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Abstract—Compiling programs to an instruction set architec-

ture (ISA) requires a set of rewrite rules that map patterns

consisting of compiler instructions to patterns consisting of ISA

instructions. We synthesize such rules by constructing SMT

queries, whose solutions represent two functionally equivalent

programs. These two programs are interpreted as an instruc-

tion selection rewrite rule. Existing work is limited to single-

instruction ISA patterns, whereas our solution does not have

that restriction. Furthermore, we address inefficiencies of existing

work by developing two optimized algorithms. The first only

generates unique rules by preventing synthesis of duplicate and

composite rules. The second only generates lowest-cost rules

by preventing synthesis of higher-cost rules. We evaluate our

algorithms on multiple ISAs. Without our optimizations, the

vast majority of synthesized rewrite rules are either duplicates,

composites, or higher cost. Our optimizations result in synthesis

speed-ups of up to 768→ and 4004→ for the two algorithms.

I. INTRODUCTION

As we approach the end of Moore’s law and Dennard
scaling, drastically improving computing performance and
energy efficiency requires designing domain-specific hardware
architectures (DSAs) or adding domain-specific extensions to
existing architectures [22]. As a result, many DSAs have
been developed in recent years [4], [8], [24], [27], [30], each
with its own custom instruction set architecture (ISA) or ISA
extension.

Targeting such ISAs from a compiler’s intermediate repre-
sentation (IR) requires a custom library of instruction selection
rewrite rules. A rewrite rule is a mapping of an IR pattern
to a functionally equivalent ISA pattern. Manual specification
of rewrite rules is error-prone, time-consuming, and often
incomplete. It is therefore desirable to automatically generate
valid rewrite rules.

When specifying instruction selection rewrite rules, there
are two common cases. When ISAs have complex instructions,
rewrite rules will often map multi-instruction IR patterns to a
single ISA instruction. When ISAs have simple instructions,
rewrite rules will often map a single IR instruction to a multi-
instruction ISA pattern. A rewrite rule generation tool should
be able to create rewrite rules for both cases. We call such
rewrite rules many-to-many rules.

Generating instruction selectors is not a new idea. Most
relevant to this work is Gulwani et al. [21] who use a satisfia-
bility modulo theories (SMT) solver to synthesize a loop-free
program that is functionally equivalent to a given specification.
Their approach is called component-based program synthesis
(CBPS), as each synthesized program must include functional
components from a given component library. Buchwald et
al. [6] use and extend CBPS to efficiently generate multi-
instruction loop-free IR programs equivalent to a single ISA
instruction program; that is, they solve the many-to-one rewrite
rules synthesis problem. However, multi-instruction ISA pro-
grams cannot be synthesized.

Both of these algorithms produce many duplicate rules,
which are removed during a post-processing step. As we show,
this adds significant additional cost. Another issue is that
CBPS as currently formulated does not incorporate the notion
of optimizing for cost. In practice, we often want only the set
of lowest-cost rules, making it unnecessary (and expensive) to
generate equivalent higher-cost rules.

This paper presents an algorithm for automatically gen-
erating a complete set of many-to-many rewrite rules. We
address the above issues by preventing the synthesis of both
duplicate and high-cost rules at rule generation time, using
exclusion techniques. As a further optimization, we generate
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rules in stages and exclude composite rules, i.e., rules that
can be composed of smaller rules found in previous stages.
These ensure we produce a small but complete set of rewrite
rules. Compared to previous work, our approach eliminates
unnecessary rules and significantly reduces the time required
to produce the unique necessary ones.

Our contributions are as follows:
• We define generalized component-based program synthe-

sis (GCBPS) as the task of synthesizing two functionally
equivalent programs using two component libraries. We
then present an SMT-based synthesis approach inspired
by Gulwani et al. to solve it.

• We present an iterative algorithm genAll to generate
all unique many-to-many rules up to a given size. We
identify a set of equivalence relations for patterns encoded
as programs and for rules that map IR programs to
ISA programs. We use these relations to enumerate and
exclude duplicate rules. Furthermore, we directly exclude
composite rewrite rules. These result in up to a 768→
synthesis speed-up.

• We present an algorithm genAllLC which generates only
the lowest-cost rules by incorporating a cost metric in
addition to excluding duplicate and composite rewrite
rules. This results in a synthesis speed-up up to 4004→.

The rest of the paper is organized as follows. Section II
discusses instruction selection, existing rule generation meth-
ods, SMT, and program synthesis. Section III describes a
program synthesis query for generating many-to-many rules.
Section IV presents an algorithm for generating only unique
rewrite rules and defines duplicates and composites. Section V
presents an algorithm for synthesizing only the lowest-cost
rules. Section VI evaluates both algorithms, and Section VII
discusses limitations and further optimizations.

II. BACKGROUND AND RELATED WORK

A. Instruction Selection

Instruction selection is the task of translating code in the
compiler’s intermediate representation (IR) to functionally
equivalent code for a target ISA. Typically, a library of rewrite
rules is used in instruction selection. A rewrite rule is a
mapping from an IR pattern consisting of IR instructions
to a functionally equivalent ISA pattern consisting of ISA
instructions. Such patterns can be expression trees or directed
acyclic graphs (DAGs).

