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Abstract

Identifying layers within text-to-image models
which control visual attributes can facilitate ef-
ficient model editing through closed-form up-
dates. Recent work, leveraging causal tracing
show that early Stable-Diffusion variants con-
fine knowledge primarily to the first layer of the
CLIP text-encoder, while it diffuses throughout
the UNet. Extending this framework, we ob-
serve that for recent models (e.g., SD-XL, Deep-
Floyd), causal tracing fails in pinpointing local-
ized knowledge, highlighting challenges in model
editing. To address this issue, we introduce the
concept of mechanistic localization in text-to-
image models, where knowledge about various
visual attributes (e.g., “style”, “objects”, “facts”)
can be mechanistically localized to a small frac-
tion of layers in the UNet, thus facilitating effi-
cient model editing. We localize knowledge using
our method LOCOGEN which measures the direct
effect of intermediate layers to output generation
by performing interventions in the cross-attention
layers of the UNet. We then employ LOCOEDIT,
a fast closed-form editing method across popu-
lar open-source text-to-image models (including
the latest SD-XL) and explore the possibilities
of neuron-level model editing. Using mechanis-
tic localization, our work offers a better view of
successes and failures in localization-based text-
to-image model editing. Code will be available at
https://github.com/samyadeepbasu/LocoGen.

1. Introduction

In recent years, substantial strides in conditional image
generation have been made through diffusion-based text-to-
image generative models, including notable examples like
Stable-Diffusion (Rombach et al., 2021), Imagen (Saharia
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et al., 2022), and DALLE (Ramesh et al., 2021). These
models have captured widespread attention owing to their
impressive image generation and editing capabilities, as ev-
idenced by leading FID scores on prominent benchmarks
such as MS-COCO (Lin et al., 2014). Typically trained
on extensive billion-scale image-text pairs like LAION-
5B (Schuhmann et al., 2022), these models encapsulate
a diverse array of visual concepts, encompassing color, artis-
tic styles, objects, and renowned personalities.

A recent work (Basu et al., 2023) designs an interpretability
framework using causal tracing (Pearl, 2001) to trace the
location of knowledge about various styles, objects or facts
in text-to-image generative models. Essentially, causal trac-
ing finds the indirect effects of intermediate layers (Pearl,
2001), by finding layers which can restore a model with cor-
rupted inputs to its original state. Using this framework, the
authors find that knowledge about various visual attributes
is distributed in the UNet, whereas, there exists a unique
causal state in the CLIP text-encoder where knowledge is
localized. This unique causal state in the text-encoder can
be leveraged to edit text-to-image models in order to remove
style, objects or update facts effectively. However, we note
that their framework is restricted to early Stable-Diffusion
variants such as Stable-Diffusion-v1-5.

In our paper, we first revisit knowledge localization for text-
to-image generative models, specifically examining the ef-
fectiveness of causal tracing beyond Stable-Diffusion-v1-5.
While causal tracing successfully identifies unique localized
states in the text-encoder for Stable-Diffusion variants, in-
cluding v1-5 and v2-1, it fails to do so for recent models like
SD-XL (Podell et al., 2023) and DeepFloyd! across different
visual attributes. In the UNet, causal states are distributed
across a majority of open-source text-to-image models (ex-
cluding DeepFloyd), aligning with findings in Basu et al.
(2023). Notably, for DeepFloyd, we observe a lack of strong
causal states corresponding to visual attributes in the UNet.

To address the universal knowledge localization framework
absence across different text-to-image models, we introduce
the concept of mechanistic localization that aims to identify
a small number of layers which control the generation of
distinct visual attributes, across a spectrum of text-to-image

"https://github.com/deep-floyd/IF



Preprint

Prompt: A house in the

LocoGen

. UNet layers D Cross-Attn layers D Cross-Attn Layers which use a different

prompt than other layers

style of Van Gogh’ Original Generation Replace the embedding of original prompt with a N
(Ours) target prompt (e.g., ‘a painting of a house’) for this
________________________________ layer N
Causal Intervention
(Prior Works)

[l Causal Layer

\
N

Distributed Knowledge - No “Mechanistic localization”

& Output Modified!

Low Fidelity to “Van
Gogh'’ style

”

“Mechanistic localization

Figure 1. LOCOGEN: Identifying UNet layers that, when given different input, can alter visual attributes (e.g., style, objects,
facts). (a) Earlier works (Basu et al., 2023) which show distributed knowledge using causal interventions. (b) LOCOGEN where a few
cross-attention layers receive a different prompt-embedding than the original, leading to generation of images without the particular style.

models. To achieve this, we propose LOCOGEN, a method
that finds a subset of cross-attention layers in the UNet
such that when the input to their key and value matrices is
changed, output generation for a given visual attribute (e.g.,
“style”) is modified (see Figure 1). This intervention in the
intermediate layers has a direct effect on the output — there-
fore LOCOGEN measures the direct effect of intermediate
layers, as opposed to indirect effects in causal tracing.

Leveraging LOCOGEN, we probe knowledge locations
for different visual attributes across popular open-source
text-to-image models such as Stable-Diffusion-v1, Stable-
Diffusion-v2, OpenJourneyz, SD-XL (Podell et al., 2023)
and DeepFloyd. For all models, we find that unique loca-
tions can be identified for visual attributes (e.g., “style”,
“objects”, “facts”). Using these locations, we then perform
weight-space model editing to remove artistic “styles”, mod-
ify trademarked “objects” and update outdated “facts” in
text-to-image models. This weight-space editing is per-
formed using LOCOEDIT which updates the key and value
matrices using a closed-form update in the locations identi-
fied by LOCOGEN. Moreover, for certain attributes such as
“style”, we show that knowledge can be traced and edited to
a subset of neurons, therefore highlighting the possibilities
of neuron-level model editing.

Contributions. In summary, our contributions include:

* We highlight the drawbacks of existing interpretability
methods such as causal tracing for localizing knowl-
edge in latest text-to-image models.

* We introduce LOCOGEN which can universally iden-
tify layers that control for visual attributes across a
large spectrum of open-source text-to-image models.

* By examining edited models using LOCOEDIT along

Zhttps://huggingface.co/prompthero/openjourney

with LOCOGEN, we observe that this efficient approach
is successful across a majority of text-to-image models.

2. Related Works

Intepretability of Text-to-Image Models. To our under-
standing, there’s limited exploration into the inner work-
ings of text-to-image models, such as Stable-Diffusion.
DAAM (Tang et al., 2023; Hertz et al., 2022) scrutinizes dif-
fusion models through the analysis of cross-attention maps
between text tokens and images, highlighting their semantic
precision. (Chefer et al., 2023) understand the decompo-
sition of concepts in diffusion models. (Basu et al., 2023)
leverage causal tracing to understand how knowledge is
stored in text-to-image models such as Stable-Diffusion-v1.

Editing Text-to-Image Models. The capacity to modify
a diffusion model’s behavior without starting from scratch
was initially investigated in Concept-Ablation (Kumari et al.,
2023) and Concept-Erasure (Gandikota et al., 2023). An-
other method, TIME (Orgad et al., 2023), alters all the
cross-attention layers’ key and value matrices to translate
between concepts, though lacks interpretability and appli-
cations on a real-use case of model editing. (Basu et al.,
2023) edits text-to-image models in the text-encoder space
by leveraging a singular causal state. However, existing
works overlook newer text-to-image models (e.g., SD-XL
and DeepFloyd), which we delve into in detail.

