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Abstract

We explore the use of local algorithms in the design of streaming algorithms for the Maximum Directed Cut
problem. Specifically, building on the local algorithm of (Buchbinder, Feldman, Seffi, and Schwartz [14] and
Censor-Hillel, Levy, and Shachnai [16]), we develop streaming algorithms for both adversarially and randomly
ordered streams that approximate the value of maximum directed cut in bounded-degree graphs. In n-vertex
graphs, for adversarially ordered streams, our algorithm uses O(n1−Ω(1)) (sub-linear) space and for randomly
ordered streams, our algorithm uses logarithmic space. Moreover, both algorithms require only one pass over
the input stream. With a constant number of passes, we give a logarithmic-space algorithm which works
even on graphs with unbounded degree on adversarially ordered streams. Our algorithms achieve any fixed
constant approximation factor less than 1/2. In the single-pass setting, this is tight: known lower bounds show
that obtaining any constant approximation factor greater than 1/2 is impossible without using linear space
in adversarially ordered streams (Kapralov and Krachun [37]) and Ω(

√
n) space in randomly ordered streams,

even on bounded degree graphs (Kapralov, Khanna, and Sudan [35]).
In terms of techniques, our algorithms partition the vertices into a small number of different types based

on the structure of their local neighborhood, ensuring that each type carries enough information about the
structure to approximately simulate the local algorithm on a vertex with that type. We then develop tools to
accurately estimate the frequency of each type. This allows us to simulate an execution of the local algorithm
on all vertices, and thereby approximate the value of the maximum directed cut.

1 Introduction

We give almost 1/2-approximation algorithms solving the maximum directed cut (Max-DICUT) problem in graphs
in a variety of streaming settings, by appealing to local algorithms achieving similar approximations. We describe
the problem and settings in more detail below before turning to the results and techniques.

1.1 The Max-DICUT Problem and its Significance The maximum directed cut problem (Max-DICUT) is
the problem of estimating the value of the maximum directed cut in an input graph G. Here, a (directed) cut is
a subset S of the vertices and the value of the cut is the fraction of edges (u, v) in the graph satisfying u ∈ S and
v /∈ S. We denote the value of the largest cut by maxvalG and say that an algorithm produces an α-approximation
if it guarantees to output a value at least α ·maxvalG (and at most maxvalG) on all graphs G.

Besides being a central problem in its own right, Max-DICUT is also significant as it is an example of a
Constraint Satisfaction Problem (CSP). In a constraint satisfaction problem, there is a set of variables and a
set of constraints over these variables, and the goal is find out the maximum number of constraints that can be
satisfied by an assignment to the variables. CSPs form an infinite set of problems that often capture many natural
settings, and have received considerable attention in both streaming [39, 35, 29, 36, 10, 37, 4, 5, 21, 11, 17, 20,
21, 32, 50, 49, 40, 53, 52, 33] and non-streaming settings [51, 26, 6, 48, 7, 38, 45, 15, 55, among many others].
For streaming settings, the Max-DICUT problem has emerged as a leader on the algorithmic front, with almost
all algorithms being developed first for the Max-DICUT problem before being extended to other CSPs. In fact,
speaking in broad strokes, CSPs form an infinite class of problems, in almost all contexts they tend to have a
finite classification and in particular there is a finite set of algorithms that essentially cover the entire class. Thus
any algorithm that works well for any CSP problem offers hope for the entire class; and the Max-DICUT problem
has proven to be the most suitable for algorithmic developments and insights.
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Citation Approx. factor Input order Space Passes Bounded-degree?

Folklore 1− ϵ Adversarial Õ(n) 1 No
[29] 2/5− ϵ Adversarial O(log n) 1 No
[23] 4/9− ϵ Adversarial O(log n) 1 No

[50] 0.485 Adversarial Õ(
√
n) 1 Yes

[50] 0.485 Random O(log n) 1 No
[50] 0.485 Adversarial O(log n) 2 No

[49] 0.485 Adversarial Õ(
√
n) 1 No

This work 1/2− ϵ Adversarial o(n) 1 Yes
This work 1/2− ϵ Random O(log n) 1 Yes
This work 1/2− ϵ Adversarial O(log n) O(1) No

Table 1: A table of known streaming algorithms for Max-DICUT. Some lower bounds (that hold even for bounded
degree graphs) are also known: (4/9+ϵ)-approximation in single-pass adversarial-ordering streams requires Ω(

√
n)

space [23]; (1/2+ ϵ)-approximation in single-pass adversarial-ordering streams requires Ω(n) space [37]; (1/2+ ϵ)-
approximation in single-pass random-ordering streaming requires Ω(

√
n) space [35]; and (1 − ϵ)-approximation

over adversarially-ordered streams requires either nΩ(1) space or Ω(1/ϵ) passes [5]. We conjecture that the (1/2+ϵ)
lower bounds can be simultaneously generalized, to show that (1/2 + ϵ)-approximation in single-pass random-
ordering streaming requires Ω(n) space.

1.2 Streaming Algorithms for Max-DICUT In the streaming model, the input graph G is presented to
the algorithm as a stream of edges, whose goal is to make one or passes over this stream and produce an α-
approximation using as little memory as possible. (In this paper, all algorithms are allowed to toss random coins
and need to succeed with probability 99% over the choice of random coins for every input.) It is easy to see that
storing O(n) randomly chosen edges suffices to produce a (1 − ϵ)-approximation, and this can be done in a single

pass and Õ(n) memory. However, a linear-sized memory is very often unaffordable and thus, research has mostly
focused on investigating the power of sublinear algorithms for Max-DICUT.

On this front, the work of [37] showed that Ω(n) space is needed to achieve any approximation better than 1/2
when the edges are ordered adversarially, even on bounded degree graphs. It is believed that the proof techniques
also extend to randomly ordered streams although the best bound known is a memory lower bound of Ω(

√
n) in

the early work of [35]. Thus, the best approximation factor one can hope for with sublinear space is 1/2 and here,
the Max-DICUT problem does admit many non-trivial results.

The first non-trivial streaming algorithm for approximating Max-DICUT was due to [29] who gave a single-
pass that uses logarithmic space and produces a 2/5 approximation. Subsequently, [23] improved this to a 4/9
approximation and also proved that a better approximation is impossible without using at least Ω(

√
n) space if the

edges are ordered adversarially. Subsequently, [50, 49] showed that even better approximations (of around 0.485)

can be produced if algorithms are allowed Õ(
√
n) space. Moreover, the space bound improves to logarithmic if

the edges in the graph as assumed to arrive in a random order.
The above works, summarized in Table 1, have led to improvements for a wide class of constraint satisfaction

problems. For example, [22] extended the work of [23] mentioned above to cover all possible CSPs and [53]
showed that the algorithms in [50, 49] can also be extended to a richer class. This again demonstrates the
significance of algorithms for Max-DICUT when it comes to designing algorithms for general CSPs. However, the
following question remains open: Can sublinear space streaming algorithms achieve (1/2 − ϵ)-approximations for
the Max-DICUT problem, for every ϵ > 0? While we do not resolve this question here, we show many special cases,
in particular including most used/sufficient for existing lower bounds, do have such an approximation algorithm
in sublinear space.

1.3 Our Results As mentioned above, we achieve optimal (1/2−ϵ)-approximation for the Max-DICUT problem
in various restricted settings.

