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Abstract

Inference on large language models (LLMs) can be expensive in terms of the
compute and memory costs involved, especially when long sequence lengths are
used. In particular, the self-attention mechanism used in LLM inference contributes
significantly to these costs, which has sparked an interest in approximating the self-
attention computation to reduce such costs. In this work, we propose to approximate
self-attention by focusing on the dimensionality of key vectors computed in the
attention block. Our analysis reveals that key vectors lie in a significantly lower-
dimensional space, consistently across several datasets and models. Exploiting this
observation, we propose Loki, a novel sparse attention method that ranks and selects
tokens in the K'V-cache based on attention scores computed in low-dimensional
space. Our evaluations show that Loki is able to speed up the attention computation
due to reduced data movement (load/store) and compute costs while maintaining
the efficacy of the models better than other popular approximation methods.

1 Introduction

As large language models (LLMs) grow in size, deploying them for efficient inference presents
substantial challenges, largely due to computation and memory access bottlenecks in the self-attention
block [32], especially when handling long sequences. These challenges stem from the autoregressive
nature of attention, which generates the output one token at a time. At each step, the entire preceding
state, stored in the key-value (KV) cache, must be fetched from memory, which can sometimes
exceed the size of the model parameters itself [18]. This frequent KV-cache access from GPU DRAM
to registers becomes costly, as it scales quadratically with the output sequence length. In addition,
matrix multiplications in the attention layers also have a quadratic scaling cost with sequence length,
compounding the overall computational burden.

Several strategies [39, 26, 20] have been proposed to address this challenge by reducing the com-
putational complexity and/or memory demands associated with the self-attention mechanism. One
promising category of approaches focuses on approximating attention, employing techniques such as
quantization or using a subset of the tokens in the KV-cache [11] (sparse attention).

In contrast to other sparse attention approaches that either permanently prune tokens from the key-
value cache [39] or impose a fixed sparsity pattern [35], our proposed method dynamically selects
key tokens at each generation step based on approximate attention scores and avoids deletions. This
approach is inspired by a critical observation: across a range of LLMs and datasets, key tensors
consistently occupy a significantly lower-dimensional space than the full attention head dimension.
For instance, in Figure 1 (left), we show that across various LLMs [8, 16], 90% of the variance
explained by PCA is captured at an effective key vector rank of around 80, despite the key tensor
dimension being much larger (128).
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Figure 1: Rank at which 90% of the variance is explained, averaged across all layers and heads for
different models. Full rank is represented by the black dashed line (left). Overview of Loki (right).

Based on this observation, we introduce Loki, a sparse attention method that leverages the low-
dimensional structure of key vectors to reduce data movement and computation costs without
significantly impacting model quality. First, we apply PCA to keys generated from a calibration
dataset, storing all principal components but using only the top d (25-50%) to compute approximate
attention scores during inference. This dimensionality reduction, informed by our previous observa-
tion that key vectors have low effective rank, allows us to efficiently identify the top-%k (12.5-25%)
most relevant tokens using the approximate scores. For these selected keys, we then revert to the full
dimensionality to compute the final attention scores, ensuring both efficiency and accuracy. Figure 1
(right) illustrates our approach.

Our theoretical complexity analysis demonstrates that Loki can provide significant speedups in the
attention step. However, actually realizing these gains requires an efficient implementation of our
method to minimize data movement in the additional operations introduced on top of the original
self attention algorithm. Thus, we implement optimized sparse matrix multiplication kernels for
Loki in Triton, leading to a speedup of up to 45% over the standard HuggingFace Transformer’s [34]
attention implementation (vanilla attention) for Llama2-13B. For this setting, the average degradation
in model accuracy (measured across 6 different benchmarks and 8 different models) is only 6.8%.

Our contributions can be summarized as follows:

* Detailed analysis showing the intrinsic low-dimensionality of keys in self-attention, its
variation across layers for different models, and consistency across different datasets.

 Loki: a sparse attention method that exploits the aforementioned low dimensionality of keys
to make the attention computation faster without sacrificing model quality.

* Optimized kernels for efficient implementation of Loki in PyTorch.

+ Evaluation of Loki! on multiple LLMs and downstream tasks, showing that it can achieve
significant speedups with minimal degradation in model quality.

2 Background and Related Work

The attention mechanism [32] is at the core of the transformer architecture. Consider a single
attention query head with head dimension D, processing an input token sequence of length S. During
auto-regressive generation, the output of the attention head is calculated as:

T

K
yzsoftmax(q -V 1)

5

where q € R'*P is the query, and K € R%*P and V € R5*P are the key and value caches
respectively. Additionally, newer transformer models add Rotary Position Embeddings (RoPE) [29]
to the keys and query, before computing the attention scores. Since every query attends to all past
keys, the mechanism has a quadratic complexity O(S5?) in number of input + generated tokens.
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2.1 Related Work

Numerous studies have explored the low-rank structures in transformers for various purposes. Lin-
former [33] demonstrated that the attention score matrix is low-rank and proposed alternative low-rank
attention formulations during training for linear computational complexity. LoRA [13] showed that
parameter updates to a transformer model during fine-tuning reside in a low-dimensional subspace.
To the best of our knowledge, our work is the first to study the intrinsic low dimensionality of the
attention keys themselves and demonstrate the generalizability of this low-dimensional structure
across different models (for natural language data).

Sparse-transformers [5] was one of the first works to introduce a sparse-attention method employing
strided sparsity patterns in the attention mechanism. Reformer [17] used locally-sensitive hashing to
compute attention scores in a sparse manner. Performer [6] used positive orthogonal random features
to approximate the attention mechanism. Unlike these methods, which require training or fine-tuning,
our approach operates entirely post-training without any fine-tuning.

Another category of sparse attention methods employ token eviction policies to permanently delete
tokens from the KV-cache based on some heuristic. Streamingl.LM [35] uses initial tokens and
a rolling KV-cache for processing infinite-length sequences. Zhang et al. [39] retain only "Heavy
Hitters" tokens in the KV-cache based on accumulated attention scores. Scissorhands [20] prioritizes
important tokens based on the "Persistence of Importance Hypothesis". Ge et al. [10] propose an
adaptive eviction policy for each transformer layer. These methods are effective in reducing the
memory and compute footprint of the attention but suffer from permanent loss of information leading
to a non-trivial degradation in model quality. Our method does not involve any permanent loss of
information with the trade-off of not reducing the memory footprint. Quantization-based approximate
approaches [14, 23] are complementary to our work and can be applied in tandem.

SparQ Attention [26] is a recent work that inspires our approach. They use high-magnitude query
dimensions and corresponding key dimensions for approximate attention scoring, followed by
computing the full attention scores for the top-k keys. However, their method requires costly non-
contiguous column indexing of the key vectors. Further, they store two copies of the past keys for
efficiency, increasing memory use by 50%. In contrast, Loki avoids the extra memory and leverages
the natural ordering of principal components, allowing for a more efficient slicing operation.

A concurrent work, InfiniGen [19], accelerates attention by pre-fetching top-k keys from CPU to
GPU memory, using SVD-based low-rank approximation of the attention scores. While their low-
rank approximation is similar to Loki, our work provides deeper analysis of the intrinsic low-rank
structure of attention keys and focuses on speeding up attention computation without CPU offloading.
Importantly, their results affirm the benefits of the low-dimensional nature of attention keys applied
in other contexts.

3 Dimensionality Analysis of Attention Keys

As noted in Section 1, Loki, our proposed method for sparse self-attention, is based on the observation
that key tensors consistently reside in a lower-dimensional space than the full attention head dimension
suggests. Here, we present empirical evidence supporting this claim by performing PCA on the keys
generated in several language models and datasets.

3.1 Models and Datasets Used

To investigate the dimensionality of attention keys, we run 11 transformer-based models: Llama-2
7B/13B/70B [31], Llama-3 8B/70B [8], TinyLlama-1.1B [38], Pythia-6.9B [4], Mistral-7B [15],
Mixtral-8x7B/8x22B [16], and Phi3-Mini-4K [22] on three popular English language datasets:
WikiText-2 [21] (Validation Split), C4 [25] (Custom Split), and BookCorpus [40] (Custom Split).
Custom splits are used for datasets where the validation split is not available. We run perplexity
evaluation on these datasets and save the generated attention keys, before and after the application of
rotary embeddings [29], referred to as pre-rotary and post-rotary keys, respectively throughout the
paper. We then perform PCA on all the keys generated for each layer and head individually.