3. Preliminaries

Diffusion models start with an initial random real im-
age X, the noisy image at time step ¢ is expressed as
x¢ = Jarxo + /(1 —a4)e. Here, a; determines the
strength of the random Gaussian noise, gradually diminish-
ing as the time step increases, ensuring that x ~ N (0, I).
The denoising network €y (x¢, ¢, t), is pre-trained to denoise
the noisy image x; and produce x;_;. Typically, the con-
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Figure 2. Causal tracing for UNet. Similar to (Basu et al., 2023),
we find that knowledge is causally distributed across the UNet for
text-to-image models such as SD-v2-1 and SD-XL. For DeepFloyd
we do not observe any significant causal state in the UNet.
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Figure 3. Causal tracing for text-encoder. Unlike SD-v1-5 and
SD-v2-1, we find that a singular causal states does not exist in the
text-encoder for SD-XL and DeepFloyd.

ditional input c for the denoising network eg(.) is a text-
embedding derived from a caption c through a text-encoder,
denoted as ¢ = v,(c). The noising as well as the denois-
ing operation can also occur in a latent space defined by
z = £(x) (Rombach et al., 2021) for better efficiency. The
pre-training objective learns to denoise in the latent space
as denoted by:

L(z,c) = E¢||e — €p(z4, ¢, 1)|]3,

where z;, = £(x;) and £ is an encoder such as VQ-
VAE (van den Oord et al., 2017).

4. On the Effectiveness of Causal Tracing for
Text-to-Image Models

In this section, we empirically observe the effectiveness
of causal tracing to models beyond Stable-Diffusion-v1-
5. In particular, we find the ability of causal tracing to
identify localized control points in Stable-Diffusion-v2-1,
OpenJourney, SD-XL and DeepFloyd.

Causal Tracing in UNet. In Figure 2, we find that knowl-
edge across different visual attributes is distributed in the
UNet for all the text-to-image models (except for Deep-
Floyd), similar to Stable-Diffusion-v1-5. However, the de-
gree of distribution varies between different text-to-image
models. While knowledge about various visual attributes
is densely distributed in Stable-Diffusion variants, for SD-
XL we find that the distribution is extremely sparse (e.g.,
only 5% of the total layers are causal). For DeepFloyd, we
observe that there are no strong causal states in the UNet.
We provide more qualitative visualizations on causal tracing
across the these text-to-image models in Appendix A. Over-
all, these results reinforce the difficulty of editing knowledge

in the UNet directly due to (i) distribution of causal states
or (ii) absence of any.

Causal Tracing in Text-Encoder. Basu et al. (2023) show
that there exists a unique causal state in the text-encoder for
Stable-Diffusion-v1-5 and Stable-Diffusion-v2-1 which can
be used to perform fast model editing. In Figure 3, we find
that such an unique causal state is absent in the text-encoder
for DeepFloyd and SD-XL. We note that DeepFloyd uses a
T5-text encoder, whereas SD-XL uses a a combination of
CLIP-ViT-L and OpenCLIP-ViT-G (Radford et al., 2021).
Our empirical results indicate that an unique causal state
arises only when a CLIP text-encoder is used by itself in a
text-to-image model.

5. LOCOGEN: Towards Mechanistic
Knowledge Localization

Given the lack of generalizability of knowledge localiza-
tion using causal tracing as shown in Section 4, we intro-
duce LOCOGEN, which can identify localized control re-
gions for visual attributes across all text-to-image models.

5.1. Knowledge Control in Cross-Attention Layers

During the inference process, the regulation of image gener-
ation involves the utilization of classifier-free guidance, as
outlined in Ho & Salimans (2021) which incorporates scores
from both the conditional and unconditional diffusion mod-
els at each time-step. Specifically, the classifier-free guid-
ance is applied at each time-step to combine the conditional
(es(z¢, ¢, t)) and unconditional score estimates (eg(z¢, t)).
The result is a combined score denoted as é(z¢, c, t).

€(z¢,c,t) = €g(zg, ¢, t) + v (€9 (24, €, t) — €g(z4,t)), VEe[T,1].

ey
This combined score is used to update the latent z; using
DDIM sampling (Song et al., 2020) at each time-step to ob-
tain the final latent code z. We term the model ey(z;, c, t)
as the Clean Model and the final image generated as
Iiean- We note that text is incorporated in the process of
generation using cross-attention layers denoted by {C;}1£,
within € (z¢, ¢, t) Vt € [T, 1]. These layers include key and
value matrices — {W;X, W}V }M _ that take text-embedding c
of the input prompt and guide the generation toward the text
prompt. Generally, the text-embedding c is same across all
these layers. However, in order to localize and find control
points for different visual attributes, we replace the original
text-embedding ¢ with a target prompt embedding ¢’ across
a small subset of the cross-attention layers and measure its
direct effect on the generated image.

5.1.1. ALTERED INPUTS
We say that a model receives altered input when a subset

of cross-attention layers C” C {C;}], receive a different
text-embedding ¢’ than the other cross-attention layers that



Preprint

Original Prompt: 'A house in the style of Van Gogh’ "Atown in the style of Monet’

Original Laver 8 Original Layer 8

town in the style of Mone

Original

Original Prompt: 'A house in the style of Van Gogl

‘President of United States’

Laygr 6

Original Layer 8

’The British Monarch’

Original Layer 45

President of United States’

Figure 4. Interpretability Results: Images generated by intervening on the layers identified by LOCOGEN across various open-
source text-to-image models. We compare the original generation vs. generation by intervening on the layers identified with LOCOGEN
along with a target prompt. We find that across various text-to-image models, visual attributes such as style, objects, facts can be
manipulated by intervening only on a very small fraction of cross-attention layers.

take c as input. We name these layers as controlling layers.
We denote by e the image generated using this model
and Equation (1) with altered inputs when zr is given as the
initial noise. We denote the model €y (z¢, c, ¢, t) with the
altered inputs as the Altered Model with the following
inference procedure:

é(z¢,¢,c,t) = eg(z, ¢, ¢/, t) + a(eg(zs, c, ¢’ t) — €p(2e, 1)) -

As an example, to find the layers where style knowledge
corresponding to a particular artist is stored, {C;}M, — C’
receive text-embeddings corresponding to the prompt ‘An
<object> in the style of <artist>’, whereas the layers in C’
receive text-embeddings corresponding to the prompt ‘An
<object> in the style of painting’. If the generated image
with these inputs do not have that particular style, we realize
that controlling layers C’ are responsible for incorporating
that specified style in the output (see Figure 1). In fact,
this replacement operation enables finding locations across
different cross-attention layers where various visual attribute
knowledge is localized.

5.1.2. LoCOGEN ALGORITHM

Our goal is to find controlling layers C” for different visual
attributes. We note that the cardinality of the set |C’| = m is
a hyper-parameter and the search space for C’ is exponential.

Given |C’| = m, there are (% ) possibilities for C”, thus, we
restrict our search space to only adjacent cross-attention lay-
ers. In fact, we consider all C’ such that ¢’ = {Cl}f;m_l
forje[1,M —m+1].

Selecting the hyper-parameter m. To select the cardi-
nality of the set C’, we run an iterative hyper-parameter
search with m € [1, M], where M is selected based on
the maximum number of cross-attention layers in a given
text-to-image generative model. At each iteration of the
hyper-parameter search, we investigate whether there exists
a set of m adjacent cross-attention layers that are responsi-
ble for the generation of the specific visual attribute. We find
minimum m that such controlling layers for the particular
attribute exists.