Bounded degree graphs with adversarially ordered edges. The first variant we consider is when the
input graph is assumed to have a bounded degree, i.e., the degree of any vertex is assumed to be at most a
pre-specified constant. While the bounded degree setting does make it easier to effect algorithmic improvements,
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it also tends to be a strong predictor of general results, in that the algorithms can often be extended (possibly
with many complications in algorithm design as well as analysis) to the general setting. As an example, the

Õ(
√
n)-space Max-DICUT algorithm of [50] for bounded-degree graphs was extended to general graphs in [49].

Conversely, as far as we are aware, all known streaming lower bounds for Max-DICUT (i.e., [35, 37]) are based on
random sparse graphs where the maximum degree of any vertex is at most constant (or logarithmic). Together,
these past algorithms and lower bounds motivate the search for algorithms in this setting. For this setting, we
show that1:

Theorem 1.1. (Adversarial-order algorithm for bounded degree graphs) For every D ∈ N and ϵ >
0, there is a streaming algorithm which (1/2 − ϵ)-approximates the Max-DICUT value of an n-vertex graph with
maximum degree at most D in O(n1−Ω(1)) space using a single, adversarially-ordered pass over the list of edges.

Bounded degree graphs with randomly ordered edges. The random order streaming model is now a
central model in streaming literature, and understanding it is an important quest of its own [34, 44, 47, 25, 2, 9, 30,
etc.]. The difference between the random order model and the adversarially ordered model is that in the random
order model, the edges of the input graph2 are presented in a uniformly random order to the streaming algorithm,
and the algorithm has to do well on most orders. [50] show that it is possible to produce an approximation of
around 0.485 of Max-DICUT using only logarithmic space, thereby going past the 4/9 lower bound that holds for
adversarially ordered streams [23]. However, there is still a gap between the approximation guarantee of the best
known algorithm (around 0.485) and the best known lower bound of 1/2 + ϵ shown in [35], that also holds for
bounded degree graphs. Our work here closes this gap for bounded degree graphs.

Theorem 1.2. (Random-order algorithm for bounded degree graphs) For every D ∈ N and ϵ > 0,
there is a streaming algorithm which (1/2 − ϵ)-approximates the Max-DICUT value of an n-vertex graph with
maximum degree at most D in O(log n) space using a single, randomly-ordered pass over the list of edges.

Multi-pass algorithms. Finally, we consider the setting where the streaming algorithm is allowed to make
multiples passes over the (adversarially ordered) input stream. The multi-pass setting has also been widely
studied [27, 24, 41, 28, 31, 1, 8, 13, 3, 4, 19, 18, 17, 12] in the streaming literature. In the context of Max-DICUT,
the most relevant work is that of [50] that produces an approximation of around 0.485 using only two passes
and logarithmic space, thereby surpassing the 4/9 lower bound that holds for single-pass algorithms [23]. We
show that a constant number of additional passes can push the approximation factor arbitrarily close to 1/2. It
is believed that, for the related problem of Max-CUT (which implies it3 for Max-DICUT), even algorithms with
logarithmically many passes need polynomial space to produce an approximation larger that 1/2 [17].

Theorem 1.3. (Multi-pass algorithm) For every ϵ > 0, there is a streaming algorithm which (1/2 − ϵ)-
approximates the Max-DICUT value of an arbitrary n-vertex graph in O(log n) space using O(1/ϵ) adversarially-
ordered passes over the list of edges.

1.4 Our Techniques The main idea behind our results is to import the local algorithms of [14, 16] for
Max-DICUT into the streaming paradigm to get (1/2 − ϵ)-approximations. A similar theme of translating local
algorithms to sublinear algorithms was explored in the work of [46] for problems like minimum vertex cover.

The Max-DICUT algorithm of [14, 16] is “local” in the following sense: each vertex gets a (fractional)
assignment depending only on its radius-k neighborhood.4 We can essentially assume without loss of generality
that our input graphs are k-colored for some large constant k (using a random k-coloring and discarding improperly
colored edges), and so our algorithms focus on the task of understanding k-neighborhoods in a k-colored graph.

Before going into the details, we mention a different approach to local (1/2−ϵ)-approximations forMax-DICUT:
Kuhn, Moscibroda, and Wattenhofer [43] developed a local algorithm for (1 − ϵ)-approximating the value

1Throughout, the O(·) and Ω(·) notations hide constants depending on ϵ and, if present, D.
2The input graph is still worst-case, just that its edges are presented in a random order.
3An algorithm for solving Max-DICUT implies an algorithm for Max-CUT, simply replace every edge by two edges, one in each

direction.
4Or more properly, on the isomorphism class of this neighborhood, i.e., the algorithm does not depend on the “names” of vertices

in the neighborhood.
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of packing-and-covering linear programs (see also the thesis of Kuhn [42]), and there is a well-known linear
programming relaxation of Max-DICUT (see e.g. [54]) that is a packing-and-covering LP and is half-integral.
Combining them could give a local algorithm for (1/2 − ϵ)-approximating Max-DICUT, although we do not
investigate this and make no formal claim in this regard. Instead, we use the algorithm in [14, 16].

We now explain the high-level idea behind the algorithms in Theorems 1.1 to 1.3:
Bounded degree graphs with adversarially ordered edges (Theorem 1.1). The starting point of

this algorithm is the observation that, in the bounded-degree setting, each vertex has only a constant number of
other vertices in its constant-radius neighborhood. This in turn means that there are only a constant number
of different (constant-radius) neighborhoods a vertex can have up to isomorphism. As simulating a constant-
radius local algorithm on a given vertex only requires knowledge of this neighborhood, we can simulate the local
algorithm on all vertices if we know the number of vertices with a given neighborhood.

To formalize this, we define the “type” of a vertex to be its k-neighborhood (for an appropriate radius k
depending on ϵ) up to isomorphism and estimate the frequency of each type by subsampling. Specifically, we
sample a set S of vertices of (sublinear) size O(n1−Ω(1)) and use our pass to record the induced subgraph on the
vertices S and the in-degree and out-degree of each vertex in S. With an appropriate choice of the constants,
it can be shown that this sampling procedure would sample the entire neighborhood of a vertex with a certain
probability that depends on its type. Moreover, the degree information we measure lets us detect whenever we
sample the entire neighborhood of a given vertex. Thus, to estimate the frequency of a type in the whole graph,
we can simply count the number of times we saw that type in our sample and scale it appropriately. Similar (but
less general) tools were also present in [50].

Before continuing to the other results, let us state a subtlety that we overlooked in our description above. To
estimate the Max-DICUT using the [14, 16] algorithm, we not only need to know the frequency of each type, but
also need to know how many vertices of each type are connected to how many vertices of another type. Thus,
instead of considering neighborhoods of vertices, we actually need to consider neighborhoods of edges. In our
actual algorithms, we extend the ideas above appropriately to make them work for edges as well.

Bounded degree graphs with randomly ordered edges (Theorem 1.2). This algorithm builds on the
foregoing one. Just as before, we still assume that the maximum degree of the vertices is bounded, and we can
still partition the vertices (and the edges) into a constant number of types and try to compute the frequency of
each type. The main challenge is that we are now trying to do this in logarithmic (instead of simply sublinear)
space using the fact that the edges are presented randomly5.

