
Local Correction of Linear Functions over the Boolean Cube∗
Prashanth Amireddy

Harvard University

Boston, USA

pamireddy@g.harvard.edu

Amik Raj Behera

Aarhus University

Aarhus, Denmark

bamikraj@cs.au.dk

Manaswi Paraashar

University of Copenhagen

Copenhagen, Denmark

manpa@di.ku.dk

Srikanth Srinivasan

University of Copenhagen

Copenhagen, Denmark

srsr@di.ku.dk

Madhu Sudan

Harvard University

Boston, USA

madhu@cs.harvard.edu

ABSTRACT
We consider the task of locally correcting, and locally list-correcting,

multivariate linear functions over the domain {0, 1}𝑛 over arbitrary

fields and more generally Abelian groups. Such functions form

error-correcting codes of relative distance 1/2 and we give local-

correction algorithms correcting up to nearly 1/4-fraction errors

making Õ(log𝑛) queries. This query complexity is optimal up to

poly(log log𝑛) factors. We also give local list-correcting algorithms

correcting (1/2 − 𝜀)-fraction errors with Õ𝜀 (log𝑛) queries.
These results may be viewed as natural generalizations of the

classical work of Goldreich and Levin whose work addresses the

special case where the underlying group is Z2. By extending to the

case where the underlying group is, say, the reals, we give the first

non-trivial locally correctable codes (LCCs) over the reals (with

query complexity being sublinear in the dimension (also known as

message length)).

Previous works in the area mostly focused on the case where

the domain is a vector space or a group and this lends to tools that

exploit symmetry. Since our domains lack such symmetries, we

encounter new challenges whose resolution may be of independent

interest. The central challenge in constructing the local corrector

is constructing “nearly balanced vectors” over {−1, 1}𝑛 that span

1
𝑛
— we show how to construct O(log𝑛) vectors that do so, with

entries in each vector summing to ±1. The challenge to the local-

list-correction algorithms, given the local corrector, is principally

combinatorial, i.e., in proving that the number of linear functions

within any Hamming ball of radius (1/2 − 𝜀) is O𝜀 (1). Getting this

general result covering every Abelian group requires integrating

∗
PA is supported in part by a Simons Investigator Award and NSF Award CCF 2152413

to Madhu Sudan and a Simons Investigator Award to Salil Vadhan. ARB is supported

by Srikanth Srinivasan’s start-up grant from Aarhus University. MP is supported by

Srikanth Srinivasan’s start-up grants from Aarhus University and the University of

Copenhagen. SS is partially employed by Aarhus University, Denmark. This work was

supported by start-up grants fromAarhus University and the University of Copenhagen.

MS is supported in part by a Simons Investigator Award and NSF Award CCF 2152413.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0383-6/24/06

https://doi.org/10.1145/3618260.3649746

a variety of known methods with some new combinatorial ingre-

dients analyzing the structural properties of codewords that lie

within small Hamming balls.

CCS CONCEPTS
• Theory of computation → Error-correcting codes; • Mathe-
matics of computing → Coding theory.

KEYWORDS
Local Correction, Local List Correction, Goldreich-Levin, Group-

valued polynomials

ACM Reference Format:
Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srini-

vasan, and Madhu Sudan. 2024. Local Correction of Linear Functions over

the Boolean Cube. In Proceedings of the 56th Annual ACM Symposium on The-
ory of Computing (STOC ’24), June 24–28, 2024, Vancouver, BC, Canada. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3618260.3649746

1 INTRODUCTION
In this paper we consider the class of “linear” functions mapping

{0, 1}𝑛 to an Abelian group and give “local correction” and “local

list-correction” algorithms for this family (of codes). We describe

our problems and results in detail below. We start with some basic

notation.

We denote the space of functions mapping {0, 1}𝑛 to an Abelian

group 𝐺 by F ({0, 1}𝑛,𝐺). Given two functions 𝑓 , 𝑔 from this set,

we denote by 𝛿 (𝑓 , 𝑔) the fractional Hamming distance between

them, i.e. the fraction of points in {0, 1}𝑛 on which 𝑓 and 𝑔 disagree.

In other words,

𝛿 (𝑓 , 𝑔) = Pr

𝑥∼{0,1}𝑛
[𝑓 (𝑥) ≠ 𝑔(𝑥)] .

We say that 𝑓 , 𝑔 are 𝛿-close if 𝛿 (𝑓 , 𝑔) ≤ 𝛿 and that 𝑓 , 𝑔 are 𝛿-far

otherwise. Given a set of functions F ⊆ F ({0, 1}𝑛,𝐺), we denote
by 𝛿 (𝑓 , F) the minimum distance between 𝑓 and a function 𝑃 ∈ F .
The function 𝑓 is said to be 𝛿-close if 𝛿 (𝑓 , F) ≤ 𝛿 and otherwise

𝛿-far from F .We denote by 𝛿 (F) the minimum distance between

two distinct functions in F .
The main thrust of this paper is getting efficient local correcting

algorithms for some basic classes of functions F that correct close

to 𝛿 (F)/2 fraction of errors uniquely (i.e. given 𝑓 : {0, 1}𝑛 → 𝐺

determine 𝑃 ∈ F such that 𝛿 (𝑓 , 𝑃) < 𝛿 (F)/2), and to list-correct

close to 𝛿 (F) fraction of errors with small sized lists (i.e., given

𝑓 output a small list 𝑃1, . . . , 𝑃𝐿 ∈ F containing all functions 𝑃

764

https://orcid.org/0000-0002-2713-8961
https://orcid.org/0009-0007-7328-8809
https://orcid.org/0009-0005-3805-5095
https://orcid.org/0000-0001-6491-124X
https://orcid.org/0000-0003-3718-6489
https://doi.org/10.1145/3618260.3649746
https://doi.org/10.1145/3618260.3649746
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618260.3649746&domain=pdf&date_stamp=2024-06-11

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

such that 𝛿 (𝑓 , 𝑃) < 𝛿 (F) − 𝜀). We start by describing our class of

functions.

Group Valued Polynomials. The function spaces we are interested
in are defined by polynomials of low-degree over the Boolean cube

{0, 1}𝑛 with coefficients from an Abelian group 𝐺 , where we view

{0, 1} ⊆ Z. (Thus a monomial function is given by a group element

𝑔 ∈ 𝐺 and subset 𝑆 ⊆ [𝑛] and takes the value 𝑔 at points 𝑎 ∈ {0, 1}𝑛
such that 𝑎𝑖 = 1 for all 𝑖 ∈ 𝑆 . The degree of a monomial is |𝑆 | and a

degree 𝑑 polynomial is the sum of monomials of degree at most 𝑑 .)

We let P𝑑 ({0, 1}𝑛,𝐺) denote the space of polynomials of degree at

most 𝑑 in this setting. (If 𝑛 and𝐺 are clear from context we refer to

this class as simply P𝑑 .) The standard proof of the “Schwartz-Zippel

Lemma” (dating back at least to Ore [27]) extends to this setting

(see Theorem 2.1) and shows that two distinct degree 𝑑 polynomials

differ on at least a 2
−𝑑

fraction of {0, 1}𝑛 . Therefore 𝛿 (P𝑑) = 2
−𝑑

and our goal is to correct half this fraction of errors uniquely and

close to this fraction of errors with small-sized lists. (We do so for

𝑑 = 1, though many results apply to general values of 𝑑 .) Next, we

describe our notion of efficiency for correction.

Local Correction. In this work we are interested in a particularly

strong notion of decoding, namely “local correction”. Informally,

F is locally correctable if there exists a probabilistic algorithm 𝐶

that, given a point x ∈ {0, 1}𝑛 and oracle access to a function 𝑓 that

is close to F , computes 𝑃 (x) with high probability while making

few queries to the oracle 𝑓 , where 𝑃 is a function in F closest

to 𝑓 . In contrast to the usual notion of decoding which would re-

quire explicitly outputting a description of 𝑃 (say the coefficients

of 𝑃 when F = P𝑑) this notion thus only requires us to compute

𝑃 (x) for a given x. The main parameters associated with a local

correction algorithm are the fraction of errors it corrects and the

number of queries it makes to the oracle 𝑓 . Formally, we say F
is (𝛿, 𝑞)-locally correctable if there exists a probabilistic algorithm

that given a ∈ {0, 1}𝑛 and oracle access to the input polynomial 𝑓

that is 𝛿-close to 𝑃 ∈ F , outputs 𝑃 (a) correctly with probability at

least 3/4 by making at most 𝑞 queries to 𝑓 .

The question of local correction of low-degree polynomials has

been widely studied [7, 13, 14, 31]. These works have focused on the

setting when the domain has an algebraic structure such as being a

vector space over a finite field. In contrast the “Schwartz-Zippel”

lemma only requires the domain to be a product space. Kim and

Kopparty [22] were the first to study the decoding of low-degree

multivariate polynomials when the domain is a product set, though

they do not study local correctibility. Bafna, Srinivasan, and Sudan

[5] were the first to study the problem of local correctibility of linear

polynomials, though their result was mainly a negative result. They

showed that if the underlying field F is large, for example, F = R,
then any (Ω(1), 𝑞)-local correction algorithm for P1 with constant

𝛿 requires at least Ω̃(log𝑛) queries. In this work, we consider the

task of designing local correction algorithms with nearly matching

performance.

Local List Correction. When considering a fraction of errors

larger than 𝛿 (F)/2, the notion of correction that one usually ap-

peals to is called “list-decoding” or “list-correction” as we will

refer to it, to maintain a consistent distinction between the no-

tion of recovering the message (decoding) and recovering its en-

coding (correction). Here the problem comes in two phases: First

a combinatorial challenge of proving that for some parameter

𝜌 ∈ [𝛿 (F)/2, 𝛿 (F)] we have an a priori bound 𝐿 = 𝐿(𝜌) such
that for every function 𝑓 : {0, 1}𝑛 → 𝐺 there are at most 𝑡 ≤ 𝐿

functions 𝑃1, . . . , 𝑃𝑡 ∈ F satisfying 𝛿 (𝑓 , 𝑃𝑖) ≤ 𝜌 . We define F to

be (𝜌, 𝐿)-list-decodable if it satisfies this property. Next comes the

algorithmic challenge of finding the list of size of most 𝐿 that in-

cludes all such 𝑃𝑖 ’s. In the non-local setting, this is referred to as

the list correction task. In the local setting, the task is subtler to

define and was formalized by Sudan, Trevisan, and Vadhan [31] as

follows:

A (𝜌, 𝐿, 𝑞)-local-list-corrector for F is a probabilistic algorithm 𝐶

that takes as input an index 𝑖 ∈ [𝐿] and x ∈ {0, 1}𝑛 along with ora-

cle access to 𝑓 : {0, 1}𝑛 → 𝐺 such that𝐶 𝑓 (𝑖, x) is computed with at

most 𝑞 oracle calls to 𝑓 and 𝐶 satisfies the following property: For

every polynomial 𝑃 ∈ F such that 𝛿 (𝑓 , 𝑃) ≤ 𝜌 there exists an index

𝑖 ∈ [𝐿] such that for every x ∈ {0, 1}𝑛 , Pr[𝐶 𝑓 (𝑖, x) = 𝑃 (x)] ≥ 3/4.
(In other words 𝐶 𝑓 (𝑖, ·) provides oracle access to 𝑃 and ranging

over 𝑖 ∈ [𝐿] gives oracle access to every 𝑃1, . . . , 𝑃𝑡 that are 𝜌-close

to 𝑓 , while some 𝑖 may output spurious functions.)

The notion of list-decoding dates back to the work of Elias [12].

The seminal work of Goldreich and Levin [16] produced the first

non-trivial list-decoders for any non-trivial class of functions. (Their

work happens to consider the classF = P1 ({0, 1}𝑛,Z2) and actually
give local list-decoders, though not strictly local list-correctors.)

List-decoding of Reed-Solomon codes was studied by Sudan [30]

and Guruswami and Sudan [20]. Local list-correction algorithms

for functions mapping F𝑛𝑞 to F𝑞 for polynomials of degree 𝑑 ≪ 𝑞

were given in [31]. The setting of 𝑑 > 𝑞 has been considered by

Gopalan, Klivans and Zuckerman [17] and Bhowmick and Lovett

[8]. In a somewhat different direction Dinur, Grigorescu, Kopparty

and Sudan [9, 18] consider the class of homomorphisms from 𝐺 to

𝐻 for finite Abelian groups 𝐺 and 𝐻 , and give local list-correction

algorithms for such classes of functions.