Significant work has been devoted to developing rewrite rule
tiling algorithms to perform instruction selection [1], [5], [12],
[14]–[17], [19], [26], [29]. For each rule in the rule library, a
tiling algorithm first finds all fragments from the IR program
in which the rule’s IR pattern exactly matches that fragment.
Then, the instruction selector finds a tiling of these matches
that completely covers the basic block and minimizes the total
rule cost according to some cost metric.

Simple instruction selectors only handle tree-based IR pat-
terns, which is inefficient for reused computations. Modern
instruction selectors like LLVM use DAG-based matching that

allows for both richer rules and better tiling. Koes et al.
[26] describe a similar near-optimal DAG-based instruction
selection algorithm [5]. We want to generate rules that can be
used with such modern DAG-based instruction selectors.

B. Generating Instruction Selectors

Generating instruction selectors from instruction semantics
has been a topic of research interest [6], [7], [9], [10], [23].
Dias and Ramsey [10] introduce an algorithm for generating
rewrite rules based on a declarative specification of the ISA.
While this solves part of the many-to-many rule task, their
work relies on an existing set of algebraic rewrite rules for
synthesizing semantically equivalent rules. Our work uses
SMT for the instruction and program semantics. However,
incorporating certain kinds of algebraic rewrite rules could
be an avenue for future optimizations.

Daly et al. [9] propose a way to synthesize instruction
selection rewrite rules from the register-transfer level (RTL)
specification of a processor. Their algorithm requires a set
of pre-specified IR patterns. In contrast, we can efficiently
synthesize rules that consider all possible multi-instruction IR
patterns up to a given size. Their approach for synthesizing
complex instruction constants and handling floating point
types could be combined with the approaches in this paper.

The most relevant to this work is the work by Buch-
wald et al. [6], which leverages component-based program
synthesis to generate rules with multi-instruction IR patterns
and single-instruction ISA patterns. In contrast, our work
synthesizes rules with both multi-instruction IR patterns and
multi-instruction ISA patterns. We additionally prevent the
synthesis of duplicate, composite, and high-cost rewrite rules,
unlike any of the above approaches.

C. Program Synthesis and Equivalence

We use SMT-based program synthesis to enumerate a com-
plete set of instruction selection rewrite rules. In program
synthesis enumeration, it is common to remove equivalent
solutions [3]. We use the equivalence relation defined in
Section IV-A to determine equivalent rewrite rules. In prior
work [2], observational equivalence (i.e., programs with the
same semantics) has been used for de-duplication [2], however
observational equivalence does not take into account the
structure of the program, which is essential for rewrite rule
pattern matching.

D. Logical Setting and Notation

We work in the context of many-sorted logic (e.g., [13]),
where we assume an infinite set of variables of each sort
and the usual notions of terms, formulas, assignments, and
interpretations. Terms are denoted using non-boldface symbols
(e.g., X). Boldface symbols (e.g., X) are used for sets,
tuples, and multisets, whose elements are either terms or other
collections of terms. Y := (Y1, ..., YN ) defines a tuple, where
|Y| = N and Yi refers to the i-th element. Z := {zn} defines
a multiset, where the multiplicity of element z is n ↑ N.
Both ω and ε are used to denote formulas. ω(X) is a formula
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whose free variables are a subset of X. We use M ↭ ω(X) to
denote the satisfiability relation between the interpretation M
and the formula ω. Assuming X is a collection of variables,
MX denotes the assignment to those variables induced by M.
For an assignment ϑ, we write ϑ |= ω(X) if M |= ω(X) for
every interpretation M such that MX = ϑ.

E. Component-based Program Synthesis

CBPS is a program synthesis task introduced by Gulwani
et al. The inputs to the task are:

• A specification S := (IS , OS
,εspec(IS , OS)) containing

a tuple of input variables IS , a single output variable O
S ,

and a formula εspec(IS , OS) relating the inputs and the
output.

• A library of components (e.g., instructions) K, where the
k-th component Kk := (Ik, Ok,εk(Ik, Ok)) consists of
a tuple of input variables Ik, a single output variable
Ok, and a formula εk(Ik, Ok) defining the component’s
semantics.

An example component for an addition instruction is shown
below using the theory of bit-vectors, QF BV, where BV [n]

is an n-bit sort and +[n] is addition modulo 2n.

((I0 : BV [16], I1 : BV [16]), O : BV [16], I0 +[16] I1 = O)

The task is to synthesize a valid program functionally
equivalent to the specification using each component from K
exactly once.

For notational convenience, we group together the
set of all inputs and outputs of the components:
W := ↓(Ik,Ok, )→K (Ok ↓ (↓Ik)). Gulwani et al. encode
the program structure using a connection constraint:
εconn(L, IS , OS

,W). This is a formula representing how the
program inputs (IS) and program output (OS) are connected
via the components. The connections are specified using
location variables L. We do not go into the details of how
location variables encode connections (they are in [21]). It
is sufficient for our purposes to know that these are integer
variables, and an assignment to them uniquely determines a
way of connecting the components together into a program.
The program semantics εprog are defined as the components’
semantics conjoined with the connection constraint:

εprog(L, I
S
, O

S
,W) := (1)

)︄
[︄

k

εk(Ik, Ok)

]︄
↔ εconn(L, I

S
, O

S
,W).

