that kernel module code.

To detect when kernel module code is executed, Pandawan

also places a hook on memory regions occupied by kernel

modules depending on the underlying architecture of Fimage

(e.g., 0xc0000000 - 0xc2000000 for MIPS). Specifically, if

a system call leads to code residing in these regions then the

aforementioned hook will trigger. Within the hook, Pandawan

checks the current execution context and iterates all the

previously traced execution contexts (captured by the system

call hooks) until it finds a match. When it does, Pandawan

correlates the current kernel module code address (i.e., the

start of the TB currently executed) with the current execution

context and the (running) system call associated with that

context. The aforementioned system call is considered the one

that led to the kernel module code execution.

Seed Creation. However, to create useful seeds for the

TriforceAFL fuzzer, Pandawan also requires information

about the arguments (i.e., values) of the system calls that lead

to the execution of kernel module code. Another PyPANDA

plugin, the syscalls_logger, is responsible for collecting

the arguments of all the system calls executed during the

emulation. Pandawan combines the data collected by the

syscalls_logger and SyscallToKmodTracer plugins to

create seeds and fuzz the firmware kernel modules. Seed

generation for fuzzers is not a new research topic. Prior

works [3, 9, 37, 42, 53] leverage either system call traces,

concolic execution or static analysis to extract information

about the program execution and use it to create seeds for

popular fuzzers such as syzkaller [23] or AFL/AFL++ [21,51].

Our approach is similar to [37] in the sense that it relies

on system call traces to create seeds for the TriforceAFL

kernel fuzzer. However, we target only kernel modules that

are accessed by system calls either through a socket or a

file descriptor since TriforceAFL’s fuzzing agent [35] is

inherently compatible with these types of system calls.

As we show in Section 5, the majority of TriforceAFL

compatible system calls (sc) that lead to kernel module

code execution are networking (e.g., sys_setsockopt) or

file-based system calls (e.g., sys_write). Thus, to create

valid seeds for the fuzzer, Pandawan first has to detect which

sys_socket and sys_open system call creates the file

descriptor accessed by each sc, respectively. To gain

this information, Pandawan leverages the first argument

of a sc which corresponds to the file descriptor number

f d. Then for each sc, Pandawan parses the information of

syscalls_logger and detects the sys_socket or sys_open

system call that was invoked by the same process as sc and

returned a value equal to f d. System calls that operate on the

same f d are grouped together in the same seed.

Fuzzing. To start fuzzing the kernel modules in Fimage,

Pandawan runs the PWk kernel along with the Ff s file-system

and the seeds found previously under TriforceAFL. The I f in

point for Fimage plays a critical role also in this scenario. In

particular, Pandawan spawns a thread that runs alongside the

TriforceAFL process and waits until Fimage reaches its I f in

point, since all the target kernel modules would be loaded by

that point. Then, the thread connects through a UNIX socket

to the custom serial console within the Ff s file-system and

initiates the fuzzing harness to begin the kernel module

fuzzing. We note here that Pandawan limits the range of

system calls that the fuzzing harness can execute to the

twelve system calls illustrated in Table 6 in Appendix C. The

rationale behind this limitation is to only execute system calls

compatible with TriforceAFL’s fuzzing agent.

5 Evaluation

In this Section, we first evaluate Pandawan’s effectiveness on

holistic IoT firmware re-hosting and analysis and then FICD’s

capability to meaningfully compare full-system re-hosting

approaches. Specifically, we answer the following three

research questions:

RQ1 Is Pandawan capable of holistically re-hosting firmware

code (§ 5.3)?

RQ2 How effective is Pandawan on enabling holistic firmware

analysis (§ 5.4)?

RQ3 How efficient is FICD when it comes to quantifying the

forward progress in full-system IoT firmware re-hosting

(§ 5.5)?

First, we describe our dataset and our experimental setup,

then we detail the experiments we use to evaluate Pandawan

and finally discuss the comparative experiments with FICD.

5.1 Dataset

For our evaluation, we use the dataset of FirmSolo and a subset

of firmware images used in Greenhouse [46]. The Greenhouse

dataset was shared with us upon request to the authors. We use

the FirmSolo dataset since it is supported by FirmSolo, Firma-

dyne, and FirmAE. We do not use the entire Greenhouse dataset

(consisting of 7,347 firmware images) since the majority of

the images use the same kernel version as the images in the

FirmSolo dataset. Instead, we pick at random 50 images from

the 97 images that use a kernel version between 4.4.198 (lat-

est version used by FirmSolo) and 4.9.206 (the latest kernel



version used by the ARM/MIPS 32bit images in Greenhouse).