This means that we can no longer sample a set of vertices of size O(n1−Ω(1)) and consider the induced
subgraph. Instead, we sample logarithmically many vertices and “build” their neighborhoods as the stream
passes. For example, if we are building the neighborhood of vertex i (say), we start looking for edges with vertex
i and add them to the neighborhood. As soon as we find such an edge (i, j) (say), we additionally start looking
(recursively) for edges with vertex j until we reach our fixed (constant) depth k. The hope is that we will explore
the entire neighborhood of vertex i and thereby compute its type.

However, there is a significant issue with this approach: Since the graph’s edges appear in a random order,
we will often only build a strict subset of the neighborhood. For instance, suppose our graph has the edges
(1, 2), (1, 3), (3, 4), and we are building the neighborhood of vertex 1. If (3, 4) occurs before (1, 3) in the stream,
it will “slip by” and we will not include it in the neighborhood. Moreover, there is no way to determine at the
end of the stream whether or not edges have slipped by. Thus, any neighborhood in the original graph will give
rise to a distribution of neighborhoods in the sample based on which edges slipped by our algorithm. This affects
our counts and therefore, the output of the algorithm.

To get around this, we use the fact that the distribution of neighborhoods is determined solely by the order
of the edges in the stream. As we know the stream is uniformly random, we get that each neighborhood in the
original graph G gives rise to a fixed distribution of neighborhoods in our sample. The fact that these distributions
are fixed means that we can use Bayes’ rule to compute the frequency of neighborhoods in G from the frequency
of neighborhood in our sample. We mention that similar tools for measuring distributions were also used in [44].
(In fact, [44] contains a black-box algorithm for estimating the neighborhood-type distribution of random vertices.
But as mentioned above, our actual algorithm needs to understand neighborhoods of edges, not vertices. Our

5Recall that the [23] lower bound implies that getting logarithmic space is impossible if the edges are presented in an adversarial
order.
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main technical contribution here is thus a modification of the [44] algorithm to this setting.)
We remark that our single-pass streaming algorithms measure ‘strong’ information about the input graph:

The distribution of the type of the induced subgraph on the union of the k-balls around u and v, for a random
edge (u, v). This turns out to be the correct abstraction of “edge-type distribution” for these algorithms. For
instance, in the adversarial-ordering algorithm, we need to know how many vertices are in the union of the balls
around u and v in order to calculate the probability that they are all in the subsampled set S. (This probability
is in turn needed for the final reweighting step.) However, we emphasize that the local algorithm only uses much
‘weaker’ information about a random edge (u, v); for instance, it does not need to know how the ball around u
intersects with the ball on v, nor does it need to know about neighbors w of u or v whose color is larger than u’s
and v’s colors.

Multi-pass algorithms (Theorem 1.3). If a graph is promised to be bounded degree, then there is a
simple and deterministic way to measure the frequency of neighborhoods of vertices using logarithmic space and
constantly many passes: Given a starting vertex v, use the first pass to query the neighbors of v; the second pass to
query these neighbors’ neighbors, and so on. This procedure is guaranteed to exactly compute the neighborhood
of v and uses only logarithmic space if the graph has bounded-degree.

But our multi-pass algorithm avoids making a bounded-degree assumption about the input graph. Thus, its
flavor is quite different from the previous two single-pass algorithms, because unlike those algorithms, we can no
longer afford to store the entire neighborhoods of vertices, which may be arbitrarily large. In particular, we can
no longer rely on the [14, 16] algorithm as a black box.

Recall that the [14, 16] algorithm uses the entire k-neighborhood of a vertex v to produce a fractional
assignment xv ∈ [0, 1] for v. Informally, we “robustify” the [14, 16] algorithm to produce an estimated fractional
assignment for v based on random subsampling of its k-neighborhood. We show that this estimate is likely close
to xv. The subsampled graph is bounded-degree (in fact, O(1)-regular) and therefore our algorithm uses only
logarithmic space.

We now give a brief overview of the [14, 16] and our modification. To compute the (fractional) assignment
xv ∈ [0, 1] for a vertex v in G, the [14, 16] algorithm only uses a few quantities:

1. The sum of fractional assignments xv for lower -colored neighbors of v.

2. Simple degree statistics of v: how many in- and out-edges in G does v have to lower- and higher-colored
neighbors. (In the base case, color-1 vertices, the assignment depends only on these statistics.)

Note that only the first item involves recursive applications of the algorithm. Also, the recursion only has depth
k, since we recurse only on lower-colored neighbors and there are k total colors.

Our robust local version of the [14, 16] algorithm should be interpreted as a random truncation/pruning
of that algorithm’s recursion tree so that every vertex makes a constant number of recursive calls. Indeed, we
estimate the sum in the first item above by randomly sampling a constant-sized subset of v’s lower-color neighbors
and only recursing on these neighbors.

To make this more precise, our robust local algorithm looks like the following. For every vertex v ∈ G, we
recursively define a distribution Yv. To sample from Yv:

1. Sample D random and independent lower-color neighbors u1, . . . , uD of v, where D is a large constant
depending on ϵ. (Note: For convenience, the neighbors u1, . . . , uD are sampled with replacement. So even
if v has lower degree than D, we still sample D neighbors.)

2. For each i ∈ [D], sample an estimate yi ∼ Yui
. (If ui = uj , yi and yj are still sampled independently.)

3. Use the sum
∑D

i=1 yi together with the degree statistics to compute an estimate of xv via a similar procedure
to the [14, 16] algorithm.

Note that each yi can deviate from xui ; our new estimate for xv combines these yi’s and may deviate further from
xv if the errors compound in the right way. Further, we must track the error probabilities, since each of the yi’s
might deviate too much from xui

, and the sample u1, . . . , uD itself might not be representative.
The heart of our multi-pass algorithm is an analysis which manages these compounding errors. Once this

analysis is complete, the resulting robust local algorithm is simple to implement in the streaming setting with
O(k) passes: In each pass, we start with a “layer” of vertices, measure their degree statistics, and sample D
random neighbors for each, which in turn form the next layer.
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1.5 Future directions The most immediate future direction is to try to extend our single-pass bounded-degree
algorithms (Theorems 1.1 and 1.2) to the setting of general graphs (i.e., without the bounded-degree assumption).
A natural starting point would be the machinery we develop for the multi-pass algorithm (Theorem 1.3) which
eliminates the bounded-degree assumption there. However, there appear to be significant technical challenges,
fundamentally because the number of underlying isomorphism classes of vertices’ neighborhoods no longer has
constant size. We essentially get around this in the multi-pass case by “randomly truncating” the neighborhoods
of high-degree vertices, so that we recurse only a random, constant-sized sample of their full neighborhoods. It is
not clear how to combine this technique with the mechanisms we develop in the single-pass setting.

Another interesting question is whether the algorithms developed in this paper could be adapted into quantum
streaming algorithms, just as recent work of [33] adapted the algorithm of [49]. Finally, it would be very interesting
to design local algorithms for other CSPs aside from Max-DICUT (such as Max-k-AND) and to generalize our
streaming results to these problems.

This version This proceedings version of the paper omits the sections on the random-ordering algorithm
(Theorem 1.2) and the multi-pass algorithm (Theorem 1.3). See the forthcoming full version on arXiv for these
details.

Outline of this version In § 2, we write some notations for and basic facts about multisets, graphs, probability,
and total variation distance which we employ in the paper. In § 3, we develop a notion of the “neighborhood type”
of an edge and state a key connection (Theorem 3.1) between the neighborhood type of a uniformly random edge
in a graph and approximations of the Max-DICUT value of the same graph. We use this connection in § 4 to design
an algorithm for the single-pass unbounded-degree adversarial-ordering settings, thereby proving Theorem 1.1.
This algorithm is based on implementing an estimator for the “edge neighborhood-type distribution” defined in
the previous section.