They define a verification constraint that holds if a par-
ticular program is both well-formed (specified using a well-
formedness constraint ωwfp) and satisfies the specification
εspec :

εverif := ωwfp(L) ↔ ↗IS , OS
,W. (2)

εprog(L, I
S
, O

S
,W) =↘ εspec(I

S
, O

S).

A synthesis formula εsynth existentially quantifies L in (2):

εsynth := ≃L.↗IS , OS
,W. (3)

ωwfp(L) ↔
⌊︄
εprog(L, I

S
, O

S
,W) =↘ εspec(I

S
, O

S)
⌋︄
.

This formula can be solved using a technique called counter-
example guided inductive synthesis (CEGIS). CEGIS solves
such exist-forall formulas by iteratively solving a series of
quantifier-free queries and is often more efficient than trying
to solve the quantified query directly. More details are in
[21]. For our purposes, we assume the existence of a CEGIS
implementation, CEGIS , which takes an instance of εsynth

and returns a model M with the property that ML |= εverif ,
from which a program that is a solution to CBPS can be
constructed.

III. COMPONENT-BASED PROGRAM SYNTHESIS FOR
MANY-TO-MANY RULES

Given the IR and ISA instruction sets KIR and KISA,
Buchwald et al. [6] use CBPS to synthesize rewrite rules.
They use a single ISA instruction kISA ↑ KISA for the CBPS
specification and a subset of the IR instructions for the CBPS
components. A solution to the resulting εsynth formula gives
a program PIR. If PISA is the single-instruction program
consisting of kISA, they interpret the pair (PIR

,PISA) as an
instruction selection rewrite rule.

However, Buchwald et al.’s solution is insufficient for gen-
erating many-to-many rules, as they cannot synthesize IR and
ISA programs that both contain multiple instructions. Instead,
two functionally equivalent programs need to be synthesized.
We first define an extension to CBPS called generalized
component-based program synthesis (GCBPS) to address this
problem. Then, we show how to construct a synthesis query
whose solutions represent pairs of functionally equivalent
programs.

A. Generalized Component-based Program Synthesis
We define the GCBPS task as that of synthesizing two

programs, Pa and Pb, represented using location variables
La and Lb, given two sets of components Ka and Kb, two
sets of inputs Ia, Ib where |Ia| = |Ib|, and two outputs Oa

, O
b

where the following conditions hold true:
1) Pa uses each component in Ka exactly once.
2) Pb uses each component in Kb exactly once.
3) Pa is functionally equivalent to Pb.

B. Solving GCBPS
We start with the CBPS verification constraint from (2)

using components Ka (and a corresponding set of inputs and
outputs Wa), but modify it slightly by introducing variables
(Ia, Oa) that are fresh copies of (IS , OS):

ωwfp(L
a) ↔ ↗Ia, Oa

,Wa
, IS , OS

. (4)
(εa

prog(L
a
, Ia, Oa

,Wa) ↔ εspec(I
S
, O

S)) =↘
⌊︄⌊︄
↔i I

a

i
= I

S

i

⌋︄
=↘ O

a = O
S
⌋︄
.
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Assuming the formulas for both the program and the specifi-
cation, if their inputs are the same, their outputs must also be
the same.

We next replace the specification program with a different
component-based program using components Kb and quantify
over that program’s inputs Ib, output O

b, and component
variables Wb:

εverif := ωwfp(L
a) ↔ ωwfp(L

b) ↔ ↗Ia, Ib, Oa
, O

b
,Wa

,Wb
.

(5)
⌊︄
ε
a

prog(L
a
, Ia, Oa

,Wa) ↔ ε
b

prog(L
b
, Ib, Ob

,Wb)
⌋︄
=↘

⌊︄⌊︄
↔i I

a

i
= I

b

i

⌋︄
=↘O

a = O
b
⌋︄
.

This is our generalized verification constraint stating the
correctness criteria for when two component-based programs
are semantically equivalent.

To synthesize such a pair of programs, a synthesis formula
εsynth is defined by existentially quantifying La and Lb in the
verification formula (5):

εsynth := ≃La
,Lb

.↗Ia, Ib, Oa
, O

b
,Wa

,Wb
. (6)

ωwfp(L
a) ↔ ωwfp(L

b)↔
⌈︄⌊︄

ε
a

prog(L
a
, Ia, Oa

,Wa) ↔ ε
b

prog(L
b
, Ib, Ob

,Wb)
⌋︄

=↘

⌊︄⌊︄
↔i I

a

i
= I

b

i

⌋︄
=↘ O

a = O
b
⌋︄⌉︄

.

As above, we assume that calling CEGIS on εsynth returns
a model M such that MLa↑Lb |= εverif . This can be
converted into a pair of programs (Pa

,Pb) representing a
rewrite rule that is a solution for the GCBPS task. We
write rewriteRule(Ka

,Kb
,MLa ,MLb) for the rewrite rule

constructed from a specific model M using the component
sets Ka and Kb.

