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ABSTRACT

Text-to-Image Diffusion Models such as Stable-Diffusion and Imagen have
achieved unprecedented quality of photorealism with state-of-the-art FID scores
on MS-COCO and other generation benchmarks. Given a caption, image gen-
eration requires fine-grained knowledge about attributes such as object structure,
style, and viewpoint amongst others. Where does this information reside in text-
to-image generative models? In our paper, we tackle this question and understand
how knowledge corresponding to distinct visual attributes is stored in large-scale
text-to-image diffusion models. We adapt Causal Mediation Analysis for text-
to-image models and trace knowledge about distinct visual attributes to various
(causal) components in the (i) UNet and (ii) text-encoder of the diffusion model.
In particular, we show that unlike generative large-language models, knowledge
about different attributes is not localized in isolated components, but is instead
distributed amongst a set of components in the conditional UNet. These sets of
components are often distinct for different visual attributes (e.g., style / objects).
Remarkably, we find that the CLIP text-encoder in public text-to-image models
such as Stable-Diffusion contains only one causal state across different visual at-
tributes, and this is the first self-attention layer corresponding to the last subject
token of the attribute in the caption. This is in stark contrast to the causal states in
other language models which are often the mid-MLP layers. Based on this obser-
vation of only one causal state in the text-encoder, we introduce a fast, data-free
model editing method DIFF-QUICKFIX which can effectively edit concepts (re-
move or update knowledge) in text-to-image models. DIFF-QUICKFIX can edit
(ablate) concepts in under a second with a closed-form update, providing a signif-
icant 1000x speedup and comparable editing performance to existing fine-tuning
based editing methods.

1 INTRODUCTION

Text-to-Image generative models such as Stable-Diffusion (Rombach et al., 2021), Imagen (Saharia
et al., 2022) and DALLE (Ramesh et al., 2021) have revolutionized conditional image generation
in the last few years. These models have attracted a lot of attention due to their impressive im-
age generation and editing capabilities, obtaining state-of-the-art FID scores on common generation
benchmarks such as MS-COCO (Lin et al., 2014). Text-to-Image generation models are gener-
ally trained on billion-scale image-text pairs such as LAION-5B (Schuhmann et al., 2022) which
typically consist of a plethora of visual concepts encompassing color, artistic styles, objects, and
famous personalities, amongst others. Prior works (Carlini et al., 2023; Somepalli et al., 2023a;b)
have shown that text-to-image models such as Stable-Diffusion memorize various aspects of the
pre-training dataset. For example, given a caption from the LAION dataset, a model can generate
an exact image from the training dataset corresponding to the caption in certain cases (Carlini et al.,
2023). These observations reinforce that some form of knowledge corresponding to visual attributes
is stored in the parameter space of text-to-image model.

When an image is generated, it possesses visual attributes such as (but not limited to) the presence
of distinct objects with their own characteristics (such as color or texture), artistic style or scene
viewpoint. This attribute-specific information is usually specified in the conditioning textual prompt
to the UNet in text-to-image models which is used to pull relevant knowledge from the UNet to
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Figure 1: Causal Tracing in Text-to-Image Models for (i) UNet and (ii) Text-Encoder shows
that knowledge location matters, i.e., restoring causal layers in a corrupted model causes the
model to obey the prompt again, while restoring non-causal layers does not. (a) Clean Model:
We prompt a Stable-Diffusion model in the conventional way and generate an image as output. (b)
Corrupted Model: Token embeddings corresponding to attribute of interest are corrupted, leading to
a generated image that does not obey the prompt. (c) Restored (Causal) Model: Causal layer acti-
vations are now copied from the clean model to the corrupted model. We observe that the corrupted
model can now generate images with high fidelity to the original caption. (d) Restored (Non-Causal)
Model: Non-causal layer activations are copied from the clean model to the corrupted model, but we
now observe that the generated image does not obey the prompt. Note that a single layer is copied at
a time, and it can be from either the UNet (Option 1, solid violet arrow) or the text-encoder (Option
2, broken black arrow).

construct and subsequently generate an image. This leads to an important question: How and where
is knowledge corresponding to various visual attributes stored in text-to-image models?