The metric we use in our analysis is the rank at which v% of the variance is explained by the principal
components. We calculate this metric for each layer and head of the models as follows:

d
Rank; 5, @v = min ¢ d € Z* : Y "M, > /100 2
j=1

where, )\{ , is the j th normalized eigenvalue of the covariance matrix of the keys for layer, [ and head,
h. We average this metric ranks across all heads of layer, [ and refer to it as Rank;Qu.

3.2 Findings and Discussion

Figure 1 (left) shows the average Rank;@90 across all layers for models with full key dimensionality
of 128. We can see that the average rank is significantly lower than the full dimensionality of the
keys for all models. Diving deeper, we present a layer-wise analysis for a few models: Llama2-7B,
Llama3-70B, Mixtral-8x7B, and Phi3-Mini-4K in Figure 2. The results for the other models are
similar and can be found in Appendix A.1.
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Figure 2: Rank at which 90% of the variance is explained for pre-rotary and post-rotary keys produced
by each layer averaged across all heads (Rank;@90) for different models. We observe that all models
exhibit significantly low rank (full dimensionality is 128 or 96 represented by the black dashed line)
consistently across all datasets.

We observe that the dimensionality of the keys (both pre-rotary and post-rotary) is significantly lower
than the full dimensionality of the keys across all calibration datasets. Furthermore, the Rank; @90
for a particular layer is consistent across datasets, for all combinations of models and datasets. This
indicates that the lower-dimensional structure of the keys is consistent when calculated using different
calibration datasets. Another trend we observe is that the initial layers of most models have a very
low rank, as compared to the later layers, and this trend is particularly prominent for the pre-rotary
keys. Lastly, we also observe that for most models, the average of Rank;@90 across all layers is
lower for pre-rotary keys as compared to post-rotary keys, indicating that the rotary embeddings
increase the dimensionality of the keys. Further analysis on the variation of the rank across different
heads within a layer and across different layers within a model can be found in Appendix A.1.

These results indicate the existence of the following properties: (1) The keys produced by the attention
layers of transformer models lie in a significantly lower-dimensional space. (2) The lower-dimensional
structure of the keys is consistent across different calibration datasets. (3) Rotary embeddings increase
the dimensionality of the keys for most models. We now use the first two properties to propose Loki,
an efficient sparse-attention method.

4 Loki: Low-Dimensional Key Representations

We now describe our proposed algorithm for sparse attention — Loki. Loki leverages low dimensional
projections of the keys in the KV-cache to efficiently and accurately select the top-k (12.5-25%) most
relevant tokens for self attention. Before discussing our approach, let us first look at some theoretical
properties of attention in the PCA-transformed space of the key tensors.



4.1 Properties of Attention in the PCA-transformed Space

We begin by proving two lemmas that provide the rationale for our approach to compute attention in
the PCA-transformed space.

Lemma 4.1. Let D be the dimension of an attention head and P € RP*P be the PCA projection
matrix of key tensors calibrated offline on a dataset. Assuming we are generating the S™ token in the
sequence, let qs € RY™P be the query vector for the S token, K.s € R*P be the key vectors,
including the past (S — 1) keys and the current key. Then, the attention scores computed using the
PCA-transformed query and keys are equivalent to the attention scores computed using the original
query and keys.

Proof. Let §s = qsP and K.g = K.gP be the PCA transformed query and key vectors. Focusing
on the dot product term in the attention computation (Equation 1), we have:

qSKg = qS(K;SPT)T [inverting the PCA transform]
= as((P")"KY%) = (asP)Ks = asKs
It is important to note here that Lemma 4.1 holds for any orthogonal P. [

Lemma 4.2. Let K;S,;d € R%%4 (d < D) be the reduced dimension key vectors obtained by
projecting the key vectors onto the first d principal components of P . Then, the attention scores
computed using K. g .q are a good approximation of the the actual attention scores.

Proof. Let R,y € R P be an orthogonal transformation that transforms the keys into the reduced
dimension space as L.s . = K.gR.4. Our objective is to minimize the following expression:

min [lasKis — as(Lus.aRiq) " |I3 3)
Using Cauchy-Schwarz inequality, we have:
AshB.s — qsllus,.aig) |2 = [14s|l2||B g — (L:salg)" 12
lasKT (Lis.aRI) 13 < llas|[31K s — (Lis:aRi) |13 ©)

We change our objective to minimize the upper bound in the RHS instead of the original objective. We
know that PCA minimizes the reconstruction error (2nd term in the RHS) among all the orthogonal

transformations. Thus, it follows that the optimal value of R}, = P4, and LY ., = K.5..a O

Since we minimize an upper bound when proving Lemma 4.2, it is possible that some other transfor-
mation might give a better approximation to the dot product. Thus, in our experiments, we use PCA
transforms computed on both the pre-rotary and post-rotary keys as candidate transformations.

Based on these lemmas and the inherent low-dimensional nature of key tensors in attention, we now
introduce the workings of the Loki algorithm.

4.2 PCA-based Top-K Algorithm

Loki implements a PCA-based Top-K Attention approach. Previous works have shown that attention
scores for a query are highly concentrated on a small subset of keys [36, 30]. This observation has
motivated several methods that compute attention using only the top-k most relevant keys. However,
these previous works either compute the exact attention scores and then select the top-k keys [12] or
compute non-exact scores but have significantly higher memory requirements [26]. Loki alleviates
these issues by computing approximate attention scores (for ranking the keys) in the reduced lower-
dimensional space, without any significant increase in memory requirements. Algorithm 1 shows our
Loki method. Line 5 of the algorithm computes the approximate attention scores using d principal
dimensions of the query and key vectors. Lines 6-7 select the top-k keys based on the approximate
attention scores. Line 8 computes the exact attention scores using the selected top-£ keys, directly in
the transformed space (Lemma 4.1).

Compute and Memory Analysis: For vanilla attention, the complexity of computing qsKZ is
O(DS) and the complexity of multiplying the values with the attention scores is O(D.S). For Loki,
the complexity of calculating the approximate attention scores (Line 5) is O(dS). The complexity of
selecting the top-k keys (Lines 6-7) is approximately O(Slog(S) + k) (sorting followed by selection).
The complexity of calculating the exact attention scores and multiplying with the values (Line 8-9)



Algorithm 1 Loki: PCA-based Top-K Attention

Require: At the S step - Input: x5 € R'*P, KV-cache: IA{:S,h V.g_1 € RSE-DxD Projection
Matrix: P € RP*P Configuration parameters (reduced dimensionality, top-k): d, k

1: function LOKI-ATTENTION(xg,K.s_1,V.s_1,P,d, k)

2: qs, ks, vs < computeQKV (xg)

3 ds <+ qsP, kg < ksP

4 K.s « concat(K.s_1,ks), V.g < concat(V.s_1,vg)

S Aapprox — qs,:d(K:S,:d)T

6: indices < topk(aupproz, k)

7 Ky + K.glindices|, V'g + V.g[indices]

8

9

0:

asK%
Aegact < softmam( \/ﬁ )
return ac;qc. Vg

10: end function

is O(2Dk). Additionally, the complexity of projections into the PCA space (Line 3) is O(2D?).
Assuming the complexity of selecting the top-k keys is small compared to the other operations, the
overall complexity of the algorithm is O(dS + 2Dk + 2D?). Then, we have:

2DS B 1 o1
dS+2Dk +2D% ~ d/2D +k/S+D/S ~ ds/2 + ks

where, dy = d/D and ky = k/S. The memory requirement of the KV-cache is the same as the
original attention, with a small overhead of storing the PCA transformation matrix.

speedup = (given D << S) (5)

4.3 Implementation in Triton

Performing Loki efficiently involves complex indexing operations within the KV-cache (lines 5 and
7 of Algorithm 1). Standard PyTorch operations create temporary, dense copies of the KV-cache
data in memory, leading to slowdowns due to expensive memory access. To alleviate this issue, we
develop optimized kernels in Triton [1] for the three matrix multiplication operations in Loki. Our
kernels can directly access relevant subsets of the KV-cache (both feature and sequence dimensions)
and perform computations within GPU registers. This eliminates the need for creating dense copies,
significantly improving performance. Our approach builds on SparQ [26], which introduced similar
kernels for top-k attention calculations. However, we identified and addressed inefficiencies in the
SparQ kernels, which resulted in speedups of nearly 2 — 3 in certain scenarios. (see Appendix C).