IV. GENERATING ALL MANY-TO-MANY REWRITE RULES

Buchwald et al. [6] describe an iterative algorithm,
IterativeCEGIS , to synthesize rewrite rules using CBPS. This
algorithm iterates over all multisets of IR instructions up to
a given size and only runs synthesis on each such multiset.
Compared to running synthesis using all the IR instructions at
once, this iterative algorithm works better in practice.

However, IterativeCEGIS cannot synthesize rewrite rules
with both multi-instruction IR programs and multi-instruction
ISA programs. Furthermore, it produces duplicate rewrite
rules which are then filtered out in a post-synthesis filtering
step. Although the results are correct, this approach is highly
inefficient because each call to CEGIS is expensive, and a
CEGIS call is made, not just for some duplicate rules, but for
every duplicate rule. In our approach, we make the requirement
that a solution is not a duplicate part of the CEGIS query itself,
ensuring that each successful CEGIS query finds a new, non-
redundant rewrite rule.

Our iterative algorithm, genAll , is shown in Figure 1. It
takes as parameters the IR and ISA component sets, KIR

1 genAll(KIR,KISA, N IR, N ISA) :
2 SR ↑ {}
3 f o r n1, n2 ↓ [1, N IR]→ [1, N ISA] :
4 f o r mIR ↓ multicomb(KIR, n1) :
5 f o r mISA ↓ multicomb(KISA, n2) :
6 f o r IIR, IISA ↓ allInputs(mIR,mISA) :
7 ω,LIR,LISA ↑

GCBPS(mIR,mISA, IIR, IISA)
8 ω ↑ ω ↔ ¬AllComposites(SR, . . .)
9 SR ↑ SR ↗

CEGISAll(ω,mIR,mISA,LIR,LISA)
10 re turn SR

Fig. 1: Iterative algorithm to generate all unique rewrite rules
up to a given size.

1 CEGISAll(ω,mIR,mISA,LIR,LISA) :
2 SR = {}
3 whi le True :
4 M ↑ CEGIS(ω)
5 i f M = ↘ : re turn SR

6 R ↑ rewriteRule(mIR,mISA,MLIR ,MLISA)
7 SR ↑ SR ↗ {R}
8 ω ↑ ω ↔ ¬εdup(R, (LIR,LISA))

Fig. 2: AllSAT algorithm to synthesize all unique rules. Line 8
excludes all rules that are duplicates of the current synthesized
rewrite rule.

and KISA respectively, as well as a maximum number of
components of each kind to use in rewrite rules, N

IR and
N

ISA, and iteratively builds up a set SR of rewrite rules,
which it returns at the end. Line 3 shows that n1 and n2

iterate up to these maximum sizes. Line 4 iterates over all
multisets of elements from KIR of size n1 using a standard
multicombination algorithm multicomb [25] (not shown). Line
5 is similar but for multisets from KISA of size n2. Next, for a
given choice of multisets, line 6 enumerates all possible ways
of selecting input vectors from those multisets that could create
well-formed programs by constructing two fresh sets of input
variables. Line 7 constructs fresh sets of location variables LIR

and LISA and returns them along with the instantiated GCBPS
synthesis formula (using Equation (6)).1 Line 8 excludes all
composite rules from the synthesis search space. Composite
rules are rules that can be constructed using the current set
of rules SR and are thus unnecessary for instruction selection.
We discuss this in more detail in Section IV-B. Finally, on
line 9, the current set of rules SR is updated with the result
of calling CEGISAll , which we describe next.

Figure 2 shows the CEGISAll algorithm that performs
the AllSAT [20], [31] task. Its parameters are the synthesis
formula ε, the multisets mIR and mISA, and the location
variables LIR and LISA. It returns a set SR of rewrite rules.
Initially, this set is empty. The algorithm iteratively calls

1We augment the well-formed program constraint in (6) to prevent syn-
thesizing programs containing dead code and unused inputs. This can be
accomplished by enforcing that each input and intermediate value is used
in at least one location.
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a standard CEGIS algorithm to solve the synthesis query,
constructing a new rewrite rule R, which is added to the set
SR of rewrite rules, when the call to CEGIS is successful. The
iteration repeats until the CEGIS query returns ⇐, indicating
that there are no more rewrite rules to be found. Note that
after each iteration, the εsynth formula is refined by adding
the negation of a formula capturing the notion of duplicates
for this rule. We describe how this is done next.

A. Excluding Duplicate Rules
Consider the two distinct rules below. As a syntactical con-

vention, infix operators are used for IR patterns and function
calls for ISA patterns.

I1 + (I2 · I3) ⇒ add(I1,mul(I2, I3))

(I1 · I3) + I2 ⇒ add(I2,mul(I1, I3))

The two IR patterns represent the same operation despite the
fact that the variable names and the order of the commutative
arguments to addition are both different. Both rules would
match the same program fragments in an instruction selector
and would result in the same rewrite rule application. Thus, we
consider such rules to be equivalent and would like to ensure
that only one is generated by our algorithm.

