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Abstract

In this work, we show that the class of multivariate degree-d polynomials mapping {0, 1}"
to any Abelian group G is locally correctable with 5d((10g n)?) queries for up to a fraction of
errors approaching half the minimum distance of the underlying code. In particular, this result
holds even for polynomials over the reals or the rationals, special cases that were previously
not known. Further, we show that they are locally list correctable up to a fraction of errors
approaching the minimum distance of the code. These results build on and extend the prior
work of the authors [ABP*24] (STOC 2024) who considered the case of linear polynomials
(d = 1) and gave analogous results.

Low-degree polynomials over the Boolean cube {0,1}" arise naturally in Boolean circuit
complexity and learning theory, and our work furthers the study of their coding-theoretic prop-
erties. Extending the results of [ABP ' 24] from linear polynomials to higher-degree polynomials
involves several new challenges and handling them gives us further insights into properties of low-
degree polynomials over the Boolean cube. For local correction, we construct a set of points in
the Boolean cube that lie between two exponentially close parallel hyperplanes and is moreover
an interpolating set for degree-d polynomials. To show that the class of degree-d polynomials
is list decodable up to the minimum distance, we stitch together results on anti-concentration
of low-degree polynomials, the Sunflower lemma, and the Footprint bound for counting com-
mon zeroes of polynomials. Analyzing the local list corrector of [ABP"24] for higher degree
polynomials involves understanding random restrictions of non-zero degree-d polynomials on a
Hamming slice. In particular, we show that a simple random restriction process for reducing
the dimension of the Boolean cube is a suitably good sampler for Hamming slices. Thus our
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exploration unearths several new techniques that are useful in understanding the combinatorial
structure of low-degree polynomials over {0, 1}".
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1 Introduction

In this paper, we consider the local correction of low-degree polynomial functions over groups
evaluated over {0,1}" and give polylogarithmic query local correctors for every constant degree.
This extends and generalizes previous work of the authors [ABP™24] who considered and solved
the analogous problem for the linear (i.e., d = 1) case. We define some of the basic terms and
review the previous work before describing the challenges in strengthening to higher degrees and
the new tools used to overcome them.

Low degree polynomials over groups. The main objects of interest in this paper are poly-
nomial functions mapping {0,1}" to an Abelian group G. Here a function f is a polynomial of
degree at most d if it can be expressed as > Scn]:|S|<d €S [ [,es %i, where the product is over the
integers and the coefficients cg come from the Abelian group G. We denote the space of polyno-
mial functions of degree at most d by P;4({0,1}",G) (which we compress to P; when G and n are
known). The standard proof of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma naturally extends
to polynomials over groups. It proves that two different degree d polynomials disagree on at least
84 := 2~ fraction of the domain (if d < n), and thus form natural classes of error-correcting codes.
This paper explores the corresponding correction questions focusing on locality.

A special case that is already of interest is when the group G is the group of real numbers (or ratio-
nals) - a setting where relatively few codes are shown to exhibit local correction properties.

Local correction of polynomials. Informally, the local correction problem is that of computing,
given oracle access to a function f : {0,1}" — G and a point a € {0,1}", the value P(a) of the
nearest degree d polynomial P to the function f at the point a, while making few oracle queries to
f. More formally, for functions f, g : {0,1}" — G, let §(f, g) denote the fraction of points from the
domain where they differ. We say f is e-close to g if §(f, g) < e and e-far otherwise. For a given G,
we say that that Py is (4, ¢)-locally correctable if for every n there is a probabilistic algorithm that,
for every function f : {0,1}" — G that is 6 = §(n)-close to some polynomial P € P;({0,1}",G) and
for every a € {0,1}", outputs P(a) with probability at least 3/4 while making at most ¢ = ¢(n)
queries to f.

One of the main quests of this work is to give non-trivial upper bounds on the query complexity ¢
for which Py is (Q24(1), ¢)-locally correctable.

List correction of codes. Note that (,¢)-locally correctability of P, requires that ¢ is less than
half the minimum distance of the space, i.e., § < d4/2. To go beyond one usually resorts to the
notion of list-decoding; and in the local setting, to notions like “local list-decoding” and “local
list correction”. Roughly list-decoding allows the decoder to output a small list of words with the
guarantee that all codewords within a given distance are included in the output. Formally we say Py
is (combinatorially) (9, L)-list correctable if for every f:{0,1}" — G there are at most L degree-d
polynomials P satisfying 6(f, P) < 6. Unlike the unique decoding problem where the maximum §
such that a code is uniquely correctable up to d errors is well understood, the list-decoding radius
for higher values of L is not well-understood. A natural question that we study here (for the first

!The algorithmic version would require the list of nearby polynomials to be algorithmically recoverable from f.
We don’t consider this notion in this work but move ahead to the harder “local list correction” problem.



time in this generality) is: What is the largest 6 such that Py is (0, O4(1))-list correctable? We refer
to this largest value of ¢ as the list-decoding radius of Py.

Local list correction of codes. Local list correction is the notion of list decoding combined
with the notion of local correction. Formalizing this definition is a bit more subtle and was first
done in [STVO1]. The notion allows the decoder to work in two phases — a preprocessing phase
with g1 = ¢1(n) queries to the function f, that outputs up to L algorithms ¢, ..., ¢r and a query
phase, where given a € {0,1}" each algorithm ¢; makes go = g2(n) queries to f and outputs ¢;(a).
We say that Py is (6, q1, g2, L)-local list correctable if for every function f and polynomial P € Py
that are J-close, there is a decoder as above such that one of its outputs includes P with high
probability (say 3/4). See Definition 2.2.3 for a formal definition. The final goal of this paper is to
locally list-correct P, using non-trivially small number of queries (in both the preprocessing and
query phases) where the fraction of errors approaches the list-decoding radius.

1.1 Motivation and previous work

Local decoding of polynomials over finite fields has played a central role in computational com-
plexity and in particular in breakthrough results like IP=PSPACE and the PCP theorem. While
most of these results consider functions over the entire multivariate domain (i.e., F™), low-degree
polynomials over {0,1}" do arise quite naturally in complexity theory, notably in circuit complex-
ity capturing classes like ACY [Raz87, Smo87] and ACC [BHLR19], and in learning theory. Many
of these results exploit basic distance properties of multivariate polynomials as given by the Ore-
DeMillo-Lipton-Schwartz-Zippel lemma (see Theorem 2.2.1). This lemma roughly says that the
space of degree-d polynomial functions mapping S™ to a field F where S < F is finite form an
error-correcting code of relative distance d/|S| when d < |S|, and |S|~#(5I=1) when d > |S|.

The special case of S = F is extensively studied and heavily used, e,g., in PCPs and cryptography.
In this setting, the lemma can also be made algorithmic, with the first such instance handling the
special case of Fy dating back to the works of Reed and Muller [Reeb4, Mul54]. More recently, local
list correction algorithms were discovered in the works of Goldreich and Levin [GL&89] for linear
polynomials, Sudan, Trevisan and Vadhan [STV01] for higher-degree polynomials over large fields,
Gopalan, Klivans and Zuckerman [GKZ08] for higher-degree polynomials over Fo, and Bhowmick
and Lovett [BL18] for polynomials over any small finite field.

The case of general S however has not received much attention and is mostly unexplored. This
was first highlighted in a relatively recent work of Kim and Kopparty [[<I<17] who gave polynomial
time (but not local) unique-decoding algorithms correcting errors up to half the minimum distance.
Their work exposed the fact that many other algorithmic and even some coding-theoretic questions
were not well understood when S # F, and our work aims to fill some gaps in knowledge here.

Another motivation for our work is the design of locally correctable codes over the reals. A series
of works [BDY W11, DSW14, DSW17] has exposed that there are no known (2(1), O(1))-locally
correctable codes over the reals of arbitrarily large dimensions. The underlying challenge here leads
to novel questions in incidence geometry. Roughly the goal here is to design a finite set of points
T < R"™ such many pairs of points in T are contained in constant-dimensional “degenerate” sub-
spaces, where a ¢-dimensional subspace is said to be degenerate if it contains ¢ + 1 points from 7.
Till recently no sets that possessed this property with ¢ = o(n) were known, and the recent results



of [ABP*24] may be viewed as showing that the set 7 = {0,1}" = R™ has O(logn) dimensional
subspaces covering most pairs of points of T'. Local correctability of degree d polynomials would
translate to showing that moment vectors? of {0,1}" (viewed as vectors in RY for N = O(n?)) also
exhibit a similar property, thus adding to the body of sets in RY that show non-trivial degenera-
cies.

Turning to previous work on local correction of polynomials over grids, the local correction question
when S = {0, 1} was first explored by Bafna, Srinivasan and Sudan [BSS20], who mainly presented
a lower bound of ﬁ(log n) on the number of queries to recover even when d = 1 and from some
o(1) fraction of errors and F = R. On the positive side, for fields of characteristic p, they gave an
O4p(1) query algorithm to recover from €4 ,(1) fraction of errors. This left the case for large and
zero characteristic fields open.

The recent work of the authors [ABP " 24] investigated the case of general fields, and more generally,
polynomials over Abelian groups (i.e., {0,1}" — @), for the special case of d = 1. For this setting,
they consider all three questions posed in the previous section, namely the (unique) local correction
limit, the list-decoding radius, and the local list correction problem. In this setting where distinct
degree 1 polynomials disagree with each other on at least half the domain, they show that up to
1/4 fraction of errors can be uniquely locally corrected with @(log n) queries. They further show
that the list-decoding radius approaches 1/2 and that there are @(log n) query algorithms to locally
list correct P; for any fraction of errors bounded away from 1/2. Their work exposes a number of
technical challenges in going beyond the d = 1 case and we address those in this paper.

1.2 Technical challenges in extending beyond the linear case

We start by reviewing the main ideas in [ABP " 24] and outlining the challenges in the higher-degree
extension. Their unique local corrector correcting up to half the minimum distance works in three
steps: Given an oracle for a function f(x) at a distance less than 1/4 from a linear polynomial
P(x),

» It first provides oracle access to a function f;(x) at any tiny but constant distance from P(x),
using O(1) queries to f(x).

» Then the algorithm provides oracle access to a function fy(x) at distance 1/poly(logn) from
P(x) while making poly(loglog n) queries to f;(x).

» Finally, the algorithm provides oracle access to the linear polynomial P(x) making O(logn)
queries to fo. Composing the three steps gives the desired unique local corrector.

The first two steps in their result are general enough to work for all degrees. The third step in the
unique local corrector of [ABP"24] is the most significant one and does not extend immediately
to the higher degree setting. [ABP"24] reduce this step to show that any point in {0,1}" can be
expressed as a linear combination of (5(log n) roughly balanced vectors®. To extend their approach
to higher degrees, we would need an analogous result for the degree < d-moment vectors of vectors
in {0,1}" but we are unable to find such an extension directly. Instead, as we elaborate further

2d-moment vector of v € {0,1}" is a vector in {0, 1}(3) which is an evaluation vector of v on all multilinear
monomials of degree < d.
3Hamming weight is very close to n/2



below, we manage to find a new path for this step, which results in a somewhat different proof even
for the linear (d = 1) case.