In this work, we empirically study this question towards understanding how knowledge correspond-
ing to different visual attributes is stored in text-to-image models, using Stable Diffusion(Rombach
et al., 2021) as a representative model. In particular, we adapt Causal Mediation Analysis (Vig et al.,
2020; Pearl, 2013) for large-scale text-to-image diffusion models to identify specific causal compo-
nents in the (i) UNet and (ii) the text-encoder where visual attribute knowledge resides. Previously,
Causal Meditation Analysis has been used for understanding where factual knowledge is stored in
LLMs. In particular, (Meng et al., 2023) find that factual knowledge is localized and stored in the
mid-MLP layers of a LLM such as GPT-J (Wang & Komatsuzaki, 2021). Our work, however, paints
a different picture - for multimodal text-to-image models, we specifically find that knowledge is not
localized to one particular component. Instead, there exist various components in the UNet where
knowledge is stored. However, each of these components store attribute information with a different
efficacy and often different attributes have a distinct set of causal components where knowledge is
stored. For e.g., for style – we find that the first self-attention layer in the UNet stores style related
knowledge, however it is not causally important for other attributes such as objects, viewpoint or
action. To our surprise, we specifically find that the cross-attention layers are not causally important
states and a significant amount of knowledge is in fact stored in components such as the ResNet
blocks and the self-attention blocks.

Remarkably, in the text-encoder, we find that knowledge corresponding to distinct attributes is
strongly localized, contrary to the UNet. However unlike generative language models (Meng et al.,
2023) where the mid MLP layers are causal states, we find that the first self-attention layer is causal
in the CLIP based text-encoders of public text-to-image generative models (e.g., Stable-Diffusion).

Identification of local causal states in a given model has a crucial benefit: it allows for incorporating
controlled edits to the model by updating only a tiny fraction of the model parameters without any
fine-tuning. Using our observation that the text-encoder hosts only one localized causal state, we
introduce a new data-free and fast model editing method - DIFF-QUICKFIX which can edit concepts
in text-to-image models effectively using a closed-form update. In particular, we show that DIFF-
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QUICKFIX can (i) remove copyrighted styles, (ii) trademarked objects as well as (iii) update stale
knowledge 1000x faster than existing fine-tuning based editing methods such as (Kumari et al.,
2023; Gandikota et al., 2023a) with comparable or even better performance in some cases.

In summary, our contributions are as follows:

• We adapt Causal Mediation Analysis (Pearl, 2013; Vig et al., 2020) to large-scale text-to-
image models (with Stable-Diffusion as a representative model), and use it to trace knowl-
edge corresponding to various visual attributes in the UNet and text-encoder.

• We perform large-scale analysis of the identified causal components and shed light on the
knowledge flow corresponding to various visual attributes in the UNet and the text-encoder.

• Leveraging the interpretability observations of localized causal states in the text-encoder,
we develop a light-weight method DIFF-QUICKFIX which can edit various concepts in
text-to-image models in under a second, 1000x faster than existing concept ablating meth-
ods Kumari et al. (2023); Gandikota et al. (2023a).

2 RELATED WORKS

Text-to-Image Diffusion Models. In the last year, a large number of text-to-image models such
as Stable-Diffusion (Rombach et al., 2021), DALLE (Ramesh et al., 2021) , Imagen (Saharia et al.,
2022) and others (Balaji et al., 2023; Chang et al., 2023; Ding et al., 2022; Kang et al., 2023) have
been released. In addition, the open-source community has released DeepFloyd1 and Midjourney2

which can generate photorealistic images given a text prompt. While most of these models operate
in the latent space of the images, they differ in the text-encoder used. For e.g., Stable-Diffusion
uses CLIP for the text-encoder, whereas Imagen uses T5. These text-to-image diffusion models
have been used as a basis for various applications such as image-editing, semantic-segmentation,
object-detection, image restoration and zero-shot classification.