In this work, we give local list-correction algorithms for the

class P1 ({0, 1}𝑛,𝐺) for every Abelian group 𝐺 . We explain the

significance of this work in the broader context below.

1.1 Motivation for Our Work
The problem of decoding linear polynomials over {0, 1}𝑛 over an

arbitrary Abelian group is a natural generalization of the work of

Goldreich and Levin, who consider this problem over Z2. How-
ever, the error-correcting properties of the underlying code (rate

and distance) remain the same over any Abelian group 𝐺 . Further,

standard non-local algorithms [29] over Z2 work almost without

change over any 𝐺 (see Appendix A in full version [2]). The local

correction problem is, therefore, a natural next step.

There are also other technical motivations for our work from

the limitations of known techniques. Perhaps the clearest way to

highlight these limitations is that to date we have no (Ω(1),𝑂 (1))-
locally correctable codes over the reals with growing dimension.

This glaring omission is highlighted in the results of [6, 10, 11].

The work of Barak, Dvir, Wigderson and Yehudayoff [6] and the

765

Local Correction of Linear Functions STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

followup of Dvir, Saraf, and Wigderson [10] show that there are

no (Ω(1), 2)-locally correctable codes of super-constant dimension,

while another result of Dvir, Saraf and Wigderson [11] shows that

any (Ω(1), 3)-locally correctable codes in R𝑛 must have dimension

at most 𝑛1/2−Ω (1) . Indeed, till our work, there has been very little

exploration of code constructions over the reals. While our work

does not give an (Ω(1),𝑂 (1))-locally correctable code either, ours

is the first to give 𝑛-dimensional codes that are (Ω(1),𝑂 (log𝑛))-
locally correctable. (These are obtained by setting 𝐺 = R in our

results.)

A technical reason why existing local correction results do not

cover any codes over the reals is that almost all such results rely

on the underlying symmetries of the domain. Typical results in

the area (including all the results cited above) work over a domain

that is either a vector space or least a group. Automorphisms of the

domain effectively play a central role in the design and analysis

of the local correction algorithms; but they also force the range

of the function to be related to the domain and this restricts their

scope. In our setting, while the domain {0, 1}𝑛 does have some

symmetries, they are much less rich and unrelated to the structure

of the range. Thus new techniques are needed to design and analyze

local-correction algorithms in this setting. Indeed we identify a con-

crete new challenge — the design of “balanced” vectors in {−1, 1}𝑛
(i.e., with the sum of entries being in {−1, 1}) that span the vector

1
𝑛
— that enables local correction, and address this challenge. We

remark that correcting P𝑑 for 𝑑 > 1 leads to even more interesting

challenges that remain open.

A finalmotivation is just the combinatorics of the list-decodability

of this space. For instance for the class F = P1 ({0, 1}𝑛,𝐺) for any
𝐺 , it is straightforward to show 𝛿 (F) = 1/2 and so the unique

decoding radius is 1/4, but the list-decoding radius was not under-

stood prior to this work. The general bound in this setting would

be the Johnson bound which only promises a list-decoding radius

of 1 − 1/
√
2 ≈ 0.29. Indeed a substantial portion of this work is to

establish that the list-decoding radius of all these codes approaches

𝛿 (F) = 1/2.
We describe our results below before turning to their proofs.

1.2 Our Main Results
Our first result is an almost optimal local correction algorithm for

degree 1 polynomials up to an error slightly less than 1/4, which is

the unique decoding radius.

Theorem 1.1 (Local correction algorithms for P1 up to

the uniqe decoding radius). The space P1 over any Abelian
group 𝐺 has a (𝛿, 𝑞)-local correction algorithm where 𝛿 = 1

4
− 𝜀 for

any constant 𝜀 > 0 and 𝑞 = 𝑂̃ (log𝑛).

We remark that Theorem 1.1 is tight up to poly(log log𝑛) factors
due to a lower bound of Ω(log𝑛/log log𝑛) by earlier work of Bafna,
Srinivasan, and Sudan [5]. Using further ideas, we also extend the

algorithm from Theorem 1.1 to the list decoding regime. For this,

we need first a combinatorial list decoding bound.

Theorem 1.2 (Combinatorial list decoding bound for P1).

For any constant 𝜀 > 0, the space P1 over any Abelian group 𝐺 is
(1/2 − 𝜀, poly(1/𝜀))-list decodable.

Using the combinatorial list decoding bound, we also give a local

list correction algorithm for degree 1 polynomials. We state the

result below. For a formal definition of local list correction, refer to

Definition 2.3.

Theorem 1.3 (Local List Correction for degree-1). There
exists a fixed polynomial 𝐿 such that for all Abelian groups 𝐺 and
for every 𝜀 > 0 and 𝑛 ∈ Z+ we have that P1 ({0, 1}𝑛,𝐺) is (1/2 −
𝜀, 𝐿(𝜀),𝑂 (log𝑛))-locally list correctable.

Specifically, there is a randomized algorithm A that, when given
oracle access to a polynomial 𝑓 and a parameter 𝜀 > 0, outputs with
probability at least 3/4 a list of randomized algorithms 𝜙1, . . . , 𝜙𝐿
(𝐿 ≤ poly(1/𝜀)) such that the following holds:

For each 𝑃 ∈ P1 that is (1/2 − 𝜀)-close to 𝑓 , there is at least one
algorithm 𝜙𝑖 that, when given oracle access to 𝑓 , computes 𝑃 correctly
on every input with probability at least 3/4.

The algorithm A makes 𝑂𝜀 (1) queries to 𝑓 , while each 𝜙𝑖 makes
𝑂̃𝜀 (log𝑛) queries to 𝑓 .

Using known local testing results [3, 5], one can show that the

local list-correction Theorem 1.3 actually implies Theorem 1.1. Nev-

ertheless, we give the proof of Theorem 1.1 in its entirety, since it is

a simpler self-contained proof than the one that goes through Theo-

rem 1.3, and introduces some of the same ideas in an easier setting.

A weak version of Theorem 1.1 is also required for Theorem 1.3.

1.3 Proof Overview
1.3.1 Local Correction - Theorem 1.1. We prove Theorem 1.1 in

three steps. The first step, which is specific to the space of linear

polynomials, shows how to locally correct from any oracle 𝑓 that

O(1/log𝑛)-close to a degree-1 polynomial in 𝑛 variables using

𝑂 (log𝑛) queries. In the second and third steps, we show how to

increase the radius of decoding from O(1/log𝑛) to an absolute

constant and then to (nearly) half the unique decoding radius. The

latter two steps also work for polynomials of degree greater than 1.

First Step. To motivate the proof of the first step, it is worth

recalling the idea behind the lower bound result of [5] mentioned

above. For simplicity, let us assume that we are working with ho-
mogeneous linear polynomials over R. In this situation, we can

equivalently replace the domain with {−1, 1}𝑛 . Now, assume the

given oracle 𝑓 : {−1, 1}𝑛 → R agrees with some homogeneous

linear polynomial 𝑃 at all points of Hamming weight in the range

[𝑛
2
−𝑛0.51, 𝑛

2
+𝑛0.51], and takes adversarially chosen values outside

this set. It is easy to check that 𝑓 is exp

(
−𝑛Ω (1)

)
-close to 𝑃 . Further,

assume that we only want to correct the polynomial 𝑃 at 1
𝑛 .

Over R, the space of homogeneous linear polynomials forms

a vector space. Hence, given access to an oracle 𝑓 that is close

to a codeword 𝑃 , it is natural to correct 𝑃 using a ‘linear algo-

rithm’ in the following sense. To correct 𝑃 at 1
𝑛
, we choose points

x(1) , . . . , x(𝑞) ∈ {−1, 1}𝑛 and output

𝑐1 𝑓 (x(1)) + · · · + 𝑐𝑞 𝑓 (x(𝑞))

for some coefficients 𝑐1, . . . , 𝑐𝑞 ∈ R. (Indeed, it is not hard to argue

that if any strategy works, then there must be a linear algorithm

that does [5].)

766

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

Since this strategy must work when given 𝑃 itself as an oracle,

it must be the case that

𝑃 (1𝑛) = 𝑐1𝑃 (x(1)) + · · · + 𝑐𝑞𝑃 (x(𝑞))

for any linear polynomial 𝑃 . Further, as the space of homogeneous

linear polynomials is a vector space spanned by the coordinate (i.e.

dictator) functions, it is necessary and sufficient to have

1
𝑛 = 𝑐1 · x(1) + · · · + 𝑐𝑞 · x(𝑞) . (1)

Finally, for such a correction algorithm to work for 𝑓 as given above,

it must be the case that each of the ‘query points’ x(1) , . . . , x(𝑞) has
Hamming weight in the range [𝑛/2 − 𝑛0.51, 𝑛/2 + 𝑛0.51].

Note that Equation (1) cannot hold for perfectly balanced (i.e.

Hamming weight exactly 𝑛/2) query points, no matter what 𝑞 we

choose: this is because the query points lie in a subspace not con-

taining 1
𝑛 . The work of [5] showed a robust version of this: for

any set of ‘nearly-balanced’ vectors with Hamming weight in the

range [𝑛/2 − 𝑛0.51, 𝑛/2 + 𝑛0.51] that satisfy Equation (1), it must

hold that 𝑞 = Ω(log𝑛/log log𝑛) . At a high level, this lower bound

holds because if Equation (1) is true, then the coefficients can be

taken to be at most 𝑞O(𝑞)
in magnitude (via a suitable application

of Cramer’s rule). The lower bound then follows by adding up the

entries of the vectors on both sides of Equation (1).

The first step of the algorithm is based on showing that this lower

bound is essentially tight. More formally, we show that we can find

𝑞 = O(log𝑛) nearly-balanced (in fact, the vectors we construct

have Hamming weight 𝑛/2 ± 1) vectors x(1) , . . . , x(𝑞) ∈ {0, 1}𝑛
such that the following (more general) equation holds.

1
𝑛+1 = 𝑐1 ·

(
1

x(1)

)
+ · · · + 𝑐𝑞 ·

(
1

x(𝑞)

)
. (2)

This identity allows us to correct any linear (not just homogeneous)

polynomial. Moreover, we show that we can take the coefficients

to be integers, which allows us to apply this algorithm over any

Abelian group (it makes sense to multiply a group element 𝑔 with

an integer 𝑘 , since it amounts to adding either the element 𝑔 or its

inverse −𝑔, |𝑘 | times).

Finally, we show that this construction also implies a similar

algorithm to compute 𝑃 (1𝑛) from any 𝑓 that is O(1/log𝑛)-close
to 𝑃 (and not just the special 𝑓 given above). This is done by con-

structing random query points y(1) , . . . , y(𝑞) where the 𝑖th bit of

these vectors is picked by choosing a random bit of x(1) , . . . , x(𝑞) .
The fact that each x(𝑗) is nearly balanced implies that each y(𝑗)

is nearly uniform over {0, 1}𝑛 and hence likely not an error point

of 𝑓 . Intuitively, the distance requirement is because we make 𝑞

(nearly) random queries to 𝑓 and the algorithm succeeds if none of

the query points is in error. So, the algorithm correctly computes

𝑃 (1𝑛) when 𝛿 (𝑓 , 𝑃) is sufficiently smaller than 1/𝑞. By a suitable

‘shift’, we can also correct at points other than 1
𝑛 .

This construction of the points x(1) , . . . , x(𝑞) ∈ {0, 1}𝑛 is based

on ensuring that the coefficients 𝑐1, . . . , 𝑐𝑞 must be exponentially

large in 𝑞 (to ensure that the argument of [5] is tight). This leads

to the natural problem of finding a hyperplane whose Boolean

solutions cannot be described by an equation with small coefficients.

This is a topic that has received much interest in the study of

threshold circuits and combinatorics [1, 4, 15, 21, 28].

For the result stated above, we require only a simple construction.