To apply LOCOGEN for a particular attribute, we obtain a
set of input prompts 7 = {7} ¥, that include the particular
attribute and corresponding set of prompts 7/ = {T/} ¥,
where T/ is analogous to T; except that the particular at-
tribute is removed/updated. These prompts serve to create
altered images and assess the presence of the specified at-
tribute within them. Let c; be the text-embedding of 7T; and
c; be that of T7.

Given m, we examine all M — m + 1 possible candidates
for controlling layers. For each of them, we generate N
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Figure 5. CLIP-Score of the generated images with original prompt for sryle, objects and target prompt for facts after intervening
on layers through LOCOGEN. Lower CLIP-Score for objects, style indicate correct localization, whereas a higher CLIP-Score indicates
such for facts. (a) For SD-v1-5 (m=2), objects, facts can be controlled from Layer 6, whereas style can be controlled from Layer 8. (b)
For SD-v2-1(m=3), facts are controlled from Layer 7, style and objects from Layer 8. (c,d): For SD-XL, style (m=3), facts(m=>5) are
controlled from Layer 45, whereas objects are controlled from Layer 15.

altered images where i-th image is generated by giving c;
as the input embedding to selected m layers and c; to other
ones. Then we measure the CLIP-Score (Hessel et al., 2021)
of original text prompt 7T; to the generated image for style,
objects and target text prompt T} to the generated image
for facts. For style and objects, drop in CLIP-Score shows
the removal of the attribute while for facts increase in score
shows similarity to the updated fact. We take the average
of the mentioned score across all 1 < ¢+ < N. By doing
that for all candidates, we report the one with minimum
average CLIP-Score for style, objects and maximum aver-
age CLIP-Score for facts. These layers could be candidate
layers controlling the generation of the specific attribute. Al-
gorithm 1 provides the pseudocode to find the best candidate.
Figure 5 shows CLIP-Score across different candidates.

Algorithm 1 LOCOGEN

Input: m, {Tl}fih {Tz/ ililv {Ci gilv {C; %11
Output: Candidate controlling set
forj < 1,...,M —mdo
O —{oy !
fori < 1,...,Ndo
s; + CLIP-SCORE (T}, Litered)

3; < CLIP-SCORE (Tila Ia]tered)
aj < AVERAGE ({s;}Y,)
a; < AVERAGE ({s/}Y,)

> for objects, style
> for facts

> for objects, style
> for facts

. .
J* < argmin; a;

<%

J* + argmax; a;
*+m—1
—j*

return a -, {C;}]

We set a threshold for average CLIP-Score and find the min-
imum m such that there exists m adjacent cross-attention
layers whose corresponding CLIP-Score meets the require-
ment. We point the reader to Appendix G for the values of
m selected for different models and thresholds.

Dataset for Prompts. We use the prompts used in (Basu
et al., 2023; Kumari et al., 2023) to extract locations in the
UNet which control for various visual attributes such as
objects, style and facts. More details in Appendix C.

5.2. Empirical Results

In this section, we provide empirical results highlighting the
localized layers across various open-source text-to-image
generative models:

Stable-Diffusion Variants. Across both models, as de-
picted qualitatively in Figure 4 and quantitatively in Fig-
ure 5-(a), we observe the presence of a distinctive subset
of layers that govern specific visual attributes. In the case
of both SD-v1-5 and SD-v2-1, the control for “style” is
centralized at [ = 8 with m = 2. In SD-v1-5, the control
for “objects” and “facts” emanates from the same locations:
!l = 6 and m = 2. However, in SD-v2-1, “objects” are
controlled from [ = 8, while “facts” are influenced by [ = 7.
Despite sharing a similar UNet architecture and undergoing
training with comparable scales of pre-training data, these
models diverge in the text-encoder utilized. This discrep-
ancy in text-encoder choice may contribute to the variation
in how they store knowledge concerning different attributes.

Open-Journey. We note that Open-Journey exhibits con-
trol locations similar to SD-v1-5 for various visual attributes.
As illustrated in Figure 4 and Figure 5-(a), “objects” and
“facts” are governed from [ = 6, while “style” is controlled
from | = 8. Despite the architectural resemblance between
Open-Journey and SD-v1-5, it’s important to highlight that
Open-Journey undergoes fine-tuning on a subset of images
generated from Mid-Journey. This suggests that the control
locations for visual attributes are more closely tied to the
underlying model architecture than to the specifics of the
training or fine-tuning data.

SD-XL. Within SD-XL, our investigation reveals that both
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Figure 7. Interpretability Results for DeepFloyd. We find the
control points for visual attributes to be dependent on the underly-
ing prompts, rather than the visual attribute.

“style” and “facts” can be effectively controlled from [ = 45,
with m = 3 as evidenced in Figure 4 and Figure 5-(c). For
the attribute “objects,” control is situated at [ = 15, albeit
with a slightly larger value of m = 5. In summary, SD-XL,
consisting of a total of 70 cross-attention layers, underscores
a significant finding: various attributes in image generation
can be governed by only a small subset of layers.

DeepFloyd. Across SD-v1-5, SD-v2-1, Open-Journey,
and SD-XL, our findings indicate that visual attributes like
“style”, “objects” and “facts,” irrespective of the specific
prompt used, can be traced back to control points situated
within a limited number of layers. However, in the case of
DeepFloyd, our observations differ. We find instead, that
all attributes display localization dependent on the specific

prompt employed. To illustrate, factual knowledge related to

“The British Monarch” is governed from [ = 6 with m = 3,
whereas factual knowledge tied to “The President of the
United States” is controlled from [ = 12 (see Figure 7). This
divergence in localization patterns highlights the nuanced
behavior of DeepFloyd in comparison to the other models
examined. More results can be referred in Appendix B.5.

Human-Study Results. We run a human-study to verify
that LOCOGEN can effectively identify controlling layers
for different visual attributes. In our setup, evaluators as-
sess 132 image pairs, each comprising an image generated
by Clean Model and an image generated by Altered
Model whose identified cross-attention layers takes dif-
ferent inputs. Evaluators determine whether the visual at-
tribute is changed in the image generated by Altered
Mode 1(for instance, the artistic Van Gogh style is removed
from the original image or not). Covering 33 image pairs,
generated with different prompts per model, with five par-
ticipating evaluators, our experiments reveal a 92.58% veri-
fication rate for the impact of LOCOGEN-identified layers
on visual attributes. See more details in Appendix J.

6. LOCOEDIT: Editing to Ablate Concepts

In this section, we analyse the effectiveness of edits in the
layers identified by LOCOGEN across text-to-image models.

6.1. Method

Algorithm 1 extracts the exact set of cross-attention layers
from which the knowledge about a particular visual attribute
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Figure 8. Quantitative Model Editing Results for Text-to-
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(e.g., style) is controlled. We denote this set as Cl,c, where
Cloc C C and |Cloc| = m. This set of extracted cross-
attention layers Cj,.., each containing value and key matrices
is denoted as Cio. = {W//<, W)Y }I,. The objective is to
modify these weight matrices { W/, W}, such that they
transform the original prompt (e.g., ’A house in the style of
Van Gogh’) to a target prompt (e.g., *A house in the style of a
painting’) in a way that the visual attribute in the generation
is modified. Similar to Section 5.1.2, we use a set of input
prompts Ty = {77}, consisting of prompts featuring
the particular visual attribute. Simultaneously, we create a
counterpart set Tiyger = {77}, where each T} is identical
to T but lacks the particular attribute in focus. Let c? € R?
be the text-embedding of the last subject token in 777 and
ct € R? be that of T}}. We obtain matrix X, € RV >4 by
stacking vectors c¢, c3, ..., % and matrix Xyger € RV >4
by stacking ¢!, ¢}, ..., cl. To learn a mapping between
the key and the value embeddings, we solve the following
optimization for each layer [ € [1, m] corresponding to the
key matrices as:

min X orig Wi — Xeargee W/ 113 + Arc W — W13
1

where A is the regularizer. Letting Yo = XorigVVlK the
optimal closed form solution for the key matrix is:

WLK = (XT Xorig + All)_l(xg;ithargel + )\KWZK)

orig

Same is applied to get optimal matrix for value embeddings.

