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Abstract

CSP sparsification, introduced by Kogan and Krauthgamer (ITCS 2015), considers the fol-
lowing question: how much can an instance of a constraint satisfaction problem be sparsified
(by retaining a reweighted subset of the constraints) while still roughly capturing the weight of
constraints satisfied by every assignment. CSP sparsification captures as a special case several
well-studied problems including graph cut-sparsification, hypergraph cut-sparsification, hyper-
graph XOR-sparsification, and corresponds to a general class of hypergraph sparsification prob-
lems where an arbitrary 0/1-valued splitting function is used to define the notion of cutting a
hyperedge (see, for instance, Veldt-Benson-Kleinberg SIAM Review 2022). The main question
here is to understand, for a given constraint predicate P : Σr → {0, 1} (where variables are

assigned values in Σ), the smallest constant c such that Õ(nc) sized sparsifiers exist for every
instance of a constraint satisfaction problem over P . A recent work of Khanna, Putterman and
Sudan (SODA 2024) [KPS24] showed existence of near-linear size sparsifiers for new classes of
CSPs. In this work (1) we significantly extend the class of CSPs for which nearly linear-size
sparsifications can be shown to exist while also extending the scope to settings with non-linear-
sized sparsifications; (2) we give a polynomial-time algorithm to extract such sparsifications for
all the problems we study including the first efficient sparsification algorithms for the problems
studied in [KPS24].

Our results captured in item (1) lead to two new classifications: First we get a complete
classification of all symmetric Boolean predicates P (i.e., on the Boolean domain Σ = {0, 1})
that allow nearly-linear-size sparsifications. This classification reveals an inherent, and previ-
ously unsuspected, number-theoretic phenomenon that determines near-linear size sparsifiability.
Second, we also completely classify the set of Boolean predicates P that allow non-trivial (o(nr)-
size) sparsifications, thus answering an open question from the work of Kogan and Krauthgamer.

The constructive aspect of our result is an arguably unexpected strengthening of [KPS24].
Their work roughly seemed to suggest that sparsifications can be found by solving problems
related to finding the minimum distance of linear codes. These problems remain unsolved to
this date and our work finds a different path to achieve poly-time sparsification, resolving an open
problem from their work. As a consquence we also get the first efficient algorithms to spectrally
sparsify Cayley graphs over Fn

2 in time polynomial in the number of generators. Our techniques
build on [KPS24] which proves the existence of nearly-linear size sparsifiers for CSPs where the
unsatisfying assignments of the underlying predicate P are given by a linear equation over a
finite field. Our main contributions are to extend this framework to higher-degree equations
over general Abelian groups (both elements are crucial for our classification results) as well as
designing polynomial-time sparsification algorithms for all problems in our framework.
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1 Introduction

In this work we study the problem of “CSP sparsification” and give the first efficient algorithms
and characterizations for sparsifying many classes of CSPs. Our contributions yield immediate,
novel results in efficient Cayley graph sparsification [KPS24], efficient hedge-graph sparsification
[GKP17] and sparsifying hypergraphs with cardinality-based splitting functions [VBK22]. We start
by introducing CSP sparsification more precisely before moving on to the motivation, our results,
and the applications of these results.

1.1 CSP sparsification

CSP sparsification was introduced by Kogan and Krauthgamer [KK15] as a broad extension of
the notion of cut sparsification in graphs. A cut sparsifier of a graph is a weighted subgraph of a
given graph on the same set of vertices that roughly preserves the size of every cut. The seminal
works of Karger [Kar93] and Benczúr and Karger [BK96] showed that every undirected graph
admits a cut sparsifier of size nearly linear in the number of vertices, thus potentially compressing
graph representations by a nearly linear factor while preserving some significant information. CSP
sparsification aims to extend this study to broader classes of structures than just graphs, and aims
to preserve a broader class of queries than cuts. (We remark here that this is just one of several
directions of generalizations. Other notable directions such as spectral sparsification ([BSS09,ST11,
Lee23,JLS23,JLLS23]) and general submodular hypergraph sparsification ([KK23,JLLS23]) are not
covered in this work.)

In this work, a CSP problem, CSP(P ), is specified by a predicate P : Σr → {0, 1}. An instance
Φ of CSP(P ) on n variables is given by m weighted constraints (w1, C1), . . . , (wm, Cm) where each
constraint Cj applies the constraint P to a specified sequence (i1(j), . . . , ir(j)) ∈ [n]r of r out of
the n variables. An assignment to the variables is given by a ∈ Σn and a satisfies constraint Cj

if P (ai1(j), . . . , air(j)) = 1. In CSP sparsification, an instance Φ is viewed as the specification of a
structure that we wish to compress with the goal that the compressed representation approximately
preserves the total weight of satisfied constraints for every assignment a ∈ Σn. A sparsification of
Φ is obtained by retaining a subset of the constraints, possibly assigning them new weights, and
the size of the sparsification is the number of constraints retained.

1.2 Motivation

Beyond its immediate interest as a natural combinatorial question, CSP sparsification is motivated
by the need to simplify large complex networks represented by hypergraphs. While graphs model
pairwise interactions, hypergraphs are needed to model interactions between larger subsets of en-
tities. The work of Veldt, Benson and Kleinberg [VBK22] describes a broad collection of settings
where the central interactions require this greater flexibility to model. Furthermore, while graphs
admit only one interesting notion of cutting an edge, with hyperedges one can imagine more com-
plex notions. Typically, this is referred to as generalized hypergraph sparsification (see for instance,
[VBK22]), where each hyperedge e ⊆ V is equipped with a splitting function ge : 2

e → R+. Given a
cut S ⊆ V , the contribution of a hyperedge e to the cut is exactly ge(S∩e), and the total cut size is∑

e∈E ge(S∩e). For instance, by setting the splitting function to be 0 on inputs e and ∅, and 1 oth-
erwise, this models the standard notion of cuts in hypergraphs. By allowing more general notions
of hyperedge cuts, say, that is, ge is an arbitrary function of S ∩ e, this model captures a variety
of applications, ranging from scientific computing on sparse matrices [BDKS16], to clustering and
machine learning [YNY+19,ZHS06], to modelling transistors and other circuitry elements in circuit
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design [AK95,Law73], and even to human behavior and biological interactions (see [VBK22]). In
each of these applications, the ability to sparsify the hypergraph while still preserving cut-sizes is
a key building block, as these dramatically decrease the memory footprint (and complexity) of the
networks being optimized.

Within this general framework, boolean CSP sparsification captures the important and expres-
sive case where the splitting functions are {0, 1}-valued, (i.e., each ge : 2

e → {0, 1}). This richness
of expressibility in CSPs leads to the question (raised in [KK15]) of for which CSPs (i.e., for which
predicates P ) is CSP(P ) sparsifiable to nearly linear size, or more generally, what is the best (pos-
sibly non-integral) exponent ℓ such that CSP(P ) is sparsifiable to instances of size roughly nℓ on
instances with n variables.1 In Kogan and Krauthgamer’s work [KK15], they showed that for any
r-CNF constraint, CSPs admit sparsifiers of size Õ(rn/ϵ2). Filtser and Krauthgamer [FK17] later
gave a complete characterization of Boolean CSPs on two variables (|Σ| = r = 2) establishing a
dichotomy result that shows that each predicate P either allows for near-linear size sparsification or
requires quadratic size sparsifiers (which is trivially achievable since that is the number of distinct
constraints). Their result was extended to binary (r=2) CSPs over all finite alphabets Σ by Butti
and Živný [BZ20], thus giving the first classification for an infinite subclass of CSPs. A recent work
of the authors [KPS24] extended the classification of [KK15] to the case of ternary Boolean CSPs
(r = 3, Σ = {0, 1}) but only identified the predicates that allow nearly linear sparsification while
showing the rest required at least quadratic size. Note that the trivial sparsification in this case has
size O(n3). The central notion developed in their work is sparsifiers of linear systems of equations
over finite fields (aka “code sparsifiers”). Their results are non-constructive in that they only show
existence of nearly-linear size sparsifiers, and did not give a polynomial time algorithm to find
them. In fact, their work highlighted some natural obstacles to achieving efficient sparsification.

In this work we extend the work of [KPS24] in two directions: (1) We give a polynomial time
algorithm for constructing sparsifiers of linear systems of equations, thereby making the results of
[KPS24] constructive. (2) We extend the (constructive) sparsification from linear equations over
finite fields to linear and higher degree equations over abelian groups. These generalizations allow
us to get new (efficiently constructive) dichotomies for sparsifiability of some (infinite) subclasses
of CSPs.

1.3 Our Results

We start by describing our new results, and defer the new technical ingredients to the following
section.

Efficient Code Sparsification Our main technique extends a technique called “code sparsifica-
tion” introduced in [KPS24]. The primary structure of interest in code sparsification is a linear code
C ⊂ Fm

q over some finite field Fq. A sparsifier for C is a restriction C|S (also called “puncturing”)
of the code C to a subset S ⊆ [m] of the coordinates along with weights on the coordinates so that
the weighted Hamming weight of each codeword in C|S is approximately the same as the weight
of the corresponding codeword in C. [KPS24] show that for every code of dimension n there exists
a sparsifier of size nearly-linear in n. Code sparsification turns out to be a powerful tool for CSP

1In the literature on CSP decision or maximization problems, a number of further subtleties arise. Ideally one
would like sparsifications for families or predicates as opposed to a single predicate. There is a difference between
whether constraints must be application of the predicate to distinct variables or we allow repetition of variables in a
constraint. In the Boolean setting there is a difference between predicates being applied to variables versus literals.
None of these issues is relevant in the case of CSP sparsification since the task is rich enough to allow easy reductions
among all these problems.
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sparsification and indeed is used in [KPS24] to get nearly linear-size sparsifiers for many classes
of CSPs. However, the result of [KPS24] is only existential and indeed seems to require solving
NP-hard problems to get algorithmic code sparsification. We remedy this problem by giving an
efficient algorithmic implementation of code-sparsification:

Theorem 1.1. For any code C ⊂ Fm
q of dimension n and a parameter ϵ ∈ (0, 1), there is a

polynomial time (in n,m, log(q), ϵ−1) randomized algorithm for computing (with high probability) a
(1± ϵ) code-sparsifier C|S of C, with |S| = Õ(n/ϵ2).

This settles a key open question of [KPS24] regarding tractability of computing code-sparsifiers
and leads to efficient algorithms for the sparsifiers constructed in their work. For instance it leads
to the first efficient algorithm to sparsify a Cayley graph over Fn

2 into another Cayley graph with
roughly the same spectrum, in the sense of [ST11], where efficiency is with respect to the number
of generators (and not the size of the graph)!

Corollary 1.2. For any Cayley graph G over Fn
2 with associated generating set Q ⊆ Fn

2 with
|Q| = m and a parameter ϵ ∈ (0, 1) of our choosing, there is a polynomial time (in n,m, ϵ−1)
randomized algorithm for computing a (1 ± ϵ) Cayley-graph spectral-sparsifier G̃ = Cay(Fn

2 , Q̂),

where |Q̂| = Õ(n/ϵ2) is a re-weighted subset of the generators.

We elaborate on this result in Section 11.1, and also show a novel generalization to Cayley
graphs over Zn

q in Section 11.2.
Another corollary of this result is an efficient algorithm for “hedge-graph sparsification”, a topic

of extensive study in the literature [GKP17, JLM+23,FGK+24], where lack of sub-modularity had
thus far been a barrier to efficient sparsfication. We resolve this in Section 11.3.

CSP Sparsification Next, we discuss our contributions to the CSP sparsification regime. We
start by formalizing the notion of sparsifying CSPs. An instance of CSP(P ) on n variables is given
by a collection of m weighted constraints (w1, C1), . . . (wm, Cm) where Cj is given by a sequence
(i1(j), . . . , ir(j)) ∈ [n]r. For a ∈ Σn, let Cj(a) = P (ai1(j),...,ir(j)) denote whether a satisfies the jth
constraint. We let Φ(a) denote the total weight of constraints satisfied by a, i.e.,

Φ(a) =

m∑
j=1

wjP (ai1(j), . . . , air(j)).

Definition 1.1 (CSP Sparsification). For P : Σr → {0, 1}, ϵ > 0 and s ∈ Z+ we say that an
instance Φ̂ ∈ CSP(P ) is an (ϵ, s)-sparsifier for Φ ∈ CSP(P ) if there are at most s constraints{
Ĉi

}
i∈[s]

in Φ̂, each of which satisfies Ĉi ∈ {C1, . . . Cm} and for every a ∈ Σn we have (1 −

ϵ)Φ(a) ≤ Φ̂(a) ≤ (1 + ϵ)Φ(a). (Note that the constraints of Φ̂ may have very different weights than
corresponding constraints in Φ.)

For P : Σr → {0, 1}, ϵ > 0 and s : Z+ → Z+, we say that CSP(P ) is (ϵ, s(·))-sparsifiable if
for every n ∈ Z+, every instance Φ ∈ CSP(P ) with n variables has an (ϵ, s(ϵ, n))-sparsifier. Fur-
thermore we say that CSP(P ) is (ϵ, s(·))-efficiently sparsifiable if there is a probabilistic polynomial
time algorithm to compute such a sparsification.

Essentially, the requirement of a sparsifier is that the constraints in the sparsifier Φ̂ are a
(suitably re-weighted) subset of the original constraints in Φ such that the value attained on each
assignment is approximately preserved. The only freedom we get is in assigning new weights to
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these constraints. For brevity, we will say that CSP(P ) is sparsifiable to near-linear size if CSP(P )
is (ϵ, s(ϵ, n))-sparsifiable for some function s(ϵ, n) = Õϵ(n).

Our first theorem completely characterizes which symmetric Boolean predicates admit nearly
linear-size sparsification. Recall that a predicate P : Σr → {0, 1} is Boolean if Σ = {0, 1}. We say
P is symmetric if P (a1, . . . , ar) = P (aπ(1), . . . , aπ(r)) for every a1, . . . , ar ∈ Σ and every permutation
π : [r]→ [r]. Hence a Boolean predicate P is symmetric if and only if there exists P0 : {0, . . . , r} →
{0, 1} such that P (a1, . . . , ar) = P0(a1 + · · ·+ ar) for every a1, . . . , ar ∈ {0, 1}. Define a symmetric
Boolean predicate P to be periodic if the zeroes of P0 form an arithmetic progression. That is,
P given by P (a1, . . . , ar) = P0(a1 + · · · + ar) is periodic if and only if there exists c, d such that
P0(α) = 0 for some α ∈ {0, . . . , r} if and only if α ∈ {c + i · d | i ∈ Z}, where the addition and
multiplication in c+ i · d are over the integers. We say P is aperiodic otherwise.

Theorem 1.3. Let P : {0, 1}r → {0, 1} be a symmetric predicate. Then if P is periodic, CSP(P )
is (ϵ, Õ(n/ϵ2))-efficiently sparsifiable for every ϵ ∈ (0, 1). On the other hand, if P is not periodic
then for every 0 < ϵ < 1, CSP(P ) is not (ϵ, o(n2))-sparsifiable.

Remark 1.4. Note that symmetric CSPs exactly capture the {0, 1}-valued case of so-called “cardinality-
based splitting functions” where the splitting function ge(S ∩ e) depends only on the carindality of
|S ∩ e|. Such splitting functions appear broadly in the clustering literature [LM17, LM18,VBK20,
VBK21,LVS+21,ZLS22] and in summarization of complex data sets [GK10,LB11,TIWB14]. This
result leads to an exact (and efficient) characterization of when such splitting functions allow for
sparsifiers of near-linear size.

As noted earlier, this generalizes all known results on nearly-linear CSP sparsification while
adding efficiency to previous results. Note that the class of symmetric predicates is quite general,
capturing cut functions in graphs and hypergraphs, as well as parity functions. In particular, this
theorem provides a concise reason explaining why hypergraphs, graphs, and parity functions all
admit linear-size sparsifiers, whereas a priori, it may have seemed quite arbitrary for these natural
choices to all yield linear-size sparsifiers. Prior to this work there was no reason to believe that the
sparsifiability of symmetric predicates would be inherently tied to the periodicity of the pattern of
unsatisfying assignments. Our results thus reveal this phenomenon for the first time and establish
a formal connection between periodicity and sparsifiability.

Another interesting consequence of this theorem is that it implies that there are “discrete jumps”
in the sparsifiability of predicates. That is to say, either symmetric predicates are sparsifiable to
near-linear size, or one can do no better than quadratic size; there is no intermediate regime with
for instance sparsifiers of size O(n1.5). This has been observed in the field of sparsification in many
regimes, for instance near-linear size sparsifiers exist for graphs [BK96], undirected hypergraphs
[CKN20], and codes [KPS24], while requiring quadratic size sparsifiers for directed graphs. No
problems were known for which intermediate complexity helped. Our results formally validate this
phenomenon for the class of symmetric CSPs.

Our next theorem classifies Boolean predicates that have a non-trivial sparsification. Note that
every instance of CSP(P ) on n variables for P : {0, 1}r → {0, 1} has O(nr) distinct constraints.
Thus trivially CSP(P ) is (0, O(nr))-sparsifiable. We define a sparsification to be non-trivial if it
achieves s(n) = o(nr). Our next theorem shows that CSP(P ) is non-trivially sparsifiable if and
only if P does not have only one satisfying assignment.

Theorem 1.5. Let P : {0, 1}r → {0, 1}. If |P−1(1)| ̸= 1 then CSP(P ) is (ϵ, Õr(n
r−1/ϵ2))

efficiently-sparsifiable for every ϵ > 0. Otherwise, for every 0 < ϵ < 1, CSP(P ) is not (ϵ, o(nr))
sparsifiable.
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This settles an open question posed by [KK15] who asked for such a classification. Surpris-
ingly, this theorem may be viewed as a “mostly positive” statement by showing that almost every
predicate, specifically every one with more than one satisfying assignment, is non-trivially sparsifi-
able. We also stress that in our result the existence of sparsifiability is accompanied by an efficient
(randomized) algorithm to construct such sparsifiers.

Finally we extend the characterization of nearly linear-size sparsifiable ternary Boolean CSPs
from [KPS24] to get a complete classification (in particular, separating CSPs that admit a near-
quadratic sparsifier from those that require cubic size). To describe the theorem we need the
notion of the projection of a predicate. Given predicates P : {0, 1}r → {0, 1} and Q : {0, 1}c →
{0, 1} we say that P has a projection to Q if there exists a function ρ : {X1, . . . , Xr} → {0, 1} ∪
{Y1,¬Y1, . . . , Yc,¬Yc} such that Q(Y1, . . . , Yc) = P (ρ(X1), . . . , ρ(Xr)). Let ANDc(Y1, . . . , Yc) =
Y1 ∧ · · · ∧ Yc.

Theorem 1.6. For a predicate P : {0, 1}3 → {0, 1} let c be the largest integer such that P has
a projection to ANDc. Then, CSP(P ) is (ϵ, Θ̃(nc)) efficiently-sparsifiable for every ϵ ∈ (0, 1), and
moreover, for every ϵ ∈ (0, 1), CSP(P ) is not (ϵ, o(nc)) sparsifiable.

As mentioned before, this theorem continues adding evidence to the conjecture that sparsifier
sizes always come in integral gaps. In particular, it shows that for predicates of arity 3, optimal
sparsifier sizes are either Θ̃(n), Θ̃(n2) or Θ(n3).

1.4 Technical Theorems

As mentioned before, our main technique extends a technique called code sparsification introduced
in [KPS24]. We present two “orthogonal” improvements to this technique of code sparsification.
The first is to make code sparsifiers algorithmic, and the second is to extend these notions beyond
codes. Getting an algorithm version of the existence result of [KPS24] is non-trivial — their work
roughly decomposed the coordinates of a linear codes into “dense” and “sparse” coordinates, where
the former support a subcode of relatively high dimension (relative to their size). Applying this
decomposition recursively until all coordinates are regular within their partition and then sampling
an appropriate number of coordinates in each partition yields their sparsification. The partition
of coordinates into “dense” and “sparse” ones is unfortunately not easy to compute (at least to
our knowledge). For instance, the support of a minimum weight codeword can be dense in some
codes and finding such codewords, or even approximating the size of their support is NP-hard in
the worst case, and means there is no clear way to implement the sparsifiers of [KPS24] in less
than exponential time. One of the main contributions of this work is to find an alternate path to
this decomposition. We elaborate more on this in Section 2.1, but the approach is to efficiently
find a small superset of the dense coordinates of a code. We build on insights from Benczúr and
Karger [BK96] to develop this alternate path which is not as obvious in the coding setting as in the
graph-theoretic one. Fortunately, not only does this approach extend to codes, but also to all the
extensions of codes that we need to sparsify in this paper. In the rest of this section we focus only
on the existential aspects of the results in the dicussion, while the theorems assert the algorithmic
parts.

Turning to the second direction of improvements in this paper, as noted earlier, code sparsifiers
already help with CSP sparsifications, but for our purpose of classifying symmetric Boolean CSPs
they only go part of the distance. Specifically, towards our classification, it is relatively straight-
forward to show that aperiodic symmetric predicates P do not allow for nearly linear sparsifiers.
Applying the code sparsifiers of [KPS24] we can show that periodic predicates P with the period
being a prime are sparsifiable to nearly linear size. However, this leaves a big gap where P is
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periodic with a composite period – we neither get near-linear sparsifiers in this case nor get to rule
them out. To capture all periodic CSPs we extend the sparsifiers of [KPS24] from codes over fields
to roughly what might be called “codes over groups”. We don’t formalize this concept but instead
describe the specific theorem we prove based on this extension.

We say that a predicate P : {0, 1}r → {0, 1} is an affine predicate over a group (G,⊙) if there
exist a1, . . . , ar, b ∈ G such that P (x1, . . . , xr) = 1 if and only if aix1⊙ a2x2⊙· · ·⊙ arxr ̸= b. (Note
that aixi = ai if xi = 1 and 0 otherwise, where 0 is the identity element of the group G.) We say
that P is an affine Abelian predicate if there exists a finite Abelian group A such that P is an affine
predicate over A.

Theorem 1.7. If P : {0, 1}r → {0, 1} is an affine Abelian predicate over an Abelian group A, then
CSP(P ) is (ϵ, Õ(n ·min(r4, log2(|A|))/ϵ2)-efficiently-sparsifiable for every ϵ > 0.2

In our language, the main technical result of [KPS24] can be stated as being the special case
corresponding to A being Zp the group of additions modulo a prime p. We note that the class of
affine Abelian predicates is much richer and has nice closure properties. For instance if P1 and
P2 are affine Abelian predicates then so is P1 ∨ P2, thus establishing that the predicates covered
by Theorem 1.7 have a nice closure property. (Even an existential sparsification result would not
follow from the [KPS24] result if P1 and P2 were predicates over different prime groups Zp and
Zq, whereas with Abelian predicates we can now simply operate over Zp × Zq.) In particular,
Theorem 1.7 immediately yields the characterization of symmetric Boolean CSPs that allow a
near-linear sparsification (Theorem 1.3), as well as their efficient construction. We also note here
that Theorem 1.7 does not follow immediately from the techniques of [KPS24]. We elaborate more
on this in Section 2, but briefly — the entire analysis of [KPS24] is coding-theoretic with notions
like dimension and distance of codes playing a fundamental role, and linear algebra over Fq being
the main engine. In our case we have to switch to a more lattice-theoretic approach and notions like
dimension have to be replaced with more involved counting arguments, while some of the simpler
linear algebra is replaced with gcd computations. We complement this with an efficient algorithm
for computing a type of decomposition for the “code”, which yields the constructive aspect. While
the final proof is not much more complicated each step requires extracting abstractions that were
not obvious in their work.

We also show below that the requirement that the underlying group is Abelian can not be
relaxed.

Theorem 1.8. For every non-Abelian group G, there exists a predicate P : {0, 1}4 → {0, 1} and
an ϵ0 > 0 such that P is an affine predicate over G and CSP(P ) is not (ϵ0, o(n

2))-sparsifiable.

Turning to our second theorem (Theorem 1.5), observe that the main result of [KPS24] and
Theorem 1.7 do not seem to yield non-trivial but superquadratic size sparsifiers. For many natural
classes of problems, the best sparsifiers are superquadratic in size and so extending the techniques
to address such questions is of importance (in particular to prove a statement like Theorem 1.5).
To this end we give a different extension of Theorem 1.7 to higher degree polynomials.

For an Abelian group A (possibly infinite) We say that P : {0, 1}r → {0, 1} is a degree ℓ
polynomial over A if there exists a degree ℓ polynomial Q ∈ A[X1, . . . , Xr] such that for every
x ∈ {0, 1}r ⊆ Zr

q we have P (x) = 1 if and only if Q(x) ̸= 0.3

2We note that A does not have to be a finite group in this theorem, though in all the applications to CSPs we
only use finite Abelian groups.

3A polynomial in A[X1, . . . , Xr] is just a formal sum of monomials in X1 . . . , Xr with coefficients from A.
This polynomial naturally gives a function from Zr → G by evaluating the monomials over integers, and then
adding/subtracting the appropriate number of copies of the coefficient.
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Theorem 1.9. If P : {0, 1}r → {0, 1} is a degree ℓ polynomial over an Abelian group A then
CSP(P ) is (ϵ, Õ(nℓmin(r4ℓ, log2(|A|))/ϵ2)-efficiently-sparsifiable for every ϵ > 0.

While the extension to higher degree polynomials is relatively straightforward, it vastly increases
the expressive power of these algebraic CSPs. The positive result in Theorem 1.5 turns out to be
a natural extension obtained by proving that every predicate P with more than one satisfying
assignment can be written as the OR of polynomials of degree at most r − 1 over F2.

1.5 Conclusions

CSP sparsification [KK15] is a powerful unifying abstraction that captures many central and often
individually studied, sparsification questions. By studying them jointly we thus get a more global
picture of the world of sparsifiability. Our work shows that it is possible to classify large subclasses
completely and prove discrete jumps in the level of sparsifiability within these broad subclasses. The
classifications also show an algorithmic jump, namely that when sparsifiers exist they can be found
algorithmically while the non-existence results are information-theoretic. In the process, these
sparsification results yield applications to sparsifying generalized hypergraphs (particularly, with
cardinality-based splitting functions), and towards deriving efficient constructions of fundamental
combinatorial objects such as Cayley-graph sparsifiers.

Our work builds on the code sparsification technique of [KPS24], but extends it conceptually
as well as algorithmically. In particular, we give a broad framework for upper-bounding the size
of sparsifiers by interpreting predicates as polynomials over arbitrary groups. In fact, every known
CSP sparsification result follows from our framework (specifically from Theorem 1.9). Indeed
already the code sparsification framework of [KPS24] (which we generalize) captured the cut spar-
sifiers of [BK96], hypergraph cut sparsifiers, and r-CNF sparsifiers [KK15,CKN20], the sparsifiers
for Boolean predicates of arity 2 [FK17] and even those over arbitrary alphabets [BZ20]. (The final
claim was not pointed out in [KPS24] so we include a proof of the sparsification result in [BZ20]
using our framework in Appendix B.) Our framework further generalizes theirs and so captures
all the above mentioned works and the code sparsifiers of [KPS24] while giving new results for
symmetric Boolean predicates, classifying general functions with non-trivial sparsifiability, as well
as giving efficient algorithms for finding these sparsifiers.

For future directions we note that there is a noticeable gap between the upper bound and
lower bound techniques, even for near-linear size sparsifiability of asymmetric predicates and for
characterizing the size needs of symmetric CSPs, when the size lower bound is quadratic. The only
known lower bounds on sparsifiability come from the notion of a projection to an AND predicate.
A hope at this stage may be that every function that does not have a projection to ANDc can be
expressed as a degree c − 1 polynomial. Note that we proved this to be true when c = 2 and P
is a symmetric predicate. Unfortunately this seems to fail beyond this setting. In Appendix D we
describe an asymmetric predicate that is not expressible as a degree 1 polynomial but also does not
have a projection to AND2 and in Appendix E we show that there is a symmetric predicate which
does not have a projection to AND3 but also seems to not be expressible as a degree 2 polynomial.
Thus finding new lower bounds on sparsifiability (other than projection to ANDc) or finding new
reasons for sparsifiability (not captured by Theorem 1.9) seem to be necessary for future progress.

Addendum: In a recent breakthrough subsequent to our work, Brakensiek and Guruswami [BG24]
have given a complete characterization of the sparsifiability of every CSP (over all alphabets) in
terms of the “non-redundancy” of the predicate, a quantity that has been the subject of some
prior work in CSP dichotomy classifications. They do not give a general method to determine the
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non-redundancy of a predicate, or to analyze its growth as a function of n, the number of variables,
however they do give bounds in specific instances. In particular their work shows the existence of
predicates for which the best sparsifications are of size nα for some 1.5 ≤ α ≤ 1.6 (and so not an
integer). Their work is not algorithmic and sparsifications are only guaranteed to exist.