Consider the following equation over {0, 1}𝑞 where 𝑞 = 2𝑘 . The

first 𝑘 bits describe an integer 𝑖 ∈ {0, . . . , 2𝑘 − 1} and the last 𝑘 bits

describe an integer 𝑗 . The hyperplane expresses the constraint that

𝑗 = 𝑖 − 1. This hyperplane can easily be described using coefficients

that are exponentially large in 𝑘 and one can easily show that this

is in fact necessary. After some modification to ensure that the

coefficients sum to 1, we get Equation (2). See Lemma 3.4 for more

details.

Using a more involved construction due to Håstad [21] and its

extension due to Alon and Vu [1], it is possible to show that we can

achieve 𝑞 = 𝑂 (log𝑛/log log𝑛), showing that the lower bound of [5]
is in fact tight up to constant factors (see Appendix B of the full ver-

sion [2]). However, in this case, we don’t know how to ensure that

the coefficients 𝑐1, . . . , 𝑐𝑞 are integers, meaning that the algorithm

does not extend to general Abelian groups (moreover, we also lose

poly(log log𝑛) factors in query complexity in the subsequent steps,

and so the final algorithm is only tight up to poly(log log𝑛) factors,
no matter which construction we use in the first step).

Second and Third Steps. To obtain an algorithm resilient to a

larger fraction of errors, we use a process of error reduction. Specif-

ically, we show that, given an oracle 𝑓 : {0, 1}𝑛 → 𝐺 that is 𝛿-close

to a polynomial 𝑃 ∈ P1, we can obtain (with high probability) an

oracle 𝑔 : {0, 1}𝑛 → 𝐺 that is O(1/log𝑛)-close to 𝑃 ; we can then

apply the above described local correction algorithm to 𝑔 to correct

𝑃 at any given point. The oracle 𝑔 makes poly(log log𝑛) queries to
𝑓 and hence the overall number of queries to 𝑓 is ˜O(log𝑛) .

Interestingly, the error-reduction step is not limited to linear

polynomials. We show that this also works for the space of degree-

𝑑 polynomials, where the number of queries now also depends on

the degree parameter 𝑑. In general, 𝛿 can be arbitrarily close to the

unique decoding radius of P𝑑 , which is 2
−(𝑑+1) .

We use two slightly different error-reduction algorithms to han-

dle the case when 𝛿 is a small constant, and the case when 𝛿 is close

to 2
−(𝑑+1)

respectively. We reduce the latter case to the former

case and the former to the case of error O(1/log𝑛). It is simpler to

describe the error reduction algorithm when the error is large, i.e.

close to the unique decoding radius, so we start there.

The process of error-reduction may be viewed as an average-case
version of the correction problem, where we are only required to

compute 𝑃 on most points in {0, 1}𝑛 with high probability. Assume,

therefore, that we are given a random point a ∈ {0, 1}𝑛 and we are

required to output 𝑃 (a) (with high probability).

In the setting where the domain is not {0, 1}𝑛 but rather a vector

space like F𝑛𝑞 , a natural strategy going back to the works of Beaver

and Feigenbaum [7] and Lipton [24] is to choose a random subspace

𝑉 of appropriate constant (here, we think of all parameters except

𝑛 as constants) dimension 𝑘 containing a and then find the closest

𝑘-variate degree-𝑑 polynomial to the restriction 𝑓 |𝑉 of 𝑓 to this

subspace. The reason this works is that the points in a random

subspace come from a pairwise independent distribution and hence

standard second-moment methods show that 𝛿 (𝑓 |𝑉 , 𝑃 |𝑉) ≈ 𝛿 with

high probability, in which case 𝛿 (𝑓 |𝑉 , 𝑃 |𝑉) is also less than the

unique-decoding radius of P𝑑 . A brute-force algorithm (or better

ones, such as the Welch-Berlekamp algorithm (see e.g. [19, Chapter

15])) can now be used to find 𝑃 |𝑉 , which also determines 𝑃 (a) .

767

Local Correction of Linear Functions STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

To adapt this idea to the setting of {0, 1}𝑛 , we note that random
subspaces are not available to us since most constant-dimensional

subspaces don’t have points in {0, 1}𝑛 . However, we observe that
we can apply the above idea to a random subcube in {0, 1}𝑛 . More

specifically, we identify variables randomly into 𝑘 buckets via a

random hash function ℎ : [𝑛] → [𝑘], reducing the original set of
𝑛 variables 𝑥1, . . . , 𝑥𝑛 to a set of 𝑘 variables 𝑦1, . . . , 𝑦𝑘 . Further, to

ensure that the given point a is in the chosen subcube, we start

by replacing 𝑥𝑖 by 𝑥𝑖 ⊕ 𝑎𝑖 before the identification process (the

process of XORing a variable 𝑥 by a Boolean value 𝑏 is equivalent

to either leaving the variable as is when 𝑏 = 0, or replacing 𝑥 by

1− 𝑥 when 𝑏 = 1. This does not affect the degree of the polynomial

𝑃). This gives rise to a random subcube C containing a (obtained by
setting 𝑦1 = · · · = 𝑦𝑘 = 0). We define a random subcube formally

in Definition 2.7. We can now apply the above idea by restricting

the given 𝑓 to this subcube.

Having defined a subcube C as above, the non-trivial part of the

argument is to show that 𝛿 (𝑓 |C, 𝑃 |C) ≈ 𝛿 . This is not obvious as

the points of the subcube C are not pairwise independent. Nev-

ertheless, for random a, the points of C are ‘noisy’ copies of one

another (Definition 2.5). Using this fact and standard hypercon-

tractivity estimates, we can show that most pairs of points of 𝐶

are ‘approximately’ pairwise independent (see Theorem 2.6 below)

as long as 𝑘 is a large enough constant. This allows us to use the

second-moment method to recover 𝑃 (a) as before, for all but a small

fraction 𝛿 ′ of possible inputs a (with high probability). The parame-

ter 𝑘 is poly(1/𝛿 ′) making the query complexity a constant as long

as the required error 𝛿 ′ is constant. This is proved in Section 3.2.

To reduce the error further down to O(1/log𝑛), we modify the

above idea. We repeat the above process (Actually, we need to

slightly modify the process to ensure that we only query ‘balanced’

points on the subcube C. We postpone this detail to the proof.) on

three randomly chosen subcubes of dimension 𝑘′ each containing

a and take a plurality vote of their outputs. The probability of error

in this algorithm is bounded by the probability that at least two of

the iterations query a point of error, which would be ≤ O𝑘 ′ ((𝛿 ′)2)
if the repetitions were independent. However, the iterations here

have some dependency - each iteration uses the same random input

a. Nevertheless, using hypercontractivity, we can again argue that if
𝑘′ is a large enough constant depending only on 𝑑 , the probability of
error is at most O𝑘 ′ ((𝛿 ′)1.5) ≤ (𝛿 ′)1.1 for small enough 𝛿 ′ . Repeat-
ing this process 𝑡 times, gives an error that is double-exponentially
small in 𝑡 , at the expense of O𝑘 ′ (1)𝑡 many queries. Choosing 𝑡 to

be O(log log log𝑛) gives us an oracle that is O(1/log𝑛)-close to 𝑃 .
Since this step uses similar ideas to the previous error-reduction

algorithm, we defer the proof to the full version.

1.3.2 Combinatorial List Decoding Bound - Theorem 1.2. We first

note that the list size can indeed be as large as poly(1/𝜀), no matter

the underlying group 𝐺. This is shown by the following example.

Fix an integer parameter 𝑡 and any non-zero element 𝑔 ∈ 𝐺 . Let 𝑓 =

Maj
𝑡
𝐺
(𝑥1, . . . , 𝑥𝑡) denote the function of the first 𝑡 input variables

that takes the value 𝑔 when its input has Hamming weight greater

than 𝑡/2 and the value 0 otherwise. A standard calculation (see

e.g. [26, Theorem 5.19]) shows that Maj
𝑡
𝐺
agrees with the linear

functions 𝑔 · 𝑥𝑖 (𝑖 ∈ [𝑡]) on a (1
2
+ 𝑂 (1)√

𝑡
)-fraction of inputs. Setting

𝑡 = Θ(1/𝜀2), we see that this agreement can be made
1

2
+ 𝜀. This

implies that for 𝑓 as defined above, the list size at distance
1

2
− 𝜀

can be as large as Ω((1/𝜀)2)) .
Tomotivate the proof of Theorem 1.2, it is helpful to start with the

case when 𝐺 is a group Z𝑝 of prime order. There are two extremes

in this case: 𝑝 = 2 and large 𝑝 (say a large constant or even growing

with 𝑛).

Case 1: 𝑝 = 2. The case 𝑝 = 2 is the classical setting that has

been intensively investigated in the literature, starting with the

foundational work of Goldreich and Levin [16] (see also the work

of Kushilevitz and Mansour [23]). In this setting, it is well-known

that the bound of 1/𝜀2 is tight. This follows from the standard

Parseval identity from basic Fourier analysis of Boolean functions

(see e.g. [26]) or as a special case of the binary Johnson bound (see

e.g. the appendix of [9]). At a high level, this is because the Boolean

Fourier transform identifies each 𝑓 : {0, 1}𝑛 → Z2 with a real

unit vector v𝑓 such that distinct linear polynomials are mapped

to an orthonormal basis. Moreover, if 𝑓 is (1
2
− 𝜀)-close to a linear

polynomial 𝑃 , then the length of projection of the vector v𝑓 on v𝑃
is at least 𝜀. Pythagoras’ theorem now implies the list bound.

Case 2: Large 𝑝 . For 𝑝 > 2, it is unclear if we can map distinct

linear polynomials to orthogonal real or complex vectors in the

above way. Nevertheless, we do expect the list-size bound to hold,

as the distance 𝛿 (P1) is the same as over Z2, i.e. 1/2. Moreover, a

random pair of linear polynomials have a distance much larger than

1/2 for large 𝑝. This latter fact is a consequence of anti-concentration
of linear polynomials, which informally means the following. Let

𝑃 (x) be a non-zero polynomial with many (say, at least 100) non-

zero coefficients. Then, on a random input a, the random variable

𝑃 (a) does not take any given value 𝑏 ∈ Z𝑝 with good probability

(say, greater than 1/5).
In the case of large 𝑝 , we crucially use anti-concentration to argue

the upper bound on the list size. At a high level, in this case, we can

show that if a function 𝑓 : {0, 1}𝑛 → Z𝑝 is (1
2
− 𝜀)-close to many

(say 𝐿) linear polynomials, then there is a large subset (size 𝐿′ =
𝐿Ω (1)

) that ‘look’ somewhat like the example of theMaj
𝑡
𝐺
example

mentioned above. More precisely, the coefficient vectors of the

linear polynomials in this subset are at most a constant (independent
of 𝑝 , order of the underlying group) Hamming distance from one

another. By shifting the polynomials by one of the linear functions

in the subset, we can assume without loss of generality that all

the linear functions in fact have a constant number of non-zero
coefficients, as in the case of the list of polynomials corresponding

to Maj
𝑡
𝐺
. It now suffices to bound the size 𝐿′ of this subset by

poly(1/𝜀) . The bound now reduces to a case analysis based on

the number of variables that appear in the coefficients of the 𝐿′

polynomials in the subset.

Putting it Together. We sketch here how to handle general finite

Abelian groups. In the proof, we show that this also implies the

same bound for infinite groups such as R.
Recall that any finite group𝐺 is a direct product of cyclic groups,

each of which has a size that is a prime power. We collect the terms

in this product to write𝐺 = 𝐺1×𝐺2×𝐺3 where𝐺1 is the product of

the factors of sizes that are powers of 2, 𝐺2 is the same with powers

of 3, and𝐺3 is the product of the rest (There is nothing very special

768

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

about this decomposition. Essentially, we have one argument that

works for ‘small’ 𝑝 and another that works for ‘large’ 𝑝 . To combine

them, we need some formalization of these notions. Here, ‘large’

could be defined to be larger than any constant 𝐶 ≥ 5.). A simple

observation shows that it suffices to bound the size of the list in

each of these cases by poly(1/𝜀).
For 𝐺3, the argument of large 𝑝 sketched above works without

any change (with some care to ensure that we can handle all the

primes greater than or equal to 5). The only part of the argument

that is sensitive to the choice of the group is the initial use of

anti-concentration, and this works over 𝐺3 since the order of any

non-zero element is large (i.e. at least 5).

