N
Check for
Updates

Local Correction of Linear Functions over the Boolean Cube®

Prashanth Amireddy
Harvard University
Boston, USA
pamireddy@g.harvard.edu

Srikanth Srinivasan
University of Copenhagen
Copenhagen, Denmark

srsr@di.ku.dk
ABSTRACT

We consider the task of locally correcting, and locally list-correcting,
multivariate linear functions over the domain {0, 1}" over arbitrary
fields and more generally Abelian groups. Such functions form
error-correcting codes of relative distance 1/2 and we give local-
correction algorithms correcting up to nearly 1/4-fraction errors
making o (log n) queries. This query complexity is optimal up to
poly(log log n) factors. We also give local list-correcting algorithms
correcting (1/2 — ¢)-fraction errors with 5g(log n) queries.

These results may be viewed as natural generalizations of the
classical work of Goldreich and Levin whose work addresses the
special case where the underlying group is Z;. By extending to the
case where the underlying group is, say, the reals, we give the first
non-trivial locally correctable codes (LCCs) over the reals (with
query complexity being sublinear in the dimension (also known as
message length)).

Previous works in the area mostly focused on the case where
the domain is a vector space or a group and this lends to tools that
exploit symmetry. Since our domains lack such symmetries, we
encounter new challenges whose resolution may be of independent
interest. The central challenge in constructing the local corrector
is constructing “nearly balanced vectors” over {—1, 1}" that span
1" — we show how to construct O(log n) vectors that do so, with
entries in each vector summing to +1. The challenge to the local-
list-correction algorithms, given the local corrector, is principally
combinatorial, i.e., in proving that the number of linear functions
within any Hamming ball of radius (1/2 — ¢) is O,(1). Getting this
general result covering every Abelian group requires integrating

“PA is supported in part by a Simons Investigator Award and NSF Award CCF 2152413
to Madhu Sudan and a Simons Investigator Award to Salil Vadhan. ARB is supported
by Srikanth Srinivasan’s start-up grant from Aarhus University. MP is supported by
Srikanth Srinivasan’s start-up grants from Aarhus University and the University of
Copenhagen. SS is partially employed by Aarhus University, Denmark. This work was
supported by start-up grants from Aarhus University and the University of Copenhagen.
MS is supported in part by a Simons Investigator Award and NSF Award CCF 2152413.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °24, June 24-28, 2024, Vancouver, BC, Canada

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649746

Amik Raj Behera
Aarhus University
Aarhus, Denmark
bamikraj@cs.au.dk

764

Manaswi Paraashar
University of Copenhagen
Copenhagen, Denmark
manpa@di.ku.dk

Madhu Sudan
Harvard University
Boston, USA
madhu@cs.harvard.edu

a variety of known methods with some new combinatorial ingre-
dients analyzing the structural properties of codewords that lie
within small Hamming balls.

CCS CONCEPTS

« Theory of computation — Error-correcting codes; « Mathe-
matics of computing — Coding theory.

KEYWORDS

Local Correction, Local List Correction, Goldreich-Levin, Group-
valued polynomials

ACM Reference Format:

Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srini-
vasan, and Madhu Sudan. 2024. Local Correction of Linear Functions over
the Boolean Cube. In Proceedings of the 56th Annual ACM Symposium on The-
ory of Computing (STOC °24), June 24-28, 2024, Vancouver, BC, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649746

1 INTRODUCTION

In this paper we consider the class of “linear” functions mapping
{0, 1} to an Abelian group and give “local correction” and “local
list-correction” algorithms for this family (of codes). We describe
our problems and results in detail below. We start with some basic
notation.

We denote the space of functions mapping {0, 1}" to an Abelian
group G by ¥ ({0, 1}", G). Given two functions f, g from this set,
we denote by §(f,g) the fractional Hamming distance between
them, i.e. the fraction of points in {0, 1}"* on which f and g disagree.
In other words,

5(f.9) = xN{f(’)rl}n[f(x) #g(x)].

We say that f, g are d-close if (f,g) < § and that f, g are J-far
otherwise. Given a set of functions ¥ C ¥ ({0, 1}"*, G), we denote
by 6(f,) the minimum distance between f and a function P € F.
The function f is said to be §-close if §(f,) < § and otherwise
d-far from . We denote by §(¥) the minimum distance between
two distinct functions in F.

The main thrust of this paper is getting efficient local correcting
algorithms for some basic classes of functions # that correct close
to §(F)/2 fraction of errors uniquely (i.e. given f : {0,1}" —» G
determine P € F such that §(f, P) < 6(F)/2), and to list-correct
close to §(F) fraction of errors with small sized lists (i.e., given
f output a small list Py,...,Pr € ¥ containing all functions P

https://orcid.org/0000-0002-2713-8961
https://orcid.org/0009-0007-7328-8809
https://orcid.org/0009-0005-3805-5095
https://orcid.org/0000-0001-6491-124X
https://orcid.org/0000-0003-3718-6489
https://doi.org/10.1145/3618260.3649746
https://doi.org/10.1145/3618260.3649746
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649746&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

such that §(f, P) < §(F) — ¢). We start by describing our class of
functions.

Group Valued Polynomials. The function spaces we are interested
in are defined by polynomials of low-degree over the Boolean cube
{0, 1}"* with coefficients from an Abelian group G, where we view
{0,1} € Z. (Thus a monomial function is given by a group element
g € G and subset S C [n] and takes the value g at points a € {0,1}"
such that a; = 1 for all i € S. The degree of a monomial is |S| and a
degree d polynomial is the sum of monomials of degree at most d.)
We let P;({0,1}"*, G) denote the space of polynomials of degree at
most d in this setting. (If n and G are clear from context we refer to
this class as simply #;.) The standard proof of the “Schwartz-Zippel
Lemma” (dating back at least to Ore [27]) extends to this setting
(see Theorem 2.1) and shows that two distinct degree d polynomials
differ on at least a 2=¢ fraction of {0, 1}". Therefore §(P;) = 279
and our goal is to correct half this fraction of errors uniquely and
close to this fraction of errors with small-sized lists. (We do so for
d = 1, though many results apply to general values of d.) Next, we
describe our notion of efficiency for correction.

Local Correction. In this work we are interested in a particularly
strong notion of decoding, namely “local correction”. Informally,
F is locally correctable if there exists a probabilistic algorithm C
that, given a point x € {0, 1}" and oracle access to a function f that
is close to #, computes P(x) with high probability while making
few queries to the oracle f, where P is a function in ¥ closest
to f. In contrast to the usual notion of decoding which would re-
quire explicitly outputting a description of P (say the coefficients
of P when ¥ = P,) this notion thus only requires us to compute
P(x) for a given x. The main parameters associated with a local
correction algorithm are the fraction of errors it corrects and the
number of queries it makes to the oracle f. Formally, we say ¥
is (8, g)-locally correctable if there exists a probabilistic algorithm
that given a € {0, 1}" and oracle access to the input polynomial f
that is §-close to P € ¥, outputs P(a) correctly with probability at
least 3/4 by making at most g queries to f.

The question of local correction of low-degree polynomials has
been widely studied [7, 13, 14, 31]. These works have focused on the
setting when the domain has an algebraic structure such as being a
vector space over a finite field. In contrast the “Schwartz-Zippel”
lemma only requires the domain to be a product space. Kim and
Kopparty [22] were the first to study the decoding of low-degree
multivariate polynomials when the domain is a product set, though
they do not study local correctibility. Bafna, Srinivasan, and Sudan
[5] were the first to study the problem of local correctibility of linear
polynomials, though their result was mainly a negative result. They
showed that if the underlying field F is large, for example, F = R,
then any (Q(1), g)-local correction algorithm for $; with constant
8 requires at least Q(log n) queries. In this work, we consider the
task of designing local correction algorithms with nearly matching
performance.

Local List Correction. When considering a fraction of errors
larger than 5()/2, the notion of correction that one usually ap-
peals to is called “list-decoding” or “list-correction” as we will

765

Amireddy, Behera, Paraashar, Srinivasan, Sudan

refer to it, to maintain a consistent distinction between the no-
tion of recovering the message (decoding) and recovering its en-
coding (correction). Here the problem comes in two phases: First
a combinatorial challenge of proving that for some parameter
p € [6(F)/2,6(F)] we have an a priori bound L = L(p) such
that for every function f : {0,1}" — G there are at most t < L
functions Py, ...,P; € F satisfying 5(f,P;) < p. We define ¥ to
be (p, L)-list-decodable if it satisfies this property. Next comes the
algorithmic challenge of finding the list of size of most L that in-
cludes all such P;’s. In the non-local setting, this is referred to as
the list correction task. In the local setting, the task is subtler to
define and was formalized by Sudan, Trevisan, and Vadhan [31] as
follows:

A (p, L, q)-local-list-corrector for ¥ is a probabilistic algorithm C
that takes as input an index i € [L] and x € {0, 1}" along with ora-
cle access to f : {0,1}"" — G such that cf (i,x) is computed with at
most g oracle calls to f and C satisfies the following property: For
every polynomial P € ¥ such that §(f, P) < p there exists an index
i € [L] such that for every x € {0,1}", Pr[C/ (i,x) = P(x)] > 3/4.
(In other words C/ (i,) provides oracle access to P and ranging
over i € [L] gives oracle access to every Py, ..., P; that are p-close
to f, while some i may output spurious functions.)