Organization: In Section 2, we provide an in-depth overview of the techniques used to prove
our results and show how these immediately imply Theorem 1.6. Section 3 summarizes some
useful definitions and previously known results that we utilize in our work. Section 4 is dedicated
to proving a decomposition theorem and counting bound for codewords of a specific weight, and
we use this key result in Section 5 where we prove a version of Theorem 1.7 only for groups
of the form Zq and a dependence on log2(q). In Section 6, we generalize this algorithm to all
Abelian groups, proving Theorem 1.7 in its entirety. In Section 7, we show a complement to this
theorem, namely, there are affine predicates over a non-Abelian group that are not sparsifiable
which yields Theorem 1.8. In Section 8, we show how to extend our sparsification framework to
Boolean symmetric CSPs, proving Theorem 1.3. Finally, in Section 9, we prove Theorem 1.9, and
then use it as a key building block to prove Theorem 1.5. In Section 10, we then use Theorem 1.5
to prove Theorem 1.6.

2 A Detailed Overview of Techniques

We start by reviewing, in Section 2.1 the work of Khanna, Putterman and Sudan [KPS24] to high-
light the challenges of getting efficient algorithms, and working over Abelian groups as opposed
to finite fields. We then describe our efficient algorithm implementation of their strategy in Sec-
tion 2.2. Then, in Section 2.3 we describe our approach to extending their work to general (finite)
cyclic groups. In Section 2.4 we explain we extend this work to all finite Abelian groups and then
to all Abelian (even infinite) groups. While the CSP applications don’t need it, we also remove
the logarithmic dependence on m, the number of constraints, since m can be exponentially large
in general linear systems we look at. Section 2.4 also includes an overview of the steps needed
to achieve this. We then show to get our classification of all Boolean symmetric CSPs in Sec-
tion 2.5. Finally, in Section 2.6 show how to extend the entire approach to sparsification of higher
degree polynomial constraints and how to use this to get a classification all non-trivially sparsifiable
Boolean predicates.

2.1 Previous work of [KPS24]

Recall that the work of [KPS24] showed that for any linear subspace (i.e. a code) C ⊆ Fm
q of

dimension n, there exists a weighted subset S ⊆ [m], w : S → R+ of size Õ(n log(q)/ϵ2) such that
for any codeword c ∈ C,

(1− ϵ)wt(v) ≤ wtw(v|S) ≤ (1 + ϵ)wt(v).

In this context, wtw(x) is meant to be the “weighted hamming weight”, i.e., wtw(x) =
∑m

i=1w(i)1xi ̸=0.
Their sparsification relies on a counting bound they prove that asserts that for every code C ⊆ Fm

q

of dimension n and every integer d either (1) C has the property that for every positive integer α it
has at most nα · qα codewords of weight at most αd, or (2) there is a subset of coordinates S ⊆ [m]
and positive integer t such that |S| ≤ d · t and C has more than t independent codewords supported
on S. If condition (1) holds for a judicious choice of d, then uniformly sampling coordinates in [m]
at rate roughly 1/d sparsifies the code C. But if condition 1 does not hold, then for S being the
maximal set with property (2), they show that sampling coordinates i of [m] \ S at rate 1/d and
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weighting them with weight w(i) = d and retaining all coordinates of S with weight 1 leads to a
good sparsifier. (The full sparsification to nearly-linear size in n applies this idea recursively.)

The key thus is this counting bound, which is in turn proved by a “contraction” argument. This
argument defines a randomized procedure that outputs a random codeword. The claim is that this
if no set S satisfies condition (2) then any fixed codeword c of weight at most αd is output with
probability at least n−α · q−α. This immediately implies the counting lemma above.

The randomized procedure maintains a code C′ that is obtained from C after a sequence of
contractions as follows: (a) Sample a random coordinate j in the support supp(C ′) of C′ (where
supp(C′) is the set of coordinates where there exists a codeword of C′ that is non-zero). (b) Contract
C′ on coordinate j, i.e., remove all codewords with j in their support from C′. This procedure is
repeated until dim(C ′) ≤ α at which point we output a random codeword of C′. To see that this
satisfies the claim, one assumes that no set S satisfies condition (2) and fixes a random codeword
c ∈ C of weight at most αd and show that each step of contraction (as in (a) above) preserves
membership of c ∈ C′ with probability at least αd/|supp(C′)| and the product of this quantity over
the iterations of contraction telescopes to n−α. When the algorithm terminates C′ has dimension
at most α and so has at most qα codewords. Thus if c is still a codeword of C′ then it will be output
with probability q−α.

This concludes our summary of the work of [KPS24]. Before turning to our work we highlight
the challenges towards making their analysis algorithmic, and to extending it to settings beyond
linear codes over Fq.

Algorithmic challenge: The description above including that of contraction is needlessly waste-
ful — in order to maintain the code C′ one does not need to maintain the full set of codewords of
C′. It suffices to maintain a basis and the contraction can be easily explained as a step of Gaussian
elimination on this basis. (Indeed this is already done in [KPS24].) The key challenge to making
this argument algorithmic is that of finding a set S satisfying condition (2) when it exists. For
instance if C restricted to S has dimension t = 1, finding S corresponds to finding a codeword of
minimum weight in C, a well-known NP-hard task [Var97] even to approximate [DMS03]. This is
the key algorithmic barrier that we need to overcome in this work.

Beyond Fields: Turning to extensions beyond Fq, we first note that such an extension is neces-
sary for us to get a classification. For instance the predicate P (x1, . . . , x6) = 1 ⇔

∑
i xi ̸∈ {0, 6}

needs to works with linear structures (“modules”) over Z6. The entire analysis above involving
notions like dimension and basis is linear algebraic, and Gaussian elimination only works in this
setting. It is well-known that elements of linear algebra sometimes completely break down beyond
the setting of fields, leading to obstacles such as inability to prove strong lower bounds for ACC
circuits [BBR94], while opening up paths for surprising designs [Gro97] and codes [Efr12]. A priori
it is not clear if there is a way to extend the analysis to, say, additive sets over C ⊆ Zm

6 .

Beyond linear-size sparsifications: Finally while the methods of [KPS24] are great when
it comes to proving the existence of linear-sized sparsifications, they fail to distinguish between
different settings where the best sparsification is not trivial (of size nr for an r-ary predicate
P ) but super-linear. They either offer sparsifications of (nearly) linear size or revert to trivial
sparsifications. A challenge before our work is to develop techniques to identify settings with
sparsification complexity in between the linear and the trivial regime.
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2.2 Towards an Efficient Algorithm

As explained above finding a small set S of coordinates that supports many codewords is not
known to be algorithmically feasible (and quite possibly is NP-hard). The key starting point of
our work is the observation that we do not have to exactly recover the set S of rows to remove.
Instead, as long as we can recover some superset T of these rows S which is not too large, the
rest of the sparsification algorithm will work unhindered. A similar insight is also seen in [BK96]
when creating their efficient sparsification routine for graphs. In the graph setting, [BK96] define
a notion of strength of an edge and show that simply storing 2d log(n) spanning forests suffices for
capturing all edges of strength ≤ d. After this, one can then show that sampling the rest of the
edges in a graph at rate roughly log(n)/d will preserve all cuts in the graph to a factor of (1 ± ϵ).
At a high-level, our approach is in a similar spirit, though we need a different combinatorial object.

Instead of considering spanning forests, we introduce the notion of “maximum spanning sub-
sets”. For a matrix G generating the code C, our goal is to select a subset of rows T1 such that
the number of distinct codewords in Span(G|T1) is equal to the number of distinct codewords in
Span(G). We show that if one iteratively calculates and stores 2d log n disjoint maximum spanning
subsets (yielding a set T ) we efficiently compute a set T that is not too large and satisfies S ⊆ T .
Note that our notion of largeness is much weaker. S was promised to have size at most d · t (where
t is the dimension of S) whereas our T has size at most 2dn log n. But this turns out to be good
enough for efficient sparsification!

The key analysis step is showing that such a set T contains S: This is done by looking at how
much of S has been collected after each block of removal of cd disjoint maximum spanning subsets.
Suppose the initial dimension of S is t. We note that if the dimension of S is still at least t/c
after this block of removals, then each iteration within the block must have recovered at least t/c
new coordinates from S, and this is a contradiction to the claim that S only had dimension t to
start with. We conclude the dimension of S drops by a constant factor in each block and so log n
blocks of removal of maximum disjoint spanning subsets completely covers all of S. This allows us
to make the counting lemma of [KPS24] algorithmic and thus get efficient algorithms for all their
settings.

2.3 Sparsifying additive sets over Zq for general q

We now discuss sparsifying more general linear spaces, and start by identifying three specific prop-
erties of the contraction procedure from [KPS24] that we would like to emulate in our setting.

Property 1: If we contract a code C′ on coordinate j, then a codeword c remains in the
contracted code if and only if cj = 0.

Property 2: There is a bounded number of contractions one can do before C′ has dimension
at most α.

Property 3: Each contraction preserves the linear structure; i.e., C′ is always a linear code.
Furthermore C′ is specified by at most n vectors in Fm

q and this specification can be maintained
under contraction in polynomial time.

Roughly, the first two items are necessary to ensure that we can lower-bound the probability
that a codeword c remains in the span of the generating matrix after repeated contractions. The
final item is necessary to ensure that the contraction is well-behaved and can be manipulated in
polynomial time, in the sense that one can contract on an already contracted code in polynomial
time.
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The natural analog of linear codes in Fm
q is additive sets over C ⊆ Zm

q . There is no immediate
notion of a basis, though one can start with a generating set of elements of C given by a matrix
G ∈ Zm×n

q such that C = {G.x|x ∈ Zn}. But this generating set, or even its size, is not unique —
for example the set of vectors4 generated by (3, 0) and (0, 2) in Z2

6 is the same as the set generated

by (3, 2). Nevertheless, our goal is to sparsify such a matrix to one of size Õ(n).
A natural choice for contraction would be to pick a random coordinate j where some element of

C′ is non-zero and then to remove from C′ all elements that are non-zero on the jth coordinate, and
this is what we do. This immediately yields Property 1. It also preserves the additive structure, so
the first part of Property 3 follows. To make the representation explicit we give an algorithm based
on GCD computation (reminiscent of the Hermite Normal form computation). (See [Mic14b]) The
tricky part is to argue Property 2. Here we can no longer count on reduction in dimension since
we no longer have a vector space to work with. However group theory comes to our rescue — we
notice that C is a subgroup of Zm

q of size at most qn and after each contraction it shrinks to a strict
subgroup. Since subgroups have size at most half of any group containing them, it follows that
there can be at most n log q iterations of contraction.

Armed with this contraction procedure we are able to establish a type of codeword-counting
bound as in [Kar93,KPS24]. Specifically, we prove the following result, which plays a key role in
our later sparsification method.

Theorem 2.1 (Informal version of Theorem 4.4). For every additive set C ⊆ Zm
q of size at most

qns, and for every integer d ≥ 1, there exists a set S ⊆ [m] of size at most n log(q)·d, such that upon
removing these rows, for any integer α ≥ 1, the resulting additive set has at most

(
n log(q)

α

)
· qα+1

distinct elements of weight ≤ αd.

The formal proof of this statement appears in Section 4. As an immediate consequence of this
result, we are able to directly take advantage of some of the tools used in [KPS24] to conclude the
existence of (ϵ, Õ(n log2(m) log2(q)/ϵ2))-sparsifiers for unweighted codes C ⊆ Zm

q , with associated
generating matrix G ∈ Zm×n

q . This is formally stated and proved as Theorem 5.13.
However, as in [KPS24], this result is imperfect for several reasons. First, the dependence on

log(m) in the sparsifier size is unaffordable, as m can be exponentially large in n, resulting in
losses of polynomial factors of n in the sparsifier size. (We can’t afford to simply re-invoke the
sparsification result as is because the sparsified code now has associated weights.) Second, we need
an analog to the efficient procedure to find a small superset T of the set S alluded to in Theorem 2.1
to get an efficient algorithm. The latter procedure turns out to be not too different than in the Fq

case though leads to additional log q factor losses in the bound. Finally, we still only have a result
for cyclic groups and not general Abelian groups (including infinite ones). We address these issues
briefly next before moving on to the extensions to higher degree constraints.

2.4 Getting near-linear sized sparsifiers over all Abelian groups

To address the dependence on m, we create analogs of some of the key pieces used in the framework
of [KPS24], and also introduce new techniques. To recap, the framework from [KPS24] first uses a
simple algorithm to make quadratic size code-sparsifiers for codes of originally unbounded length.
This algorithm operates by sampling each coordinate i of the code at rate pi =

n
ϵ2 minc∈C:ci ̸=0 wt(c)

.

That is, the sampling rate for coordinate i is inversely proportional to the minimum weight codeword
which is non-zero in its ith coordinate. Unfortunately, this quantity is in fact NP-hard to calculate

4For lack of a better word, we abuse terminology here in referring to elements of Zm
q as vectors even though they

don’t form a vector space.
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(even to approximate), and further, the analysis used to show that these sampling rates preserve
codeword weights is tuned specifically for the case of fields. To bypass this, we take advantage of
the fact that we do not actually require exactly quadratic size sparsifiers, and in particular, any
polynomially-bounded (in n) size sparsifier suffices. Thus, we can simply invoke the result discussed
above for creating (ϵ, Õ(n log2(m) log2(q)/ϵ2)) sparsifiers, which will yield sparsifiers of polynomial
size. As we will see later, this procedure can be made to run in polynomial time, and thus we can
bypass the NP-hardness of this first “quadratic-size sparsifier” step used in [KPS24].

The second component of this algorithm is the so-called “weight-decomposition” step from
[KPS24]. Roughly, the previous step returns a polynomially-bounded size sparsifier. But, each
coordinate in this sparsifier can have weight which is potentially unbounded in n, and the original
algorithm we defined only works on unweighted codes. If we naively try to take this weighted code
and turn it into an unweighted code by repeating each coordinate a number of times proportional
to its weight, we will end up back where we started, with a code of possibly exponential length.

Thus, the objective is to break the code up into several parts, each of which corresponds to
coordinates with weights in a given range [αi, αi+1], for some value α. As in [KPS24], the key insight
comes from the fact that if a given codeword is non-zero in coordinates with large weight, it suffices
to simply approximately preserve the weight of the codeword on these large weight coordinates,
and ignore the lower weight coordinates. On the large weight coordinates, the ratio of the weights
of the coordinates is bounded, so we can afford to simply repeat each coordinate a number of times
proportional to its weight, and then sparsify this unweighted code.

However, the tricky part comes in showing how to cleanly restructure the code such that once we
have preserved the codewords on coordinates of large weight, they are removed from the code, and
instead it is only the codewords which were all 0 on these large weight coordinates that remain to be
sparsified. Our key insight here is that it turns out that this corresponds exactly with performing
a contraction on the coordinates of the code with large weight. This returns a new code where the
only surviving codewords are those which were all 0 on the large weight coordinates. In particular,
the number of remaining distinct codewords has sufficiently decreased such that we can take the
union of all of the sparsifiers of all the different weight levels, while still not exceeding near-linear
size. This leads to the proof of Theorem 5.17 in the general, non-field setting.

Affine Abelian Contraction Algorithm After establishing the result for Zq, the difficulty
now comes in extending the algorithm to general Abelian groups A. We do this in Section 6,
where we show a generalization of the contraction argument to Abelian groups, and then we are
immediately able to conclude the existence of “code” sparsifiers in this regime, and by equivalence,
CSP sparsifiers for affine, Abelian predicates by using the same framework established for Zq; we
discuss the generalization of this contraction argument below.

In the more general Abelian group setting, our first difficulty comes in associating a “code”
with the Abelian group A. In the setting of Zq, such an association is natural, as we simply place
the coefficients of our affine equation as the entries in a row of the generating matrix G. In the
Abelian setting, we instead take advantage of the Fundamental Theorem of Finite Abelian groups
[Pin10]. Roughly speaking, this theorem states that for any Abelian group A, we can say that A is
isomorphic to a group of the form

Zq1 × Zq2 × · · · × Zqu .

In particular, for any element a ∈ A, we can create a (linear) bijection sending a to a tuple

(d
(a)
1 , . . . d

(a)
u ) ∈ Zq1 × Zq2 × · · · × Zqu . Then, our result proceeds by creating a generating matrix

G over these tuples, that is, each entry of G is an entry in Zq1 × Zq2 × · · · × Zqu . The benefit
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now comes from the fact that arithmetic in each individual entry of a tuple operates the same as
arithmetic over Zq. In particular, the contraction algorithm we defined for arbitrary Zq extends
to Zq1 × Zq2 × · · · × Zqu by running the contraction algorithm once for each Zqi for i ∈ [u] (once
for each entry in the tuple). The correctness of this contraction algorithm then (largely) follows
from the correctness of the algorithm over Zq, and so we can conclude the existence of a similar
decomposition theorem / counting bound. This then allows us to conclude Theorem 1.7.

2.5 Sparsifying Symmetric CSPs

As a direct consequence of our sparsifiability result for affine predicates over Zq, we are able to
precisely identify the symmetric, Boolean predicates P for which CSP(P ) is sparsifiable to near-
linear size, formally stated as Theorem 1.3.

The formal proof of this statement appears in Section 8. To prove this theorem, we show that
for any symmetric predicate P : {0, 1}r → {0, 1}, if the zeros of P are periodic, then one can write
a simple affine equation expressing the zeros of P . As before, we take periodic to mean that if
P0(x) = 0, P0(y) = 0 for x, y ∈ {0, . . . r}, then for z = 2x− y, or z = 2y − x, we have P0(z) = 0. If
this is the case, we show there will be an equation of the form

P (x) = 1[

r∑
i=1

aixi + b ̸= 0 mod q],

where q is some integer ≤ r+1. In this context, q will be the period of P , meaning that the levels of
the predicate P which evaluate to 0 will be exactly q apart. It is inherent in this formulation that
the period of P may be a composite number, hence requiring the generalization of the contraction
method to non-fields. We can consider for instance the predicate P : {0, 1}6 → {0, 1}, where
P (x) = 0 if and only if |x| = 1, 5. It follows then that we can express

P (x) = 1[
6∑

i=1

xi + 3 ̸= 0] mod 4,

and one can check there is no similar way to express the predicate as such an affine equation modulo
a prime.

We complement the result above by showing that if the zeros of a predicate P are not periodic,
then there must exist a projection to an AND of arity at least 2. Indeed, any single witness to
non-periodicity, i.e. a triple of the form c1, c2, c3 = 2c2 − c1, where P is 0 on strings with c1 or c2
1’s, but is 1 on c3 1’s is enough to conclude the existence of a projection to an AND of arity 2.
Thus, periodicity of the zeros of a symmetric predicate is a necessary and sufficient condition for
being sparsifiable to near-linear size.

2.6 Non-trivial sparsification for almost all predicates

Finally, we prove a broad generalization of a result from Filtser and Krauthgamer [FK17]. [FK17]
showed that when dealing with predicates of the form P : {0, 1}2 → {0, 1}, all CSP instances with
predicate P are sparsifiable to near-linear size in the number of variables if and only if |P−1(1)| ̸= 1,
i.e. the predicate P does not have only one satisfying assignment.

We extend this result, and show that for any r (i.e. not only r = 2 as in [FK17]), if a predicate
P : {0, 1}r → {0, 1} satisfies |P−1(1)| ̸= 1, then we can sparsify CSP instances with predicate P
to size Õ(nr−1). In fact, our result is slightly stronger than this, as it even applies to a CSP with
multiple predicates. We show that for any CSP with predicates P1, . . . Pm such that each Pi satisfies
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|P−1
i (1)| ̸= 1, the entire system can be sparsified to size Õ(nr−1). Our result is formally stated as

Theorem 1.5.
This result is tight as there exist predicates with at least 2 satisfying assignments that require

sparsifiers of size Ω(nr−1). Indeed, consider for instance the predicate P : {0, 1}r → {0, 1} such
that P (1, x1, . . . xr−1) = 1, and P (0, x1, . . . xr−1) = AND(x1, . . . xr−1). This predicate will have
2r−1 + 1 satisfying assignments, but also has a projection to an AND of arity r − 1, and thus
requires sparsifiers of size Ω(nr−1).

Deriving the sparsification result is non-trivial. Indeed, the sparsification procedures created in
this paper and the prior work of [KPS24] both rely on being able to represent a predicate as the
non-zero assignments to an affine predicate. So, in order to generalize our sparsification method
to a broader class of predicates, we show that for any predicate P : {0, 1}r → {0, 1}, if there exists
a degree ℓ polynomial Q over Fq such that ∀y ∈ {0, 1}r, P (y) = 1[Q(y) ̸= 0], we can then sparsify

CSPs with predicate P to size Õ(nℓ/ϵ2). To see why this result follows intuitively, for a degree
ℓ polynomial on n variables, there are O(nℓ) possible terms in this polynomial. Naturally, the
polynomial is already linear over all of these terms, so if we make a new variable for each term, we
can represent the polynomial as a linear equation over all of the new variables (but this leads to a
degradation in sparsifier size as we are now sparsifying over a larger universe of variables).

Beyond this point, the difficulty comes in showing that if a predicate has at least two satisfying
assignments, there exists a polynomial of degree r − 1 which exactly captures this predicate. Un-
fortunately, we are unable to show this fact exactly: instead, we show that for any two assignments
y1, y2 ∈ {0, 1}r, one can create a polynomial Py1,y2 over Z2 of degree r − 1 which is 1 only on
y1, y2. It follows then that for a general predicate P : {0, 1}r → {0, 1} with satisfying assignments
y1, . . . ys, one can write

P = Py1,y2 ∨ Py1,y3 ∨ · · · ∨ Py1,ys .

Thus, all that remains is to show that one can simulate the OR of several predicates without
blowing up the size of the sparsifier. To do this, we take advantage of our result on the sparsifiability
of Abelian groups. Indeed, for an example such as the one above, we instead operate over the
Abelian group (Z2)

s. The elements of this group look like tuples

(x0, x1, . . . xs−1).

Ultimately, we then create the predicate over (Z2)
s which looks like

P (x) = (Py1,y2(x), Py1,y3(x), . . . , Py1,ys(x)) = (Py1,y2 , Py1,y3 , . . . , Py1,ys)(x).

Note that because each polynomial Py1,yi(x) only takes values from Z2, the above polynomial is
zero (i.e. the zero tuple) if and only if every polynomial Py1,yi evaluates to 0. Otherwise, if any
individual polynomial evaluates to 1 on x, the output is non-zero. Finally, we can conclude by
invoking our result on the sparsifiability affine Abelian groups.

One consequence of this result is that it gives us a complete characterization of the sparsifiability
of CSPs with predicates on 3 variables. Indeed, in the work of [KPS24], it was shown that any
predicate P of arity 3 which does not have a projection to AND is sparsifiable to near-linear size (in
n). Using the above result, we know that any predicate P of arity 3 which has at least 2 satisfying
assignments is sparsifiable to quadratic size. Thus, the only predicate which is not sparsifiable to
quadratic size is the predicate with exactly one satisfying assignment, namely, AND(x1, x2, x3) up
to negations. For this predicate, one can clearly see a sparsification lower bound of size Ω(n3). Thus,
piecing this all together, we give a complete characterization of the sparsifiability of predicates of
arity 3. That is,
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Theorem 1.6. For a predicate P : {0, 1}3 → {0, 1} let c be the largest integer such that P has
a projection to ANDc. Then, CSP(P ) is (ϵ, Θ̃(nc)) efficiently-sparsifiable for every ϵ ∈ (0, 1), and
moreover, for every ϵ ∈ (0, 1), CSP(P ) is not (ϵ, o(nc)) sparsifiable.

3 Preliminaries

In this work, when we use Fq, this refers to the field with q elements (and as such q must necessarily
be prime or a prime power). When we say Zq, this is simply the group of integers mod q, and as
such we do not require that q is prime or a prime power (and in fact, the focus will be on the case
where q is composite).

Definition 3.1. We say that a code C ⊆ Zm
q is simply a subspace of Zm

q closed under linear
combinations. Thus, we can associate with any such code C a generating matrix G ∈ Zm×n

q such
that C = Span(G) (specifically, C = {Gx : x ∈ Zn

q }).
The coordinates of the code are [m]. When we refer to the number of coordinates, this is

interchangeable with the length of the code, which is exactly m.

Note that typically code are generated over fields, but in this work we do not restrict ourself to
this setting.

In this work, we will be concerned with code sparsifiers as defined below.

Definition 3.2. For a code C ⊆ Zm
q with associated generating matrix G ⊆ Zm×n

q , a (1 ± ϵ)-
sparsifier for C is a subset S ⊆ m, along with a set of weights wS : S → R+ such that for any
x ∈ Zn

q

(1− ϵ)wt(Gx) ≤ wtS(G|Sx) ≤ (1 + ϵ)wt(Gx).

Here, wtS is meant to imply that if the codeword is non-zero in its coordinate corresponding
to an element i ∈ S, then it contributes wS(i) to the weight. We will often denote G|S with the
corresponding weights as G̃.

We next present a few simple results for code sparsification that we will use frequently.

Claim 3.1. For a vertical decomposition of a generating matrix,

G =


G1

G2
...
Gk

 ,

if we have a (1± ϵ) sparsifier to codeword weights in each Gi, then their union is a (1± ϵ) sparsifier
for G.

Proof. Consider any codeword c ∈ Span(G). Let ci denote the restriction to each Gi in the vertical
decomposition. It follows that if in the sparsifier wt(ĉi) ∈ (1± ϵ)wt(ci), then wt(ĉ) =

∑
iwt(ĉi) ∈

(1± ϵ)
∑

iwt(ci) = (1± ϵ)wt(c).

Claim 3.2. Suppose C′ is (1 ± δ) sparsifier of C, and C′′ is a (1 ± ϵ) sparsifier of C′, then C′′ is a
(1 − ϵ)(1 − δ), (1 + ϵ)(1 + δ) sparsifier to C (i.e. preserves the weight of any codeword to a factor
(1− ϵ)(1− δ) below and (1 + ϵ)(1 + δ) above).
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Proof. Consider any codeword Cx. We know that (1 − ϵ)wt(Cx) ≤ wt(C′x) ≤ (1 + ϵ)wt(Cx).
Additionally, (1 − δ)wt(C′x) ≤ wt(C′′x) ≤ (1 + δ)wt(C′x). Composing these two facts, we get our
claim.

Claim 3.3. ([FHHP11]) Let X1, . . . Xℓ be random variables such that Xi takes on value 1/pi with
probability pi, and is 0 otherwise. Also, suppose that mini pi ≥ p. Then, with probability at least
1− 2e−0.38ϵ2ℓp, ∑

i

Xi ∈ (1± ϵ)ℓ.

We will use the following result from the work of Khanna, Putterman, and Sudan [KPS24]:

Theorem 3.4. For a predicate P : {0, 1}r → {0, 1}, if there exists π : {x1, . . . xr} → {0, 1, a,¬a, b,¬b}
such that P (π(x1), . . . π(xr)) = AND(a, b), then there exist CSPs with predicate P that require spar-
sifiers of size Ω(n2/r2).

While the result [KPS24] is specifically only stated for ANDs of arity 2, note that their argument
generalizes to ANDs of arity r. I.e., if there exists a projection to ANDs of arity ℓ, then there exist
instances which require sparsifiers of size Ω(nℓ) for any constant 0 < ϵ < 1.

We will frequently make use of the following facts about the Euclidean algorithm:

Fact 3.5 (Euclidean Algorithm). (See among many others, [Wei]) There exists an algorithm which
upon being given a list of integers y1, . . . yr:

1. Sets x1 = y1, . . . xr = yr.

2. Only performs operations of the form xi ← xi + ℓ · xj (for ℓ ∈ Z).

3. Terminates with x1 = GCD(y1, . . . yr).

Note that while many algorithms are only stated for computing the GCD of any two numbers,
one can simply calculate the GCD of more numbers iteratively, adding one new numbers to the com-
putation in each iteration. I.e., in the case of 3 numbers, one can compute GCD(x1,GCD(x2, x3)).

4 A Decomposition Theorem for Codes over Zq

We start by working towards a proof of Theorem 1.7 for the special case of finite cyclic groups,
i.e., groups of the form Zq for some (potentially composite) integer q. In this section, we will prove
a decomposition theorem (Theorem 4.4) for general linear spaces over Zq and follow this with an
efficient algorithm for computing this decomposition (Theorem 4.6). This theorem is analogous
to Theorem 2.1 in [KPS24], with the key difference being our decomposition is also algorithmic.
This forms the basis of all of our algorithmic sparsification results. We will use this efficient
decomposition in Section 5 to prove Theorem 1.7 over Zq.

To do this, we first define a contraction algorithm on the generating matrix of this linear space.
We show that with high probability a codeword of low-weight will survive this contraction proce-
dure, and remain in the span of the generating matrix, provided the “support” of the generating
matrix never becomes too small. Using this, we are able to prove a decomposition theorem about
linear spaces over Zq. Either there exists a linear subspace with small “support” that contains many
distinct codewords, or the contraction procedure shows that there can not be too many codewords
of light weight.
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Definition 4.1. For a linear space C ⊆ Zm
q , we say that the support of C is the set of coordinates

that are not always 0. That is,

Supp(C) = {i ∈ [m] : ∃c ∈ C : ci ̸= 0}.

Definition 4.2. Using the definition of support, we can likewise define the density of a linear
space. For C ⊆ Fm

q ,

Density(C) = log2 |C|
|Supp(C)|

.

Definition 4.3. For a linear subspace C ⊆ Zm
q , a subcode of C is any subspace C′ ⊆ C which is

closed under linear combinations.