The argument for 𝐺1 needs more work. While the use of Par-

seval’s identity works over Z2, it is not clear how to extend it to

groups of size powers of 2, such as Z4 . For inspiration, we turn to

a different extension of the Z2-case proved by Dinur, Grigorescu,

Kopparty, and Sudan [9]. They deal with the list-decodability of

the space of group homomorphisms from a group 𝐻 to a group 𝐺 .

Setting the group𝐻 to be {0, 1}𝑛 (with addition defined by the XOR

operation) and𝐺 to be Z2, we recover again the setting of (homoge-

neous) linear polynomials over Z2 . The work of [9] shows how to

extend this result to larger groups 𝐺 that have order a power of 2.

Note that it is not immediately clear that this should carry over to

the setting of linear polynomials: for groups of order greater than

2, the space of polynomials is different from the space of homomor-

phisms. However, we show that the technique of [9] does work in

our setting as well.

Finally, the proof for 𝐺2 is a combination of the ideas of the two

proofs above. We omit the details here and refer the reader to the

actual proof.

1.3.3 Local List Correction - Theorem 1.3. Like the proof of the

second and third steps of Theorem 1.1 described above, at the

heart of our local list correction algorithm lies an error-reduction

algorithm. More precisely, we design an algorithmA 𝑓

1
which, using

oracle access to 𝑓 , produces a list of algorithms𝜓1, . . . ,𝜓𝐿 such that,

with high probability, for each linear polynomial 𝑃 that is (1
2
− 𝜀)-

close to 𝑓 , there is at least one algorithm𝜓 𝑗 in the list that agrees

with 𝑃 on most inputs, i.e. 𝜓 𝑗 “approximates” 𝑃 . Here, 𝐿 ≤ 𝐿(𝜀)
denotes the list-size bound proved in Theorem 1.2. Further, each𝜓𝑖
makes at most 𝑂𝐿 (1) = 𝑂𝜀 (1) queries to 𝑓 .

We can now apply the algorithm from the unique correction

setting with oracle access to the various𝜓 𝑗 to produce the desired

list 𝜙1, . . . , 𝜙𝐿 as required.

The proof is motivated by a local list-decoding algorithm for

low-degree polynomials over F𝑛𝑞 due to Sudan, Trevisan, and Vad-

han [31]. In that setting, we are given oracle access to a function

𝑓 : F𝑛𝑞 → F𝑞 and we are required to produce a list as above that

approximates the set 𝑆 = {𝑃1, . . . , 𝑃𝐿} of degree-𝑑 polynomials (say

𝑑 = 𝑜 (𝑞)) that have significant (say Ω(1)) agreement with 𝑓 . It

follows from the Johnson bound that 𝐿 = O(1) in this case (see,

e.g. [19, Chapter 7]). The corresponding algorithm ASTV chooses a

random point a and gets as advice the values of 𝛼𝑖 = 𝑃𝑖 (a) for each
𝑖 ∈ [𝐿]. (We can easily get rid of this advice assumption, but let us

assume for now that we have it.)

Now, we want to produce an algorithm that approximates 𝑃𝑖 .

Given a random point b ∈ F𝑛𝑞 , the algorithm constructs the random

line ℓ passing through a and b and produces the list of univariate

polynomials that have significant agreement with the restriction 𝑓 |ℓ
of 𝑓 to the line. This can be done via brute force with 𝑂 (𝑑) queries
(if one only cares about query complexity) or in poly(𝑑, log𝑞) time

using Sudan’s list decoding algorithm for univariate polynomials

[30]. By pairwise independence and standard second-moment esti-

mates, it is easy to argue that for each 𝑗 ∈ [𝐿], 𝑃 𝑗 |ℓ is in this list of

univariate polynomials. However, to single out 𝑃𝑖 |ℓ in this list, we

use advice 𝛼𝑖 = 𝑃𝑖 (a). Since a is a random point on ℓ (even given ℓ),

it follows that, with high probability, 𝛼𝑖 uniquely disambiguates 𝑃𝑖 |ℓ
from the (O(1) many) other polynomials in the list. In particular

this also determines 𝑃𝑖 (b), since b lies on ℓ .

Let us now turn to our local list correction algorithm. We use

similar ideas to [31] but, as in the proof of Theorem 1.1, with sub-
cubes instead of lines. More precisely, the algorithm A 𝑓

1
produces

a random a and a random hash function ℎ : [𝑛] → [𝑘] (𝑘 = O𝜀 (1)
suitably large), and uses them to produce a random subcube C as

in the proof sketch of Theorem 1.1. The advice in this case is the

restriction 𝑃 |C for each polynomial 𝑃 in the set 𝑆 = {𝑃1, . . . , 𝑃𝐿} of
degree-1 polynomials that are (1

2
− 𝜀)-close to 𝑓 .

Now, given a random point b ∈ {0, 1}𝑛 , we correct 𝑃𝑖 (b) as
follows. We first construct the smallest subcube C′

that contains

both C and the point b. With high probability, this is a subcube

of dimension 2𝑘 . Using a simple brute-force algorithm that uses

2
2𝑘

queries to 𝑓 , we can find the set 𝑆 ′ of all 2𝑘-variate linear

polynomials that are (1
2
− 𝜀

2
)-close to 𝑓 |C′ . Note that |𝑆 ′ | ≤ 𝐿(𝜀) .

By a hypercontractivity-based argument (as we did in the error

reduction algorithms), we can show that, with high probability, each

𝑃 𝑗 |C′ is in this list 𝑆 ′. To single out 𝑃𝑖 |C′ , we use advice 𝑃𝑖 |C. The
proof that this works needs an understanding of the distribution of

C given C′
: it turns out that the 𝑘-dimension subcube C is obtained

by randomly pairing up variables in C′
and identifying them with

a single variable. We show that, if 𝑘 is large enough in comparison

to the list bound 𝐿, then with high probability, this process does

not identify any two distinct elements in the list (there is a small

subtlety in the argument that is being hidden here for simplicity).

Thus, we are able to single out 𝑃𝑖 |C′ and this allows us to compute

𝑃𝑖 (b) correctly, with high probability over the choice of b and

the randomness of the algorithm (which includes a and the hash

function ℎ).

Finally, to get rid of the advice, we note that a similar hypercon-

tractivity based argument also shows that each 𝑃𝑖 |C is (1
2
− 𝜀

2
)-close

to 𝑓 |C. So by applying a similar brute-force algorithm on C, we
find, with high probability, a set 𝑆 of polynomials containing 𝑃𝑖 |C
for each 𝑖 ∈ [𝐿]. This is good enough for the argument above. The

algorithm A 𝑓

1
first computes 𝑆 and then outputs the descriptions

of the algorithm in the previous paragraph for each 𝑃 ∈ 𝑆 (treating

it as a restriction of one of the 𝑃𝑖).

Organization. We start with some preliminaries and then sketch

the proof of Theorem 1.1. For lack of space, the proofs of some

of the intermediate lemmas and the proofs of Theorem 1.2 and

Theorem 1.3 are postponed to the full version of the paper [2].

769

Local Correction of Linear Functions STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

2 PRELIMINARIES
2.1 Notation
Let (𝐺, +) denote an Abelian group 𝐺 with addition as the binary

operation. For any 𝑔 ∈ 𝐺 , let −𝑔 denote the inverse of 𝑔 ∈ 𝐺 . For
any 𝑔 ∈ 𝐺 and integer 𝑎 ≥ 0, 𝑎 · 𝑔 (or simply 𝑎𝑔) is the shorthand

notation of 𝑔 + . . . + 𝑔 (added 𝑎 times) and −𝑎𝑔 denotes 𝑎 · (−𝑔).
For a natural number 𝑛, we consider functions 𝑓 : {0, 1}𝑛 → 𝐺 .

We denote the set of functions that can be expressed as a multilinear

polynomial of degree𝑑 , with the coefficients being in𝐺 byP𝑑 (𝑛,𝐺).
We will simply write 𝑃𝑑 when 𝑛 and 𝐺 are clear from the context.

For x, y ∈ {0, 1}𝑛 , let 𝛿 (x, y) denote the relative Hamming distance

between x and y, i.e. 𝛿 (x, y) = | {𝑖 ∈ [𝑛] | 𝑥𝑖 ≠ 𝑦𝑖 } |/𝑛.
For any x ∈ {0, 1}𝑛 , |x| denotes the Hamming weight of x. 𝑂̃ (·)

notation hides factors that are poly-logarithmic in its argument.

For a polynomial 𝑃 (x), let vars(𝑃) denote the variables on which 𝑃

depends, i.e. the variables that appear in a monomial with non-zero

coefficient in 𝑃 . For any natural number 𝑛, 𝑈𝑛 denotes the uniform

distribution on {0, 1}𝑛 .

2.2 Basic Definitions and Tools
Probabilistic Notions. For any distribution𝑋 on {0, 1}𝑛 , let supp(𝑋)

denote the subset of {0, 1}𝑛 on which 𝑋 takes non-zero probability.

For two distributions 𝑋 and 𝑌 on {0, 1}𝑛 , the statistical distance
between 𝑋 and 𝑌 , denoted by SD(𝑋,𝑌) is defined as

SD(𝑋,𝑌) = max

𝑇 ⊆{0,1}𝑛
| Pr[𝑋 ∈ 𝑇] − Pr[𝑌 ∈ 𝑇] |

We say 𝑋 and 𝑌 are 𝜀-close if the statistical distance between 𝑋 and

𝑌 is at most 𝜀.

Coding Theory Notions. Fix an Abelian group 𝐺 . We use P𝑑 to

denote the space of multilinear polynomials from {0, 1}𝑛 to 𝐺 of

degree at most 𝑑. More precisely, any element 𝑃 ∈ P𝑑 can be

described as

𝑃 (𝑥1, . . . , 𝑥𝑛) =
∑︁

𝐼⊆[𝑛] : |𝐼 | ≤𝑑
𝛼𝐼

∏
𝑖∈𝐼

𝑥𝑖

where 𝛼𝐼 ∈ 𝐺 for each 𝐼 . On an input a ∈ {0, 1}𝑛 , each monomial

evaluates to a group element in 𝐺 and the polynomial evaluates to

the sum of these group elements.

The following is a summary of standard facts about multilinear

polynomials, which also hold true in the setting when the range is

an arbitrary Abelian group𝐺. The proofs are standard and omitted.

Theorem 2.1. (1) (Möbius Inversion) Any function 𝑓 : {0, 1}𝑛 →
𝐺 has a unique representation as a multilinear polynomial in
P𝑛 . Moreover, we have 𝑓 =

∑
𝐼⊆[𝑛] 𝑐𝐼

∏
𝑖∈𝐼 𝑥𝑖 where for any

𝐼 ⊆ [𝑛], we have

𝑐𝐼 =
∑︁
𝐽 ⊆𝐼

(−1) |𝐼\𝐽 | 𝑓 (1𝐽)

where 1𝐽 is the indicator vector of the set 𝐽 .
(2) (DeMillo-Lipton-Schwartz-Zippel) Any non-zero polynomial

𝑃 ∈ P𝑑 is non-zero with probability at least 2−𝑑 at a uniformly
random input from {0, 1}𝑛 . Equivalently, 𝛿 (P𝑑) ≥ 2

−𝑑 .

We now turn to the kinds of algorithms we will consider. Below,

let F be any space of functions mapping {0, 1}𝑛 to 𝐺.

Definition 2.2 (Local Correction Algorithm). We say that F has a

(𝛿, 𝑞)-local correction algorithm if there is a probabilistic algorithm

that, when given oracle access to a function 𝑓 that is 𝛿-close to

some 𝑃 ∈ F , and given as input some a ∈ {0, 1}𝑛 , returns 𝑃 (a) with
probability at least 3/4. Moreover, the algorithm makes at most 𝑞

queries to its oracle.