Our dataset consists of 1,520 firmware images containing a

total of 61,319 binary kernel modules. The firmware images

in the dataset target the MIPS (984 images) and the ARM

(536 images) platforms. Finally, the firmware images span a

total of 95 unique Linux kernel versions, ranging from version

2.6.18 to version 4.9.206.

5.2 Experimental Setup

We run all our experiments Intel Xeon machines using 2

cores with minimum of 16GB of RAM. All of our re-hosting

experiments consist of three runs and the results correspond

to the averages across these runs.

5.3 Holistic Re-hosting

In this section we evaluate the 1 Kernel Augmentation

and 2 Firmware Re-hosting & Analysis components of

Pandawan to answer RQ1.

Preprocessing. We execute this step only once in our

experiments, to generate the configuration option pools

OMIPS and OARM , which constitute the user-code-required

functionality that is added in the PWk kernels in component

1 . We include these configuration option pools as part

of Pandawan’s repository. During this step, we extract 754

options in the OMIPS and 726 options in the OARM pools,

respectively. We opt to only keep the most popular options in

both sets. In Figures 3a and 3b in Appendix A, we provide the

Cumulative Distribution Function (CDF) of the configuration

options in OMIPS and OARM pools, respectively, over the

images that have KALLSYMS available. To find the most popular

options in each pool we use the Kneedle algorithm [40] to

deduce the “knee” points in both figures (marked with the red

lines). We filter out the options that reside beneath these knee

points. Specifically, the knee point in Figure 3a is 30 (images),

418 (options), while the knee point in Figure 3b is 85 (images),

513 (options). In the end, 336 (754 - 418) and 213 (726 - 513)

options remain in the OMIPS and OARM pools, respectively.

Kernel Augmentation. Regarding the unresolved symbols

required by kernel modules to load into the PWk kernels,

Pandawan successfully adds the stubs for all these 4,254

unique symbols into the PWk kernels’ source code. Next, we

evaluate the Oracle only on the subset of 570 (38%) firmware

images that do not contain a KALLSYMS entry, since the Oracle

only affects the PWk kernels produced for these images. After

S4 , 200 configuration options (out of OMIPS and OARM) on

average remain as the “safe” options that can be included

in S5 to produce the PWk kernels for the images without

a KALLSYMS entry. Regarding the 950 firmware images that

contain a KALLSYMS entry, there are no additional options

included in S5 , thus the PWk kernels are identical to the FSk

kernels produced (by default) by FirmSolo.

Network configuration. Since Pandawan leverages Fir-

mAE’s network configuration logic, every PyPANDA script by

default sets at least a networking interface in PANDA for each

firmware image. Unfortunately, we notice that the PyPANDA/-

PANDA emulation hangs for the ARM images in our dataset

that target the Versatile and Realview platforms (498/536

images) when the networking interfaces are enabled. The re-

maining 38 images target the “dummy” virtQEMU platform

and are unaffected. Since FirmAE’s pre-built ARM kernel

targets the virt platform, FirmAE does not suffer from the

same issue. Thus, we disable these interfaces for the affected

images to successfully re-host them with Pandawan. We have

notified the PyPANDA/PANDA developers about this issue.

Re-Hosting Success. Component 2 of Pandawan is

responsible for initiating an emulation run, using the Ff s

file-system and the PWk kernels while concurrently enabling

PyPANDA’s OS level introspection and analysis plugins.

Pandawan successfully re-hosts 1,389 (91%) of all the images

in our dataset. We define as successfully re-hosted all the cases

where the emulation successfully executed initwithout pan-

icking or freezing. Unfortunately,Pandawan cannot re-host the

remaining 123 firmware images since for 38 images there is no

working init script available in the file-system, init immedi-

ately crashes for 12 images or important libraries are missing

in the file-system for 11 images. Additionally, 29 images use

a kernel with MIPS Thread Context, a feature that improves

parallelism in MIPS systems, but not supported by QEMU.

Furthermore, 2 images use a very old kernel version (2.6.18),

resulting in the emulation freezing while the kernel boots up.