2 Preliminaries

For k ∈ N, [k] denotes the natural numbers between 1 and k inclusive. Given a function f : S → T and a subset
U ⊆ S, f |U : U → T denotes the restriction of f to U .

For a finite set S, Dists(S) denotes the set of all probability distributions over S; for D ∈ Dists(S), D(S)
denotes Prs′∼D[s

′ = s].

2.1 Multisets A multiset may contain multiple (finitely many) copies of elements; for a multiset S, the
multiplicity of s, denoted multS(s), is the number of copies of s in S; set(S) is the conversion of S to a set
(by forgetting the multiplicity information); and |S| =

∑
s∈set(S) multS(s) is the total number of elements of S.6

If S and T are multisets, we write S ⊆ T to denote that with set(S) ⊆ set(T ) and multS(s) ≤ multT (s) for all
s ∈ set(S). If S is a multiset, then Unif(S) ∈ Dists(set(S)) is the distribution over set(S) which takes value
s ∈ set(S) with 1

|S|multS(s).

For a multiset S, Ords(S) denotes the set of orderings on S, i.e., functions σ : [|S|] → set(S) such that
|{i ∈ [n] : σ(i) = s}| = multS(s) for every s ∈ set(S).

2.2 Graphs In this paper, a graph is a directed multigraph, i.e., G = (V,E) for a finite set of vertices V and
a multiset E ⊂ V × V \ {(v, v) : v ∈ V } of edges. For an edge e = (u, v), we let ends(e) := {u, v} denote the set
of e’s endpoints.

Let G = (V,E) be a graph. The in-degree and out-degree of v are

indegG(v) :=
∑
u∈V

multG(u, v) outdegG(v) :=
∑
u∈V

multG(v, u),

respectively, and the total degree (or just degree) of v is

degG(v) :=
∑
u∈V

(multG(u, v) +multG(v, u)) = outdegG(v) + indegG(v).

6A multiset S is formally a pair (set(S),multS(·) : set(S) → N).
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The maximum degree of G is the maximum degree of any vertex. G is D-bounded if its maximum degree is at
most D.

Let G = (V,E) be a graph and let x : V → {0, 1} be a labeling of G’s vertices by Boolean values. The
Max-DICUT value of x on G is

(2.1) valG(x) :=
1

|E|
∑

(u,v)∈E

x(u)(1− x(v)),

(the sum is counted with multiplicity). (An edge (u, v) is satisfied by x if x(u)(1− x(v)) = 1, i.e., if x(u) = 1 and
x(v) = 0. In this sense, the DICUT value is the fraction of satisfied edges.)

Further, we use Eq. (2.1) to define valG(x) for “fractional” assignments x : V → [0, 1] in the natural way.
Observe that valG(x) equals the expected value of the Boolean assignment that assigns v to 1 w.p. x(v) and 0
w.p. 1− x(v). Hence by averaging:

Proposition 2.1. Let G = (V,E) be any graph and x : V → [0, 1] any fractional assignment. Then there exist
Boolean assignments y, z : V → {0, 1} such that

valG(y) ≤ valG(x) ≤ valG(z).

The Max-DICUT value of G, without respect to a specific assignment x, is

(2.2) maxvalG := max
x:V→{0,1}

valG(x).

Let G = (V,E). The induced subgraph of G on a subset of vertices U ⊆ V is the graph G[U ] = (U,E[U ])
where E[U ] is the subset of edges in E with both endpoints in U (with multiplicity). We’ll need the following
simple fact about induced subgraphs:

Proposition 2.2. Let G = (V,E), U ⊆ V , and W ⊆ U . Then (G[U ])[W ] = G[W ].

Let G = (V,E) and u, v ∈ V . An path from u to v is a sequence of vertices u = w0, w1, . . . , wℓ−1, wℓ = v ∈ V
such that for each i ∈ [ℓ], (wi−1, wi) ∈ E or (wi, wi−1) ∈ E.7 For v ∈ V , we let the “radius-ℓ ball” around v be

ballℓG(v) := {u ∈ V : ∃ a path of length ≤ ℓ between u and v in G}.

We use the following loose bound on the size of these balls:

Proposition 2.3. For every ℓ,D ∈ N, D ≥ 2, if G = (V,E) has maximum degree D, then for every v ∈ V ,
|ballℓG(v)| ≤ 2Dℓ.

Proof. The number of paths originating at v is at most 1 +D + · · ·+Dℓ. Using the geometric sum formula, this

quantity equals Dℓ+1−1
D−1 ≤ Dℓ+1

D−1 ≤ 2Dℓ (since D − 1 ≥ D/2).

A (proper) k-coloring of G = (V,E) is a function χ : V → [k] such that for all e = (u, v) ∈ E, χ(u) ̸= χ(v).
(A coloring is any general function χ : V → [k].)

Definition 2.1. (Colored graph) A (properly) k-colored graph is a pair (G = (V,E), χ : V → [k]), where G
is a graph and χ is a (proper) k-coloring of G.

2.3 Probability For two probability distributions X ,Y ∈ Dists(S), the total variation distance between the
distributions is

(2.3) tvdist(X ,Y) := 1

2

∑
s∈S

|X (s)− Y(s)| .

We use some standard facts about the distance:

7Note that in this notion of “paths”, the directions of edges are ignored.
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Proposition 2.4. Let X ,Y be two probability distributions with tvdist(X ,Y) ≤ ϵ supported on a finite set S and
let f : S → [0, 1] be any function. Then ∣∣∣∣ E

s∼X
[f(s)]− E

s∼Y
[f(s)]

∣∣∣∣ ≤ ϵ.

Given a set s1, . . . , st ∈ S, we define the empirical distribution EmpDistS(s1, . . . , st) ∈ Dists(S) via
EmpDistS(s1, . . . , st)(s) :=

1
t |{i ∈ [t] : si = s}|.

Proposition 2.5. For every finite set S and ϵ, δ > 0, there exists t ∈ N such that the following holds. Let D be any
distribution over S. Then w.p. 1− δ over t independent samples s1, . . . , st ∼ D, tvdist(D,EmpDistS(s1, . . . , st)) ≤
ϵ.

Also, for finite sets S, T , a function F : S → Dists(T ), and a distribution D ∈ Dists(S), F ◦ D denotes the
“composite” random variable which samples s ∼ D then outputs a sample from F(s).
Proposition 2.6. (“Data processing inequality”) Let S, T be finite sets and F : S → Dists(T ) any
function. Further, let D1,D2 ∈ Dists(S). Then

tvdist(F ◦ D1,F ◦ D2) ≤ tvdist(D1,D2).

Proposition 2.7. Let S, T be finite sets and F ,G : S → Dists(T ) any functions. Let D ∈ Dists(S). Then

tvdist(F ◦ D,G ◦ D) ≤ Pr
s∼D

[F(s) ̸= G(s)].

Also, for t ≤ |S|, we define NoReplacet(S) as the distribution over (set(S))t which iteratively samples
s1, . . . , st ∈ set(S) via s1 ∼ Unif(S) and si ∼ Unif(S \ {s1, . . . , si−1}).8 We contrast this with the standard
“with replacement” product distribution (Unif(S))t. We have some more standard facts:

Proposition 2.8. (“With replacement” vs. “without replacement” sampling) For every t ∈ N and
ϵ > 0, there exists m ∈ N such that for every multiset S with |S| ≥ m,

tvdist(NoReplacet(S), (Unif(S))
t) ≤ ϵ.