Definition 2.3 (Local List-Correction Algorithm). We say that F
has a (𝛿, 𝑞1, 𝑞2, 𝐿)-local list correction algorithm if there is a ran-

domized algorithm A that, when given oracle access to a function

𝑓 , produces a list of randomized algorithms 𝜙1, . . . , 𝜙𝐿 , where each

𝜙𝑖 has oracle access to 𝑓 and have the following property: with

probability at least 3/4, for each codeword 𝑃 that is 𝛿-close to 𝑓 ,

there exists some 𝑖 ∈ [𝐿] such that the algorithm 𝜙𝑖 computes 𝑃

with error at most 1/4, i.e. on any input a, the algorithm 𝜙𝑖 outputs

𝑃 (a) with probability at least 3/4.
Moreover, the algorithm A makes at most 𝑞1 queries to 𝑓 , while

the algorithms 𝜙1, . . . , 𝜙𝐿 each make at most 𝑞2 queries to 𝑓 .

Definition 2.4 (Combinatorial List Decodability). We say that F is

(𝛿, 𝐿)-list decodable if for any function 𝑓 , the number of elements

of F that are 𝛿-close to 𝑓 is at most 𝐿.

The questions of decoding polynomial-based codes over groups

become much more amenable to known techniques if we drop the

locality constraint. In the full version of the paper, we show how

the standard Majority-logic decoding algorithms also yield non-

local unique and list-decoding algorithms for P𝑑 over any Abelian

group.

Hypercontractivity. Next we are going to state a consequence of

the standard Hypercontracitivity theorem (Refer to [26, Chapter

9]).

Definition 2.5 (Noise distribution). Let 𝜌 ∈ [−1, 1]. For a fixed

x ∈ {0, 1}𝑛 , y ∼ N𝜌 (x) denotes a random variable defined as

follows: For each 𝑖 ∈ [𝑛] independently,

𝑦𝑖 :=

{
𝑥𝑖 , with prob. (1 + 𝜌)/2
¬𝑥𝑖 , with prob. (1 − 𝜌)/2

In other words, to sample from the distribution N𝜌 (x)), we flip

each bit of x independently with probability (1− 𝜌)/2, and keeping
it unchanged with probability (1 + 𝜌)/2.

Theorem 2.6 ([26, Section 9.5]). Let 𝐸 ⊆ {0, 1}𝑛 be a subset of
density 𝛿 , i.e. |𝐸 |/2𝑛 = 𝛿 . Then for any 𝜌 ∈ [−1, 1],

Pr

x∼{0,1}𝑛
y∼N𝜌 (x)

[x ∈ 𝐸 and y ∈ 𝐸] ≤ 𝛿2/(1+|𝜌 |)

In particular, if 𝜌 is close to 0, then Theorem 2.6 tells us that the

probability that x and y are in 𝐸 is close to the probability when x
and y are sampled independently and uniformly from 𝑈𝑛 .

Subcubes of {0, 1}𝑛 . It will be very useful in our algorithms to be

able to restrict the given function to a small-dimensional subcube

and analyze this restriction. We construct such subcubes by first

negating a subset of the variables, then identifying them into a

smaller set of variables. A more precise definition follows.

Definition 2.7 (Embedding a smaller cube into {0, 1}𝑛). Fix any

𝑘 ∈ N and 𝑘 ≤ 𝑛. Fix a point a ∈ {0, 1}𝑛 and a function ℎ : [𝑛] →

770

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

[𝑘]. For every y ∈ {0, 1}𝑘 , 𝑥 (y) is defined with respect to a and ℎ
as follows:

𝑥 (y)𝑖 = 𝑦ℎ (𝑖) ⊕ 𝑎𝑖 =
{
𝑎𝑖 , if 𝑦ℎ (𝑖) = 0

1 ⊕ 𝑎𝑖 , if 𝑦ℎ (𝑖) = 1

𝐶a,ℎ is the subset in {0, 1}𝑛 consisting of 𝑥 (y) for every y ∈ {0, 1}𝑘 ,
i.e. 𝐶a,ℎ :=

{
𝑥 (y)

��� y ∈ {0, 1}𝑘
}
.

Given any polynomial 𝑃 (𝑥1, . . . , 𝑥𝑛) and any subcube 𝐶a,ℎ as

above, 𝑃 restricts naturally to a degree-𝑑 polynomial 𝑄 (𝑦1, . . . , 𝑦𝑘)
on 𝐶a,ℎ obtained by replacing each 𝑥𝑖 by 𝑦ℎ (𝑖) ⊕ 𝑎𝑖 . We use 𝑃 |𝐶a,ℎ
to denote the polynomial 𝑄 .

Random Subcubes. Now assume that we choose a subcube 𝐶a,ℎ
by sampling a ∼ {0, 1}𝑛 and sampling a random hash function

ℎ : [𝑛] → [𝑘]. For any y ∈ {0, 1}𝑘 , 𝑥 (y) is the image of y in

{0, 1}𝑛 under a and ℎ and 𝐶a,ℎ is the subcube consisting of all 2
𝑘

such images. From the Definition 2.7, we can derive following two

observations:

(1) For any y ∈ {0, 1}𝑘 , distribution of 𝑥 (y) is the uniform distri-

bution over {0, 1}𝑛 . This is because a is uniformly distributed

over {0, 1}𝑛 .
(2) Fix y, y′ ∈ {0, 1}𝑘 . Recall that 𝛿 (y, y′) denotes the fractional

Hamming distance between y and y′. A simple calculation

shows the following: For all 𝑖 ∈ [𝑛], 𝑥 (y)𝑖 ⊕ 𝑥 (y′)𝑖 is 1 with
probability 𝛿 (y, y′), and 0 with probability 1 − 𝛿 (y, y′).
Since this is true for any choice of 𝑥 (y), this means that

the distribution of the random variable 𝑥 (y) ⊕ 𝑥 (y′) is inde-
pendent of 𝑥 (y). In particular, using also our observation in

the previous item, we see that the pair (𝑥 (y), 𝑥 (y′)) has the
same distribution as (z, z′) where z is chosen uniformly at

random from {0, 1}𝑛 and z′ is sampled from the distribution

N𝜌 (z), where 𝜌 = 1 − 2𝛿 (y, y′).
Building on the above observation, we have the following sam-

pling lemma for subcubes that will be useful. The proof, based on

the second-moment method, is postponed to the full version.

Lemma 2.8 (Sampling lemma for random subcubes). Sample
a and ℎ uniformly at random, and let C = 𝐶a,ℎ be the subcube of
dimension 𝑘 as described in Definition 2.7. Fix any 𝑇 ⊆ {0, 1}𝑛 and

let 𝜇 := |𝑇 |/2𝑛 . Then, for any 𝜀, 𝜂 > 0, and 𝑘 ≥ 𝐴
𝜀4𝜂2

· log
(
1

𝜀𝜂

)
where

𝐴 > 0 is a large enough absolute constant, we have

Pr

a,ℎ

[���� |𝑇 ∩ C|
2
𝑘

− 𝜇
���� ≥ 𝜀] < 𝜂.

3 LOCAL CORRECTION IN THE UNIQUE
DECODING REGIME

In this section, we will prove Theorem 1.1, i.e. we will give a local

correction algorithm for degree 1 polynomials with only
˜O(log𝑛)

queries.

We will do this in three steps. We start by proving a slightly

weaker statement: we will first give a local correction algorithm

that can correct P1 with the error-parameter 𝛿 ≤ 1/O(log𝑛) (see
Theorem 3.1). Then we will show how to handle some 𝛿 = Ω(1)
by reducing to the small error case. Finally, by using a similar

argument to the second step, we prove Theorem 1.1, which is a

local correction algorithm with 𝛿 arbitrarily close to the unique

decoding radius.

The first part of this argument works only for linear polynomials,

while the latter two reductions also work for higher degree.

3.1 Sub-Constant Error
In this section, we give a correction algorithm for P1 that can

correct for 𝛿 < O(1/log𝑛). The main result of this section is the

following.

Theorem 3.1 (Local correction algorithms for P1 up to

error O(1/log𝑛)). Let P1 be the set of degree 1 polynomials from
{0, 1}𝑛 to 𝐺 . Then P1 has a (𝛿, 𝑞)-local correction algorithm for any
𝛿 < O(1/log𝑛) and 𝑞 = O(log𝑛).

We first describe the general framework of the algorithm, which

is applicable more generally.

3.1.1 Framework of Local Correction Algorithm. We will now give

a formal definition of howwe construct a local correction algorithm,

namely, via a correction gadget. This will be useful in the regime

where the distance of the input function to the codeword (in our

case, a linear polynomial) is small.

Let F be a class of functions from {0, 1}𝑛 to an Abelian group𝐺 .

Let 𝑃1, . . . , 𝑃𝐷 be functions from {0, 1}𝑛 to Z satisfying the follow-

ing property: for any 𝑃 ∈ F , there exist coefficients 𝛼1, . . . , 𝛼𝐷 ∈ 𝐺
such that for any a ∈ {0, 1}𝑛

𝑃 (a) = 𝛼1𝑃1 (a) + . . . + 𝛼𝐷𝑃𝐷 (a).

In the case when 𝐺 = F𝑝 for a prime 𝑝 and F is a vector space

of functions, {𝑃1, . . . , 𝑃𝐷 } is a standard spanning set for F in the

linear algebraic sense. We extend this definition to this case and

say that {𝑃𝑖 , . . . , 𝑃𝐷 } is a spanning set for F .

Definition 3.2 (Local Correction Gadget). Let F be a set of func-

tions from {0, 1}𝑛 to anAbelian group𝐺 with spanning set {𝑃𝑖 }𝑖∈[𝐷] .
For any a ∈ {0, 1}𝑛 , an (𝜀, 𝑞)-correction gadget for a is a distribution
D over ({0, 1}𝑛)𝑞 satisfying the following two properties:

(1) There exists 𝑐1, . . . , 𝑐𝑞 ∈ Z such that for any (y(1) , . . . , y(𝑞)) ∈
supp(D), the following holds true for each element of the

spanning set 𝑃 𝑗 (𝑗 ∈ [𝐷]).

𝑃 𝑗 (a) = 𝑐1𝑃 𝑗 (y(1)) + . . . + 𝑐𝑞𝑃 𝑗 (y(𝑞)) (3)

(2) For any 𝑖 ∈ [𝑞], the distribution of y(𝑖) is 𝜀-close to𝑈𝑛 .

The next claim shows that if we have an (𝜀, 𝑞)-correction gadget

for sufficiently small 𝜀, that immediately gives us a (𝛿, 𝑞)-local
correction algorithm for small enough 𝛿 . We will use the same

notation in Definition 3.2. We omit the easy proof, referring the

interested reader to the full version.

Lemma 3.3 (Correction gadget gives local correction al-

gorithm). If there is an (𝜀, 𝑞)-correction gadget for any a ∈ {0, 1}𝑛
where 𝑞(𝛿 + 𝜀) < 1/4, then there is a (𝛿, 𝑞)-local correction algorithm
for F .

3.1.2 Local Correction Algorithm for Linear Polynomials. We now

prove Theorem 3.1. The main technical step in the proof of this

theorem is the proof of the following lemma.

771

Local Correction of Linear Functions STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

Lemma 3.4 (Correction gadget for 1
𝑛
). Fix any odd positive

integer 𝑞. For any 𝑛, there is a choice of 𝑐1, . . . , 𝑐𝑞 ∈ Z and a distri-
bution D over ({0, 1}𝑛)𝑞 such that the following properties hold for
𝑐1, . . . , 𝑐𝑞 and any sample (y(1) , . . . , y(𝑞)) from D.

• 𝑐1 + . . . + 𝑐𝑞 = 1 and for all 𝑖 ∈ [𝑛], 𝑐1𝑦 (1)𝑖
+ . . . + 𝑐𝑞𝑦 (𝑞)𝑖

= 1.
• For each 𝑗 ∈ [𝑞], y(𝑗) is (1/2Ω (𝑞) ·

√
𝑛)-close to the𝑈𝑛 .

We first show how to prove Theorem 3.1 assuming this lemma.

The lemma is proved subsequently.