6.2. Model Editing Results

Stable-Diffusion Variants, Open-Journey and SD-XL. In
Figure 6 and Figure 8, it becomes apparent that LOCOEDIT
effectively integrates accurate edits into the locations iden-
tified by LOCOGEN. Qualitatively examining the visual

edits in Figure 6, our method demonstrates the capability
to remove artistic “styles”, modify trademarked “objects,”
and update outdated “facts” within a text-to-image model
with accurate information. This visual assessment is com-
plemented by the quantitative analysis in Figure 8, where
we observe that the CLIP-Score of images generated by
the edited model, given prompts containing specific visual
attributes, consistently registers lower than that of the clean
model for “objects” and “style.” For “facts,” we gauge the
CLIP-Score of images from the model with the correct facts,
wherein a higher CLIP-Score indicates a correct edit, as
illustrated in Figure 8. Combining both qualitative and
quantitative findings, these results collectively underscore
the effectiveness of LOCOEDIT across SD-v1-5, SD-v2-1,
Open-Journey, and SD-XL. However, it’s noteworthy that
the efficacy of closed-form edits varies among different text-
to-image models. Specifically, in the case of “style,” we ob-
serve the most substantial drop in CLIP-Score between the
edited and unedited models for SD-v1-5 and Open-Journey,
while the drop is comparatively less for SD-v2-1 and SD-
XL. Conversely, for “facts,” we find that all models perform
similarly in updating with new information.

Limitations with DeepFloyd Closed-Form Edits. Deep-
Floyd, despite revealing distinct locations through Loco-
GEN (albeit depending on the underlying prompt), exhibits
challenges in effective closed-form edits at these locations.
Appendix M provides qualitative visualizations illustrating
this limitation. The model employs a T5-encoder with bi-
directional attention, diverging from other text-to-image
models using CLIP-variants with causal attention. Closed-
form edits, relying on mapping the last-subject token em-
bedding to a target embedding, are typically effective in
text-embeddings generated with causal attention, where the
last-subject token holds crucial information. However, the
T5-encoder presents a hurdle as tokens beyond the last sub-
ject token contribute essential information about the target
attribute. Consequently, restricting the mapping to the last-
subject token alone proves ineffective for a T5-encoder.

While LOCOGEN along with LOCOEDIT makes model edit-
ing more interpretable — we also find that localized-model
editing is better than updating all layers in the UNet as
shown in Appendix F. We also compare our method with
existing editing methods (Basu et al., 2023; Kumari et al.,
2023; Gandikota et al., 2023) in Appendix I. We find that
our editing method is at par with existing baselines, with
the added advantage of generalizability to models beyond
Stable-Diffusion-v1-5. In Appendix L, we also show the
robustness of our method to generic prompts.

7. On Neuron-Level Model Editing

In this section, we explore the feasibility of effecting neuron-
level modifications to eliminate stylistic attributes from the
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Original Image

50 Neurons 100 Neurons Layer

A painting of rocky ocean shore under the luminous night sky in the style of Van Gogh

A painting of a river in the style of Monet

Figure 9. Neuron-Level Model Editing - Qualitative. Results
when applying neuron-level dropout on identified neurons in
layers specified with LOCOGEN on Stable Diffusion v1.5. The
second and third columns display images with 50 and 100 modified
neurons out of 1280 in controlling layers. The last column shows
images with a different embedding in controlling layers.

output of text-to-image models. According to layers identi-
fied with LOCOGEN, our objective is to ascertain whether
the selective dropout of neurons at the activation layers
within the specified cross-attention layers (key and value
embeddings) can successfully eliminate stylistic elements.

To accomplish this objective, we first need to identify which
neurons are responsible for the generation of particular artis-
tic styles, e.g., Van Gogh. We examine the activations of
neurons in the embedding space of key and value matrices
in identified cross-attention layers. More specifically, we
pinpoint neurons that exhibit significant variations when
comparing input prompts that include a particular style with
the case that input prompts do not involve the specified style.

To execute this process, we collect a set of N; prompts
that feature the specific style, e.g. Van Gogh. We gather
text-embeddings of the last subject token of these prompts
denoted by ci,c2,...,cn,, Where ¢c; € R, We also
obtain a set of Ny prompts without any particular style
and analogously obtain {c}, ¢}, ..., ¢y, }, where ¢ € R%.
Next, for the key or value matrix W € R?*? we con-
sider key or value embedding of these input prompts, i.e.,
{2} U {2302, where 2, = ¢;W and 2} = c,W. We
note that z;, 2/ € R%,

Subsequently, for each of these d’ neurons, we assess the sta-
tistical difference in their activations between input prompts
that include a particular style and those without it. Specifi-
cally, we compute the z-score for each neuron within two
groups of activations: z1,2g,..., 2N, and 21,2y, ..., 2},
The neurons are then ranked based on the absolute value

Original

30 Neurons
50 Neurons
100 Neurons
Layer

0.3

0.2

Monet Pablo Grég
Rutkowski

Salvador  Van Gogh
Dali Picasso

Figure 10. Neuron-Level Model Editing - Quantitative. Av-
erage CLIP-Score of generated images to text prompt ’style of
<artist>’. Brown bars show similarity to original generated im-
age; red, orange, and green bars show similarity to generated image
when 30, 50, and 100 neurons are modified, respectively; and blue
bars refer to images when controlling layers receive other prompt.

of their z-score, with the top neurons representing those
that exhibit significant differences in activations depending
on the presence or absence of a particular concept in the
input prompt. During generation, we drop-out these neu-
rons and see if particular style is removed or not. As seen
in Figure 9, neuron-level modification at inference time is
effective at removing styles. This shows that knowledge
about a particular style can be even more localized to a few
neurons. It is noteworthy that the extent of style removal
increases with the modification of more neurons, albeit with
a trade-off in the quality of generated images. This arises
because modified neurons may encapsulate information re-
lated to other visual attributes. To quantify the effectiveness
of this approach, we measure the drop in CLIP-Score for
modified images across various styles. Figure 10 presents a
bar-plot illustrating these similarity scores. Notably, drop
in CLIP-Score demonstrates that neuron-level model edit-
ing effectively removes the styles associated with different
artists in the generated images. We refer to Appendix K.1
for more details on neuron-level model editing experiments.