Next, we turn to the combinatorial analysis of the list-decoding radius. For simplicity assume that
the Abelian group G is a finite field F,,. The analysis in the linear case [ABP " 24] splits into two
cases: the low? characteristic case (p < 3) and the high characteristic case (p > 5). The former
case is handled via a suitable version of the Johnson bound. In the latter setting, a key insight
used in [ABPT24] for the linear case is that non-sparse linear polynomials tend to be non-zero with
very high probability, i.e. anti-concentration of non-sparse linear polynomials. In the higher degree
setting, both analyses become much more involved. In the low characteristic case, the Johnson
bound no longer yields the right answer. For the high characteristic case, the primary obstacle is
understanding the anti-concentration statement for non-sparse low-degree polynomials.

Generalizing the result above to all Abelian groups involves multiple steps in [ABP *24] - they extend
the latter approach above to groups where every element has a sufficiently high order (specifically
order at least 5). Then they consider groups where every element has order a power of 2 or 3
separately and analyze these special cases; and finally use some “special intersection properties”
of the agreement sets® of different polynomials with any given function to apply a counting tool
from the work of Dinur, Grigorescu, Kopparty, and Sudan [DGIKS08a] to combine these different
steps. While many of the steps extend to the higher degree setting (sometimes needing heavier
machinery) the final step involving “special intersection properties” simply does not work in our
setting. (Roughly the difference emanates from the fact that the probability that two linearly
independent degree-1 functions vanish at a random point is at most 1/4, which is the square of the
probability for a single degree-1 function. This fails for degree 2.) Overcoming this barrier leads to
further new challenges in the higher-degree case.

The local list-correction algorithm for degree-1 polynomials of [ABP " 24] is inspired by the local
list-correction algorithm of Reed-Muller codes from [STVO01]. The high-level idea is to start with
a function f(x) that is (1/2 — ¢)-close to a set List of linear polynomials and produce a small list
of oracles such that each polynomial in List is within a small constant distance to an oracle from
the list, at which point the unique local corrector becomes applicable. This ‘error-reduction’ step
involves choosing a random subcube C of {0, 1}" (as defined in Section 2 below) of sufficiently large
but constant dimension & and doing a brute-force list decoding on C to find a list List’: it is not
hard to argue that the restricted version P’ of each polynomial P € List appears in the list List’
with high probability (this needs the combinatorial bound mentioned above). To complete the
error-reduction, they need to decode P at a random point b € {0,1}". This is done by repeating
the above brute-force algorithm with the subcube CP ‘spanned’ by C and b: informally, this is the
smallest subcube spanned by C and b and has dimension 2k (see Section 5.2.1 for details.) They
now obtain a new list of polynomials List” and need to isolate the polynomial P” corresponding
to P in this list to get P(b). Here, [ABP"24] uses the fact that we know the restriction of P to
the subcube C inside CP. The bad event in this case is that there are two polynomials in £” that
disagree on b but agree on C. Bounding the probability of this event is the key step in the analysis
of [ABP"24] and is done by giving a complete understanding of which kinds of distinct polynomials
over CP can collapse to the same polynomial over C. This kind of understanding seems difficult to
obtain for higher degrees, and we need to develop a new analysis for bounding the probability of

4The precise constants here are not important, as the analysis works as long as the p < O(1).
® Agreement set of a polynomial P and a function f is defined as the subset of {0,1}™ on which P and f agree.



the bad event in this setting.

We now turn to our results before elaborating on the techniques used to overcome the chal-
lenges.

1.3 Owur main results

Briefly, our results provide poly-logarithmic query algorithms for unique and list-decoding to the
maximal fraction of errors that are allowed. Specifically, the unique decoding algorithm works up
to half the distance. We also establish that the list-decoding radius approaches the distance (as
the list size tends to infinity) and give matching local algorithms. We give our specific theorems
below.

Theorem 1.3.1 (Local correction algorithms for P; up to the unique decoding radius). For

every Abelian group G and for every constant € > 0, the space Py has a (0, q)-local correction
algorithm where § = # —¢ and ¢ = O.(logn)®.

We show that if all its elements of the group have a constant order, then the query complexity of the
local correction algorithm can be brought down from (5d((log n)?) to a constant (i.e., independent
of n). Specifically, we say that an Abelian group G is a torsion group if all its elements have finite
order, and the exponent of a torsion group is the least common multiple of the orders of all the
elements. While [BSS20] shows this only for groups underlying fields of constant characteristic and
for some constant error, we extend their proof to all groups of constant exponent and error up to
the unique-decoding radius.

Theorem 1.3.2. If G is an Abelian torsion group of exponent M, then for every e > 0, Py has a
(0, q)-local correction algorithm where § = Ti% —c and g = Ope(1).

As noted earlier, some dependence on n is needed even when the degree is 1 and G is a field of
large characteristic (or characteristic 0), as an Q(logn/loglogn) lower bound was shown in this
setting by earlier work of Bafna, Srinivasan, and Sudan [BSS20] (and shown to be tight up to
poly(loglogn) factors in [ABP"24]). Our upper bound above is thus optimal to within polynomial
factors (for constant d). However, we do not know if the query complexity can be improved to, say,
O4(logn) for degree d.

We also extend the above algorithm from Theorem 1.3.1 to the list decoding regime. For this, we
first establish a bound on the list-decoding radius. As far as we know, the following result was not
known before for G being any group other than the field Fs.

Theorem 1.3.3 (Combinatorial list decoding bound for Py). For every Abelian group G and
for every constant € > 0, the space Py over any Abelian group G is (1/2%—¢, exp(O4(1/e)°@)-
list correctable.

The above is tight in the sense that the number of codewords at distance 1/2% can depend on both
n and the size of the group G (and is infinite when G is infinite). We do not know if the dependence
on ¢ is tight. Note that for the setting where d = 1, [ABP " 24] gives a polynomial bound in terms
of 1/e. Our bound as stated above is exponential and while we can see a path to improving this



to a quasi-polynomial, we don’t see a polynomial upper bound using the proofs of this paper even
when d = 1.

Finally, we state our local list correction result.

Theorem 1.3.4 (Local list correction for Pg). For every Abelian group G and for every
e > 0, the space Py is (1/2% —&,0.(1), O.(log n)?, exp(O4(1/)° D)) -locally list correctable.

Specifically, there is a randomized algorithm A that, when given oracle access to a polynomial
f and a parameter € > 0, outputs with probability at least 3/4 a list of randomized algorithms
b1,...,0r (L < exp(Og(1/e)°D)) such that the following holds. For each P € Py that is
(1/2% — &)-close to f, there is at least one algorithm ¢; that, when given oracle access to f,
computes P correctly on every input with probability at least 3/4.

The algorithm A makes O (1) queries to f, while each ¢; makes (’35((log n)?) queries to f.

Remark 1.3.5. If G is an Abelian torsion group of exponent M, Py is (1/2% — ¢, 0.(1), Opre(1),
exp(0g(1/£)° DY) -locally list-correctable. This follows in a similar manner as Theorem 1.3.4, ex-
cept we replace the generic local corrector in the unique-decoding regime with that given by Theorem 1.5.2.

1.4 Technical tools

In the process of proving our main results, we prove several lemmas that we believe are indepen-
dently interesting.

In the proof of Theorem 1.3.1, the main step is to construct, for any a € {0,1}", a distribution D,
over ({0,1}™)? such that the marginal distribution of each point is close to the uniform distribution
over {0,1}", and for any degree-d polynomial P, P(a) can be computed via the evaluations of P
on a sample from D,. Constructing such a distribution D reduces to the following problem of
constructing a geometric set with some nice algebraic properties. We discuss in Section 3 how such
a set leads to the distribution Dj,.

Question 1. Find two parallel hyperplanes in k dimensions that are e-close in Fuclidean distance
such that every mnon-zero degree-d multilinear polynomial is non-zero on the points of the Boolean
cube {0, 1}"' lying between the two hyperplanes.

The ‘closeness’ parameter € plays a crucial role in the efficiency of the local correction algorithm.
It is easy to see (and folklore) that we can get ¢ = 1/k%(1). However, we show that we can obtain
a construction where ¢ is exponentially small in k. This is done in Lemma 3.2.1.

The proof of the combinatorial list decoding bound is broken down into two cases depending on the
order of elements in the group. The first case is when all elements have order larger than a prime
po(d) (a constant dependent on d) and the second case is when the group is a product of p-groups
for p < pg. For the first case, the key step is an understanding of the anti-concentration properties
of low-degree non-sparse polynomials. More precisely, we have the following question.

Then how large can Pra_ (o 1y~ [P(a) = 0] be?



If we take P = xy29---xq—1 - L(z4,...,2,) where L is a linear polynomial with s monomials, we
see that P vanishes with probability approximately 1 — 2-(@=1) — ©(1)/4/s over (say) the reals.
In Lemma 4.1.1, we build on known anti-concentration results [Frd45, MNV16] show that this is
essentially the worst possible in groups with no elements of small order.

In the second case, an important step in our proof is a tail inequality for events defined by the
vanishing of low-degree polynomials over a field. Let Q1(x),...,Q¢(x) be t degree-d polynomials
on the same variable set. We know that each is non-zero on a random input with probability at
least 27% and hence that the expected number of polynomials vanishing at a uniformly random
point a ~ {0,1}" is at most (1 —27¢) - t. This leads to the following question.

Question 3. Suppose we have a collection of t degree-d polynomials. Can we bound the probability
that more than (1 —2=% 4+ &) -t many of these polynomials vanish at a random point a in {0,1}"?

Clearly, we cannot get a strong tail bound unless we impose some ‘independence’ constraints on
the polynomials (for example, we cannot hope for a strong bound if all the polynomials are in the
linear span of a small number of polynomials). We show that we can get a Chernoff-style tail bound
under the constraint that the ‘leading monomials’ (under a suitable ordering) of these polynomials
are pairwise disjoint. This is done in Lemma 4.2.1 using the ‘Footprint bound’ [GHO0] (essentially
a tool from commutative algebra) and an idea due to Panconesi and Srinivasan [PS97].

We build on this result to prove an optimal bound on the list-decoding radius for degree-d poly-
nomials over small finite fields F), (and more generally over groups that are products of p-groups,
where p < pg). In the setting when we are working with polynomials mapping F), to Fp, this was
done in the works of [GKZ08, BLL18] via an involved mixture of algebraic and analytic techniques.
Unfortunately, these do not seem to be applicable here: one significant reason that appears again
and again in our work is that we cannot restrict a given function to an arbitrary subspace in our
ambient space since the domain {0, 1}" does not have this algebraic structure. Instead we use other
combinatorial techniques such as the Sunflower lemma in conjunction with the above tail bound to
obtain the stated result.

For local list correction, we follow the algorithm of [ABP"24] modulo changes in parameters to
handle higher degree polynomials. The main innovation involves analyzing the behavior of degree-
d polynomials on a Hamming slice (points with a fixed Hamming weight) after a random pro-
cess of reducing the dimension. In particular, assume that we have a fixed degree-d polynomial
R(z1,...,x9) in 2k dimensions such that R is non-zero on the Hamming slice of weight k. We now
choose a random subcube C by pairing the 2k variables at random into k pairs and identifying the
variables in each pair. We would like to upper bound the probability that R is zero on the cube C
by a function that goes to 0 with k.6 We do this by addressing the following two questions.

The first question is on how the density of any fixed set on a slice changes under the aforementioned
random process. In this work, we are particularly interested in the middle slice, i.e. points of
Hamming weight & in {0, 1}2.

Question 4. For any fized subset S of the middle slice, how does the density of the set S n C (as
a subset of the middle slice of C) compare with the density of S?

50ne might hope to prove such a statement under the weaker assumption that R is simply a non-zero multilinear
polynomial of degree d. Unfortunately, the simple example R = x1 + - -+ 4+ x2; over the group G = F2 shows that
such a statement is not possible even in the degree-1 case.