Intepretability of Text-to-Image Models. To our knowledge, few works delve into the mech-
anisms of large text-to-image models like Stable-Diffusion. DAAM (Tang et al., 2022) interprets
diffusion models by analyzing cross-attention maps between text tokens and images, emphasizing
their semantic accuracy for interpretation. In contrast, our approach focuses on comprehending
the inner workings of diffusion models by investigating the storage of visual knowledge related to
different attributes. We explore various model layers beyond just the cross-attention layer.

Editing Text-to-Image Models. Understanding knowledge storage in diffusion models has signif-
icant implications for model editing. This ability to modify a diffusion model’s behavior without
retraining from scratch were first explored in Concept-Ablation (Kumari et al., 2023) and Concept-
Erasure (Gandikota et al., 2023a). TIME (Orgad et al., 2023) is another model editing method
which translates between concepts by modifying the key and value matrices in cross-attention lay-
ers. However, the experiments in (Orgad et al., 2023) do not specifically target removing or updating
concepts such as those used in (Kumari et al., 2023; Gandikota et al., 2023a). We also acknowledge
concurrent works (Gandikota et al., 2023b) and (Arad et al., 2023) use a closed-form update on the
cross-attention layers and text-encoder respectively to ablate concepts. However, we note that our
work focuses primarily on first understanding how knowledge is stored in text-to-image models and
subsequently using this information to design a closed-form editing method for editing concepts.

3 CAUSAL TRACING FOR TEXT-TO-IMAGE GENERATIVE MODELS

In this section, we first provide a brief overview of diffusion models in Sec.(3.1). We then describe
how causal tracing is adapted to multimodal diffusion models such as Stable-Diffusion.

3.1 BACKGROUND

Diffusion models are inspired by non-equilibrium thermodynamics and specifically aim to learn to
denoise data through a number of steps. Usually, noise is added to the data following a Markov
chain across multiple time-steps t ∈ [0, T ]. Starting from an initial random real image x0, the noisy

1https://www.deepfloyd.ai
2https://www.midjourney.com/

3



Preprint

image at time-step t is defined as xt =
√
αtx0 +

√
(1− αt)ϵ. In particular, αt determines the

strength of the random Gaussian noise and it gradually decreases as the time-step increases such
that xT ∼ N (0, I). The denoising network denoted by ϵθ(xt, c, t) is pre-trained to denoise the
noisy image xt to obtain xt−1. Usually, the conditional input c to the denoising network ϵθ(.) is a
text-embedding of a caption c through a text-encoder c = vγ(c) which is paired with the original
real image x0. The pre-training objective for diffusion models can be defined as follows for a given
image-text pair denoted by (x, c):

L(x, c) = Eϵ,t||ϵ− ϵθ(xt, c, t)||22, (1)

where θ is the set of learnable parameters. For better training efficiency, the noising as well as the
denoising operation occurs in a latent space defined by z = E(x) Rombach et al. (2021). In this
case, the pre-training objective learns to denoise in the latent space as denoted by:

L(x, c) = Eϵ,t||ϵ− ϵθ(zt, c, t)||22, (2)

where zt = E(xt) and E is an encoder such as VQ-VAE (van den Oord et al., 2018). During
inference, where the objective is to synthesize an image given a text-condition c, a random Gaussian
noise xT ∼ N (0, I) is iteratively denoised for a fixed range of time-steps in order to produce the
final image. We provide more details on the pre-training and inference steps in Appendix L.

3.2 ADAPTING CAUSAL TRACING FOR TEXT-TO-IMAGE DIFFUSION MODELS

Causal Mediation Analysis (Pearl, 2013; Vig et al., 2020) is a method from causal inference that
studies the change in a response variable following an intervention on intermediate variables of
interest (mediators). One can think of the internal model components (e.g., specific neurons or layer
activations) as mediators along a directed acyclic graph between the input and output. For text-
to-image diffusion models, we use Causal Mediation Analysis to trace the causal effects of these
internal model components within the UNet and the text-encoder which contributes towards the
generation of images with specific visual attributes (e.g., objects, style). For example, we find the
subset of model components in the text-to-image model which are causal for generating images with
specific objects, styles, viewpoints, action or color.