We first define a rewrite rule equivalence relation, ⇑rule .
Informally, two rules are equivalent if replacing either one
by the other has no discernible effect on the execution of an
instruction selection algorithm. We make this more formal by
considering various attributes of standard instruction selection
algorithms.
Commutative Instructions Modern pattern matching algo-
rithms used for instruction selection try all argument orderings
for commutative instructions [5]. We define the commutative
equivalence relation ⇑CIR as PIR

1 ⇑CIR PIR
2 iff PIR

2 is a
remapping of PIR

1 ’s commutative instruction’s arguments.
Same-kind Instructions Programs P generated by GCPBS
have a unique identifier, the program line number, for each
instruction. This means that if two instructions of the same
kind appear in a program, interchanging their line numbers
results in a different program, even though it makes no
difference to the instruction selection algorithm. We define
the same-kind equivalence relation ⇑KIR as PIR

1 ⇑KIR PIR
2

iff PIR
2 is the result of remapping the line numbers for same-

kind instructions in PIR
1 .

Data Dependency Modern instruction selection algorithms
perform pattern matching, not based on a total order of instruc-
tions, but on a partial order determined by data dependencies.
Many different sequences may thus lead to the same partial
order. We define ⇑DIR as PIR

1 ⇑DIR PIR
2 iff PIR

1 and PIR
2

have the same data dependency graph.
Rule Input Renaming For a given rewrite rule, the input vari-
ables used for the IR program must match the input variables
used for the ISA program, but the specific variable identifiers
used do not matter. We define the equivalence relation ⇑Irule

on rules (i.e., pairs of programs) as R1 ⇑Irule R2 iff R2 is
the result of remapping variable identifiers in R1.

Rule Equivalence The first three equivalence relations defined
above are for IR programs, but the analogous relations (⇑CISA ,
⇑KISA , ⇑DISA ) for ISA instructions are also useful.

Putting everything together, we define rule equivalence
⇑rule as follows.

⇑IR := ⇓{⇑CIR ,⇑KIR ,⇑DIR} (7)
⇑ISA := ⇓{⇑CISA ,⇑KISA ,⇑DISA} (8)
⇑rule := ⇓{(⇑IR ⇔ ⇑ISA),⇑Irule} (9)

Overall IR equivalence is defined as the transitive closure
of the union (notated with ⇓) of the three individual IR
relations. ISA equivalence is defined similarly. Overall rewrite
rule equivalence is then defined using the ⇔ operator, where
⇑↓=⇑a ⇔ ⇑b is defined as: (a1, b2) ⇑↓ (a2, b2) iff a1 ⇑a a2

and b1 ⇑b b2. Specifically, rule equivalence is obtained by
combining IR equivalence in this way with ISA equivalence,
and then combining the result with ⇑Irule using ⇓.

The set of all duplicates of rule R is the rule equivalence
class [R]rule , where R↔ ↑ [R]rule ↖↘ R ⇑rule R↔. ωdup

can be constructed as the disjunction of all elements of the
equivalence class [R]rule

B. Excluding Composite Rules
We also exclude any rule whose effect can already be

achieved using the current set of generated rules (line 8
of Figure 1). We elucidate this using a simple example.
Assume the algorithm just constructed a new query for the
multisets mIR, mISA, and the input IIR (line 7 of Fig-
ure 1), and assume that the rule library SR currently contains
rules for addition (I1 + I2 ⇒ add(I1, I2)) and multiplication
(I1 · I2 ⇒ mul(I1, I2)). Consider the following cases.

1) If IIR = (I1), mIR = {+}, and mISA = {add}, then
the rule I1 + I1 ⇒ add(I1, I1) will be synthesized by
CEGISAll . But this rule is a specialization of the existing
rule for addition. Any use of this specialized rule could
instead be replaced by the more general rule, and this
rule can thus be excluded. Note that we order the inputs
on line 6 of Figure 1 to guarantee that the most general
version of a rule is found first.

2) If IIR = (I1, I2, I3), mIR = {+, ·}, and mISA =
{add,mul}, then the composite rule (I1 + (I2 · I3)) ⇒
add(I1,mul(I2, I3)) will be synthesized by CEGISAll .
Using similar logic, any use of this composite rule
could instead use the simpler and more general rules
for addition and multiplication, and this rule can thus
be excluded. The multiset ordering used in lines 4 and
5 of Figure 1 ensures that subsets are visited before
supersets, guaranteeing that smaller rules are found first.
A specialized rule can be interpreted as a composite rule
composed of the general rule with fewer inputs.

Only composite rules that would have been synthesized
for a particular query need to be excluded. In general, for a
specific query based on mIR, mISA, and IIR, we enumerate
and exclude composite rules R := (PIR

,PISA) that meet the
following criteria:
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1 genAllLC(K
IR,KISA, N IR, N ISA, cost) :

2 Ksorted ↑ sortByCost(KISA, NISA, cost)
3 SR ↑ {}
4 f o r n ↓ [1, N IR] :
5 f o r mIR ↓ multicomb(KIR, n) :
6 f o r mISA ↓ Ksorted :
7 ccur ↑ cost(mISA)
8 f o r IIR, IISA ↓ allInputs(mIR,mISA) :
9 ω,LIR,LISA ↑

GCBPS(mIR,mISA, IIR, IISA)
10 ω ↑ ω ↔ ¬AllCompositesLC (SR, ccur, . . .)
11 SR ↑ SR ↗

CEGISAllLC (ω,mIR,mISA,LIR,LISA)
12 re turn SR

Fig. 3: Iterative algorithm to generate all lowest-cost rules.
ISA multisets are ordered by cost. CEGISAll is modified to
exclude rules with duplicate IR programs.