Proof of Theorem 3.1. The spaceP1 of linear polynomials over

𝐺 has as a spanning set the constant function 𝑃0 (x) = 1 and the

co-ordinate functions 𝑃 𝑗 (x) = 𝑥 𝑗 for each 𝑗 ∈ [𝑛] .
From Lemma 3.3, it suffices to give a (𝜀, 𝑞)-correction gadget for

any a ∈ {0, 1}𝑛 , where 𝜀 = 1/𝑛. Note that Lemma 3.4 directly yields

a correction gadget D at the point 1
𝑛
for 𝑞 = O(log𝑛).

To get a correction gadget at a point a ≠ 1
𝑛
, we simply shift this

correction gadget by b = 1
𝑛 ⊕ a and use the fact that the space of

linear polynomials is preserved by such shifts.

More precisely, consider the distribution Db obtained by sam-

pling (y(1) , . . . , y(𝑞)) from D and shifting each element by b to

get

(z(1) , . . . , z(𝑞)) = (y(1) ⊕ b, . . . , y(𝑞) ⊕ b) .
We retain the same coefficients 𝑐1, . . . , 𝑐𝑞 as in Lemma 3.4.

To prove that (z(1) , . . . , z(𝑞)) is an (𝜀, 𝑞)-correction gadget for a,
it remains to verify

𝑐1 + · · · + 𝑐𝑞 = 1

𝑐1𝑧
(1)
𝑖

+ · · · + 𝑐𝑞𝑧 (𝑞)𝑖
= 𝑎𝑖 for each 𝑖 ∈ [𝑛] (4)

The first of the above follows from Lemma 3.4. The second equality

Equation (4) is also easily verified for 𝑖 such that 𝑎𝑖 = 1 since 𝑧
(𝑗)
𝑖

=

𝑦
(𝑗)
𝑖

in this case. For 𝑖 such that 𝑎𝑖 = 0, we see that 𝑧
(𝑗)
𝑖

= 1 − 𝑦 (𝑗)
𝑖

for each 𝑗 ∈ [𝑞] and hence∑︁
𝑗∈[𝑞]

𝑐 𝑗𝑧
(𝑗)
𝑖

=
∑︁
𝑗∈[𝑞]

𝑐 𝑗 −
∑︁
𝑗∈[𝑞]

𝑐 𝑗𝑦
(𝑗)
𝑖

= 1 − 1 = 0 = 𝑎𝑖 .

We have thus shown that Equation (4) holds for all 𝑖 ∈ [𝑛]. Further,
since y(𝑗) is 1/𝑛-close to uniform for each 𝑗 ∈ [𝑞], so is z(𝑗) .
Overall, this implies that Db is a correction gadget for a.

Lemma 3.3 then gives us the desired local correction algorithm.

□

3.1.3 Proof of Lemma 3.4. We first construct a Boolean matrix

with some interesting combinatorial and algebraic properties. The

distribution D in Lemma 3.4 is obtained later by sampling 𝑛 rows

of this matrix independently and uniformly at random.

The technical lemma below shows that we can find a small

number of nearly balanced-Boolean vectors, whose integer span

contains the all 1s vector.

Lemma 3.5 (Construction of a matrix). For any natural num-
ber 𝑘 , there exists an integer matrix𝐴𝑘 of dimension (2𝑘−1)×(2𝑘−1)
with entries in {0, 1} and a vector c ∈ Z2𝑘−1 such that 𝐴𝑘c = 1

2
𝑘−1

and there is exactly one row in 𝐴𝑘 that is (1, . . . , 1). Additionally,
for any column of 𝐴𝑘 , the Hamming weight of the column is in
[2𝑘−1 − 1, 2𝑘−1 + 1].

Remark 1. The statement of this lemma is, in some sense, the
best that we can hope for as the lemma does not hold if each column
is required to be perfectly balanced. In fact, the above lemma does
not hold even in the setting where each column is required to have
weight exactly𝑤 for some𝑤 < 2

𝑘 − 1: in this case, 12
𝑘−1 would not

even be in the Q-linear span of the columns of 𝐴𝑘 (Consider a vector
v ∈ Q2𝑘−1 the entries of which are 1 − 1/𝑤 or −1/𝑤 , depending on
whether the corresponding row in 𝐴𝑘 is the all 1s row or not. The
vector v is orthogonal to the columns of 𝐴𝑘 but not the vector 12

𝑘−1).
Quantitatively, this lemma exhibits a near-tight converse to a

lemma of Bafna, Srinivasan, and Sudan [5] who showed that for
any 𝑛 × 𝑘 Boolean matrix with an all-1s row, and columns that have
Hamming weights in the range [𝑛/2 −

√
𝑛, 𝑛/2 +

√
𝑛] and also span

the all 1s column, we must have 𝑘 = Ω̃(log𝑛) .

Proof. Fix a 𝑘 ∈ N. Given a non-negative integer 𝑖 < 2
𝑘
, we

denote by bin(𝑖) the Boolean vector that denotes the 𝑘-bit binary

expansion of 𝑖 (with the first entry being the most significant bit).

Defining the Base Matrix. Let𝑀 be a (2𝑘 − 1) × 2𝑘 matrix with

entries in {0, 1}. For all 𝑖 ∈ [2𝑘 −1] and 𝑗 ∈ [2𝑘], let the 𝑖𝑡ℎ row and

the 𝑗𝑡ℎ column of𝑀 be denoted by row(𝑖)
and col(𝑗) , respectively.

The 𝑖𝑡ℎ row of𝑀 is row(𝑖)
:= (bin(𝑖) bin(𝑖 − 1)), i.e. in row(𝑖)

, the

first 𝑘 coordinates are bin(𝑖) and the next 𝑘 entries are bin(𝑖 − 1),
where for an integer 𝑖 , bin(𝑖) denotes its binary representation.

𝑀 =


.
.
.

.

.

.

bin(𝑖) bin(𝑖 − 1)
.
.
.

.

.

.

 (2𝑘−1)×2𝑘
Let w ∈ R2𝑘 be the following vector:

w =

(
2
𝑘−1, . . . , 21, 20, −2𝑘−1, . . . ,−21,−20

)
It is easy to see that for any row row(𝑖)

of𝑀 , ⟨row(𝑖) ,w⟩ = 𝑖 − (𝑖 −
1) = 1. Thus,𝑀w = 1

2
𝑘−1

. Observe that col(𝑘) = 1
2
𝑘−1 − col(2𝑘) .

Modifying the Base Matrix. Let 𝑀̃ be a (2𝑘 − 1) × 2𝑘 matrix and

w̃ be a column vector of dimension 2𝑘 . Let the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ

column of 𝑀̃ be denoted by r̃ow(𝑖)
and c̃ol

(𝑗)
, respectively. 𝑀̃ and

w̃ are defined as follows:

c̃ol
(𝑗)

=

{
1 − col(𝑗) , if 𝑗 ≠ 𝑘

col(𝑗) , if 𝑗 = 𝑘
𝑤̃ 𝑗 =

{
𝑤 𝑗 , if 𝑗 ≠ 𝑘

−𝑤 𝑗 , if 𝑗 = 𝑘

It is easy to verify the following: for any 𝑖 ∈ [2𝑘 − 1], ⟨r̃ow(𝑖) , w̃⟩ =
−2. Thus 𝑀̃ (−w̃/2) = 1

2
𝑘−1

.

From the observation made above, c̃ol
(𝑘)

= c̃ol
(2𝑘)

. The first row

of 𝑀̃ . i.e. 𝑟𝑜𝑤 (1) = (1, . . . , 1). This implies that

∑
2𝑘
𝑗=1 (−𝑤̃ 𝑗/2) = 1.

It’s also easy to verify that no row other than the first row of 𝑀̃ is

(1, 1, . . . , 1) .

Integral Coefficients. We have −𝑤̃𝑘/2 = −𝑤̃
2𝑘/2 = 1/2. For any 𝑖 ,

since r̃ow(𝑖)
𝑘

= r̃ow(𝑖)
2𝑘

, the following equality holds:

r̃ow(𝑖)
𝑘

(−𝑤̃𝑘/2) + r̃ow(𝑖)
2𝑘

(−𝑤̃
2𝑘/2) = r̃ow(𝑖)

𝑘
· 1 + r̃ow(𝑖)

2𝑘
· 0 (5)

772

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

Let c ∈ Z2𝑘−1 be the following vector: 𝑐 𝑗 = (−𝑤̃ 𝑗/2) if 𝑗 ≠ 𝑘 , oth-
erwise 𝑐 𝑗 = 1. For any row r̃ow(𝑖)

, from Equation (5), ⟨r̃ow(𝑖) , c⟩ =
⟨r̃ow(𝑖) , (−w̃/2)⟩ = 1. Let 𝐴𝑘 denote the matrix 𝑀̃ after removing

the 2𝑘𝑡ℎ column. Then 𝐴𝑘c = 1
2
𝑘−1

.

Since

∑
2𝑘
𝑗=1 (−𝑤̃ 𝑗/2) = 1, using Equation (5), we get that

∑
2𝑘−1
𝑗=1 𝑐 𝑗 =

1.

Columns are Nearly Balanced. Finally, we will prove that for

each column c̃ol
(𝑗)

of 𝐴, the Hamming weight of c̃ol
(𝑗) ∈ [2𝑘−1 −

1, 2𝑘−1 + 1]. For any 𝑗 ∈ [2𝑘 − 1], the Hamming weight of col(𝑗)

is in

{
2
𝑘−1 − 1, 2𝑘−1 + 1

}
. This is because if 𝑀 had an additional

row [bin(0)bin(2𝑘 − 1)], then each column of𝑀 would be exactly

balanced, i.e. have Hamming weight of 2
𝑘−1

. Then by definition

of c̃ol
(𝑗)

, it follows that Hamming weight of each column of 𝐴𝑘 is

also in [2𝑘−1 − 1, 2𝑘−1 + 1]. □

Next, we are going to describe a distribution D on ({0, 1}𝑚)𝑞 ,
where 𝑚 = 2

𝑘 − 1 and 𝑞 = 2𝑘 − 1. We will do this by randomly

sampling rows of the matrix 𝐴𝑘 given by Lemma 3.5.

Proof of Lemma 3.4. Assume that 𝑞 = 2𝑘 − 1. To sample

(y(1) , . . . , y(𝑞)) ∼ D over ({0, 1}𝑛)𝑞 , we sample 𝑛 rows indepen-

denly and uniformly at random from the rows of 𝐴𝑘 as constructed

in Lemma 3.5 and define (𝑦 (1)
𝑖
, . . . , 𝑦

(𝑞)
𝑖

) to be the 𝑖th sample for

each 𝑖 ∈ [𝑛] .
We now show that D has the required properties from the

statement of Lemma 3.4. Let (𝑐1, . . . , 𝑐𝑞) = c be as guaranteed

by Lemma 3.5. The first property holds from the properties of 𝐴𝑘

and c. For each 𝑖 ∈ [𝑛], the vector (𝑦 (1)
𝑖
, . . . , 𝑦

(𝑞)
𝑖

) is a row of 𝐴𝑘 ,

and from Lemma 3.5, we know that the inner product of any row

of 𝐴𝑘 and c is 1. Further, since 1𝑞 is also a row of 𝐴𝑘 , it follows that

the entries of c sum to 1.

The second property follows from the fact that each column of𝐴𝑘
has relative Hamming weight in the range [1

2
−2

−𝑘 , 1
2
+2−𝑘]. Thus,

for any fixed 𝑗 ∈ [𝑞] and each 𝑖 ∈ [𝑛], we have that | Pr [𝑦 (𝑗)
𝑖

=

1] − 1/2| ≤ 1/2𝑘 .
Since for a fixed 𝑗 ∈ [𝑞] the bits {𝑦 (𝑗)

𝑖
| 𝑖 ∈ [𝑛]} are mutually

independent, we are now done by the following standard fact (which

can easily be proved by, say, following the proof of [25, Theorem

5.5, Claim 5.6]).

Lemma 3.6. Let 𝜂 > 0. Let D′ be a distribution on {0, 1}𝑛 such
that for any y ∼ D′, the co-ordinates of y are independent and for all
𝑖 ∈ [𝑛], 1/2 − 𝜂 ≤ Pr[𝑦𝑖 = 1] ≤ 1/2 + 𝜂. Then D′ is O(𝜂

√
𝑛)-close

to𝑈𝑛 .