We are now ready to define our contraction algorithm.

Algorithm 1: Contract(G, j)

1 Run the Euclidean GCD algorithm (Fact 3.5) on the jth row of generating matrix G
(treating the entries as being over Z), using column operations to get the GCD of the jth
row into a column, say this column is v. Swap v with the first column.

2 Add multiples of v to cancel out the jth entry of every other column in the jth coordinate.
I.e., for i ∈ {2, . . . n}, Gi ← Gi − ((Gi)j/vj) · v.

3 Replace column v with η · v, where η = min{ℓ ∈ [1, . . . , q] : vj · ℓ = 0}.
4 return G

Algorithm 2: Repeated Contractions(G,α, q)

1 Input generating matrix G ∈ Zm×n
q .

2 while more than qα+1 distinct codewords in the span of G do
3 Choose a random non-zero row j of G.
4 Set G = Contract(G, j).

5 end

Claim 4.1. Consider a codeword c ∈ C where C is the span of G. If we run Contract(G, j) on a
coordinate j such that cj = 0, then c will still be in the span of G after the contraction.

Proof. First, we show that after line 1 in the Algorithm 1, c is still in the span. Indeed, the
Euclidean GCD algorithm only ever makes column operations of the form v1 + r · v2 → v1 (see
Fact 3.5). This means that every step of the algorithm is invertible, so in particular, after every
step of the Euclidean GCD algorithm, the span of the matrix G will not have changed.

Now, in line 2 of Algorithm 1, this again does not change the span of G. Indeed, we can simply
undo this step by adding back multiples of v to undo the subtraction. Since the span of G hasn’t
changed after this step, c must still be in the span. Further, note that this step is possible because
vj is the GCD of the jth row of the generating matrix. I.e., there must be some multiple of vj
which cancels out every other entry in the jth row.

Finally, in line 3, the span of G actually changes. However, since c was zero in its jth coordinate,
it could only contain an integer multiple of η times the column v (again where η is defined as
η = min{ℓ ∈ [q] : vj · ℓ = 0}), as otherwise it would be non-zero in this coordinate. Hence c will still
be in the span of the code after this step, as it is only codewords that are non-zero in coordinate j
that are being removed.

Claim 4.2. After calling Contract(G, j) on a non-zero coordinate j, the number of distinct code-
words in the span of G decreases by at least a factor of 2.
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Proof. Consider the matrix G after line 2 of Algorithm 1. By the previous proof, we know that
the span of G has not changed by line 2. Now, after scaling up v by η, we completely zero out
row j of G. Previously, for any codeword in the code which was zero in coordinate j, we could
correspondingly add a single multiple of column v to it to create a new codeword that was non-zero
in its jth coordinate. Thus, the number of codewords which were non-zero in coordinate j was at
least as large as the number which were zero. After scaling up column v, codewords which were
non-zero in this coordinate are no longer in the span, so the number of distinct codewords has gone
down by at least a factor of 2.

Claim 4.3. Let C be the span of G ⊆ (Zq)
m×n, and let d be an integer. Suppose every subcode

C′ ⊆ C satisfies Density(C ′) < 1
d . Then for any α ∈ Z+, the number of distinct codewords of weight

≤ αd is at most
(
n log(q)

α

)
· qα+1.

Proof. Consider an arbitrary codeword c in the span of G of weight ≤ αd. Let us consider what
happens when we run Algorithm 2. In the worst case, we remove only a factor of 2 of the codewords
in each iteration. Thus, suppose that this is indeed the case. Suppose that the code starts with
qn distinct codewords. Now, after ℓ iterations, this means in the worst case there are 2n log(q)−ℓ

distinct codewords remaining. Note that after running these contractions, the resulting generating
matrix defines a subcode C′ of our original space. Then, by our assumption on the density of every
subcode, at this stage, the number of non-zero rows in the generating matrix must be at least
(n log(q)− ℓ)d. Thus, the probability that c remains in the span of the generating matrix after the
next contraction is at least

Pr[c survives iteration] ≥ 1− αd

(n log(q)− ℓ)d
= 1− α

n log(q)− ℓ
,

where this is simply the probability that we sample a coordinate in which cj = 0.
Now, we can consider the probability that c survives all iterations. Indeed,

Pr[c survives all iterations] ≥ n log(q)− α

n log(q)
· n log(q)− α− 1

n log(q)− 1
· · · · · α+ 1− α

α+ 1

=

(
n log(q)

α

)−1

.

At this point, the number of remaining codewords is at most qα+1. Hence, the total number of
codewords of weight ≤ αd is at most

(
n log(q)

α

)
· qα+1.

Theorem 4.4. For a code C ⊆ Zn
q with at most qn distinct codewords, and any arbitrary integer

d ≥ 1, at least one of the following is true:

1. There exists C′ ⊆ C such that Density(C ′) ≥ 1
d .

2. For any integer α ≥ 1, the number of distinct codewords of weight ≤ αd is at most
(
n log(q)

α

)
·

qα+1.

Proof. Suppose condition 1 does not hold, and invoke Claim 4.3.

Corollary 4.5. For any linear code C over Zm
q , with ≤ qn distinct codewords, and for any integer

d ≥ 1, there exists a set of at most n log(q) · d rows, such that upon removing these rows, for any
integer α ≥ 1, the resulting code has at most

(
n log(q)

α

)
· qα+1 distinct codewords of weight ≤ αd.
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Proof. We use Theorem 4.4. Suppose for the code C that condition 2 does not hold. Then,
condition 1 holds, which means there exists a set n′d rows, with at least 2n

′
distinct codewords

that are completely contained on these rows. Now, by removing these rows, this yields a new code
where the number of distinct codewords has decreased by a factor of 2n

′
. Thus, if removing these

rows yields a new code C′, this new code has at most qn/2n
′
distinct codewords. Now, if condition

2 holds, for C′, we are done. Otherwise, we can again apply this decomposition, removing another
n′′d rows to yield a new code with at most 2n log(q)−n′−n′′

distinct codewords. In total, as long as we
remove rows in accordance with condition 1, we can only ever remove n log(q)d rows total, before
there are no more distinct codewords remaining, and condition 2 must hold.

Thus, there exists a set of at most n log(q) · d rows, such that upon their removal, the new code
satisfies condition 2.

4.1 Efficient Algorithms for Computing Decomposition

In this subsection, we will show how to efficiently find (a superset of) the rows necessary for the
decomposition guaranteed to exist. In particular, while we may not be able to exactly identify the
set of rows S of the generating matrix which need to be removed, we will be able to find a set T
of ≤ 2n log(q) log(n) · d rows, such that S ⊆ T . It follows then that if we remove the set of rows T ,
then uniform sampling should suffice for preserving the weights of codewords.

We summarize this in the following theorem:

Theorem 4.6. For any linear code C over Zm
q , with ≤ qn distinct codewords, and for any integer

d ≥ 1, there exists a set S of at most n log(q) · d rows, such that upon removing these rows, for
any integer α ≥ 1, the resulting code has at most

(
n log(q)

α

)
· qα+1 distinct codewords of weight

≤ αd. Further, there is an efficient algorithm for recovering a set T ⊆ [m] such that S ⊆ T , and
|T | ≤ nd log(q)(log(n) + log(q)).

Roughly speaking, the method we use in this section should be thought of as a linear algebraic
analog to storing spanning forests of a graph. [BK96] showed that if one stores 2 log(n) ·d spanning
forests of a graph, then one can sample the rest of the graph at rate roughly 1

d while still preserving
the sizes of all cuts in the graph. In our case, the natural analog of a spanning forest will be a
subset T1 of the rows of the generating matrix G, such that the number of distinct codewords in
the span of G|T1 is the same as in G. We define this notion more formally below:

Definition 4.4. For a generating matrix G ∈ Zm×n
q , we say that a maximum spanning subset

T ⊆ [m] is a subset of the rows of the generating matrix G such that the number of distinct codewords
in the span of G|T is the same as in the span of G.

Claim 4.7. In order to efficiently construct a maximum spanning subset of G ∈ Zm×n
q of size

≤ n log(q), it suffices to be able to efficiently compute the number of distinct codewords in the span
of an arbitrary generating matrix H ∈ Zm′×n′

q .

Proof. Consider the following simple algorithm:

Algorithm 3: BuildMaxSpanningSubset(H)

1 Initialize T = ∅.
2 Let k = 0.
3 for i ∈ [m] do
4 If the number of distinct codewords in the span of H|T∪{i} is ≥ k, then set T = T ∪ {i},

and k ← the number of distinct codewords in the span of H|T∪{i}.

5 end
6 return T
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Clearly, this is efficient if the procedure for checking the number of distinct codewords in the
span of G|T is efficient. Further, it is clear to see that this yields a spanning subset, as any row
which is not kept does not increase the number of codewords. So, it remains to prove the size
bound. For this, we simply remark that if adding a row to G|T increases the number of distinct
codewords, then it at least doubles the number of distinct codewords. To see why, suppose we have
a set T and a set T ∪ {i} such that G|T∪{i} has more distinct codewords in its span than G|T .
Consider any two messages x1, x2 ∈ Zn

q such that G|Tx1 = G|Tx2, yet G|T∪{i}x1 ̸= G|T∪{i}x2. It
must be the case then that G|T∪{i}(x1 − x2) is non-zero only in the last coordinate (corresponding
to row i), as the two vectors are equal for all the rows in T . To conclude, we can then see that
for any codeword z = G|Tx, there are at least two distinct corresponding codewords in the span of
G|T∪{i}, i.e., G|T∪{i}x and G|T∪{i}(x+ x1 − x2).

Thus, each row which increases the number of codewords increases it by at least a factor of 2.
Because there can be at most qn distinct codewords, this means the size of the spanning subset will
be at most n log(q).

Claim 4.8. There is an efficient algorithm for exactly calculating the number of distinct codewords
in the span of a generating matrix G ∈ Zm×n

q .

Proof. First, note that from the analysis of the contraction algorithm, we can assume without loss
of generality that G is given to us in a form where the first row has a single non-zero entry in the
first column (as if G is not, then we can efficiently get G into such a form in time O(mn log(q))).
Now, let this non-zero entry be denoted by a ∈ Zq, and let c be the smallest non-negative integer
such that c · a = 0 over Zq. Let G

′ denote the resulting matrix when we replace the first column c1
of G with c · c1. In particular, this forces the entire first row of G′ to be 0.

Then, we will show that the number of distinct codewords in the span of G is exactly c times
greater than the number of distinct codewords in the span of G′.

To see this, we will show that there is an equivalence class in the codewords of G, such that
there are exactly c codewords in the span of G that map to each codeword in the span of G′. In
particular, for a codeword z ∈ G′, we denote the corresponding codewords in the span of G by
z+α · c1, where α ∈ {0, 1, . . . c− 1}. Clearly, this yields a map from elements in the image of G′ to
every codeword in the span of G. Indeed, for any codeword in the span of G, it can be written as

y =
n∑

i=1

αici = (α1 mod c) · c1 + ((α1 − (αi mod c))/c) · c · c1 +
n∑

i=2

αici.

It remains to show that this map is unique. Indeed, suppose that for a codewords y in the
image of G we can write it as y = z1 + β1c1 = z2 + β2c1. Now, observe that it must be the case
that β1 = β2 because (z1)1 = 0 and (z2)1 = 0. This follows because the first row of the matrix G′

is all zeros, so any codeword generated by G′ must be zero in its first coordinate. Further, because
c is the smallest value such that c · (c1)1 = 0, for any values 0 ≤ β < c, the values β · (c1)1 must be
distinct. Thus, we see that y = z1 + β1c1 = z2 + β1c1, and so it follows that z1 = z2.

Thus, the natural algorithm for computing the number of distinct codewords is as follows: given
the generating matrix G, contract on the first row to get a generating matrix G′, and keep track
of the value c that was used to scale the first column. Then, inductively, the number of distinct
codewords in the span of G is c times the number of distinct codewords in the span of G′.

The running time for this algorithm is O(mn2 log2(q)), as there can be at most n log(q) rows
we contract on, each of which takes time O(mn log(q)).
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Next, we will show that storing disjoint maximum spanning subsets suffices for recovering the
set S guaranteed by Corollary 4.5. First however, let us introduce some notation regarding this set
S of bad rows in G.

Recall that we are given a parameter d, and we wish to remove a set of ≤ n log(q)d bad rows,
such that the codeword counting bound will hold with parameter d after removing these rows. As
mentioned, S is really the support of the union of several subspaces which are particularly dense.
That is, if we let C denote the span of G, and we analyze the following expression

max
C′⊆C

log |C ′|
|Supp(C ′)|

,

if the expression is ≥ 1/d, then the subspace is too dense for our counting bound to hold. When
this occurs, we let C ′

1 denote the corresponding maximizing subspace, we let S1 denote the support
of C ′

1, and we let k1 denote the log of the number of distinct codewords removed by taking away
the rows in S1. Now, after removing this subspace C ′

1 (i.e., removing the support of C ′
1 from C), it

is still possible that the counting bound is violated. Thus, we continue to analyze the expression

max
C′⊆C|S̄1

log |C ′|
|Supp(C ′)|

,

and if the expression is ≥ 1/d, then again we let C ′
2 denote the maximizing subspace, S2 denote

the support of C ′
2, and we let k2 = log |CS̄1

| − log |CS̄1∩S̄2
|. We continue doing this iteratively until

finally

max
C′⊆C|S̄1∩···∩S̄ℓ

log |C ′|
|Supp(C ′)|

< 1/d.

We let the sequence of subspaces that are recovered be denoted by C ′
1, . . . C

′
ℓ, let Si = Supp(C ′

i), and
let ki = log |CS̄1∩... ¯Si−1

|−log |CS̄1∩... ¯Si−1∩S̄i
|. Under these definitions, note that S = S1∪· · ·∪Sℓ, k =∑ℓ

i=1 ki, and therefore |S| ≤ kd.
Now, let T1, . . . T2d(log(n)+log(q)) denote disjoint maximum spanning subsets of a generating ma-

trix G ∈ Zm×n
q . Note that computing such a set of disjoint maximum spanning subsets can be done

efficiently, by iterating through the rows of G to first create T1, and then removing the rows from
T1 from G, re-iterating through G and creating a maximum spanning subset T2, etc.

That is, we can use the following algorithm:

Algorithm 4: ConstructSpanningSubsets(H, t)

1 for i ∈ [t] do
2 Let Ti = BuildMaxSpanningSubset(H |T̄1∩... ¯Ti−1

).

3 end
4 return Ti : i ∈ [t].

Clearly, the spanning subsets are disjoint, and the run-time is bounded by O(t ·mn2 log2(q)).
Thus, it remains to show the following claim:

Claim 4.9. For a generating matrix G ∈ Zm×n
q , any choice of d and the set S of bad rows (i.e.

those guaranteed by Corollary 4.5) for G and parameter d, for any disjoint maximum spanning
subsets T1, . . . T2d log(q)(log(n)+log(q)), we have that S ⊆ T1 ∪ T2 · · · ∪ T2d log(q)(log(n)+log(q)).

Proof. First, we will adopt the notation for Si, ki, C
′
i, Ti for i = 1, . . . ℓ that was created in the

preceding paragraph.
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Let us consider a single maximum spanning subset T1 of G along with the set S. We let
k =

∑ℓ
i=1 ki denote the sum of the logs of the number of distinct codewords that were removed. In

particular then, we know that after removing the supports of C ′
1, . . . C

′
ℓ from C (i.e., removing the

set S), then log(|CS̄ |) = log(|C|) − k. So, in order to get a maximum spanning subset (where the
log of the number of distinct codewords is log(|C|)), it must be the case that T1 includes at least
k/ log(q) rows from S, as each row we include increases the number of codewords by a factor of at
most q (and the log by at most log(q)), and there is a factor of 2k distinct codewords that must be
captured by these rows. However, naively repeating this argument does not suffice, as it is possible
that as we recover rows in the Ti’s, the remaining number of distinct codewords to be recovered
from C|S decreases (i.e., perhaps log(|CT̄ |) − log(|CT̄∩S̄ |) << k). Instead, we argue in a manner
reminiscent of [BK96]. After the first 2d log(q) disjoint maximum spanning subsets are recovered
(and denote the set of rows they recover by T ), there are two cases:

1. One case is that log(|CT̄ |) − log(|CT̄∩S̄ |) ≥ k/2. However, this yields a contradiction, as we
know that the set S is of size at most kd. The above implies that for 2d log(q) iterations, each
maximum spanning subset must have recovered at least k/(2 log(q)) (distinct) rows from S.
This is because any maximum spanning subset must contain at least k/(2 log(q)) rows from
the support of these subspaces (otherwise they are not maximally spanning) in order to have
the maximum possible number of distinct codewords. But, then we must have recovered at
least kd rows from S total, which would have exhausted the entire set.

2. The other case is that log(|CT̄ |) − log(|CT̄∩S̄ |) < k/2. That is, among the first 2d log(q)
maximum spanning subsets that are recovered, these contained sufficiently many rows from
S such that the difference between the log of the remaining number of distinct codewords in
CT̄ versus in CT̄∩S̄ decreased by more than half. We want to argue that this means there
are at most kd/2 remaining rows that must be recovered. The key claim we will use is the
following:

Claim 4.10. If log(|CS̄1∩···∩ ¯Si−1
|)− log(|CS̄1∩···∩S̄i

|) = ki with corresponding support Si, and
after removing a set T log(|CS̄1∩···∩ ¯Si−1∩T̄ |) − log(|CS̄1∩···∩S̄i∩T̄ |) < ki − si, then |Si/T | ≤
(ki − si)d.

Proof. First, note that after removing S1, . . . Si−1, C
′
i was the maximizer for the expression

max
C′⊆C|S̄1∩... ¯Si−1

log(|C ′|)
|Supp(C ′)|

,

and in particular, C ′
i achieved some value 1/di ≥ 1/d for this expression, and had log(|CS̄1∩···∩ ¯Si−1

|)−
log(|CS̄1∩···∩S̄i

|) = ki. Now, we claim that if we removed some rows T from the support of C ′
i

such that now log(|CS̄1∩···∩ ¯Si−1∩T̄ |)− log(|CS̄1∩···∩S̄i∩T̄ |) is ≤ ki − si, then T must have recov-
ered at least si · di rows from the support of C ′

i. This follows because instead of removing the
entirety of Si, we instead only remove T ∩ Si, yet still find a reduction in log of the number
of distinct codewords by ki. In particular then, the subspace defined on T ∩ Si contains ≥ si
of the log of the number of distinct codewords contributed by C|Si .

So, if T removed fewer than si · di rows, yet still decreased the log of the number of distinct
codewords by si, this means there must have been a more optimal subspace C ′′

i , defined
on a support of size < sidi with at least 2si distinct codewords, therefore contradicting the
optimality of C ′

i. Thus, we get the stated claim.
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Now, note that originally, the spaces C ′
1, . . . C

′
ℓ had logs of the number of distinct codewords

they contributed totaling k1, . . . kℓ. We are in the case where after removing the rows from
T , log(|CT̄ |)− log(|CT̄∩S̄ |) < k/2. If we let si denote (log(|CS̄1∩···∩ ¯Si−1

|)− log(|CS̄1∩···∩S̄i
|))−

(log(|CS̄1∩···∩ ¯Si−1∩T̄ |)− log(|CS̄1∩···∩S̄i∩T̄ |)) then it must be the case that |Si/T | ≤ (ki − si)d.

In particular,

|S/T | =
ℓ∑

i=1

|Si/T | ≤
ℓ∑

i=1

(ki − si)d = kd− d

ℓ∑
i=1

si ≤ kd/2,

because
∑ℓ

i=1 si ≥ k/2 (half of the log of the number of distinct codewords contributed
by these spaces has been recovered). Thus, the number of remaining rows that have to be
recovered is bounded by kd/2.

In particular, we now repeat this log(n) + log(q) times. In the ith iteration, we are guaranteed
that one of the following happens:

1. The sum of the log of the number of distinct codewords in the spaces in the subspaces C ′
1, . . . C

′
ℓ

is at least k/2i. If this is the case, then we will recover all of the rows in the support. This
is because by induction, after the i − 1st iteration, there will be at most (kd/2i−1) rows
remaining in S to be recovered. If at the end of the ith iteration, the sum of the logs of
the number of distinct codewords of C ′

1, . . . C
′
ℓ is at least k/2

i, then this means we will have
recovered 2kd/2i = kd/2i−1 new rows from S in the ith iteration, which will be the entirety
of the remaining rows.

2. The remaining the sum of the logs of the number of distinct codewords in the spaces C ′
1, . . . C

′
ℓ

is < k/2i. In this case, by the same argument as above, the remaining number of rows that
must be recovered from S is bounded by kd/2i.

After log(n) + log(q) iterations, the remaining number of distinct codewords contributed by rows
(not already recovered) in S goes to 0, and therefore we must have recovered all of S.

This yields the desired claim.

Proof of Theorem 4.6. The set S exists because of Corollary 4.5. The efficient algorithm for recov-
ering the set T of the given size follows from Claim 4.9.

5 Sparsifying Codes Over Zq

In this section we use the decomposition theorem of the previous section to derive a proof of
Theorem 1.7 for the special case of the group Zq and a dependence on log2(q). Specifically, given
an arbitrary (possibly weighted) generating matrix G ∈ Zm×n

q , our goal is to return a sparsifier for
this generating matrix. Note that our codeword counting bounds as stated hold only for unweighted
codes. Thus, our first stepn is generalizing the weight-class decomposition technique from [KPS24]
to the non-field setting.

5.1 Weighted Decomposition

We give an algorithm to show that given a weighted code, decomposes the code cleanly into weight
classes. To this end, we suggest the following procedure upon being given a code of length m and
at most qn distinct codewords in Algorithm 5.

Next, we prove some facts about this algorithm.
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Algorithm 5: WeightClassDecomposition(C, ϵ, α)
1 Let Ei be all coordinates of C′ that have weight between [αi−1, αi].
2 Let Dodd = E1 ∪ E3 ∪ E5 ∪ . . . , and let Deven = E2 ∪ E4 ∪ E6 ∪ . . . .
3 return Dodd,Deven.

Lemma 5.1. Consider a code C with at most qn distinct codewords and length m. Let

Dodd,Deven = WeightClassDecomposition(C, ϵ, (m/ϵ)3).

To get a (1± ϵ)-sparsifier for C, it suffices to get a (1± ϵ) sparsifier to each of Dodd,Deven.

Proof. First, note that the creation of Dodd,Deven forms a vertical decomposition of the code C′.
Thus, by Claim 3.1, if we have a (1± ϵ) sparsifier for each of Dodd,Deven, we have a (1± ϵ) sparsifier
to C.

Because of the previous claim, it is now our goal to create sparsifiers for Dodd,Deven. Without
loss of generality, we will focus our attention only on Deven, as the procedure for Dodd is exactly
the same (and the proofs will be the same as well). At a high level, we will take advantage of the
fact that

Deven = E2 ∪ E4 ∪ . . . ,

where each Ei contains coordinates (i.e. rows of the generating matrix) with weights in the range
[αi−1, αi] where we have now set α = (m/ϵ)3. Because the code C is of length m we know that
the length of Deven is also ≤ m. Thus, whenever a codeword c ∈ Deven is non-zero in a coordinate
in Ei, we can effectively ignore all coordinates of lighter weights Ei−2, Ei−4, . . . . This is because
any coordinate in E≤i−2 has weight which is at most a ϵ3

m3 fraction of any single coordinate in Ei.
Because there are at most m coordinates in Deven, it follows that the total possible weight of all
rows in E≤i−2 is still at most a O(ϵ/m) fraction of the weight of a single coordinate in Ei. Thus,
we will argue that when we are creating a sparsifier for codewords that are non-zero in a row in
Ei, we will be able to effectively ignore all rows corresponding to E≤i−2. Thus, our decomposition
is quite simple: we first restrict our attention to Ei and create a (1 ± ϵ) sparsifier for these rows.
Then, we transform the remaining code such that only codewords which are all zeros on Ei remain.
We present this transformation below:

Algorithm 6: SingleSpanDecomposition(Deven, α, i)

1 Let Ei be all rows of Deven with weights between αi−1 and αi.
2 Let G be a generating matrix for Deven.
3 Store G|Ei .
4 Let G′ = G.
5 while G′|Ei is not all zero do
6 Find the first non-zero coordinate of G′|Ei , call this j.
7 Set G′ = Contract(G′, j).

8 end
9 return G|Ei, G

′|Ēi

Claim 5.2. If the span of G originally had 2n
′
distinct codewords, and the span of G|Ei has 2n

′′

distinct codewords, then after Algorithm 6, the span of G′|Ēi
has 2n

′−n′′
distinct codewords.
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Proof. After running the above algorithm, G′ is entirely 0 on the rows corresponding to Ei, hence it
follows that after running the algorithm, G′ and G′|Ēi

have the same number of distinct codewords.

Now, we will argue that the span of G′ has at most 2n
′−n′′

distinct codewords. Indeed, for any
codeword c in the span of G′, c is also in the span of the original G. However, for this same
c, in the original G we could add any of the 2n

′
distinct vectors which are non-zero on the rows

corresponding to Ei. Thus, the span of G must have at least 2n
′
times as many distinct codewords

as G′. This concludes the claim.

Claim 5.3. For any codeword c in the span of G, if c is zero in the coordinates corresponding to
Ei, then c is still in the span of G′ after the contractions of Algorithm 6.

Proof. This follows from Claim 4.1. If a codeword is 0 in a coordinate which we contract on, then
it remains in the span. Hence, if we denote by c a codeword which is zero in all of the coordinates
of Ei, then c is still in the span after contracting on the coordinates in Ei.

Claim 5.4. In order to get a (1 ± ϵ) approximation to Deven, it suffices to combine a (1 ± ϵ/2)
approximation to G|Ei and a (1± ϵ) approximation to G′|Ēi

.

Proof. For any codeword c ∈ Deven which is non-zero on the coordinates Ei, it suffices to get a
(1± ϵ/2) approximation to their weight on G|Ei , as this makes up at least a (1 ± ϵ/m) fraction of
the overall weight of the codeword.

For any codeword c ∈ Deven which is zero on rows Ei, then c is still in the span of G′, and in
particular, its weight when generated by G is exactly the same as its weight in G′

Ēi
(as it is zero

in the coordinates corresponding to Ei, we can ignore these coordinates). Hence, it suffices to get
a (1 ± ϵ) approximation to the weight of c on G′

Ēi
. Taking the union of these two sparsifiers will

then yield a sparsifier for every codeword in the span of Deven.

This then yields the decomposition we will use to construct sparsifiers:

Algorithm 7: SpanDecomposition(Deven, α)

1 Let D′
even = Deven = E2 ∪ E4 ∪ E6 . . . .

2 Let S = {}.
3 while D′

even is not empty do
4 Let i be the largest integer such that Ei is non-empty in D′

even.
5 Let G|Ei , G

′|Ēi
= SingleSpanDecomposition(D′

even, α, i).
6 Let D′

even be the span of G′|Ēi
, and let Hi = G|Ei .

7 Add i to S.

8 end
9 return S,Hi for every i ∈ S

Claim 5.5. Let S,Hi be as returned by Algorithm 7. Then,
∑

i∈S log(|Span(Hi)|) = log(|Span(Deven)|).

Proof. This follows because from line 5 of Algorithm 7. In each iteration, we store G|Ei , and iterate
on G′|Ei . From Claim 5.2, we know that

(number of distinct codewords in G|Ei) · (number of distinct codewords in G′|Ēi
)

= (number of distinct codewords in G),

thus taking the log of both sides, we can see that the sum of the logs of the number of distinct
codewords is preserved.
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Lemma 5.6. Suppose we have a code of the form Deven created by Algorithm 5. Then, for
S, (Hi)i∈S = SpanDecomposition(Deven), it suffices to get a (1 ± ϵ/2) sparsifier for each of the
Hi in order to get a (1± ϵ) sparsifier for Deven.

Proof. This follows by inductively applying Claim 5.4. Let our inductive hypothesis be that getting
a (1± ϵ/2) sparsifier to each of codes returned of Algorithm 7 suffices to get a (1± ϵ) sparsifier to
the code overall. We will induct on the number of recursive levels that Algorithm 7 undergoes (i.e.,
the number of distinct codes returned by the algorithm). In the base case, we assume that there
is only one level of recursion, and that Algorithm 7 simply returns a single code. Clearly then,
getting a (1± ϵ/2) sparsifier to this code suffices to sparsify the code overall.

Now, we prove the claim inductively. Assume the algorithm returns ℓ codes. After the first
iteration, we decompose Deven into Hi = G|Ei and G′|Ēi

. By Claim 5.4, it suffices to get a (1± ϵ/2)
sparsifier to Hi, while maintaining a (1 ± ϵ) sparsifier to G′|Ēi

. By invoking our inductive claim,
it then suffices to get a (1± ϵ/2) sparsifier for the ℓ− 1 codes returned by the algorithm on G′|Ēi

.
Thus, we have proved our claim.

5.2 Dealing with Bounded Weights

From the previous section, we know that for a code of length m, we can decompose the code into
disjoint sections, where each section has weights bounded in the range [αi, αi+1]. In this section,
we will show how we can sparsify these codes with weights in a bounded range.