Note that Proposition 2.8 is stated for multisets. However, the statement for multisets reduces immediately
to the statement for sets: Given a multiset S with |S| = n, consider an arbitrary ordering σ ∈ Ords(S). Then
observe that σt◦NoReplacet([n]) = NoReplacet(S) and σt◦(Unif([n]))t = (Unif(S))t (where σt◦D means to sample
(i1, . . . , it) ∼ D and then output (σ(i1), . . . , σ(it))), and apply the data processing inequality.

Proposition 2.9. (Hoeffding’s inequality) Let X1, . . . , Xn be independent random variables such that ai ≤
Xi ≤ bi for all i ∈ [n]. For all t > 0, we have

Pr

(∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

E[Xi]

∣∣∣∣∣ ≥ t

)
≤ 2 · e

− 2t2∑n
i=1(bi−ai)

2
.

Proposition 2.10. (Fixing normalization) Let S be a finite set and D ∈ Dists(S) a distribution. Let
Y : S → R≥0 be a function such that ∑

s∈S

|Y (s)−D(s)| ≤ ϵ.

Let γ =
∑

s∈S Y (s). Then D̂(s) = Y (s)
γ is a distribution with tvdist(D, D̂) ≤ ϵ.

Proof. First, by the triangle inequality |γ − 1| =
∣∣∑

s∈S Y (s)− 1
∣∣ =

∣∣∑
s∈S(Y (s)−D(s))

∣∣ ≤∑
s∈S |Y (s)−D(s)| ≤ ϵ. Further,

∑
s∈S

∣∣∣D̂(s)− Y (s)
∣∣∣ =

∑
s∈S

∣∣∣ 1γY (s)− Y (s)
∣∣∣ =

∑
s∈S Y (s)

∣∣∣ 1γ − 1
∣∣∣ =

γ
∣∣∣ 1γ − 1

∣∣∣ = |1− γ| ≤ ϵ. Hence finally, again using the triangle inequality:
∑

s∈S

∣∣∣D̂(s)−D(s)∣∣∣ ≤∑
s∈S

(∣∣∣D̂(s)− Y (s)
∣∣∣+ |Y (s)−D(s)|

)
≤ 2ϵ.

8For multisets S and T , we write S ⊇ T iff for every x ∈ T , multS(x) ≥ multT (x). In this case, S \ T denotes the new multiset

where for every x ∈ S, multS\T (x) =

{
multS(x)−multT (x) x ∈ T

multS(x) x ̸∈ T
. Thus, in particular, |S \ T | = |S| − |T | where | · | denotes

cardinality, i.e., the sum of multiplicities.
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3 Algorithms from neighborhood type sampling

In this section, we develop some general techniques for reducing (1/2 − ϵ)-approximating the Max-DICUT value
of graphs to estimating certain neighborhood-type distributions in graphs.

3.1 Preprocessing colors

Proposition 3.1. Let G = (V,E) be a graph and k ≥ 2 ∈ N, and let δ > 0. Let K be any two-wise independent
distribution over functions χ : V → [k]. (I.e., for all u ̸= v ∈ V , and i, j ∈ [k], Prχ∼K[χ(u) = i∧χ(v) = j] = 1/k2.)
Then,

Pr
χ∼K

[
Pr

e=(u,v)∼Unif(E)
[χ(u) = χ(v)] ≥ δ

]
≤ 1

δk
.

In particular, the RHS is less than 1% if k ≥ 100/δ.

Proof. Enumerate E’s edges as {e1, . . . , em}, and let Xj be the indicator for the event that χ(uj) = χ(vj) (where

ej = (uj , vj)). Then by 2-wise independence, Prχ[Xj ] =
∑k

c=1 Prχ[χ(uj) = χ(vj) = c] = k · 1/k2 = 1/k. Then
Pre=(u,v)∼Unif(E)[χ(u) = χ(v)] = 1

m

∑m
j=1 Xj , and therefore Eχ[Pre=(u,v)∼Unif(E)[χ(u) = χ(v)]] = 1/k by linearity

of expectation. Finally, we apply Markov’s inequality.

We use this proposition to add a “preprocessing” step to all of our algorithms: Before we start running a
streaming algorithm A, we sample a 2-wise independent function χ : V → [k]; we give A black-box access to χ
(encoded as a polynomial’s coefficients, which requires polylogarithmic bits); then immediately before each edge
(u, v) is processed by A, we discard the edge (i.e., do not pass it to A) if χ(u) = χ(v). The input from A’s point
of view is then a stream of graph edges together with black-box access to a proper coloring. Moreover, in the case
of random-ordering algorithms, note that conditioned on χ, we still provide a uniformly random ordering over
the graph’s remaining edges. In other words, the distributions “sample a uniform random ordering of all edges,
then sample a coloring and throw away the improperly-colored edges and output the remaining edges in order”
and “sample a coloring and throw away the improperly-colored edges, then sample a uniformly random ordering
of the remaining edges” are identical.

3.2 Induced subgraphs and neighborhoods We will require the following useful proposition about
neighborhoods inside of induced subgraphs:

Proposition 3.2. Let k, ℓ ∈ N and let (G = (V,E), χ : V → [k]) be a k-colored graph. Let S ⊆ V with v ∈ S.
The following are equivalent:

1. Every vertex w ∈ ballℓ−1
G[S](v) has degG[S](w) = degG(w).

2. ballℓG(v) ⊆ S.

3. ballℓG[S](v) = ballℓG(v).

Proof. Observe that by the definition of induced subgraph, for every w ∈ S, degG[S](w) ≤ degG(w). Further,

ballℓG[S](v) ⊆ ballℓG(v).

(2 =⇒ 1) Suppose there exists a vertex w ∈ ballℓ−1
G[S](v) with degG[S](w) < degG(w). Then there exists some

vertex z ∈ V incident to w but not in S. But w ∈ ballℓ−1
G (v) so z ∈ ballℓG(v) (i.e., w is within distance ℓ− 1 of v

so z must be within distance ℓ of v).
(3 =⇒ 2) By definition, ballℓG[S](v) ⊆ S, hence by assumption ballℓG(v) ⊆ S.

(1 =⇒ 3) Suppose there exists a vertex z ∈ ballℓG(v)\ball
ℓ
G[S](v). Thus, there exists some path v = w0, . . . , z =

wL in G between v and z of length L ≤ ℓ (each wi is incident to wi−1). Note that v ∈ ballℓG[S](v) while

z ̸∈ ballℓG[S](v). Thus, there exists some i ∈ [L] such that w0, . . . , wi−1 ∈ ballℓG[S](v) but wi ̸∈ ballℓG[S](v). By the

former, wi−1 ∈ balli−1
G[S](v), so we must have wi ̸∈ S, else we would have wi ∈ balliG[S](v), contradicting the latter.