The notion of list-decoding dates back to the work of Elias [12].
The seminal work of Goldreich and Levin [16] produced the first
non-trivial list-decoders for any non-trivial class of functions. (Their
work happens to consider the class 7 = P1 ({0, 1}", Z3) and actually
give local list-decoders, though not strictly local list-correctors.)
List-decoding of Reed-Solomon codes was studied by Sudan [30]
and Guruswami and Sudan [20]. Local list-correction algorithms
for functions mapping Fg to Fq for polynomials of degree d < ¢
were given in [31]. The setting of d > q has been considered by
Gopalan, Klivans and Zuckerman [17] and Bhowmick and Lovett
[8]. In a somewhat different direction Dinur, Grigorescu, Kopparty
and Sudan [9, 18] consider the class of homomorphisms from G to
H for finite Abelian groups G and H, and give local list-correction
algorithms for such classes of functions.

In this work, we give local list-correction algorithms for the
class P1({0,1}",G) for every Abelian group G. We explain the
significance of this work in the broader context below.

1.1 Motivation for Our Work

The problem of decoding linear polynomials over {0, 1}" over an
arbitrary Abelian group is a natural generalization of the work of
Goldreich and Levin, who consider this problem over Z;. How-
ever, the error-correcting properties of the underlying code (rate
and distance) remain the same over any Abelian group G. Further,
standard non-local algorithms [29] over Z; work almost without
change over any G (see Appendix A in full version [2]). The local
correction problem is, therefore, a natural next step.

There are also other technical motivations for our work from
the limitations of known techniques. Perhaps the clearest way to
highlight these limitations is that to date we have no (Q(1),0(1))-
locally correctable codes over the reals with growing dimension.
This glaring omission is highlighted in the results of [6, 10, 11].
The work of Barak, Dvir, Wigderson and Yehudayoff [6] and the

Local Correction of Linear Functions

followup of Dvir, Saraf, and Wigderson [10] show that there are
no (Q(1), 2)-locally correctable codes of super-constant dimension,
while another result of Dvir, Saraf and Wigderson [11] shows that
any (Q(1), 3)-locally correctable codes in R” must have dimension
at most n1/2-R(1), Indeed, till our work, there has been very little
exploration of code constructions over the reals. While our work
does not give an (Q(1), O(1))-locally correctable code either, ours
is the first to give n-dimensional codes that are (Q(1), 6(log n))-
locally correctable. (These are obtained by setting G = R in our
results.)

A technical reason why existing local correction results do not
cover any codes over the reals is that almost all such results rely
on the underlying symmetries of the domain. Typical results in
the area (including all the results cited above) work over a domain
that is either a vector space or least a group. Automorphisms of the
domain effectively play a central role in the design and analysis
of the local correction algorithms; but they also force the range
of the function to be related to the domain and this restricts their
scope. In our setting, while the domain {0, 1}"* does have some
symmetries, they are much less rich and unrelated to the structure
of the range. Thus new techniques are needed to design and analyze
local-correction algorithms in this setting. Indeed we identify a con-
crete new challenge — the design of “balanced” vectors in {-1, 1}"
(i.e., with the sum of entries being in {—1, 1}) that span the vector
1™ — that enables local correction, and address this challenge. We
remark that correcting £, for d > 1 leads to even more interesting
challenges that remain open.

A final motivation is just the combinatorics of the list-decodability
of this space. For instance for the class ¥ = 1 ({0, 1}", G) for any
G, it is straightforward to show §(¥) = 1/2 and so the unique
decoding radius is 1/4, but the list-decoding radius was not under-
stood prior to this work. The general bound in this setting would
be the Johnson bound which only promises a list-decoding radius
of 1 — 1/v2 =~ 0.29. Indeed a substantial portion of this work is to
establish that the list-decoding radius of all these codes approaches
6(F) =1/2.

We describe our results below before turning to their proofs.

1.2 Our Main Results

Our first result is an almost optimal local correction algorithm for
degree 1 polynomials up to an error slightly less than 1/4, which is
the unique decoding radius.

THEOREM 1.1 (LOCAL CORRECTION ALGORITHMS FOR $; UP TO
THE UNIQUE DECODING RADIUS). The space P over any Abelian
group G has a (8, q)-local correction algorithm where § = 7{ — ¢ for
any constant ¢ > 0 and g = O(log n).

We remark that Theorem 1.1 is tight up to poly(log log n) factors
due to alower bound of Q(log n/loglog n) by earlier work of Bafna,
Srinivasan, and Sudan [5]. Using further ideas, we also extend the
algorithm from Theorem 1.1 to the list decoding regime. For this,
we need first a combinatorial list decoding bound.

THEOREM 1.2 (COMBINATORIAL LIST DECODING BOUND FOR 7).
For any constant ¢ > 0, the space P1 over any Abelian group G is
(1/2 — ¢, poly(1/¢))-list decodable.

766

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Using the combinatorial list decoding bound, we also give a local
list correction algorithm for degree 1 polynomials. We state the
result below. For a formal definition of local list correction, refer to
Definition 2.3.

THEOREM 1.3 (LocAL LisT CORRECTION FOR DEGREE-1). There
exists a fixed polynomial L such that for all Abelian groups G and
for every e > 0 and n € Z* we have that 1 ({0, 1}",G) is (1/2 —
& L(e), 5(log n))-locally list correctable.

Specifically, there is a randomized algorithm A that, when given
oracle access to a polynomial f and a parameter € > 0, outputs with
probability at least 3/4 a list of randomized algorithms ¢1, ..., ¢r
(L < poly(1/e)) such that the following holds:

For each P € P that is (1/2 — €)-close to f, there is at least one
algorithm ¢; that, when given oracle access to f, computes P correctly
on every input with probability at least 3/4.

The algorithm A makes O, (1) queries to f, while each ¢; makes
O, (log n) queries to f.

Using known local testing results [3, 5], one can show that the
local list-correction Theorem 1.3 actually implies Theorem 1.1. Nev-
ertheless, we give the proof of Theorem 1.1 in its entirety, since it is
a simpler self-contained proof than the one that goes through Theo-
rem 1.3, and introduces some of the same ideas in an easier setting.
A weak version of Theorem 1.1 is also required for Theorem 1.3.

1.3 Proof Overview

1.3.1 Local Correction - Theorem 1.1. We prove Theorem 1.1 in
three steps. The first step, which is specific to the space of linear
polynomials, shows how to locally correct from any oracle f that
O(1/logn)-close to a degree-1 polynomial in n variables using
O(logn) queries. In the second and third steps, we show how to
increase the radius of decoding from O(1/logn) to an absolute
constant and then to (nearly) half the unique decoding radius. The
latter two steps also work for polynomials of degree greater than 1.

First Step. To motivate the proof of the first step, it is worth
recalling the idea behind the lower bound result of [5] mentioned
above. For simplicity, let us assume that we are working with ho-
mogeneous linear polynomials over R. In this situation, we can
equivalently replace the domain with {-1, 1}"*. Now, assume the
given oracle f : {-1,1}" — R agrees with some homogeneous
linear polynomial P at all points of Hamming weight in the range
[% —n0s1 o 0'51], and takes adversarially chosen values outside

Zin
2
this set. It is easy to check that f is exp (—nQ(l))-close to P. Further,

assume that we only want to correct the polynomial P at 1".

Over R, the space of homogeneous linear polynomials forms
a vector space. Hence, given access to an oracle f that is close
to a codeword P, it is natural to correct P using a ‘linear algo-
rithm’ in the following sense. To correct P at 1", we choose points
xD . x(@ ¢ {-1,1}" and output

c1f(x(1)) bt qu(x(q))

for some coefficients cq, ..., cqg €R. (Indeed, it is not hard to argue
that if any strategy works, then there must be a linear algorithm
that does [5].)

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Since this strategy must work when given P itself as an oracle,
it must be the case that

P(1") = ¢;P(xV) + -+ + ¢gP(x'D)

for any linear polynomial P. Further, as the space of homogeneous
linear polynomials is a vector space spanned by the coordinate (i.e.
dictator) functions, it is necessary and sufficient to have

1”:C1.x(l)+...+cq.x(q).

)

Finally, for such a correction algorithm to work for f as given above,
it must be the case that each of the ‘query points’ x(1), ..., x(@) has
Hamming weight in the range [n/2 — n%3!, n/2 + n%31].

Note that Equation (1) cannot hold for perfectly balanced (i.e.
Hamming weight exactly n/2) query points, no matter what g we
choose: this is because the query points lie in a subspace not con-
taining 1”. The work of [5] showed a robust version of this: for
any set of ‘nearly-balanced’ vectors with Hamming weight in the
range [n/2 — n%31, n/2 + n%>1] that satisfy Equation (1), it must
hold that ¢ = Q(log n/loglog n). At a high level, this lower bound
holds because if Equation (1) is true, then the coefficients can be
taken to be at most qo(q) in magnitude (via a suitable application
of Cramer’s rule). The lower bound then follows by adding up the
entries of the vectors on both sides of Equation (1).

The first step of the algorithm is based on showing that this lower
bound is essentially tight. More formally, we show that we can find
q = O(logn) nearly-balanced (in fact, the vectors we construct
have Hamming weight n/2 + 1) vectors W x@ e {o,1}"
such that the following (more general) equation holds.