This concludes the proof of Lemma 3.4. □

3.2 Constant-Error Algorithm via
Error-Reduction

We now show how to locally correct degree-1 polynomials in the

regime of constant error. We will do this by reducing the problem

to the case of low error. The results of this section also work for

higher-degree polynomials.

We will show that there is a randomized algorithm A 𝑓
that

given oracle access to any function 𝑓 that is 𝛿-close to a degree-𝑑

polynomial 𝑃 (think of 𝛿 as being a small enough constant depend-

ing on 𝑑), has the following property: with high probability over

the internal randomness of A 𝑓
, the function computed by A 𝑓

is

𝜂-close to 𝑃 , where 𝜂 < 𝛿 . We state it formally below.

Lemma 3.7 (Error reduction for constant error). Fix any
Abelian group 𝐺 and a positive integer 𝑑 . The following holds for
𝛿 < 1/2O(𝑑) and 𝐾 = 2

O(𝑑) where the O(·) hides a large enough
absolute constant.
For any 𝜂, 𝛿 , where 𝜂 < 𝛿 , there exists a randomized algorithm A
with the following properties: Let 𝑓 : {0, 1}𝑛 → 𝐺 be a function and
let 𝑃 : {0, 1}𝑛 → 𝐺 be a degree-𝑑 polynomial such that 𝛿 (𝑓 , 𝑃) ≤ 𝛿 ,
and let A 𝑓 denotes that A has oracle access to 𝑓 .
Then Pr[𝛿 (A 𝑓 , 𝑃) > 𝜂] < 1/10, where the probability is over the
internal randomness ofA 𝑓 . Further, for every x ∈ {0, 1}𝑛 ,A 𝑓 makes

𝐾𝑇 oracle queries to 𝑓 and 𝑇 = O
(
log

(
log(1/𝜂)
log(1/𝛿)

))
.

Putting this together with Theorem 3.1, we immediately get a

local corrector that can correct errors up to a small enough constant

with 𝑂̃ (log𝑛) queries.
In the rest of this subsection, we will prove Lemma 3.7. The

algorithm A 𝑓
in Lemma 3.7 will be a recursive algorithm. Each

recursive iteration of the algorithm A 𝑓
uses the same ‘base algo-

rithm’ B, which will be the core of our error reduction algorithm

from small constant error. In the next lemma, we formally state the

properties of the base algorithm.

Lemma 3.8 (Base Error ReductionAlgorithm). Fix anyAbelian
group 𝐺 and a positive integer 𝑑 . The following holds for 𝐾 = 2

𝑂 (𝑑) .
For any 0 < 𝛾 < 1, there exists a randomized algorithm B with
the following properties: Let 𝑔 : {0, 1}𝑛 → 𝐺 be a function and let
𝑃 : {0, 1}𝑛 → 𝐺 be a degree-𝑑 polynomial such that 𝛿 (𝑔, 𝑃) ≤ 𝛾 , and
let B𝑔 denotes that B has oracle access to 𝑔.
Then E[𝛿 (B𝑔, 𝑃)] < 𝑂 (𝐾2) · 𝛾1.5, where the expectation is over the
internal randomness of B. Further, for every x ∈ {0, 1}𝑛 , A𝑔 makes
𝐾 queries to 𝑔.

We defer the construction of the base algorithm and proof of

Lemma 3.8 to the next subsection, Section 3.2.1. For now, we assume

Lemma 3.8 and proceed to describe the recursive construction of

A 𝑓
and prove Lemma 3.7.

Proof of Lemma 3.7. LetB be the algorithm given by Lemma 3.8.

We define a sequence of algorithms A 𝑓

0
,A 𝑓

1
, . . . , as follows (see

the boxed text in the next page).

An easy inductive argument shows that A 𝑓
makes at most 𝐾𝑇

queries to 𝑓 . The error probability can be upper bounded by an

inductive argument. We will argue inductively that for each 𝑡 ≤ 𝑇
and 𝛿𝑡 := 𝛿

(1.1)𝑡
, we have

Pr

𝜎𝑡
[𝛿 (A 𝑓

𝑡 (·, 𝜎𝑡), 𝑃) > 𝛿𝑡︸ ︷︷ ︸
:= E𝑡

] ≤
𝑡∑︁
𝑗=1

1

100
𝑗

<
1

10

. (6)

Due to space constraints, we skip the analysis and refer the reader

to the full version for a detailed proof.

773

Local Correction of Linear Functions STOC ’24, June 24–28, 2024, Vancouver, BC, Canada

The algorithm A 𝑓
𝑡 computes a function mapping inputs in

{0, 1}𝑛 along with a uniformly random string from {0, 1}𝑟𝑡
to a random group element in 𝐺 .

• A 𝑓

0
just computes the function 𝑓 . (In particular,

𝑟0 = 0.)

• For each 𝑡 > 0, we inductively define 𝑟𝑡 = 𝑟𝑡−1 +
𝑟 , where 𝑟 is the amount of randomness required

by the base error reduction algorithm B. On input

x and random string 𝜎𝑡 ∼ 𝑈𝑟𝑡 , the algorithm A 𝑓
𝑡

algorithm runs the algorithm B on x using the first

𝑟 bits of 𝜎𝑡 as its source of randomness, and with

oracle access to A 𝑓

𝑡−1 using the remaining 𝑟𝑡−1 bits
of 𝜎𝑡 as randomness.

The algorithm A 𝑓
will be A 𝑓

𝑇
for 𝑇 = 𝐶 · log

(
log(1/𝜂)
log(1/𝛿)

)
where𝐶 is a large enough absolute constant chosen below.

□

Thus we have shown so far that given the base algorithm B, we

do get an error reduction algorithm from small constant error to er-

ror O(1/log𝑛). Now it remains to describe the base error reduction

algorithm. In the next subsection, we describe the base algorithm

B and prove Lemma 3.8.

3.2.1 The Base Algorithm and Its Analysis. In this section, we prove
Lemma 3.8, whichwill then complete the proof of Lemma 3.7. Before

we describe B, we will define an error reduction gadget, which is a

variant of the local correction gadget defined above (Definition 3.2).

Definition 3.9 (Error-reduction Gadget for P𝑑). For 𝜌 ∈ (0, 1),
an (𝜌, 𝑞)-error reduction gadget for P𝑑 is a distribution D over

({0, 1}𝑛)𝑞 satisfying the following two properties:

(1) There exists 𝑐1, . . . , 𝑐𝑞 ∈ Z such that for any (y(1) , . . . , y(𝑞)) ∈
supp(D), the following holds true for each 𝑃 ∈ P𝑑 and each

a ∈ {0, 1}𝑛

𝑃 (a) = 𝑐1𝑃 (a ⊕ y(1)) + . . . + 𝑐𝑞𝑃 (a ⊕ y(𝑞)) . (7)

(2) For any 𝑖 ∈ [𝑞], the bits of y(𝑖) are i.i.d. Bernoulli random
variables that are 𝜌-close to uniform. Equivalently, each co-

ordinate is 1 with probability 𝑝𝑖 ∈ [1−𝜌
2
,
1+𝜌
2
] .

To prove Lemma 3.8, we need an error-reduction gadget for P𝑑 ,

the space of degree-𝑑 polynomials over a group𝐺. This is given by

the following lemma.

Lemma 3.10 (Constructing an error-reduction gadget for

P𝑑). Fix any Abelian group 𝐺 and any 𝜌 > 0. Then P𝑑 has a (𝜌, 𝑞)-
error-reduction gadget where 𝑞 = 2

𝑂 (𝑑/𝜌) .

Assuming the above lemma,we first finish the proof of Lemma 3.8.

In the algorithm, we use the error-reduction gadget to correct

the polynomial at a random point a ∈ {0, 1}𝑛 . This process is likely
to give the right answer except with probability 𝑞𝛾 since, after

shifting, each query is now uniformly distributed and hence the

chance that any of the queried points is an error point of 𝑔 is at

most 𝛾 . We reduce the error by repeating this process three times

and taking a majority vote. To analyze this algorithm, we need to

understand the probability that two iterations of this process both

evaluate 𝑔 at an error point. We do this using hypercontractivity

(more specifically Theorem 2.6).

Proof of Lemma 3.8. Let D be a (1/10, 𝑞)-error-reduction gad-

get as given by Lemma 3.10. The algorithm B, given oracle access

to 𝑔 : {0, 1}𝑛 → 𝐺 and a ∈ {0, 1}𝑛 , does the following.
• Repeat the following three times independently. Sample

(y(1) , . . . , y(𝑞)) from D and compute

𝑐1𝑔(a ⊕ y(1)) + · · · + 𝑐𝑞𝑔(a ⊕ y(𝑞))

where 𝑐1, . . . , 𝑐𝑞 are the coefficients corresponding to the

error-reduction gadget.

• Output the plurality among the three group elements𝑏1, 𝑏2, 𝑏3
computed above.

The number of queries made by the algorithm is 𝐾 = 𝑂 (𝑞) =

2
𝑂 (𝑑)

as claimed. So it only remains to analyze 𝛿 (B𝑔, 𝑃). From now

on, let a be a uniformly random input in {0, 1}𝑛 .
For 𝑖 ∈ {1, 2, 3}, let E𝑖 denote the event that 𝑏𝑖 ≠ 𝑃 (a) .We have

E[𝛿 (B𝑔, 𝑃)] = Pr[B𝑔 (a) ≠ 𝑔(a)]
≤ Pr[E1 ∧ E2] + Pr[E2 ∧ E3] + Pr[E1 ∧ E3]

Thus it suffices to show that each of the three terms in the final

expression above is at most 𝑂 (𝑞2) · 𝛾1.5 .
Without loss of generality, consider the event E1 ∧ E2. Let

(y(1) , . . . , y(𝑞)) and (z(1) , . . . , z(𝑞)) be the two independent sam-

ples from D in the two corresponding iterations.

It follows from Equation (7) that the algorithm correctly com-

putes 𝑃 (a) in the first iteration as long as none of the queried points

lie in the set 𝑇 of points where 𝑔 and 𝑃 differ. A similar statement

also holds for the second iteration. This reasoning implies that

Pr[E1 ∧ E2] ≤
𝑞∑︁

𝑖, 𝑗=1

Pr[a ⊕ y(𝑖)︸ ︷︷ ︸
u(𝑖)

∈ 𝑇 ∧ a ⊕ z(𝑗)︸ ︷︷ ︸
v(𝑗)

∈ 𝑇] . (8)

We bound the latter expression using Theorem 2.6.

Fix 𝑖, 𝑗 ∈ [𝑞]. Note that for every fixing of y(𝑖) , the vector u(𝑖)

is distributed uniformly over {0, 1}𝑛 (because a is uniform over

{0, 1}𝑛). In particular, this implies that u(𝑖) is uniformly distributed

and moreover that u(𝑖) and y(𝑖) are independent random variables.

This means that v(𝑗) = u(𝑖) ⊕ y(𝑖) ⊕ z(𝑗) is drawn from the noise

distribution N𝜌 (u(𝑖)). Further, the parameter 𝜌 ≤ 1/100 since the
co-ordinates of y(𝑖) and z(𝑗) are i.i.d. Bernoulli random variables

that are each 1/10-close to uniform.

Using Theorem 2.6, we have

Pr[u(𝑖) ∈ 𝑇 ∧ v(𝑗) ∈ 𝑇] ≤ 𝛾2/1+|𝜌 | ≤ 𝛾1.5 .

Plugging this into Equation (8) implies the required bound on the

probability of E1 ∧ E2 . This concludes the analysis of B . □

We now show how to construct the error-reduction gadget and

prove Lemma 3.10. This requires the following standard claim (im-

plied e.g. byMöbius inversion) that shows that any degree-𝑑 polyno-

mial over {0, 1}𝑛 (even with group coefficients) can be interpolated

from its values on a Hamming ball of radius 𝑑.We omit the proof.

774

STOC ’24, June 24–28, 2024, Vancouver, BC, Canada Amireddy, Behera, Paraashar, Srinivasan, Sudan

Lemma 3.11. Fix 𝑑 ∈ N. For any natural number𝑚 ≥ 𝑑 and any
Hamming ball 𝐵 of radius 𝑑 ,

𝑃 (0𝑚) =
∑︁
b∈𝐵

𝛼b𝑃 (b)

where the 𝛼b are integer coefficients.