S Experimental Setup

We evaluate Loki on the basis of perplexity using the WikiText-2 [21] dataset (test split), and on the
basis of downstream task performance for short contexts using the LM-harness benchmark [9] and
long contexts using LongBench [2]. For the short-context evaluation, we choose the same tasks and
associated metrics as the HuggingFace OpenLLLM leaderboard [3]. For the LongBench tasks, we
evaluate on all the English language tasks.

We compare our method against three methods — full attention without any approximations, the exact
TopK approach which computes the exact attention scores and then uses the top-k tokens to compute
the final output, and H2O [39], a popular token-eviction method. For these comparisons, we show the
results with a budget size of k¢ = 0.25 and 0.125. For our method, we additionally use d¢ = 0.25 and
0.125. This configuration of our represents a 2.6x theoretical speedup. Table 1 provides an overview
of the methods compared and the associated budget terms. H,O’s budget was split equally between
the heavy hitter and recent tokens, as per the author’s recommendations. For H,O, we were unable to
run the GSMSK task as the the author’s ML benchmarking code was too memory intensive to run for
that task. For the aforementioned experiments, we generate PCA transforms using the WikiText-103
dataset. For the LongBench tasks, we compare our method with the full attention baseline as we were
unable to run HoO due to memory constraints.

For the generalizability study, we compare the results of our method with PCA transforms from
different calibration datasets: WikiText-103 [21], C4 [25], and BookCorpus [40]. Additionally, we



Table 1: Explanation of key-budget and dimensionality (Dim.) for different approaches, along with
the expected speedup and memory savings.

Method Budget Dim. Description Speedup  Memory Savings
Exact Top-K ks Full  kj fraction of keys selected using exact attention scores No No
H20 ky Full  kjy fraction of keys & values selected using H2O policy 1% %
Loki ks dy ky fraction of keys &values selected using attention W No

scores computed with d fraction of full dimensionality

also benchmark our triton based implementation of Loki by running an attention microbenchmark on
a Llama2-13B-like setup (same hidden size and number of heads) for various prompt and generation
lengths, and demonstrate speedups over vanilla attention.

All experiments are run on NVIDIA A100 GPUs with 40 and 80 GB of memory on the Perlmutter [24]
supercomputer. For larger models, we use AxoNN [27, 28] to shard the model across multiple GPUs.

6 Results

We now present the comparisons of Loki with full attention and other sparse attention methods,
including a comparison of the computation times.

6.1 Comparison with Full Attention

Let us begin our discussion with Figure 3, showing the perplexity (left) and short-context downstream
task evaluation (right) results for Loki on different models. We focus on the Llama2-7B model,
comparing pre-rotary (light green/purple) and post-rotary (dark green/purple) PCA transforms for
different k¢ and d¢ values. For Llama2-7B, we see that the performance of both candidate transforms
is similar. This trend is consistent across all the models except for Llama3-8B/70B and Mistral-7B,
where the post-rotary PCA transform performs significantly worse than the pre-rotary one. For
Llama3-8B, perplexity jumps from about 5 for the full attention to over 10, a significant decline
not seen with the pre-rotary transform. Mistral-7B shows a similar pattern. This is a surprising
observation since attention scores are calculated from post-rotary keys in the original attention
mechanism. A possible explanation is that post-rotary PCA captures token distributions tied to
specific positions in the calibration dataset, while pre-rotary PCA may generalize better by using less
positional information. Nevertheless, at least one of the PCA transformations performs well for every
model. For subsequent results, we only show the better-performing transformation for each model.
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Figure 3: Evaluation of Loki on perplexity (left plot) and short-context tasks (right plot) for different
models. Task accuracy is an average across all short-context tasks mentioned in 5.

Figure 4 shows the performance of Loki on the LongBench tasks for the Llama2-7B-Chat model. We
see that for all tasks, either one of the two candidate transforms performs similarly to full attention.
For Summarization, Few Shot Learning, Synthetic, and Code Completion task categories, the best
performing Loki configuration is at par or better than the full attention model. For the Single-Doc
QA and Multi-Doc QA task categories, Loki performs slightly worse than the full attention model,



with the biggest drop in performance observed for HotpotQA of around 3%. Comparing different
(ky,dy) settings, we see that using ky = 0.25 and d¢ = 0.25 (green), is better than using k; = 0.125
and dy = 0.5 (purple) for all models and tasks (short-context and long-context). These two settings
balance speed and performance well, with the first being superior for accuracy.
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Figure 4: Evaluation of Loki on LongBench tasks for the Llama2-7B-Chat model.

6.2 Comparison with Other Sparse Attention Methods

Next, we compare the performance of Loki with other methods, using ky = 0.25 for all methods
and dy = 0.25 for ours. Table 2 shows the perplexity results for Llama2-7B/13B, Llama3-8B, and
Mistral-7B. Loki’s perplexity drop is within 0.1 of full attention across all models, a threshold
considered acceptable for attention mechanism approximations [37]. In contrast, HoO’s perplexity
drop nears 0.2 for all models. Figure 5 confirms this trend on short-context evaluation. Loki performs
similar to full attention for all models, except Llama3-8B, where the performance is notably worse,
but still better than HO. Importantly, on the challenging MMLU task, Loki degrades less than H»O.

Table 2: Perplexity evaluation of Loki and other approaches for different models (lower is better).

Method ky dy  Speedup Llama2-7B Llama2-13B  Llama3-8B  Mistral-7B
Full Attention - - No 5.1101 4.5680 5.5696 4.9140
Exact-TopK  0.25 - No 5.1809 4.5926 5.5716 49171
H,O 025 - Yes 5.2810 4.7009 5.7056 5.0805
Loki 025 0.25 Yes 5.2017 4.6102 5.6648 4.9233
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=)
S

~
«

75
50
25

Task Accuracy

Figure 5: Downstream task performance for Loki and other approaches for different models (higher
is better). GSMS8K is excluded, as we were unable to run H,O for this task.

It is important to note here that Loki is designed to be compatible with other sparse attention
methods. For instance, token-eviction methods like H-O delete tokens to save KV-cache memory,
whereas Loki reduces memory bandwidth by selecting the top-k tokens without deletion, making
them orthogonal. A combined approach could involve using HyO to delete tokens, then applying
Loki to select top-k tokens from the remaining cache. Similarly, Loki is theoretically orthogonal to
quantization methods.



Comparing Loki with Exact-TopK, we find similar performance for Llama2-7B/13B and Mistral-7B.
Exact-TopK represents the upper performance bound for Loki if it could perfectly select the top-k
tokens. To understand why Loki works well, we examined the top-k agreement between Loki’s
reduced dimensional attention scores and exact attention scores. Figure 6 shows the Jaccard similarity
between the top-k tokens selected by both methods across all layers and heads for Llama2-7B. For
the settings: (ky = 0.25, dy = 0.25) and (ky = 0.125, dy = 0.5), evaluated in Figure 3, the Jaccard
similarity is around 0.9, validating that the Loki is able to select the top-k tokens with high accuracy.
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Figure 6: Top-k agreement between Loki and Exact-TopK methods for Llama2-7B (left plot).
Performance of Loki using transformations derived from different calibration datasets (middle plots).
Benchmarking vanilla attention and Loki for Llama2-13B using huggingface transformers with cache
append times (right plot, prompt length = 3072, generation length = 512).