We also notice 13 cases where the kernel cannot not mount the

file-system because the latter is corrupted and 8 cases where

the kernel hangs while mounting the file-system. Finally, Py-

PANDA crashed for 18 images during emulation, while trigger-

ing a bug in its osi_linux plugin (used by default by PANDA).

We have notified the (Py)PANDA developers about the issue.

Since these failures are not specific to Pandawan’s implemen-

tation, we do not consider them as a limitation of our work.

Serial Console Connectivity. As discussed in Section 4.2.3,

to run the fuzzing harness within a target firmware image,

Pandawan has to first connect through a UNIX socket to a

custom serial console within the image’s file-system. To

discover the number of firmware images that are accessible

through their serial console, we conduct an experiment where

we emulate each firmware image with Pandawan and attempt

to connect to its serial console through a UNIX socket after

30 seconds of emulation time and run a dummy command

(e.g., /bin/ls). A successful connection with a serial console

means that we get the output of the dummy command in the

serial log output of the firmware image. We are able connect

to the serial console of 1,200 (86%) out of the 1,389 firmware

images that Pandawan successfully re-hosts. We “break down”

the reasons behind the console connectivity issues for the 189

failed cases in Table 5 in Appendix B.

Kernel Module Re-hosting. During the firmware emulation

runs in component 2 , Pandawan loads 14,413 (24%) kernel

modules out of the 61,319 IoT kernel modules in our dataset.

As illustrated in [1], the configuration and bootup scripts



Plugins I f in Avg. (sec) Overhead (%)

All 496 22

No syscall_logger 496 22

No coverage 460 13

No SyscallToKmodTracer 440 8

Only coverage 462 14

Only SyscallToKmodTracer 456 12

Only syscall_logger 413 2

Only FICD 407 0

Frameworks

FirmSolo 476 17

Firmadyne 441 9

FirmAE 477 17

Table 1: Pandawan’s plugin performance ablation study.

The experiment includes every plugin combination used

by Pandawan. The second column provides the average I f in

points marked by FICD for every plugin combination. The

third column provides the performance overhead incurred by

each plugin combination. The table also includes the average

I f in measured for FirmSolo, Firmadyne and FirmAE on the

same dataset with all the plugins enabled.

dictate which kernel modules will be loaded into the kernel

during the firmware initialization, which is merely a fraction

of all the kernel modules in the images’ file-systems. Finally,

Pandawan executes 336 kernel module TBs on average.

In cases where kernel module crashes occur during

emulation, Pandawan uses its custom crash solving method

(see Section 4.2.3) to address the issue. In total, Pandawan

addreses 249 kernel module errors.

User Code Re-hosting. When considering its user code

re-hosting capabilities, Pandawan executes 30 user level pro-

grams and 15,671 unique QEMU TBs on average. The startup

scripts within the firmware images dictate which programs are

executed during bootup. We make sure to substitute symlinks

with their actual targets in our results so that the TBs executed

get attributed to their actual origin. For example, if the firmware

executes /bin/ls which is a symlink to /bin/busybox, we

only include and count the TBs executed towards the busybox

executable in our results. Note that each TB is attributed only

once (counted one time only) to their origin. For instance, a

TB that belongs to a shared library and executed by multiple

programs will only be counted once towards the shared library

it belongs to. In Section 5.5, we discuss how these results

compare against Firmadyne, FirmAE and FirmSolo.

Kernel Augmentation Ablation Study. To demonstrate

the contribution of KA in firmware re-hosting, we also con-

duct an ablation study where we measure the effective-

ness of the two key features of KA: 1) The addition of the

user-code-required functionality by the Oracle and 2)

the addition of the kernel symbol stubs (required by kernel

modules to load into the kernel). For this experiment we use

a smaller dataset of 150 firmware images (100 images with-

out KALLSYMS and 50 images with KALLSYMS). We bias our

selection towards images without KALLSYMS since KA benefits

these images the most. We present the results of this study in

Table 3 in the third group column. Based on our results the

contribution of KA is apparent when taking into account all

Module Type Vendor Kernel Paths Path var (std) Bugs

MIPS

arp_tables O AT&T 2.6.31 121 43 (7) 2

led P Linksys 2.6.31 26 39 (6) 1

ipt_STAT P TP-Link 2.6.36 59 28 (5) 1

x_tables O TP-Link 2.6.31 153 134 (12) 1

statistics P TP-Link 2.6.31 166 81 (9) 1

ip6_tables O AT&T 2.6.30.10 252 129 (11) 2

ipv6_spi P Netgear 2.6.30 43 245 (16) 2

ip_tables O TP-Link 2.6.31 202 19 (4) 2

gpio P DLink 2.6.31 31 18 (4) 1

gpio_module P DLink 2.6.31 5 0 (1) 1

ARM

ipt_STAT P TP-Link 2.6.32.11 56 47 (7) 1

statistics P TP-Link 2.6.36.4 25 121 (11) 1

Total 16

Table 2: Statistics about the fuzzing experiments with

TriforceAFL. The O and P in column two represent kernel

modules that are open-source and proprietary, respectively.