Let us consider any Hi that is returned by Algorithm 7, when called with parameter α. By
construction, Hi will contain weights only in the range [αi−1, αi] and will have at most O(m)
coordinates. In this subsection, we will show how we can turn Hi into an unweighted code with at
most O(m · α/ϵ) coordinates by essentially repeating each coordinate j about w(j) times (where
w(j) is the weight of the corresponding coordinate in Hi). First, note however, that we can simply
pull out a factor of αi−1, and treat the remaining graph as having weights in the range of [1, α].
Because multiplicative approximation does not change under multiplication by a constant, this can
be done without loss of generality. Formally, consider the following algorithm:

Algorithm 8: MakeUnweighted(C, α, i, ϵ)
1 Divide all edge weights in C by αi−1.
2 Make a new unweighted code C′ by duplicating every coordinate j of C ⌊10w(j)/ϵ⌋ times.
3 return C′, αi−1 · ϵ

10

Lemma 5.7. Consider a code C with weights bounded in the range [αi−1, αi]. To get a (1 ± ϵ)
sparsifier for C it suffices to return a (1 ± ϵ/10) sparsifier for C′ = MakeUnweighted(C, α, i, ϵ)
weighted by αi−1 · ϵ

10 .

Proof. It suffices to show that C′ is (1± ϵ/10) sparsifier for C, as our current claim will then follow
by Claim 3.2 (composing approximations). Now, to show that C′ is (1 ± ϵ/10) sparsifier for C, we
will use Claim 3.1 (vertical decomposition of a code), and show that in fact the weight contributed
by every coordinate in C is approximately preserved by the copies of the coordinate introduced in
C′.

Without loss of generality, let us assume that i = 1, as otherwise pulling out the factor of αi−1

in the weights clearly preserves the weights of the codewords. Indeed, for every coordinate j in C,
let w(j) be the corresponding weight on this coordinate, and consider the corresponding ⌊10w(j)/ϵ⌋
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coordinates in C′. We will show that the contribution from these coordinates in C′, when weighted
by ϵ/10, is a (1± ϵ/10) approximation to the contribution from j.

So, consider an arbitrary coordinate j. Then,

10w

ϵ
− 1 ≤ ⌊10w(j)/ϵ⌋ ≤ 10w

ϵ
.

When we normalize by ϵ
10 , we get that the combined weight of the new coordinates w′ satisfies

w(j)− ϵ/10 ≤ w′(j) ≤ w(j).

Because w ≥ 1, it follows that this yields a (1 ± ϵ/10) sparsifier, and we can conclude our
statement.

Claim 5.8. Suppose a code C of length m has weight ratio bounded by α, and minimum weight
αi−1. Then, MakeUnweighted(C, α, i, ϵ) yields a new unweighted code of length O(mα/ϵ).

Proof. Each coordinate is repeated at most O(α/ϵ) times.

5.3 Sparsifiers for Codes of Polynomial Length

In this section, we introduce an efficient algorithm for sparsifying codes. We will take advantage of
the decomposition proved in Corollary 4.5 in conjunction with the following claim:

Claim 5.9. Suppose C is a code with at most qn distinct codewords over Zq, and let b ≥ 1 be
an integer such that for any integer α ≥ 1, the number of codewords of weight ≤ αb is at most(
n log(q)

α

)
· qα+1 ≤ (qn)2α. Suppose further that the minimum distance of the code C is b. Then,

sampling the ith coordinate of C at rate pi ≥ log(n) log(q)η
bϵ2

with weights 1/pi yields a (1± ϵ) sparsifier

with probability 1− 2−(0.19η−110) log n · n−101.

Proof. Consider any codeword c of weight [αb/2, αb] in C. We know that there are at most (qn)α

codewords that have weight in this range. The probability that our sampling procedure fails to
preserve the weight of c up to a (1± ϵ) fraction can be bounded by Claim 3.3. Indeed,

Pr[fail to preserve weight of c] ≤ 2e−0.38·ϵ2·αb
2
· η log(n) log(q)

ϵ2b = 2e−0.19αη log(n) log(q).

Now, let us take a union bound over the at most (qn)2α codewords of weight between [αb/2, α].
Indeed,

Pr[fail to preserve any c of weight [αb/2, αb]] ≤ 22α log(qn) · 2e−0.19αη log(n) log(q)

≤ 2α·(−0.19η+2) log(n) log(q)

≤ 2α·(−0.19η+2) log(n)

≤ 2−(0.19η−110)α logn · 2−108α logn

≤ 2−(0.19η−110) log n · n−108α,

where we have chosen η to be sufficiently large. Now, by integrating over α ≥ 1, we can bound the
failure probability for any integer choice of α by 2−(0.19η−110) log n · n−101.
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Next, we consider Algorithm 9:

Algorithm 9: CodeDecomposition(C, d)
1 Let T be ∪iTi for Ti the sets of coordinates returned by

ConstructSpanningSubsets(C, 2d(log(n) + log(q))).
2 Let C′ be the code C after removing the set of coordinates T .
3 return T, C′

Intuitively, the set T returned by Algorithm 9 contains all of the “bad” rows which were causing
the violation of the codeword counting bound. We know that if we removed only the true set of
bad rows, denoted by S, then we could afford to simply sample the rest of the code at rate roughly
1/d while preserving the weights of all codewords. Thus, it remains to show that when we remove
T (a superset of S) that this property still holds. More specifically, we will consider the following
algorithm:

Algorithm 10: CodeSparsify(C ⊆ Zm
q , n, ϵ, η)

1 Let m be the length of C.
2 if m ≤ 100 · n · η log2(n) log2(q)/ϵ2 then
3 return C
4 end

5 Let d = mϵ2

2η·n log2(n) log2(q)
.

6 Let T, C′ = CodeDecomposition(C,
√
d · η · log(n) log(q)/ϵ2). Let C1 = C|T . Let C2 be the

result of sampling every coordinate of C′ at rate 1/
√
d.

7 return CodeSparsify(C1, n, ϵ, η) ∪
√
d · CodeSparsify(C2, n, ϵ, η)

Lemma 5.10. In Algorithm 10, starting with a code C of size 2dn log2(n) log2(q)/ϵ2, after i levels
of recursion, with probability 1− 2i · 2−ηn, the code being sparsified at level i, C(i) has at most

2(1 + 1/2 log log(n))i · d1/2i · η · n log2(n) log2(q)/ϵ2

surviving coordinates.

Proof. Let us prove the claim inductively. For the base case, note that in the 0th level of recursion
the number of surviving coordinates in C(0) = C is d · 2n log2(n) log2(q)/ϵ2, so the claim is satisfied
trivially.

Now, suppose the claim holds inductively. Let C(i) denote a code that we encounter in the ith
level of recursion, and suppose that it has at most

2(1 + 1/2 log log(n))i · d1/2i · η · n log2(n) log2(q)/ϵ2

coordinates. Denote this number of coordinates by ℓ. Now, if this number is smaller than
100nη log2(n) log2(q)/ϵ2, we will simply return this code, and there will be no more levels of recur-
sion, so our claim holds vacuously. Instead, suppose that this number is larger than 100nη log2(n) log2(q)/ϵ2,

and let d′ = ℓϵ2

2ηn log2(n) log2(q)
≤ (1 + 1/2 log log(n))i · d1/2i .

Then, we decompose C(i) into two codes, C1 and C2. C1 is the restriction of C to the set of
disjoint maximum spanning subsets. By construction, we know that T is constructed by calling
ConstructSpanningSubsets with parameter

√
d′η log(n) log(q)/ϵ2, and therefore

|T | ≤ 2
√
d′nη log2(n) log2(q)/ϵ2 ≤ 2(1 + 1/2 log log(n))inηd1/2

i+1
log2(n) log2(q)/ϵ2,
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satisfying the inductive claim.
For C2, we define random variables X1 . . . Xℓ for each coordinate in the support of C2. Xi will

take value 1 if we sample coordinate i, and it will take 0 otherwise. Let X =
∑ℓ

i=1Xi, and let
µ = E[X]. Note that

µ2

ℓ
=

(
ℓ√
d′

)2

/ℓ =
ℓ

d′
≥ η · n · log2(n) log2(q)/ϵ2.

Now, using Chernoff,

Pr[X ≥ (1 + 1/2 log log(n))µ] ≤ e
−2

4 log2 log(n)
·η·n·log(n) log(q)/ϵ2 ≤ 2−ηn,

as we desire. Since µ = ℓ/
√
d′ ≤ (1 + 1/2 log log(n))i · d1/2i+1 · η · n log2(n) log2(q)/ϵ2, we conclude

our result.
Now, to get our probability bound, we also operate inductively. Suppose that up to recursive

level i − 1, all sub-codes have been successfully sparsified to their desired size. At the ith level of
recursion, there are at most 2i−1 codes which are being probabilistically sparsified. Each of these
does not exceed its expected size by more than the prescribed amount with probability at most
2−ηn. Hence, the probability all codes will be successfully sparsified up to and including the ith
level of recursion is at least 1 − 2i−12−ηn − 2i−12−ηn = 1− 2i2−ηn.

Lemma 5.11. For any iteration of Algorithm 10 called on a code C, C1 ∪
√
d · C2 is a (1 ± ϵ)

sparsifier to C with probability at least 1− 2−(0.19η−110) log n · n−101.

Proof. First, let us note that the set T returned from Algorithm 9 is a superset of the bad set S
specified in Corollary 4.5 (this follows from Claim 4.9). Thus, we can equivalently view the proce-
dure as producing three codes: C|S , C|T/S and CT̄ = C′. For our analysis, we will view this procedure
in a slightly different light: we will imagine that first the algorithm removes exactly the bad set
of rows S, yielding C|S and CS̄ . Now, for this second code, CS̄ , we know the code-word counting
bound will hold, and in particular, random sampling procedure will preserve codeword weights with
high probability. However, our procedure is not uniformly sampling the coordinates in CS̄ , because
some of these coordinates are in T/S, and thus are preserved exactly (i.e. with probability 1). For
this, we will take advantage of the fact that preserving coordinates with probability 1 is strictly
better than sampling at any rate < 1. Thus, we will still be able to argue that the ultimate result
C1 ∪

√
d · C2 is a (1± ϵ) sparsifier to C with high probability.

As mentioned above, we start by noting that C′, C|S , CT/S form a vertical decomposition of
C. C|S is preserved exactly, so we do not need to argue concentration of the codewords on these
coordinates. Hence, it suffices to show that

√
d · C1 ∪ CT/S is a (1± ϵ)-sparsifier to C′ ∪ CT/S .

To see that
√
d · C1 ∪ CT/S is a (1± ϵ)-sparsifier to C′ ∪ CT/S , first note that every codeword in

C′ ∪ CT/S is of weight at least
√
d · η · log(n) log(q)/ϵ2. This is because if there were a codeword

of weight smaller than this, there would exist a subcode of C′ ∪ CT/S with 2 distinct codewords,

and support bounded by
√
d · η · log(n) log(q)/ϵ2. But, because we have removed the set S of bad

rows, we know that there can be no such sub-code remaining in C′ ∪ CT/S . Thus, every codeword

in C′ ∪ CT/S is of weight at least
√
d · η · log(n) log(q)/ϵ2.

Now, we can invoke Claim 5.9 with b =
√
dη log(n) log(q)/ϵ2. Note that the hypothesis of Claim

5.9 is satisfied by virtue of our code decomposition. Indeed, we removed coordinates of the code
such that in the resulting C′ ∪ CT/S , for any α ≥ 1, there are at most (qn)2α codewords of weight

≤ α
√
dη log(n) log(q)/ϵ2. Using the concentration bound of Claim 5.9 yields that with probability
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at least 1 − 2−(0.19η−110) log n · n−101, when samplin every coordinate at rate ≥ 1/
√
d the resulting

sparsifier for C′ ∪ CT/S is a (1 ± ϵ) sparsifier, as we desire. Note that we are using the fact that

every coordinate is sampled with probability ≥ 1/
√
d (in particular, those in T − S are sampled

with probability 1).

Corollary 5.12. If Algorithm 10 achieves maximum recursion depth ℓ when called on a code
C, and η > 600, then the result of the algorithm is a (1 ± ϵ)ℓ sparsifier to C with probability
≥ 1− (2ℓ − 1) · 2−(0.19η−110) log n · n−101

Proof. We prove the claim inductively. Clearly, if the maximum recursion depth reached by the
algorithm is 0, then we have simply returned the code itself. This is by definition a (1±ϵ)0 sparsifier
to itself.

Now, suppose the claim holds for maximum recursion depth i − 1. We will show it holds for
maximum recursion depth i. Let the code we are sparsifying be C. We break this into C1, C′, and
sparsify these. By our inductive claim, with probability 1− (2i−1−1) ·2−(0.19η−110) log n ·n−101 each
of the sparsifiers for C1, C′ are (1± ϵ)i−1 sparsifiers. Now, by Lemma 5.11 and our value of η, C1, C′
themselves together form a (1± ϵ) sparsifier for C with probability 1− 2−(0.19η−110) log n ·n−101. So,
by using Claim 3.2, we can conclude that with probability 1− (2i− 1) · 2−(0.19η−110) log n ·n−101, the
result of sparsifying C1, C′ forms a (1± ϵ)i approximation to C, as we desire.

We can then state the main theorem from this section:

Theorem 5.13. For a code C over Zq with at most qn distinct codewords, and length m, Algorithm
10 creates a (1± ϵ) sparsifier for C with probability 1− log(m) ·2−(0.19η−110) log n ·n−100 with at most

O(nη log(n) log2(q) log2(m)(log log(m))2/ϵ2)

coordinates.

Proof. For a code of with qn distinct codewords, and length m, this means that our value of d as
specified in the first call to Algorithm 10 is at most m as well. As a result, after only log logm
iterations, d = m1/2log logm

= m1/ logm = O(1). So, by Corollary 5.12, because the maximum
recursion depth is only log logm, it follows that with probability at least 1 − (2log logm − 1) ·
2−(0.19η−110) log n · n−101, the returned result from Algorithm 10 is a (1± ϵ)log logm sparsifier for C.

Now, by Lemma 5.10, with probability ≥ 1−2log logm ·2−ηn ≥ 1− log(m) ·2−(0.19η−110) log n ·2−n,
every code at recursive depth log logm has at most

(1 + 1/2 log log(n))log logm ·m1/ logm · η · n log(n) log(q)/ϵ2 = O(nη log(n) log2(q) · e
log logm
log log n /ϵ2)

coordinates. Because the ultimate result from calling our sparsification procedure is the union of
all of the leaves of the recursive tree, the returned result has size at most

log(m) · e
log logm
log log n ·O(nη log(n) log2(q)/ϵ2) = O(nη log(n) log2(q) log2(m)/ϵ2),

with probability at least 1 − log(m) · 2−(0.19η−110) log n · n−101.
Finally, note that we can replace ϵ with a value ϵ′ = ϵ/2 log logm. Thus, the resulting sparsifier

will be a (1± ϵ′)log logm ≤ (1± ϵ) sparsifier, with the same high probability.
Taking the union bound of our errors, we can conclude that with probability 1 − log(m) ·

2−(0.19η−110) log n · n−100, Algorithm 10 returns a (1± ϵ) sparsifier for C that has at most

O(nη log(n) log2(q) log2(m)(log log(m))2/ϵ2)

coordinates.
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However, as we will address in the next subsection, this result is not perfect:

1. For large enough m, there is no guarantee that this probability is ≥ 0 unless η depends on m.

2. For large enough m, log2(m) may even be larger than n.

5.4 Final Algorithm

Finally, we state our final algorithm in Algorithm 11, which will create a (1 ± ϵ) sparsifier for any
code C ⊆ Zm

q with ≤ qn distinct codewords preserving only Õ(n log2(q)/ϵ2) coordinates. Roughly
speaking, we start with a weighted code of arbitrary length, use the weight class decomposition
technique, sparsify the decomposed pieces of the code, and then repeat this procedure now that
the code will have a polynomial length. Ultimately, this will lead to the near-linear size complexity
that we desire. We write a single iteration of this procedure below:

Algorithm 11: FinalCodeSparsify(C, ϵ)
1 Let n be logq(|C|).
2 Let m be the length of the code.
3 Let α = (m/ϵ)3, and Dodd,Deven =WeightClassDecomposition(C, ϵ, α).
4 Let Seven, {Heven,i} =SpanDecomposition(Deven, α).
5 Let Sodd, {Hodd,i} =SpanDecomposition(Dodd, α).
6 for i ∈ Seven do

7 Let Ĥeven,i, weven,i = MakeUnweighted(Heven,i, α, i, ϵ/8).

8 Let H̃even,i =CodeSparsify(Ĥeven,i, logq(|Span(Ĥeven,i)|), ϵ/80, 100(log(m/ϵ) log log(q))2).

9 end
10 for i ∈ Sodd do

11 Let Ĥodd,i, wodd,i = MakeUnweighted(Hodd,i, α, i, ϵ/8).

12 Let H̃odd,i =CodeSparsify(Ĥodd,i, logq(|Span(Ĥodd,i)|), ϵ/80, 100(log(m/ϵ) log log(q))2).

13 end

14 return
⋃

i∈Seven

(
weven,i · H̃even,i

)
∪
⋃

i∈Sodd

(
wodd,i · H̃odd,i

)
First, we analyze the space complexity. WLOG we will prove statements only with respect to

Deven, as the proofs will be identical for Dodd.

Claim 5.14. Suppose we are calling Algorithm 11 on a code C with qn distinct codewords. Let
neven,i = logq(Span((Ĥeven,i))|) from each call to the for loop in line 5.

For each call H̃even,i =CodeSparsify(Ĥeven,i, logq(|Span(Ĥeven,i)|), ϵ/10, 100(log(n/ϵ) log log(q))2)
in Algorithm 11, the resulting sparsifier has

O
(
neven,i log(neven,i) log

4(m/ϵ) log2(q)(log log(m/ϵ) log log(q))2/ϵ2
)

coordinates with probability at least 1− log(m/ϵ) · 2−Ω(log2(m/ϵ)(log log(q))2).

Proof. We use several facts. First, we use Theorem 5.13. Note that the m in the statement of Theo-
rem 5.13 is actually a poly(m/ϵ) because α = m3/ϵ3, and we started with a weighted code of length
O(m). So, it follows that after using Algorithm 8, the support size is bounded by O(m4/ϵ3). We’ve
also added the fact that η is no longer a constant, and instead carries O((log(m/ϵ) log log(q))2),
and carried this through to the probability bound.
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Lemma 5.15. In total, the combined number of coordinates over i ∈ Seven of all of the H̃even,i is at

most Õ(n log4(m) log2(q)/ϵ2) with probability at least 1− log(m log(q)/ϵ) · 2−Ω(log2(m/ϵ)(log log(q))2).

Proof. First, we use Claim 5.5 to see that∑
i∈Seven

logq(|Span(Ĥeven,i)|) ≤ n.

Thus, in total, the combined length (total number of coordinates preserved) of all the H̃even,i is∑
i∈Seven

number of coordinates in Ĥeven,i

≤
∑

i∈Seven

O
(
neven,i log(neven,i) log

4(m/ϵ) log2(q)(log log(m/ϵ) log log(q))2/ϵ2
)

≤
∑

i∈Seven

(neven,i) · Õ
(
log4(m) log2(q)/ϵ2

)
= n · Õ

(
log4(m) log2(q)/ϵ2

)
= Õ(n log4(m) log2(q)/ϵ2).

To see the probability bound, we simply take the union bound over all at most n distinct H̃even,i,
and invoke Claim 5.14.

Now, we will prove that we also get a (1 ± ϵ) sparsifier for Deven when we run Algorithm 11.

Lemma 5.16. After combining the Ĥeven,i from Lines 5-8 in Algorithm 11, the result is a (1±ϵ/4)-
sparsifier for Deven with probability at least 1− log(m log(q)/ϵ) · 2−Ω(log2(m/ϵ)(log log(q))2).

Proof. We use Lemma 5.6, which states that to sparsify Deven to a factor (1 ± ϵ/4), it suffices to
sparsify each of the Heven,i to a factor (1± ϵ/8), and then combine the results.

Then, we use Lemma 5.7, which states that to sparsify any Heven,i to a factor (1±ϵ/8), it suffices

to sparsify Ĥeven,i to a factor (1 ± ϵ/80), where again, Ĥeven,i is the result of calling Algorithm 8.

Then, we must multiply Ĥeven,i by a factor αi−1 · ϵ/10.
Finally, the resulting code Ĥeven,i is now an unweighted code, whose length is bounded by

O(m4/ϵ3), with at most qneven,i distinct codewords. The accuracy of the sparsifier then follows from
Theorem 5.13 called with parameter ϵ/80.

The failure probability follows from noting that we take the union bound over at most n log(q)
Heven,i. By Theorem 5.13, our choice of η, and the bound on the length of the support being
O(m4/ϵ3), the probability bound follows.

For Theorem 5.13, the failure probability is characterized in terms of the number of distinct
codewords of the code that is being sparsified. However, when we call Algorithm 10 as a sub-routine
in Algorithm 11, we have no guarantee that the number of distinct codewords is ω(q). Indeed, it
is certainly possible that the decomposition in Hi creates n different codes, each with q distinct
codewords in their span. Then, choosing η to only be a constant, as stated in Theorem 5.13, the
failure probability could be constant, and taking the union bound over n choices, we might not get
anything meaningful. To amend this, instead of treating η as a constant in Algorithm 10, we set
η = 100(log(m/ϵ) log log(q))2, where now m is the length of the original code C, not in the current
code that is being sparsified Hi. With this modification, we can then attain our desired probability
bounds.
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Theorem 5.17. For any code C with qn distinct codewords and length m over Zq, Algorithm

11 returns a (1 ± ϵ) sparsifier to C with Õ(n log4(m) log2(q)/ϵ2) coordinates with probability ≥
1− 2−Ω((log(m/ϵ) log log(q))2).

Proof. First, we use Lemma 5.1. This Lemma states that in order to get a (1 ± ϵ) sparsifier to a
code C, it suffices to get a (1± ϵ/4) sparsifier to each of Deven,Dodd, and then combine the results.

Then, we invoke Lemma 5.16 to conclude that with probability ≥ 1 − 2−Ω((log(m/ϵ) log log(q))2),
Algorithm 11 will produce (1± ϵ/4) sparsifiers for Deven,Dodd.

Further, to argue the sparsity of the algorithm, we use Lemma 5.15. This states that with proba-
bility≥ 1−2−Ω((log(m/ϵ) log log(q))2), Algorithm 11 will produce code sparsifiers of size Õ(n log4(m) log2(q)/ϵ2)
for Deven,Dodd.

Thus, in total, the failure probability is at most 2−Ω((log(m/ϵ) log log(q))2), the total size of the
returned code sparsifier is at most Õ(n log4(m) log2(q)/ϵ2), and the returned code is indeed a
(1± ϵ) sparsifier for C, as we desire.

Note that the returned sparsifier may have some duplicate coordinates because of Algorithm 8.
Even when counting duplicates of the same coordinate separately, the size of the sparsifier will be
at most Õ(n log4(m) log2(q)/ϵ2). We can remove duplicates of coordinates by adding their weights
to a single copy of the coordinate.

Claim 5.18. Running Algorithm 11 on a code of length m with parameter ϵ takes time poly(mn log(q)/ϵ).

Proof. Let us consider the constituent algorithms that are invoked during the execution of Algo-
rithm 11. First, we consider weight class decomposition. This groups rows together by weight
(which takes time Õ(log(m))). Next, we invoke SpanDecomposition, which then contracts on the
rows in the largest weight class. Note that in the worst case, we perform O(n log(q)) contractions,
as each contraction reduces the number of codewords by a factor of ≥ 2. Further, each contraction
takes time O(mn log(q)) as the total number of rows is bounded by m, and there are at most
n log(q) columns in the generating matrix. Thus, the total runtime of this step is Õ(mn2 log2(q)).

The next step is to invoke the algorithm MakeUnweighted. Because the value of α is m3/ϵ3,
this takes time at most O(m4/ϵ3) to create the new code with this many rows.

Finally, we invoke CodeSparsify on a code of length ≤ m4/ϵ3 and with at most qneven,i distinct
codewords. Note that there are polylog(m) nodes in the recursive tree that is built by CodeSpar-
sify. Each such node requires removing the set T which is a set of ≤ Õ(

√
m4/ϵ3) = Õ(m2/ϵ1.5)

maximum spanning subsets. Constructing each such subset (by Claim 4.8) takes time at most
O((m4ϵ3)2n log(q)). After this step, the subsequent random sampling is efficiently doable. Thus,
the total runtime is bounded by poly(mn log(q)/ϵ), as we desire.

Note that creating codes of linear-size now simply requires invoking Algorithm 11 two times
(each with parameter ϵ/2). Indeed, because the length of the code to begin with is ≤ qn, this
means that after the first invocation, the resulting (1 ± ϵ/2) sparsifier C′ that we get maintains
≤ Õ(n5 log6(q)/ϵ2) coordinates. In the second invocation, we get a (1 ± ϵ/2)-sparsifier C′′ for C′,
whose length is bounded by Õ(n log4(n5 log6(q)/ϵ2) log2(q)/ϵ2) = Õ(n log2(q)/ϵ2), as we desire.

Formally, this algorithm can be written as:

Algorithm 12: Sparsify(C, ϵ)
1 C′ =FinalCodeSparsify(C, ϵ/2).
2 return FinalCodeSparsify(C ′, ϵ/2)
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Theorem 5.19. Algorithm 12 returns a (1±ϵ)-sparsifier to C of size Õ(n log2(q)/ϵ2) with probability
1− 2−Ω((log(n/ϵ) log log(q))2) in time poly(mn log(q)/ϵ).

Proof. Indeed, because the length of the code to begin with is ≤ qn, this means that after the first
invocation, the resulting (1±ϵ/2) sparsifier C′ that we get maintains ≤ Õ(n5 log6(q)/ϵ2) coordinates.
In the second invocation, we get a (1 ± ϵ/2)-sparsifier C′′ for C′, whose length is bounded by
Õ(n log4(n5 log6(q)/ϵ2) log2(q)/ϵ2) = Õ(n log2(q)/ϵ2), as we desire. To see the probability bounds,
note thatm ≥ n, and thus both processes invocations of FinalCodeSparsify succeed with probability
1− 2−Ω((log(n/ϵ) log log(q))2).

Finally, to see that the algorithm is efficient, we simply invoke Claim 5.18 for each time we fun
the algorithm. Thus, we get our desired bound.

6 Sparsifying Affine Predicates over Abelian Groups

In this section, we will generalize the result from the previous section. Specifically, whereas the
previous section showed that one can sparsify CSP systems where each constraint is of the form∑r

i=1 aibi ̸= a0 mod q, for ai ∈ Zq, bi ∈ {0, 1}, we will show that in fact, for any Abelian group A,
we can sparsify predicates of the form

∑r
i=1 aibi ̸= a0 mod q, for ai ∈ A, bi ∈ {0, 1}.

Concretely, we first define affine constraints.

Definition 6.1. We say a constraint (or predicate) P : {0, 1}r → {0, 1} is affine if it can be
written as

P (b1, . . . br) = 1[

r∑
i=1

aibi ̸= a0],

where ai ∈ A, bi ∈ {0, 1}, and the addition is done over an Abelian group A.

Going forward, for an Abelian group A, we will let q be the number of elements in A. We will
make use of the following fact:

Fact 6.1. [Pin10] Any finite Abelian group A is isomorphic to a direct product of the form

Zq1 × · · · × Zqu ,

where each qj is a prime power. We will let q =
∏u

i=1 qi.

Going forward, we will only work in accordance with this isomorphism. That is, instead of
considering constraints of the form

1[

r∑
i=1

aibi ̸= a0],

where ai ∈ A, bi ∈ {0, 1}, we will simply consider constraints of the same form only with ai ∈
Zq1 × · · · × Zqu . We will view these elements as tuples (d1, . . . du), where dj ∈ Zqj .

Now, we can introduce the analog of the contraction algorithm in the Abelian case. We will let
G ∈ (Zq1 × · · · × Zqu)

m×n be a generating matrix, which generates a code C ⊆ (Zq1 × · · · × Zqu)
m.

In particular, each entry in the matrix G will be from (Zq1 × · · · × Zqu). Being the generating
matrix for C implies that C = {Gx : x ∈ Zn} = {Gx : x ∈ Zn

q } (i.e., all linear combinations of
columns of G), where q = q1 · · · · · qu.

For a codeword c ∈ C, we will still say that wt(c) = |{j ∈ [n] : cj ̸= 0}|, where cj = 0 if the
corresponding coordinate is the tuple (0, 0, 0, . . . 0) ∈ Zq1 × · · · × Zqu . As before, we say

Density(C) = log2(|C|)
|Supp(C)|

.
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Going forward, we will refer to the jth row of the generating matrix G. This is a row vector
in (Zq1 × · · · × Zqu)

n. Roughly speaking, our new contraction algorithm, when contracting on a
specific coordinate j, will perform the contraction algorithm on each index of the tuples in row j.
We will use the notation Gj to refer to the jth row of the generating matrix G, and we will use

the notation G
(p)
j to refer to the component of Gj corresponding to Zqp . This will be a row vector

in Zn
qp . Note that we will be consistent in referring to the coordinate of a codeword c as the entry

in [m], while the the index of the jth coordinate will refer to a specific entry in the tuples of that
coordinate.