We end this section by completing the proof of Lemma 3.10.

Proof of Lemma 3.10. The idea is to apply Lemma 3.11 on a

random subcube, as defined in Definition 2.7. More precisely, for

an even integer 𝑘 > 2𝑑 that we will fix below, let a ∈ {0, 1}𝑛 be

arbitrary and let ℎ : [𝑛] → [𝑘] be chosen uniformly at random. Let

𝐶 = 𝐶a,ℎ be the corresponding subcube of {0, 1}𝑛 . Let𝑄 (𝑦1, . . . , 𝑦𝑘)
denote 𝑃 |𝐶 , the restriction of 𝑃 to this subcube.

Fix a Hamming ball 𝐵 of radius 𝑑 in {0, 1}𝑘 centred at a point c
of weight exactly 𝑘/2. Since 𝑄 is a polynomial of degree at most 𝑑 ,

applying Lemma 3.11 to 𝑄 and the ball 𝐵 yields an equality

𝑄 (0𝑘) =
∑︁
b∈B

𝛼b𝑄 (b) ⇒ 𝑃 (𝑥 (0𝑘)) =
∑︁
b∈B

𝛼b𝑃 (𝑥 (b)),

where in the implication we used that 𝑄 is a restriction of 𝑃 . From

the definition of the cube 𝐶 , it follows that 𝑥 (0𝑘) = a and thus the

above gives us an equality of the type desired in an error-reduction

gadget (Equation (7)). To finish the proof, we only need to argue

that each 𝑥 (b) has the required distribution.

Note that for each b ∈ 𝐵, we have, 𝑥 (b) = a ⊕ bℎ , where bℎ is

the random vector in {0, 1}𝑛 that at co-ordinate 𝑖 takes the ran-

dom value 𝑏ℎ (𝑖) . Since ℎ is chosen uniformly at random, it follows

that the entries of bℎ are independent and the 𝑖th co-ordinate is a

Bernoulli random variable that takes the value 1 with probability

equal to the relative Hamming weight of b.
To conclude the argument, note that b is at Hamming distance

at most 𝑑 from c, implying that it has relative Hamming weight in

[1/2 − (2𝑑/𝑘), 1/2 + (2𝑑/𝑘)].
Setting 𝑘 larger than 4𝑑/𝜌 gives us the desired value for the param-

eter of the Bernoulli distribution. Setting 𝑘 = O(𝑑/𝜌) gives us the
query complexity as claimed. □

To prove Theorem 1.1, we need another error-reduction algo-

rithm, which builds on the ideas presented in this section. We defer

the statement and the proof to the full version [2].

REFERENCES
[1] Noga Alon and Văn H. Vũ. 1997. Anti-Hadamard Matrices, Coin Weighing,

Threshold Gates, and Indecomposable Hypergraphs. J. Comb. Theory Ser. A 79, 1

(1997), 133–160. https://doi.org/10.1006/jcta.1997.2780

[2] Prashanth Amireddy, Amik Raj Behera, Manaswi Paraashar, Srikanth Srinivasan,

and Madhu Sudan. 2024. Local Correction of Linear Functions over the Boolean

Cube . Electron. Colloquium Comput. Complex. TR24-056 (2024). ECCC:TR24-056
https://eccc.weizmann.ac.il/report/2024/056/

[3] Prashanth Amireddy, Srikanth Srinivasan, and Madhu Sudan. 2023. Low-Degree

Testing over Grids. In Approximation, Randomization, and Combinatorial Op-
timization (RANDOM), Vol. 275. 41:1–41:22. https://doi.org/10.4230/LIPICS.

APPROX/RANDOM.2023.41

[4] László Babai, Kristoffer Arnsfelt Hansen, Vladimir V. Podolskii, and Xiaoming

Sun. 2010. Weights of exact threshold functions. Izvestiya: Mathematics 85 (2010),
1039 – 1059. https://api.semanticscholar.org/CorpusID:7248898

[5] Mitali Bafna, Srikanth Srinivasan, and Madhu Sudan. 2020. Local decoding and

testing of polynomials over grids. Random Struct. Algorithms 57, 3 (2020), 658–694.
https://doi.org/10.1002/rsa.20933

[6] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. 2011. Rank Bounds

for Design Matrices with Applications to Combinatorial Geometry and Locally

Correctable Codes. In ACM Symposium on Theory of Computing (STOC). 519–528.
https://doi.org/10.1145/1993636.1993705

[7] Donald Beaver and Joan Feigenbaum. 1990. Hiding Instances in Multioracle

Queries. InAnnual Symposium on Theoretical Aspects of Computer Science (STACS),
Vol. 415. 37–48. https://doi.org/10.1007/3-540-52282-4_30

[8] Abhishek Bhowmick and Shachar Lovett. 2018. The List Decoding Radius for

Reed-Muller Codes Over Small Fields. IEEE Trans. Inf. Theory 64, 6 (2018), 4382–

4391. https://doi.org/10.1109/TIT.2018.2822686

[9] Irit Dinur, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. 2008. De-

codability of Group Homomorphisms beyond the Johnson Bound. Electron.
Colloquium Comput. Complex. TR08-020 (2008). ECCC:TR08-020 https://eccc.

weizmann.ac.il/eccc-reports/2008/TR08-020/index.html

[10] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. 2014. Improved rank bounds

for design matrices and a new proof of Kelly’s theorem. Forum Math. Sigma 2
(2014), Paper No. e4, 24. https://doi.org/10.1017/fms.2014.2

[11] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. 2017. Superquadratic lower

bound for 3-query locally correctable codes over the reals. Theory Comput. 13
(2017), Paper No. 11, 36. https://doi.org/10.4086/toc.2017.v013a011

[12] Peter Elias. 1957. List decoding for noisy channels. Technical Report 335, Research
Laboratory of Electronics, MIT (1957).

[13] Peter Gemmell, Richard J. Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi

Wigderson. 1991. Self-Testing/Correcting for Polynomials and for Approxi-

mate Functions. In ACM Symposium on Theory of Computing (STOC). 32–42.
https://doi.org/10.1145/103418.103429

[14] Peter Gemmell and Madhu Sudan. 1992. Highly Resilient Correctors for Poly-

nomials. Inf. Process. Lett. 43, 4 (1992), 169–174. https://doi.org/10.1016/0020-

0190(92)90195-2

[15] Mikael Goldmann, Johan Håstad, and Alexander A. Razborov. 1992. Majority

gates vs. general weighted threshold gates. Computational Complexity 2 (1992),

277–300. https://api.semanticscholar.org/CorpusID:17637868

[16] Oded Goldreich and Leonid A. Levin. 1989. A Hard-Core Predicate for all One-

Way Functions. In ACM Symposium on Theory of Computing (STOC). 25–32.
https://doi.org/10.1145/73007.73010

[17] Parikshit Gopalan, Adam R. Klivans, and David Zuckerman. 2008. List-Decoding

Reed-Muller Codes over Small Fields. In ACM Symposium on Theory of Computing
(STOC). 265–274. https://doi.org/10.1145/1374376.1374417

[18] Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. 2006. Local Decoding

and Testing for Homomorphisms. In International Workshop on Approximation
Algorithms for Combinatorial Optimization (RANDOM), Vol. 4110. 375–385. https:
//doi.org/10.1007/11830924_35

[19] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. 2023. Essential Coding
Theory (Book draft). http://www.cse.buffalo.edu/atri/courses/coding-theory/

book

[20] Venkatesan Guruswami and Madhu Sudan. 1999. Improved decoding of Reed-

Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45, 6 (1999),

1757–1767. https://doi.org/10.1109/18.782097

[21] Johan Håstad. 1994. On the Size of Weights for Threshold Gates. SIAM J. Discret.
Math. 7, 3 (1994), 484–492. https://doi.org/10.1137/S0895480192235878

[22] John Y. Kim and Swastik Kopparty. 2017. Decoding Reed-Muller Codes over

Product Sets. Theory Comput. 13, 1 (2017), 1–38. https://doi.org/10.4086/TOC.

2017.V013A021

[23] Eyal Kushilevitz and Yishay Mansour. 1993. Learning Decision Trees Using the

Fourier Spectrum. SIAM J. Comput. 22, 6 (1993), 1331–1348. https://doi.org/10.

1137/0222080 arXiv:https://doi.org/10.1137/0222080

[24] Richard J. Lipton. 1989. New Directions In Testing. In Distributed Computing And
Cryptography, Vol. 2. 191–202. https://doi.org/10.1090/DIMACS/002/13

[25] Yishay Mansour. 2011. Lecture 5: Lower Bounds using Information Theory

Tools. http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-

bound-MAB.pdf. Lecture notes.

[26] Ryan O’Donnell. 2014. Analysis of Boolean Functions. Cambridge University

Press. https://doi.org/10.1017/CBO9781139814782

[27] Øystein Ore. 1922. Über höhere kongruenzen. Norsk Mat. Forenings Skrifter 1, 7
(1922), 15.

[28] Vladimir V. Podolskii. 2009. Perceptrons of large weight. Probl. Inf. Transm. 45, 1
(2009), 46–53. https://doi.org/10.1134/S0032946009010062

[29] Irving S. Reed. 1954. A class of multiple-error-correcting codes and the decoding

scheme. Trans. IRE Prof. Group Inf. Theory 4 (1954), 38–49. https://doi.org/10.

1109/TIT.1954.1057465

[30] Madhu Sudan. 1997. Decoding of Reed Solomon Codes beyond the Error-

Correction Bound. J. Complex. 13, 1 (1997), 180–193. https://doi.org/10.1006/

jcom.1997.0439

[31] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. 2001. Pseudorandom Gen-

erators without the XOR Lemma. J. Comput. Syst. Sci. 62, 2 (2001), 236–266.

https://doi.org/10.1006/JCSS.2000.1730

Received 13-NOV-2023; accepted 2024-02-11

775

https://doi.org/10.1006/jcta.1997.2780
https://eccc.weizmann.ac.il/report/2024/056/
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.41
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2023.41
https://api.semanticscholar.org/CorpusID:7248898
https://doi.org/10.1002/rsa.20933
https://doi.org/10.1145/1993636.1993705
https://doi.org/10.1007/3-540-52282-4_30
https://doi.org/10.1109/TIT.2018.2822686
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-020/index.html
https://eccc.weizmann.ac.il/eccc-reports/2008/TR08-020/index.html
https://doi.org/10.1017/fms.2014.2
https://doi.org/10.4086/toc.2017.v013a011
https://doi.org/10.1145/103418.103429
https://doi.org/10.1016/0020-0190(92)90195-2
https://doi.org/10.1016/0020-0190(92)90195-2
https://api.semanticscholar.org/CorpusID:17637868
https://doi.org/10.1145/73007.73010
https://doi.org/10.1145/1374376.1374417
https://doi.org/10.1007/11830924_35
https://doi.org/10.1007/11830924_35
http://www.cse.buffalo.edu/atri/courses/coding-theory/book
http://www.cse.buffalo.edu/atri/courses/coding-theory/book
https://doi.org/10.1109/18.782097
https://doi.org/10.1137/S0895480192235878
https://doi.org/10.4086/TOC.2017.V013A021
https://doi.org/10.4086/TOC.2017.V013A021
https://doi.org/10.1137/0222080
https://doi.org/10.1137/0222080
https://arxiv.org/abs/https://doi.org/10.1137/0222080
https://doi.org/10.1090/DIMACS/002/13
http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf
http://www.math.tau.ac.il/~mansour/advanced-agt+ml/scribe5-lower-bound-MAB.pdf
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1134/S0032946009010062
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1109/TIT.1954.1057465
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/jcom.1997.0439
https://doi.org/10.1006/JCSS.2000.1730

	Abstract
	1 Introduction
	1.1 Motivation for Our Work
	1.2 Our Main Results
	1.3 Proof Overview

	2 Preliminaries
	2.1 Notation
	2.2 Basic Definitions and Tools

	3 Local Correction in the Unique Decoding Regime
	3.1 Sub-Constant Error
	3.2 Constant-Error Algorithm via Error-Reduction

	References