1 1
ln+l:Cl'(X(l))+"'+Cq‘(X(q))

This identity allows us to correct any linear (not just homogeneous)
polynomial. Moreover, we show that we can take the coefficients
to be integers, which allows us to apply this algorithm over any
Abelian group (it makes sense to multiply a group element g with
an integer k, since it amounts to adding either the element g or its
inverse —g, |k| times).

Finally, we show that this construction also implies a similar
algorithm to compute P(1") from any f that is O(1/log n)-close
to P (and not just the special f given above). This is done by con-
structing random query points y(l), e ,y(q) where the ith bit of
these vectors is picked by choosing a random bit of x(1), . Lx @),
The fact that each x(/) is nearly balanced implies that each y(/)
is nearly uniform over {0, 1}" and hence likely not an error point
of f. Intuitively, the distance requirement is because we make g
(nearly) random queries to f and the algorithm succeeds if none of
the query points is in error. So, the algorithm correctly computes
P(1") when §(f, P) is sufficiently smaller than 1/q. By a suitable
‘shift’, we can also correct at points other than 1”.

This construction of the points D x(@ ¢ {0,1}" is based
on ensuring that the coefficients cy, .. ., cg must be exponentially
large in g (to ensure that the argument of [5] is tight). This leads
to the natural problem of finding a hyperplane whose Boolean
solutions cannot be described by an equation with small coefficients.
This is a topic that has received much interest in the study of
threshold circuits and combinatorics [1, 4, 15, 21, 28].

@

767

Amireddy, Behera, Paraashar, Srinivasan, Sudan

For the result stated above, we require only a simple construction.
Consider the following equation over {0, 1}9 where q = 2k. The
first k bits describe an integer i € {0,.. ., 2K — 1} and the last k bits
describe an integer j. The hyperplane expresses the constraint that
Jj = i—1. This hyperplane can easily be described using coefficients
that are exponentially large in k and one can easily show that this
is in fact necessary. After some modification to ensure that the
coefficients sum to 1, we get Equation (2). See Lemma 3.4 for more
details.

Using a more involved construction due to Hastad [21] and its
extension due to Alon and Vu [1], it is possible to show that we can
achieve g = O(log n/loglog n), showing that the lower bound of [5]
is in fact tight up to constant factors (see Appendix B of the full ver-
sion [2]). However, in this case, we don’t know how to ensure that
the coefficients cy, . . ., cq are integers, meaning that the algorithm
does not extend to general Abelian groups (moreover, we also lose
poly(loglog n) factors in query complexity in the subsequent steps,
and so the final algorithm is only tight up to poly(log log n) factors,
no matter which construction we use in the first step).

Second and Third Steps. To obtain an algorithm resilient to a
larger fraction of errors, we use a process of error reduction. Specif-
ically, we show that, given an oracle f : {0, 1}" — G that is §-close
to a polynomial P € $;, we can obtain (with high probability) an
oracle g : {0,1}" — G that is O(1/log n)-close to P; we can then
apply the above described local correction algorithm to g to correct
P at any given point. The oracle g makes poly(loglogn) queries to
f and hence the overall number of queries to f is O(log n).

Interestingly, the error-reduction step is not limited to linear
polynomials. We show that this also works for the space of degree-
d polynomials, where the number of queries now also depends on
the degree parameter d. In general, § can be arbitrarily close to the
unique decoding radius of £y, which is 2 (d+1)

We use two slightly different error-reduction algorithms to han-
dle the case when § is a small constant, and the case when § is close
to 2~ (d+1) respectively. We reduce the latter case to the former
case and the former to the case of error O(1/logn). It is simpler to
describe the error reduction algorithm when the error is large, i.e.
close to the unique decoding radius, so we start there.

The process of error-reduction may be viewed as an average-case
version of the correction problem, where we are only required to
compute P on most points in {0, 1}" with high probability. Assume,
therefore, that we are given a random point a € {0, 1} and we are
required to output P(a) (with high probability).

In the setting where the domain is not {0, 1}” but rather a vector
space like FZ, a natural strategy going back to the works of Beaver
and Feigenbaum [7] and Lipton [24] is to choose a random subspace
V of appropriate constant (here, we think of all parameters except
n as constants) dimension k containing a and then find the closest
k-variate degree-d polynomial to the restriction f|y of f to this
subspace. The reason this works is that the points in a random
subspace come from a pairwise independent distribution and hence
standard second-moment methods show that §(f|y, P|ly) = § with
high probability, in which case §(f|y, P|y) is also less than the
unique-decoding radius of ;. A brute-force algorithm (or better
ones, such as the Welch-Berlekamp algorithm (see e.g. [19, Chapter
15])) can now be used to find P|y, which also determines P(a).

Local Correction of Linear Functions

To adapt this idea to the setting of {0, 1}", we note that random
subspaces are not available to us since most constant-dimensional
subspaces don’t have points in {0, 1}". However, we observe that
we can apply the above idea to a random subcube in {0, 1}". More
specifically, we identify variables randomly into k buckets via a
random hash function h : [n] — [k], reducing the original set of
n variables x1, ..., x, to a set of k variables y, . .., yg. Further, to
ensure that the given point a is in the chosen subcube, we start
by replacing x; by x; ® a; before the identification process (the
process of XORing a variable x by a Boolean value b is equivalent
to either leaving the variable as is when b = 0, or replacing x by
1 —x when b = 1. This does not affect the degree of the polynomial
P). This gives rise to a random subcube C containing a (obtained by
setting y; = - - = yp = 0). We define a random subcube formally
in Definition 2.7. We can now apply the above idea by restricting
the given f to this subcube.

Having defined a subcube C as above, the non-trivial part of the
argument is to show that §(f|c, P|c) = &. This is not obvious as
the points of the subcube C are not pairwise independent. Nev-
ertheless, for random a, the points of C are ‘noisy’ copies of one
another (Definition 2.5). Using this fact and standard hypercon-
tractivity estimates, we can show that most pairs of points of C
are ‘approximately’ pairwise independent (see Theorem 2.6 below)
as long as k is a large enough constant. This allows us to use the
second-moment method to recover P(a) as before, for all but a small
fraction 8’ of possible inputs a (with high probability). The parame-
ter k is poly(1/8’) making the query complexity a constant as long
as the required error § is constant. This is proved in Section 3.2.

To reduce the error further down to O(1/log n), we modify the
above idea. We repeat the above process (Actually, we need to
slightly modify the process to ensure that we only query ‘balanced’
points on the subcube C. We postpone this detail to the proof.) on
three randomly chosen subcubes of dimension k” each containing
a and take a plurality vote of their outputs. The probability of error
in this algorithm is bounded by the probability that at least two of
the iterations query a point of error, which would be < Oy ((8")?)
if the repetitions were independent. However, the iterations here
have some dependency - each iteration uses the same random input
a. Nevertheless, using hypercontractivity, we can again argue that if
k’ is a large enough constant depending only on d, the probability of
error is at most Oy ((8”)1%) < (&’)!! for small enough &’. Repeat-
ing this process ¢ times, gives an error that is double-exponentially
small in ¢, at the expense of Oy (1)’ many queries. Choosing ¢ to
be O(logloglog n) gives us an oracle that is O(1/log n)-close to P.
Since this step uses similar ideas to the previous error-reduction
algorithm, we defer the proof to the full version.

1.3.2 Combinatorial List Decoding Bound - Theorem 1.2. We first
note that the list size can indeed be as large as poly(1/¢), no matter
the underlying group G. This is shown by the following example.
Fix an integer parameter t and any non-zero element g € G. Let f =
Majg(xl, ..., xt) denote the function of the first ¢ input variables
that takes the value g when its input has Hamming weight greater
than ¢/2 and the value 0 otherwise. A standard calculation (see
e.g. [26, Theorem 5.19]) shows that MajtG agrees with the linear
o
NG

functions g - x; (i € [t])ona (% +)-fraction of inputs. Setting

768

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

t = ©(1/€%), we see that this agreement can be made % + ¢. This
implies that for f as defined above, the list size at distance % —¢
can be as large as Q((1/¢)?)).

To motivate the proof of Theorem 1.2, it is helpful to start with the
case when G is a group Z,, of prime order. There are two extremes
in this case: p = 2 and large p (say a large constant or even growing

with n).

Case 1: p = 2. The case p = 2 is the classical setting that has
been intensively investigated in the literature, starting with the
foundational work of Goldreich and Levin [16] (see also the work
of Kushilevitz and Mansour [23]). In this setting, it is well-known
that the bound of 1/¢? is tight. This follows from the standard
Parseval identity from basic Fourier analysis of Boolean functions
(see e.g. [26]) or as a special case of the binary Johnson bound (see
e.g. the appendix of [9]). At a high level, this is because the Boolean
Fourier transform identifies each f : {0,1}" — Z; with a real
unit vector v such that distinct linear polynomials are mapped
to an orthonormal basis. Moreover, if f is (% — ¢)-close to a linear
polynomial P, then the length of projection of the vector v on vp
is at least ¢. Pythagoras’ theorem now implies the list bound.

Case 2: Large p. For p > 2, it is unclear if we can map distinct
linear polynomials to orthogonal real or complex vectors in the
above way. Nevertheless, we do expect the list-size bound to hold,
as the distance §(#1) is the same as over Z;, i.e. 1/2. Moreover, a
random pair of linear polynomials have a distance much larger than
1/2 for large p. This latter fact is a consequence of anti-concentration
of linear polynomials, which informally means the following. Let
P(x) be a non-zero polynomial with many (say, at least 100) non-
zero coefficients. Then, on a random input a, the random variable
P(a) does not take any given value b € Z,, with good probability
(say, greater than 1/5).