Algorithm 13: ContractAbelian(G, j)

1 Let Gj be the jth row of the generating matrix G.
2 for p ∈ [u] do

3 if G
(p)
j is non-zero then

4 Run the Euclidean GCD algorithm on G
(p)
j , using column operations to get the

GCD of the G
(p)
j into the first entry of G

(p)
j . Call this first column v.

5 Add multiples of v to cancel out every other non-zero entry in G
(p)
j .

6 Replace column v with c · v, where c = min{ℓ ∈ [qp] : vj · ℓ = 0}.
7 end

8 end
9 return G

Claim 6.2. Consider a codeword c ∈ C where C is the span of G ∈ (Zq1 × · · · × Zqu)
m×n. If we

run ContractAbelian(G, j) on a coordinate j such that cj = 0, then c will still be in the span of G
after the contraction.

Proof. First, we show that after line 4 in the Algorithm 13, c is still in the span. Indeed, the
Euclidean GCD algorithm only ever makes column operations of the form v1 + c · v2 → v1. This
means that every step of the algorithm is invertible, so in particular, after every step of the Euclidean
GCD algorithm, the span of the matrix G will not have changed.

Now, in line 5 of Algorithm 13, this again does not change the span of G. Indeed, we can simply
undo this step by adding back multiples of v to undo the subtraction. Since the span of G hasn’t
changed after this step, c must still be in the span.

Finally, in line 6, the span of G actually changes. However, since c was zero in its jth coordinate,
it must have been 0 in the pth index of the jth coordinate as well. This means it could only contain
an integer multiple of c times the column v (again where c is defined as c = min{ℓ ∈ [q] : vj ·ℓ = 0}),
as otherwise it would be non-zero in this index. Hence c will still be in the span of the code after
this step, as it is only codewords that are non-zero in the pth index of coordinate j that are being
removed.

Claim 6.3. After calling ContractAbelian(G, j) on a non-zero coordinate j, the number of distinct
codewords in the span of G decreases by at least a factor of 2.

Proof. Consider the matrix G after line 5 of Algorithm 13. By the previous proof, we know that
the span of G has not changed by line 2. Now, after scaling up v by c, we completely zero out the
pth index of row j of G. Previously, for any codeword in the code which was zero in coordinate
j, we could correspondingly add a single multiple of column v to it to create a new codeword
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that was non-zero in the pth index of its jth coordinate. Thus, the number of codewords which
were non-zero in coordinate j was at least as large as the number which were zero. After scaling
up column v, codewords which were non-zero in this coordinate are no longer in the span, so the
number of distinct codewords has gone down by at least a factor of 2.

Algorithm 14: Repeated Contractions(G,α, q)

1 Input generating matrix G ∈ Zm×n
q .

2 while more than qα+1 distinct codewords in the span of G do
3 Choose a random non-zero row Gj of G.
4 Set G = ContractAbelian(G, j).

5 end

Claim 6.4. Let C be the span of G ∈ (Zq1 × · · · × Zqu)
m×n, and let d be an integer. Suppose every

subcode C′ ⊆ C satisfies Density(C ′) < 1
d . Then for any α ∈ Z, the number of distinct codewords of

weight ≤ αd is at most
(
n log(q)

α

)
· qα+1, where q =

∏u
i=1 qi.

Proof. Consider an arbitrary codeword c in the span of G of weight ≤ αd. Let us consider what
happens when we run Algorithm 14. In the worst case, we remove only a factor of 2 of the
codewords in each iteration. Thus, suppose that this is indeed the case and that the code starts
with qn distinct codewords. Now, after ℓ iterations, this means in the worst case there are 2n log(q)−ℓ

distinct codewords remaining. Note that after running these contractions, the resulting generating
matrix defines a subcode C′ of our original space. Then, by our assumption on the density of every
subcode, the number of non-zero rows in the generating matrix must be at least (n log(q) − ℓ)d.
Thus, the probability that c remains in the span of the generating matrix after the next contraction
is at least

Pr[c survives iteration] ≥ 1− αd

(n log(q)− ℓ)d
= 1− α

n log(q)− ℓ
.

Now, we can consider the probability that c survives all iterations. Indeed,

Pr[c survives all iterations] ≥ n log(q)− α

n log(q)
· n log(q)− α− 1

n log(q)− 1
· · · · · α+ 1− α

α+ 1

=

(
n log(q)

α

)−1

.

At this point, the number of remaining codewords is at most qα+1. Hence, the total number of
codewords of weight ≤ αd is at most

(
n log(q)

α

)
· qα+1.

Corollary 6.5. For any linear code C over (Zq1 × · · · × Zqu)
m, with ≤ qn distinct codewords, and

for any integer d ≥ 1, there exists a set S of at most n log(q) · d rows, such that upon removing
these rows, for any integer α ≥ 1, the resulting code has at most

(
n log(q)

α

)
· qα+1 distinct codewords

of weight ≤ αd.

Proof. Suppose for the code C that there is a subcode of density ≥ 1/d. Then, this means there
exists a set n′d rows (coordinates), with at least 2n

′
distinct codewords that are completely contained

on these rows. Now, by removing these rows, this yields a new code where the number of distinct
codewords has decreased by a factor of 2n

′
. Thus, if removing these rows yields a new code C′,

this new code has at most qn/2n
′
distinct codewords. Now, if there is no subcode of density ≥ 1/d
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in C′, we are by the preceding claim (i.e. we will satisfy the counting bound). Otherwise, we
can again apply this decomposition, removing another n′′d rows to yield a new code with at most
2n log(q)−n′−n′′

distinct codewords. In total, as long as we remove rows in accordance with condition
1, we can only ever remove n log(q)d rows total, before there are no more distinct codewords
remaining, at which point the counting bound must hold.

Thus, there exists a set of at most n log(q) · d rows, such that upon their removal, we satisfy
the aforementioned counting bound.

Theorem 6.6. For any code C ⊆ (Zq1 × · · · × Zqu)
m with qn distinct codewords, there is an efficient

algorithm for creating (1± ϵ) sparsifiers to C with Õ(n log2(q)/ϵ2) weighted coordinates.

Proof. Note that we can simply replace Algorithm 1 with Algorithm 13 in every instance in which
it appears in Algorithm 11. Because this contraction algorithm satisfies all the same properties as
the original, the theorems follow immediately. Note that we set q = q1 · q2 · · · · · qu, and hence do
not get any improvement by working over Zp1 × Zp2 as opposed to Zp1·p2 . For completeness, we
provide a more extensive proof in the appendix (see Appendix A).

With this, we are now able to prove the efficient sparsification for any CSP using an affine
predicate P over an Abelian group.

Theorem 6.7. Let P be an affine predicate over an Abelian group A. Then, for any CSP instance C
with predicate P on a universe of n vaiables, we can efficiently (1±ϵ)-sparsify C to Õ(n log2(|A|)/ϵ2)
constraints.

Proof. Indeed, let the predicate P be given. Then, we can write P as a constraint of the form

P (b1, . . . br) = 1[
r∑

i=1

aibi ̸= a0],

(invoking Fact 6.1) where ai ∈ Zq1×· · ·×Zqu and bi ∈ {0, 1}. Now, we will show that we can create
a generating matrix G such that for any assignment x ∈ {0, 1}n, there is a corresponding codeword
in the code which is non-zero in coordinate j if and only if constraint j is satisfied. Indeed, let us
initialize a generating matrix G ∈ (Zq1 × · · · × Zqu)

m×(n+1) where m is the number of constraints
in C, and for each variable x1, . . . xn in the universe, there is a single corresponding column among
the first n columns. Now, suppose that the jth constraint of C is of the form

1[
r∑

i=1

aixji ̸= a0].

Then, in the jth row of the generating matrix, let us place the value ai in the jith column. Finally,
in the last column (n+ 1st column), let us place −a0.

With this generating matrix, it follows that for any assignment x ∈ {0, 1}n, we can define a
corresponding message x′ = [x1, . . . xn, 1] such that (Gx′)j is non-zero if and only if Cj(x) (the jth
constraint) is satisfies (equal to 1) on this assignment. Indeed, Cj(x) = 1 if and only if

r∑
i=1

aixji ̸= a0,

or equivalently if
r∑

i=1

aixji − a0 ̸= 0.
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Correspondingly,

(Gx′)j =
r∑

i=1

aixji − a0,

and the weight of the codeword Gx′ is

wt(Gx′) =

∣∣∣∣∣{j ∈ [m] :
r∑

i=1

aixji − a0 ̸= 0}

∣∣∣∣∣ ,
which exactly equals the value of the CSP on assignment x. Thus because there is an exact
equivalence between the weight contributed by the coordinates in the codeword corresponding to
x′ and the weight contributed by the constraints with assignment x, returning a (1 ± ϵ) sparsifier
for the code generated by G also creates a sparsifier for the CSP C. Because this former task can
be done efficiently (Theorem 6.6), this yields our desired result.

6.1 Infinite Abelian Groups

The previous section has the disadvantage of the sparsifier size having a dependence on the size of
the Abelian group. In this section we show that this is not necessary, and instead we can replace
this with a polynomial dependence on the arity of the predicates. First, we make the following
observation regarding affine Abelian predicates:

Claim 6.8. Let P : {0, 1}r → {0, 1} be an affine Abelian predicate such that P (0r) = 0. Then, the
space P−1(0) is closed under integer linear combinations over Z.

Proof. Let y1, . . . yℓ ∈ P−1(0), and α1, . . . αℓ be such that
∑ℓ

j=1 αjyj ∈ {0, 1}r (when addition is

done over Z). We claim then that P (
∑ℓ

j=1 αjyj) = 0 also.
This follows simply from P being an affine Abelian predicate. It must be the case that

P (b1, . . . br) = 1[
∑

i aibi ̸= 0], for some ai ∈ A, where A is an Abelian group. Then,

P (
ℓ∑

j=1

αjyj) = 1[
∑
i

ai(
ℓ∑

j=1

αjyj)i ̸= 0] = 1[
ℓ∑

j=1

αj

∑
i

ai(yj)i ̸= 0].

But, because each yj ∈ P−1(0), it must be the case that
∑

i ai(yj)i = 0. Thus, the entire sum must

be 0, we can conclude that P (
∑ℓ

j=1 αjyj) = 0, as we desire.

Now, we will show that any predicate whose unsatisfying assignments form a closed space
under integer linear combinations will be representable over a finite Abelian group. An immediate
consequence of this is that affine Abelian predicates over infinite Abelian groups are sparsifiable to
finite size. We explain this more in depth below.

Definition 6.2. For a matrix B ∈ Zd×ℓ, the lattice generated by B (often denoted by L(B)), is the
set {Bx : x ∈ Zℓ}.

From the preceding claim, we know that for an affine Abelian predicate P , the set of unsatisfying
assignments is closed as a lattice. Thus, our goal will be to show that for any lattice, as long as the
coefficients of the generating matrix are bounded, then we can characterize exactly which elements
are in the lattice with a finite set of constraints over a finite alphabet. It follows then that we will
be able to express this as an affine predicate over a finite Abelian group.
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Lemma 6.9. Suppose B is a d× ℓ matrix with entries in Z, such that the magnitude of the largest
sub-determinant is bounded by M , and rank(B) = k. Then, every element of the lattice generated
by the columns of B is given exactly by the solutions to d − k linear equations and k modular
equations. All coefficients of the linear equations are bounded in magnitude by M , and all modular
equations are written modulo a single M ′ ≤M .

Proof. First, if rank(B) = k < d, this means that there exist k linearly independent rows such that
the remaining d− k rows are linear combinations of these rows. Let us remove these rows for now,
and focus on B′ ∈ Zk×ℓ where now the matrix has full row-rank.

It follows that for this matrix B′ we can create a new matrix B̂ such that the lattice generated
by B′ (denoted by L(B′) = L(B̂)) and B̂ is in Hermite Normal Form (HNF) [Mic14b]. In this form,
B̂ is lower triangular with the diagonal entries of B̂ satisfying

det(B̂) =

k∏
i=1

B̂i,i ≤ max
k×k subrectangle A

det(B′
A) ≤M.

Further, all columns beyond the kth column will be all zeros, so we can remove these from the matrix
(because the lattice generated by the first k columns will be the same as the lattice generated by
all columns).

We can now define the dual lattice to L(B′) = L(B̂)). For a lattice Λ ⊆ Zk, we say that

dual(Λ) = {x ∈ Qk : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}.

Here it is known that the dual is an exact characterization of the lattice Λ. I.e., any vector in
Λ will have integer-valued inner product with any vector in the dual, while for any vector not in
Λ, there exists a vector in the dual such that the inner-product is not integer valued [Mic14a].

Now, for our matrix B̂, it is known that one can express the dual lattice to L(B̂) with a
generating matrix D̂ = B̂(B̂T B̂)−1 [Mic14a]. As a result, it must be the case that L(D̂) ⊆
Zk/ det(B̂). If a vector x of length k is not in L(B̂), it must be the case that there exists a column
y of D̂ such that ⟨x, y⟩ /∈ Z. Otherwise, if the inner-product with every column is in Z, it follows
that for any vector in the dual, the inner product would also be in Z, as we can express any vector
in the dual as an integer linear combination of columns in D̂. Thus, it follows that membership of
a vector x in L(B̂) can be tested exactly by the k equations ∀i ∈ [k] : ⟨x, D̂i⟩ ∈ Z, where D̂i is the
ith column of D̂.

Now, because every entry of D̂ has denominator dividing det(B̂), it follows that we can scale
up the entire equation by det(B̂). Thus, an equivalent way to test if x ∈ L(B̂) is by checking if
∀i ∈ [k] : ⟨x, det(B̂) · D̂i⟩ = 0 mod det(B̂). Now, all the coefficients of these equation are integers,
and we are testing whether the sum is 0 modulo an integer. Thus, we can test membership of any
k-dimensional integer vector in L(B̂) with k modular equations over det B̂ ≤M .

The above argument gives a precise way to characterize when the restriction of a d dimensional
vector to a set of coordinates corresponding with linearly independent rows in B is contained in the
lattice generated by these same rows of B. It remains to show that we can also characterize when
the dependent coordinates (i.e. coordinates corresponding to the rows that are linearly dependent
on these rows) are contained in the lattice. Roughly speaking, the difficulty here arises from the
fact that we are operating with a non-full dimensional lattice. I.e., there exist directions that one
can continue to travel in Zn without ever seeing another lattice point. In this case, we do not
expect to be able to represent membership in the lattice with a modular linear equation, as these
modular linear equations rely on periodicity of the lattice.
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Instead, here we rely on the fact that for any of the rows of B that are linearly dependent, we
know that there is a way to express it as a linear combination of the set of linearly independent rows.
WLOG, we will assume the first k rows r1, . . . rk are linearly independent, and we are interested
in finding ci such that

∑k
i=1 ciri = rk+1. Now, consider any subset A of k linearly independent

columns amongst these k rows. We denote the corresponding restriction of the rows to these

columns by r
(A)
i ∈ {0, 1}k. It follows that if we want a linear combination of these rows such that∑k

i=1 cir
(A)
i = r

(A)
k+1, we can express this a constraint of the form M (A)c = (r

(A)
k+1)

T , where we view

the ith column of M as being the (transpose of) r
(A)
i and c as being the vector of values c1, . . . ck.

Using Cramer’s rule, we can calculate that ci = det(M
(A)
i )/ det(M (A)), where M

(A)
i is defined to be

the matrix M (A) with the ith column replaced by (r
(A)
k+1)

T . In particular, this means that we can

express r
(A)
k+1 =

∑k
i=1 det(M

(A)
i )/ det(M (A)) · r(A)

i , and because A corresponds to a set of linearly

independent columns, it must also be the case that rk+1 =
∑k

i=1 det(M
(A)
i )/ det(M (A)) · ri. We can

re-write this as an integer linear equation by expressing rk+1 · det(M (A)) =
∑k

i=1 det(M
(A)
i ) · ri.

This means that for any valid vector x ∈ Zd expressable as a linear combination of the columns of

B, it must be the case that xk+1 · det(M (A)) =
∑k

i=1 det(M
(A)
i ) · xi, as the k + 1st coordinate is

always a specific linear combination of the first k coordinates.
We can repeat the above argument for each of the d − k linearly independent rows. Let j

denote the index of a row linearly dependent on the first k rows. It follows that xj · det(M (A)) =∑k
i=1 det(M

(A),j
i ) · xi, where now M

(A),j
i is the d× d matrix M (A) where the ith column has been

replaced with (r
(A)
j )T . Note that every coefficient that appears in these equations above is of the

form det(C) where C is a d×d submatrix of B. It follows that each of these coefficients is bounded
in magnitude by M , where M is again defined to be the maximum magnitude of the determinant
of any square sub-matrix.

To conclude, we argue that for any vector x ∈ L(B), x satisfies all of the above linear equa-
tions and modular equations. The first part of the proof showed that amongst the set of linearly
independent rows S, the dual of the lattice exactly captures when xS is in the lattice generated by
BS . That is, if xS is generated by BS , then xS satisfies the above modular linear equations, while
if xS is not in the span of BS , then xS does not satisfy the modular linear equations. Now, if xS
does not satisfy the modular linear equations, this is already a witness to the fact that x is not in
the L(B). But, if xS is in the span of BS , then if x is in the span of B, it must also be the case
that the coordinates of xS̄ satisfy the exact same linear dependence on the xS that BS̄ has on BS .
This is captured by our second set of linear equations.

Theorem 6.10. Let P : {0, 1}r → {0, 1} be a predicate of arity r. Let S = P−1(0) ⊆ {0, 1}r
denote the unsatisfying assignments of P . If S is closed under integer valued linear combinations,
then CSPs with predicate P on n variables are efficiently-sparsifiable to size Õ(n · r4/ϵ2).

Proof. Let us create a matrix B ∈ {0, 1}r×|S| where the ith column of B is the ith element of S.
Let k be the rank of B. It follows that for any assignment x ∈ {0, 1}r, we can exactly express the
membership of x in L(B) with k modular linear equations, and r − k linear equations. I.e., x is in
L(B) if and only if all of these equations are satisfied. Note that the d modular linear equations
are all over modulus M ≤ maxk∈[r],k×k subrectangle A det(B′

A) ≤ (r)r. Likewise, the integer linear
equations also all have coefficients ≤ (r)r (by Lemma 6.9). It follows that because x ∈ {0, 1}r, we
can choose a prime p such that p ≥ 2 · r · (r)r. Now, for any of the integer linear equations of the
form c1x1 + . . . ckxk − ck+1xk+1, it will be the case that for x ∈ {0, 1}r,

c1x1 + . . . ckxk − ck+1xk+1 = 0 ⇐⇒ c1x1 + . . . ckxk − ck+1xk+1 = 0 mod p.
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This is because the expression on the left can never be as large as p or −p since we chose p to
be sufficiently large.

Thus, we can express x ∈ {0, 1}r as being in the lattice L(B) if and only if all r modular
equations are 0. This is then the OR of r modular equations, which can be expressed over the
Abelian group A = ZM × Zm · · · × Zm × Zp · · · × Zp, where there are k copies of Zm, and r copies

of Zp. It follows that |A| ≤ (2 · r · (r)r)r = (2r)r · (r)2r2 . Thus, for any CSP on predicate P of the

above form on n variables, we can efficiently (1± ϵ) sparsify P to size Õ(n · r4/ϵ2) via Theorem 6.7.

Theorem 1.7. If P : {0, 1}r → {0, 1} is an affine Abelian predicate over an Abelian group A, then
CSP(P ) is (ϵ, Õ(n ·min(r4, log2(|A|))/ϵ2)-efficiently-sparsifiable for every ϵ > 0.5

Proof. This follows because we can assume WLOG that P (0r) = 0. Then, it must be the case that
P−1(0) is closed under integer linear combinations (by Claim 6.8), and we can invoke the preceding
theorem.

Note that here we are dealing with boolean predicates (i.e., operating on {0, 1}r). We can
extend this lattice characterization to larger alphabets, and do so in Appendix C.

7 Impossibility of Sparsifying Affine CSPs Over Non-Abelian Groups

In this section, we will complement the result of the previous section and show that in fact, if an
affine constraint is written as

P (b1, . . . br)

r∑
i=1

aibi ̸= a0

for ai ∈ H, bi ∈ {0, 1} and H being a non-Abelian group, then there exist CSP instances with
predicate P that require sparsifiers of quadratic size. To show this, we will make use of Theorem 3.4
from the work of Khanna, Putterman, and Sudan [KPS24]. This theorem shows that it suffices to
show that a predicate has a projection to an AND of arity 2 in order to conclude that there exist
CSP instances with this predicate that require sparsifiers of quadratic size.

Theorem 1.8. For every non-Abelian group G, there exists a predicate P : {0, 1}4 → {0, 1} and
an ϵ0 > 0 such that P is an affine predicate over G and CSP(P ) is not (ϵ0, o(n

2))-sparsifiable.

Proof. Indeed, let H be a non-Abelian group, and let a, b be two elements which do not commute.
That is, let us assume that a+ b ̸= b+ a. Then, consider the following predicate P of arity 4:

P (x1, x2, x3, x4) = 1[ax1 + bx2 − ax3 − bx4 ̸= 0].

Note that P (0, 0, 0, 0) = 0, P (1, 0, 1, 0) = 1[a− a ̸= 0] = 0, P (0, 1, 0, 1) = 1[b− b ̸= 0] = 0, but

P (1, 1, 1, 1) = 1[a+ b− a− b ̸= 0] = 1,

as if a+b−a−b = 0, then a, b will commute with one another, which violates our original assumption.
This means that 0000, 1010, 0101 are unsatisfying assignments, while 1111 is a satisfying assignment.
In particular, we can consider the following restriction

π(x1) = c, π(x2) = d, π(x3) = c, π(x4) = d.

5We note that A does not have to be a finite group in this theorem, though in all the applications to CSPs we
only use finite Abelian groups.
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It follows then that P (π(x1), π(x2), π(x3), π(x4)) = AND(c, d). Thus, there exists a projection of P
to an AND of arity 2, so we can invoke Theorem 3.4 and conclude that there exist CSP instances
on predicate P which require sparsifiers with Ω(n2) surviving constraints.

In this sense, the preceding result we proved about sparsifying affine constraints over Abelian
groups is in fact the strongest possible result we could hope to hold over affine constraints, as even
the most simple non-Abelian groups will have instances which are not sparsifiable.

8 Sparsifying Symmetric CSPs

In this section, we will characterize the sparsifiability of symmetric CSPs. Namely, for a predicate
P : {0, 1}r → {0, 1} we say that P is symmetric if for any permutation π : [r]→ [r], P (x) = P (π◦x).
This is equivalent to saying that P (x) is uniquely determined by the number of non-zero entries in
x. First, we will introduce the definition of a symmetric predicate being periodic.

Definition 8.1. A symmetric predicate P : {0, 1}r → {0, 1} is periodic if for any x, y ∈ {0, 1}r
such that P (x) = P (y) = 0 and |y| > |x|, then for any z ∈ {0, 1}r such that |z| = 2|y| − |x| or
|z| = 2|x| − |y|, P (z) = 0. In this context |x| refers to the number of non-zero entries in x.

With this, we are then able to state the main theorem of this section.

Theorem 8.1. For a symmetric predicate P : {0, 1}r → {0, 1}, all CSPs with predicate P are
sparsifiable to nearly-linear size if and only if P is periodic.

Now, we are ready to prove the following:

Lemma 8.2. Suppose a symmetric predicate P : {0, 1}r → {0, 1} is not periodic. Then there is a
projection π : {x1, . . . xr} → {0, 1, a,¬a, b,¬b} such that P (π(x1), . . . π(xr)) = AND(a, b).

Proof. Suppose that a symmetric CSP does not have this periodic property. This implies that there
exists a, b, c such that for |x| = a, |x| = b, P (x) = 0, but for |x| = 2a − b, P (x) = 1. WLOG we
will assume b > a but we can equivalently swap a with b in the following construction and assume
the opposite. We will show that this contains an affine projection to AND, and therefore requires
sparsifiers of quadratic size (see Theorem 3.4). Indeed, consider the following bit strings:

1. The bit string y1 with r − a 0’s followed by a 1’s.

2. The bit string y2 with r − b 0’s followed by b 1’s.

3. The bit string y3 with r − 2b+ a 0’s, followed by b− a 1’s followed by b− a 0’s, followed by
a 1’s.

4. The bit string y4 with r − 2b+ a 0’s, followed by all 1’s.

By the above conditions, P (y1) = P (y2) = P (y3) = 0, while P (y4) = 1. Now, we consider the
projection π : {x1, . . . xr} → {0, 1, x,¬x, y,¬y} such that π(x1) = π(x2) = · · · = π(xr−2b+a) = 0,
π(xr−2b+a+1) = · · · = π(xr−b) = x, π(xr−b+1) = · · · = π(xr−a) = y, and all remaining are sent to
1. Once can verify that under this projection, Pπ = AND.

We now show that symmetric, perioidic predicates can be written as a simple affine equation.
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Lemma 8.3. Let P : {0, 1}r → {0, 1} be a symmetric, periodic predicate. Then, there exist
c, ℓ ∈ [r + 1] such that

P (b1, . . . br) = 1[
r∑

i=1

bi ̸= c mod ℓ].

Proof. Clearly, if there exists ℓ such that P (x1, . . . xr) = 1[
∑

i xi ̸= c mod ℓ], then the zero levels
of P are evenly spaced out, and clearly satisfy the condition of being periodic.

Now, let P : {0, 1}r → {0, 1} be a symmetric, periodic predicate, and let x, y ∈ {0, 1}r be such
that P (x) = P (y) = 0 and ||x| − |y|| is as small as possible (without being 0). Let ||x| − |y|| = ℓ.
Now, note that the predicate P can be written as

P (b1, . . . br) = 1[
r∑

i=1

bi ̸= |x| mod ℓ].

This follows because by the definition of periodicity, every string z such that |z| = |x| − ℓ or
|z| = |y|+ ℓ must satisfy P (z) = 0. Inductively then, every string z′ which satisfies |z′| = |x| − 2ℓ,
|z′| = |y| + 2ℓ must also satisfy P (z′) = 0, and so on. Further, note that by the minimality of ℓ,
no strings x, y such that P (x) = P (y) = 0, |x| ̸= |y| can be closer than hamming distance ℓ. Thus,
P (b1, . . . br) can be written as 1[

∑r
i=1 bi ̸= |x| mod ℓ].

Finally, if there is only one level of the predicate which is 0, we can choose ℓ = r + 1.

Next, we will show that for any symmetric, periodic predicate, we can indeed sparsify CSPs
using this predicate to nearly-linear size.

Lemma 8.4. Let P : {0, 1}r → {0, 1} be a symmetric, periodic predicate. Let C be a CSP using
predicate P on a universe of n variables. Then, we can efficiently create a (1± ϵ) sparsifier for C
with only Õ(n log2(r)/ϵ2) surviving weighted constraints.

Proof. So, let such a predicate P be given. Per Lemma 8.3 there exists c, ℓ ∈ [r + 1] such that

P (b1, . . . br) = 1[
r∑

i=1

bi ̸= c mod ℓ].

Now, we will show how to create a code over Zℓ which exactly captures the CSP built on
predicate P . First, we create a generating matrix G ∈ Zm×n+1

ℓ , wherem is the number of constraints
in the CSP, and n is the size of the universe of variables. We associate each of the first n columns
to each of the n variables. Next, let Cj refer to the jth constraint of the CSP. Suppose that Cj acts
on variables xj1 , . . . xjr . Then, in the corresponding jth row of the generating matrix G, we place
a 1 in the columns corresponding to xj1 , . . . xjr , and place −c mod ℓ in the final n + 1st column.
Now, consider an assignment to the variables x1, . . . xn in the original CSP C. Note that the jth
constraint Cj is satisfied if and only if

r∑
i=1

xji ̸= c mod ℓ.

Correspondingly, consider the code generated by the generating matrix G. For the message
x′ = (x1, . . . xn, 1), note that the jth coordinate in the codeword Gx′ is

(Gx′)j =

r∑
i=1

xji − c mod ℓ.
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This means that the weight of the codeword Gx′ is exactly

wt(Gx′) = |{j ∈ [m] : (Gx′)j ̸= 0}| = |{j ∈ [m] :
r∑

i=1

xji − c ̸= 0 mod ℓ}|

= |{j ∈ [m] :
r∑

i=1

xji ̸= c mod ℓ}| = |{j ∈ [m] : Cj(x) = 1}|.

Thus, any subset of the coordinates of G which creates (1 ± ϵ) sparsifier for the codewords in
the code generated by G must also yield a subset of the constraints of C which yields a (1 ± ϵ)
sparsifier for the entire CSP. Because we can efficiently compute such sparsifiers for G with only
Õ(n log2(ℓ)/ϵ2) surviving coordinates (by Theorem 5.19), we can thus efficiently find sparsifiers for
C with only Õ(n log2(ℓ)/ϵ2) surviving constraints. Using that ℓ ≤ r+1 ≤ n+1, we get our desired
result.