Column six provides the variance and standard deviation for

the paths found by the fuzzer over the ten runs.

of our metrics. Specifically, Pandawan with KA executes 6%

more user level programs and executes 11% more TBs than

Pandawan without KA (i.e., FirmSolo), while also loading 3%

more kernel modules and executing 17% more kernel module

TBs. Finally, our experiments show that the addition of only the

user-code-required functionality by the Oracle is more

beneficial than simply adding the kernel symbol stubs, since

the majority of the metrics are the closest to Pandawanwith KA.

Specifically,Pandawanwith only theOracle enabled manages

to surpass Pandawanwith KA in kernel module loading by 1%.

Upon further inspection, two images whose the kernel modules

crashed and deleted from the Ff s file-system (see Section 4.2.3)

during the emulation with Pandawanwith KA, skew the results

in favor of Pandawanwith only the Oracle enabled.

Plugin Overhead. To measure the performance overhead

of each PyPANDA plugin, we pinpoint the I f in points

using every possible combination of the plugins enabled in

Pandawan’s analysis (i.e., syscalls_logger, coverage and

SyscallToKmodTracer) excluding FICD which is responsi-

ble for determining the I f in points and thus is always enabled.

For this study we use again a smaller dataset of 150 images

(95 with KALLSYMS and 55 without KALLSYMS) that better

represents the distribution of the images in our dataset. We

provide the results in Table 1. When all the plugins are enabled

we notice a 22% slowdown compared to enabling only FICD.

This is expected since each plugin contributes an additional

level of analysis which impacts the overall emulation speed.

Specifically in our case, the most computational heavy

plugins are coverage and SyscallToKmodTracer since they

constantly track the execution of QEMU TBs during the em-

ulation, incurring a slowdown of 14% and 12%, when enabled

individually and a slowdown of 22% when both are enabled.

5.4 Holistic Analysis

To demonstrate Pandawan’s contribution to holistic firmware

analysis and answer RQ2, we evaluate how the information

collected by the SyscallToKmodTracer plugin is used to

further analyze the binary kernel modules with TriforceAFL.



Dataset All Images (/w cov) (1328) No KALLSYMS (/w cov) (456) KA Ablation Dataset (/w cov) (135)

Framework FD FAE FS P FD FAE FS P No KA KA w/o oracle KA w/o stubs KA

Avg. Progs 30 31 31 31 35 36 34 36 32 32 33 34

Avg. TBs 15,483 16,767 15,523 16,360 15,715 16,552 13,835 16,740 15,099 14,961 16,611 16,790

KOs Loaded 0 0 13,598 14,089 0 0 4,936 5,146 1,481 1,470 1,535 1,521

Avg. KOs TBs 0 0 323 336 0 0 200 251 266 322 280 310

Table 3: Comparison results between the Pandawan (P), Firmadyne (FD), FirmAE (FAE) and FirmSolo (FS) re-hosting frameworks.

The table depicts the average number of user programs and QEMU TBs executed, the number of kernel modules loaded and kernel

module TBs executed, for each system respectively. The green cells represent the best results for each metric. The bold values

represent the cases with statistical significance, where p-value p<0.05 (using the Wilcoxon signed-rank test).

Seed Generation. The SyscallToKmodTracer plugin

monitors the interactions between the user and kernel

code during the firmware emulation run in component

2 . Pandawan processes the information collected by the

SyscallToKmodTracer plugin (i.e., system calls that lead to

kernel module code execution) and generates seeds that are

used by TriforceAFL, as explained in Section 4.2.3.

During our experiments, the plugin identified 927 out of

the 1,389 successfully re-hosted firmware images that load

at least a kernel module. In addition, within these images,

353 processes invoke 6,954 system calls on average that lead

to kernel module code being executed. The remaining 462

firmware images did not successfully load kernel modules.