6.3 Generalizability

We now turn our attention to the generalizability of the PCA transformations used in our method.
Figure 6 (middle) shows the performance of Loki using PCA transformations derived from different
calibration datasets (ky = 0.25,dy = 0.25). We see that the performance of Loki is consistent
across different calibration datasets, indicating that the PCA transformations used in our method are
generalizable. This is an important observation as it shows that the PCA keys can be generated using
a variety of calibration datasets and still achieve good performance.

6.4 Computational Efficiency

We now turn our attention to the computational efficiency of Loki. Analyzing Llama2-13B with
Hugging Face Transformers exposed an interesting bottleneck (Figure 6, rightmost). Regardless of
the attention type (vanilla or Loki), more than 80% of the time is consumed within the Hugging Face
framework for appending key-value pairs of the latest token to the KV-cache. This shared bottleneck
minimizes the overall performance improvement of our optimizations. We hypothesize that using a
more advanced inference system like vLLM [18] could significantly reduce this append time, but
leave that exploration for future work. To isolate the impact of our optimizations, the plots in Figure 7
focus solely on the attention computation time, excluding the KV-cache append time.

In the left plot of Figure 7, we see that Loki speeds up the total attention compute time (excluding
KV-cache appends) compared to vanilla attention across various prompt and generation lengths. For
a prompt length of 3072 and generation length of 512, Loki achieves nearly a 45% speedup, despite
the fact that it incurs an extra matrix multiplication operation. The breakdowns also show that the
top-k operation is nearly as expensive as the smaller matrix multiplications, which is a significant
bottleneck. Replacing PyTorch’s top-k with a custom kernel could improve this. For the shorter
prompt length of 2048 we observe a speedup of around 40% (generation length = 512), slightly
lower than the speedup at 3072. This trend is expected as larger prompts result in a bigger KV-cache,
amplifying the impact of our optimizations.

Figure 7 (Right) shows the accuracy vs. attention time trade-off across various k¢, dy settings of
Loki, with accuracy measured on LongBench and attention times from our microbenchmark. The
previously evaluated settings, ky = 0.25,dy = 0.25 and ky = 0.125,dy = 0.5, provide a good
balance between performance and accuracy, with ky = 0.25,d; = 0.25 favoring accuracy slightly
and ks = 0.125,d; = 0.5 favoring performance.
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7 Conclusion

In conclusion, we introduced Loki, an algorithm for efficient sparse attention that does not compromise
the model quality while reducing the computational complexity of self attention. We made a crucial
observation that key vectors in attention lie in a low-dimensional space, across different models
and datasets. Leveraging this insight, Loki uses attention scores computed in a lower-dimensional
space to rank and select the top-k most relevant tokens from the KV-cache. It then uses the full
dimensionality only for the selected tokens to compute the final attention. Our theoretical analysis
shows that Loki can provide significant speedups in the attention step. To implement this efficiently,
we develop optimized kernels for the various sparse matrix multiplications in our approach. Our
empirical evaluation shows that Loki performs better than popular approximation methods on a
variety of models and tasks, with respect to preserving model quality. Finally, we show that Loki can
provide speedups of up to 45% over the vanilla attention empirically, making it a promising approach
to address the computational challenges in transformer inference.

Limitations and Future Work: Loki does not focus on reducing memory usage of the KV-cache
currently. As mentioned previously in 6.2, it can potentially be combined with other sparse attention
method for improved memory-performance-accuracy trade-offs. Another direction involves storing
the KV-cache in CPU memory and transferring only the top-% keys and values to the GPU [19].

While Loki outperforms vanilla attention in our benchmarks, practical deployment would require inte-
gration with efficient attention kernels like FlashAttention [7]. As seen in our compute benchmarking,
the top-k selection operation could introduce a bottleneck towards achieving this. Investigating this
bottleneck and integrating Loki with optimized attention kernels is left for future work.

Our finding of the keys’ low intrinsic dimensionality suggests promising research directions. The
variation of this dimensionality across heads and layers could further be explored. We briefly
experimented with a variable dy policy per layer (see Appendix B.2), but did not observe significant
significant improvements. A more sophisticated policy could be explored in future work.
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A Comprehensive Dimensionality Analysis

A.1 Complete Key-Dimensionaltiy Analysis for All Models
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Figure 8: Rank at which 90% of the variance is explained for pre-rotary and post-rotary keys produced
by each layer averaged across all heads (Rank;@90) for different models. We observe that all models
exhibit significantly low rank consistently across all datasets.

In this section, we present our extended dimensionality analysis results (from 3) for all the models
we experimented with. Figure 8 displays the Rank;@90 values for all models referenced in Section
3. Our analysis reveals that the low dimensionality of the keys is consistently observed across all
models and datasets. Results for all models resemble those shown in Figure 2 of the main text. The
models we tested cover a wide range of sizes, architecture types (dense vs. MoE), as well as older
and newer architectures trained on various datasets. Despite these differences, our main observation
remains robust.

An intriguing trend is the variation in Rank; @90 across layers for different models, indicating that the
intrinsic dimensionality of the keys is not uniform across model layers. A potential future direction
could be to investigate the reasons for this variation from a semantic perspective.

For a more fine-grained analysis, we plot the normalized eigenvalues of the covariance matrix of
the keys for a few layers and heads of Llama2-7B, Mistral-7B, and Pythia-6.9B on the WikiText-2
dataset as an example in Figure 9. Here again, we observe that the explained variance significantly
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decreases after the initial principal dimensions. The results for the other models are similar to the
ones shown here.
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Figure 9: Normalized eigenvalues of the covariance matrix of the keys produced by Layer 1, Head
1 (top row), and Layer 28, Head 6 (bottom row) of Llama2-7B (left), Mistral-7B (middle), and
Pythia-6.9B (right) on the WikiText-2 dataset. We observe that the explained variance significantly
decreases after the initial principal dimensions. The dashed lines represent the rank at which 90% of
the variance is explained (Rank; ;, @90).

A.2 Variation of Rank across Attention Heads

In this section, we discuss the variation of the rank at which 90% of the variance is explained
(Rank;@90) across different heads within a layer for two models: Llama2-7B and Mistral-7B. Figure
10 shows the heatmap of the Rank;@90 for the pre-rotary (top) and post-rotary (bottom) keys across
all layers and heads for Mistral-7B. We observe that the Rank;@90 is considerably lower for pre-
rotary keys vs post-rotary keys. Focusing on the pre-rotary keys, we see that the initial layers have a
lower rank compared to the later layers. In each layer, there are some heads heads with high-rank
values even though the median rank is low. This might indicate that some head in that layer is more
important and uses more complex information about the keys. Interestingly for post-rotary keys, we
see a pattern where 4 out of the 8 heads in each layer have the same rank. This might have to do with
how the rotary embeddings are applied to Mistral-7B as we do not see this pattern in Llama2-7B.

Figure 11 shows the heatmap of the Rank; @90 for the pre-rotary (left) and post-rotary (right) keys
across all layers and heads for Llama2-7B. We observe a similar trend as Mistral-7B where the initial
layers have a lower rank compared to the later layers. However, we do not see the same pattern in the
post-rotary keys as we saw in Mistral-7B. This might indicate that the rotary embeddings are applied
differently in Llama2-7B compared to Mistral-7B.

In this section, we examine the variation in the rank at which 90% of the variance is explained
(Rank;@90) across different heads within a layer for two models: Llama2-7B and Mistral-7B. Figure
10 shows the heatmap of Rank;@90 for the pre-rotary (top) and post-rotary (bottom) keys across all
layers and heads for Mistral-7B. We observe that the Rank;@90 is significantly lower for pre-rotary
keys compared to post-rotary keys. Focusing on the pre-rotary keys, it is evident that the initial layers
exhibit lower rank values than the later layers. In each layer, some heads demonstrate high-rank
values, even though the median rank remains low. This suggests that certain heads in those layers
are more important and leverage more complex information about the keys. Interestingly, for the
post-rotary keys, we notice a pattern in which 4 out of the 8 heads in each layer share the same rank.
This phenomenon may be related to how rotary embeddings are applied in Mistral-7B, as we do not
observe this pattern in Llama2-7B. Further investigation is needed to understand this trend.