Finally, we can now conclude the main result of this section:

Theorem 1.3. Let P : {0, 1}r → {0, 1} be a symmetric predicate. Then if P is periodic, CSP(P )
is (ϵ, Õ(n/ϵ2))-efficiently sparsifiable for every ϵ ∈ (0, 1). On the other hand, if P is not periodic
then for every 0 < ϵ < 1, CSP(P ) is not (ϵ, o(n2))-sparsifiable.

Proof. If P is not periodic, then by Lemma 8.2 we know that P has a projection to AND. Then, by
invoking the work of Khanna, Putterman, and Sudan [KPS24], we know there exist CSP instances
with predicate P that require sparsifiers of size Ωr(n

2).
Otherwise, if P is periodic, then by Lemma 8.4 we can efficiently (1 ± ϵ) sparsify any CSP

instance on P to only Õ(n log2(r)/ϵ2) = Õ(n/ϵ2) constraints.

9 Non-trivial Sparsification for Almost All Predicates

In this section, we show that almost all predicates can be non-trivially sketched. Indeed, given a
predicate P : {0, 1}r → {0, 1}, we show that as long as P has 0 or at least 2 satisfying assignments,
then any CSP instance with predicate P on a universe of n admits an (ϵ, Õ(nr−1/ϵ2))-sparsifier.
At a high level, we do this by extending our method for sparsifying systems of affine equations not
being zero to sparsifying systems of polynomials not being equal to zero. Although this leads to
a blowup in the size of our sparsifiers, it is distinctly more powerful, and allows us to model more
general predicates. We recall Theorem 1.9:

Theorem 1.9. If P : {0, 1}r → {0, 1} is a degree ℓ polynomial over an Abelian group A then
CSP(P ) is (ϵ, Õ(nℓmin(r4ℓ, log2(|A|))/ϵ2)-efficiently-sparsifiable for every ϵ > 0.

Alternatively stated, the above implies the following:

Corollary 9.1. Let P : {0, 1}r → {0, 1} be a predicate such that there exists a polynomial Q with
coefficients in an Abelian group A of degree ℓ satisfying ∀x ∈ {0, 1}r : 1[Q(x) ̸= 0] = P (x). Then, all
CSPs with predicate P on a universe of n variables efficiently admit (ϵ, Õ(nℓmin(log2(|A|), r4ℓ)/ϵ2))-
sparsifiers.

Proof. We will prove this via a reduction to code sparsification. We will prove the following lemma
along the way:
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Lemma 9.2. For any polynomials P1, . . . Pm of degree ≤ ℓ over A, there exists generating matrix
G ∈ Am×O(nℓ) such that for any x ∈ {0, 1}n, there exists a corresponding x′ ∈ {0, 1}O(nℓ) such that
∀j ∈ [m], (Gx′)j = Pj(x

′).

Proof. Indeed, let us consider the jth polynomial Pj . We can write

Pj(x) =
∑

i1+i2+···+in≤ℓ

aj,i1,...in

n∏
u=1

xiuu .

Now, in our generating matrix, we associate each column of the generating matrix with a single
term of each polynomial. In the jth row (corresponding to the jth polynomial), in the column
corresponding to the term

∏n
u=1 x

iu
u , we place aj,i1,...in . Note that there can be at most O(nℓ) terms

of degree ≤ ℓ, so it follows the size of the generating matrix is at m×O(nℓ).
Now consider any assignment x ∈ {0, 1}n. We will show that there is a corresponding assignment

x′ ∈ {0, 1}O(nℓ) such that Gx′ is non-zero in coordinate j if and only if Pj(x) was non-zero. From
there, it follows that sparsifying the code generated by G will yield a sparsifier for the system of
polynomials.

So, let such an assignment x ∈ {0, 1}n be given. Let x′ ∈ {0, 1}O(ℓ) be such that the pth entry
of x′ is the evaluation of the term corresponding to the pth column of G. That is, x′p =

∏n
u=1 x

iu
u |x,

where
∏n

u=1 x
iu
u is the term corresponding to the pth column of G.

Then, it follows that (Gx′)j =
∑

i1+i2+···+in≤ℓ aj,i1,...in
∏n

u=1 x
iu
u = Pj(x).

Now, by Theorem 6.7, we can efficiently sparsify the code generated by G to only Õ(nℓmin(log2(|A|), r4ℓ)/ϵ2)
remaining coordinates, so it also follows that we can sparsify our set of polynomials to Õ(nℓmin(log2(|A|), r4ℓ)/ϵ2)
remaining weighted polynomials such that for any assignment x ∈ {0, 1}n, the number of non-zero
polynomials is preserved to a (1 ± ϵ) fraction.

We will also use the following trick for any predicate over any finite group, and in this context,
Z2.

Claim 9.3. Let P1, P2, . . . Ps be such that each Pi is an affine predicate over Z2. Then, one can
write the predicate P = P1 ∨ P2 ∨ · · · ∨ Ps as single affine predicate over (Z2)

s, such that P (x) ̸= 0
if and only if there exists some i such that Pi(x) ̸= 0.

Proof. Indeed, each Pi is affine so we can write Pi(x) =
∑r

j=1 ai,jxj − bi, where the addition is over

Z2. Now, let the tuple A(j) = (a1,j , . . . as,j) and let B = (b1, . . . bs). It follows that we can write

P (x) =
r∑

j=1

xj ·A(j) −B.

It follows that the ith entry of the tuple returned by P (x) will be exactly Pi(x) =
∑r

j=1 ai,jxj − bi.
Thus, P (x) is zero if and only if each of the constituent Pi(x)’s also evaluates to zero. Otherwise,
if at least one of the Pi(x) is non-zero, P (x) will also be non-zero.

Claim 9.4. Let P : {0, 1}r → {0, 1} be a predicate with two satisfying assignments. Then, there
exists a polynomial La,b : {0, 1}r → {0, 1} over Z2 of degree r − 1 such that for any y ∈ {0, 1}r,
La,b(y) = 0 if and only if P (y) = 0.
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Proof. Let the two satisfying assignments be a = a1, . . . ar and b = b1, . . . br. WLOG let us assume
that the first t1 bits of a and b are 1, the second t2 bits of a and b are 0, the next t3 bits are 1
for a and 0 for b, while the last t4 bits of a, b are 0 for a and 1 for b. Consider then the following
polynomial:

La,b(y) =

t1∏
i=1

yi

t1+t2∏
i=t1+1

(1− y1)

t1+t2+t3∏
i=t1+t2+2

(yt1+t2+1 + yi − 1)

t1+t2+t3+t4∏
i=t1+t2+t3

(yt1+t2+1 − yi).

Note that the degree of L is r−1, and the only y’s for which the expression evaluates to something
non-zero are a and b (and in this case it either evaluates to 1 or −1). Over Z2, note that this is
still the case, as −1 = 1 ̸= 0 over Z2.

Theorem 1.5. Let P : {0, 1}r → {0, 1}. If |P−1(1)| ̸= 1 then CSP(P ) is (ϵ, Õr(n
r−1/ϵ2))

efficiently-sparsifiable for every ϵ > 0. Otherwise, for every 0 < ϵ < 1, CSP(P ) is not (ϵ, o(nr))
sparsifiable.

Proof. Let such a CSP instance C be given. Consider the jth constraint in this CSP, and call the
corresponding predicate for the jth constraint Pj : {0, 1}r → {0, 1}. Note that if Pj is the constant
0 predicate, we can simply remove it from C without changing the value, so we will assume that
Pj has at least 2 satisfying assignments. Let us write the satisfying assignments to Pj as a1, . . . as.
It follows that we can define the polynomials La1,a2 , La1,a3 , . . . La1,as such that La1,ai(y) ̸= 0 if
and only if y = ai or y = a1 in accordance with Lemma 9.2. Now, by Lemma 9.2, each of these
polynomials can be written as an affine equation over Z2 over a universe of variables of size O(nr−1).
So, let L̂a1,ai refer to the polynomial La1,ai when instead viewed as a linear equation over F2 in a
variable set of size O(nr−1).

Now, it follows that Pj = La1,a2 ∨La1,a3 ∨ · · ·∨La1,as and s ≤ 2r. Over the universe of variables
of size O(nr−1), it follows that we can write each polynomial as a linear equation by Lemma 9.2,
and hence we can write Pj = L̂a1,a2 ∨ L̂a1,a3 ∨ · · · ∨ L̂a1,as . Because s ≤ 2r, this means we can
write each Pj as a single affine constraint over (Z2)

2r , such that Pj(x) ̸= 0 if and only if one of the
L̂a1,ai(x) ̸= 0.

Now, we can write the generating matrix G for this linear space over O(nr−1) variables on (Z2)
2r .

It follows that for each original assignment x ∈ {0, 1}n, there exists a corresponding assignment
x′ ∈ {0, 1}O(nr−1) such that for each j ∈ [m],

(Gx′)j ̸= 0 ⇐⇒ L̂a1,a2(x
′) ∨ L̂a1,a3(x

′) ∨ · · · ∨ L̂a1,as(x
′) ̸= 0 ⇐⇒ Pj(x) ̸= 0.

Hence, for any x ∈ {0, 1}n, there is a corresponding x′ ∈ {0, 1}O(nr−1) such that for ever j ∈ [m],
(Gx′)j ̸= 0 ⇐⇒ Pj(x) ̸= 0. Therefore if a set of weighted indices is a sparsifier for the code
generated by G, this same set of indices must be a sparsifier for the CSP over predicates Pj .

Finally, we conclude by noting that we proved the existence of (ϵ, Õ(n log2(q)/ϵ2)) sparsifiers
for affine Abelian predicates over any Abelian group of size q, in a universe of variables of size n.
By applying this to our generating matrix G, this translates to a (1 ± ϵ)-sparsifier for G of size
Õ(nr−1 · 4r/ϵ2) = Õr(n

r−1/ϵ2).

Remark 9.5. Note that in many senses the aforementioned result is the best possible. Indeed, for
predicates on r variables which have 1 satisfying assignment, these predicates will have a projection
to an AND of arity r, and thus require sparsifiers of size Ω(nr) in the worst case.

Likewise, there exist predicates of arity r with 2r−1 + 1 satisfying assignments which require
sparsifiers of size Ω(nr−1) in the worst case. Consider for instance the predicate P : {0, 1}r →
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{0, 1}, such that P (1, ...) = 1, and P (0, x1, . . . xr−1) = AND(x1, . . . xr−1). This predicate has
a projection to an AND of arity r − 1, and thus requires sparsifiers of size Ω(nr−1). We are
able to match this sparsifier size even when we are only told that the predicate has two satisfying
assignments, and further, our result holds for any collection of predicates, provided each one has
0, or at least 2 satisfying assignments.

10 Classifying Predicates of Arity 3

In this section, we prove Theorem 1.6. Recall this theorem:

Theorem 1.6. For a predicate P : {0, 1}3 → {0, 1} let c be the largest integer such that P has
a projection to ANDc. Then, CSP(P ) is (ϵ, Θ̃(nc)) efficiently-sparsifiable for every ϵ ∈ (0, 1), and
moreover, for every ϵ ∈ (0, 1), CSP(P ) is not (ϵ, o(nc)) sparsifiable.

Proof. Let any such predicate P be given. First, the work of [KPS24] shows that if P does not have
a projection to AND2, then CSP(P ) can be written as an affine predicate (and in particular, can
thus be efficiently sparsified to size Õ(n/ϵ2)). Further, if P has a projection to AND2, the beset
possible size of any sparsifier is Ω(n2). So, it remains only to distinguish between when CSP(P )
is sparsifiable to near-quadratic size vs. cubic size. Now, suppose that P has only 1 satisfying
assignment. Then P (up to negation) is AND3, and requires sparsifiers of size Ω(n3) (and trivially
admits such sparsifiers). Finally, let us consider all other predicates, i.e., P with projections to
AND2, but not only 1 satisfying assignment. These predicates require sparsifiers of size Ω(n2) (by
[KPS24]), yet by Theorem 1.5, efficiently admit sparsifiers of size Õ(n2/ϵ2). This completes the
proof.

11 Applications Beyond CSPs

In this section, we discuss applications of our framework beyond just CSPs. In particular, we
discuss efficient F2 Cayley-graph sparsification, hedge-graph sparsification, and sparsifying general
hypergraphs with {0, 1}-valued cardinality-based splitting functions.

11.1 Efficient Cayley-graph Sparsification over F2

First, we recall the definition of a Cayley graph and the notion of a Cayley graph sparsifier.

Definition 11.1. A Cayley graph G is a graph with algebraic structure; its vertex set is defined to
be a group, and the edges correspond to a set of generators S, along with weight (wi)i∈S. For every
element in s ∈ S, and for every vertex v, there is an edge from v to v + s of weight ws.

Definition 11.2. Given a Cayley graph G with generating set S over Fn
2 , we say that G̃ with a

re-weighted generating set S̃ ⊆ S̃ is a (1± ϵ) Cayley-graph sparsifier of G if

(1− ϵ)LG ⪯ L
G̃
⪯ (1 + ϵ)LG,

where LG here is used to denote the Laplacian of the graph G.

[KPS24] provided the first proof of the existence of (1 ± ϵ) Cayley-graph sparsifiers over Fn
2

where the resulting generating set retains only Õ(n/ϵ2) generators. At the core of their result is
the following theorem:
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Fact 11.1. [KPS24] Given a Cayley graph G with generating set S over Fn
2 , let H be the matrix

in F|S|×n
2 where one places the generators as rows in the matrix (with their corresponding weights).

If H̃ is a (1 ± ϵ) code-sparsifier of H, then the Cayley-graph G̃ with weighted generators coming
from the rows of H̃ is a (1± ϵ) Cayley-graph sparsifier of G.

Using this, we can derive the following theorem:

Theorem 11.2. Given a Cayley graph G with generating set S over Fn
2 and a parameter ϵ ∈ (0, 1),

there is a polynomial time (in |S|, n, 1/ϵ), randomized algorithm which produces a (1 ± ϵ) Cayley-
graph sparsifier G̃ with generating set S̃ ⊆ S such that |S̃| = Õ(n/ϵ2).

Proof. Given the graph G we create the generating matrix H as per Fact 11.1. Next, we invoke
Theorem 5.19 to efficiently sparsify the generating matrix H. This yields a (1 ± ϵ) code-sparsifier
H̃ of H (in randomized polynomial time) such that H̃ preserves only Õ(n/ϵ2) coordinates of H
with probability 1− 1/poly(n). This yields the claim.

11.2 Cayley-graph Sparsifiers over Zn
q

In this section, we show how to sparsify more general cayley-graphs over Zn
q (where q is an arbitrary

composite number).
For this, we first recall the following characterization of the eigenvectors of cayley-graphs over

Zn
q .

Definition 11.3. Let Γ be the group over Zn
q . Then we say that Γ has qn characters, one for each

vector r ∈ Zn
q . We denote each character by χr : Zn

q → C. For a vector x ∈ Zn
q , we have that

χr(x) = e
2πi
q

·⟨r,x⟩
.

Further, for each character, we can define a vector xr ∈ CΓ, where (xr)a = χr(a).
Then, if we let G = Cay(Γ, S), we have that (xr)a is an eigenvalue of the adjacency matrix of

G with eigenvalue ∑
s∈S

χr(s).

In general, Cayley graphs may have weights ws associated with each generator s. Then, the corre-
sponding eigenvalues are simply the weighted sum.

In particular, we can simplify the expression of the eigenvalues when we consider cyclically
closed Cayley graphs:

Definition 11.4. For a generator s ∈ Zn
q , we say the cycle induced by s is s, 2s, 3s, . . . (q − 1)s.

We denote these cycles by Cyc(s), and we give each element in the cycle the same weight as the
generator s.

We say a Cayley graph G = Cay(Γ, S) is cyclically closed if there exists a set S′ such that⋃
s∈S′

Cyc(s) = S,

where we use the convention that union operator adds the weights of generators. I.e., if an element
p appears in Cyc(s1),Cyc(s2), then the weight of p is ws1 + ws2. Notationally, we say that S =
Cyc(S′).
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Now, observe that for a generator s ∈ Zn
q , and a character χr, we have that

χr(s) + χr(2s) + · · ·+ χr((q − 1)s) =

q∑
j=1

χr(js)− 1.

In particular, when ⟨r, s⟩ = 0, then we see that this expression evaluates to q− 1. Otherwise, when
⟨r, s⟩ ̸= 0, it evaluates to −1, as we are summing together (all but one of) the powers of a root of
unity. With this, we get the following characterization:

Claim 11.3. Let G = Cay(Zn
q ,Cyc(S

′)). Then, the eigenvalue of LG corresponding to χr is

q · wt(Hr),

where H ∈ Zn×|S′|
q is the generating matrix of a code over Zq where there is a single row for each

element s ∈ S′.

Proof. Recall that the eigenvalue of the adjacency matrix corresponding to χr is equal to

∑
s∈Cyc(S′)

χr(s) =
∑
s∈S′

 q∑
j=1

χr(js)− 1

 =
∑
s∈S′

q · 1[⟨r, s⟩ = 0]− 1.

For the Laplacian, we simply subtract the corresponding eigenvalue of the adjacency matrix
from the degree. For each s ∈ S′, because the Cayley graph is cyclically closed, the corresponding
degree is q − 1. Thus, the corresponding eigenvalue of LG is∑

s∈S′

(q − 1− (q · 1[⟨r, s⟩ = 0]− 1)) =
∑
s∈S′

ws · q · 1[⟨r, s⟩ ̸= 0].

In particular, if we let H ∈ Zn×|S′|
q denote the generating matrix of a code over Zq where there is a

single row for each s ∈ S′, then we can observe that the eigenvalue of LG corresponding to r ∈ Zn
q

is exactly q · wt(Hr), where we use the weighted notion of Hamming weight.

Claim 11.4. Let G = Cay(Zn
q ,Cyc(S

′)), and let H be its corresponding generating matrix over

Zq. If H̃ is a (1 ± ϵ) code-sparsifier of H with the rows of H̃ being denoted by S̃′, then G̃ =

Cay(Zn
q ,Cyc(S̃

′)) is a (1± ϵ) spectral Cayley-graph sparsifier of G.

In the above claim, we are using the convention that the weight assigned to the coordinate
corresponding to a generator s ∈ S̃′ is the same as the weight assigned the same generator s in the
Cayley graph H̃.

Proof. First, recall that the eigenvectors of the Laplacian of an abelian Cayley graph are completely
determined by the underlying group. Thus, G̃,G have the same eigenvectors. Thus, it remains only
to show that their eigenvalues are within a factor of (1± ϵ). For this, recall that by Claim 11.3, the
eigenvalues of G are exactly q ·wt(Hr) for each r ∈ Zn

q . Likewise, for the graph G̃, the eigenvalues

are exactly q ·wt(H̃r), where in both instances the Hamming weight we use is the weighted notion
of Hamming weight. In particular, because H̃ is a (1± ϵ) code-sparsifier of H, we have that

q · wt(H̃r) ∈ (1± ϵ)q · wt(Hr).

Hence, G̃ is a (1± ϵ) spectral-sparsifier of G.
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With this, we are ready to conclude our main theorem:

Theorem 11.5. Let G = Cay(Zn
q ,Cyc(S)), and let ϵ ∈ (0, 1). Then, there is a randomized,

polynomial time algorithm (in log(q), ϵ, n, |S|) which returns (with high probability) a re-weighted
sub-Cayley graph G̃ = Cay(Zn

q ,Cyc(S̃)), with |S̃| = Õ(npolylog(q)/ϵ2) such that G̃ is a (1 ± ϵ)
spectral sparsifier of G.

Proof. By Claim 11.4, it suffices to simply compute a (1 ± ϵ) code sparsifier of H, where H is the
generating matrix induced by S. By invoking Theorem 5.19, this can be done in the stated time,
yielding the above theorem.

11.3 Efficient Hedge-graph Sparsification

In this section, we detail the procedure of creating efficient (1 ± ϵ) hedge-graph cut sparsifiers. To
start, we recap the definition of a hedge-graph.

Definition 11.5. A hedge-graph G = (V,E) is defined by a set of vertices V and a set of hedges
E. Each hedge E is itself a collection of edges ∈

(
V
2

)
. For a subset of vertices S ⊆ V , we say that

a hedge e is cut by S if there exists an edge f ∈ e such that f is cut by S. We define cut-sizes
globally by

cutG(S) =
∑
e∈E

1[e is cut by S].

As remarked in prior work (see [GKP17]) hedge-graph cuts behave very differently from graph
(or hypergraph) cuts. In particular, there exist hedge-graphs with respect to which the cut function
is not submodular. In this same work [GKP17] it was remarked that uniform random sampling
at a rate roughly equal to the reciprocal of the minimum hedge-cut does not preserve all the cuts
in the sparsifier. Thus, an analysis mimicking [BK96] for creating cut-sparsifiers of hedge-graphs.
Nevertheless, we show here that the code sparsification framework is sufficiently general such that
one can derive efficient sparsifications of many hedge-graphs. We formalize this below:

Definition 11.6. Given a hedge-graph G, we say that a re-weighted sub-hedge-graph G̃ is a (1± ϵ)
cut-sparsifier of G if ∀S ⊆ V :

(1− ϵ)cutG(S) ≤ cut
G̃
(S) ≤ (1 + ϵ)cutG(S).

We will also use the following observation in our discussion of hedge-graph sparsifiers:

Fact 11.6. Each hedge e ∈ E induces a set of connected components, which we denote Pe, that
partitions the vertex set V . The hedge e is cut by a set S ⊆ V if and only if one of the constituent
connected components Ci ∈ Pe is cut by the set S. Formally, e is cut if and only if ∃Ci ∈ P⌉ :
Ci ∩ S ̸= ∅ ∧ Ci ∩ S̄ ̸= ∅.

Going forward, we also use Re to denote the number of connected components in Pe which are
of size ≥ 2. With this, we are able to state our main theorem:

Theorem 11.7. Let G be a hedge-graph on n vertices, let ϵ ∈ (0, 1), and let R = maxeRe. Then,
there is a randomized polynomial time algorithm for computing a (1± ϵ) cut-sparsifier G̃ of G (with
high probability), such that G̃ preserves only Õ(nR2/ϵ2) re-weighted hedges.

Remark 11.8. Note that R is separate from the size of the hedge. In particular, a hyperedge is a
hedge where R = 1.
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Proof. First, let us choose a prime p ∈ [n, 2n]. The proof proceeds by creating a code over FpR .

This means that the generating matrix H we create is ∈ Fm×n
pR

. Now, for any hedge e ∈ E, let
us use C1, . . . CR to denote its connected components of size ≥ 2. Our goal will be to write the
cut-function of G as the OR of a cut-condition of each of the individual components. Then, observe
that we are exactly implementing the logic of a hedge-cut; namely, a hedge is cut if and only if
some constituent component of the hedge is cut.

Next, for the field FpR , recall that we create this field by extending the field Fp. We let
α1, . . . αR−1 denote the roots we use to extend the field. An equivalent way to view each element
x in FpR is as a linear combination of the αi’s:

x = b0 + b1α1 + · · ·+ bR−1αR−1,

where bi ∈ Fp.
In particular, an element x is non-zero if and only if ∃bi in the above representation such that

bi ̸= 0. Thus gives us a natural way to express the cut function of each hedge, as the αi’s can
essentially simulate an OR of each individual component being cut. So, before concluding, our
final ingredient is an expression which evaluates to 0 if and only if a certain component is not cut.
Indeed let Ci denote the component, and let v∗ denote the largest label of vertex in Ci. We can
write:

1[Ci is cut] = 1[(
∑
v∈Ci

xv)− |Ci| · xv∗ ̸= 0] = 1[fCi(x) ̸= 0] = .

One can verify that for x = 1S ∈ {0, 1}n, the above expression exactly captures whether the cut
S splits the component Ci. To conclude then, for the hedge e, we simply include a row in the
generating matrix of the form:

≤R−1∑
i=0

αi · fCi−1(x).

By the above logic,
≤R−1∑
i=0

αi · fCi−1(1S) = 1[e is cut].

In particular after creating the generating matrix H in this manner, we can invoke Theorem 5.19
to create a (1 ± ϵ) code-sparsifier of H with only Õ(nR2/ϵ2) re-weighted rows remaining. This
sparsifier must preserve codeword weights for any vector x ∈ {0, 1}n, and hence the same selection
of re-weighted hedges would constitute a (1 ± ϵ) cut-sparsifier of the hedge-graph G. This yields
the claim.

11.4 Efficient Cardinality-based Splitting Function Sparsification

First, let us recall the notion of generalized hypergraph sparsification:

Definition 11.7. For a hypergraph G = (V,E), a general hypergraph associates a splitting function
ge : 2

e → R+ to each hyperedge e ∈ E. For a set S ⊆ V , we define

cutG(S) =
∑
e∈E

ge(S ∩ e).

We say a re-weighted sub-hypergraph of G is a (1± ϵ) cut-sparsifier of G̃ if for all S ⊆ V :

(1− ϵ)cutG(S) ≤
∑
e∈ẽ

w̃e · ge(S ∩ e) ≤ (1 + ϵ)cutG(S).
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In the general hypergraph sparsification literature, one particularly important class of splitting
functions are the so-called “cardinality-based splitting function”.

Definition 11.8. For a hyperedge e ∈ E, we say that ge : 2
e → R+ is a cardinality-based splitting

function if there exists fe : Z → R+ such that ∀S ⊆ V , ge(S ∩ e) = f(|S ∩ e|) (i.e., there is a
function f which depends only on the cardinality of the input set which dictates the value of the
splitting function).

Beyond this, we call a splitting function a {0, 1}-valued cardinality-based splitting function if
ge is cardinality-based and maps to the range {0, 1}.

In this regime, we derive the following theorem:

Theorem 11.9. Let G be a general hypergraph, and for every e ∈ E, suppose that ge is the same
{0, 1}-valued, cardinality-based splitting function. Then, G is efficiently-sparsifiable to Õ(n/ϵ2)
hyperedges if and only if fe is periodic.

Here, we are using fe in the same way as defined in Definition 11.8.

Proof. Fix a hyperedge e ∈ E, and recall that for S ⊆ V , we have ge(S) = fe(|e ∩ S|) ∈ {0, 1}. In
particular, because every hyperedge has the same splitting function, we can simply use f = fe for
every e ∈ E. Note that this also necessarily means that every hyperedge is of the same arity, which
we denote by r.

The key observation is that this general hypergraph is now equivalent to a CSP. Indeed, for any
hyperedge e ∈ E, there is a corresponding constraint f : {0, 1}r → {0, 1} operating on the variables
(y1, . . . yr) in e. For any cut S ⊆ V , and any assignment to the variables x = 1S , we have that
ge(S) = 1 if and only if f((1S)e1 , . . . (1S)er) = 1.

Now, we can simply invoke Theorem 1.3 to conclude the stated theorem. The efficiency follows
from the same theorem.
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[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2)
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A Detailed Proof of Sparsifiers for Abelian Codes

A.1 Efficient Spanning Subsets for Abelian Codes

Here, we re-produce the algorithms used to create spanning subsets for codes over Zq in the new
setting of (Zq1×· · ·×Zqu). For a code C ⊆ (Zq1×· · ·×Zqu)

m, the following algorithms take as input
a generating matrix H ∈ (Zq1 × · · · × Zqu)

m×n, and construct maximum spanning subsets. Note
that these maximum spanning subsets are defined in the same manner as before. Going forward,
we will let q =

∏u
i=1 qi.

Algorithm 15: BuildMaxSpanningSubsetAbelian(H)

1 Initialize T = ∅.
2 Let k = 0.
3 for i ∈ [m] do
4 If the number of distinct codewords in the span of H|T∪{i} is ≥ k, then set T = T ∪ {i},

and k ← the number of distinct codewords in the span of H|T∪{i}.

5 end
6 return T

Algorithm 16: ConstructSpanningSubsetsAbelian(H, t)

1 for i ∈ [t] do
2 Let Ti = BuildMaxSpanningSubsetAbelian(H|T̄1∩... ¯Ti−1

).

3 end
4 return Ti : i ∈ [t].

Note that, as before, the correctness and efficient implementation of these algorithms follows
from exactly the same reasoning as with codes over Zq, as these proofs rely on the contraction
algorithm which has a direct analog. In particular, we are able to conclude the following:
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Claim A.1. For a generating matrix G ∈ (Zq1 × · · · × Zqu)
m×n, any choice of d and the set S of

bad rows (i.e. those guaranteed by Corollary 6.5) for G and parameter d, for any disjoint maximum
spanning subsets T1, . . . T2d(log(n)+log(q)), we have that S ⊆ T1 ∪ T2 · · · ∪ T2d(log(n)+log(q)).

A.2 Weighted Decomposition

Here, we introduce an analog of the weight decomposition step used for codes over Zq which will
instead be defined for codes over (Zq1×Zq2 . . .Zqu). Consider the following procedure which operates
on a code of length m and at most qn distinct codewords in Algorithm 17.

Algorithm 17: WeightClassDecomposition(C, ϵ, α)
1 Let Ei be all coordinates of C′ that have weight between [αi−1, αi].
2 Let Dodd = E1 ∪ E3 ∪ E5 ∪ . . . , and let Deven = E2 ∪ E4 ∪ E6 ∪ . . . .
3 return Dodd,Deven.