Where is Causal Tracing Performed? We identify the causal model components in both the UNet
ϵθ and the text-encoder vγ . For ϵθ, we perform the causal tracing at the granularity of layers, whereas
for the text-encoder, causal tracing is performed at the granularity of hidden states of the token
embeddings in c across distinct layers. The UNet ϵθ consists of 70 unique layers distributed amongst
three types of blocks: (i) down-block; (ii) mid-block and (iii) up-block. Each of these
blocks contain varying number of cross-attention layers, self-attention layers and residual layers.
Fig 1 visualizes the internal states of the UNet and how causal tracing for knowledge attribution
is performed. For the text-encoder vγ , there are 12 blocks in total with each block consisting of a
self-attention layer and a MLP layer (see Fig 1). We highlight that the text-encoder in text-to-image
models such as Stable-Diffusion has a GPT-style architecture with a causal self-attention, though it’s
pre-trained without a language modeling objective. More details on the layers used in Appendix J.

Given a caption c, an image x is generated starting from some random Gaussian noise. This image
x encapsulates the visual properties embedded in the caption c. For e.g., the caption c can contain
information corresponding from objects to action etc. We specifically identify distinct components
in the UNet and the text-encoder which are causally responsible for these properties.

Creating the Probe Captions. We primarily focus on four different visual attributes for causal
tracing: (i) objects; (ii) style; (iii) color; and (iv) action. In particular, identifying the location
of knowledge storage for objects and style can be useful to perform post-hoc editing of diffusion
models to edit concepts (e.g., delete or update certain concepts). We provide the complete details
about the probe dataset used for causal tracing in Appendix A. The probe dataset also contains
additional captions for viewpoint and count attribute. However, we do not focus on them as often the
generations from the unedited model are erroneous for these attributes (see Appendix E for details).

3.3 TRACING KNOWLEDGE IN UNET

During inference, classifier-free guidance (Ho & Salimans, 2022) is used to regulate image-
generation by incorporating scores from the conditional and unconditional diffusion model at each
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Figure 2: Causal Tracing Results for the UNet: Knowledge is Distributed. The intensity of
the bars indicate the CLIP-Score between the generated image (after causal intervention) and the
original caption. For each attribute, we find that the causal states are distributed across the UNet and
the distribution varies amongst distinct attributes. For e.g., self-attn in the first layer is causal for
style, but not for objects, action or color. Similarly, mid-block cross-attn is causal for action, but not
for the other attributes. On the right-side, we visualize the images generated by (i) Original model;
(ii) Corrupted Model; (iii) Restored causal states and (iv) Restored non-causal states in the UNet for
style, action, object, color attributes.

of the time-steps. In particular, at each time-step, classifier-free guidance is used in the following
way to combine the conditional (ϵθ(zt, c, t)) and unconditional score estimates (ϵθ(zt, t)) at each
time-step t to obtain the combined score denoted as ϵ̂(zt, c, t):

ϵ̂θ(zt, c, t) = ϵθ(zt, c, t) + α(ϵθ(zt, c, t)− ϵθ(zt, t)), ∀t ∈ [T, 1]. (3)

This combined score is used to update the latent zt using DDIM sampling (Song et al., 2020) at each
time-step iteratively to obtain the final latent code z0.

To perform causal tracing on the UNet ϵθ (see Fig 1 for visualization), we perform a sequence of
operations that is somewhat analogous to earlier work from (Meng et al., 2023) which investigated
knowledge-tracing in large language models. We consider three types of model configurations: (i) a
clean model ϵθ, where classifier-free guidance is used as default; (ii) a corrupted model ϵcorrθ , where
the word embedding of the subject (e.g., Van Gogh) of a given attribute (e.g., style) corresponding to
a caption c is corrupted with Gaussian Noise; and, (iii) a restored model ϵrestoredθ , which is similar to
ϵcorrθ except that one of its layers is restored from the clean model at each time-step of the classifier-
free guidance. Given a list of layers A, let ai ∈ A denote the ith layer whose importance needs to
be evaluated. Let ϵθ[ai], ϵcorrθ [ai] and ϵrestoredθ [ai] denote the activations of layer ai. To find the
importance of layer ai for a particular attribute embedded in a caption c, we perform the following
replacement operation on the corrupted model ϵcorrθ to obtain the restored model ϵrestoredθ :