In the case of large p, we crucially use anti-concentration to argue
the upper bound on the list size. At a high level, in this case, we can
show that if a function f : {0, 1} — Z is (% — ¢)-close to many
(say L) linear polynomials, then there is a large subset (size L’
L) that ‘look’ somewhat like the example of the MajtG example
mentioned above. More precisely, the coefficient vectors of the
linear polynomials in this subset are at most a constant (independent
of p, order of the underlying group) Hamming distance from one
another. By shifting the polynomials by one of the linear functions
in the subset, we can assume without loss of generality that all
the linear functions in fact have a constant number of non-zero
coefficients, as in the case of the list of polynomials corresponding
to MajIG It now suffices to bound the size L’ of this subset by
poly(1/¢). The bound now reduces to a case analysis based on
the number of variables that appear in the coefficients of the L’
polynomials in the subset.

Putting it Together. We sketch here how to handle general finite
Abelian groups. In the proof, we show that this also implies the
same bound for infinite groups such as R.

Recall that any finite group G is a direct product of cyclic groups,
each of which has a size that is a prime power. We collect the terms
in this product to write G = G1 X G2 X G3 where G is the product of
the factors of sizes that are powers of 2, Gy is the same with powers
of 3, and G3 is the product of the rest (There is nothing very special

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

about this decomposition. Essentially, we have one argument that
works for ‘small’ p and another that works for ‘large’ p. To combine
them, we need some formalization of these notions. Here, ‘large’
could be defined to be larger than any constant C > 5.). A simple
observation shows that it suffices to bound the size of the list in
each of these cases by poly(1/¢).

For Gs, the argument of large p sketched above works without
any change (with some care to ensure that we can handle all the
primes greater than or equal to 5). The only part of the argument
that is sensitive to the choice of the group is the initial use of
anti-concentration, and this works over Gs3 since the order of any
non-zero element is large (i.e. at least 5).

The argument for G; needs more work. While the use of Par-
seval’s identity works over Zy, it is not clear how to extend it to
groups of size powers of 2, such as Z4. For inspiration, we turn to
a different extension of the Zy-case proved by Dinur, Grigorescu,
Kopparty, and Sudan [9]. They deal with the list-decodability of
the space of group homomorphisms from a group H to a group G.
Setting the group H to be {0, 1}" (with addition defined by the XOR
operation) and G to be Zy, we recover again the setting of (homoge-
neous) linear polynomials over Z;. The work of [9] shows how to
extend this result to larger groups G that have order a power of 2.
Note that it is not immediately clear that this should carry over to
the setting of linear polynomials: for groups of order greater than
2, the space of polynomials is different from the space of homomor-
phisms. However, we show that the technique of [9] does work in
our setting as well.

Finally, the proof for G; is a combination of the ideas of the two
proofs above. We omit the details here and refer the reader to the
actual proof.

1.3.3 Local List Correction - Theorem 1.3. Like the proof of the
second and third steps of Theorem 1.1 described above, at the
heart of our local list correction algorithm lies an error-reduction

algorithm. More precisely, we design an algorithm ?I{ which, using
oracle access to f, produces a list of algorithms /1, . . ., {1 such that,
with high probability, for each linear polynomial P that is (% —¢)-
close to f, there is at least one algorithm /; in the list that agrees
with P on most inputs, i.e. /; “approximates” P. Here, L < L(¢)
denotes the list-size bound proved in Theorem 1.2. Further, each ¢;
makes at most Op (1) = O,(1) queries to f.

We can now apply the algorithm from the unique correction
setting with oracle access to the various ¥/; to produce the desired
list @1, ..., P as required.

The proof is motivated by a local list-decoding algorithm for
low-degree polynomials over IF';’ due to Sudan, Trevisan, and Vad-
han [31]. In that setting, we are given oracle access to a function
[+ Bq — Fq and we are required to produce a list as above that
approximates the set S = {Py, ..., Pp} of degree-d polynomials (say
d = o(q)) that have significant (say Q(1)) agreement with f. It
follows from the Johnson bound that L = O(1) in this case (see,
e.g. [19, Chapter 7]). The corresponding algorithm AgTy chooses a
random point a and gets as advice the values of @; = P;(a) for each
i € [L]. (We can easily get rid of this advice assumption, but let us
assume for now that we have it.)

Now, we want to produce an algorithm that approximates P;.
Given a random point b € FZ, the algorithm constructs the random

769

Amireddy, Behera, Paraashar, Srinivasan, Sudan

line ¢ passing through a and b and produces the list of univariate
polynomials that have significant agreement with the restriction f|,
of f to the line. This can be done via brute force with O(d) queries
(if one only cares about query complexity) or in poly(d, log g) time
using Sudan’s list decoding algorithm for univariate polynomials
[30]. By pairwise independence and standard second-moment esti-
mates, it is easy to argue that for each j € [L], Pj|¢ is in this list of
univariate polynomials. However, to single out P;|, in this list, we
use advice a; = P;(a). Since a is a random point on £ (even given £),
it follows that, with high probability, «; uniquely disambiguates P; |,
from the (O(1) many) other polynomials in the list. In particular
this also determines P;(b), since b lies on £.

Let us now turn to our local list correction algorithm. We use
similar ideas to [31] but, as in the proof of Theorem 1.1, with sub-

f

cubes instead of lines. More precisely, the algorithm A; produces
a random a and a random hash function h : [n] — [k] (k = O(1)
suitably large), and uses them to produce a random subcube C as
in the proof sketch of Theorem 1.1. The advice in this case is the
restriction P|c for each polynomial P in the set S = {Py,..., Py} of
degree-1 polynomials that are (% —¢)-close to f.

Now, given a random point b € {0,1}", we correct P;(b) as
follows. We first construct the smallest subcube C’ that contains
both C and the point b. With high probability, this is a subcube
of dimension 2k. Using a simple brute-force algorithm that uses
22k queries to f, we can find the set §” of all 2k-variate linear
polynomials that are (% — £)-close to f|c/. Note that |S"| < L(e).
By a hypercontractivity-based argument (as we did in the error
reduction algorithms), we can show that, with high probability, each
Pj|c is in this list §’. To single out P;|c’, we use advice P;|c. The
proof that this works needs an understanding of the distribution of
C given C’: it turns out that the k-dimension subcube C is obtained
by randomly pairing up variables in C’ and identifying them with
a single variable. We show that, if k is large enough in comparison
to the list bound L, then with high probability, this process does
not identify any two distinct elements in the list (there is a small
subtlety in the argument that is being hidden here for simplicity).
Thus, we are able to single out P;|c+ and this allows us to compute
P;(b) correctly, with high probability over the choice of b and
the randomness of the algorithm (which includes a and the hash
function h).

Finally, to get rid of the advice, we note that a similar hypercon-
tractivity based argument also shows that each P;|c is (% — %)-close
to f|c. So by applying a similar brute-force algorithm on C, we
find, with high probability, a set $ of polynomials containing P;|c
for each i € [L]. This is good enough for the argument above. The
algorithm ﬂ{ first computes S and then outputs the descriptions

of the algorithm in the previous paragraph for each P € S (treating
it as a restriction of one of the P;).

Organization. We start with some preliminaries and then sketch
the proof of Theorem 1.1. For lack of space, the proofs of some
of the intermediate lemmas and the proofs of Theorem 1.2 and
Theorem 1.3 are postponed to the full version of the paper [2].

Local Correction of Linear Functions

2 PRELIMINARIES

2.1 Notation

Let (G, +) denote an Abelian group G with addition as the binary
operation. For any g € G, let —g denote the inverse of g € G. For
any g € G and integer a > 0, a - g (or simply ag) is the shorthand
notation of g + . .. + g (added a times) and —ag denotes a - (—g).

For a natural number n, we consider functions f : {0, 1}" — G.
We denote the set of functions that can be expressed as a multilinear
polynomial of degree d, with the coefficients being in G by Py (n, G).
We will simply write P; when n and G are clear from the context.
For x,y € {0,1}", let §(x,y) denote the relative Hamming distance
between x and y, i.e. §(x,y) = |{i € [n] | x; # yi}|/n.

For any x € {0,1}", |x| denotes the Hamming weight of x. O(-)
notation hides factors that are poly-logarithmic in its argument.
For a polynomial P(x), let vars(P) denote the variables on which P
depends, i.e. the variables that appear in a monomial with non-zero
coefficient in P. For any natural number n, U, denotes the uniform
distribution on {0, 1}".

2.2 Basic Definitions and Tools

Probabilistic Notions. For any distribution X on {0, 1}", let supp(X)
denote the subset of {0, 1}" on which X takes non-zero probability.
For two distributions X and Y on {0, 1}", the statistical distance
between X and Y, denoted by SD(X, Y) is defined as

SD(X,Y)= max |Pr[X eT]-Pr[Y€eT]|
Tc{o,1}n
We say X and Y are e-close if the statistical distance between X and
Y is at most e.

Coding Theory Notions. Fix an Abelian group G. We use £ to
denote the space of multilinear polynomials from {0, 1}" to G of
degree at most d. More precisely, any element P € $; can be
described as

P(x1,...,%xn) = Z ar l_[xi

ICn]:|I|<d i€l

where oy € G for each I. On an input a € {0, 1}", each monomial
evaluates to a group element in G and the polynomial evaluates to
the sum of these group elements.