8. Conclusion

In our paper, we comprehensively examine knowledge lo-
calization across various open-source text-to-image models.
We initially observe that while causal tracing proves effec-
tive for early Stable-Diffusion variants, its generalizability
diminishes when applied to newer text-to-image models like
DeepFloyd and SD-XL for localizing control points asso-
ciated with visual attributes. To address this limitation, we
introduce LOCOGEN, capable of effectively identifying lo-
cations within the UNet across diverse text-to-image models.
Harnessing these identified locations within the UNet, we
evaluate the efficacy of closed-form model editing across
a range of text-to-image models leveraging LOCOEDIT,
uncovering intriguing properties. Notably, for specific vi-
sual attributes such as “style”, we discover that knowledge
can even be traced to a small subset of neurons and subse-
quently edited by applying a simple dropout layer, thereby
underscoring the possibilities of neuron-level model editing.
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Impact Statement

This paper presents work to advance the understanding of
the inner workings of open-source text-to-image generative
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tions on the society. Our editing method can address societal
concerns (e.g., an artist asking the model owner to delete
their style) in an effective way and to the best of our knowl-
edge does not have any negative societal consequences.
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A. Visualizations with Causal Tracing

A.1. SD-v2-1

CLIP-Score

Causal Restoration Non-Causal Causal Restoration Causal Restoration

Original Non-Causal
Restoration Restoration

Prompt : ‘A cat in a beach’

Figure 11. Causal Tracing in the UNet for SD-v2-1 Similar to earlier works (Basu et al., 2023), we find that knowledge about the
attribute “objects” is distributed in the UNet amongst various layers. Given that these layers can independently restore a corrupted model
to a clean model, model editing requires editing all these causal layers. Moreover these layers cannot be updated in closed-form updates

due to the presence of non-linearities in the layer components.

A.2. SD-XL

CLIP-Score

Between Causal and Non-Causal Causal Restoration Causal Restoration
Non-Causal Restoration Restoration

Original Non-Causal

Restoration

Prompt : ‘A dog in a forest’

Figure 12. Causal Tracing in the UNet for SD-XL. We find that knowledge about the attribute “objects” is distributed amongst the
various layers in the UNet. However, compared to other models such as SD-v2-1, the distribution is slightly sparse.

11
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A.3. DeepFloyd

CLIP-Score

| L
20 0 60 80 100 120 140 160
Layers
0l 1 ! 4 k|
r

Non-Causal

'Non-Causal
Restoration

Between Causal
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Original Non-Causal
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Prompt : ‘A dog in a forest’

Figure 13. DeepFloyd. In the case of the DeepFloyd model, we find that there is no presence of strong causal state which can restore a
corrupted model to its clean state. This absence of causal states rules out the possibilities of model editing in the UNet.

B. Visualizations with CrossPrompt

B.1. SD-v1-5

L 8
Layer

Prompt : ‘A house in the style of Van Gogh’

Figure 14. Layer 8 can control “style” in SD-v1-5. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - ’a painting’ in those layers while the original prompt is used for other layers. We find that there exists an

unique layer which can control output style.

12
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Original Layer 8 Original Layer 8

Prompt : “‘Women working in a field in the style of Van Gogh’

Figure 15. Layer 8 can control “style” in SD-v1-5. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find that there exists an
unique layer which can control output style.

Original

Original Layer 8

Prompt : ‘A town in the style of Monet’

Figure 16. Layer 8 can control “‘style” in SD-v1-5. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - ’a painting’ in those layers while the original prompt is used for other layers. We find that there exists an
unique layer which can control output style.
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Original Original

Vo .

Prompt : ‘President of the United States’

Figure 17. Layer 6 can control “factual knowledge” in SD-v1-5. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - ’Joe Biden’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “factual knowledge”.

Original

LD BURETONG

Original

Prompt : ‘British Monarch’

Figure 18. Layer 6 can control “factual knowledge” in SD-v1-5. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - 'Prince Charles’ in those layers while the original prompt is used for other layers. We
find that there exists an unique layer which can control output generations of “factual knowledge”.

14
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Original Layer 6 Original

Prompt : ‘Snoopy’

Figure 19. Layer 6 can control ”object knowledge” in SD-v1-5. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - 'a dog’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “object knowledge”.

B.2. SD-v2-1

Original

Promp

Figure 20. Layer 8 can control “‘style” in SD-v2-1. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - ’a painting’ in those layers while the original prompt is used for other layers. We find that there exists an
unique layer which can control output style.

15
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Prompt : “‘Women working in a field in the style of Van Gogh’

Figure 21. Layer 8 can control “style” in SD-v2-1. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find that there exists an
unique layer which can control output style.

Original Layer 8 Original

Prompt : ‘A town in the style of Monet’

Figure 22. Layer 8 can control “‘style” in SD-v2-1. We perform an intervention in the different cross-attention layers of Stable-Diffusion-
v2-1 by using a target prompt - ’a painting’ in those layers while the original prompt is used for other layers. We find that there exists an
unique layer which can control output style.

@\
Prompt : ‘British Monarch’

Figure 23. Layer 7 can control “factual knowledge” in SD-v2-1. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - Joe Biden’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “factual knowledge”.

16
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Prompt : ‘President of United States’

Figure 24. Layer 7 can control “factual knowledge” in SD-v2-1. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - ’Prince Charles’ in those layers while the original prompt is used for other layers. We
find that there exists an unique layer which can control output generations of “factual knowledge”.

Prompt : ‘Snoopy’

Figure 25. Layer 8 can control ”object knowledge” in SD-v2-1. We perform an intervention in the different cross-attention layers of
Stable-Diffusion-v2-1 by using a target prompt - 'a dog’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “object knowledge”.
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B.3. OpenJourney

Original

Prompt : ‘A house in the style of Van Gogh’

Figure 26. Layer 8 can control “style knowledge” in Open-Journey. We perform an intervention in the different cross-attention layers
of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “style knowledge”.

Original Layer 8 Original

Prompt : ‘Women working in a field in the style of Van Gogh’

Figure 27. Layer 8 can control “style knowledge” in Open-Journey. We perform an intervention in the different cross-attention layers
of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “style knowledge”.
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Original

Prompt : ‘Town in the style of Monet’

Figure 28. Layer 8 can control “style knowledge” in Open-Journey. We perform an intervention in the different cross-attention layers
of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “style knowledge”.

Original _ Layer 6 Original Layer 6

Figure 29. Layer 6 can control “factual knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - "Joe Biden’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “factual knowledge”.

19



Preprint

Original

'

Original Layer 6
== A

Prompt : ‘British Monarch’

Figure 30. Layer 6 can control “factual knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'Prince Charles’ in those layers while the original prompt is used for other layers. We
find that there exists an unique layer which can control output generations of “factual knowledge”.

Original

Prompt : ‘Snoopy’

Figure 31. Layer 6 can control ”object knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a dog’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “object knowledge”.
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B.4. SD-XL

Original

Original

Layer 45

Prompt : ‘A house in the style of Van Gogh’

Figure 32. Layer 45 can control “style knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - ’a painting’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “style knowledge”.

Original

Prompt : ‘A tree in the style of Van Gogh’

Figure 33. Layer 45 can control “style knowledge in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “style knowledge”.
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Original

Original Layer 45

Prompt : “‘Women working in a field in the style of Van Gogh’

Figure 34. Layer 45 can control “style knowledge’” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “style knowledge”.

Original

Prompt : ‘Rocks in the ocean in the style of Monet’

Figure 35. Layer 45 can control “style knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “style knowledge”.
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Layer 45

Prompt : ‘A town in the style of Monet’

Figure 36. Layer 45 can control “style knowledge in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a painting’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “style knowledge”.

Original

Layer 45 Original Layer 45

Prompt : ‘President of United States’

Figure 37. Layer 45 can control “factual knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - "Joe Biden’ in those layers while the original prompt is used for other layers. We find
that there exists an unique layer which can control output generations of “factual knowledge”.
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Original

Original Layer 45

Prompt : ‘British Monarch’

Figure 38. Layer 45 can control “factual knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'Prince Charles’ in those layers while the original prompt is used for other layers. We
find that there exists an unique layer which can control output generations of “factual knowledge”.