ϵrestoredθ [ai] : ϵ
corr
θ [ai] = ϵθ[ai]. (4)

Next, we obtain the restored model by replacing the activations of layer ai of the corrupted model
with those of the clean model to get a restored layer ϵrestoredθ [ai]. We run classifier-free guidance to
obtain the combined score estimate:

ϵ̂restoredθ (zt, c, t) = ϵrestoredθ (zt, c, t)+α(ϵrestoredθ (zt, c, t)−ϵrestoredθ (zt, t)), ∀t ∈ [T, 1]. (5)

The final latent z0 is obtained with the score from Equation (5) at each time-step using DDIM (Song
et al., 2020) and passed through the VQ-VAE decoder to obtain the final image xrestored

0 .
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Figure 3: Causal Tracing in the Text-Encoder: Knowledge is Localized. In the CLIP text-
encoder used for Stable-Diffusion, we find the existence of only one causal state, which is the first
self-attention layer corresponding to the last subject token. The CLIP-Score(Left) is computed
across all the four visual attributes. Visualizations (Right) further illustrate that restoring the sole
causal state (self-attn-0) leads to image generation with high fidelity to the original captions.

3.4 TRACING KNOWLEDGE IN THE TEXT-ENCODER

The text-encoder in public text-to-image models such as Stable-Diffusion is a CLIP-ViT-L/336px
text-encoder Rombach et al. (2021). Similar to Sec.(3.3), we define three states of the CLIP text-
encoder: (i) Clean model denoted by vγ ; (ii) Corrupted model vcorrγ where the word embedding of
the subject in a given caption c is corrupted; (iii) Restored model vrestoredγ which is similar to vcorrγ
except that one of its layers is copied from vγ . Similar to Sec.(3.3), to find the effect of the layer
ai ∈ A, where A consists of all the layers to probe in the CLIP text-encoder:

vrestoredγ [ai] : v
corr
γ [ai] = vγ [ai], (6)

We then use the restored text-encoder vrestoredγ with classifier-free guidance to obtain the final score
estimate:

ϵ̂θ(zt, c
′, t) = ϵθ(zt, c

′, t) + α(ϵθ(zt, c
′, t)− ϵθ(zt, t)), ∀t ∈ [T, 1] (7)

where c′ = vrestoredγ [ai](c) for a given caption c. This score estimate ϵ̂θ(zt, c
′, t) at each time-step

t is used to obtain the final latent code z0 which is then used with the VQ-VAE decoder to obtain
the final image xrestored

0 .

3.5 EXTRACTING CAUSAL STATES USING CLIP-SCORE

In this section, we discuss details on how to retrieve causal states using automated metrics such as
CLIP-Score (Hessel et al., 2021). Let xrestored

0 (ai) be the final image generated by the diffusion
model after intervening on layer ai, x0 be the image generated by the clean diffusion model and
xcorr be the final image generated by the corrupted model. In particular, we are interested in the
average indirect effect (Vig et al., 2020; Pearl, 2013) which measures the difference between the
corrupted model and the restored model. Intuitively, a higher value of average indirect effect (AIE)
signifies that the restored model deviates from the corrupted model. To compute the average indirect
effect with respect to causal mediation analysis for text-to-image models such as Stable-Diffusion,
we use CLIP-Score which computes the similarity between an image embedding and a caption
embedding. In particular, AIE = |CLIPScore(xrestored

0 , c)−CLIPScore(xcorr
0 , c)|. Given xcorr

0
is common across all the layers for a caption, we can use CLIPScore(xrestored

0 , c) as the AIE.

Selecting Threshold for CLIP-Score. In order to determine the optimal threshold value for
CLIP-Score, we select a small validation set of 10 prompts per attribute. To this end, we establish
a concise user study interface (refer to Appendix D for details). Through human participation, we
collect binary ratings if an image generated by restoring a particular layer is faithful to the original
captions. We then extract the common causal states across all the prompts for a given attribute
and find the average (across all the prompts) CLIP-Score for each causal state. We then use the
lowest average CLIP-Score corresponding to a causal state as the threshold, which we apply on
the probe dataset in Appendix A to filter the causal states at scale for each attribute separately.