Unlike FirmSolo which targets only the IOCTL system

call, Pandawan can trace and generate seeds for all types of

system calls that interact with kernel modules. However, we

opt to create seeds only for cases involving popular system

calls that interact with kernel modules through a file descriptor

created either by a sys_socket or sys_open system call, due

to their compatibility with TriforceAFL’s fuzzing agent. We

also provide details about the system calls we did not fuzz in

Table 7 in Appendix C. In the end, Pandawan creates seeds for

479 images whose user code invokes system calls (see Table 6

in Appendix C) which lead to the execution of kernel module

code. Out of these images, 466 (97%) have serial console

connectivity, thus can be fuzzed by TriforceAFL.

Kernel Module Fuzzing. After the seed creation, Pandawan

uses TriforceAFL to fuzz the IoT modules within the firmware

images. We run all experiments ten times for 12 hours.

While Pandawan creates seeds for 479 firmware images,

we chose to fuzz only the kernel modules in a subset of 20

randomly selected firmware images (with serial console con-

nectivity to invoke the fuzzing harness) due to computational

resource constraints. We provide the information about our

fuzzing campaigns in Table 2. The table provides the average

number of paths found by TriforceAFL, the path variance and

standard deviation over the ten runs and the number of bugs

we confirmed, for each image. Based on the path variance and

standard deviation measured (see column six in Table 2), the

coverage found in all the fuzzing campaigns is consistent (the

variances and standard deviations are insignificant).

Specifically, TriforceAFL triggers 16 bugs in 12 kernel

modules (8 proprietary and 4 open-source – see Table 2).

The bugs fall into the stack corruption (6), arbitrary memory

reads and writes (7), and large virtual memory allocation (3)

categories. Three of these bugs (gpio (1) and ipv6_spi (2))

were also detected by FirmSolo. In addition, the seven bugs

triggered for the open source kernel modules (arp_tables (2),

ip6_tables (2), ip_tables (2), and x_tables (1)) are re-

lated to known bugs (CVE-2016-4998 and CVE-2016-3135),

which is why we did not report these bugs to the Linux kernel

developers. Finally, the six remaining bugs on the proprietary

kernel modules led (1) ipt_STAT (2), gpio_module (1),

statistics (2) are previously unknown bugs. We have

disclosed these bugs to the respective vendors, and two

vendors acknowledged our findings; TP-Link and DLink.

5.5 Comparative Results

The previous evaluation based on the coarse-grained “number-

of-bugs-found” metric shows that Pandawan finds more di-

verse bugs than FirmSolo. Even when it comes to bug find-

ing speed, Pandawan is four times faster on average than

FirmSolo (see Table 8 in Appendix E). However, FICD helps

to assess re-hosting process on a finer granularity than just

bugs found. Thus, in this Section, we evaluate FICD’s util-

ity in comparing full-system re-hosting approaches based

on the emulation-basedmetrics. Specifically, we compare

the Pandawan , FirmAE, Firmadyne and FirmSolo re-hosting

frameworks to answer RQ3.

As mentioned previously, the FICD technique requires two

parameters; 1) the task similarity threshold h for the Leven-

shtein edit distance (ed) which Pandawan uses to identify pre-

viously unseen tasks, and 2) the time frame t f which indicates

how long can the emulation continue without the firmware

executing a previously unseen task. For our experiments, we

set the threshold h equal to 0.5 (for all re-hosting frameworks)

and t f equal to 300 seconds for Pandawan and FirmSolo and

220 seconds for FirmAE and Firmadyne, respectively. To

obtain these values we initiate a ten minute experimental run

with FirmAE and Pandawan for all the images in the dataset,

without the FICD plugin enabled. We set the h and t f of Firma-

dyne and FirmSolo the same as FirmAE’s and Pandawan’s due

to the re-hosting similarities shared between the frameworks

(i.e., Firmadyne with FirmAE and FirmSolo with Pandawan).