Original Layer 15

Prompt : ‘Snoopy’

Figure 39. Layer 15 can control object knowledge” in Open-Journey. We perform an intervention in the different cross-attention
layers of Open-Journey by using a target prompt - 'a dog’ in those layers while the original prompt is used for other layers. We find that
there exists an unique layer which can control output generations of “object knowledge”.
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B.5. DeepFloyd

Original Layer 16 __Original

Layer 12

‘A house in the style of Van Gogh’ ‘Atown in the style of Monet’ 'Women worklng Il'l a f|9|d i Van Gogh style’
Original Layer 12 nal Layer6 Original Layer 3
* o

‘President of the United States’ ‘British Monarch’

‘Cat’ ‘Snoopy’

Figure 40. Knowledge Tracing in Deepfloyd. We find that control regions for a visual attribute can be different, depending on the
prompt. For e.g., prompts involving Van Gogh style can be modified from Layer 12, whereas for Monet style — modifications are needed
from Layer 16. For “facts”, prompts involving The President of the United States can be controlled from Layer 12, whereas prompts
involving British Monarch can be controlled from Layer 6.

C. Prompt Dataset

For Interpretability and Model Editing. We use the benchmark dataset from (Basu et al., 2023) and (Kumari et al., 2023)
for obtaining prompts for “objects”, “style” and “facts”. For LOCOGEN, we select the target prompt based on the attribute
of interest. For e.g., in the case of “style”, we select the target prompt as 'A painting’. For “facts”, we use the correct answer
to a given fact, as the target prompt. For e.g., the target prompt for "The President of the United States’ is "Joe Biden’ and
the target prompt for "The British Monarch’ is ’Prince Charles’. For “objects”, the target prompt for 'r2d2’ is "robot’, for
'snoopy’ is 'dog’, for ‘'nemo’ is 'fish’ and for 'cat’ is 'dog’. These sets of trademarked “objects” and “facts” are chosen
from (Basu et al., 2023), whereas the “style” prompts are chosen from (Kumari et al., 2023).

D. Layer Information Across Different Text-to-Image Models
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blocks.1.attentions.2.transformer-blocks.1.attn2"')]

Figure 41. Layers to Probe for SD-XL. Indexing of cross-attention layers in the UNet.
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Figure 42. Layers to Probe for SD-v1-5. Indexing of cross-attention layers in the UNet.
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Figure 43. Layers to Probe for SD-v2-1. Indexing of cross-attention layers in the UNet.
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Figure 44. Layers to Probe for OpenJourney. Indexing of cross-attention layers in the UNet.
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Figure 45. Layers to Probe for DeepFloyd. Indexing of cross-attention layers in the UNet.
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E. More Visualizations for Model Editing

Original Original Original

Original Original

Edited Edited Edited Edited

e

‘Trees in bloom in the style of Van Go,

Women working in the style of
\ian Gagh’

Figure 46. SDv1-5 Edits for ‘“style”. We show successful model editing on the layers identified by LOCOGEN. In case of the images
generated by the edited model, we can observe that the trademarked brushstrokes of the artist Van Gogh are missing.

gh’ ‘Mountains in the style of Van Gogh’ ‘Trees in the style of Van Gogh’

Edited

‘A house in the style of Van Gogh’ ‘Trees in bloom in the style of Van Gogh’ ‘Mountains in the style of Van Gogh’

Women working in the style of
\ian Gagh’

Figure 47. Open-Journey Edits for “style”. We show successful model editing on the layers identified by LOCOGEN. In case of the
images generated by the edited model, we can observe that the trademarked brushstrokes of the artist Van Gogh are missing. For some of

the images from the edited model, we even find that the patterns in the sky which is another trademark Van Gogh signature have them
deleted.

‘Trees in the style of Van Gogh’
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Original

Edited

Edited

‘Ahouse in the style of Van Gogh’ ‘Trees in bloom in the style of Van Gogh’ ‘Mountains in the style of Van Gogh’ ~ "Women working in the style of “Trees in the style of Van Gogh”
Van Gagh’

Figure 48. SD-v2-1 Edits for ‘“style”. We show successful model editing on the layers identified by LOCOGEN. In case of the images
generated by the edited model, we can observe that the trademarked brushstrokes of the artist Van Gogh are missing. For some of the
images from the edited model, we even find that the patterns in the sky which is another trademark Van Gogh signature have them deleted.

Original Original Original

Edited Edited

Edited

‘Women working in the style of
Vian Gngh’

Figure 49. SDXL Edits for “style””. We show successful model editing on the layers identified by LOCOGEN. In case of the images
generated by the edited model, we can observe that the trademarked brushstrokes of the artist Van Gogh are missing. For some of the
images from the edited model (e.g., Trees in the style of Van Gogh), we even find that the patterns in the sky which is another trademark
Van Gogh signature have them deleted.

‘A house in the style of Van Gogh’ ‘Trees in bloom in the style of Van Gogh’ ‘Mountains in the style of Van Gogh’ ‘Trees in the style of Van Gogh’
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Original Original

Original

Original
3

Edited

‘

N\,

“British Monarch — SDv2’

‘British Monarch — OpenJourney’ ‘British Monarh — SDXL

& h 1)
‘British Monarch — SDv1’

Figure 50. Fact Editing Across Different Text-to-Image Models.. We show that LOCOEDIT can successfully update out-dated facts in
text-to-image models with the correct facts.

Original

‘ rinaI

Original

‘President of US— SDv1’ ‘President of US— SDv2’ ‘President of US— OpenJourney’ ‘President of US— SDXL’

Figure 51. Fact Editing Across Different Text-to-Image Models.. We show that LOCOEDIT can successfully update out-dated facts in
text-to-image models with the correct facts.
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Original

Edited Edited Edited

‘Snoopy— SDv1’ ‘Snoopy—SDv2’ ‘Snoopy- OpenJourney’ ‘Snoopy— SDXL

Figure 52. Trademarked Object Editing Across Different Text-to-Image Models.. We show that LOCOEDIT can successfully modify
trademarked objects by performing weight-space editing in the locations identified by LOCOGEN.

Original

Edited

Edited

Edited

‘Nemo- SDv1’ ‘Nemo- SDv2’ ‘Nemo— SDXL'

Figure 53. Trademarked Object Editing Across Different Text-to-Image Models.. We show that LOCOEDIT can successfully modify
trademarked objects by performing weight-space editing in the locations identified by LOCOGEN.
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F. Updating All Layers vs. Localized Layers

Updating Layer 6

Figure 54. Localized Editing vs. Non-Localized Editing. For "objects” and “facts”, we find that updating the layers identified
by LOCOGEN is better than editing all the layers. For e.g., in this qualitative study, we find that updating all the layers does not lead to
correct outputs for certain cases involving prompts corresponding to “objects” and “facts”.

G. Hyper-parameter Search

In this section, we enumerate the hyper-parameter m for each text-to-image model. In particular, we use Stable-Diffusion-
v1-5 as a base to first obtain the optimal value of m. For Stable-Diffusion-v1-5, we find this value to be m = 2. Based on
the percentage of the total layers, in the model it encompasses, we perform a local search around that hyper-parameter. In
this way, we find the optimal value of m = 3 for Stable-Diffusion-v2-1, m = 2 for OpenJourney, m = 5 for SD-XL and
m = 3 for DeepFloyd.