The following is a summary of standard facts about multilinear
polynomials, which also hold true in the setting when the range is
an arbitrary Abelian group G. The proofs are standard and omitted.

THEOREM 2.1. (1) (Mdobius Inversion) Any function f : {0, 1}" —
G has a unique representation as a multilinear polynomial in
Pn. Moreover, we have f = Y1c[n] c1 [1;e1 xi where for any
I C [n], we have

=y (-0l
Jcl
where 1; is the indicator vector of the set J.
(2) (DeMillo-Lipton-Schwartz-Zippel) Any non-zero polynomial
P € P, is non-zero with probability at least2~% ata uniformly
random input from {0, 1}"*. Equivalently, 6(Py) > 274,

We now turn to the kinds of algorithms we will consider. Below,
let F be any space of functions mapping {0, 1}" to G.

770

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Definition 2.2 (Local Correction Algorithm). We say that F has a
(8, g)-local correction algorithm if there is a probabilistic algorithm
that, when given oracle access to a function f that is §-close to
some P € ¥, and given as input some a € {0, 1}", returns P(a) with
probability at least 3/4. Moreover, the algorithm makes at most g
queries to its oracle.

Definition 2.3 (Local List-Correction Algorithm). We say that
has a (§, g1, q2, L)-local list correction algorithm if there is a ran-
domized algorithm A that, when given oracle access to a function
f., produces a list of randomized algorithms ¢y, ..., ¢, where each
¢i has oracle access to f and have the following property: with
probability at least 3/4, for each codeword P that is §-close to f,
there exists some i € [L] such that the algorithm ¢; computes P
with error at most 1/4, i.e. on any input a, the algorithm ¢; outputs
P(a) with probability at least 3/4.

Moreover, the algorithm A makes at most q; queries to f, while
the algorithms ¢y, ..., @1 each make at most g2 queries to f.

Definition 2.4 (Combinatorial List Decodability). We say that ¥ is
(8, L)-list decodable if for any function f, the number of elements
of F that are §-close to f is at most L.

The questions of decoding polynomial-based codes over groups
become much more amenable to known techniques if we drop the
locality constraint. In the full version of the paper, we show how
the standard Majority-logic decoding algorithms also yield non-
local unique and list-decoding algorithms for $; over any Abelian
group.

Hypercontractivity. Next we are going to state a consequence of
the standard Hypercontracitivity theorem (Refer to [26, Chapter

9)).

Definition 2.5 (Noise distribution). Let p € [—1, 1]. For a fixed
x € {0,1}", y ~ N,(x) denotes a random variable defined as
follows: For each i € [n] independently,

X
Yi =
—Xi,

In other words, to sample from the distribution N, (x)), we flip
each bit of x independently with probability (1 — p)/2, and keeping
it unchanged with probability (1 + p)/2.

with prob. (1+ p)/2
with prob. (1-p)/2

THEOREM 2.6 ([26, SECTION 9.5]). Let E C {0, 1}" be a subset of
density &, i.e. |E|/2" = 8. Then for any p € [-1,1],
Pr [x€Eandy € E| < §/(+lPD)
x~{0,1}"
y~Np (x)
In particular, if p is close to 0, then Theorem 2.6 tells us that the
probability that x and y are in E is close to the probability when x
and y are sampled independently and uniformly from Uj,.

Subcubes of {0, 1}". It will be very useful in our algorithms to be
able to restrict the given function to a small-dimensional subcube
and analyze this restriction. We construct such subcubes by first
negating a subset of the variables, then identifying them into a
smaller set of variables. A more precise definition follows.

Definition 2.7 (Embedding a smaller cube into {0,1}"). Fix any
k € Nand k < n. Fix a point a € {0, 1}" and a function h : [n] —

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

[k]. For every y € {0,1}¥, x(y) is defined with respect to a and h
as follows:

ai,
1@ aj,

if yp(;y =0

;= N Ba; =
"= ey O { if yp(;y =1

Cap is the subset in {0, 1}" consisting of x(y) for every y € {0, 1}k,

ie. Cyp = {x(y) ‘ y € {0, l}k}.

Given any polynomial P(xi,...,x,) and any subcube C, as
above, P restricts naturally to a degree-d polynomial Q(ys, ..., yx)
on C, j, obtained by replacing each x; by yp(;) ® ai. We use P|c,,
to denote the polynomial Q.

Random Subcubes. Now assume that we choose a subcube C, j,
by sampling a ~ {0,1}" and sampling a random hash function
h : [n] — [k]. For anyy € {0, 1}k, x(y) is the image of y in
{0,1}" under a and h and C, j, is the subcube consisting of all 2k
such images. From the Definition 2.7, we can derive following two
observations:

(1) Foranyy € {0, 1}*, distribution of x(y) is the uniform distri-
bution over {0, 1}™. This is because a is uniformly distributed
over {0, 1}".
Fixy,y’ € {0, 1}¥. Recall that 5(y, y’) denotes the fractional
Hamming distance between y and y’. A simple calculation
shows the following: For all i € [n], x(y); ® x(y’); is 1 with
probability §(y,y’), and 0 with probability 1 — §(y,y’).
Since this is true for any choice of x(y), this means that
the distribution of the random variable x(y) & x(y’) is inde-
pendent of x(y). In particular, using also our observation in
the previous item, we see that the pair (x(y), x(y’)) has the
same distribution as (z,z’) where z is chosen uniformly at
random from {0, 1}" and z’ is sampled from the distribution
N (z), where p = 1 - 28(y,y’).

Building on the above observation, we have the following sam-
pling lemma for subcubes that will be useful. The proof, based on
the second-moment method, is postponed to the full version.

@)

LEMMA 2.8 (SAMPLING LEMMA FOR RANDOM SUBCUBES). Sample
a and h uniformly at random, and let C = C, j, be the subcube of
dimension k as described in Definition 2.7. Fix any T C {0,1}" and
let p := |T|/2". Then, for anye,n > 0, and k > ﬁ -log (%) where

A > 0 is a large enough absolute constant, we have

[|T N C|
Pr -
ah 2k

3 LOCAL CORRECTION IN THE UNIQUE
DECODING REGIME

In this section, we will prove Theorem 1.1, i.e. we will give a local
correction algorithm for degree 1 polynomials with only (j(log n)
queries.

We will do this in three steps. We start by proving a slightly
weaker statement: we will first give a local correction algorithm
that can correct $; with the error-parameter § < 1/0(logn) (see
Theorem 3.1). Then we will show how to handle some § = Q(1)
by reducing to the small error case. Finally, by using a similar
argument to the second step, we prove Theorem 1.1, which is a

H Ze]<ry.

771

Amireddy, Behera, Paraashar, Srinivasan, Sudan

local correction algorithm with § arbitrarily close to the unique
decoding radius.

The first part of this argument works only for linear polynomials,
while the latter two reductions also work for higher degree.

3.1 Sub-Constant Error

In this section, we give a correction algorithm for $; that can
correct for § < O(1/logn). The main result of this section is the
following.

THEOREM 3.1 (LOCAL CORRECTION ALGORITHMS FOR P UP TO
ERROR O(1/logn)). Let P be the set of degree 1 polynomials from
{0,1}" to G. Then P; has a (8, q)-local correction algorithm for any
6 < O(1/logn) and q = O(logn).

We first describe the general framework of the algorithm, which
is applicable more generally.

3.1.1 Framework of Local Correction Algorithm. We will now give
a formal definition of how we construct a local correction algorithm,
namely, via a correction gadget. This will be useful in the regime
where the distance of the input function to the codeword (in our
case, a linear polynomial) is small.

Let F be a class of functions from {0, 1}"* to an Abelian group G.
Let Py, ..., Pp be functions from {0, 1}" to Z satisfying the follow-
ing property: for any P € ¥, there exist coefficients a1, ...,ap € G
such that for any a € {0, 1}"

P(a) = a1 P1(a) +...+ apPp(a).

In the case when G = F,, for a prime p and ¥ is a vector space
of functions, {Py, ..., Pp} is a standard spanning set for ¥ in the
linear algebraic sense. We extend this definition to this case and
say that {P;, ..., Pp} is a spanning set for F.

Definition 3.2 (Local Correction Gadget). Let ¥ be a set of func-
tions from {0, 1}" to an Abelian group G with spanning set {P; };c[p]-
Foranya € {0, 1}", an (¢, q)-correction gadget for a is a distribution
D over ({0,1}™)9 satisfying the following two properties:

(1) Thereexistscy, ..., cq € Zsuch that for any (y(l), e y(‘I)) €
supp(D), the following holds true for each element of the
spanning set P; (j € [D]).

Pi(a) = c1Pj(y V) +... +¢gPi (y'D) 3)

(2) For any i € [q], the distribution of y(i) is e-close to Uy.

The next claim shows that if we have an (¢, g)-correction gadget
for sufficiently small ¢, that immediately gives us a (4, g)-local
correction algorithm for small enough §. We will use the same
notation in Definition 3.2. We omit the easy proof, referring the
interested reader to the full version.

LEMMA 3.3 (CORRECTION GADGET GIVES LOCAL CORRECTION AL-
GORITHM). If there is an (¢, q)-correction gadget for any a € {0,1}"
where q(8 + ¢€) < 1/4, then there is a (8, q)-local correction algorithm
for F.

3.1.2 Local Correction Algorithm for Linear Polynomials. We now
prove Theorem 3.1. The main technical step in the proof of this
theorem is the proof of the following lemma.