10



In Lemma 5.1.1 we show that the density is almost preserved under the random process. In other
words, this random process is a good sampler for subsets of the middle slice. To prove Lemma 5.1.1,
we show that certain kinds of Johnson graphs are good spectral expanders.

The second question is on a quantitative estimate of the number of non-zero points of a degree-d
polynomial on a Hamming slice. This is a natural question, but has not been addressed before as
far as we know.

Question 5. For a degree-d polynomial R which is non-zero on a Hamming slice, on how many
points of the Hamming slice is it non-zero?

We give a simple lower bound on the number of non-zero points for a degree-d polynomial on
the Hamming slice by modifying the proof of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma. We
show it in Lemma 5.1.6.

2 Preliminaries

Most of our notation and definitions are identical to [ABP™24].

2.1 Notation

Let (G, +) denote an Abelian group G with addition as the binary operation. For any g € G, let —g
denote the inverse of g € G. For any g € G and integer a > 0, a - g (or simply ag) is the shorthand
notation of g+ ...+ ¢ and —ag denotes a - (—g). We say that a group is a p-group if the order
—
a times
of each element is a power of p. We say that a group is a torsion group if all its elements have
finite order. The exponent of a torsion group is the least common multiple of the orders of all its
elements.

For a natural number n, we consider functions f : {0,1}" — G. We denote the set of functions
that can be expressed as a multilinear polynomial of degree d, with the coefficients being in G by
Pi(n,G). We will simply write P; when n and G are clear from the context. For a polynomial P,
we refer to the number of monomials with a non-zero coefficient as the sparsity of P and denote it
by spars(P). Similarly we use deg(P) to denote the degree of P.

For every alphabet set 3 and x,y € X", let §(x,y) denote the relative Hamming distance between
x and y, i.e. d(x,y) =|{i € [n]|z; # yi}|/n. For 0 < m < n, let {0,1}7, denote the set of points
in {0,1}" of Hamming weight exactly m.

For any x € {0,1}", |x| denotes the Hamming weight of x. O(-) notation hides factors that are
poly-logarithmic in its argument. For a polynomial P(x), let vars(P) denote the variables on which
P depends, i.e. the variables that appear in a monomial with non-zero coefficient in P.

For any natural number n, U,, denotes the uniform distribution on {0, 1}".

2.2 Basic definitions and tools

Probabilistic notions. For any distribution X on {0,1}", let supp(X) denote the subset of
{0,1}™ on which X takes non-zero probability. For two distributions X and Y on {0,1}", the
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statistical distance between X and Y, denoted by SD(X,Y) is defined as

SD(X,Y) = Tcn{léuli}n |Pr[X e T| — Pr[Y € T|

We say X and Y are e-close if the statistical distance between X and Y is at most €.

Coding theory notions. Fix an Abelian group G. We use P, to denote the space of multilinear
polynomials from {0,1}" to G of degree at most d. More precisely, any element P € P; can be

described as
P(x17"'7$n): Z alnxi
Ic[n]:|I|<d i€l

where aj € G for each I. On an input a € {0, 1}", each monomial evaluates to a group element in
G and the polynomial evaluates to the sum of these group elements.

The following is a standard fact about multilinear polynomials which also holds in the setting when
the range is an arbitrary Abelian group G. The proof is standard and omitted.

Theorem 2.2.1 (Basic facts about multilinear polynomials). Let G be any Abelian group.

1. Any function f : {0,1}" — G has a unique representation as a multilinear polynomial over
G. In particular two distinct multilinear polynomials cannot agree on all points in {0, 1}".

2. (DeMillo-Lipton-Schwartz-Zippel (DLSZ) lemma [DL78, Zip79, Sch80]) More generally, any
two distinct multilinear polynomials P,Q € Py differ with probability at least 2=% at a uni-
formly random input from {0,1}". Equivalently, 6(Pg) = 274

We now turn to the kinds of algorithms we will consider. Below, let F be any space of functions
mapping {0,1}" to G.

Definition 2.2.2 (Local Correction Algorithm). We say that F has a (6,q)-local correction al-
gorithm if there is a probabilistic algorithm that, when given oracle access to a function f that is
d-close to some P € F, and given as input some a € {0,1}", returns P(a) with probability at least
3/4. Moreover, the algorithm makes at most q queries to its oracle.

Definition 2.2.3 (Local List-Correction Algorithm). We say that F has a (6,q1,q2, L)-local list
correction algorithm if there is a randomized algorithm A that, when given oracle access to a
function f, produces a list of randomized algorithms ¢1, ..., ¢r, where each ¢; has oracle access to
f and have the following property: with probability at least 3/4, for each codeword P that is d-close
to f, there exists some i € [L] such that the algorithm ¢; computes P with error at most 1/4, i.e.
on any input a, the algorithm ¢; outputs P(a) with probability at least 3/4.

Moreover, the algorithm A makes at most q1 queries to f, while the algorithms ¢1,...,¢r each
make at most qo queries to f.

Remark 2.2.4. Our algorithms can all be implemented as standard Boolean circuits with the added
ability to manipulate elements of the underlying group G. Specifically, we assume that we can store
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group elements, perform group operations (addition, inverse) and compare two group elements to
check if they are equal.

Definition 2.2.5 (Combinatorial List Decodability). We say that F is (d, L)-list decodable if for
any function f, the number of elements of F that are d-close to f is at most L.

Subcubes of {0,1}". It will be instrumental in our algorithms to be able to restrict the given
function to a small-dimensional subcube and analyze this restriction. We construct such subcubes
by first negating a subset of the variables and then identifying them into a smaller set of variables.
More precisely, we have the following definition from [ABP " 24].

Definition 2.2.6 (Embedding a smaller cube into {0,1}"). Fiz any k € N and k < n. Fiz a point
a e {0,1}" and a function h : [n] — [k]. For everyy € {0,1}*, x(y) is defined with respect to a
and h as follows:

a;, if Yn) =0
2(Y)i = Yn@p) D ai = .
' R {1 D ai, if ypu) =1
Ca,p, is the subset in {0,1}" consisting of x(y) for everyy € {0, 1}*, e Cap = {x(y) | y € {0, 1}’“}
In particular, note that this subcube contains the point a, since a:(Ok) = a.

Given any polynomial P(x1,...,x,) and any subcube Cyp as above, P restricts naturally to a
degree-d polynomial Q(y1,...,yr) on Cap obtained by replacing each x; by Yn(i) D a;. We use
Plc, , to denote the polynomial Q.

Random subcubes. Now assume that we choose a subcube Cyj by sampling a ~ {0,1}" and
sampling a random hash function & : [n] — [k]. For every y € {0,1}*, z(y) is the image of y in
{0,1}" under a and h and C j, is the subcube consisting of all 2% such images. From Definition 2.2.6,
we have the following simple observation: For every y € {0, 1}¥, distribution of z(y) is the uniform
distribution over {0,1}". This is because a is uniformly distributed over {0, 1}".

We use the following sampling lemma for subcubes from [ABP " 24] that will be useful at multiple
points in the paper.

Lemma 2.2.7 (Sampling lemma for random subcubes). ([ABP" 2/, Lemma 2.4]) Sample a and h
uniformly at random, and let C = Cy ), be the subcube of dimension k as described in Definition 2.2.6.
Fiz any T < {0,1}" and let p:= |T'|/2". Then, for any e,n >0

Pr T C| —ul=el <
a,h ok H = "
as long as k = 5{372 -log (%) for a large enough absolute constant A > 0.

3 Local correction in the unique decoding regime

In this section, we prove Theorem 1.3.1, i.e. we give a local correction algorithm for degree-d
polynomials when the error is less than the unique decoding radius (half the minimum distance).
The proof of Theorem 1.3.1 will proceed in two phases:
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e We give error reduction algorithms that reduce the error from half the minimum distance to
sub-constant.

e We give a local correction algorithm for degree-d polynomials when the error is sub-constant,
say less than O4(1/(logn)?).

The first phase follows from the error reduction algorithm of [ABP"24] and we describe it in
Section 3.3. In Section 3.1, we describe the second phase, which is the new result in this work. We
start with a proof overview of the second phase.

Proof overview. We describe the proof idea behind our local corrector for degree-d polynomials
in the sub-constant error regime. Assume that we have oracle access to f : {0,1}" — G that is
d-close to an (unknown) polynomial P € Py({0,1}"™,G). For simplicity, let us assume that we want
to output the value of P at a = 0™. The proof for an arbitrary a is more or less the same, except
for a minor change.

The idea (as in other local correction algorithms) is to query f at a set of uniformly distributed (but
not independent) points u, ... u(?. Since these points are uniformly distributed, we are likely to
obtain P(u), ..., P(ul@) in this way. If we could use this information to determine P(0") for any
polynomial P, then we would be done. Indeed, this strategy works when G = Fy [BLR93, AKIKT05].
If we restrict to a random Fo-linear subspace V' of dimension d + 1, then the non-zero points of
V are (marginally) uniformly distributed and determine the value of P (which is still degree d
restricted to V) at 0. Unfortunately, this idea does not make sense for polynomials mapping the

Boolean cube to groups other than (vector spaces over) Fo.

An analogous strategy we can employ over any group is to restrict to a random subcube. More
precisely, we choose a random function & : [n] — [k] (for d < k « n) according to some distribution
and consider the random subcube C' = Cyn j, as defined in Section 2 above (informally, we use the
function h to identify co-ordinates in k blocks) and query the function f at points in C'. To use the
strategy above, we would like to find points u™, ..., u@ e C such that

(a) the points u™, ..., ul@ e C are uniformly distributed, and
(b) the values of P at these points determine P(0™) for an unknown degree-d polynomial P.

These two properties are in tension with each other. To see this, assume that the function A is
chosen uniformly at random. In this case, it can be checked that unless k is large (approximately
\/n), the only points in {0,1}* that correspond’ to uniformly random points in {0,1}" are the
perfectly balanced points (i.e. the points with an equal number of Os and 1s). All other points of
{0,1}* correspond to points with expected Hamming weight outside the range [n/2—n/k,n/2+n/k]
and hence do not ‘look uniform’. Unfortunately, querying P at the set of perfectly balanced points
does not determine P(0"). Informally, this is because the set of perfectly balanced points lie on
a hyperplane not containing 0", and hence even a degree-1 polynomial can ‘distinguish’ between
these points and 0™.%

"the correspondence maps y € {0,1}* to z(y) € C as defined in Section 2

8This reasoning fails over finite fields of fixed positive characteristic and this failure was used in [BSS20] to devise
a local correction algorithm over fixed characteristic via this principle. However, this is true over fields of large
characteristic and other groups.