4 HOW IS KNOWLEDGE STORED IN TEXT-TO-IMAGE MODELS?
In this section, we discuss the results of tracing knowledge across various components of the text-
to-image model in details.
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Tracing Results for UNet. In Fig 2, we illustrate the distribution of causal states across different
visual attributes within the UNet architecture using the CLIP-Score metric. This metric evaluates
the faithfulness of the image produced by the restored state xrestored

0 compared to the original cap-
tion c. From the insights derived in Fig 2, it becomes evident that causal states are spread across
diverse components of the UNet. In particular, we find that the density of the causal states are more
in the up-block of the UNet when compared to the down-block or the mid-block. Nonethe-
less, a notable distinction emerges in this distribution across distinct attributes. For instance, when
examining the style attribute, the initial self-attention layer demonstrates causality, whereas this
causal relationship is absent for other attributes. Similarly, in the context of the action attribute,
the cross-attention layer within the mid-block exhibits causality, which contrasts with its non-causal
behavior concerning other visual attributes. Fig 2 showcases the images generated by restoring
both causal and non-causal layers within the UNet. A comprehensive qualitative enumeration of
both causal and non-causal layers for each visual attribute is provided in Appendix B. Our findings
underscore the presence of information pertaining to various visual attributes in regions beyond the
cross-attention layers. Importantly, we observe that the distribution of information within the UNet
diverges from the patterns identified in extensive generative language models, as noted in prior re-
search (Meng et al., 2023), where attribute-related knowledge is confined to a few proximate layers.
In Appendix M, we provide additional causal tracing results, where we add Gaussian noise to the
entire text-embedding. Even in such a case, certain causal states can restore the model close to its
original configuration, highlighting that the conditional information can be completely bypassed if
certain causal states are active.

Tracing Results for Text-Encoder. In Fig 3, we illustrate the causal states in the text-encoder for
Stable-Diffusion corresponding to various visual attributes. At the text-encoder level, we find that
the causal states are localized to the first self-attention layer corresponding to the last subject token
across all the attributes. In fact, there exists only one causal state in the text-encoder. Qualitative
visualizations in Fig 3 and Appendix C illustrate that the restoration of layers other than the first
self-attention layer corresponding to the subject token does not lead to images with high fidelity
to the original caption. Remarkably, this observation is distinct from generative language models
where factual knowledge is primarily localized in the proximate mid MLP layers Meng et al. (2023).

General Takeaway. Causal components corresponding to various visual attributes are dis-
persed (with a different distribution between distinct attributes) in the UNet, whereas there
exists only one causal component in the text-encoder.

The text-encoder’s strong localization of causal states for visual attributes enables controlled knowl-
edge manipulation in text-to-image models, facilitating updates or removal of concepts. However,
since attribute knowledge is dispersed in the UNet, targeted editing is challenging without layer
interference. While fine-tuning methods for UNet model editing exist (Gandikota et al., 2023a; Ku-
mari et al., 2023), they lack scalability and don’t support simultaneous editing of multiple concepts.
In the next section, we introduce a closed-form editing method, DIFF-QUICKFIX, leveraging our
causal tracing insights to efficiently edit various concepts in text-to-image models.

5 DIFF-QUICKFIX: FAST MODEL EDITING FOR TEXT-TO-IMAGE MODELS

5.1 EDITING METHOD

Recent works such as (Kumari et al., 2023; Gandikota et al., 2023a) edit concepts from text-to-image
diffusion models by fine-tuning the UNet. They generate training data for fine-tuning using the pre-
trained diffusion model itself. While both methods are effective at editing concepts, fine-tuning the
UNet can be expensive due to backpropogation of gradients through the UNet. To circumvent this
issue, we design a fast, data-free model editing method leveraging our interpretability observations
in Section 4, where we find that there exists only one causal state (the very first self-attention layer)
in the text-encoder for Stable-Diffusion.