Since wi−1 ∈ S but wi ̸∈ S, we deduce that degG[S](wi−1) < degG(wi−1).
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3.3 Edge-type distributions and the multi-pass algorithm Recall that the local 1/2-approximation for
Max-DICUT of [14, 16] builds a random assignment to a k-colored graph (G = (V,E), χ : V → [k])’s vertices,
where each vertex v is assigned independently with a probability depending only on its local neighborhood. To
design streaming (1/2 − ϵ)-approximation algorithms for Max-DICUT, we will be interested in using a streaming
algorithm to simulate the [14, 16] algorithm, or more precisely, to estimate the value of the cut it produces.
This is equivalent to estimating the probability that a random edge in the graph is satisfied by the cut. But the
probability that the algorithm’s assignment satisfies a particular edge depends only on the neighborhood-types of
its two endpoints. So we arrive at the goal of estimating the distribution of the endpoints’ (k + 1)-neighborhood
types of a random edge.

Definition 3.1. (Doubly-rooted colored graph) A doubly rooted (properly) k-colored graph is a triple
(G = (V,E), χ : V → [k], e ∈ E), where G is a graph, χ is a proper k-coloring of G, and e is a designated root
edge.

For a bijection ϕ : V → V ′ and an edge e = (u, v), we use ϕ(e) to denote the pair (ϕ(u), ϕ(v)).

Definition 3.2. (Isomorphism of doubly rooted colored graphs) Two doubly rooted k-colored graphs
(G = (V,E), χ, e) and (G′ = (V ′, E′), χ′, e′) are isomorphic if there exists a bijection ϕ : V → V ′ such that
(i) for all u ̸= v ∈ V , multE(u, v) = multE′(ϕ(u, v)), (ii) for all v ∈ V , χ(v) = χ′(ϕ(v)), and (iii) ϕ(e) = e′.

Note that, importantly, this notion of isomorphism does not allow exchanging colors.9 Also, isomorphism
preserves the degrees of vertices, the distances between pairs of vertices, and the Max-DICUT values of assignments.

Given a doubly rooted k-colored graph (G,χ, e), let type(G,χ, e) denote the corresponding isomorphism class

(“type”) of doubly rooted k-colored graphs. For k, ℓ,D ∈ N, we let Typℓ,D
k denote the set of all isomorphism

classes of D-bounded doubly rooted k-colored graphs where every vertex is distance ≤ ℓ from (at least) one of

the roots. Typℓ,D
k is a finite set by Proposition 2.3; we let Nℓ,D

k := |Typℓ,D
k | denote its size.

Given G = (V,E) and an edge e = (u, v) ∈ E, we let ballℓG(e) := ballℓG(u) ∪ ballℓG(v).

Definition 3.3. (radius-ℓ neighborhood type of edge) Let k, ℓ ∈ N, G = (V,E), χ : V → [k], and e ∈ E.
The radius-ℓ neighborhood type of e, denoted nbhdtypeℓG,χ(e), is nbhdtypeℓG,χ(e) := type(G[N ], χ|N , e) where

N := ballℓG(e).

If G is D-bounded then nbhdtypeℓG,χ(e) ∈ Typℓ,D
k .

We also require a variant of Proposition 3.2 for doubly-rooted graphs:

Proposition 3.3. Let k, ℓ ∈ N and let (G = (V,E), χ : V → [k]) be a k-colored graph. Let S ⊆ V with
e = (u, v) ∈ E and u, v ∈ S. The following are equivalent:

1. Every vertex w ∈ ballℓ−1
G[S](e) has degG[S](w) = degG(w).

2. ballℓG(e) ⊆ S.

3. ballℓG[S](u) = ballℓG(v) and ballℓG[S](v) = ballℓG(v).

Further, if any of these equivalent conditions holds, then nbhdtypeℓG[S],χ|S (u, v) = nbhdtypeℓG,χ(u, v).

Proof. The equivalence of the first three conditions follows immediately from Proposition 3.2: Each condition is
the conjunction of the two corresponding conditions from Proposition 3.2 for u and v (e.g., ballℓG(u, v) ⊆ S iff
ballℓG(u) ⊆ S and ballℓG(v) ⊆ S). For the final implication, we reproduce the proof from Proposition 3.2: By def-
inition, nbhdtypeℓG[S],χ|S (u, v) = type((G[S])[N ], χ|S |N , u, v) where N = ballℓG[S](u, v), while nbhdtypeℓG,χ(u, v) =

type(G[M ], χ|M , u, v) where M = ballℓG(u, v). By assumption, N = M , so G[M ] = G[N ] = (G[S])[N ] by Proposi-
tion 2.2 (and trivially χ|S |N = χ|N ).

9For instance, an isolated vertex colored 1 is not isomorphic to an isolated vertex colored 2.
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Proposition 3.4. For all D, ℓ ∈ N, there exists ∆ ∈ N with the following property. For every graph G = (V,E)
with maximum-degree D and every e ∈ E,

|{e′ ∈ E : ballℓG(e) ∩ ballℓG(e
′) ̸= ∅}| ≤ ∆.

Proof. If ballℓG(e) ∩ ballℓG(e
′) ̸= ∅, there must be w ∈ ends(e) and w′ ∈ ends(e′) such that w′ ∈ ball2ℓG (w); hence,

v′ ∈ ball2ℓ+2
G (v) where v, v′ are arbitrary vertices in ends(e) and ends(e′), respectively. By Proposition 2.3,

|ball2ℓ+2
G (v)| ≤ 2D2ℓ+3. Further, for any such v′, there can be at most D neighbors in E (by the maximum-degree

assumption). This gives the bound for ∆ := 2D2ℓ+4.

3.4 Edge-type distribution Now, we define a notion of the edge-type distribution in a graph, and describe
how estimating this distribution suffices for approximating the Max-DICUT value of a graph.

Definition 3.4. (Edge-type distribution) Let k, ℓ,D ∈ N and (G = (V,E, χ : V → [k]) be a D-bounded
k-colored graph. The radius-ℓ neighborhood type distribution of (G,χ), denoted EdgeNbhdTypeDistℓG;χ, is the

distribution over Typℓ,D
k given by sampling a random e ∼ Unif(E) and outputting nbhdtypeℓG,χ(e).

The fact that the edge-type distribution suffices for approximating the Max-DICUT value of a graph is captured
by the following theorem:

Theorem 3.1. (Implied by [14, 16]) Let k,D ∈ N. There exists a function Local : Typk,D
k → [0, 1] such that

the following holds. Let (G = (V,E), χ : V → [k]) be a D-bounded k-colored graph. Then

1

2
maxvalG ≤ E

T∼EdgeNbhdTypeDistkG;χ

[Local(T )] ≤ maxvalG.

We remark that this theorem is not stated explicitly in the papers [14, 16], but is directly implied by these
works. The key fact is that in the deterministic algorithm for producing a fractional cut presented in [14, §4], the
assignment to each vertex depends only on the isomorphism class of the radius-k neighborhood of that vertex;
thus, the probability any edge is satisfied depends only on the isomorphism classes of the neighborhoods of its
two endpoints, and the type of the edge is only more informative (it contains additional information about the
intersection of these two neighborhoods).

Immediately from properties of the total variation distance (in particular, Proposition 2.4), we deduce:

Corollary 3.1. Let k,D ∈ N and let Local : Typk,D
k → [0, 1] be the function in the previous theorem. For

every ϵ > 0 and (G = (V,E), χ : V → [k]) a D-bounded k-colored graph, if D ∈ Dists(Typk,D
k ) is such that

tvdist(D,EdgeNbhdTypeDistkG;χ) ≤ ϵ, then

1

2
maxvalG − 2ϵ ≤ E

T∼D
[Local(T )]− ϵ ≤ maxvalG.