To calculate the threshold h, we first sort all tasks based on

their creation time. Then, for each task in the sorted list we

use ed to calculate its similarity against all the tasks with an

earlier creation time, as a ratio between 0 and 1. According to



Figures 4a and 4b in Appendix D, almost 90% of the tasks have

a similarity less than 0.5 with any other task created earlier, for

both FirmAE and Pandawan, thus we choose h=0.5. Then, to

get the time frame t f , we measure the average t and standard

deviation (σ) of the time that passes between the execution of

previously unseen tasks. Based on the ten minute experiment

runs, FirmAE’s t = 52sec and σ = 81sec, while Pandawan’s

t = 69sec and σ = 115sec. To ensure statistical relevance

we choose a time frame t f > t+2σ, thus we set t f = 220sec

as our optimal time frame for FirmAE and Firmadyne and

t f =300sec for Pandawan and FirmSolo, respectively.

Re-hosting Fidelity Comparison. To showcase Pandawan’s

progress on holistic firmware re-hosting, we use theFICD

technique to compare it with the Firmadyne, FirmAE, and

FirmSolo re-hosting frameworks, based on the number of

executed user level programs (non symlinks), the QEMU TBs

executed in these programs, the number of kernel modules

loaded, and the kernel module TBs executed during emulation.

To make our comparison fair among all compared re-hosting

frameworks we only include images where we collected

coverage in all three emulation runs with a maximum total

emulation time of 45min for all frameworks. Thus, we compare

Pandawan , Firmadyne, FirmAE, and FirmSolo on 1,328 out of

the 1,520 images in our dataset. We note here that throughout

all our experiments FICD was successful in detecting the I f in

point for each framework and each image and terminating the

emulation way before the 45min global timeout (see Table 1).

Pandawan executes up to 3% more user level programs on

average than Firmadyne, FirmAE and FirmSolo (see column

group 1 in Table 3). Similarly, Pandawan outperforms both

Firmadyne and FirmSolo on the average number of TBs exe-

cuted by up to 5%. However, FirmAE executes 3% more TBs

on average than Pandawan. The predominant reasons behind

this outcome are twofold; 1) the emulation speed of Pandawan

is slower than FirmAE’s due to the SyscallToKmodTracer

affecting only Pandawan (and FirmSolo) which loads and an-

alyzes the IoT kernel modules, and 2) KA impacts negatively

the re-hosting progress. Since FirmAE and Firmadyne focus

solely on user level re-hosting and do not load any firmware

kernel modules, the plugin’s module TB tracing functionality is

ineffective for these frameworks. As illustrated in Table 1 both

Firmadyne and FirmAE are 13% and 4% faster than Pandawan

on average. In addition, for 36 out of the 1,328 images used in

the comparison experiments, the PWk kernels produce a crash

(i.e., Oops), while the FSk kernels do not suffer from the same

issue. The addition of the user-code-required functional-

ity and the kernel symbol “stubs” by KA hinders the re-hosting

progress of the images in these cases. This small regression

can be attributed to the heuristic nature of KA.

When it comes to the kernel module loading we compare

onlyPandawan and FirmSolo, since neither Firmadyne nor Fir-

mAE load IoT kernel modules. Specifically, Pandawan loads

6% more kernel modules and executes 5% more kernel mod-

ule TB’s on average than FirmSolo. To be fair towards Firm-

Data Avg. TBs

Framework FD FAE FS P

httpd 1,784 1,886 1,803 1,790

uhttpd 268 279 249 252

mini_httpd 751 782 743 744

lighttpd 2,281 2,448 2,267 2,270

goahead 194 198 188 185

httpd 699 637 596 595

Table 4: Coverage information of popular IoT webservers.

Solo we addressed the crashes during its emulation runs using

Pandawan’s crash solving methods (see Section 4.2.3). In this

case, we address 225 crashes in total.

Since Pandawan only includes the user-code-required

functionality in images without a KALLSYMS entry (see Sec-

tion 3.2.2), the improvements of Pandawan over FirmSolo

can be better observed on these images (see column group

2 in Table 3). In particular, Pandawan executes 6% more

user programs and 21% more TBs on average than FirmSolo.

Pandawan also outperforms FirmSolo on the number of kernel

modules loaded and kernel module TB’s executed by 9% and

26% on average, respectively. Both the user-code-required

functionality and the symbol “stubs” added by Pandawan in

the PWk kernels for these images, greatly benefit the progress

of holistic (user and kernel code) re-hosting as well as the

loading of additional kernel modules.

We also test the statistical significance of our results using

the Wilcoxon signed-rank test [45]. Specifically, for each met-

ric we compare Pandawan’s data with Firmadyne’s, FirmAE’s

and FirmSolo’s data (28 comparisons). We exclude the kernel

module related metrics (loaded and TBs executed) for Firma-

dyne and FAE since they do not load the IoT kernel modules.