Figure 11 illustrates the heatmap of Rank; @90 for the pre-rotary (left) and post-rotary (right) keys
across all layers and heads for Llama2-7B. A similar trend emerges as seen in Mistral-7B, where
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Figure 10: Heatmap showing the rank at 90% explained variance for the pre-rotary(top) and post-
rotary(bottom) key vectors across all layers and heads for Mistral-7B.
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Figure 11: Heatmap showing the rank at 90% explained variance for the pre-rotary(top) and post-
rotary(bottom) key vectors across all layers and heads for Llama2-7B.

the initial layers have lower rank values compared to the later layers. However, the same pattern in
post-rotary keys that was observed in Mistral-7B is absent here, suggesting that rotary embeddings
may be applied differently in Llama2-7B compared to Mistral-7B.

For both the models, we can see that in each layer, there are some heads with very high-rank values,
even when the median rank is low. This might indicate that some heads in that layer are more
important and use more complex information about the keys. Analysis into chosing the best reduced
dimensionality based upon the the distribution of ranks across heads could be a potential future
direction.

A.3 Dimensionality Analysis for Queries and Values

While our main focus has been on the dimensionality of the keys, we also performed exploratory
analysis on the dimensionality of the queries and values. Figures 12 and 13 show the Rank;@90 for
the queries and values, respectively, for Llama2-7B and Llama3-70B. We observe that the queries and
values also exhibit low dimensionality across all layers and heads, similar to the keys, while values
tend to have a considerably higher dimensionality and close to the full dimensionality of the value
vectors. This observation can intuitively be explained by the fact that both keys and queries are used
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various models and datasets.
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Figure 13: Rank at which 90% of variance is explained (Rank;@90) for the value vectors across
various models and datasets.

to compute the scalar attention scores and thus do not need to be high-dimensional, while values are
weighted by these scores and used to compute the final output, and thus need to be high-dimensional
to capture the complexity of the data.
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B Comprehensive Evaluation Results

B.1 Performance of Loki on Perplexity and Short-Context Downstream Tasks
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Figure 14: Performance of Loki on Perplexity (top) and Short-Context Downstream Task evaluation
for different models using pre-rotary and post-rotary PCA transformation. For each model and each
transform type, we run Loki with different values of £ and d.

In this section, we provide a detailed evaluation of our method across a wide range of models and
tasks. Figure 14 illustrates the performance of Loki on perplexity and downstream tasks compared to
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Table 3: Performance of different models compared to hugging face baseline with different configura-
tions of k and d using pre-rotary PCA transformation.

Model Method k d PPL| Hellaswagt TQAT Winogrande? ARCT GSM8KT MMLUT  Avgt
Llama2-7B Full Attention - - 5.1101 75.99 38.96 69.06 46.33 13.87 41.84 47.67
Loki 0.5 0.5 5.1195 75.96 38.85 69.22 46.16 13.19 41.34 4745
Loki 0.5 0.25 5.1223 75.84 39.05 68.82 45.82 12.36 40.95 47.14
Loki 05 0125 5.1250 75.09 38.51 69.53 44.28 10.77 39.07 46.21
Loki 0.25 0.5 5.1881 75.73 38.04 67.25 44.20 11.30 39.74 46.04
Llama2-7B Loki 025 025 5.2185 73.43 38.35 63.61 41.21 7.96 36.43 43.50
Loki 025 0.125 53044 5323 40.08 59.35 36.09 2.81 30.99 37.09
Loki 0.125 0.5 5.4980 70.42 39.40 52.49 35.92 7.13 3322 39.76
Loki 0.125  0.25 6.0729 56.04 42.76 49.57 31.91 227 27.15 34.95
Loki 0.125 0.125  8.0514 31.06 44.46 49.01 25.34 0.38 23.64 28.98
Llama2-13B Full Attention - - 4.5680 79.38 36.90 7222 49.15 2297 52.06 52.11
Loki 0.5 0.5 4.5701 79.34 37.06 73.09 48.81 23.20 52.19 5228
Loki 0.5 025  4.5708 79.27 37.14 72.14 49.40 22.44 52.03 52.07
Loki 05 0125 45737 78.45 37.39 70.09 47.95 19.86 50.98 50.79
Loki 0.25 0.5 4.5979 79.19 37.35 71.90 47.87 22.14 52.02 51.74
Llama2-13B Loki 025 025 46110 77.39 36.89 68.90 46.16 19.86 48.80 49.67
Loki 025 0.125  4.6829 71.17 37.21 58.17 36.26 7.88 41.30 42.00
Loki 0.125 0.5 4.8153 71738 38.45 56.27 41.64 14.94 48.63 46.22
Loki 0.125 025 5.3912 61.85 36.79 52.09 32.08 2.96 36.40 37.03
Loki 0.125 0.125  7.6573 38.67 43.00 50.20 24.32 0.68 23.63 30.08
Llama2-70B Full Attention - - 3.1205 83.82 44.81 77.90 57.34 53.15 65.41 63.74
Loki 0.5 0.5 3.1319 - - - - - - -
Loki 0.5 0.25 3.1293 83.65 39.78 76.95 56.91 41.93 63.32 60.42
Loki 05 0125 3.1316 82.38 39.33 72.85 54.61 3745 60.85 57.91
Loki 0.25 0.5 3.2986 80.54 42.46 75.85 57.08 2221 57.14 55.88
Llama2-70B Loki 025 025 3.2830 76.05 44.88 63.54 50.26 15.92 51.79 50.41
Loki 025 0.125 3.4571 5225 44.73 50.36 25.09 2.35 29.37 34.02
Loki 0.125 0.5 3.8327 68.06 39.43 58.80 46.93 10.31 44.82 44.72
Loki 0.125 025 3.9259 46.59 45.88 46.96 28.67 2.35 28.90 33.22
Loki 0.125 0.125  6.4963 30.07 49.19 51.30 22.78 1.14 24.75 29.87
Llama3-8B Full Attention - - 5.5696 79.17 43.89 72.93 53.24 50.11 62.19 60.26
Loki 0.5 0.5 5.5703 78.84 44.21 73.64 54.01 48.90 61.47 60.18
Loki 0.5 0.25 5.5746 77.44 43.68 68.27 49.15 47.16 60.58 57.71
Loki 05 0125 5.5876 74.83 44.23 65.43 43.94 40.41 56.97 54.30
Loki 0.25 0.5 5.5944 76.54 44.32 60.93 43.43 44.66 58.33 54.70
Llama3-8B Loki 025 025 5.6648 69.42 41.50 50.36 34.64 33.06 44.50 45.58
Loki 025 0.125  6.0558 56.11 42.14 50.36 27.13 9.17 30.46 35.90
Loki 0.125 0.5 5.7356 66.13 44.00 50.04 28.33 31.77 40.61 43.48
Loki 0.125 025 6.5780 45.14 41.00 49.33 23.89 3.18 26.05 3143
Loki 0.125 0.125 11.1097 32.70 44.31 47.04 23.29 0.68 23.80 28.64
Llama3-70B Full Attention - - 2.5653 84.89 45.57 80.43 64.33 80.67 75.03 71.82
Loki 0.5 0.5 2.5656 85.17 45.66 79.95 63.99 79.91 74.90 71.60
Loki 0.5 0.25 2.5665 8422 45.78 75.06 59.81 78.77 73.68 69.55
Loki 05 0125 25712 82.21 45.53 69.61 54.78 74.98 70.28 66.23
Loki 0.25 0.5 2.5727 84.09 45.64 71.35 57.51 79.76 73.12 68.58
Llama3-70B Loki 025 025 2.5942 79.06 45.09 59.27 43.26 72.78 62.47 60.32
Loki 025 0125 27577 67.59 45.46 50.67 31.48 45.56 42.21 47.16
Loki 0.125 0.5 2.6285 78.96 46.48 51.14 40.70 74.53 62.19 59.00
Loki 0.125 025 2.8796 63.93 41.69 46.33 27.65 50.19 36.08 4431
Loki 0.125 0.125  4.1495 39.07 41.09 49.88 23.38 3.03 25.73 30.36
TinyLlama-1.1B  Full Attention - - 7.9671 60.45 37.88 60.22 32.85 1.90 24.86 36.36
Loki 0.5 0.5 8.0040 60.39 38.19 59.98 32.08 1.90 24.62 36.19
Loki 0.5 0.25 8.0342 59.96 38.80 59.27 32.85 2.20 2433 36.23
Loki 05 0125 8.1057 57.93 39.10 57.14 31.91 1.52 24.98 3543
Loki 0.25 0.5 8.3475 58.06 40.05 58.17 31.06 1.52 24.83 35.62
TinyLlama-1.1B Loki 025 025 8.6352 52.69 42.96 52.01 29.18 1.29 24.76 33.82
Loki 025 0.125  9.4947 44.43 44.21 50.75 23.89 1.44 24.34 31.51
Loki 0.125 0.5 9.3280 51.29 42.27 5391 27.82 0.83 24.17 33.38
Loki 0.125 025 11.5887 37.32 47.04 47.51 25.00 1.52 23.49 30.31
Loki 0.125  0.125  19.9290 30.13 48.50 51.30 24.66 1.06 24.11 29.96
Mistral-7B Full Attention - - 4.9140 81.07 42.62 73.95 53.92 38.59 59.65 5830
Loki 0.5 0.5 4.9147 80.84 42.99 74.27 53.58 38.06 59.83 58.26
Loki 0.5 025 49152 80.55 43.11 72.69 53.41 36.69 59.14 57.60
Loki 05 0125 49193 79.38 42.29 70.40 51.28 33.59 57.29 55.71
Loki 0.25 0.5 49185 79.00 43.41 70.17 49.23 36.16 58.25 56.04
Mistral-7B Loki 025 025 49233 77.65 42.18 62.98 46.59 32.68 53.70 52.63
Loki 025 0.125  4.9986 66.95 39.58 52.64 36.35 14.86 38.20 41.43
Loki 0.125 0.5 4.9311 72.66 43.89 5225 35.58 33.36 50.01 47.96
Loki 0.125 025 49636 65.93 41.12 51.78 29.18 18.42 38.14 40.76
Loki 0.125 0.125  5.7404 36.32 43.14 52.17 23.98 0.53 24.60 30.12
Mixtral-8x7B Full Attention - - 3.5967 84.01 48.53 76.32 59.73 58.38 67.90 65.81
Loki 0.5 0.5 3.5979 83.86 46.86 75.53 60.15 57.32 67.83 65.26
Loki 0.5 0.25 3.6047 83.70 46.70 76.24 59.73 57.01 67.21 65.10
Loki 05 0125 3.6201 8291 42.27 73.48 57.42 43.44 65.71 60.87
Loki 0.25 0.5 3.6076 82.58 48.16 71.43 58.28 56.18 66.72 63.89
Mixtral-8x7B Loki 025 025 3.6584 81.32 43.49 62.83 51.79 4276 60.82 57.17
Loki 025 0.125 3.9252 73.16 39.49 56.04 44.80 4.85 45.55 43.98
Loki 0.125 0.5 3.6417 76.93 48.21 50.91 41.72 50.87 58.30 54.49
Loki 0.125  0.25 3.8467 70.07 37.88 49.17 32.68 11.52 39.23 40.09
Loki 0.125 0.125  6.9799 42.34 43.80 54.38 24.66 0.45 24.99 31.77
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Table 4: Performance of different models compared to hugging face baseline with different configura-
tions of k and d using post-rotary PCA transformation.