Now, we arrive at the main statements on estimating the edge-type distribution which we develop in the
following sections.

Theorem 3.2. (Single-pass adversarial-order estimator) For all k, ℓ,D ∈ N and ϵ, δ > 0, there exists
c > 0 such that the following holds. There exists an O(n1−c)-space streaming algorithm that, for every D-bounded
k-colored graph (G = ([n], E), χ : [n]→ [k]), given (black-box access to) χ and a single, adversarially-ordered pass

over G’s edges, outputs D ∈ Dists(Typℓ,D
k ) satisfying tvdist(D,EdgeNbhdTypeDistℓG;χ) ≤ ϵ except w.p. δ.

Theorem 3.3. (Single-pass random-order estimator) For all k, ℓ,D ∈ N and ϵ, δ > 0, there exists C > 0
such that the following holds. There exists a C log n-space streaming algorithm that, for every D-bounded k-colored
graph (G = ([n], E), χ : [n] → [k]), given (black-box access to) χ and a single, randomly-ordered pass over G’s

edges, outputs D ∈ Dists(Typℓ,D
k ) satisfying tvdist(D,EdgeNbhdTypeDistℓG;χ) ≤ ϵ except w.p. δ.

We are now ready to prove Theorem 1.1 and Theorem 1.2, assuming Theorem 3.2 and Theorem 3.3.
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Proof. [Proof of Theorem 1.1] Let h : [n]→ [100/ϵ] be a 2-wise independent hash function that describes a coloring
χ : V → [100/ϵ]. It follows from Proposition 3.1 that with probability at least 9/10, the fraction of monochromatic
edges is at most ϵ/2. We “delete” these monochromatic edges from the stream and compute the Max-DICUT value

of the remaining graph G̃. With probability at least 9/10, |maxvalG̃ −maxvalG| ≤ ϵ/2. For the reduced graph G̃,
the hash function h gives black-box access to a proper coloring of its vertices. Thus, we can apply the algorithm
from Theorem 3.2 to output a distribution D ∈ Dists(Typℓ,D

k ) satisfying tvdist(D,EdgeNbhdTypeDistℓ
G̃;χ

) ≤ ϵ/4

except w.p. 1/10. It follows from Corollary 3.1 that

1

2
maxvalG̃ − ϵ/2 ≤ E

T∼D
[Local(T )]− ϵ/4 ≤ maxvalG̃.

Applying the union bound, we conclude that there is a streaming algorithm which (1/2 − ϵ)-approximates the
Max-DICUT value of a D-bounded n-vertex graph in O(n1−Ω(1)) space using a single, adversarially-ordered pass
over the list of edges, with probability at least 8/10.

The proof of Theorem 1.2 is analogous.

4 Adversarial-ordering, o(n)-space, single-pass algorithm

In this section, we prove Theorem 3.2, using Algorithm 1 that we describe below. The algorithm uses Algorithm 2
as a sub-routine. In addition to the inputs given to Theorem 3.2, the latter algorithm takes as input a target
type T ∈ Typℓ,D

k , and an estimate m̂ ∈ N for the number of edges in the graph, and outputs an estimate for the

probability mass of T in EdgeNbhdTypeDistℓG;χ.

Algorithm 1 Bounded-Degree-AdversarialD(n, k, χ, ℓ, ϵ, δ,σ)

Parameters: Number of vertices n ∈ N, number of colors k ∈ N, coloring χ : [n] → [k], maximum degree
D ∈ N, radius ℓ ∈ N, accuracy ϵ > 0, and failure probability δ > 0.
Input: A stream of edges σ from G

1: Maintain a global counter for the number of edges m
2: for every integer b from 0 to ⌊log(nD/2)⌋ do
3: for every type T ∈ Typℓ,D

k do

4: Yb,T ← Bounded-Degree-Adversarial-FixedTypeD(n, k, χ, ℓ, ϵ/Nℓ,D
k , δ/Nℓ,D

k ,σ, T, 2b)
5: end for
6: end for
7: γ ←

∑
T∈Typℓ,D

k
Yb,T

8: N ← ( 1γYb,T )T∈Typℓ,D
k

where b = ⌊logm⌋
9: Output N

Given a type T ∈ Typℓ,D
k , and an arbitrary representative (G,χ, r, s) of T , let a(T ) := |ballℓG(r, s)| (one easily

verifies that this does not depend on the choice of representative).
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Algorithm 2 Bounded-Degree-Adversarial-FixedTypeD(n, k, χ, ℓ, ϵ, δ,σ, T, m̂)

Parameters: Number of vertices n ∈ N, number of colors k ∈ N, coloring χ : [n] → [k], maximum degree

D ∈ N, radius ℓ ∈ N, accuracy ϵ > 0, failure probability δ > 0, target type T ∈ Typℓ,D
k , and estimate m̂ ∈ N

for number of edges.
Input: A stream of edges σ from G.

Pre-processing:
10: Set ∆ to be the constant given by Proposition 3.4.
11: Set K ← ((ϵ2δm̂)/(2D∆))1/a(T ).
12: if K ≤ 1 then
13: Store the entire input stream σ and return the exact fraction of type-T edges
14: end if
15: Let H : [n]→ [2⌊log2 K⌋] be a 2a(T )-wise independent hash function
16: Initialize S ← ∅ (set) and F ← ∅ (multiset)
17: Initialize c← 1/(2 · a(T ))

Stream processing:
18: for edge e in stream do
19: for v ∈ ends(e) do
20: if H(v) = 1 and v ̸∈ S then
21: S ← S ∪ {v}
22: degs[v]← 0
23: end if
24: if v ∈ S then
25: degs[v]← degs[v] + 1
26: end if
27: end for
28: if ends(e) ⊆ S then
29: F ← F ∪ {e}
30: end if
31: if |S| ≥ n1−c then
32: Terminate and output fail
33: end if
34: end for

Post-processing:
35: X ← 0
36: for u ̸= v ∈ V do
37: if (u, v) ∈ F then
38: if every vertex w ∈ ballℓ−1

(S,F )(u, v) has degs[w] = deg(S,F )(w) then

39: if nbhdtypeℓ(S,F ),χ(u, v) = T then
40: X ← X +multF ((u, v))
41: end if
42: end if
43: end if
44: end for
45: return Ka(T )X/m.

The key correctness lemma of this section is the following:

Lemma 4.1. (Correctness and space bound for Algorithm 2) Let k, ℓ,D ∈ N and ϵ, δ > 0 be constants.
Let n ∈ N and let (G = (V,E), χ : V → [k]) be a k-colored, D-bounded graph. Let m = |E| and m̂ ∈ N. For
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every possible ordering σ of E, Algorithm 2 runs in Õ(n1−c) space. Further, if m/2 < m̂ ≤ m, w.p. ≥ 1− δ the
algorithm gives an output Y satisfying ∣∣∣Y − EdgeNbhdTypeDistχG;ℓ(T )

∣∣∣ ≤ ϵ.

Proof. It follows from the condition on Line 31 that the Algorithm 2 always uses at most Õ(n1−c) space (since
the maximum degree is at most D, |F | ≤ D|S|).

Now, we analyze the correctness of a hypothetical version of Algorithm 2 that does not perform the check in
Line 31. We show that this hypothetical version satisfies both the correctness condition and |S| ≤ n1−c w.p. δ,
which in turn implies the correctness result for the real algorithm.