Local Correction of Linear Functions

LEMMA 3.4 (CORRECTION GADGET FOR 1"). Fix any odd positive
integer q. For any n, there is a choice of c1, ..., cq € Z and a distri-
bution D over ({0, 1}")9 such that the following properties hold for
,¢q and any sample vy,yD) from D.

(@ _

oc1+...+cq:1andforalli€[]cly() - +eqy;
e Foreach j € [q], y/) is (1/22(9) . \n)-close to the U,.

(o5 P

We first show how to prove Theorem 3.1 assuming this lemma.
The lemma is proved subsequently.

Proor oF THEOREM 3.1. The space P; of linear polynomials over
G has as a spanning set the constant function Py(x) = 1 and the
co-ordinate functions P;(x) = x; for each j € [n].

From Lemma 3.3, it suffices to give a (¢, g)-correction gadget for
any a € {0, 1}", where ¢ = 1/n. Note that Lemma 3.4 directly yields
a correction gadget D at the point 1" for g = O(logn).

To get a correction gadget at a point a # 1", we simply shift this
correction gadget by b = 1” @ a and use the fact that the space of
linear polynomials is preserved by such shifts.

More precisely, consider the distribution Dy, obtained by sam-
pling (y1),...,y(®) from D and shifting each element by b to
get

zW,..,2D) =y ab,....y D ob).

We retain the same coefficients cq, .. ., cq as in Lemma 3.4.
To prove that (z(l), el

it remains to verify

z(9) is an (¢, g)-correction gadget for a,

cl+...
(q)
q%;

teg = 1
(1)

c1z; * +--+cqz;"’ =a;foreachi € [n]

4
The first of the above follows from Lemma 3.4. The second equality

Equation (4) is also easily verified for i such that a; = 1 since z(J)=

yl.(j) in this case. For i such that a; = 0, we see that z(J) =1- y(7
for each j € [q] and hence

Z Zc—Zc]y =1-1=0=aq;.
Jjelql jelql jelql
We have thus shown that Equation (4) holds for all i € [n]. Further,
since y(j) is 1/n-close to uniform for each j € [q], so is 2.
Overall, this implies that Dy, is a correction gadget for a.
Lemma 3.3 then gives us the desired local correction algorithm.
]

3.1.3 Proof of Lemma 3.4. We first construct a Boolean matrix
with some interesting combinatorial and algebraic properties. The
distribution D in Lemma 3.4 is obtained later by sampling n rows
of this matrix independently and uniformly at random.

The technical lemma below shows that we can find a small
number of nearly balanced-Boolean vectors, whose integer span
contains the all 1s vector.

LEmMMA 3.5 (CONSTRUCTION OF A MATRIX). For any natural num-
berk, there exists an integer matrix Ay of dimension (2k—1)x (2k-1)
with entries in {0,1} and a vector ¢ € Z2*~1 such that Ayc = 1261
and there is exactly one row in Ay that is (1,...,1). Additionally,
for any column of Ay, the Hamming weight of the column is in
[2k=1 1, 2k-1 4 1],

772

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

REMARK 1. The statement of this lemma is, in some sense, the
best that we can hope for as the lemma does not hold if each column
is required to be perfectly balanced. In fact, the above lemma does
not hold even in the setting where each column is required to have
weight exactly w for some w < 2K — 1: in this case, 12°=1 would not
even be in the Q-linear span of the columns of Ay (Consider a vector
Ve sz_l the entries of which are 1 — 1/w or —1/w, depending on
whether the corresponding row in Ay is the all 1s row or not. The
vector v is orthogonal to the columns of Ay but not the vector 12k_1).

Quantitatively, this lemma exhibits a near-tight converse to a
lemma of Bafna, Srinivasan, and Sudan [5] who showed that for
any n X k Boolean matrix with an all-1s row, and columns that have
Hamming weights in the range [n/2 — \/n,n/2 + \/n] and also span
the all 1s column, we must have k = fz(log n).

Proor. Fix a k € N. Given a non-negative integer i < 2k we
denote by bin(i) the Boolean vector that denotes the k-bit binary
expansion of i (with the first entry being the most significant bit).

Defining the Base Matrix. Let M be a (2K — 1) x 2k matrix with
entries in {0,1}. Foralli € [2K—1] and j € [2k], let the i*" row and
the j'" column of M be denoted by row(® and col /) respectively.
The i*" row of M is row(? := (bin(i) bin(i — 1)), i.e. in row(?, the
first k coordinates are bin(i) and the next k entries are bin(i — 1),
where for an integer i, bin(i) denotes its binary representation.

M= |bin(i) bin(i-1)

(2k-1)x2k
Let w € R be the following vector:
w = (2"‘1,...,21,20, —2"‘1,...,—21,—20)

It is easy to see that for any row row(®) of M, (row(i), w)y=i—(i—
1) = 1. Thus, Mw = 12k_1. Observe that col¥) = 12k_1 — col (k)

Modifying the Base Matrix. Let M be a (2¥ — 1) x 2k matrix and

W be a column vector of dimension 2k. Let the i*?
~—(Jj)

row and the jt*

column of M be denoted by row ") and col ’, respectively. M and

w are defined as follows:
wi
~ Ja
wi=4
wj,

—~— () {1 — col D,
col :
col),
It is easy to verify the following: for any i € [2k -
—2. Thus M(~w/2) = 1271,
—~(k —~ (2k
From the observation made above, col() =co I(2) . The first row
of M. ie. row? = (1,...,1). This implies that ZZkl(wj/2) = 1.

It’s also easy to verify that no row other than the first row of M is

ifj # k
ifj =k

if j # k
ifj =k

1], (row'V W) =

(1,1,...,1).
Integral Coeﬁ‘icients We have —wy. /2 = —wy /2 = 1/2. For any i,
since row(H- row2 k , the following equality holds:

Fow) (— Wy /2) + oW) (~Wype/2) = Fow.) - 1+ iowsr) -0 (5)

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

Let ¢ € Z2k—1 be the following vector: ¢; = (-w;/2) if j # k, oth-
erwise ¢; = 1. For any row fow'?) from Equation (5), (ﬁ/(i), c) =
(rB‘\X/(i), (—=W/2)) = 1. Let A denote the matrix M after removing
the 2k*" column. Then Apc= 121,

Since Z?ﬁl (=wj/2) = 1, using Equation (5), we get that Z;ﬁ;l cj=
1.

Columns are Nearly Balanced. Finally, we will prove that for
each column cpyol(j) of A, the Hamming weight of cT)I(j) € [2k1 -
1,2k=1 4 1]. For any j € [2k — 1], the Hamming weight of col)
is in {Zk_l —1,2k-14 1}. This is because if M had an additional

row [bin(0)bin(2¥ — 1)], then each column of M would be exactly
balanced, i.e. have Hamming weight of 25=1. Then by definition

of Evol(j) , it follows that Hamming weight of each column of Ay, is
also in [Zk_l —1,2k14 1]. o

Next, we are going to describe a distribution D on ({0,1}™)9,
where m = 2¥ — 1 and q = 2k — 1. We will do this by randomly
sampling rows of the matrix Ay given by Lemma 3.5.

ProoF OoF LEMMA 3.4. Assume that ¢ = 2k — 1. To sample
(y(l), .. .,y(q)) ~ D over ({0,1}")9, we sample n rows indepen-
denly and uniformly at random from the rows of Ay as constructed
in Lemma 3.5 and define (yi(l), .. ,,y§q>) to be the ith sample for
each i € [n].

We now show that D has the required properties from the
statement of Lemma 3.4. Let (cy,...,cq) = c be as guaranteed
by Lemma 3.5. The first property holds from the properties of Ay
and c. For each i € [n], the vector (yl.(l), .. .,yfq)) is a row of Ay,
and from Lemma 3.5, we know that the inner product of any row
of Ay and c is 1. Further, since 19 is also a row of Ay, it follows that
the entries of ¢ sum to 1.

The second property follows from the fact that each column of Ag

has relative Hamming weight in the range [% 27k % +27%]. Thus,
for any fixed j € [q] and each i € [n], we have that | Pr [yi(]) =
1] -1/2] < 1/2k.
Since for a fixed j € [q] the bits {yl.(j) | i € [n]} are mutually
independent, we are now done by the following standard fact (which
can easily be proved by, say, following the proof of [25, Theorem
5.5, Claim 5.6]).

LEMMA 3.6. Let n > 0. Let D’ be a distribution on {0,1}" such
that for anyy ~ D’, the co-ordinates of y are independent and for all
i€[n],1/2-n < Prly; =1] < 1/2+7. Then D’ is O(n+/n)-close
to Uy,.

This concludes the proof of Lemma 3.4.

3.2 Constant-Error Algorithm via
Error-Reduction

We now show how to locally correct degree-1 polynomials in the
regime of constant error. We will do this by reducing the problem
to the case of low error. The results of this section also work for
higher-degree polynomials.

We will show that there is a randomized algorithm AL that
given oracle access to any function f that is d-close to a degree-d

773

Amireddy, Behera, Paraashar, Srinivasan, Sudan

polynomial P (think of § as being a small enough constant depend-
ing on d), has the following property: with high probability over
the internal randomness of A/, the function computed by Al s
n-close to P, where nj < 8. We state it formally below.