Model Method k d PPL| Hellaswagt TQAT Winogrande? ARCT GSM8KT MMLUT  Avgt
Llama2-7B Full Attention - - 5.1101 75.99 38.96 69.06 46.33 13.87 41.84 47.67
Loki 0.5 0.5 5.1195 7591 38.87 68.59 46.50 14.10 41.49 47.58
Loki 0.5 0.25 5.1206 75.84 39.05 68.82 45.82 12.36 40.95 47.14
Loki 05 0125 5.1241 75.48 38.77 67.64 43.94 12.59 38.85 46.21
Loki 0.25 0.5 5.1838 75.19 38.16 62.12 41.21 10.69 40.42 44.63
Llama2-7B Loki 025 025 5.2017 72.59 39.16 56.59 37.37 10.24 37.74 4228
Loki 025 0.125 54428 68.49 38.83 56.51 32.17 10.92 32.68 39.93
Loki 0.125 0.5 5.3601 70.42 39.40 52.49 35.92 7.13 3322 39.76
Loki 0.125  0.25 5.5606 59.98 41.72 48.86 26.96 6.22 28.38 3535
Loki 0.125 0.125  7.4062 40.14 43.84 49.64 25.43 5.99 24.13 31.53
Llama2-13B Full Attention - - 4.5680 79.38 36.90 7222 49.15 2297 52.06 52.78
Loki 0.5 0.5 4.5731 79.34 37.06 73.09 48.81 23.20 52.19 5228
Loki 0.5 025  4.5737 79.05 37.46 72.69 48.29 23.58 51.94 52.17
Loki 05 0125 45745 78.45 37.39 70.09 47.95 19.86 50.98 50.79
Loki 0.25 0.5 4.5937 79.19 37.35 71.90 47.87 22.14 52.02 51.74
Llama2-13B Loki 025 025 46102 77.39 36.89 68.90 46.16 19.86 48.80 49.67
Loki 025 0.125  4.8082 61.52 38.10 5241 26.54 20.85 44.69 40.68
Loki 0.125 0.5 4.7029 71738 38.45 56.27 41.64 14.94 48.63 46.22
Loki 0.125 025 49668 7271 40.09 51.14 33.28 9.10 39.20 40.92
Loki 0.125 0.125  6.1436 34.81 46.07 52.09 24.15 8.79 26.50 32.07
Llama2-70B Full Attention - - 3.1205 83.82 44.81 77.90 57.34 53.15 65.41 63.74
Loki 0.5 0.5 3.1411 83.89 41.32 78.06 57.68 50.42 64.75 62.69
Loki 0.5 0.25 3.1453 83.69 43.42 76.80 56.31 52.99 64.73 62.99
Loki 05 0125 3.1457 83.41 43.51 75.45 55.89 52.54 64.12 62.49
Loki 0.25 0.5 3.4619 82.36 41.91 76.87 56.48 42,61 60.11 60.06
Llama2-70B Loki 025 025 3.5701 81.42 45.26 71.11 49.74 44.28 59.56 58.56
Loki 025 0.125  3.5459 80.59 45.57 65.59 49.15 46.93 58.00 57.64
Loki 0.125 0.5 4.1427 71.90 44.59 58.09 41.98 3434 50.30 50.20
Loki 0.125 025 4779 67.03 46.58 51.85 32.17 37.30 4221 46.19
Loki 0.125 0.125  4.6898 64.84 44.89 50.51 29.95 38.74 39.08 44.67
Llama3-8B Full Attention - - 5.5696 79.17 43.89 72.93 53.24 50.11 62.19 60.26
Loki 0.5 0.5 5.5699 76.03 43.83 67.32 44.71 49.36 59.38 56.77
Loki 0.5 0.25 5.9343 72.55 42.67 61.64 39.93 41.09 57.88 52.63
Loki 05 0125 5.7429 71.38 43.16 58.64 40.61 39.42 57.14 51.72
Loki 0.25 0.5 5.6783 68.02 42.07 48.78 31.31 43.59 48.06 46.97
Llama3-8B Loki 025 025 114459 57.39 42.13 48.70 27.90 28.28 38.69 40.52
Loki 025 0.125 13.2883 48.99 42.10 48.07 22.87 12.81 30.90 3429
Loki 0.125 0.5 6.8023 49.68 41.14 49.25 25.51 31.39 30.86 37.97
Loki 0.125 025 16.3507 36.39 43.62 50.04 25.09 16.60 26.21 32.99
Loki 0.125  0.125  22.6596 31.60 46.38 49.25 23.12 1.14 23.61 29.18
Llama3-70B Full Attention - - 2.5653 84.89 45.57 80.43 64.33 80.67 75.03 71.82
Loki 0.5 0.5 2.5660 83.60 45.83 72.61 56.14 79.15 7343 68.46
Loki 0.5 0.25 2.5697 79.92 46.22 62.90 48.46 78.39 71.11 64.50
Loki 05 0125 27810 76.66 46.77 59.27 42.66 56.94 68.48 58.46
Loki 0.25 0.5 2.5742 74.91 47.67 51.54 38.05 7171 64.14 59.00
Llama3-70B Loki 025 025 2.8593 61.40 47.86 48.38 27.73 67.32 41.18 48.98
Loki 025 0125 56725 41.90 47.18 47.59 23.29 5.31 26.98 32.04
Loki 0.125 0.5 2.6231 56.24 43.91 50.51 24.66 72.48 38.52 47.72
Loki 0.125 025 42512 31.91 47.39 50.43 24.57 19.71 24.72 33.12
Loki 0.125 0.125 57.6788 27.01 49.28 50.67 24.06 0.68 24.76 29.41
TinyLlama-1.1B  Full Attention - - 7.9671 60.45 37.88 60.22 32.85 1.90 24.86 36.36
Loki 0.5 0.5 7.9979 60.17 38.14 5833 31.57 1.90 25.12 35.87
Loki 0.5 0.25 8.0135 58.78 39.95 54.38 30.55 1.29 24.58 34.92
Loki 05 0125 8.0414 5777 38.20 54.93 30.89 1.44 24.39 34.60
Loki 0.25 0.5 8.3190 57.35 37.87 53.83 29.69 1.67 25.13 34.26
TinyLlama-1.1B Loki 025 025 8.5687 52.40 40.86 49.33 26.96 2.20 23.34 32.51
Loki 025 0.125  8.8956 51.19 42.07 52.96 28.92 0.91 25.10 33.52
Loki 0.125 0.5 8.9679 51.32 38.24 50.20 2423 1.29 24.92 31.70
Loki 0.125 025 10.2592 42.85 39.06 51.85 25.60 1.52 24.06 30.82
Loki 0.125 0.125 11.3508 39.27 41.55 50.67 22.78 0.45 24.50 29.87
Mistral-7B Full Attention - - 4.9140 81.07 42.62 73.95 53.92 38.59 59.65 5830
Loki 0.5 0.5 4.9149 79.89 42.15 70.56 49.83 3745 58.00 56.31
Loki 0.5 025 49221 78.99 40.84 63.06 45.48 3343 55.15 52.82
Loki 05 0125 49317 73.88 40.58 57.06 33.87 22.06 45.95 45.57
Loki 0.25 0.5 5.2052 71.86 40.74 56.04 3891 24.18 45.56 46.22
Mistral-7B Loki 025 025 6.5445 62.62 38.93 48.62 25.17 1.82 30.80 34.66
Loki 025 0.125  7.7609 35.51 43.67 53.20 23.63 1.06 23.86 30.16
Loki 0.125 0.5 9.5167 51.73 45.44 51.62 2577 3.03 27.99 34.26
Loki 0.125 025 13.5597 34.85 46.38 50.20 22.53 0.45 23.60 29.67
Loki 0.125 0.125  20.5289 28.52 51.98 50.91 26.96 0.45 23.64 30.41
Mixtral-8x7B Full Attention - - 3.5967 84.01 48.53 76.32 59.73 58.38 67.90 65.81
Loki 0.5 0.5 3.5970 83.24 47.32 74.27 58.53 56.48 67.23 64.51
Loki 0.5 0.25 3.6196 81.71 43.51 69.61 53.67 55.57 63.92 61.33
Loki 05 0125 3.6635 76.18 41.63 61.72 47.78 49.28 58.94 55.92
Loki 0.25 0.5 3.6004 79.99 46.47 61.64 49.15 57.85 63.04 59.69
Mixtral-8x7B Loki 025 025 3.7906 71.58 37.71 53.28 37.54 37.38 46.66 47.37
Loki 025 0.125  4.2566 59.23 36.58 50.75 28.67 15.39 3228 37.15
Loki 0.125 0.5 3.6358 7229 45.28 50.67 33.70 55.50 47.15 50.76
Loki 0.125 025 4.5500 52.16 37.86 46.57 23.98 17.13 27.02 34.12
Loki 0.125 0.125  5.5250 46.93 40.33 49.72 23.55 0.91 24.78 31.04
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the full attention baseline. We present results for both pre-rotary and post-rotary PCA transformations.
The models evaluated include Llama2-7B, Llama2-13B, Llama2-70B, Llama3-8B, Llama3-70B,
TinyLlama-1.1B, Mistral-7B, and Mixtral-8x7B. We assess the models using various configurations
of k and d for Loki.