We note that the majority of our measurements (24/28) are

statistically significant with a p-value p<0.05 (see Table 1).

Webserver Re-hosting. To further showcase the efficiency of

Pandawan in user code re-hosting, we conduct a study about

the re-hosting of webservers used by firmware images. We

provide the results in Table 4. Specifically, we collect coverage

information for 6 popular webservers used in IoT [28]. Our

findings show that FirmAE and Firmadyne which are the

state-of-the-art in user code re-hosting marginally outperform

Pandawan in re-hosting webservers by executing up to 8%

more QEMU TBs across all the servers in our study. Given the

fact that Pandawan aims to holistically re-host and analyze

Linux-based IoT firmware, Pandawan’s slight deficiency in

webserver re-hosting is an acceptable tradeoff. We leave the

qualitative analysis of the differences in webserver re-hosting

between the compared frameworks as future work.

6 Discussion

In this Section we discuss future applications of FICD and

Pandawan. With the introduction of FICD, developers can

efficiently improve upon the existing works by comparing

their implementations with the state-of-the-art. Furthermore,

Pandawan could be leveraged to develop future frameworks

whose re-hosting capabilities closely approximate physical

IoT devices. For instance, the re-hosting techniques imple-



mented in Honware [48] could be integrated into Pandawan to

further improve its holistic re-hosting capabilities. In addition,

the FICD and setup of Pandawan (i.e., using PyPANDA for

firmware emulation) are generic and OS agnostic. Thus, any

firmware that can be emulated by QEMU and uses a concept of

process/task (e.g., FreeRTOS [22]) can be adapted to leverage

FICD. Next, we explore the categories of metrics that could be

used to quantify re-hosting progress and lastly specify certain

limitations of both FICD and Pandawan.

Alternate Metrics. In general, we can distinguish the metrics

that quantify the emulation progress in two categories; system-

and process-oriented metrics. Our existing metrics; number of

programs executed and number of kernel modules loaded fall

into the system-oriented metrics, since they showcase emula-

tion progress from a higher (system) level of abstraction. Other

metrics in this category could be the number of networking

interfaces successfully initialized and/or the successful firewall

configuration (e.g., the number of successfully applied rules).

The average number of QEMU TBs traced belong in the

process-oriented (lower-level) metrics, since (Py)PANDA

correlates each TB executed to a running program or kernel

module. Another metric that could fit in this category is the

number and identity of successful and unsuccessful system

calls executed by each process. In summary, the metrics used in

this paper work well and other metrics can be easily integrated.

Regarding techniques to assess a successful firmware ini-

tialization, generally there is no reliable indicator to establish

the end of a firmware’s initialization phase. However, 33 of our

images print a specific message about the end of bootup and

timewise this message coincides with I f in- t f , thus I f in accu-

rately corresponds to these images’ end of initialization phase.

Limitations. As far as FICD’s limitations are concerned,

the time frame t f is directly dependent on which (Py)PANDA

plugins are enabled during a firmware emulation run.

When many computationally heavy plugins are enabled,

the emulation speed will decrease, thus t f requires an

adjustment. In our re-hosting experiments we use three

(Py)PANDA plugins (coverage, syscalls_logger, and

SyscallToKmodTracer) along with the FICD plugin, which

results in the optimal t f = 220sec and t f = 300sec for

FirmAE and Pandawan, respectively. Furthermore, Pandawan,

like other re-hosting frameworks, faces specific limitations.

Since the Oracle targets only the data structures used by

open-source kernel modules with a counterpart in UPkos, it

does not guarantee that the layout of data structures used by

proprietary kernel modules will be unaffected. The options

produced in S4 can potentially misalign the layout of data

structures used by proprietary kernel modules causing the

modules to crash during emulation. Furthermore, as shown

in Section 5.3 only a fraction of the total modules in the Ff s

file-systems are loaded during emulation by the firmwares’

bootup scripts. Consequently, the SyscallToKmodTracer

plugin only collects system call information for a subset

of user level programs that interact with the loaded kernel

modules during emulation. The kernel modules that are not

loaded and user level programs that are not executed during the

emulation do not contribute to the holistic firmware analysis.