Original

Figure 55. Selection of m for SD-v1-5. At Layer 8, which encodes “style”, we vary the value of m from 1 to the maximum value of m
for the given model (to m = 9 for a total of 16 layers, starting from Layer 8). We find that at m = 2, the style of Van Gogh for the prompt
A ’house in the style of Van Gogh’ is significantly removed. We therefore choose m = 2 as the layers to edit.

H. Model Editing Hyper-parameters

We set the following hyper-parameters for Ax and Ay in LOCOEDIT as 0.01 for all the text-to-image models, as it led to the
best editing results.
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Figure 56. Selection of m for SD-v1-5 - CLIP-Score. m=0 corresponds to the original generation. We find that the CLIP-Score saturates
after m = 2, therefore we choose m = 2 in our experiments. This figure is for the “style” attribute; We choose the value of m in a similar
way for “objects” and “facts”, where the optimal m comes out to be 2.

I. Comparison with Other Model Editing Baselines

Given that other model editing baselines (Kumari et al., 2023; Gandikota et al., 2023; Basu et al., 2023) primarily operate
on SD-v1 versions, we compare our method with these baselines on SD-v1-5. In Fig 57 — we provide a comprehensive
comparison and analysis of how LOCOEDIT compares to other methods.
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Comparison of Different Editing Methods for Stable-Diffusion-v1-5
0.301
0.25/
2 0.20/
5}
:': 0.15/
3 ! B Original Model
0.10] ™ LocoEdit
B DiffQuickFix
0.05/] Concept-Ablation
I Concept-Deletion
0.00"

Objects
Attribute (a)

Generations from
Edited Model using
LocoEdit for 1
Stable-Diffusion-v2-1

Generations from
LEdited Model using
DiffQuickFix for
Stable-Diffusion-v2-1

(b)

Figure 57. Comparison of our editing method when compared to other baselines. (a) We compare our method with existing model
editing methods — DiffQuickFix (Basu et al., 2023), Concept-Ablation (Kumari et al., 2023) and Concept-Deletion (Gandikota et al.,
2023). Amongst them only DiffQuickFix is a closed-form update method, whereas the other methods are fine-tuning based approaches.
We find that LOCOEDIT has comparable performance to existing methods for style, better performance for facts and for objects slightly
worse performance. The drop in CLIP-Score is lesser in our method as model edits via LOCOEDIT modifies certain characteristics of
the object, rather than the whole object which is enough to remove the trademarked characteristics of the object. For facts, we find that
our method has a better increase in the CLIP-Score than (Basu et al., 2023) therefore highlighting effective factual edits. We note that
both Concept-Ablation and Concept-Deletion do not perform factual editing. (b) Although DiffQuickFix from (Basu et al., 2023) was
primarily built on Stable-Diffusion-v1 versions, we extend their framework to Stable-Diffusion-v2-1. In particular, we identify certain
failure cases primarily on factual edits, where our method LOCOEDIT performs better.

J. Human-Study

In this section, we report additional details about human experiments we did to verify LOCOGEN. Figure 58 shows
visualization of some pairs that we used in our experiments. We used 11 different prompts listed below (visual attribute is
written in paranthesis) and 3 generations per each prompt for each of the models.

* “a house in the style of van gogh” (style)

* “a town in the style of monet” (style)

* “a town in the style of monet” (style)

“british monarch” (fact)

“cat” (object)

* “elephant painting the style of salvador dali” (style)
“nemo” (object)

“president of the united states”

“rocks in the ocean in the style of monet” (style)
“snoopy” (object)

* “women working in a garden in the style of van gogh” (style)

For each image pair based on the visual attribute of the corresponding prompt, we ask one of the following questions from
evaluators and they have give a rating from 1 to 5.
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« style: Has the artistic style (‘<artist name>") been decreased from original image (Left) compared to modified image
(Right)?
5 —maximally removed; 1 - not removed (modified image still has the artistic style).

* object: Has the main object (‘<object name>’) been modified from original image (Left) compared to modified
(Right)?
5 — maximally modified (other object is there); 1 — not modified at all (object is still there).

« fact: Has the fact (‘<fact name>’) been updated from original image (Left) compared to modified (Right)?
5 — maximally updated (other person is there); 1 — not updated at all (previous person is still there).

in 92.58% of pairs, evaluators give a rating above 1 which shows that the edit is effective. Now, we report more detailed
scores for each of different attributes:

* style
— in 90.28% of cases, evaluators give a rating of at least 2.
— in 63.61% of cases, evaluators give a rating of at least 3.
— in 37.50% of cases, evaluators give a rating of at least 4.
— in 13.89% of cases, evaluators give the rating 5.

— in 100.00% of cases, evaluators give a rating of at least 2.
— in 95.83% of cases, evaluators give a rating of at least 3.
- in 86.67% of cases, evaluators give a rating of at least 4.
- in 59.17% of cases, evaluators give the rating 5.

* object

in 92.22% of cases, evaluators give a rating of at least 2.

in 81.11% of cases, evaluators give a rating of at least 3.

in 62.22% of cases, evaluators give a rating of at least 4.

in 39.44% of cases, evaluators give the rating 5.
For different models, ratings are as follows:

e SD-vl

evaluators give the rating of at least 2 in 95.76% of cases.

evaluators give the rating of at least 3 in 82.42% of cases.

evaluators give the rating of at least 4 in 57.58% of cases.

evaluators give the rating of at least 5 in 32.73% of cases.

e SD-v2

evaluators give the rating of at least 2 in 87.27% of cases.

evaluators give the rating of at least 3 in 61.82% of cases.

evaluators give the rating of at least 4 in 43.03% of cases.

evaluators give the rating of at least 5 in 13.33% of cases.
e SD-XL.

— evaluators give the rating of at least 2 in 90.91% of cases.
— evaluators give the rating of at least 3 in 69.70% of cases.
— evaluators give the rating of at least 4 in 49.70% of cases.
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— evaluators give the rating of at least 5 in 31.52% of cases.

* OpenJourney

evaluators give the rating of at least 2 in 96.36% of cases.

evaluators give the rating of at least 3 in 83.03% of cases.

evaluators give the rating of at least 4 in 62.42% of cases.

evaluators give the rating of at least 5 in 38.79% of cases.

Above results shows that LOCOGEN is effective and works better for facts and for models OpenJourney and SD-v1.

K. Neuron-Level Model Editing

In this section we discuss more details about experiments for neuron-level model editing.

K.1. Prompts

In this section, we provide more details about the set of prompts used to report CLIP-Score in Figure 10.