14



We fix this by choosing h in a non-uniform manner and relaxing criterion (a) to finding nearly®
uniformly distributed points in C. More specifically, assume that we have a probability distribution
w=(p1,...,u) over [k], and we sample each h(i) independently according to x. Again the points in
the cube C' that are uniformly distributed correspond to points on the hyperplane >’ jerk] MY = 1 /2
in {0,1}*. However, we consider the points corresponding to y satisfying | 2 i¥i — 1/2] <&,
i.e. points in between two close-by hyperplanes, i.e. these are the ‘nearly-balanced points’ under
a weighted version of Hamming weight on {0,1}*. Standard probabilistic arguments imply that if
€ « 1/4/n, then these correspond to nearly uniformly distributed points in {0,1}" thus satisfying
the modified version of criterion (a). Intuitively, getting ¢ to be so small and meaningful at the
same time seems easier when some of the weights p1, ..., uy are also similarly small (though not all
of them can be since they sum to 1). Standard results about Boolean threshold functions [MTT61,
Mur71] show that a hyperplane in k dimensions of this form does not require weights smaller than
(approximately) 1/kF. This forces k = Q(logn) for this strategy. (More generally, [3S520] showed
a lower bound of Q(log n) queries even for decoding linear polynomials over the Boolean cube and
fields of large characteristic.) Indeed, we take k = ©4(log n), so that this strategy becomes feasible.
For this value of k, we will show that we can take ¢ = 1/2%(%),

The problem of designing p can now be stated (in a more general form) in geometric language:
find two parallel hyperplanes Hq, Hy in k variables that are at distance 1 /2Qd(k) (this corresponds
to making ¢ small) such that evaluating a degree-d polynomial P at the points of {0, 1}* between
Hy and Hs allow us to deduce the value of P at all other points of the Boolean cube. A set with
the latter property is sometimes called a (degree-d) interpolating set in the literature. A standard
interpolating set is the set of points of Hamming weight in the range {a,...,a + d} for any non-
negative integer a < k — d. Unfortunately, the two hyperplanes in this case are at a distance of
Q(1/vVE) from each other, which is not good enough in our setting. Indeed, the main technical
innovation of this section (Lemma 3.2.1 below) is finding a pair of hyperplanes with this specific
property that is exponentially close. We believe that this result is independently interesting.

To do this, we use a pair of carefully chosen Boolean threshold functions that require weights of
exponentially different magnitudes to describe. We do this in a way that allows us to prove the
interpolating set property via a modified version of the DeMillo-Lipton-Schwartz-Zippel lemma
(Lemma 3.2.1 below). To reduce the query complexity of the algorithm, we also need to choose
a small subset of the nearly-balanced points as defined above that form a small interpolating set.
Over a field, an interpolating set of size O(k?) follows immediately from a linear algebraic argument.
We can get a set S of similar size ¢ = Oy(k?) that works for any Abelian group. We then sample
the function h as described above to obtain the corresponding (nearly uniformly distributed) points
u, . u@ e {01}

Comparison with [ABP"24]. At a high level, the final construction seems to use similar ideas
to an analogous step in the low-error local correction algorithm of [ABP"24], but the technical
details are quite different. If we consider the random n x ¢ matrix A that contains u¥, ... u@ as
its columns, then in the result of [ABP*24] it is shown how to use a single hyperplane'? with large
coefficients to define the rows of the matrix A. Here, each point in between the hyperplanes allows
us to sample a distinct column of the matrix A.

%.e. statistically close to
104 fact the Boolean points on the hyperplane
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3.1 Regime of sub-constant error

In this subsection, we give a local correction algorithm for degree d polynomials in the setting of
sub-constant error. Formally, we prove the following statement in this subsection.

Theorem 3.1.1 (Local correction for sub-constant error). Fiz a degree parameter d € Z~q
and an Abelian group G. The space Py({0,1}", G) has a (9, q)-local correction algorithm
where ¢ = O4((logn)?) and § = 1/100q.

To prove Theorem 3.1.1, we use Theorem 3.1.2 (see below). It roughly says that there exists a
set of points such that an arbitrary evaluation of any degree-d polynomial can be computed using
evaluations on this set and this set consists of points whose relative “weighted Hamming weights”
are very close to 1/2.

Theorem 3.1.2 (Weight balanced interpolating set). Fiz a degree parameter d = 0 and a dimension
parameter k € Z~q that is divisible by 10(d + 1). There exists a set S < {0,1}* such that for every
Abelian group G, S satisfies the following properties:

1. [Interpolating set]. For each point b € {0,1}%, there exists integral coefficients cy, . .. ,C|s| such
that for every degree-d polynomial Q(y1,. .., yx) € P4({0,1}*, G), we have,

Q(b) = Z cu@(u)

ues

2. [Weighted balanced]. There exists positive integers wy, . .., wg such that

k W _ W
lea'yj—? < Sam@) (
j=

S c {ye {0,1}*

k
where W = 31, wj.
Furthermore, |S| is at most Og(k?).

Before we prove Theorem 3.1.2, let us first see how Theorem 3.1.2 is useful in designing a local
correction algorithm and to prove Theorem 3.1.1. Below, we assume Theorem 3.1.2 and prove
Theorem 3.1.1.

Proof of Theorem 3.1.1. Fix an input point a € {0,1}" to the local correction algorithm. Let
flx1,...,25) : {0,1}™ — G be the input function with §(f, P;) < 0. Let P(x) be the unique degree
d polynomial such that 6(f, P) = d. Our goal is to compute P(a) with probability at least 3/4
using oracle queries to f(x).

For a fixed function h : [n] — [k], let Caj denote the subcube as defined in Definition 2.2.6.
For a probability distribution u = (u1,...,ux) on [k], sampling a random function h : [n] — [k]
according to p means the following: For each i € [n] sample independently h(i) ~ u, i.e. h(i) is
equal to j with probability ;. We will define it shortly using h ~ p.

Let S be the set and wq, ..., w; be the positive integers as described in Theorem 3.1.2. Let p :=
w1 Wy . . .
<W’ ey W) We now describe the local correction algorithm.
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Algorithm 1: Local correction algorithm for sub-constant error
Input: f(zy,...,z,), a€ {0,1}", 0

1 k—A- (d +*1) -(log71) // A an absolute constant chosen below

2 Sample a random function h : [n] — [k] according to the distribution g // The only

source of randomness

3 g(y17 7yk) A f(xh'" an)‘Ca’h

4 Let b=0% and ¢4, ... ;¢|s| be the integral coefficients for 0% from Theorem 3.1.2.

5 return ) s cyg(u)

" 7

Queries: The number of queries is equal to |S| < Og(k?) = O4(logn)? by Theorem 3.1.2 and the
value of k in Algorithm 1.

Correctness: We now argue that Algorithm 1 returns P(a) with probability > 3/4. Let E <
{0,1}™ denote the set of points where f and P disagree, i.e.

E = {xe{0,1}" | f(x) # P(x)}

We have |E|/2" < § because 6(f, P) < 6. Recall that for each y € {0,1}*, for all i € [n], 2(y); =
Yn(i) @ ai, where h is function sampled in Line 1 of Algorithm 1.

We first argue that if f and P agree at z(y) for every y € S, then Algorithm 1 returns P(a). If for
every y € S, z(y) is not in E, then g = P|s. Since 2(0%) = a, the first property of Theorem 3.1.2
implies g(0F) = P(a).

Next we show that with probability at least 3/4, for every y € S, z(y) ¢ E. Equivalently, we show
the following:

]?;Lr[EI yeS st. z(y)e E] < i (1)

First, we understand the distribution of z(y) for a fixed y € S under a random function h : [n] — [k]
sampled according to u. Fix any y € S and a coordinate i € [n]. Since a is fixed, we have,

k
W
Prle@)i =1 = Epplz(y)i] = JZIW] Yj
From the second property in Theorem 3.1.2, we have,
1 1
R N I
hfll;t[x(y)l 1 2’ 9Q(k/(d+1))

For each y € {0,1}", the coordinates {z(y); | i € [n]} are mutually independent (this is because h[i]
is sampled independently for each i € [n]) and 1/2%*/(@+1)_close to the uniform distribution over
{0,1}. From Fact 3.1.3, we know that for every y € S, z(y) is 4/n/22*/(@+1D)_close to the uniform
distribution (in statistical distance).

17



Fact 3.1.3 (Closeness to the uniform distribution). (See [Manl1, Theorem 5.5, Claim 5.6]). Let
n > 0. Let D' be a distribution on {0,1}" such that for anyy ~ D', the co-ordinates of y are
independent and for all i € [n],

1/2—n<Prly;=1] <1/2+ .

Then D" is O(ny/n)-close to the uniform distribution over {0,1}".

By the definition of statistical distance, we have that for every y € S,
Prle(y) € B] < vi/220@ ) 4 5
Taking a union bound over all y € S, we have,
f}’lr[ﬂy €S st. z(y)e E] < |S] <\/ﬁ/29(k/(d+1)) + 5)

Recall that the number of queries is ¢ = |S| and by assumption § < 1/100g. Thus, we get

OWm 1 _1

I?Lr[EIyES s.t. $(Y)EE]<W+E\4

as long as the constant A in Algorithm 1 is chosen to be large enough. This shows Equation (1) as
claimed and thus we have described a (6, q) local correction algorithm for Pg. [ |

3.2 Weight balanced interpolating set

In this subsection, we prove Theorem 3.1.2. We start by proving Lemma 3.2.1, which is our main
technical lemma of this subsection. The difference between Lemma 3.2.1 and Theorem 3.1.2 is in
the first condition. In Lemma 3.2.1 we require that every non-zero degree-d polynomial is non-zero
on S. Later, we will see that this is sufficient to allow us to compute @ at any point.'!

Lemma 3.2.1 (Main lemma for local correction). Fix a degree parameter d = 0 and a
dimension parameter k € Zq such that k is divisible by 10 - (d + 1). There exists a set
S < {0,1}* such that for every Abelian group G, the set S satisfies the following properties:

e For every non-zero degree-d polynomial Q(y1,...,yx) € Pa({0,1}*, G), there exists a
point z € S such that Q(z) # 0.

o There exists positive integers w1, ..., wy such that

4 W
S c {yE{O,l}k ijyj—7
j=1

P
S 20/@) [

where W := 22?:1 wj.
Furthermore, |S| is at most Og(k?).

" For polynomials over fields, this follows simply from linear algebra. For Abelian groups, the proof is similar, but
we need a result from the theory of Diophantine linear equations.
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Proof of Lemma 3.2.1. Let r =10 - (d + 1) and let ¥ := {0,1}". Let m = k/r. In this proof, it will
be convenient to make the following identification:

[mr] =~ [m] x [r] and {0,1}F =x™

We interpret y € {0,1}"" asy = (y[1],...,y[m]) where for every i € [m], y[i] = (y[3,1],...,y[i,r]) €
={0,1}".
We now describe the weights wy, ..., wy. For every for (i,j) € [m] x [r] = [mr], let w(; ;) := 271

Define the set B,,, as follows.

3 3wl

By = {yeEm
i=1j=1

t}:{yezm 22’12 Z]—Tm t}

where W, 1= Y| 2171 i l=r(1+2--+ 2m=1) and t = [4]. We will choose the set S to be a
subset of B,,. Note that ¢t = W,,/2™, which shows that the weights are as required by the second
item of the statement of the lemma.

More generally, we can define a subset By < {0, 1}*" for each £ € [m] in a similar way. We let W,
denote the sum of the weights in this case. We will need the following claim about extending points
in By to points in By,1 in many different ways.

Claim 3.2.2. Fiz £ e [m—1]. Letb = (b[1],...,b[{]) be any point in B;. There exists an interval
(i.e. set of consecutive integers) I, < {0,...,r} of size at least d + 1 such that for every point
z € {0,1}" such that |z| € Iy, the point b’ = (z,b[1],...,b[{]) € Byi1.