Our editing method DIFF-QUICKFIX can update text-to-image diffusion models in a targeted way in
under 1s through a closed-form update making it 1000x faster than existing fine-tuning based con-
cept ablating methods such as (Kumari et al., 2023; Gandikota et al., 2023a). The first self-attention
layer in the text-encoder for Stable-Diffusion contains four updatable weight matrices: Wk,Wq,Wv

and Wout, where Wk,Wq,Wv are the projection matrices for the key, query and value embeddings
respectively. Wout is the projection matrix before the output from the self-attn-0 layer after
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Causal Layer (a) (b)

Editing Causal Layers vs. Non-Causal Layers Comparison with Other Methods

1s ~6min ~6.5min 1s ~6min ~6.5min

Editing time 
per concept

Effectiveness of Multi-Concept Ablated Model

(c)

Figure 4: Quantitative Analysis of DIFF-QUICKFIX. (a) Editing Causal vs. Non-Causal Layers
(Averaged across Objects, Style and Facts): Lower CLIP-Score for causal layer indicates suc-
cessful edits; (b) Efficacy of DIFF-QUICKFIX when compared to other methods – Our method leads
to comparable CLIP-Scores to fine-tuning based approaches, but can edit concepts 1000x faster;
(c) DIFF-QUICKFIX can be used to effectively edit multiple concepts at once, shown by comparable
CLIP-Scores to the single-concept edited ones.
the attention operations. DIFF-QUICKFIX specifically updates this Wout matrix by collecting cap-
tion pairs (ck, cv) where ck (key) is the original caption and cv (value) is the caption to which ck is
mapped. For e.g., to remove the style of ‘Van Gogh’, we set ck = ‘Van Gogh’ and cv = ‘Painting’.
In particular, to update Wout, we solve the following optimization problem:

min
Wout

N∑
i=1

∥Woutki − vi∥22 + λ∥Wout −W ′
out∥22, (8)

where λ is a regularizer to not deviate significantly from the original pre-trained weights W ′
out, N

denotes the total number of caption pairs containing the last subject token embeddings of the key
and value. ki corresponds to the embedding of cki

after the attention operation using Wq,Wk and
Wv for the ith caption pair. vi corresponds to the embedding of cvi

after the original pre-trained
weights W

′

out acts on it.

One can observe that Eq. (8) has a closed-form solution due to the absence of any non-linearities.
In particular, the optimal Wout can be expressed as the following:

Wout = (λW ′
out +

N∑
i=1

vik
T
i )(λI +

N∑
i=1

kik
T
i )

−1, (9)

In Section 5.3, we show qualitative as well as quantitative results using DIFF-QUICKFIX for editing
various concepts in text-to-image models.

5.2 EXPERIMENTAL SETUP

We validate DIFF-QUICKFIX by applying edits to a Stable-Diffusion (Rombach et al., 2021) model
and quantifying the efficacy of the edit. For removing concepts such as artistic styles or objects us-
ing DIFF-QUICKFIX, we use the prompt dataset from (Kumari et al., 2023). For updating knowledge
(e.g., President of a country) in text-to-image models, we add newer prompts to the prompt dataset
from (Kumari et al., 2023) and provide further details in Appendix N. We compare our method
with (i) Original Stable-Diffusion; (ii) Editing methods from (Kumari et al., 2023) and (Gandikota
et al., 2023a). To validate the effectiveness of editing methods including our DIFF-QUICKFIX, we
perform evaluation using automated metrics such as CLIP-Score. In particular, we compute the
CLIP-Score between the images from the edited model and the concept corresponding to the
visual attribute which is edited. A low CLIP-Score therefore indicates correct edits.