• R has exactly |IIR| inputs.
• PIR has the same components as mIR.
• PISA has the same components as mISA.
• PIR is built from the IR programs of already-found rules

in SR.
• PISA is the result of applying the rewrite rules used to

build PIR.
This enumeration is encapsulated by the call to

AllComposites on line 8 of Figure 1.

V. GENERATING ALL LOWEST-COST RULES

Because all duplicates are excluded, the genAll algorithm
generates only unique rewrite rules. However, two unique rules
can share the same IR pattern. For a particular IR pattern, only
the lowest-cost rule is needed for some cost metric. Knowing
the instruction selection cost metric at rule-generation time
presents another time-saving opportunity because we can also
prevent the synthesis of high-cost rules.

We make a few assumptions about such a cost metric.
• The cost for an instruction selection tiling is equal to the

sum of the costs of each tiling rule’s ISA program.
• The cost of an ISA program PISA only depends on the

instruction contents, not the program structure. This cost
is the sum of the cost of each instruction in the program.

While these assumptions are a restriction on the space of
possible cost metrics, they are sufficient to represent common
ones like code size and energy. If the compiler’s cost metric
violates these assumptions, the genAll algorithm can be used
instead. This restricted space of cost metrics has the important
property that the cost of any rule that would be synthesized
using the components mISA can be determined up front as
the sum of the cost of each component.

Figure 3 shows our synthesis algorithm updated to only
synthesize the lowest-cost rules for each unique IR pattern.
The first change is to sort all possible mulitsets of ISA
instructions up to size N

ISA by cost (lower cost first) (line
2). This ordering ensures that the first rule synthesized for a

particular IR program will be the lowest-cost version of that
rule. Therefore, after synthesizing a new rule, all rules with
a duplicate IR program can be excluded. The second change
excludes rules with duplicate IR programs. A duplicate IR
program is defined using the IR equivalence relation:

⇑IRLC := ⇓{⇑CIR ,⇑KIR ,⇑DIR ,⇑IIR} (10)

This is the same definition as (7), but with an additional
relation ⇑IIR defined as PIR

1 ⇑IIR PIR
2 iff PIR

2 is the result
of remapping variable identifiers in PIR

1 . The CEGISAllLC
function called on line 11 is the same as CEGISAll , except
that it uses ⇑IRLC instead of ⇑IR when constructing ωdup .

The third change modifies AllComposites to use the
known up-front cost cost(mISA). To see how this works,
we consider again the example from Section IV-B. As be-
fore, we assume SR currently contains two rules: one for
addition (I1 + I2 ⇒ add(I1, I2)) and one for multiplication
(I1 · I2 ⇒ mul(I1, I2)). We assume the target (ISA) expres-
sions for these rules have cost 5 and 10, respectively. Consider
the following situation:

• Suppose IIR = (I1, I2, I3), and mIR = {+, ·}. It
might be possible to synthesize a rule that has IR pat-
tern (I1 + (I2 · I3)). We know that the composite rule
(I1 + (I2 · I3)) ⇒ add(I1,mul(I2, I3)) would have a
cost of 15 since rule costs are additive. Therefore, we
can exclude any rule that matches this IR pattern and has
cost(mISA) ↙ 15.

To implement this, only one adjustment needs to be made
to the conditions in Section IV-B. Instead of requiring PISA

to have the same components as mISA, we simply require
cost(PISA) ↙ cost(mISA), i.e., for rules matching the other
conditions, if the ISA program has a cost equal to or greater
than cost of the ISA program in the current rule, it is
excluded. These conditions are encapsulated by the call to
AllCompositesLC (line 10).

VI. EVALUATION

Our evaluation strategy is threefold. We first show that our
algorithm is capable of producing a variety of many-to-many
rules. A good set of rewrite rules involves both many-to-
one and one-to-many rules. We also show that by removing
duplicate, composite, and high-cost rules, we produce a much
smaller set of rewrite rules. Second, we analyze the effect on
performance of the optimizations described above. We show
that they all significantly reduce the time spent in synthesis.
Finally, we show that by using different cost metrics, we can
generate different sets of lowest-cost rewrite rules.

A. Implementation
All instructions are formally specified using the hwtypes

Python library [11], which leverages pySMT [18] to construct
(quantifier-free) SMT queries in the theory of bit-vectors.
We also use annotations indicating which instructions are
commutative. We use Boolector [28] as the SMT solver and
set a timeout of 12 seconds for each CEGIS invocation. Every
synthesized rewrite rule is independently verified to be valid.
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B. Instruction Specifications

To evaluate our algorithms, we selected small but non-trivial
sets of IR and ISA instructions operating on 4-bit bit-vectors.

IR We define the IR instruction set to be constants (0, 1),
bitwise operations (not, and, or, xor), arithmetic operations
(neg, add, sub), multiplication (mul), unsigned comparison
operations (ult, ule, ugt, uge), equality (eq), and dis-equality
(neq).