LEMMA 3.7 (ERROR REDUCTION FOR CONSTANT ERROR). Fix any
Abelian group G and a positive integer d. The following holds for
5 < 1/29@) gnd K = 29) yhere the O(-) hides a large enough
absolute constant.

For any n, 8, where n < 8, there exists a randomized algorithm A

with the following properties: Let f : {0,1}" — G be a function and

let P : {0,1}" — G be a degree-d polynomial such that 5(f,P) < 6,

and let A denotes that A has oracle access to f.

Then Pr[§(AS,P) > n] < 1/10, where the probability is over the

internal randomness ofﬂf. Further, for everyx € {0,1}", AL makes
T . _ log(1/n)

K" oracle queries to f andT = O (log (W))

Putting this together with Theorem 3.1, we immediately get a
local corrector that can correct errors up to a small enough constant
with O(log n) queries.

In the rest of this subsection, we will prove Lemma 3.7. The
algorithm AT in Lemma 3.7 will be a recursive algorithm. Each
recursive iteration of the algorithm A/ uses the same ‘base algo-
rithm’ B, which will be the core of our error reduction algorithm
from small constant error. In the next lemma, we formally state the
properties of the base algorithm.

LEMMA 3.8 (BASE ERROR REDUCTION ALGORITHM). Fix any Abelian
group G and a positive integer d. The following holds for K = 20(d),
For any 0 < y < 1, there exists a randomized algorithm B with
the following properties: Let g : {0,1}" — G be a function and let
P :{0,1}" — G be a degree-d polynomial such that 5(g, P) <y, and
let B9 denotes that B has oracle access to g.

Then E[8(BY, P)] < O(K?) - y'>, where the expectation is over the
internal randomness of B. Further, for every x € {0,1}", AY makes
K queries to g.

We defer the construction of the base algorithm and proof of
Lemma 3.8 to the next subsection, Section 3.2.1. For now, we assume
Lemma 3.8 and proceed to describe the recursive construction of
Af and prove Lemma 3.7.

ProoOF oF LEMMA 3.7. Let B be the algorithm given by Lemma 3.8.

We define a sequence of algorithms ﬂf R ﬂ{ ,...,as follows (see
the boxed text in the next page).

An easy inductive argument shows that A makes at most KT
queries to f. The error probability can be upper bounded by an
inductive argument. We will argue inductively that for each t < T

and 6; := 5(1'1)[, we have

1

100/ (©)

t
1
gf[a(ﬂ{(.,at),mwt] <> <

Jj=1

=&

Due to space constraints, we skip the analysis and refer the reader
to the full version for a detailed proof.

Local Correction of Linear Functions

The algorithm .7[{ computes a function mapping inputs in
{0, 1}" along with a uniformly random string from {0, 1}
to a random group element in G.

. fﬂg just computes the function f. (In particular,
ro =0.)

e For each t > 0, we inductively define ry = r;—1 +
r, where r is the amount of randomness required
by the base error reduction algorithm 8. On input
x and random string o; ~ Uy,, the algorithm ﬂ{
algorithm runs the algorithm 8 on x using the first
r bits of o; as its source of randomness, and with
oracle access to ﬂ{_l using the remaining r;_1 bits
of oy as randomness.

The algorithm AL will be ﬂJ; for T =C-log (M)

log(1/6)
where C is a large enough absolute constant chosen below.

\ J

]

Thus we have shown so far that given the base algorithm B, we
do get an error reduction algorithm from small constant error to er-
ror O(1/log n). Now it remains to describe the base error reduction
algorithm. In the next subsection, we describe the base algorithm
8B and prove Lemma 3.8.

3.2.1 The Base Algorithm and Its Analysis. In this section, we prove
Lemma 3.8, which will then complete the proof of Lemma 3.7. Before
we describe B, we will define an error reduction gadget, which is a
variant of the local correction gadget defined above (Definition 3.2).

Definition 3.9 (Error-reduction Gadget for ;). For p € (0,1),
an (p, q)-error reduction gadget for P, is a distribution D over
({0, 1}™)9 satisfying the following two properties:

(1) Thereexistscy, ..., ¢q € Zsuch that for any (y(l), o y(q)) €

supp(D), the following holds true for each P € £ and each
ae{0,1}"

P(a) = ciP(a@y D) +...+coPa@y?). (7)

(2) For any i € [q], the bits of y(i) are i.i.d. Bernoulli random
variables that are p-close to uniform. Equivalently, each co-
. . . 1 1-p 1
ordinate is 1 with probability p; € [Tp, %]
To prove Lemma 3.8, we need an error-reduction gadget for £y,
the space of degree-d polynomials over a group G. This is given by
the following lemma.

LEMMA 3.10 (CONSTRUCTING AN ERROR-REDUCTION GADGET FOR
P4). Fix any Abelian group G and any p > 0. Then Py has a (p,q)-
error-reduction gadget where q = 200d/p).

Assuming the above lemma, we first finish the proof of Lemma 3.8.

In the algorithm, we use the error-reduction gadget to correct
the polynomial at a random point a € {0, 1}". This process is likely
to give the right answer except with probability gy since, after
shifting, each query is now uniformly distributed and hence the
chance that any of the queried points is an error point of g is at
most y. We reduce the error by repeating this process three times

774

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

and taking a majority vote. To analyze this algorithm, we need to
understand the probability that two iterations of this process both
evaluate g at an error point. We do this using hypercontractivity
(more specifically Theorem 2.6).

ProoF oF LEmMma 3.8. Let D be a (1/10, g)-error-reduction gad-
get as given by Lemma 3.10. The algorithm 8, given oracle access
tog:{0,1}" — G and a € {0,1}", does the following.

e Repeat the following three times independently. Sample
(y(l), ...,y'9) from D and compute

cigla@y)+ +cgg(a@y?)

where c1,..., cq are the coefficients corresponding to the
error-reduction gadget.

o Output the plurality among the three group elements by, by, b3
computed above.

The number of queries made by the algorithm is K = O(q) =
20(d) a5 claimed. So it only remains to analyze §(8B9, P). From now
on, let a be a uniformly random input in {0, 1}".

Fori € {1,2,3}, let &; denote the event that b; # P(a). We have

E[6(89,P)] = Pr[B9(a) # g(a)]
< Pr[Sl A 82] +Pr[82 A 83] +Pr[81 A 83]

Thus it suffices to show that each of the three terms in the final
expression above is at most O(g?) - y1-5.

Without loss of generality, consider the event &; A &;. Let
(y(l), .. .,y(q)) and (z(l), .. .,z(q)) be the two independent sam-
ples from D in the two corresponding iterations.

It follows from Equation (7) that the algorithm correctly com-
putes P(a) in the first iteration as long as none of the queried points
lie in the set T of points where g and P differ. A similar statement
also holds for the second iteration. This reasoning implies that

9
Pr[&1 A &E2] < Z Pr[aeay(i) eTrhaozV) e T]. (8)
——— —

i,j=1
v

uld

We bound the latter expression using Theorem 2.6.

Fix i, j € [q]. Note that for every fixing of y(i), the vector u?)
is distributed uniformly over {0,1}" (because a is uniform over
{0, 1}"*). In particular, this implies that ul® is uniformly distributed
and moreover that u?) and y(!) are independent random variables.
This means that v(/) = u() @ y(i) @z is drawn from the noise
distribution Np(u(i)). Further, the parameter p < 1/100 since the
co-ordinates of y(i) and zU) are i.i.d. Bernoulli random variables
that are each 1/10-close to uniform.

Using Theorem 2.6, we have

Priu? e TAvU) e T] <yl < 15,

Plugging this into Equation (8) implies the required bound on the
probability of &; A E;. This concludes the analysis of 5. O

We now show how to construct the error-reduction gadget and
prove Lemma 3.10. This requires the following standard claim (im-
plied e.g. by Mobius inversion) that shows that any degree-d polyno-
mial over {0, 1} (even with group coefficients) can be interpolated
from its values on a Hamming ball of radius d. We omit the proof.

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

LEmMMA 3.11. Fixd € N. For any natural number m > d and any
Hamming ball B of radius d,

P(0™) = Z ayP(b)

beB

where the oy, are integer coefficients.

We end this section by completing the proof of Lemma 3.10.

Proor oF LEMMA 3.10. The idea is to apply Lemma 3.11 on a
random subcube, as defined in Definition 2.7. More precisely, for
an even integer k > 2d that we will fix below, let a € {0,1}" be
arbitrary and let h : [n] — [k] be chosen uniformly at random. Let
C = C, j, be the corresponding subcube of {0, 1}". Let Q(y1, . .., yx)
denote P|c, the restriction of P to this subcube.

Fix a Hamming ball B of radius d in {0, 1}¥ centred at a point ¢
of weight exactly k/2. Since Q is a polynomial of degree at most d,
applying Lemma 3.11 to Q and the ball B yields an equality

Q) = 3" ayQ(b) = P(x(0¥)) = > aP(x(b)),

beB beB

where in the implication we used that Q is a restriction of P. From
the definition of the cube C, it follows that x(0F) = a and thus the
above gives us an equality of the type desired in an error-reduction
gadget (Equation (7)). To finish the proof, we only need to argue
that each x(b) has the required distribution.

Note that for each b € B, we have, x(b) = a & by, where by, is
the random vector in {0, 1}" that at co-ordinate i takes the ran-
dom value by;). Since h is chosen uniformly at random, it follows
that the entries of by, are independent and the ith co-ordinate is a
Bernoulli random variable that takes the value 1 with probability
equal to the relative Hamming weight of b.