As ky and d decrease, the model’s performance deteriorates, particularly when both are set to
0.125. Notably, the impact of k£ on performance is more pronounced than that of d. This is evident
as ky = 0.125 and dy = 0.5 significantly underperform compared to k¢ = 0.5 and dy = 0.125
across nearly all models. The configurations of k¢ = 0.25 and dy = 0.25, along with &y = 0.125
and dy = 0.5, demonstrate relatively strong performance across all models, striking a favorable
balance between performance and accuracy, with a theoretical speedup of 2.6x for both configurations.
Settings with ky = 0.5 maintain model quality much more effectively but do not yield a significant
empirical speedup.

Tables 3 and 4 present finer-grained results for each task and model.

B.2 Variable Dimensionality Analysis

Llama2-7B : Fixed vs. Variable dr policy (kr= 0.25) Llama2-13B : Fixed vs. Variable dy policy (kf= 0.25) Llama3-8B : Fixed vs. Variable dr policy (kf= 0.25)
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Figure 15: Average short-context task accuracies using fixed d¢ vs. varying dy values across the
layers for Llama2-7B (left), Llama2-13B (middle) and Llama3-8B (right). For the variable policy, d
is set based on per-layer explained variance (varied from 0.5 to 0.8). Compression ratio is the average
dy/D across layers.

In this section, we present our experiments utilizing a variable d¢ policy per layer in Loki. For this
experiment, we set d; based on the per-layer explained variance, varying from 0.5 to 0.8, and plotted
the average short-context task accuracies (refer to Section 5) against the compression ratio, calculated

as follows: .
D dlf

Compression Ratio = )

(6)
Figure 15 presents these plots for the Llama2-7B, Llama2-13B, and Llama3-8B models. We observe
that the variable d¢ policy does not yield significant improvements over the fixed d s policy used in
our experiments. It is possible that different layers may require distinct explained variance thresholds
for optimal performance, indicating that further tuning is necessary. Nevertheless, the simplicity of
the fixed d; policy, combined with its comparable performance to the variable d¢ policy, makes it a
practical choice for Loki.
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C Comparison of our kernels with SparQ

As mentioned in Section 4.3, we create optimized kernels in Triton to efficiently compute the three
matrix multiplications in Loki (lines 5, 8, and 9 of Algorithm 1) without creating temporary dense
copies of subsets of the KV-cache. Initially, we planned to use the implementations developed by the
authors of SparQ [26]. However, we discovered two major issues with their kernels. Let’s say you are
multiplying two matrices of sizes m X k and k X n, then SparQ kernels parallelize compute along
only the m dimension. However, it is well known that one can parallelize matrix multiplications along
the n dimension as well and gain more performance. Thus, we add this extra dimension of parallelism
to their triton kernel. Second, their kernels cannot handle non-powers of 2 number of tokens in the
KV-cache, a setting which is commonly encountered in inference since we generated keys and values
one at a time. Therefore, we extend their kernels to handle non-powers of two number of tokens in
the KV-cache successfully. In Figure 16, we compare the performance of our kernel with SparQand
vanilla PyTorch based attention for an attention layer in Llama2-7B for various sizes of the KV-cache
ranging from 512 to 4096. We do this for the matmul operation of query and keys with top-% as 0.25.