ISA 1 This is a minimal RISC-like ISA containing only 6
instructions: nand, sub, three comparison instructions (cmpZ,
cmpN , cmpC) which compute the zero (Z), sign (N), and
carry (C) flags respectively for a subtraction, and a flag
inverting instruction (inv).

ISA 2 This is an ISA specialized for linear algebra. It supports
the 5 instructions: neg, add, add3 (addition of 3 values), mul,
and mac (multiply-accumulate).

C. Rewrite Rule Synthesis

For each ISA we run three experiments. The first experiment
(All Rules) is the baseline that generates all many-to-many
rules, including duplicate, composite, and high cost rules. This
is an implementation of Buchwald et al.’s IterativeCEGIS al-
gorithm extended to use GCBPS for many-to-many rules (no-
tated as IterativeCEGISGCBPS ). The second (Only Unique)
generates only unique rules by excluding all duplicates and
composites using the genAll algorithm. The third (Only
Lowest-Cost) generates only the lowest-cost rules using the
genAllLC algorithm in Figure 3. A code-size cost metric is
used, i.e., cost(K) is just the number of components in K.

For ISA 1, we split the rule generation into two parts.
The first part (ISA 1a) synthesizes rules composed of bitwise
and arithmetic IR instructions using the ISA’s nand and
sub instructions. The second part (ISA 1b) synthesizes rules
composed of constants and comparison instructions using the
four instructions cmpZ, cmpN , cmpC, and inv.

For 1a and 1b, we synthesize rewrite rules up to an IR
program size of 2 and an ISA program size of 3 (written 2-to-
3). For (Only Lowest-Cost), we increase the ISA program size
to 5 and 4 respectively. For ISA 2, we synthesize all rewrite
rules composed of constant, and arithmetic (including mul)
IR instructions up to size 3-to-2.

The number of rewrite rules produced for each configuration
for ISA 1a, 1b, and 2 is shown in Tables I, II, and III,
respectively. Each table entry is the number of rewrite rules
synthesized for a particular IR and ISA program size. For all
ISAs, the extra synthesized rules in (All Rules) were compared
against the duplicate and composite rules excluded by (Only
Unique). Entries in (All Rules) marked with a ‘(-n)’ represent
‘n’ rules that (Only Unique) synthesized, but (All Rules)
missed due to CEGIS timeouts. The (All Rules) experiment
for the entry marked with an asterisk could not complete in 70
hours, so the number calculated from (Only Unique) is shown.

For both ISAs we were able to synthesize 1-to-many
and many-to-1 rules for both IR and ISA instructions.

genAll produced a more complete set of rules than
IterativeCEGISGCBPS .

Table IV shows the percentage of rules that are duplicates
or composites in the first column, and the percentage of rules
that are high cost in the second column. Most rules in (All
Rules) are duplicates, composites, or high cost. Out of the
349179 rules up to size 3-to-2 for ISA 2 (i.e., the sum of the
(All Rules)), 99.5% are duplicates or composites. Similarly,
most rules are high cost. In ISA 1a, 59672 out of 59822 rules
(99.7%) up to size 2-to-3 are high cost.

D. Synthesis Time Improvement with genAll

In this section we showcase the synthesis time im-
provements of genAll . The first experiment is the baseline
IterativeCEGISGCBPS . The second excludes duplicate rules
(i.e., with line 8 of Figure 2). The third, genAll , excludes both
duplicates and composites (i.e. with line 8 of both Figure 2
and Figure 1).

For each GCBPS query, we note the time required (tsat )
to run CEGISAll . Next, we measure the number of unique
rules (Nunique ) found by CEGISAll . We then add the pair
(Nunique , tsat ) to our dataset. We plot the cumulative synthesis
time versus the number of unique rules found by doing the fol-
lowing. Each data point is sorted by its slope (tsat/Nunique ).
Then, the increase in both tsat and Nunique is plotted for each
sorted point. Some data points have Nunique = 0 indicating
that every synthesized rule was redundant and is shown using
a vertical slope.

The synthesis time plot for unique rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4a. Excluding all
duplicates shows a 5.3→ speedup. Excluding both duplicates
and composites shows a 6.2→ speedup. Both optimizations
find an additional 5 unique rules.

E. Synthesis Time Improvement with genAllLC

We also showcase the synthesis time improvements of
genAllLC using a similar setup. The first experiment is the
baseline IterativeCEGISGCBPS . The second excludes IR du-
plicate rules. The third, genAllLC , excludes both IR duplicates
and IR composites.

We use the same experimental setup as before, except when
computing Nunique , all higher-cost rules are filtered instead.
The synthesis time plot for lowest-cost rewrite rules for ISA
1b up to size 2-to-3 is shown in Figure 4b.

Excluding rules with duplicate IR programs provides a 41→
speed-up. Also excluding high-cost composites provides a
1254→ speed-up over the baseline (All Rules) configuration.