Proof of Claim 3.2.2. Note that Wy, 1 = 2W, + r. Since b € B, we have

‘
Z gt o We (2)
= 2

for some integer 7 such that |7| < ¢ (here |b[i]| is the Hamming weight of b[i]). For b’ =

(z,b[1],...,b[{]) to lie in Byy1, we need

V4
. ; ”é+1 ”Z—i—l
b[]| - 2* —t )
|z|~|—§ [b[]| e[ 5 o +t

By Equation (2) and the relationship between W, and Wy, 1, the latter is equivalent to |z| € Iy, :=
[5 —27 —t,5 — 27 +t]. Since r/2 = 5(d + 1) > 2|7| + ¢, the interval Iy, < {0,...,r} and further,
Ip| =2t+1>d+ 1. |

We also need a basic fact about degree-d polynomials over the Boolean cube. This is a combination
of a few folklore facts, but we prove it here for completeness.

Claim 3.2.3. Fiz anyn > 1 and degree parameter d < n. For every interval I < {0,...,n} (i.e. set

of consecutive integers) of size (d + 1), there exists a set Hyq < {0,1}" of size at most (2(n + 1))4
such that
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e Hyq consists only of points z such that |z| € I, and

e For any non-zero P € Py({0,1}",G), there is a point z € Hyq such that P(z) # 0.

Proof of Claim 3.2.3. Assume that I = {a,a+1,...,a+d} for some a € [0,n—d]. For every subset
A C [n] of size < d, we define the set Hﬁd as follows:

Hiy = {xl“o"*W*a x € {0, 1}|A‘} ,
where x1%0" 1414 is a shorthand notation for the point where the variables indexed by A are set
to x, the first a variables of the remaining variables are set to 1, and the last (n — |A| — a) variables
of the remaining variables are set to 0. In other words, Hﬁd consists of points where the variables
indexed by [n]\A are set to 120" 141=@ (this has Hamming weight a) and the variables indexed by
A can be any point of Hamming weight < |A| < d. We define the set H; 4 as follows:

Hia = U %fd
Ac[n]

|A|<d

For every subset A, the set ’H‘I“d consists only of points z such that |z| € I, and so thus every point

in Hyq4. Note that for each subset A < (L”}i), the set |7-[?d| < 2. The size of Hr,q is at most
d

27 (X (1) < 2(n + 1)~

Next we show that for any non-zero P € P4({0,1}",G), there is a point z € Hjq4 such that
P(z) # 0. Fix any non-zero polynomial P € P4({0,1}",G). P can be uniquely expressed as the
following multilinear polynomial:

where x4 is the product of variables indexed by the set A. Since P is a non-zero polynomial, at
least one of the coefficients c4’s is non-zero. Let Ay be the maximal (with respect to the inclusion
partial order) subset with a non-zero coefficient. Set the variables outside Ag to 1#0™~140l=¢ The
resulting polynomial is a non-zero degree d polynomial in variables indexed by Ap, i.e. in < d
variables. We know (Theorem 2.2.1) that every non-zero degree-d polynomial is non-zero on the
Boolean cube. Thus the resulting polynomial is non-zero on a point in {0, 1}/40l. This implies that
P is non-zero on a point in ”H‘égl S Hra. [ |

We now show how to construct the set S as required in the statement of the lemma. In fact, we
will show a stronger property: for each ¢ € [m] and j € {0,...,d}, we show that there is a set
Suj € By that satisfies the first item of the lemma w.r.t. the space of polynomials P;({0,1}", G).
Furthermore, for each ¢, j, we will have |S; ;| < (2(r + 1))7 - 2.

We prove the above by induction on £ + j. The base case corresponds to £ = 1 and j = 0, where
we can take Sy to be any fixed point z € By.

Now consider the inductive case for some j > 0. Given a non-zero polynomial P(y[1],...,y[¢]) €
P;({0,1}*",G), we can decompose it as a polynomial in the variables in y[1] with coefficients
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coming from the space of polynomials in the remaining variable sets y[2],...,y[¢]. This gives the
following equality.

Piy[t],....y[) = >, Qa[2....y[a)-y[1]" 3)

Ac[r]:|Al<j

where y[1]4 denotes the product of the variables in y[1] indexed by A and Q4 denotes the sum
of all monomials in y[2],...,y[¢] multiplying this monomial. Note that Q4 has degree at most
j— 1Al

Fix a set Ag such that Q4, is non-zero and |A| is as large as possible. Assume that |4g| = j' €
{0,...,j}. We know by induction that there is a point b € Sy_; j_; such that Q4,(b) # 0. Let
Py (y[1]) denote the restriction of the polynomial P when the variable sets y[2],...,y[{] are set
according to b. The polynomial P, is a non-zero polynomial of degree j'.

We want to extend b to an assignment also setting the variables y[1] that keeps the polynomial P
non-zero. By Claim 3.2.2, there is an interval I}, of size at least (d + 1) such that for any z such
that |z| € Iy, the point (z,b[1],...,b[¢ —1]) € B,. Fix any subinterval I, j; < I, of size j' + 1. By
Claim 3.2.3, there is a set Hy, , j S < {0,1}" of size at most (2(r + 1))7" such that each point z has
Hamming weight in I and further Py(z) # 0.

We have thus shown that P must be non-zero at one of the points in the following set.

Sejio = {(z,b[1],....,b[{ —1]) [ b= (b[1],...,b[{ —1]) € Sp_1 j_j, z € H]byj“j/}.
However, the above assumes that we know the parameter j' of P. To define the set Sy ;, we take a
union of all the sets Sy ; ; for j' € {0, ..., 7}. This satisfies the required inductive property.

It remains to bound |S; ;|. We have
J

[Se 41 < Z [Sejgrl < Z [Se—1 gl - Mgl < X 20+ 1)V - (0 =17 2 + 1))

=0 7'=0
= (2(7’+1) -((5—1)ﬂ'+ =1 (=1 <20+ 1)) ¢
proving the required bound on |Sy ;|. This proves the inductive claim.
To conclude the proof of Lemma 3.2.1, if we take § = S,,, 4, then we have a set with the required
properties and size. |
We now show how Lemma 3.2.1 implies Theorem 3.1.2. We recall Theorem 3.1.2 here.

Theorem 3.1.2 (Weight balanced interpolating set). Fiz a degree parameter d = 0 and a dimension
parameter k € L~ that is divisible by 10(d + 1). There exists a set S < {0,1}* such that for every
Abelian group G, S satisfies the following properties:

1. [Interpolating set]. For each point b € {0,1}%, there exists integral coefficients cq, . .. ,Cls| such
that for every degree-d polynomial Q(y1,...,yx) € P4({0,1}*, G), we have,

Q(b) = > cuQ(u)

uesS
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2. [Weighted balanced]. There exists positive integers wy, ..., wy such that

k
w w
k
S c {YG{OJ} lejyj_j S 29(k/(d+1))}’
i

where W := Z?:l wj.

Furthermore, |S| is at most Og(k?).

Proof of Theorem 3.1.2. Let S < {0,1}* be the subset as given by Lemma 3.2.1. Fix any point
b e {0,1}*. Let By denote the set of multilinear monomials of degree < d in {x1,...,23}. By
forms a spanning set of Py4({0,1}*, G) for every G, i.e. every polynomial Q € P4({0,1}*, G) can
be expressed as a unique linear combination of monomials from B, (with coefficients from G). Fix
some total orders on & and By.

Construct the matrix M of dimensions |By| x |S| as follows: The rows are indexed by monomials
in By and the columns are indexed by points in S. For 1 < ¢ < |Bg| and 1 < j < |S]|, M[i, ] is
equal to m(u), where m is the i*® monomial in By and u is the j** point in S. In other words, the
4t column of M denotes the vector whose entries are the evaluation of all the monomials in the
spanning set By of the j% point in S.

We will first prove Claim 3.2.4 and later show that Claim 3.2.4 is enough to prove Theorem 3.1.2.

Claim 3.2.4. Let M be the matriz of dimensions |Bg| x |S| as described above. Define 8 € ZIBdl
as follows: For 1 < i < |By|, Bi is equal to m(b), where m is the i monomial of By. There exists

an integral vector ¢ = (cq, ... ,C‘S‘) such that the following equation is satisfied:
Mc = 3 (4)
Equivalently, there exists an integral vector ¢ = (cy, ... ,c|5|) such that for every monomial m € By,

Z cam(u) = m(b).

Proof. To prove the existence of an integral vector ¢, we need the following lemma.

Lemma 3.2.5. [Sch86, Corollary 4.1.a] Let A be a rational matrixz and let a be a rational vector.
Then the system Ax = a has an integral solution x if and only if for every row vector 'y for which
yA is integral, ya is an integer.

Lemma 3.2.5 says that to show the existence of an integral solution ¢ to Equation (4), it is equivalent
to show that for every rational row vector y € Q/Bdl for which yM is integral, y3 is an integer.

Consider any y € Q!Bdl for which yM is integral. Let H denote the quotient group Q/Z, which
can be identified with rational numbers in [0,1) where addition is carried out modulo 1. Define
y’ to be the image of y in H under the natural projection from Q to H, i.e. for each coordinate
1 <i<|Bal, y; o= yi — luil-
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In what follows, we are still treating the entries of 8 and M as integers, and thus it makes sense
to multiply these entries with the entries of y’ to get elements of H. The hypothesis that yM is
integral is equivalent to saying that over the group H, y’M = 015l € HISI is the all-zeroes vector.
Similarly, showing that y3 is an integer is equivalent to showing that y’3 is 0.

Assume for the sake of contradiction that y’3 is non-zero. Let @ be the polynomial in Py ({0, 1}*, H)
whose coefficient vector is y’, i.e.

Q)= 3, ynm

mEBd

The hypothesis y’M = 0 means that the polynomial ) vanishes on S. On the other hand, y'3 €
(0,1) means Q(b) is non-zero, i.e. @ is a non-zero polynomial. So we have a non-zero polynomial
Q that vanishes on the set S, which contradicts Theorem 3.1.2. Hence y’3 = 0, implying that y3
is an integer.

As y is an arbitrary row vector for which yM is integral, using Lemma 3.2.5 we get the existence

of an integral solution to Equation (4). This finishes the proof of Claim 3.2.4. n

Finally, we argue that Claim 3.2.4 is sufficient to finish the proof of Theorem 3.1.2. This is essen-
tially because P4({0, 1}*, G) is spanned by By. Consider any polynomial Q € Py({0,1}*, G). There
exists coefficients o, ..., ag, such that

Qx) = Z M

mEBd
Let c1,...,¢s be the coefficients from the above claim. Then we have,
Z CuQ(u) = Z Cu Z amm(u) = Z QA Z Cum(u)
ues ues meBy meBy ues

Since Mc = 3, for every m € By, we have,

Z cam(u) = m(b)

uesS
Thus we get,
Z CuQ(u) = Z Om Z Cum(u) = Z amm(b) = Q(b)
uesS meBy uesS meBy
This finishes the proof of Theorem 3.1.2. |

3.3 Error close to half the minimum distance (Proof of Theorem 1.3.1)

In this subsection, we explain the second step towards proving Theorem 1.3.1. In the previous
subsection, we described a local correction algorithm for P; when the error is 1/Oy((logn)?). We
now want to locally correct degree-d polynomials when the error is close to the unique decoding
radius, which is 1/29+1.
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Suppose we have oracle access to a function f that is (1/297! —¢)-close to P4({0,1}*, G) for some
constant € > 0 and let P be the unique polynomial in P4({0, 1}*, G) such that §(f, P) < (1/2%+1 —¢).
The idea is to design a randomized algorithm A that has oracle access to the function f and returns
a probabilistic oracle A7 such that 6(A7, P) < 1/O((logn)?), with high probability. The algorithm
A will be referred to as error reduction algorithm. More specifically, the error reduction algorithm
A will have two subroutines as follows:

1. There is a randomized algorithm A; that reduces the error from (1/2%*! —¢) down to 1/1000.
2. There is a randomized algorithm A5 that reduces the error from 1/1000 down to 1/O((logn)?).
[ABP"24] gave the error reduction algorithms .4; and Ay, which we state below.