To conclude the argument, note that b is at Hamming distance
at most d from ¢, implying that it has relative Hamming weight in
[1/2 - (2d/k),1/2 + (2d/k)].

Setting k larger than 4d/p gives us the desired value for the param-
eter of the Bernoulli distribution. Setting k = O(d/p) gives us the
query complexity as claimed. O

To prove Theorem 1.1, we need another error-reduction algo-
rithm, which builds on the ideas presented in this section. We defer
the statement and the proof to the full version [2].

REFERENCES

[1] Noga Alon and Vian H. Va. 1997. Anti-Hadamard Matrices, Coin Weighing,
Threshold Gates, and Indecomposable Hypergraphs. J. Comb. Theory Ser. A 79, 1
(1997), 133-160. https://doi.org/10.1006/jcta.1997.2780

Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srinivasan,
and Madhu Sudan. 2024. Local Correction of Linear Functions over the Boolean
Cube . Electron. Colloquium Comput. Complex. TR24-056 (2024). ECCC:TR24-056
https://eccc.weizmann.ac.il/report/2024/056/

Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan. 2023. Low-Degree
Testing over Grids. In Approximation, Randomization, and Combinatorial Op-
timization (RANDOM), Vol. 275. 41:1-41:22. https://doi.org/10.4230/LIPICS.
APPROX/RANDOM.2023.41

Laszl6 Babai, Kristoffer Arnsfelt Hansen, Vladimir V. Podolskii, and Xiaoming
Sun. 2010. Weights of exact threshold functions. Izvestiya: Mathematics 85 (2010),
1039 - 1059. https://api.semanticscholar.org/CorpusID:7248898

Mitali Bafna, Srikanth Srinivasan, and Madhu Sudan. 2020. Local decoding and
testing of polynomials over grids. Random Struct. Algorithms 57, 3 (2020), 658-694.
https://doi.org/10.1002/rsa.20933

Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. 2011. Rank Bounds
for Design Matrices with Applications to Combinatorial Geometry and Locally

775

(1]

[12

[13]

[14

[15

[16

(17

[18

=
o)

[20

[21

[22

[23

S
=)

[25

[26]

[27

[28

[29

[30

[31

Amireddy, Behera, Paraashar, Srinivasan, Sudan

Correctable Codes. In ACM Symposium on Theory of Computing (STOC). 519-528.
https://doi.org/10.1145/1993636.1993705

Donald Beaver and Joan Feigenbaum. 1990. Hiding Instances in Multioracle
Queries. In Annual Symposium on Theoretical Aspects of Computer Science (STACS),
Vol. 415. 37-48. https://doi.org/10.1007/3-540-52282-4_30

Abhishek Bhowmick and Shachar Lovett. 2018. The List Decoding Radius for
Reed-Muller Codes Over Small Fields. IEEE Trans. Inf. Theory 64, 6 (2018), 4382—
4391. https://doi.org/10.1109/TIT.2018.2822686

Irit Dinur, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. 2008. De-
codability of Group Homomorphisms beyond the Johnson Bound. Electron.
Colloquium Comput. Complex. TR08-020 (2008). ECCC:TR08-020 https://eccc.
weizmann.ac.il/eccc-reports/2008/TR08-020/index.html

Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. 2014. Improved rank bounds
for design matrices and a new proof of Kelly’s theorem. Forum Math. Sigma 2
(2014), Paper No. e4, 24. https://doi.org/10.1017/fms.2014.2

Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. 2017. Superquadratic lower
bound for 3-query locally correctable codes over the reals. Theory Comput. 13
(2017), Paper No. 11, 36. https://doi.org/10.4086/toc.2017.v013a011

Peter Elias. 1957. List decoding for noisy channels. Technical Report 335, Research
Laboratory of Electronics, MIT (1957).

Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi
Wigderson. 1991. Self-Testing/Correcting for Polynomials and for Approxi-
mate Functions. In ACM Symposium on Theory of Computing (STOC). 32-42.
https://doi.org/10.1145/103418.103429

Peter Gemmell and Madhu Sudan. 1992. Highly Resilient Correctors for Poly-
nomials. Inf. Process. Lett. 43, 4 (1992), 169-174. https://doi.org/10.1016/0020-
0190(92)90195-2

Mikael Goldmann, Johan Hastad, and Alexander A. Razborov. 1992. Majority
gates vs. general weighted threshold gates. Computational Complexity 2 (1992),
277-300. https://api.semanticscholar.org/CorpusID:17637868

Oded Goldreich and Leonid A. Levin. 1989. A Hard-Core Predicate for all One-
Way Functions. In ACM Symposium on Theory of Computing (STOC). 25-32.
https://doi.org/10.1145/73007.73010

Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. 2008. List-Decoding
Reed-Muller Codes over Small Fields. In ACM Symposium on Theory of Computing
(STOC). 265-274. https://doi.org/10.1145/1374376.1374417

Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. 2006. Local Decoding
and Testing for Homomorphisms. In International Workshop on Approximation
Algorithms for Combinatorial Optimization (RANDOM), Vol. 4110. 375-385. https:
//doi.org/10.1007/11830924_35

Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. 2023. Essential Coding
Theory (Book draft). http://www.cse.buffalo.edu/atri/courses/coding-theory/
book

Venkatesan Guruswami and Madhu Sudan. 1999. Improved decoding of Reed-
Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45, 6 (1999),
1757-1767. https://doi.org/10.1109/18.782097

Johan Hastad. 1994. On the Size of Weights for Threshold Gates. SIAM 7. Discret.
Math. 7, 3 (1994), 484-492. https://doi.org/10.1137/S0895480192235878

John Y. Kim and Swastik Kopparty. 2017. Decoding Reed-Muller Codes over
Product Sets. Theory Comput. 13, 1 (2017), 1-38. https://doi.org/10.4086/TOC.
2017.V013A021

Eyal Kushilevitz and Yishay Mansour. 1993. Learning Decision Trees Using the
Fourier Spectrum. SIAM J. Comput. 22, 6 (1993), 1331-1348. https://doi.org/10.
1137/0222080 arXiv:https://doi.org/10.1137/0222080

Richard J. Lipton. 1989. New Directions In Testing. In Distributed Computing And
Cryptography, Vol. 2. 191-202. https://doi.org/10.1090/DIMACS/002/13

Yishay Mansour. 2011. Lecture 5: Lower Bounds using Information Theory
Tools. http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-
bound-MAB.pdf. Lecture notes.

Ryan O’Donnell. 2014. Analysis of Boolean Functions. Cambridge University
Press. https://doi.org/10.1017/CB0O9781139814782

Qystein Ore. 1922. Uber hohere kongruenzen. Norsk Mat. Forenings Skrifter 1,7
(1922), 15.

Vladimir V. Podolskii. 2009. Perceptrons of large weight. Probl. Inf. Transm. 45, 1
(2009), 46-53. https://doi.org/10.1134/S0032946009010062

Irving S. Reed. 1954. A class of multiple-error-correcting codes and the decoding
scheme. Trans. IRE Prof. Group Inf. Theory 4 (1954), 38-49. https://doi.org/10.
1109/T1T.1954.1057465

Madhu Sudan. 1997. Decoding of Reed Solomon Codes beyond the Error-
Correction Bound. 7. Complex. 13, 1 (1997), 180-193. https://doi.org/10.1006/
jcom.1997.0439

Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. 2001. Pseudorandom Gen-
erators without the XOR Lemma. J. Comput. Syst. Sci. 62, 2 (2001), 236-266.
https://doi.org/10.1006/JCSS.2000.1730

Received 13-NOV-2023; accepted 2024-02-11

https://doi.org/10.1006/jcta.1997.2780
https://eccc.weizmann.ac.il/report/2024/056/
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.41
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.41
https://api.semanticscholar.org/CorpusID:7248898
https://doi.org/10.1002/rsa.20933
https://doi.org/10.1145/1993636.1993705
https://doi.org/10.1007/3-540-52282-4_30
https://doi.org/10.1109/TIT.2018.2822686
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-020/index.html
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-020/index.html
https://doi.org/10.1017/fms.2014.2
https://doi.org/10.4086/toc.2017.v013a011
https://doi.org/10.1145/103418.103429
https://doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1016/0020-0190(92)90195-2
https://api.semanticscholar.org/CorpusID:17637868
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/1374376.1374417
https://doi.org/10.1007/11830924_35
https://doi.org/10.1007/11830924_35
http://www.cse.buffalo.edu/atri/courses/coding-theory/book
http://www.cse.buffalo.edu/atri/courses/coding-theory/book
https://doi.org/10.1109/18.782097
https://doi.org/10.1137/S0895480192235878
https://doi.org/10.4086/TOC.2017.V013A021
https://doi.org/10.4086/TOC.2017.V013A021
https://doi.org/10.1137/0222080
https://doi.org/10.1137/0222080
https://arxiv.org/abs/https://doi.org/10.1137/0222080
https://doi.org/10.1090/DIMACS/002/13
http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf
http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1134/S0032946009010062
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/JCSS.2000.1730

	Abstract
	1 Introduction
	1.1 Motivation for Our Work
	1.2 Our Main Results
	1.3 Proof Overview

	2 Preliminaries
	2.1 Notation
	2.2 Basic Definitions and Tools

	3 Local Correction in the Unique Decoding Regime
	3.1 Sub-Constant Error
	3.2 Constant-Error Algorithm via Error-Reduction

	References