Next, we prove some facts about this algorithm.

Lemma A.2. Consider a code C with at most qn distinct codewords and length n. Let

Dodd,Deven = WeightClassDecomposition(C, ϵ, n).

To get a (1± ϵ)-sparsifier for C, it suffices to get a (1± ϵ) sparsifier to each of Dodd,Deven.

Proof. The creation of Dodd,Deven forms a vertical decomposition of the code C′. Thus, by
Claim 3.1, if we have a (1 ± ϵ) sparsifier for each of Dodd,Deven, we have a (1 ± ϵ) sparsifier to
C.

Because of the previous claim, it is now our goal to create sparsifiers for Dodd,Deven. Without
loss of generality, we will focus our attention only on Deven, as the procedure for Dodd is exactly
the same (and the proofs will be the same as well). At a high level, we will take advantage of the
fact that

Deven = E2 ∪ E4 ∪ . . . ,

where each Ei contains edges of weights [α
i−1, αi], for α = m3

ϵ3
, where m is the length of the code.

Because of this, whenever a codeword c ∈ C′ is non-zero in a coordinate in Ei, we can effectively
ignore all coordinates of lighter weights Ei−2, Ei−4, . . . . This is because any coordinate in E≤i−2

has weight at most a ϵ3

m3 fraction of any single coordinate in Ei. Because there are at most O(m)
coordinates in C′, it follows that the total possible weight of all rows in E≤i−2 is still at most a
O(ϵ/m) fraction of the weight of a single row in Ei. Thus, we will argue that when we are creating
a sparsifier for codewords that are non-zero in a row in Ei, we will be able to effectively ignore
all rows corresponding to E≤i−2. Thus, our decomposition is quite simple: we first restrict our
attention to Ei and create a (1 ± ϵ) sparsifier for these rows. Then, we transform the remaining
code such that only codewords which are all zeros on Ei remain. We present this transformation
below:

Claim A.3. If the span of G originally had 2n
′
distinct codewords, and the span of G|Ei has 2n

′′

distinct codewords, then after Algorithm 18, the span of G′|Ēi
has 2n

′−n′′
distinct codewords.

Proof. After running the above algorithm, G′ is entirely 0 on the rows corresponding to Ei, hence it
follows that after running the algorithm, G′ and G′|Ēi

have the same number of distinct codewords.

57



Algorithm 18: SingleSpanDecomposition(Deven, α, i)

1 Let Ei be all rows of Deven with weights between αi−1 and αi.
2 Let G be a generating matrix for Deven.
3 Store G|Ei .
4 Let G′ = G.
5 while G′|Ei is not all zero do
6 Find the first non-zero coordinate of G′|Ei , call this j.
7 Set G′ = ContractAbelian(G′, j).

8 end
9 return G|Ei, G

′|Ēi

Now, we will argue that the span of G′ has at most 2n
′−n′′

distinct codewords. Indeed, for any
codeword c in the span of G′, c is also in the span of the original G. However, for this same
c, in the original G we could add any of the 2n

′
distinct vectors which are non-zero on the rows

corresponding to Ei. Thus, the span of G must have at least 2n
′
times as many distinct codewords

as G′. This concludes the claim.

Claim A.4. For any codeword c in the span of G, if c is zero in the coordinates corresponding to
Ei, then c is still in the span of G′ after the contractions of Algorithm 18.

Proof. This follows from Claim 6.2. If a codeword is 0 in a coordinate which we contract on, then
it remains in the span. Hence, if we denote by c a codeword which is zero in all of the coordinates
of Ei, then c is still in the span after contracting on the coordinates in Ei.

Claim A.5. In order to get a (1 ± ϵ) approximation to Deven, it suffices to combine a (1 ± ϵ/2)
approximation to G|Ei and a (1± ϵ) approximation to G′|Ēi

.

Proof. For any codeword c ∈ Deven which is non-zero on rows Ei, it suffices to get a (1 ± ϵ/2)
approximation to their weight on G|Ei , as this makes up at least a (1± ϵ/n) fraction of the overall
weight of the codeword.

For any codeword c ∈ Deven which is zero on rows Ei, then c is still in the span of G′, and in
particular, its weight when generated by G is exactly the same as its weight in G′

Ēi
(as it is zero

in the coordinates corresponding to Ei, we can ignore these coordinates). Hence, it suffices to get
a (1 ± ϵ) approximation to the weight of c on G′

Ēi
. Taking the union of these two sparsifiers will

then yield a sparsifier for every codeword in the span of Deven.

Claim A.6. Let S,Hi be as returned by Algorithm 19. Then,
∑

i∈S log(|Span(Hi)|) = log(|Span(Deven)|).

Proof. This follows because from line 5 of Algorithm 19. In each iteration, we store G|Ei , and
iterate on G′|Ei . From Claim A.3, we know that

(number of distinct codewords in G|Ei) · (number of distinct codewords in G′|Ēi
)

= (number of distinct codewords in G),

thus taking the log of both sides, we can see that the sum of the logs of the number of distinct
codewords is preserved.
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Algorithm 19: SpanDecomposition(Deven, α)

1 Let D′
even = Deven = E2 ∪ E4 ∪ E6 . . . .

2 Let S = {}.
3 while D′

even is not empty do
4 Let i be the largest integer such that Ei is non-empty in D′

even.
5 Let G|Ei , G

′|Ēi
= SingleSpanDecomposition(D′

even, α, i).
6 Let D′

even be the span of G′|Ēi
, and let Hi = G|Ei .

7 Add i to S.

8 end
9 return S,Hi for every i ∈ S

Lemma A.7. Suppose we have a code of the form Deven created by Algorithm 17. Then, if we run
Algorithm 19 on Deven, to get S, (Hi)i∈S, it suffices to get a (1± ϵ/2) sparsifier for each of the Hi

in order to get a (1± ϵ) sparsifier for Deven.

Proof. This follows by inductively applying Claim A.5. Let our inductive hypothesis be that getting
a (1 ± ϵ/2) sparsifier to each of codes returned of Algorithm 19 suffices to get a (1 ± ϵ) sparsifier
to the code overall. We will induct on the number of recursive levels that Algorithm 19 undergoes
(i.e., the number of distinct codes returned by the algorithm). In the base case, we assume that
there is only one level of recursion, and that Algorithm 19 simply returns a single code. Clearly
then, getting a (1± ϵ/2) sparsifier to this code suffices to sparsify the code overall.

Now, we prove the claim inductively. Assume the algorithm returns ℓ codes. After the first
iteration, we decompose Deven into Hi = G|Ei and G′|Ēi

. By Claim A.5, it suffices to get a (1±ϵ/2)
sparsifier to Hi, while maintaining a (1 ± ϵ) sparsifier to G′|Ēi

. By invoking our inductive claim,
it then suffices to get a (1± ϵ/2) sparsifier for the ℓ− 1 codes returned by the algorithm on G′|Ēi

.
Thus, we have proved our claim.

A.3 Dealing with Bounded Weights

Let us consider any Hi that is returned by Algorithm 19, when called with α = m3/ϵ3. By
construction, Hi will contain weights only in the range [αi−1, αi] and will have at most O(m)
coordinates. In this subsection, we will show how we can turn Hi into an unweighted code with
at most poly(m/ϵ) coordinates. First, note however, that we can simply pull out a factor of αi−1,
and treat the remaining graph as having weights in the range of [1, α]. Because multiplicative
approximation does not change under multiplication by a constant, this is valid. Formally, consider
the following algorithm:

Algorithm 20: MakeUnweighted(C, α, i, ϵ)
1 Divide all edge weights in C by αi−1.
2 Make a new unweighted code C′ by duplicating every coordinate j of C ⌊10w(j)/ϵ⌋ times.
3 return C′, αi−1 · ϵ

10

Lemma A.8. Consider a code C with weights bounded in the range [αi−1, αi]. To get a (1 ± ϵ)
sparsifier for C it suffices to return a (1 ± ϵ/10) sparsifier for C′ = MakeUnweighted(C, α, i, ϵ)
weighted by αi−1 · ϵ

10 .
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Proof. It suffices to show that C′ is (1± ϵ/10) sparsifier for C, as our current claim will then follow
by Claim 3.2 (composing approximations). Now, to show that C′ is (1 ± ϵ/10) sparsifier for C, we
will use Claim 3.1 (vertical decomposition of a code), and show that in fact the weight contributed
by every coordinate in C is approximately preserved by the copies of the coordinate introduced in
C′.

Without loss of generality, let us assume that i = 1, as otherwise pulling out the factor of αi−1

in the weights clearly preserves the weights of the codewords. Indeed, for every coordinate j in C,
let w(j) be the corresponding weight on this coordinate, and consider the corresponding ⌊10w(r)/ϵ⌋
coordinates in C′. We will show that the contribution from these coordinates in C′, when weighted
by ϵ/10, is a (1± ϵ/10) approximation to the contribution from j.

So, consider an arbitrary coordinate j, and let its weight be w(j). Then,

10w

ϵ
− 1 ≤ ⌊10w(j)/ϵ⌋ ≤ 10w

ϵ
.

When we normalize by ϵ
10 , we get that the combined weight of the new coordinates w′ satisfies

w − ϵ/10 ≤ w′ ≤ w.

Because w ≥ 1, it follows that this yields a (1 ± ϵ/10) sparsifier, and we can conclude our
statement.

Claim A.9. Suppose a code C of length m has weight ratio bounded by α, and minimum weight
αi−1. Then, MakeUnweighted(C, α, i, ϵ) yields a new unweighted code of length O(mα/ϵ).

Proof. Each coordinate is repeated at most O(α/ϵ) times.

A.4 Sparsifiers for Codes of Polynomial Length

In this section, we introduce an efficient algorithm for sparsifying codes. We will take advantage of
the decomposition proved in Corollary 4.5 in conjunction with the following claim:

Claim A.10. Suppose C is a code with at most qn distinct codewords over (Zq1×Zq2 . . .Zqu) (where
q = q1 · . . . qu), and let b ≥ 1 be an integer such that for any integer α ≥ 1, the number of codewords
of weight ≤ αb is at most

(
n log(q)

α

)
· qα+1 ≤ (qn)2α. Suppose further that the minimum distance of

the code C is b. Then, sampling the ith coordinate of C at rate pi ≥ log(n) log(q)η
bϵ2

with weights 1/pi
yields a (1± ϵ) sparsifier with probability 1− 2−(0.19η−110) log n · n−101.

Proof. Consider any codeword c of weight [αb/2, αb] in C. We know that there are at most (qn)α

codewords that have weight in this range. The probability that our sampling procedure fails to
preserve the weight of c up to a (1± ϵ) fraction can be bounded by Claim 3.3. Indeed,

Pr[fail to preserve weight of c] ≤ 2e−0.38·ϵ2·αb
2
· η log(n) log(q)

ϵ2b = 2e−0.19αη log(n) log(q).

Now, let us take a union bound over the at most (qn)2α codewords of weight between [αb/2, α].
Indeed,

Pr[fail to preserve any c of weight [αb/2, αb]] ≤ 22α log(qn) · 2e−0.19αη log(n) log(q)

≤ 2α·(−0.19η+2) log(n) log(q)

≤ 2α·(−0.19η+2) log(n)

≤ 2−(0.19η−110)α logn · 2−108α logn

≤ 2−(0.19η−110) log n · n−108α,
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where we have chosen η to be sufficiently large. Now, by integrating over α ≥ 1, we can bound the
failure probability for any integer choice of α by 2−(0.19η−110) log n · n−101.

Next, we consider Algorithm 21:

Algorithm 21: CodeDecomposition(C, d)
1 Let T be ∪iTi for Ti the sets of coordinates returned by

ConstructSpanningSubsetsAbelian(C, 2d(log(n) + log(q))).
2 Let C′ be the code C after removing the set of coordinates T .
3 return T, C′

Intuitively, the set T returned by Algorithm 21 contains all of the “bad” rows which were
causing the violation of the codeword counting bound. We know that if we removed only the true
set of bad rows, denoted by S, then we could afford to simply sample the rest of the code at rate
roughly 1/d while preserving the weights of all codewords. Thus, it remains to show that when we
remove T (a superset of S) that this property still holds. More specifically, we will consider the
following algorithm:

Algorithm 22: CodeSparsify(C, n, ϵ, η)
1 Let m be the length of C.
2 if m ≤ 100 · n · η log2(n) log2(q)/ϵ2 then
3 return C
4 end

5 Let d = mϵ2

2η·n log2(n) log2(q)
.

6 Let T, C′ = CodeDecomposition(C,
√
d · η · log(n) log(q)/ϵ2). Let C1 = C|T . Let C2 be the

result of sampling every coordinate of C′ at rate 1/
√
d.

7 return CodeSparsify(C1, n, ϵ, η) ∪
√
d · CodeSparsify(C2, n, ϵ, η)

Lemma A.11. In Algorithm 22, starting with a code C of size 2dn log2(n) log2(q)/ϵ2, after i levels
of recursion, with probability 1− 2i · 2−ηn, the code being sparsified at level i, C(i) has at most

2(1 + 1/2 log log(n))i · d1/2i · η · n log2(n) log2(q)/ϵ2

surviving coordinates.

Proof. Let us prove the claim inductively. For the base case, note that in the 0th level of recursion
the number of surviving coordinates in C(0) = C is d · 2n log2(n) log2(q)/ϵ2, so the claim is satisfied
trivially.

Now, suppose the claim holds inductively. Let C(i) denote a code that we encounter in the ith
level of recursion, and suppose that it has at most

2(1 + 1/2 log log(n))i · d1/2i · η · n log2(n) log2(q)/ϵ2

coordinates. Denote this number of coordinates by ℓ. Now, if this number is smaller than
100nη log2(n) log2(q)/ϵ2, we will simply return this code, and there will be no more levels of recur-
sion, so our claim holds vacuously. Instead, suppose that this number is larger than 100nη log2(n) log2(q)/ϵ2,

and let d′ = ℓϵ2

2ηn log2(n) log2(q)
≤ (1 + 1/2 log log(n))i · d1/2i .
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Then, we decompose C(i) into two codes, C1 and C2. C1 is the restriction of C to the set of
disjoint maximum spanning subsets. By construction, we know that T is constructed by calling
ConstructSpanningSubsetsAbelian with parameter

√
d′η log(n) log(q)/ϵ2, and therefore

|T | ≤ 2
√
d′nη log2(n) log2(q)/ϵ2 ≤ 2(1 + 1/2 log log(n))inηd1/2

i+1
log2(n) log2(q)/ϵ2,

satisfying the inductive claim.
For C2, we define random variables X1 . . . Xℓ for each coordinate in the support of C2. Xi will

take value 1 if we sample coordinate i, and it will take 0 otherwise. Let X =
∑ℓ

i=1Xi, and let
µ = E[X]. Note that

µ2

ℓ
=

(
ℓ√
d′

)2

/ℓ =
ℓ

d′
≥ η · n · log2(n) log2(q)/ϵ2.

Now, using Chernoff,

Pr[X ≥ (1 + 1/2 log log(n))µ] ≤ e
−2

4 log2 log(n)
·η·n·log(n) log(q)/ϵ2 ≤ 2−ηn,

as we desire. Since µ = ℓ/
√
d′ ≤ (1 + 1/2 log log(n))i · d1/2i+1 · η · n log2(n) log2(q)/ϵ2, we conclude

our result.
Now, to get our probability bound, we also operate inductively. Suppose that up to recursive

level i − 1, all sub-codes have been successfully sparsified to their desired size. At the ith level of
recursion, there are at most 2i−1 codes which are being probabilistically sparsified. Each of these
does not exceed its expected size by more than the prescribed amount with probability at most
2−ηn. Hence, the probability all codes will be successfully sparsified up to and including the ith
level of recursion is at least 1 − 2i−12−ηn − 2i−12−ηn = 1− 2i2−ηn.

Lemma A.12. For any iteration of Algorithm 22 called on a code C, C1 ∪
√
d · C2 is a (1 ± ϵ)

sparsifier to C with probability at least 1− 2−(0.19η−110) log n · n−101.

Proof. First, let us note that the set T returned from Algorithm 21 is a superset of the bad set
S of rows guaranteed by Corollary 6.5 (this follows from Claim A.1). Thus, we can equivalently
view the procedure as producing three codes: C|S , C|T/S and CT̄ = C′. For our analysis, we will
view this procedure in a slightly different light: we will imagine that first the algorithm removes
exactly the bad set of rows S, yielding C|S and CS̄ . Now, for this second code, CS̄ , we know the
code-word counting bound will hold, and in particular, random sampling procedure will preserve
codeword weights with high probability. However, our procedure is not uniformly sampling the
coordinates in CS̄ , because some of these coordinates are in T/S, and thus are preserved exactly
(i.e. with probability 1). For this, we will take advantage of the fact that preserving coordinates
with probability 1 is strictly better than sampling at any rate < 1. Thus, we will still be able to
argue that the ultimate result C1 ∪

√
d · C2 is a (1± ϵ) sparsifier to C with high probability.

As mentioned above, we start by noting that C′, C|S , CT/S form a vertical decomposition of
C. C|S is preserved exactly, so we do not need to argue concentration of the codewords on these
coordinates. Hence, it suffices to show that

√
d · C1 ∪ CT/S is a (1± ϵ)-sparsifier to C′ ∪ CT/S .

To see that
√
d · C1 ∪ CT/S is a (1± ϵ)-sparsifier to C′ ∪ CT/S , first note that every codeword in

C′ ∪ CT/S is of weight at least
√
d · η · log(n) log(q)/ϵ2. This is because if there were a codeword

of weight smaller than this, there would exist a subcode of C′ ∪ CT/S with 2 distinct codewords,

and support bounded by
√
d · η · log(n) log(q)/ϵ2. But, because we have removed the set S of bad

rows, we know that there can be no such sub-code remaining in C′ ∪ CT/S . Thus, every codeword

in C′ ∪ CT/S is of weight at least
√
d · η · log(n) log(q)/ϵ2.
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Now, we can invoke Claim A.10 with b =
√
dη log(n) log(q)/ϵ2. Note that the hypothesis of

Claim A.10 is satisfied by virtue of our code decomposition. Indeed, we removed coordinates of
the code such that in the resulting C′ ∪ CT/S , for any α ≥ 1, there are at most (qn)2α codewords

of weight ≤ α
√
dη log(n) log(q)/ϵ2. Using the concentration bound of Claim A.10 yields that with

probability at least 1− 2−(0.19η−110) log n ·n−101, when samplin every coordinate at rate ≥ 1/
√
d the

resulting sparsifier for C′ ∪ CT/S is a (1 ± ϵ) sparsifier, as we desire. Note that we are using the

fact that every coordinate is sampled with probability ≥ 1/
√
d (in particular, those in T − S are

sampled with probability 1).

Corollary A.13. If Algorithm 22 achieves maximum recursion depth ℓ when called on a code
C, and η > 600, then the result of the algorithm is a (1 ± ϵ)ℓ sparsifier to C with probability
≥ 1− (2ℓ − 1) · 2−(0.19η−110) log n · n−101

Proof. We prove the claim inductively. Clearly, if the maximum recursion depth reached by the
algorithm is 0, then we have simply returned the code itself. This is by definition a (1±ϵ)0 sparsifier
to itself.

Now, suppose the claim holds for maximum recursion depth i − 1. We will show it holds for
maximum recursion depth i. Let the code we are sparsifying be C. We break this into C1, C′, and
sparsify these. By our inductive claim, with probability 1− (2i−1−1) ·2−(0.19η−110) log n ·n−101 each
of the sparsifiers for C1, C′ are (1± ϵ)i−1 sparsifiers. Now, by Lemma A.12 and our value of η, C1, C′
themselves together form a (1± ϵ) sparsifier for C with probability 1− 2−(0.19η−110) log n ·n−101. So,
by using Claim 3.2, we can conclude that with probability 1− (2i− 1) · 2−(0.19η−110) log n ·n−101, the
result of sparsifying C1, C′ forms a (1± ϵ)i approximation to C, as we desire.

We can then state the main theorem from this section:

Theorem A.14. For a code C over (Zq1×Zq2 . . .Zqu) with at most qn distinct codewords, and length
m, Algorithm 22 creates a (1±ϵ) sparsifier for C with probability 1− log(m) ·2−(0.19η−110) log n ·n−100

with at most
O(nη log(n) log2(q) log2(m)(log log(m))2/ϵ2)

coordinates.

Proof. For a code of with qn distinct codewords, and length m, this means that our value of d as
specified in the first call to Algorithm 22 is at most m as well. As a result, after only log logm
iterations, d = m1/2log logm

= m1/ logm = O(1). So, by Corollary A.13, because the maximum
recursion depth is only log logm, it follows that with probability at least 1 − (2log logm − 1) ·
2−(0.19η−110) log n · n−101, the returned result from Algorithm 22 is a (1± ϵ)log logm sparsifier for C.

Now, by Lemma A.11, with probability ≥ 1−2log logm ·2−ηn ≥ 1− log(m) ·2−(0.19η−110) log n ·2−n,
every code at recursive depth log logm has at most

(1 + 1/2 log log(n))log logm ·m1/ logm · η · n log(n) log(q)/ϵ2 = O(nη log(n) log2(q) · e
log logm
log log n /ϵ2)

coordinates. Because the ultimate result from calling our sparsification procedure is the union of
all of the leaves of the recursive tree, the returned result has size at most

log(m) · e
log logm
log log n ·O(nη log(n) log2(q)/ϵ2) = O(nη log(n) log2(q) log2(m)/ϵ2),

with probability at least 1 − log(m) · 2−(0.19η−110) log n · n−101.
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Finally, note that we can replace ϵ with a value ϵ′ = ϵ/2 log logm. Thus, the resulting sparsifier
will be a (1± ϵ′)log logm ≤ (1± ϵ) sparsifier, with the same high probability.

Taking the union bound of our errors, we can conclude that with probability 1 − log(m) ·
2−(0.19η−110) log n · n−100, Algorithm 22 returns a (1± ϵ) sparsifier for C that has at most

O(nη log(n) log2(q) log2(m)(log log(m))2/ϵ2)

coordinates.

However, as we will address in the next subsection, this result is not perfect:

1. For large enough m, there is no guarantee that this probability is ≥ 0 unless η depends on m.

2. For large enough m, log2(m) may even be larger than n.

A.5 Final Algorithm

Finally, we state our final algorithm in Algorithm 23, which will create a (1 ± ϵ) sparsifier for
any code C ⊆ (Zq1 × Zq2 . . .Zqu)

m with ≤ qn distinct codewords preserving only Õ(n log2(q)/ϵ2)
coordinates. Roughly speaking, we start with a weighted code of arbitrary length, use the weight
class decomposition technique, sparsify the decomposed pieces of the code, and then repeat this
procedure now that the code will have a polynomial length. Ultimately, this will lead to the
near-linear size complexity that we desire. We write a single iteration of this procedure below:

Algorithm 23: FinalCodeSparsify(C, ϵ)
1 Let n be logq(|C|).
2 Let m be the length of the code.
3 Let α = (m/ϵ)3, and Dodd,Deven =WeightClassDecomposition(C, ϵ, α).
4 Let Seven, {Heven,i} =SpanDecomposition(Deven, α).
5 Let Sodd, {Hodd,i} =SpanDecomposition(Dodd, α).
6 for i ∈ Seven do

7 Let Ĥeven,i, weven,i = MakeUnweighted(Heven,i, α, i, ϵ/8).

8 Let H̃even,i =CodeSparsify(Ĥeven,i, logq(|Span(Ĥeven,i)|), ϵ/80, 100(log(m/ϵ) log log(q))2).

9 end
10 for i ∈ Sodd do

11 Let Ĥodd,i, wodd,i = MakeUnweighted(Hodd,i, α, i, ϵ/8).

12 Let H̃odd,i =CodeSparsify(Ĥodd,i, logq(|Span(Ĥodd,i)|), ϵ/80, 100(log(m/ϵ) log log(q))2).

13 end

14 return
⋃

i∈Seven

(
weven,i · H̃even,i

)
∪
⋃

i∈Sodd

(
wodd,i · H̃odd,i

)
First, we analyze the space complexity. WLOG we will prove statements only with respect to

Deven, as the proofs will be identical for Dodd.

Claim A.15. Suppose we are calling Algorithm 23 on a code C with qn distinct codewords. Let
neven,i = logq(Span((Ĥeven,i))|) from each call to the for loop in line 5.

For each call H̃even,i =CodeSparsify(Ĥeven,i, logq(|Span(Ĥeven,i)|), ϵ/10, 100(log(n/ϵ) log log(q))2)
in Algorithm 23, the resulting sparsifier has

O
(
neven,i log(neven,i) log

4(m/ϵ) log2(q)(log log(m/ϵ) log log(q))2/ϵ2
)
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coordinates with probability at least 1− log(m/ϵ) · 2−Ω(log2(m/ϵ)(log log(q))2).

Proof. We use several facts. First, we use Theorem A.14. Note that the m in the statement of Theo-
rem A.14 is actually a poly(m/ϵ) because α = m3/ϵ3, and we started with a weighted code of length
O(m). So, it follows that after using Algorithm 20, the support size is bounded by O(m4/ϵ3). We’ve
also added the fact that η is no longer a constant, and instead carries O((log(m/ϵ) log log(q))2),
and carried this through to the probability bound.

Lemma A.16. In total, the combined number of coordinates over i ∈ Seven of all of the H̃even,i is

at most Õ(n log4(m) log2(q)/ϵ2) with probability at least 1− log(m log(q)/ϵ) ·2−Ω(log2(m/ϵ)(log log(q))2).

Proof. First, we use Claim A.6 to see that∑
i∈Seven

logq(|Span(Ĥeven,i)|) ≤ n.

Thus, in total, the combined length (total number of coordinates preserved) of all the H̃even,i is∑
i∈Seven

number of coordinates in Ĥeven,i

≤
∑

i∈Seven

O
(
neven,i log(neven,i) log

4(m/ϵ) log2(q)(log log(m/ϵ) log log(q))2/ϵ2
)

≤
∑

i∈Seven

(neven,i) · Õ
(
log4(m) log2(q)/ϵ2

)
= n · Õ

(
log4(m) log2(q)/ϵ2

)
= Õ(n log4(m) log2(q)/ϵ2).

To see the probability bound, we simply take the union bound over all at most n distinct H̃even,i,
and invoke Claim A.15.

Now, we will prove that we also get a (1 ± ϵ) sparsifier for Deven when we run Algorithm 23.

Lemma A.17. After combining the Ĥeven,i from Lines 5-8 in Algorithm 23, the result is a (1±ϵ/4)-
sparsifier for Deven with probability at least 1− log(m log(q)/ϵ) · 2−Ω(log2(m/ϵ)(log log(q))2).

Proof. We use Lemma A.7, which states that to sparsify Deven to a factor (1 ± ϵ/4), it suffices to
sparsify each of the Heven,i to a factor (1± ϵ/8), and then combine the results.

Then, we use Lemma A.8, which states that to sparsify any Heven,i to a factor (1±ϵ/8), it suffices

to sparsify Ĥeven,i to a factor (1± ϵ/80), where again, Ĥeven,i is the result of calling Algorithm 20.

Then, we must multiply Ĥeven,i by a factor αi−1 · ϵ/10.
Finally, the resulting code Ĥeven,i is now an unweighted code, whose length is bounded by

O(m4/ϵ3), with at most qneven,i distinct codewords. The accuracy of the sparsifier then follows from
Theorem A.14 called with parameter ϵ/80.

The failure probability follows from noting that we take the union bound over at most n log(q)
Heven,i. By Theorem A.14, our choice of η, and the bound on the length of the support being
O(m4/ϵ3), the probability bound follows.
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For Theorem A.14, the failure probability is characterized in terms of the number of distinct
codewords of the code that is being sparsified. However, when we call Algorithm 22 as a sub-routine
in Algorithm 23, we have no guarantee that the number of distinct codewords is ω(q). Indeed, it
is certainly possible that the decomposition in Hi creates n different codes, each with q distinct
codewords in their span. Then, choosing η to only be a constant, as stated in Theorem A.14, the
failure probability could be constant, and taking the union bound over n choices, we might not get
anything meaningful. To amend this, instead of treating η as a constant in Algorithm 22, we set
η = 100(log(m/ϵ) log log(q))2, where now m is the length of the original code C, not in the current
code that is being sparsified Hi. With this modification, we can then attain our desired probability
bounds.

Theorem A.18. For any code C with qn distinct codewords and length m over (Zq1 ×Zq2 . . .Zqu),

Algorithm 23 returns a (1± ϵ) sparsifier to C with Õ(n log4(m) log2(q)/ϵ2) coordinates with proba-
bility ≥ 1− 2−Ω((log(m/ϵ) log log(q))2).

Proof. First, we use Lemma A.2. This Lemma states that in order to get a (1 ± ϵ) sparsifier to a
code C, it suffices to get a (1± ϵ/4) sparsifier to each of Deven,Dodd, and then combine the results.

Then, we invoke Lemma A.17 to conclude that with probability ≥ 1 − 2−Ω((log(m/ϵ) log log(q))2),
Algorithm 11 will produce (1± ϵ/4) sparsifiers for Deven,Dodd.