Lemma 3.3.1 (Error reduction for error close to half the minimum distance). [ABP* 2/, Lemma
3.13] Fiz any Abelian group G and a positive integer d. For anymy, 8, wheren < § and § < 1/2¢+1—¢
for e > 0, there exists a randomized algorithm A1 with the following properties:

Let f : {0,1}" — G be a function and let P : {0,1}" — G be a degree d polynomial such that
S(f,P) <9, and let A{ denotes that A has oracle access to f, then

Pr[6(Al, P) > m] < 1/20,

where the above probability is over the internal randomness of Ay, and for every x € {0,1}", .A{

makes 2% queries to f, where k = poly(%, nil)

Lemma 3.3.2 (Error reduction for constant error). [ABP* 2/, Lemma 3.8] Fiz any Abelian group

G and a positive integer d. The following holds for m < 1/2°@D and K = 2°@ where the O(:)
hides a large enough absolute constant.

For any no < m1, there exists a randomized algorithm Ag with the following properties: Let f :
{0,1}" — G be a function and let P : {0,1}" — G be a degree-d polynomial such that 6(f, P) <9,
and let .Ag denotes that As has oracle access to f, then

Pr[6(A], P) > 1] < 1/20,

where the above probability is over the internal randommness of Ag. Further, for every x € {0,1}",

| log(1/n2)
' ’ B log(1/12)
Ay makes K* queries to f and T = O (log < log(1/0) >>

Using Lemma 3.3.1 and Lemma 3.3.2 along with Theorem 3.1.1, we get Theorem 1.3.1. We restate
Theorem 1.3.1 and finish the proof.

Theorem 1.3.1 (Local correction algorithms for Py up to the unique decoding radius). For every
Abelian group G and for every constant € > 0, the space Py has a (0, q)-local correction algorithm
where § = 211% —¢ and ¢ = O.(logn)?.

Proof of Theorem 1.3.1. Let f be a function with oracle access that is d-close to a degree-d poly-
nomial P € Py({0,1}*, Q).

1. Lemma 3.3.1 (with n; = 1/2O(d) chosen to satisfy the hypothesis of Lemma 3.3.2) yields an
oracle A{ that makes O.(1) queries to f and is n;-close to P with probability at least 19/20.
We fix the randomness of A{ so that this holds.
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2. With probability at least 19/20, we have oracle access to a function A{ that is 1/29(4_close
to P. Let g := A{. Lemma 3.3.2 (with 2 = 1/O((logn)?)) yields a probabilistic oracle A3
that makes poly(loglogn,d) queries to g and is n;-close to P with probability at least 19/20.
We again fix the randomness of A§ so that this holds.

In other words, we have oracle access to an oracle A3 that makes poly(log log n, d)-O. (1) queries to f
and is n-close to P with probability at least 9/10. We now apply the local correction algorithm from
Theorem 3.1.1 with oracle access to AJ to get a local correction algorithm for Py with § = 1/ 20+l _¢

for any constant € > 0 and g = O.((logn)?). [

Remark 3.3.3. It should be noted that Theorem 1.3.1 also follows from the theorem on local list-
correction Theorem 1.3.4 along with known results on locally testing low-degree polyomials [B5520)].
However, we state this theorem separately for multiple reasons. Firstly, a weaker form of this
theorem is required for the results on local list-correction. Secondly, the above result is natural and
this gives a simpler proof of this than the one outlined above. And finally, this proof yields a better
dependence on the degree parameter d.

Having finished the proof of Theorem 1.3.1, in the following subsection, we now prove Theorem 1.3.2
by giving a local correction algorithm with improved query complexity for groups of small exponent
(see Section 2 for a definition of exponent of a group).

3.4 Local correction for groups of constant exponent

In this subsection, we show that we can bring down the query complexity of local correction from
O4((logn)?) to a constant (i.e., independent of n) when G is an Abelian torsion group of constant
exponent. More specifically, we prove Theorem 1.3.2 from the introduction.

Theorem 1.3.2. If G is an Abelian torsion group of exponent M, then for every e > 0, Py has a
(0, q)-local correction algorithm where § = 2d% —¢e and ¢ = Ope(1).

We note that to prove Theorem 1.3.2 for every § = 211% — ¢, it suffices to show the following lemma

for some constant § = Q7 4(1), since the error reduction steps from Section 3.3 can be applied
without change.

Lemma 3.4.1. For every Abelian torsion group G of exponent M, the family Py has a (9, q)-local
correction algorithm for some § = Qprq(1) and ¢ = Oprq(1).

The proof of the above lemma proceeds in an identical manner to the analysis of [BSS20] where
the authors show this when G is the underlying group of a field of constant characteristic. They do
this by using Lucas’ theorem which gives a criterion for a binomial coefficient to be divisible by a
given prime. To handle the more general case of groups of constant exponent, we instead make use
of Kummer’s theorem which may be thought of as an analog of Lucas’ theorem for prime powers.
We state Kummer’s theorem below, where the notation S,(n) denotes the sum of the digits of n
when written in base p.

Theorem 3.4.2 (Kummer’s theorem [[Kumb2]). Let p € N be a prime. Then for any integers

a>=0b>=0, the largest power of p that divides ‘;) s equal to Sp(b)+s”z§'i_1b)_s”(a).

We are now ready to prove Lemma 3.4.1.
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Proof of Lemma 3.4.1. Let M = 1_[?:1 p;j be the prime factorization of M (so ¢ < log M). For each
3r;s;
j 7°7
Note that pgj(sj_l) < d and hence k < Hje[g](dp;j)?’ < M3 = Oppg(1). We set § = ﬁ =

k
Qara(1).

We claim that the algorithm below (Algorithm 2) is the desired local corrector. For a given point
a€{0,1}", it queries f and outputs P(a) with probability at least 3/4, where P € P, is the unique
degree-d polynomial such that o(f, P) < 0. It is similar to Algorithm 1 in that it samples a random
subcube Cjy j, passing through a and queries it, but the crucial difference now is that we use a
different interpolating set in the last step (as opposed to the “weight balanced interpolating set”
of Theorem 3.1.2). In particular, we will prove following claim.

J € [¢], let s; € N be the smallest integer such that p;j *1 > d. Then, we choose k = HjE[é] P

Claim 3.4.3. There exist integers cy for b € ([2151) such that for every degree-d polynomial Q(y) €
P4({0,1}%* . G), we have that

QO™ = > - Q(b). (5)

be([zkk])

Algorithm 2: Local correction algorithm for sub-constant error

Input: f(x1,...,2,), ac {0,1}", 6 = 4(%k

~—

k
1 Sample a uniformly random function h : [n] — [2k]

2 g(yl) o )ka) a f(xl) o ,$n)|Ca,h
3 Let (Cb)be([Qk]) be the integral coefficients given by Claim 3.4.3.
k

4 return Zbe([Qkk]) cp - g(b)

" 7

Assuming the correctness of Claim 3.4.3, we shall now finish the proof of Lemma 3.4.1.

Queries: The local corrector makes (2kk) = Onr,4(1) queries since to get the value of g(b) for some
be ([2:]), we only need to know f(z(b)) under the mapping h.

Correctness: For every b € ([2kk]), we note that the corresponding query point z(b) € {0,1}" is

uniformly distributed since the map h used in Algorithm 2 is uniformly random and b has equal

number of zeroes and ones. Hence, with probability at least 1 — ¢ - (2:) > 3/4, g(b) = Q(b)

for all b € ([2:]), where @ € P4({0,1}2%,G) is the restriction of P on the subcube Cy . Hence,

by Claim 3.4.3, the outputted value equals Q(0?*) = P(a) with probability at least 3/4. |

It remains to prove Claim 3.4.3. For every b € ([2:]), we set ¢, = 0 if b contains a 1 in any of

the last k& — d coordinates and we set ¢, = A otherwise, where A € Z will be decided later. Recall
3r;s;

that M = [];cy p;j and k = [[;cqp;’, and we have that p;jsj >d > p;j(sjfl) for all j € [£].

26



By linearity, it suffices to show (5) for Q(y) of the form g - ]_[jel y; for all I € ([ilzl]) and g € G.

According to our assignment of ¢, it is clear that (5) holds true (LHS = RHS = 0) if I contains any
of the last k£ — d coordinates. Otherwise, we have that I < ([k;dd]). If I = ¥, we have Q(0%%) = ¢

and Zbe([zlf]) cp - Q(b) = (k;gd)A -g. On the other hand, if |I| = i > 1, we have Q(0?*) = 0 and

Zbe([zkk]) cp - Q(b) = (k;gri_l)A - g since every non-zero term must have b; = 1 for all j € I. Hence,

it suffices to find an integer A satisfying the following two conditions:

= <k—]:d>A-g, for all g € G, and

k+d—i
= < Z_Z, Z>A-g, for all g € G and i € [d].
Since the order of every element g divides the exponent M of the group, for the above two conditions
to hold, it suffices if for all j € [¢] and ¢ € [d], p; does not divide (k;gd) and that p;j divides (k;gf;l)
Then we can take A to be any integer such that A(k;gd) + A’M =1 for some integer A’ (such A
and A’ are guaranteed to exist as M and (k;gd) are coprime). The rest of the proof is dedicated to

verifying these divisibility constraints hold.

e p; does not divide (kzd): We will represent all the numbers £, d, ¢ etc. in base p;. We note

that the last r;s; digits of k are zeroes since p;j divides k. Furthermore, since d < p;j % all
the digits of d except the last r;s; many are zeroes. Hence, the sum of digits of k + d is equal
to the sum of the digits of k& and d combined. That is, Sy, (k) + Sp,(d) — Sp,(k + d) = 0.
Applying Kummer’s theorem (Theorem 3.4.2) now finishes the proof.

. p;j divides (k Zi_’) By Kummer’s theorem (Theorem 3.4.2), it suffices to show that

Sp;(d) + Sp,;(k —1i) — Sy (k +d —1)
p;—1
We note that Sy, (k+d—i) = Sp, (k) +Sp, (d—1) by the same argument as the above paragraph.
In addition, we have the trivial bounds Sy;(d) > 1 and Sy, (d — i) < (p; — 1)rjs;. Finally,
we give a lower bound for Sy, (k — ). Since k has at least 3r;s; trailing zeroes, we get that
Sp;(k—=1) = Sp. (k) +3r;sj(p; — 1) — 1. But observe that Sj,,(k—i) = Sp,((k—1)—(i—1)) =
Sp;(k—1) =8, (i —1) since the number of trailing (p; —1)’s of £ — 1 exceeds the total number
of (non-zero) digits of (i — 1). Therefore, we get
Sp;(d) + Sp,(k—i) = Sp,(k+d—i) =1+ Sy, (k—1) =8, (1 —1) = Sy, (k) = Sp,(d —1)

1+ Brjsj(pj —1) = 1) = (pj — Drysj — (pj — Drjs;
risi(p; —1)
rj(pj —1).

= Tj.

\

VARV

This finishes the proof of Claim 3.4.3 and hence Lemma 3.4.1 and Theorem 1.3.2.

4 Combinatorial list-decoding bound

In this section, we are going to prove the following theorem.
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Theorem 1.3.3 (Combinatorial list decoding bound for Py). For every Abelian group G and for
every constant € > 0, the space Py over any Abelian group G is (1/2% — ¢, exp(Oy(1/e)°D)-list
correctable.