Note that K > 1 as long as m̂ is at least a constant; further, when K ≤ 1, the algorithm is guaranteed to be
correct deterministically and uses only constant space. We assume hereafter that K > 1.

Every non-isolated vertex passes the check in Line 20 with probability p := 1/2⌊log2 K⌋. Thus, 2/K ≥ p ≥ 1/K.
The effect of the loop on Line 18 is to guarantee the following at the end of the stream:

1. S = {v ∈ [n] : degG(v) > 0 and H(v) = 1}.

2. F = E[S], i.e., F is the subset of edges in E with both endpoints in S (with multiplicity). Thus, in
particular, the pair (S, F ) is the induced subgraph G[S].

3. For every v ∈ S, degs[v] = degG(v).

Thus, Line 38 checks whether every vertex w ∈ ballℓ−1
G[S](u, v) has degG[S](w) = degG(w). By Proposition 3.3,

this is equivalent to ballℓG[S](u, v) ⊆ S. Further, Line 39 checks if nbhdtypeℓG[S],χ|S (u, v) = T .
Now, we analyze the random variable X, which controls the output of the algorithm. X is set to 0 on Line 35

and increased on Line 40 for pairs (u, v), u ̸= v satisfying certain conditions. Let X(u,v) denote the amount by
which X is increased on Line 40 during the (u, v)-iteration, so that X =

∑
u̸=v∈V X(u,v). We claim:

Claim 4.1. For every u ̸= v ∈ V , the following holds: If (u, v) ∈ E, ballℓG(u, v) ⊆ S, and nbhdtypeℓG,χ(u, v) = T ,
then X(u,v) = multE((u, v)), and otherwise, X(u,v) = 0.

Proof. Note that X(u,v) = multF ((u, v)) if and only if the checks on Lines 36, 38 and 39 all pass, and otherwise
X(u,v) = 0. To begin, since F ⊆ E, if (u, v) ̸∈ E, then (u, v) ̸∈ F , so the check on Line 36 fails and X(u,v) = 0.
Otherwise, (u, v) ∈ E, and by definition of the induced subgraph, multE((u, v)) = multF ((u, v)). Next, Line 38
checks whether ballℓG[S](u, v) ⊆ S. Finally, Line 39 checks if nbhdtypeℓG[S],χ|S (u, v) = T . By Proposition 3.3,

ballℓG[S](u, v) ⊆ S implies that nbhdtypeℓG[S],χ|S (u, v) = nbhdtypeℓG,χ|S (u, v), so the check on Line 39 passes if and

only if nbhdtypeℓG,χ|S (u, v) = T , as desired.

Now let T := {e ∈ set(E) : nbhdtypeℓG,χ(e) = T} denote the set of edges of type T . (Hence |T | =
EdgeNbhdTypeDistχG;ℓ(T ) ·m.) By the claim, X(u,v) is zero unless (u, v) ∈ T , in which case it equals multE(e) iff

ballℓG(u, v) ⊆ S. Hence we forget Xe for e ̸∈ T and write X =
∑

e∈T Xe. Further, recall that S is a set which (a)

contains each vertex with probability p and (b) is 2a(T )-wise independent (and in particular a(T ) = |ballℓG(u, v)|).
Thus E[X] = pa(T )|T | and (E[X])2 = p2a(T )|T |2. Next, we compute

E[X2] =
∑

e,e′∈T
E[XeXe′ ]

=
∑

e,e′∈T :Xe,Xe′ independent

E[Xe]E[Xe′ ] +
∑

e,e′∈T :Xe,Xe′ dependent

E[XeXe′ ]

≤ (E[X])2 +
∑

e,e′∈T :Xe,Xe′ dependent

E[XeXe′ ].(Xe, Xe′ non-negative)

Hence,

Var[X] = E[X2]− (E[X]2) ≤
∑

e,e′∈T :Xe,Xe′ dependent

E[XeXe′ ].
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Now when are Xe and Xe′ dependent? Suppose e = (u, v) and e′ = (u′, v′). Recall, Xe is determined by
whether ballℓG(u, v) ⊆ S and similarly Xe′ by whether ballℓG(u

′, v′) ⊆ S. Recall that |ballℓG(u, v)| = |ball
ℓ
G(u

′, v′)| =
a(T ) (since both e and e′ are assumed to have type T ) and therefore, by 2a(T )-wise independence of S, Xe and
Xe′ are independent unless ballℓG(u, v) ∩ ballℓG(u

′, v′) ̸= ∅. Hence by Proposition 3.4, Xe is dependent on Xe′ for
at most 2D2ℓ+4 distinct edges e′. Since Xe′ ≤ D, we deduce

Var[X] ≤ D
∑

e,e′∈T :Xe,Xe′ dependent

E[Xe] ≤ 2D2ℓ+5
∑
e∈T

E[Xe] = ∆DE[X] ,

where ∆ is the constant from Proposition 3.4.

Set t :=
ϵ
√

pa(T )m√
∆D

, so that

t
√
Var[X] ≤ ϵ

√
pa(T )m√
∆D

·
√
∆DE[X] = ϵpa(T )

√
m|T | ≤ ϵpa(T )m.

Hence by Chebyshev’s inequality,

Pr[|X − E[X]| ≥ ϵpa(T )m] ≤ 1

t2
.

Now we expand
1

t2
=

∆D

ϵ2pa(T )m
=

∆D

ϵ2(2∆D/(ϵ2δm̂)m
=

δm̂

2m
≤ δ/2

since m̂ ≤ m.
Finally, let us analyze the number of vertices in S. Note that E[|S|] = pn+, where n+ denotes the number

of non-isolated vertices in G. Since p = O(1/m1/a(T )) by assumption, pn+ = O(n+/m
1/a(T )) ≤ O(m1−1/a(T )) =

O(n1−1/a(T )) using n+ ≤ 2m and m ≤ Dn. By Markov’s inequality, Pr[|S| ≥ 2E[|S|]/δ] ≤ δ/2. For sufficiently
large n, 2E[|S|]/δ is at most n1−c.

Applying the union bound, we conclude that Algorithm 2 succeeds with probability at least 1 − δ.

Proof. [Proof of Theorem 3.2] Again, D, k, ℓ, ϵ, δ are constants independent of n. Since Algorithm 1 makes at

most O(log n) calls to Algorithm 2, by Lemma 4.1, the space usage of Algorithm 1 is at most Õ(n1−c). We now
prove correctness.

By definition, Algorithm 1 outputs N ∈ Dists(Typℓ,D
k ) where for T ∈ Typℓ,D

k ,

N (T ) =
Yb,T

γ
,

for b = ⌊logm⌋ where γ =
∑

T∈Typℓ,D
k

Yb,T . Note that for this value of b, m/2 < 2b ≤ m. Since Yb,T is the

output of running Algorithm 2 with parameters (n, k, χ, ℓ, ϵ/Nℓ,D
k , δ/Nℓ,D

k ,σ, T, 2b), by Lemma 4.1, for every

T ∈ Typℓ,D
k , with failure probability at most δ/Nℓ,D

k , we have

|Yb,T − EdgeNbhdTypeDistχG;ℓ(T )| ≤ ϵ/Nℓ,D
k .

Thus, by the union bound, with failure probability at most δ,∑
T∈Typℓ,D

k

|Yb,T − EdgeNbhdTypeDistχG;ℓ(T )| ≤ ϵ.

Finally, we apply Proposition 2.10.
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