5.3 EDITING RESULTS

Editing Non-causal Layers Does Not Lead to Correct Edits. We use DIFF-QUICKFIX with
the non-causal self-attention layers in the text-encoder to ablate styles, objects and update facts.
In Fig 4-(a), we compute the CLIP-Score between the generated images and the attribute from
the original captions (e.g., van gogh in the case of style). In particular, we find that editing the non-
causal layers does not lead to any intended model changes – highlighted by the high CLIP-Scores
consistently across non-causal layers (layers numbered 1 to 11). However, editing the sole causal
layer (layer-0) leads to correct model changes, highlighted by the lower CLIP-Score between the

8



Preprint

Before Edit After Edit Before Edit After Edit Before Edit After Edit

Removing Snoopy Removing Van Gogh Style

Removing R2D2 Removing Monet Style

Updating the President of US

Removing Nemo Removing Grumpy Cat

Updating the British Monarch 

Before Edit After Edit

Figure 5: Qualitative Examples with using DIFF-QUICKFIX to ablate style, objects and update
facts in text-to-image models. More qualitative examples in the Appendix F.

generated images from the edited model and the attribute from the original captions. This shows that
identifying the causal states in the model is particularly important to perform targeted model editing
for ablating concepts. In Appendix G, we show additional qualitative visualizations highlighting
that editing the non-causal states lead to similar model outputs as the unedited model.

Efficacy in Removing Styles and Objects. Fig 4-(b) shows the average CLIP-Score of the
generated images from the edited model computed with the relevant attributes from the original cap-
tions. We find that the CLIP-Score from the edited model with DIFF-QUICKFIX decreases when
compared to the generations from the unedited model. We also find that our editing method has com-
parable CLIP-Scores to other fine-tuning based approaches such as Concept-Erase (Gandikota
et al., 2023a) and Concept-Ablation (Kumari et al., 2023), which are more computationally expen-
sive. Fig 5 shows qualitative visualizations corresponding to images generated by the text-to-image
model before and after the edit operations. Together, these quantitative and qualitative results show
that DIFF-QUICKFIX is able to effectively remove various styles and objects from an underlying
text-to-image model. In Appendix F we provide additional qualitative visualizations and in Fig 52
we show additional results showing that our editing method does not harm surrounding concepts
(For e.g., removing the style of Van Gogh does not harm the style of Monet).

Efficacy in Updating Stale Knowledge. The CLIP-Score between the generated images and
a caption designating the incorrect fact (e.g., Donald Trump as the President of the US) decreases
from 0.28 to 0.23 after editing with DIFF-QUICKFIX, while the CLIP-Score with the correct fact
(e.g., Joe Biden as the President of the US) increases from 0.22 to 0.29 after the relevant edit. This
shows that the incorrect fact is updated with the correct fact in the text-to-image model. Additional
qualitative visualizations are provided in Fig 5 and Appendix F.

Multiple Edits using DIFF-QUICKFIX. An important feature of DIFF-QUICKFIX is its capa-
bility to ablate multiple concepts simultaneously. In Fig 4-(c), our framework demonstrates the
removal of up to 10 distinct styles and objects at once. This multi-concept ablation results in lower
CLIP-Scores compared to the original model, similar CLIP-Scores to single concept edit-
ing. This scalability suggests our framework’s potential for large-scale multi-concept editing. In
Appendix H, we provide qualitative visualizations of generations from the multi-concept ablated
model, showcasing the effectiveness of our editing method in removing multiple concepts. Addi-
tionally, we highlight DIFF-QUICKFIX’s efficiency in eliminating a larger number of artistic styles,
successfully removing 50 top artistic styles from Stable-Diffusion.

6 CONCLUSION

Through the lens of Causal Mediation Analysis, we present methods for understanding the storage of
knowledge corresponding to diverse visual attributes in text-to-image diffusion models. Notably, we
find a distinct distribution of causal states across visual attributes in the UNet, while the text-encoder
maintains a single causal state. This differs significantly from observations in language models like
GPT, where factual information is concentrated in mid-MLP layers. In contrast, our analysis shows
that public text-to-image models like Stable-Diffusion concentrate multiple visual attributes within
the first self-attention layer of the text-encoder. Harnessing the insights from these observations,
we design a fast model editing method DIFF-QUICKFIX. This approach outpaces existing editing
methods by a factor of 1000, successfully ablating concepts from text-to-image models. The potency
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of DIFF-QUICKFIX is manifested through its adeptness in removing artistic styles, objects, and
updating outdated knowledge all accomplished data-free and in less than a second, making DIFF-
QUICKFIX a practical asset for real-world model editing scenarios.
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