In other words, we will show that for any function f : {0,1}" — @G, the number of degree-d
polynomials that are (1/2% — ¢)-close to f is exp(Qy(1/e)O@).

We use the following result of [ABP24] which gives a naive double-exponential upper bound on
the list size. While [ABP"24] prove it for linear polynomials, the same proof extends to higher
degree without much change.

Claim 4.0.1 ([ABP"24], Claim 4.1). For any function f : {0,1}" — G, the number of degree-d
polynomials that are (1/2¢ — ¢)-close to f is at most 22" .

We will subsequently improve the above bound to something independent of n, but to do that, we
will need this naive bound. Furthermore, using a result from previous work [ABP " 24, Claim 4.2],'?
we know that proving Theorem 1.3.3 for finite Abelian GG implies the same theorem for all Abelian
G. Hence, we will assume that G is a finite Abelian group. By using the structure theorem of finite
Abelian groups, we can decompose G as

G;Gleg,

where (77 is the product of finitely many p-groups where each p is a prime number that is at least
po (for some appropriate choice of pg = po(d) to be fixed later) and Gy is the product of finitely
many p-groups where each p is a prime less than py. We provide upper bounds for list-decoding
over G1 and G9 separately and combine the two bounds to get a final bound on the list size over
G. We state the upper bounds formally below, where we use the notation Listg to denote the set
of degree-d polynomials that are (1/2¢ — ¢)-close to f.

Theorem 4.0.2 (Combinatorial bound for a product of p-groups where each p > pg). Let d > 1

ad3
and G be a product of finitely many p-groups, where each p = py = 22 ! for a sufficiently large
o(d3)
constant . Then for every function f : {0,1}" — G, we have |List!| < (1/£)?’ :

In particular, the list size is polynomial in 1/e for a constant d.

We now state the combinatorial bound for the second case.

Theorem 4.0.3 (Combinatorial bound for a product of p-groups where each p < pg). Let d > 1

22@(«12)

and G be a product of finitely many p-groups, where each p < Then for every function

f:{0,1}™ — G we hawve, |List!| < exp(Oy(1/e)0D).

Assuming Theorem 4.0.2 and Theorem 4.0.3, we immediately get Theorem 1.3.3 because for any
function f with co-domain G = G; x G5 can be written as f = (f1, f2) where f; has co-domain Gy
and fy has co-domain Gy. Furthermore, if P = (P;, P,) € List/, then for each i € [2], P; must be in
List/.

We move on to proving the above two theorems in the next two subsections respectively.

2Though this result is only stated for degree 1 in [ABP"24], it works without any change for all degrees.
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4.1 Combinatorial bound for a product of p-groups (p = p)

Our proof of Theorem 4.0.2 builds upon some of the ideas of the combinatorial bound of [ABP " 24]
(Theorem 4.4) which handles degree d = 1. However, there are various places where higher de-
gree polynomials are not as well-behaved and need more complicated analysis. Indeed the anti-
concentration bound (see Lemma 4.1.1 below) we need is more involved and can be of independent
interest. Before the full proof, we now give a rough outline of the proof of Theorem 4.0.2. It can
be divided into the following two parts.

1. Anti-concentration of non-sparse polynomials: Suppose there are two degree-d poly-
nomials P; and Py, both (1/2¢ — ¢)-close to a function f. Then they must agree with each
other on a sufficiently large fraction of the domain. Indeed, §(Py, Py) < 0(f, P1) +0(f, P2) <
1/2%+1/2% = 1/2971. Hence, the density of the zeroes of P = P; — P, in {0, 1}" is greater than
1—1/29-1. Suppose that it is at least 1—1/29! + ¢ for some constant c.!*> Our main idea here
is that this cannot happen for polynomials P with many monomials. In particular, we show
that if P has sufficiently large sparsity (defined as the number of non-zero monomials), then
this fraction is less than 1 — 1/2¢7! 4 ¢. This allows us to reduce the combinatorial bound to
the case of just counting polynomials of “small” sparsity (by a small blow-up in the list size).
We expand more on this in the second step. Going back to showing the anti-concentration
bound itself, we will prove the following.

Lemma 4.1.1 (Anti-concentration bound for non-sparse polynomials). For all positive
integers d,s and for every Abelian group G in which all the non-zero elements have
order greater than (s + 1)!, the following holds: For every degree-d polynomial Q(x)
over G of sparsity at least s, we have

P [QG) # 0] > 1/241 = 2960 /5
x~{0,1}"

When d = 1, [ABP " 24] show an anti-concentration lemma along the lines of Littlewood and
Offord [LO38] which bounds the density of the zeroes of non-sparse linear polynomials by
an arbitrarily small constant (as long as the sparsity is large enough). However, even for
d = 2, this problem is somewhat subtle. For example P(x) = x1 - P'(x2,...,x,) (where
P’ is of degree 1 and large sparsity), is always 0 when z; = 0. In other words, we cannot
hope to bound the density of the zeroes of non-sparse degree-2 polynomials by an arbitrarily
small constant. Nevertheless, we can still argue that it cannot be much larger than 1/2 (i.e.,
1— 1/2d*1 when d = 2). For this particular example of P = x1 - P’, we note that when =7 = 1,
we can defer to the d = 1 case to bound the fraction of roots by a small constant (say c) and
when z; = 0, P(x) is always zero; thus the fraction of roots of P over {0,1}" is less than
1/2 + ¢, which is what we wanted to prove. We formalize this for general polynomials (of
large sparsity) and general degree d. In particular, we rely on an anti-concentration bound of
Meka, Nguyen and Vu [MNV16] when P has many disjoint (non-zero) monomials of degree d
— in other words, a “d-matching”. Otherwise, there has to be a small vertex cover among the
monomials and we use this to reduce to the case of smaller degree (and perform an induction
on the degree). There is the further complication of the fact that [MNV16] state their results

13We will show the existence of such a ¢ in the formal proof.
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only for polynomials over the reals whereas our goal is to also prove it over groups without
elements of small order. However, we show that we can use a linear-algebraic argument to
deduce the same bound for our setting by making use of the anti-concentration statement
over the reals.

2. Counting sparse polynomials: We want to show that the number of degree-d polynomi-
als P, Py, ..., P; of constant sparsity that are (1/2% — )-close to a function f is poly(1/e).
The case of d = 1 was handled by [ABP"24] by reducing (at least implicitly) to the case of
Py, ..., P, depending on disjoint sets of variables and uses the “independence” of such poly-
nomials to get a bound on t. This part of the reduction is more involved for higher degrees.
The reduction in [ABP"24] occurs by setting certain subsets of variables to constants. For
linear polynomials, [ABP"24] has the advantage that setting one variable cannot make a
polynomial zero (assuming it depends on at least two variables). However, even for d = 2, we
cannot afford to set variables to arbitrary constants. For example, P(x) = x1 - (z2 + 3x3 — x4)
vanishes if we set 1 = 0. We get around this by analyzing the structure of the polynomials
and setting variables in two stages: in each stage we prove that the list size does not change
too much. We defer the remaining details about these two stages (and the full argument)
to Section 4.1.1.

We now proceed with the proof of Theorem 4.0.2 with all the details. We will start by assuming the
anti-concentration lemma (Lemma 4.1.1) and deducing Theorem 4.0.2 in Section 4.1.1. We then
show how to prove Lemma 4.1.1 in Section 4.1.2.

4.1.1 Pruning the list

Roughly speaking, we first show that it suffices to bound the number of “sparse polynomials” in
the list to get an upper bound on the total list size. From now on, we will use spars(P) to denote
the number of monomials with non-zero coefficient in the polynomial P.

Reducing to counting sparse polynomials. Let P, P,,..., P, be all the distinct degree-d
polynomials that are (1/2% — ¢)-close to f. We consider the following graph G with vertex set [t]
and an edge between i and j if and only if spars(P; — P;) < s where sg = 20(@) jg large enough
so that the probability on the RHS of Lemma 4.1.1 is at least 1/2¢71 — 0.5/2%¢. Here we are using
the fact for a sufficiently large constant «, the order of all the non-zero elements of G are greater

ad3
than py = 22°" > (so + 1)L.

We now show that G cannot contain an independent set of size £ = 4%. Here, we are assuming
t > ¢ as otherwise we are done. That is, without loss of generality, assume that the polynomials
Py, Ps,..., Py are such that spars(P; — P;) > so for all i # j € [¢]. We will use the following
fact.

Lemma 4.1.2 (e.g. [Jukll], Lemma 2.1). Suppose Ai,..., Ay S U are subsets each of size r such
that the pairwise intersections A; N Aj are of size at most r' for all i # j € [¢]. Then the size of
the union of the sets U_, A; is at least r2¢/(r + (£ — 1)r').

We take U to be {0,1}" and for i € [{], A; to be any subset of {x | f(x) = P;(x)} of size
(1 — 1/2%)2" and apply the above lemma. We note that for any i # j € [£], |4; n A;| < 7' for
7 =2"((1 —1/2¢71) + 0.5/2%9) by applying Lemma 4.1.1 for Q = P; — P; since we have assumed
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that spars(P; — Pj) > sg. Since | U‘_, 4;| < 2", we obtain

- ((1—1/2%)2m)2¢
T (1 —1/29)27 + (0 —1)(1 — 1/24-1 4+ 0.5/22d)2n "

n

Simplifying the above, we get that £ < 4%. Thus, there is no independent set of size 4% in G, which
in turn implies by Turdn’s theorem that there is at least one vertex v € [t] of G with degree at
least

' >t/a% 1. (6)

Let vi,v9,...,vp be distinct neighbors of v. Then consider the polynomials @; = P,, — P, for
i € [t']. We note that spars(Q;) < s and 6(Q;, f') < 1/2¢ —¢ for f' = f — P,.

We now bucket the polynomials Q1,Qs,...,Qy based on which subset of variables they depend
on'. Since the sparsity of each Q; is at most sg, it must depend on at most sod variables.

In the next paragraph, we bound the size of each bucket.

Counting sparse polynomials depending on the same set of variables. We will show
that the number of polynomials @ that depend (only) on the variables x; for i € I for some fixed
Iec ( [n] ) such that Q is (1/2¢ — ¢)-close to f’ is at most (2/5)2280d. Suppose that Q1,Q2, ..., Q

<sod
are such polynomials over the variables indexed by I and we want to show that ¢’ < (2/£)22%".
Note that if f’ also depends only on the variables indexed by I, then we get the bound 92707 by
applying Claim 4.0.1. However, in general, f’ can depend on variables outside I and this results in
an additional 2/¢ factor.

To make this precise, we define a function f” : {0,1}/ — G over just the variables in I as f"(y) =
f'(z) where z|; =y and z|;c is a uniformly random Boolean assignment. Let X; be the indicator
random variable for the event that §(f”,Q;) < 1/2¢ —¢/2 for i € [t"]. Since §(f',Q;) < 1/2% —¢, we
conclude that with probability at least £/2, it holds that §(f”, Q;) < 1/2¢—¢/2i.e., Pr[X; = 1] = /2.
By linearity of expectation, there must be a setting of z|;c such that for the corresponding f”, at
least (£/2)t" indices i € [t"] exist such that 6(Q;, ") < 1/2¢ — ¢/2. But by Claim 4.0.1 this is at
most 22", Hence, we get t” < (2/£)22°"

Therefore, there must be at least t'/ ((2/5)2230d) non-empty buckets. Recall that we label each
bucket by a subset of variables that the polynomials in that bucket depend on i.e., a subset of [n]
of size at most k = spd. Thus there must be at least

" =1 )((2/2)25°") (7)

non-empty buckets that are labeled with a subset of [n] of size at most k.