7 Related Work

Benchmarking. These studies are important for establishing

reliable metrics for evaluating the contributions of works and

also setting the standards for future directions in a research

area. Both [29, 31] introduce metrics to evaluate the perfor-

mance and effectiveness (i.e., bug finding) of fuzzing tools

as well as guidelines that should be followed by future fuzzing

applications. AIR [52] proposes a metric to quantify the pro-

tection offered by Control Flow Integrity techniques on binary

executables. Similar to these works, FICD uses specific metrics

(i.e., the number of user level, user and kernel module code

coverage and number of kernel modules loaded) to evaluate

different approaches in the full-system re-hosting domain.

IoT Firmware Analysis. There are plenty of academic

works focusing on firmware analysis. On the one hand, static

analysis and symbolic execution [16, 25, 43, 44] are two of the

most prominent techniques for firmware analysis. While some

works rely solely on static analysis [13, 20] to analyze IoT

firmware, it is mostly used to aid symbolic executors [5, 6, 10]

to explore firmware code more efficiently.

On the other hand, dynamic analysis has also gained a

lot of popularity in the IoT firmware analysis landscape in

the past few years. Firmadyne [7] and FirmAE [28] are two

examples of frameworks which use firmware re-hosting at

their core to emulate IoT firmware and subject it to various

dynamic analyses, such as vulnerability and bug testing.

Similarly, Honware [48] relies on re-hosting techniques to

deploy emulated IoT firmware as honeypots on the Internet to

observe and study real world network attacks. FirmGuide [32]

is a re-hosting framework that semi-automatically creates

QEMU peripheral models to successfully re-host the Linux

IoT kernels of open-source firmware images (e.g., OpenWRT).

However, both the need for human intervention and source

code availability renders FirmGuide unable to re-host

proprietary firmware, unlike Pandawan. Finally, FirmSolo [1]

is a framework that re-hosts and enables the dynamic analysis

of IoT firmware binary kernel modules.

In contrast to Pandawan, which holistically re-hosts and ana-

lyzes IoT firmware, most of the works above focus exclusively

on either the user or the kernel level aspect of IoT firmware.

Hardware-In-The-Loop. Frameworks in this category

combine both a physical IoT device and re-hosting to dynami-

cally analyze binary IoT firmware. Specifically, AVATAR [50]

leverages the debugging interface (i.e., JTAG) of IoT devices

and the QEMU emulator (driven by a symbolic execution

engine) to forward I/O operations to the physical device while

the firmware code is executed within the emulator. Similarly,

SURROGATES [30] and Inception [12] follow a similar logic.

While effective at analyzing IoT firmware, these systems

are intrinsically limited in terms of scalability due to their



dependence on the IoT hardware.

Firmware Fuzzing. Both Greenhouse [46] and

EQUAFL [55] rely on user mode QEMU to emulate user level

firmware applications and analyze these applications through

fuzzing. EASIER [38] is a framework that loads binary kernel

modules on pre-configured Android kernels within an emu-

lated environment and analyzes these modules with AFL [51].

FirmAFL [54] combines a hybrid firmware re-hosting tech-

nique (user and full system mode) with fuzzing to analyze user

level firmware code. Fuzzware [41] is a system that relies on

dynamic symbolic execution (DSE) to infer hardware created

values (provided to the firmware through MMIO) which are

used to drive a fuzzer while analyzing the embedded firmware

code. On a similar fashion, Halucinator [11] uses Hardware Ab-

straction Layers (HALs) to model hardware peripherals along

with a fuzzer to dynamically analyze embedded firmware.

Unlike Pandawan, these systems are unable able or only suit-

able of analyzing specific categories of firmware kernel mod-

ules. Pandawan can load and analyze a variety of binary Linux

IoT kernel modules, due to its holistic analysis capabilities.

8 Conclusion

In this work, we present FICD, a technique that enables the

objective comparison of full-system re-hosting approaches

on their emulation capabilities. Also, we introduce Pandawan,

a framework that enables holistic re-hosting and analysis of

Linux-based IoT firmware. Pandawan, implements theKernel

Augmentation technique which produces kernels conducive

to holistic re-hosting and analysis. We use Pandawan to holis-

tically analyze IoT firmware and provide the information pro-

duced to the TriforceAFL fuzzer to analyze the firmware’s ker-

nel modules. Finally, we rely on FICD to showcase Pandawan’s

progress in firmware re-hosting by comparing it with the

Firmadyne FirmAE, and FirmSolo re-hosting frameworks.
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