Llama2-7B - Time for computing Q. K" Llama2-7B - Time for computing Q. K"
with 512 keys and k=0.25 with 1024 keys and k=0.25
0.1+ 0.2,
—— Vanilla Attention
__0.05- w4 SparQ _
g — = Our kernel g
D e A G
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(= - =
00lg - — _a-""
| 2 4 8 13
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Llama2-7B - Time for computing Q. K" Llama2-7B - Time for computing Q. K
with 2048 keys and k=0.25 with 4096 keys and k=0.25
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o 0.14 o
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(= (=
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Figure 16: Comparing the performance of our proposed kernel for computing Q.K”, with
SparQ’s [26] kernel for various batch sizes and number of keys in the KV-cache.

We see very high speedups over SparQ for small batch sizes. For instance, for a batch size of 1
with 4096 keys (bottom right), our kernel is faster than SparQ by nearly 2.8 x! Infact, the SparQ
kernel barely obtains any speedup over vanilla PyTorch even though it is only using 25% of the keys
(1024 out of 4096). This is because SparQ only parallelizes compute across the m-dimension as we
discussed before. In attention the m-dimension is proportional to the batch size, and thus having a
small batch size limits the amount of parallelism SparQ kernels can exploit. Whereas, given our 2D
parallel approach to matrix multiplication, we can exploit parallelism along the sequence dimension
and thus still obtain significant speedups over vanilla PyTorch. Note that smaller batch sizes are
very common in inference and hence it is extremely important to design a kernel that can function
efficiently even at smaller batch sizes. Our speedups over SparQ decrease with larger batch sizes, but
overall we are always faster than both SparQ and vanilla PyTorch.
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D Generation Examples

In this section, we look at a generation example from the Llama2-7B (Chat) model given a custom
prompt for different settings of k and d.

[ Prompt ]

In a world where technology has advanced beyond imagination, society grapples with the
consequences of its own creations. The integration of artificial intelligence into everyday life
has revolutionized how we live, work, and interact. However, with great power comes great
responsibility, and ethical dilemmas abound. Governments struggle to regulate the use of Al,
while corporations push the boundaries of what is possible in the pursuit of profit. Meanwhile,
individuals navigate a landscape where privacy is increasingly scarce, and the line between
human and machine blurs. Against this backdrop, a new generation of thinkers emerges,
questioning the very nature of consciousness and what it means to be human. As tensions rise
and alliances shift, the fate of humanity hangs in the balance, waiting to be written by those
bold enough to seize the pen of destiny.

[ Llama2-7B Chat Full j

Will we create a future where Al and humanity coexist in harmony, or will the pursuit of
power and profit lead to our downfall? The choice is ours, and the clock is ticking.

[ Llama2-7B Chat - k£ = 50%, d = 25% j

Will we chart a path towards utopia or succumb to the dangers of unchecked progress? Can
we find a balance between technological advancement and preserving the essence of our
humanity? The future is ours to create, and the choice is ours to make. The clock ticks
on, waiting for us to take the next step forward into an uncertain tomorrow, where the only
constant is the endless possibilities of an age of Al

[ Llama2-7B Chat - £ = 25%, d = 25% j

Will you answer the call to shape the future of AI? Will you play a part in shaping the course
of human history? The possibilities are endless, and the outcome uncertain. Are you ready to
embark on a journey that could change the world forever?
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E PCAAttn: Directly Leveraging Reduced-Dimensional Attention Scores

Algorithm 2 PCAAttn

Require: At the i'" step - Input: x5 € R'*P, KV-cache: K.g_1 .4, V.s_1 € R(SD*4 Projection
Matrix: P.q € RP*4 (first d principal components)

1: function PCA-ATTENTION(xg, K.5_1..4, Vi_1, Pg)
2: as, ks, vs < computeQKV (xg)

3 4s,:d + qsP.q, kg .q < ksP.q

4: K;&:d — concat(K:s_L;d, 1257:(1)

5: V.5 < concat(V.s_1,vg)
6
7
8:

a= softmax(iqs“d(\l/(g“df)

: return aV.g
end function

One other approach we tried is to directly use the formulation in 4.1 to compute the final attention
scores. More specifically, we compute the PCA transformed query and key vectors, projected onto
the first d principal components, and then compute the attention scores. We only store the reduced
dimension key vectors in the KV-cache. We call this method PCAAttn (Algorithm 2).

Compute and Memory Analysis: When computing attention between a single query qg € R*?
and the key vectors K. € R¥*P | the matrix multiplication qsK; has a complexity of O(DS).
Using PCAAttn, the key and query vectors are reduced to d dimensions and the complexity of the
matrix multiplication is reduced to O(dS). Thus, we can get a speedup of D/d in the attention dot
product computation. The PCA transformation of the query and key vector generated at each step
has a complexity of O(D?), which is small when S >> D. The KV-cache memory requirement is
reduced by a factor of 0.5 x D /d because we only reduce the key vectors to d dimensions and not the
values. Additionally, the PCA adds a significantly small memory overhead of O(Dd).

Experimental Results:

Table 5: Performance of PCAAttn with various cache configurations.

Model Method ky dy Perplexityl Hellaswag? Winogrande T MathQA T OpenbookQA 1T RTE?1 COPA 1
Llama2-7B  Full Attention - - 5.1102 57.2 69.1 284 314 62.8 87.0
Exact TopK 0.5 - 5.1191 57.2 68.9 28.3 31.2 63.9 86.0
Llama2-7B H20 0.5 - 5.1456 55.5 61.8 244 274 62.8 77.0
PCAAttn - 0.5 38.3997 333 532 21.7 14.2 50.5 73
Exact TopK  0.25 - 5.1799 56.9 68.6 29.4 29 66.4 76.0
Llama2-7B H>0 0.25 - 5.2809 50.1 51.6 21.1 17.8 552 55.0
PCAAttn - 0.25  243.2631 26.9 48.5 20.5 11.4 49.1 65.0
Mistral-7B  Full Attention - - 4.9140 61.2 73.9 35.7 322 66.8 91.0
Exact TopK 0.5 - 49143 61.1 73.8 35.6 32.6 65.3 92.0
Mistral-7B H20 0.5 - 4.9560 59.4 58.6 264 23.0 62.4 71.0
PCAAttn - 0.5 396.8967 314 50.4 22.5 15.6 534 72.0
Exact TopK  0.25 - 4.9170 60.4 73.0 354 30.0 65.3 85.0
Mistral-7B H20 0.25 - 5.0805 52.7 49.7 21.9 174 52.0 56.0
PCAAttn - 025  933.6016 27.2 52.2 21.6 13.6 53.0 63.0

Table 5 shows the performance of PCAAttn on Llama2-7B and Mistral-7B models. We can see that
our PCAAttn method performs poorly compared to all the baselines and the HoO method for all cache
configurations. We believe that this happens because the application of rotary embeddings increases
the dimensionality of the key vectors and using reduced dimensionality to store the keys results in
loss of information. To further investigate this, we look back at Figure 10 which shows the rank at
90% explained variance for the key vectors across all layers and heads. Even though, the average
rank per layer is around 50% of the full dimensionality, the rank for some layers and especially some
heads within each layer is much higher. Due to the poor performance of PCAAttn, we do not include
it in the final results and decide to focus on Loki instead in the main paper. Note, that we only tried
the post-rotary transformations in PCAAttn, and it is possible that pre-rotary transformations might
perform better, but we leave this for future work.
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F Estimate of Compute Resources Required to Replicate our Experiments

As mentioned in Section 6, we conduct all of our experiments on Perlmutter, a multi-GPU cluster
with 4 A100 GPUs per node. Since we do not do any training/fine-tuning, our experiments can
be done on a very small number of GPUs. For instance, all of our runs involving models with 7B
and 13B parameters were done on a single A100 GPU. For models larger than this (like LLama2-
70B, Llama3-70B), we had to resort to running on four A100 GPUs (or a single node) with tensor
parallelism using the AxoNN parallel deep learning framework. All results for 7B and 13B sized
models can be compiled within 3 hours. For larger models like the 70B Llama-2 and 3 as well as
Mixtral models, the total times for computing all results are in the ballpark of 10 hours. Our compute
benchmarking runs of Llama-13B are very short and can be completed within 5 minutes.
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