Further, to argue the sparsity of the algorithm, we use Lemma A.16. This states that with proba-
bility≥ 1−2−Ω((log(m/ϵ) log log(q))2), Algorithm 23 will produce code sparsifiers of size Õ(n log4(m) log2(q)/ϵ2)
for Deven,Dodd.

Thus, in total, the failure probability is at most 2−Ω((log(m/ϵ) log log(q))2), the total size of the
returned code sparsifier is at most Õ(n log4(m) log2(q)/ϵ2), and the returned code is indeed a
(1± ϵ) sparsifier for C, as we desire.

Note that the returned sparsifier may have some duplicate coordinates because of Algorithm 20.
Even when counting duplicates of the same coordinate separately, the size of the sparsifier will be
at most Õ(n log4(m) log2(q)/ϵ2). We can remove duplicates of coordinates by adding their weights
to a single copy of the coordinate.

Claim A.19. Running Algorithm 23 on a code of length m with parameter ϵ takes time poly(mn log(q)/ϵ).

Proof. Let us consider the constituent algorithms that are invoked during the execution of Algo-
rithm 23. First, we consider weight class decomposition. This groups rows together by weight
(which takes time Õ(log(m))). Next, we invoke SpanDecomposition, which then contracts on the
rows in the largest weight class. Note that in the worst case, we perform O(n log(q)) contractions,
as each contraction reduces the number of codewords by a factor of ≥ 2. Further, each contraction
takes time O(mn log(q)) as the total number of rows is bounded by m, and there are at most
n log(q) columns in the generating matrix. Thus, the total runtime of this step is Õ(mn2 log2(q)).

The next step is to invoke the algorithm MakeUnweighted. Because the value of α is m3/ϵ3,
this takes time at most O(m4/ϵ3) to create the new code with this many rows.

Finally, we invoke CodeSparsify on a code of length ≤ m4/ϵ3 and with at most qneven,i distinct
codewords. Note that there are polylog(m) nodes in the recursive tree that is built by CodeSpar-
sify. Each such node requires removing the set T which is a set of ≤ Õ(

√
m4/ϵ3) = Õ(m2/ϵ1.5)

maximum spanning subsets. Constructing each such subset (by Claim 4.8) takes time at most
O((m4ϵ3)2n log(q)). After this step, the subsequent random sampling is efficiently doable. Thus,
the total runtime is bounded by poly(mn log(q)/ϵ), as we desire.
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Note that creating codes of linear-size now simply requires invoking Algorithm 23 two times
(each with parameter ϵ/2). Indeed, because the length of the code to begin with is ≤ qn, this
means that after the first invocation, the resulting (1 ± ϵ/2) sparsifier C′ that we get maintains
≤ Õ(n5 log6(q)/ϵ2) coordinates. In the second invocation, we get a (1 ± ϵ/2)-sparsifier C′′ for C′,
whose length is bounded by Õ(n log4(n5 log6(q)/ϵ2) log2(q)/ϵ2) = Õ(n log2(q)/ϵ2), as we desire.

Formally, this algorithm can be written as:

Algorithm 24: Sparsify(C, ϵ)
1 C′ =FinalCodeSparsify(C, ϵ/2).
2 return FinalCodeSparsify(C ′, ϵ/2)

Theorem A.20. Algorithm 22 returns a (1± ϵ)-sparsifier to C of size Õ(n log2(q)/ϵ2) with proba-
bility 1− 2−Ω((log(n/ϵ) log log(q))2) in time poly(mn log(q)/ϵ).

Proof. Indeed, because the length of the code to begin with is ≤ qn, this means that after the first
invocation, the resulting (1±ϵ/2) sparsifier C′ that we get maintains ≤ Õ(n5 log6(q)/ϵ2) coordinates.
In the second invocation, we get a (1 ± ϵ/2)-sparsifier C′′ for C′, whose length is bounded by
Õ(n log4(n5 log6(q)/ϵ2) log2(q)/ϵ2) = Õ(n log2(q)/ϵ2), as we desire. To see the probability bounds,
note thatm ≥ n, and thus both processes invocations of FinalCodeSparsify succeed with probability
1− 2−Ω((log(n/ϵ) log log(q))2).

Finally, to see that the algorithm is efficient, we simply invoke Claim A.19 for each time we fun
the algorithm. Thus, we get our desired bound.

B Sparsifying Binary Predicates over General Alphabets

In this section, we show how to rederive the result of [BZ20] using our framework. To do this, we
first introduce a more general definition of an affine predicate.

Definition B.1. For a predicate P : Σr → {0, 1}, we say that P is an affine predicate if there
exists a group A, ai, b ∈ A, and T1, . . . Tr : Σ→ Z such that ∀x ∈ Σr

P (x1, . . . xr) = 1 ⇐⇒
r∑

i=1

Ti(xi)ai ̸= b.

If the group A is Abelian, then we say that P is an affine Abelian predicate.

Note that the purpose of the functions Ti is to embed the alphabet into the integers. These
functions do not have to be linear in order to be sparsifiable. As an immediate consequence of
Theorem 1.7, we can sparsify general alphabet, affine predicate P over Abelian groups.

Theorem B.1. For any alphabet Σ, an affine Abelian predicate P over Abelian group A, any
instance Φ ∈ CSP(P ) on n variables can be (ϵ, Õ(n log2(|Σ|)/ϵ2))-sparsified.

Proof sketch. By definition, there exists ai, b ∈ A, T1, . . . Tr : Σ→ Z such that ∀x ∈ Σr

P (x1, . . . xr) = 1 ⇐⇒
r∑

i=1

Ti(xi)ai ̸= b.
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Now, let us create a generating matrix G in Am×(n+1) in the canonical way. Indeed, for each

of the [m] constraints, let the variables that the predicate is operating on be x
(1)
j , . . . x

(r)
j . In the

jth row of the generating matrix, for the column corresponding to x
(i)
j , place the coefficient ai.

Finally, in the final column (the n + 1st column), place the value b. It follows that for any linear
combination of the columns x ∈ Zn ◦ 1, the resulting codeword Gx will have weight equal to the
weight of the satisfied constraints on assignment x. Then, by sparsifying the code defined by G,
this yields a sparsifier for our CSP instance Φ. We conclude then by invoking Theorem 1.7.

Note that even though the functions Ti may not be linear, they still correspond to linear combi-
nations of the columns of this generating matrix. Our sparsifier works for any linear combination
of the columns of the generating matrix, even if the coefficients Ti(xi) are calculated in a non-linear
way.

With this, we are able to explain our proof strategy. Indeed, given a general binary predicate
P : Σ2 → {0, 1}, we view the predicate as a matrix in {0, 1}|Σ|×|Σ|. For this matrix, the work of
[BZ20] showed that the predicate P is sparsifiable if and only if there is no rectangle with corners
forming an AND: i.e., a rectangle with corners having 3 0’s and a single 1. When this is the case,
[BZ20] showed that this yields an AND of arity 2, and hence requires sparsifiers of quadratic size.
On the other hand, when none of these rectangles are of this form, we can indeed sparsify the
predicate.

Lemma B.2. Suppose a predicate P : Σ2 → {0, 1} does not have a projection to AND. Then, any
instance Φ ∈ CSP(P ) on n variables admits an (ϵ, Õ|Σ|(n/ϵ

2)) sparsifier.

Proof. As pointed out by Butti and Živný [BZ20], we note that if P does not have a projection
to AND then there must exist t disjoint sets S1, . . . , St ⊆ Σ and another family of t disjoint sets
U1, . . . , Ut ⊆ Σ such that P (a, b) = 1 if and only if (a, b) ̸∈ ∪ti=1Si ×Ui. We claim that this implies
P is an affine predicate.

We work over the group A = Zt+2. Next, we define the functions T1, T2 in our affine, Abelian
predicate. We let T1, T2 : Σ → Z be defined as T1(σ) = i if σ ∈ Si, and 0 otherwise. Likewise, we
define T2(σ) = i if σ ∈ Ui, and t + 1 otherwise. Further we set a1 = 1, a2 = −1 and b = 0. This
leads to the affine Abelian predicate P ′ given by:

P ′(x1, x2) = 1[T1(x1)− T2(x2) ̸= 0 mod t+ 2].

One can verify that ∀(x1, x2) ∈ Σ2, P ′(x1, x2) = P (x1, x2). Thus, by Theorem B.1, we conclude
the existence of an (ϵ, Õ(n log2(|Σ|)/ϵ2)) sparsifier.

C Sparsifying Affine Predicates over Larger Alphabets

C.1 More General Notions

In a more general way, we can say:

Definition C.1. For a predicate P : Σr → {0, 1}, we say that P is a general affine predicate if
there exists a constant c, a group A, ai, b ∈ Ac, and T1, . . . Tr : Σ→ Zc such that ∀x ∈ Σr

P (x1, . . . xr) = 1 ⇐⇒
r∑

i=1

⟨Ti(xi), ai⟩ ̸= b.

If the group A is Abelian, then we say that P is a general affine Abelian predicate.
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Note that by the equivalence with the generating matrix, this will still be sparsifiable, as we
can simply add c columns for each variable.

C.2 Infinite Abelian Groups

Note that we can extend our proof technique to sparsify affine abelian predicates that are defined
over larger alphabets too.

Suppose that a predicate is affine only over an infinite Abelian group. I.e. P (x) = 1[
∑r

i=1 aixi ̸=
b], for ai, b ∈ A, and A being an infinite group. First, we note that the relevant elements of A will
be finitely generated. I.e., the elements we care about ai, b ∈ H, where H is a subgroup of A
generated by ai, b. This is because we only care about the subgroup generated by a1, . . . ar, b, and
can effectively ignore everything else. We rewrite the predicate P (x) = 1[

∑r
i=1 aixi − b ̸= 0]. Note

that WLOG we can consider the case when b = 0, as otherwise we can simply make the predicate
of arity r + 1, and treat b as the coefficient to another variable.

Now, because the subgroupH we care about is finitely generated, we can invoke the fundamental
theorem of Abelian groups. This tells us that H is isomorphic to a group of the form

Zk0 × Zk1
p1 × · · · × Zkℓ

pℓ
.

Let the new size w =
∑ℓ

j=0 k0. This means that we can write P as a predicate over a tuple of
length w, where the ith entry in the tuple will be a constraint over one of the cyclic groups in the
product. I.e., we can write

P (x) = 1[
r∑

i=1

(a
(i)
1 , . . . a(i)w )xi].

Now, note that this predicate is essentially taking the OR over each entry in the tuple. That is,

P (x) = 1[

r∑
i=1

a
(i)
1 xi ̸= 0] ∨ · · · ∨ 1[

r∑
i=1

a
(w)
1 xi ̸= 0].

Without loss of generality, we can then assume that w ≤ 22
r
. This is because the number of possible

predicates on r variables is at most 22
r
, so it follows that if we are taking an OR, there can be at

most 22
r
distinct predicates before we are forced to have repeating predicates. If any predicates

are repeating, they are not contributing to the OR.
Now, we know that P (x) can be written as the OR of at most 22

r
predicates, where each

predicate P (i) is of the form

P (i) = 1[
r∑

i=1

a
(i)
1 xi ̸= 0],

and algebra is done over some cyclic group.
It suffices for us to argue that we can represent each of these predicates P (i) over a smaller cyclic

group Zp∗ , where p∗ depends only on r. Indeed, to see this, consider any P (i), where the algebra
is done over a finite cyclic group. We know that there is some set of assignments S ⊆ {0, 1}r such
that P (i) is 1 for the assignments in S, and 0 for the assignments outside S. We also know that
there exists a constant p such that P (i) is expressible as a linear equation of Zp. Now, let p′ be
the smallest value of p such that P (i) is expressible as a linear equation over Zp′ . Then p′ must be
bounded by a function of r. Next, consider the case when the algebra for P (i) is done over Z. This
means

P (i) = 1[
r∑

i=1

aixi ̸= 0].
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In particular, because we know P (i) is expressible over Z, there must exist some choice of a1, . . . ar
such that max(|a1|, . . . |ar|) = a is as small as possible. Again, for this choice, a must be bounded
by some function of r (denote this f(r)). Now, it follows that we can simply choose p′ to be the
smallest prime larger than 2r · f(r). For this choice of p′, doing {0, 1} weighted arithmetic with
coefficients a1, . . . ar will be the same as doing arithmetic of Zp′ . Further p′ will be bounded by a
function of r. Thus, we have that P is expressible as the OR of at most 22

r
affine functions, each

of which is doing arithmetic over a cyclic group bounded in size as a function of r. In particular,
for r constant, this leads to no overhead in the size of our sparsifiers.

C.3 Lattice Perspective

Lemma C.1. Suppose B is a d× ℓ matrix with entries in Z, such that the magnitude of the largest
sub-determinant is bounded by M , and rank(B) = k. Then, every element of the lattice generated
by the columns of B is given exactly by the solutions to d − k linear equations and k modular
equations. All coefficients of the linear equations are bounded in magnitude by M , and all modular
equations are written modulo a single M ′ ≤M .

Proof. First, if rank(B) = k < d, this means that there exist k linearly independent rows such that
the remaining d− k rows are linear combinations of these rows. Let us remove these rows for now,
and focus on B′ ∈ Zk×ℓ where now the matrix has full row-rank.

It follows that for this matrix B′ we can create a new matrix B̂ such that the lattice generated
by B′ (denoted by L(B′) = L(B̂)) and B′ is in Hermite Normal Form (HNF). In this form, B̂ is
lower triangular with the diagonal entries of B̂ satisfying

det(B̂) =
k∏

i=1

B̂i,i ≤ max
k×k subrectangle A

det(B′
A).

Further, all columns beyond the kth column will be all zeros, so we can remove these from the
matrix.

We can now define the dual lattice to L(B′) = L(B̂)). For a lattice Λ ⊆ Zk, we say that

dual(Λ) = {x ∈ Qk : ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}.

Here it is known that the dual is an exact characterization of the lattice Λ. I.e., any vector in
Λ will have integer-valued inner product with any vector in the dual, while for any vector not in
Λ, there exists a vector in the dual such that the inner-product is not integer valued.

Now, for our matrix B̂, it is known that one can express the dual lattice to B̂ as D̂ = B̂(B̂T B̂)−1.
As a result, it must be the case that D̂ ⊆ Zk/ det(B̂). If a vector x of length k is not in L(B̂), it
must be the case that there exists a column y of D̂ such that ⟨x, y⟩ /∈ Z. Otherwise, if the inner-
product with every column is in Z, it follows that for any vector in the dual, the inner product
would also be in Z, as we can express any vector in the dual as an integer linear combination of
columns in D̂. Thus, it follows that membership of a vector x in L(B̂) can be tested exactly by the
k equations ∀i ∈ [k] : ⟨x, D̂i⟩ ∈ Z. Now, because every entry of D̂ has denominator dividing det(B̂),
it follows that we can scale up the entire equation by det(B̂). Thus, an equivalent way to test if
x ∈ L(B̂) is by checking if ∀i ∈ [k] : ⟨x, det(B̂) · D̂i⟩ = 0 mod det(B̂). Now, all the coefficients of
these equation are integers, and we are testing whether the sum is 0 modulo an integer. Thus, we
can test membership of any k-dimensional integer vector in L(B̂) with k modular equations over
det B̂ ≤M .

The above argument gives a precise way to characterize when the restriction of a d dimensional
vector to a set of coordinates corresponding with linearly independent rows in B is contained in the

70



lattice generated by these same rows of B. It remains to show that we can also characterize when
the dependent coordinates (i.e. coordinates corresponding to the rows that are linearly dependent
on these rows) are contained in the lattice. Roughly speaking, the difficulty here arises from the
fact that we are operating with a non-full dimensional lattice. I.e., there exist directions that one
can continue to travel in Zn without ever seeing another lattice point. In this case, we do not
expect to be able to represent membership in the lattice with a modular linear equation, as these
modular linear equations rely on periodicity of the lattice.

Instead, here we rely on the fact that for any of the rows of B that are linearly dependent, we
know that there is a way to express it as a linear combination of the set of linearly independent rows.
WLOG, we will assume the first k rows r1, . . . rk are linearly independent, and we are interested
in finding ci such that

∑k
i=1 ciri = rk+1. Now, consider any subset A of k linearly independent

columns amongst these k rows. We denote the corresponding restriction of the rows to these

columns by r
(A)
i ∈ {0, 1}k. It follows that if we want a linear combination of these rows such that∑k

i=1 cir
(A)
i = r

(A)
k+1, we can express this a constraint of the form M (A)c = (r

(A)
k+1)

T , where we view

the ith column of M as being the (transpose of) r
(A)
i and c as being the vector of values c1, . . . ck.

Using Cramer’s rule, we can calculate that ci = det(M
(A)
i )/ det(M (A)), where M

(A)
i is defined to be

the matrix M (A) with the ith column replaced by (r
(A)
k+1)

T . In particular, this means that we can

express r
(A)
k+1 =

∑k
i=1 det(M

(A)
i )/ det(M (A)) · r(A)

i , and because A corresponds to a set of linearly

independent columns, it must also be the case that rk+1 =
∑k

i=1 det(M
(A)
i )/ det(M (A)) · ri. We can

re-write this as an integer linear equation by expressing rk+1 · det(M (A)) =
∑k

i=1 det(M
(A)
i ) · ri.

This means that for any valid vector x ∈ Zd expressable as a linear combination of the columns of

B, it must be the case that xk+1 · det(M (A)) =
∑k

i=1 det(M
(A)
i ) · xi/

We can repeat the above argument for each of the d − k linearly independent rows. Let j
denote the index of a row linearly dependent on the first k rows. It follows that xj · det(M (A)) =∑k

i=1 det(M
(A),j
i ) · xi, where now M

(A),j
i is the d× d matrix M (A) where the ith column has been

replaced with (r
(A)
j )T . Note that every coefficient that appears in these equations above is of the

form det(C) where C is a d×d submatrix of B. It follows that each of these coefficients is bounded
in magnitude by M , where M is again defined to be the maximum magnitude of the determinant
of any square sub-matrix.

To conclude, we argue that for any vector x ∈ L(B), x satisfies all of the above linear equa-
tions and modular equations. The first part of the proof showed that amongst the set of linearly
independent rows S, the dual of the lattice exactly captures when xS is in the lattice generated by
BS . That is, if xS is generated by BS , then xS satisfies the above modular linear equations, while
if xS is not in the span of BS , then xS does not satisfy the modular linear equations. Now, if xS
does not satisfy the modular linear equations, this is already a witness to the fact that x is not in
the L(B). But, if xS is in the span of BS , then if x is in the span of B, it must also be the case
that the coordinates of xS̄ satisfy the exact same linear dependence on the xS that BS̄ has on BS .
This is captured by our second set of linear equations.

Theorem C.2. Let P : Σr → {0, 1} be a predicate over an arbitrary alphabet of arity r. Let
S = P−1(0) ⊆ Σr denote the unsatisfying assignments of P , and let Ŝ ⊆ {0, 1}|Σ|r denote the lifted
version of S where we map σ ∈ Σ to a vector v ∈ {0, 1}|Σ| such that vσ = 1, and is 0 otherwise.
If Ŝ is closed under integer valued linear combinations, then CSPs with predicate P on n variables
are sparsifiable to size Õ(n · |Σ|4 · r4/ϵ2).

Proof. Let us create a matrix B ∈ {0, 1}|Σ|r×|Ŝ| where the ith column of B is the ith element of Ŝ.
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Let k be the rank of B. It follows that for any assignment x ∈ {0, 1}|Σ|r, we can exactly express the
membership of x in L(B) with d modular linear equations, and |Σ|r − d linear equations. I.e., x is
in L(B) if and only if all of these equations are satisfied. Note that the d modular linear equations
are all over modulus M ≤ maxk∈[|Σ|r],k×k subrectangle A det(B′

A) ≤ (|Σ|r)|Σ|r. Likewise, the integer

linear equations also all have coefficients ≤ (|Σ|r)|Σ|r. It follows that because x ∈ {0, 1}|Σ|r, we can
choose a prime p such that p ≥ 2 · |Σ|r · (|Σ|r)|Σ|r. Now, for any of the integer linear equations of
the form c1x1 + . . . ckxk − ck+1xk+1, it will be the case that for x ∈∈ {0, 1}|Σ|r,

c1x1 + . . . ckxk − ck+1xk+1 = 0 ⇐⇒ c1x1 + . . . ckxk − ck+1xk+1 = 0 mod p.

This is because the expression on the left can never be as large as p or −p since we chose p to
be sufficiently large.

Thus, we can express x ∈ {0, 1}|Σ|r as being in the lattice L(B) if and only if all |Σ|r modular
equations are 0. This is then the OR of |Σ|r modular equations, which can be expressed over the
Abelian group A = ZM ×Zm · · ·×Zm×Zp · · ·×Zp, where there are k copies of Zm, and |Σ|r copies

of Zp. It follows that |A| ≤
(
2 · |Σ|r · (|Σ|r)|Σ|r)|Σ|r

= (2|Σ|r)|Σ|r ·(|Σ|r)|Σ|2r2 . Thus, for any CSP on

predicate P of the above form on n variables, we can 1± ϵ sparsify P to size Õ(n · |Σ|4 · r4/ϵ2).

D Non-Affine Predicates with no Projections to AND

In this section, we present a predicate which provably is not affine, and yet still does not have
any projection to an AND of arity 2. This shows that there is necessarily a separation between
the techniques we have for creating sparsifiers versus showing lower-bounds. We will do this by
specifically constructing a predicate which is not affine (in particular, there will exist a linear
combination of unsatisfying assignments which yields a satisfying assignment).

Indeed, consider the following predicate P : {0, 1}9 → {0, 1}:

1. P (000000000) = 0.

2. P (111111000) = 0.

3. P (111000111) = 0.

4. P (110001001) = 0.

5. P (101010010) = 0.

6. For all other assignments x, P (x) = 1.

In particular, note that the unsatisfying assignments of P are not closed under integer linear
combinations. We can consider

1 · (000000000)+1 · (111111000)+1 · (111000111)−1 · (110001001)−1 · (101010010) = (011100100).

Thus, we immediately get the following claim:

Claim D.1. P is not expressible as an affine predicate over any Abelian group.

Proof. Any predicate P which is expressible as an affine predicate over an Abelian group must
have its unsatisfying assignments closed under integer linear combinations. Indeed, let y1, . . . yℓ ∈
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P−1(0), and α1, . . . αℓ be such that
∑ℓ

j=1 αjyj ∈ {0, 1}r (when addition is done over Z). We claim

then that P (
∑ℓ

j=1 αjyj) = 0 also.
This follows simply from P being an affine Abelian predicate. It must be the case that

P (b1, . . . br) = 1[
∑

i aibi ̸= 0], for some ai ∈ A, where A is an Abelian group. Then,

P (

ℓ∑
j=1

αjyj) = 1[
∑
i

ai(

ℓ∑
j=1

αjyj)i ̸= 0] = 1[

ℓ∑
j=1

αj

∑
i

ai(yj)i ̸= 0].

But, because each yj ∈ P−1(0), it must be the case that
∑

i ai(yj)i = 0. Thus, the entire sum must

be 0, so we can conclude that P (
∑ℓ

j=1 αjyj) = 0.

It remains to prove that the above predicate has no projection to AND2.

Claim D.2. P has no projection to AND2.

Proof sketch. Note that if there is a projection to AND this implies there is some restriction of the
variables y1, . . . y9 which yields 3 unsatisfying assignments and 1 satisfying assignment. One can
verify that for any set of 3 unsatisfying assignments y1, y2, y3 for P , they can be captured exactly
with an affine predicate (i.e., one can construct an affine predicate P̂ which is unsatisfied if and
only if the inputs are z1, z2, or z3). But, any predicate which is affine does not have a projection
to AND2. Thus, there is no projection of P̂ which yields an AND2, and consequently no restriction
of the variables y1, . . . y9 for which there are ≥ 3 surviving unsatisfying assignments.

E Symmetric Predicates with No AND3 and No Degree 2 Poly-
nomial

Consider the predicate P : {0, 1}r → {0, 1} (for instance, with r = 20) such that P (x) = 0 if |x| = 0
mod 6 or |x| = 1 mod 6, and otherwise, P (x) = 1. Clearly, P is a symmetric predicate, as P
depends only on the number of 1’s in x. Next, we will show that P does not have a projection to
AND3.

Claim E.1. P does not have a projection to AND3.

Proof. Recall that we define a projection as a fixing π of the variables x1, . . . xr such that each xi
maps to 0, 1, Y1, Y2, Y3 (or the negation). In particular, in order to get an AND of arity 3, it must
be the case that P (π(x1), . . . π(xr)) = AND(Y1, Y2, Y3). Let us consider any such restriction π, and
suppose that it sends α0 of the xi’s to 0, α1 of the xi’s to 1, αYi to Yi, and α1−Yi to 1− Yi.

Also, recall that because P is symmetric, we can equivalently create the predicate P0 : [r] →
{0, 1}, such that P (x) = P0(|x|). In terms of the Yi’s then, we have that

P (π(x1), . . . π(xr)) = P0(α0·0+α1·1+αY1 ·Y1+α1−Y1(1−Y1)+αY2 ·Y2+α1−Y2(1−Y2)+αY3 ·Y3+α1−Y3(1−Y3))

= P0(α1 + α1−Y1 + α1−Y2 + α1−Y3 + (αY1 − α1−Y1) · Y1 + (αY2 − α1−Y2) · Y2 + (αY3 − α1−Y3) · Y3)

= P0(a+ bY1 + cY2 + dY3),

for some choice of constants a, b, c, d. WLOG let us assume that a = 0 or 1, since the predicate is
periodic.

Now, for Y1 = Y2 = Y3 = 0, we know that the expression must evaluate to 0, as AND(0, 0, 0) = 0.
Thus, P0(a) = 0. Further, when exactly 1 or exactly 2 of Y1, Y2, Y3 are 1, the expression must also
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be 0. Hence, P0(a+ b) = P0(a+ c) = P0(a+ d) = P0(a+ b+ c) = P0(a+ c+ d) = P0(a+ b+ d) = 0,
yet P0(a+ b+ c+ d) = 1.

We consider cases, based on whether a = 0 or 1:

1. a = 0. Then P0(b) = P0(c) = P0(d) = P0(b + c) = P0(c + d) = P0(b + d) = 0. In particular,
all of b, c, d must be 0, 1 mod 6. In fact, at most one of them can be 1 mod 6, as if 2 are 1
mod 6, then their sum would be 2 mod 6, and P0 would evaluate to 1. But, if at most one
of them is 1 mod 6, then their sum is also either 0, 1 mod 6, and hence P0(b + c + d) = 0,
so it doesn’t simulate AND3.

2. a = 1. Then P0(1+b) = P0(1+c) = P0(1+d) = P0(1+b+c) = P0(1+c+d) = P0(1+b+d) = 0.
In particular, all of b, c, d must be −1, 0 mod 6. In fact, at most one of them can be −1
mod 6, as if 2 are −1 mod 6 (say b, c), then 1 + b + c = −1 mod 6, and P0 would evaluate
to 1. But, if at most one of them is −1 mod 6, then their sum is also either 0, 1 mod 6, and
hence P0(1 + b+ c+ d) = 0, so it doesn’t simulate AND3.

This concludes the proof.

Simultaneously, there is no canonical way to express P as a polynomial. Indeed, what we would
like to do is write P as the product of two linear functions, one which is 0 if and only if x = 0
mod 6, and the other which is 0 if and only if x = 1 mod 6. That is, we would like to simply
sparsify the predicate

P ′(x) = 1[(|x|) · (|x| − 1) ̸= 0 mod 6].

However, this predicate unfortunately does not capture the behavior of P . For instance, when
|x| = 4, we get that P ′(x) = 0, whereas P (x) = 1.

We present this more formally below, due to Swastik Kopparty:

Claim E.2. There is no symmetric degree 2 polynomial f such that for |x| = 0, 1 mod 6 f(x) = 0,
and otherwise f(x) = 1.

Proof. Indeed, because f is symmetric, f depends only on the hamming weight of x. Because f is
degree 2, f takes the form a ·

(|x|
2

)
+ b · |x|+ c (over some group). When |x| = 0, we know f must be

0, which means that c = 0. Likewise, when |x| = 1, f must also be 0, which means that b = 0. So,
f can only be a polynomial of the form f(x) = a ·

(|x|
2

)
. We also have that for any x, then for any

y : |y| = |x|+6, f(y) = f(x). Plugging this in yields that f(y) = a ·
(|x|+6

2

)
= a · (

(|x|
2

)
+6|x|+15) =

a ·
(|x|
2

)
= f(x). Thus, it must be the case that over any group we consider, a · (6|x|+ 15) = 0 (for

all |x|), which immediately implies that 3a = 0. By cases then, if we assume 2a = 0 it must be that
a = 0, and the polynomial is identically 0, which does not work. Otherwise, the output of f only
has a period of 3, as it depends only on whether

(|x|
2

)
mod 3 = 0, 1, 2, and thus fails to capture our

predicate.

To conclude, the predicate has a period of 6 and therefore seemingly requires a period of 6 (i.e.,
over Z6) in whichever polynomial we use to represent it. At the same time, because the period
is composite, the polynomial over Z6 has extra zeros, meaning we do not accurately capture the
behavior of the predicate P .
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