* Van Gogh

— “a painting of rocky ocean shore under the luminous night sky in the style of Van Gogh”

— “A painting of lone figure contemplates on a cliff, surrounded by swirling skies in the style of Van Gogh”
— “Majestic mountains take on an ethereal quality in sky, painted by Van Gogh”

— “Two trees in a sunlit field, painted by Van Gogh”

— “A flower-filled field in the style of Van Gogh”

— “painting of a river on a warm sunset in the style of Van Gogh”

— “painting of olive trees in the style of Van Gogh”

— “painting of a field with mountains in the background in the style of Van Gogh”

¢ Monet

— “painting of women working in the garden in the style of Monet”,

“rocks in the ocean, in the style of Monet”,

“a painting of a city in the style of Monet”,

“a painting of a river in the style of Monet”,
— “Monet style painting of a person on a cliff”,

“a painting of a town, in the style of Monet”,

“a painting of a sunset, in the style of Monet”,

“a painting of mountains, in the style of Monet”,

“Monet style painting of flowers in a field”,

“a painting of a landscape in the style of Monet”,

“two trees in a field, painting in the style of Monet”

¢ Salvador Dali

— “the persistence of memory painting in the style of Salvador Dali”,

— “the elephant painting in the style of Salvador Dali”,

— “soft construction with boiled beans painting in the style of Salvador Dali”,
— “galatea of the spheres painting in the style of Salvador Dali”,

— “the temptation of st. anthony painting in the style of Salvador Dali”,

— “swans reflecting elephants painting in the style of Salvador Dali”,

— “enigma of desire painting in the style of Salvador Dali”,
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Figure 58. Examples of some tests that evaluators see in human-study.
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— “slave market with the disappearing bust of voltaire painting of Salvador Dali”,
— “the meditative rose painting in the style of Salvador Dali”,
— “melting watch painting in the style of Salvador Dali”,

¢ Jeremy Mann

— “In the style of Jeremy Mann, a view of a city skyline at sunset, with a warm glow spreading across the sky and
the buildings below”,

“In the style of Jeremy Mann, an urban scene of a group of people gathered on a street corner, captured in a
moment of quiet reflection”,

— “In the style of Jeremy Mann, a surreal composition of floating objects, with a dreamlike quality to the light and
color”,

— “In the style of Jeremy Mann, a view of a city street at night, with the glow of streetlights and neon signs casting
colorful reflections on the wet pavement”,

— “In the style of Jeremy Mann, a moody, atmospheric scene of a dark alleyway, with a hint of warm light glowing
in the distance”,

— “In the style of Jeremy Mann, an urban scene of a group of people walking through a park, captured in a moment
of movement and energy”’,

— “In the style of Jeremy Mann, a landscape of a forest, with dappled sunlight filtering through the leaves and a
sense of stillness and peace”,

— “In the style of Jeremy Mann, a surreal composition of architectural details and organic forms, with a sense of
tension and unease in the composition”,

— “In the style of Jeremy Mann, an abstract composition of geometric shapes and intricate patterns, with a vibrant
use of color and light”,

— “In the style of Jeremy Mann, a painting of a bustling city at night, captured in the rain-soaked streets and neon
lights”,

¢ Greg Rutkowski

— “a man riding a horse, dragon breathing fire, painted by Greg Rutkowski”,

— “a dragon attacking a knight in the style of Greg Rutkowski”,

— “a demonic creature in the wood, painting by Greg Rutkowski”,

— “aman in a forbidden city, in the style of Greg Rutkowski”,

— “painting of a group of people on a dock by Greg Rutkowski”,

— “a king standing, with people around in a hall, painted by Greg Rutkowski”,

- “two magical characters in space, painting by Greg Rutkowski”,

— “a man with a fire in his hands in the style of Greg Rutkowski”,

— “painting of a woman sitting on a couch by Greg Rutkowski”,

— “a man with a sword standing on top of a pile of skulls, in the style of Greg Rutkowski”,

« Pablo Picasso

— “Painting of nude figures by Pablo Picasso”,

— “painting of a grieving woman in the style of Pablo Picasso”,
— “painting of three dancers by Pablo Picasso”,

— “portrait of a girl in front of mirror, painted by Pablo Picasso”,
— “painting of a bird, in the style of Pablo Picasso”,

— “painting of a blind musician, by Pablo Picasso”,

— “painting of a room in the style of Pablo Picasso”,

— “painting of an acrobat in performance, by Pablo Picasso”,

Prompts that we used to compute z-score are same as above except that for each artist, we put the artist name in all of the
above prompts. To generate prompts withput any artistic style, we remove artist name from the prompts listed above.
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Original Image 50 Neurons 100 Neurons

Figure 59. Neuron Level Model Editing - Qualitative. Results when applying neuron-level dropout on identified neurons in layers
specified with LOCOGENon Stable Diffusion v1.5. Each row corresponds to an input text prompt featuring a particular artistic style. First
column shows the image generated without any intervention while second and third column visualize images when 50 and 100 neurons

out of 1280 neurons in controlling layers are modified, respectively. Last column shows images when a different embedding is given to
controlling layers.
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Original Image 50 Neurons 100 Neurons
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A painting of mountains, in the style of Monet

A man with a fire in his hands in the style of Greg Rutkowski

Figure 60. Neuron Level Model Editing - Qualitative. Results when applying neuron-level dropout on identified neurons in layers
specified with LOCOGENon Stable Diffusion v1.5. Each row corresponds to an input text prompt featuring a particular artistic style. First
column shows the image generated without any intervention while second and third column visualize images when 50 and 100 neurons

out of 1280 neurons in controlling layers are modified, respectively. Last column shows images when a different embedding is given to
controlling layers.
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Editing Method Style Edited Model Object Edited Model
No Editing 30.04 30.04
DiffQuickFix 29.61 29.32
LocoEdit(Ours) 29.99 29.40

Table 1. CLIP-Score of the generated images with the original prompt. We find that while both DiffQuickFix (Basu et al., 2023) and
our method leads to a slight drop in the CLIP-Score for the edited model, the decrease in the CLIP-Score from our method is slightly
lesser — thereby highlighting that our localized editing method does not affect generic prompts significantly.

K.2. Visualization
L. Robustness of the Edited Model

In this section, we discuss the robustness of the edited model to generic prompts. In particular, we curate a set of 320
prompts from MS-COCO with 80 objects and 4 locations ("beach”, “forest”, “city”, “house”) for each. We then compare the
average CLIP-Score of the generations from original model vs. edited model across “’style” and “object” attributes. For
edited models, we compare our method with DiffQuickFix, as it also edits models using a closed-form update. Overall
from Table 1 — we find that LOCOEDIT does not harm generic prompts, highlighting the robustness of our method.

M. DeepFloyd Edit Limitations

While LOCOGEN is adept at localizing knowledge in DeepFloyd, we find that the closed-form edits are not suitable for the
DeepFloyd model. In particular, we find that performing edits using LOCOEDIT at the locations identified by LOCOGEN
does not lead to semantically correct edits. We hypothesize that this is due to the difference in the text-encoder between
[SD-v1, SD-v2, OpenJourney, SDXL] and DeepFloyd. Text-to-image models (except DeepFloyd) consist of text-encoders
(e.g., CLIP) which utilizes a causal attention mechanism. Given that closed-form edits require a mapping between the
last-subject token embedding to a target embedding, there is less information leakage compared to a TS text-encoder which
implements a bi-directional self-attentio (see Figure. 62 for a visualization of this non-causal attention). In the case of TS5,
mapping only the last-subject token embedding to a target embedding might be insufficient and mapping all the tokens can
lead to huge informational loss from the model. Below we provide some examples from editing the DeepFloyd model — we
primarily observe non-semantic generations from the edited model. Designing fast editing methods for DeepFloyd like
models which utilizes bi-directional attention is an important future course of study.

Generations del

LS

From Unedited Mo

Figure 61. Model Editing for DeepFloyd. We find that the edited DeepFloyd model leads to generations of non-semantic outputs. In this
figure, we show results for editing “style”. However, we observe similar results for other attributes such as “objects” and “facts”. Prompts
used are corresponding to Van Gogh.
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Figure 62. Attention map from the last layer of T5 encoder for the prompt “a house in the style of van gogh”. Figure (a) shows the
attention map between the tokens in the prompt for each of the 12 heads in the last layer of TS encoder. The non causal nature of the mask

is evident from the significant attention weights from later tokens to previous tokens in the prompt. This is more easily observed in the
Figure (b) which highlights the same attention map from head 6.

42