F. Total Speed-up
We summarize the speed-ups of genAll and genAllLC

compared to the IterativeCEGISGCBPS baseline for all con-
figurations in Table V. We compare the synthesis time in the
“Synth” column. We compare the total algorithm runtime in
the “Total” column (including time for iterating, solving, rule
filtering, etc.). The last row’s baseline did not complete in 70
hours, so we provide lower bounds for speed-up.
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ISA Program Size
All Rules Only Unique Only Lowest-Cost

1 2 3 1 2 3 1 2 3 4 5
IR Prog
Size

1 5 32 1096 3 10 96 3 4 2 1 0
2 76 1719 56894 40 189 1940 40 67 34 12 6

TABLE I: Number of synthesized rewrite rules for ISA 1a.
ISA Program Size

All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3 4

IR Program
Size

1 17 71 3662 9 51 873 7 3 0 0
2 89 3942 (-5) 199572 78 717 21511 52 64 9 0

TABLE II: Number of synthesized rewrite rules for ISA 1b.
IR Program Size

All Rules Only Unique Only Lowest-Cost
1 2 3 1 2 3 1 2 3

ISA Program
Size

1 11 287 3998 3 14 315 3 14 315
2 10 3115 341758→ 3 69 1337 1 32 760

TABLE III: Number of synthesized rewrite rules for ISA 2.

(a) genAll (b) genAllLC

Fig. 4: Cumulative synthesis time comparison for ISA 1b up to size 2-to-3.

ISA Rule Size up % Duplicate % High-cost
to (IR, ISA) or Composite

1a (2, 3) 96.2% 99.7%
1b (2, 3) 88.8% 99.9%
2 (3, 2) 99.5% 99.7%

TABLE IV: Percent of rewrite rules up to (IR, ISA) size that
are a duplicate or a composite, and percent that are high-cost.

The speed-ups depend on many parameters including the
maximum size of the rewrite rules, the number of possible
instructions, the commutativity of the instructions, and the
semantics of the instructions. The optimizations discussed
produce several orders of magnitude speed-ups. Further op-
timizing the non-solver portions (e.g., re-coding in C) would
drastically increase the “Total” speed-ups to be closer to the
“Synth” ones. Clearly, the combination of all optimizations
discussed in this paper can produce speed-ups of several orders
of magnitude.

G. Cost Metric Comparisons

Our final experiment explores how the choice of cost metric
influences the rules. We have implemented two cost metrics:
a code size metric (CS) and an estimated energy metric (E).

ISA Rule Size up genAll Speed-up genAllLC Speed-up
to (IR, ISA) Synth Total Synth Total

1a (2, 2) 3.5→ 1.3→ 11→ 2.8→
1b (2, 2) 3.1→ 1.7→ 26→ 2.8→
2 (2, 2) 11→ 2→ 53→ 2.5→
1a (2, 3) 12→ 6.8→ 601→ 57→
1b (2, 3) 6.2→ 2.7→ 1254→ 63→
2 (3, 2) > 768→ > 81→ > 4004→ > 171→

TABLE V: Speed-ups compared to IterativeCEGISGCBPS .

ISA Rule Size up Unique Unique Common
to (IR, ISA) (CS) (E)

1a (2, 5) 121 161 48
1b (2, 4) 99 198 36
2 (3, 2) 134 137 991

TABLE VI: Number of unique and common rewrite rules
synthesized for code size (CS) and energy (E) cost metrics.

The energy metric was created to correspond to real hardware
energy data. For example the cost ratio for mul and add is
1 : 1 for code size, but is 2.5 : 1 for energy. The number of
common and unique lowest-cost rewrite rules for each ISA is
shown in Table VI.
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While there is some overlap in common rules, each cost
metric produces a differing set of unique lowest-cost rules.

VII. CONCLUSION AND FUTURE WORK

We showed that many-to-many instruction selection rewrite
rules can be synthesized for various ISAs using program
synthesis. This supports two major trends in computer archi-
tecture. The first is the trend towards simple or reduced instruc-
tion architectures where multiple instructions are needed for
simple operations. It also supports the trend to introduce more
complex domain-specific instructions for energy efficiency.
In this case, a single instruction can implement complex
operations.

We showed that our algorithms are efficient. Removing
duplicates, composites, and higher-cost rules results in mul-
tiple orders of magnitude speed-ups. Synthesizing many-to-
many rewrite rules for modern IRs and ISAs may require
further optimizations. Many of our synthesized rules contain
program fragments that a compiler would optimize during IR
optimization or peephole optimization. A modified version of
GCBPS could be used to directly synthesize and exclude such
program fragments.

Buchwald et al. [6] presented generalizations for multi-
sorted instructions, multiple outputs, preconditions, and inter-
nal attributes, enabling the modeling of memory and control
flow instructions. Our synthesis query and algorithms are
orthogonal and could incorporate these features, allowing for
a broader range of possible instruction sets.

As is the case in prior work, we limit synthesis to loop free
patterns. Relaxing this constraint and using other instruction
selection algorithms would be an interesting research avenue.

Another promising research direction involves exploring the
trade-offs between synthesis time, compile time, and code
quality. This could be done by varying the maximum size
of rewrite rules, changing the instruction selection algorithms,
relaxing the completeness guarantee, or incorporating IR or
peephole optimizations.

We believe this research area is fertile ground and hope our
work inspires and enables future research endeavors towards
the goal of automatically generating compilers for emerging
domain-specific architectures.
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