HYWe say that a polynomial Q(x) depends on z; if x; appears in at least one monomial that has non-zero coefficient

in Q.
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Reducing to the case where the variable sets form a sunflower. We now invoke the
sunflower lemma with the sets S;’s below being the labels of those non-empty buckets.

Lemma 4.1.3 ([ER60], Theorem 3). Suppose Si,Ss,...,Su are distinct subsets of [n] of size at
most k with t" > k!(r — 1)F for some integer r = 3. Then there exists at least r sets among
S1,82,...,Su that form a sunflower. That is, there exists distinct indices iy,is,...,i, € [t"] and
C < [n] (called the core of the sunflower) such that C = S;; " S, for all ji # j2 € [r], and S;\C
are non-empty for all j € [r].

J1

Using the bound k < sod, we can take
r = (" /(s0d))) /o0 (5)

in the above lemma. Now, since the corresponding buckets are non-empty, we can choose one (ar-
bitrary) polynomial from each bucket that forms the sunflower — suppose, without loss of general-
ity, that Q1,Qa, ..., Q, are polynomials depending on variables indexed by subsets S1,S5s,...,5, €
[n] respectively such that the S;’s form a sunflower, say with core C' € [n]. Furthermore, recall
that we have §(f’,Q;) < 1/2% — ¢ for all i € [r].

Reducing to the case where the variable sets are pairwise disjoint. The main idea is to
set the variables in the core of the sunflower at random. However, we will need to do this in two
steps.

e For the sake of analysis, we shall relabel the variables indexed by C by z = {z1,22,..., 2, }
arbitrarily (note that an empty core C corresponds to ng = 0). We also relabel the variables
indexed by S;\C by y(®) = {ygi), yéi), ... ,yi.)} for i € [r] and some integers n; > 1. Then, being
a degree-d polynomial, we can express each polynomial Q;(x) = Qi(z,y(i)) as a polynomial
in the y(® variables with coefficients being some polynomials over z variables. That is,

Qiz,y") = Y ) Qiila), (9)

re('z)

where (y(i))l denotes the monomial corresponding to taking the product of variables indexed
by I and @Q; s is a polynomial of degree at most d — |I|. Since (); depends on the variables
y(® | there must exist a non-empty subset I for which the polynomial Qi 1(z) is non-zero.
Thus, we can define the y-degree of each @); as the maximum size of an [ € ([2&]) such that
Qi 1(z) # 0. By pigeonhole principle, there must be at least r/d indices i € [r] such that the
corresponding y-degrees of ;’s are identical — we will denote this by d’' € [d]. Without loss

of generality, we will assume that Q1,Qo, ..., Q, have y-degree equal to d’' for some
r'=r/d. (10)

Now for each i € [r'], let m(i) = C denote an arbitrary non-zero monomial of @Q; ;(z) for an

arbitrary I € ([Z}']) such that @Q;; # 0. Note that m(i) can only take at most 21C1 < 9s0d

values. Thus, by pigeonhole principle, there exist at least

T// > ,r,//2sod (11)
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indices for all which m(i) = C’ for some C’ < C. Again, without loss of generality, we assume
that Q1,Qs2,...,Q,» are such polynomials.

We now show that there exists an assignment to variables in C\C” such that
" =1r"e/2 (12)

many of the respective restricted polynomials Q},Q5, ..., Q. (here we are again assuming
that the first " polynomials satisfy this property) depend on at least one variable outside
C i.e., on some variable(s) in their respective y(i). Furthermore, the distance from the corre-
sponding restriction of f” is small, i.e., 5(f"”,Q}) < 1/2% —¢/2 for all i € [r"]. For a uniformly
random assignment to the variables in C\C”, we have that the expected distance 6(f"”, Q) is
at most 1/2% — . Hence, with probability at least £/2 over the choice of the random assign-
ment, we have that 6(f”, Q}) < 1/2¢ —¢/2 for each i € [r"]. Now, by linearity of expectation,
we conclude that there exists at least one assignment such that 6(f"”, Q) < 1/2¢ — /2 holds
for at least r”&/2 many polynomials.

e We note that none of the restricted polynomials @) become zero or become identical to
each other since for each i, there exists an I € ([Zf]) such that @);r(z) remains non-zero.
This is because, by construction, it contains the monomial z¢ with a non-zero coefficient
as a monomial of maximum degree, and setting the variables outside C’ cannot change the
coefficient of this monomial. Let z’ < z be the variables indexed by C” and let @} ;(2z’) denote

the restriction of Q; 1(z) for each i € [r”] and I € ([Zzl]) corresponding to the above assignment
to the variables in C\C’. We have

Qiz,y") = > yN'Q ().

re('z)

Therefore, for each 4, there exists an I; € ([ZE]) for which Q;’ Ii(z’ ) has a non-zero coefficient
for the product of all z’ variables. Thus we conclude that for a random setting of z' = a,
with probability at least 1/2deg(ngIz‘) it holds that @ ; (a) # 0. But notice that deg(Q; ;) <
d — d' since deg(Q)) < d and |I;| = d’. Hence, by linearity of expectation, there exists some
assignment a € {0, 1} such that at least 7" /2%~ of the corresponding restricted polynomials
(which we will denote by Q7 (y@) = Qi(z = a,y®)) are non-constant. In particular, the
coefficient of (y®)! is non-zero in Q7.

We further claim that 6(f”, Q") < 1/2¢ — /2 where f” is the restriction of f” obtained
by setting z’ = a. This follows by recalling that §(f”, Q") < 1/2¢ — /2 and we are setting
d — d’ variables to get f” and Q7. Indeed, 5(f",Q%) < 2¢-%(1/2¢ — ¢/2) < 1/2% — ¢/2 for
any choice of a. In turn, this implies that for the setting z' = a, we have m > 7‘”’/2d*dl
polynomials QY, @5, ..., Q" of degree at most d’ (recall that the y-degree of the polynomials
we are considering is d') depending on pairwise disjoint sets of variables yO y@ oy
respectively such that 5(f",Q7) < 1/2% —¢/2.

Counting polynomials depending on pairwise disjoint variables. For the rest of the analy-
sis, we treat f” and the polynomials Q7 as functions over all the n variables even though we fixed the

values of certain variables in the preceding steps. With this setup, note that Pryc(o 1)n ie[m] [ " (x) =
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QY (x)} > 1—1/2% + ¢/2, which implies that with probability at least £/4 over the choice of x,

we have that Priep,,[f"(x) = Q(x)] = 1 - 1/2¢ + /4. Note that for any such x € {0,1}", if
Qi (x) = f"(x), then Q(x) = Qj(x) for at least (1 — 1/2¢ + ¢/4)ym — 1 many j € [m]\{i}. In
particular, this gives

xe{lzi}n {Hi e [m] : ‘{j | QI(x) = Q/(x)}| = (1 —1/2% +¢/4)m — 1] > e/4. (13)

We will now prove an upper bound on the same quantity above: fixing an arbitrary i € [m] and
an arbitrary setting to the variables appearing in @Q;, we see that since the polynomials depend
on disjoint subsets of variables, the indicator random variables for the events Q(x) = Q] (x) for

a uniformly random x € {0,1}" are Bernoulli random variables bern(p;) for some p; < 1 — 1/2%
(here we are applying the Schwartz-Zippel lemma Theorem 2.2.1) and across j € [m]\{i}. Thus, by
a Chernoff bound, we have

pr {61160 = @0t > 4= 12 - ] < emi-amy).
xe10,14™

Applying a union bound over i € [m] for (14) and combining with (13), we get £/4 < mexp(—Q(2m)),
which gives that

m < O(1/e%). (15)

Chaining together the sequence of inequalities in ¢,¢',t”,r, 7/, ", v and m, and using sg = 20(d?)
and e < 1/2¢, we get the desired bound on the list size:

220(d3>

t<(1/¢e)

This finishes the proof of Theorem 4.0.2 assuming Lemma 4.1.1.

4.1.2 Anti-concentration lemma

We now prove the anti-concentration lemma (Lemma 4.1.1). That is, we will show that there exists
an absolute constant M > 0 such that for any degree-d polynomial Q(x) of sparsity at least s, over
an Abelian group G in which all non-zero elements have order greater than (s + 1)!, that

Pr [Qx#0)]> 1/2471 — M%)/,
x€{0, n

Note that the above bound is trivial unless s > M 2d%

The proof proceeds by an induction on d.

The base case. For d = 1, we use the known anti-concentration result of Littlewood and Of-
ford [LO38], or rather the subsequent improvement due to Erdés [Erd45]:
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Theorem 4.1.4 ([Erd45], Theorem 2 modified). There exists a constant B > 0 such that any
degree-1 multilinear polynomial P(x) over the reals with at least r many variables with non-zero
coefficients, we have

However, we cannot apply the above theorem directly since G need not be the group of real numbers.
Nevertheless, using a simple linear algebraic argument, we show in the below claim that the same
anticoncentration inequality actually holds as long as the non-zero elements of G have order greater
than s!.

Pr
x~{0,1}™

Claim 4.1.5. Suppose that every degree-d multilinear polynomial P(x) € R[x] with at least r
disjoint non-zero monomials of degree d has at most ¢ - 2" roots over {0,1}" for some ¢ = c(d,r).
Then the following holds for every Abelian group G in which the order of all the non-zero elements
s greater than (gl)!: Every degree-d polynomial Q(x) over G with at least r disjoint non-zero
monomials of degree d has at most ¢ - 2™ roots over {0,1}".

For a degree-1 polynomial with sparsity s, we can apply Claim 4.1.5 and Theorem 4.1.4 with
r = s — 1 to get the base case (as long as M is a large enough constant). This finishes the proof
of Lemma 4.1.1 for the base case d = 1, assuming Claim 4.1.5.

The induction step. Suppose d > 2 and that the claim is true for all degrees until d — 1. To
then prove it for degree d, we split the analysis into three cases, where the parameters s; and s
are to be fixed later.

e Case 1: There exists at least one variable (say z1) that is contained in at least s; monomials
of Q. That is, let

Q(x1,72,...,7,) = 21Q1(T2, - .., Tp) + Qa(2, ..., Tp), (16)
where we have deg(Q1) < d — 1 and spars(Q1) = s;. We analyze the probability that Q(x)
by first setting the variables xo,x3,...,2, and then setting the value of z;. By induction

hypothesis, we have that

Pr [Q1(x2, ..., 2n) # 0] = 1/202 — M@=V ) /gy (17)
(1‘2,...7xn)~{0,1}”71

Interpreting (16) as a linear polynomial in x; with coefficients being ()1 and @2, we have
that Pr[Q(x) # 0] = Pr[Qi(za,...,z,) # 0] - Pr[Q(x) # 0 | Qi(x2,...,z,) # 0]. By
the DLSZ lemma (Theorem 2.2.1) for degree-1 polynomials, we have that the second factor
above Pr[Q(x) # 0| Q1(x2,...,zy) # 0] is at least 1/2. Combined with (17), we thus get that

Pr[Q(x) # 0] = 1/2- (1/2d*2 — M@-D? /\/a) > 1/29-1 — M®/\/5, by taking s; = s/M2®
and M a sufficiently large constant.

e Case 2: There exist sy = M® many disjoint monomials of degree d of @ (with non-
zero coefficients), again assuming M is sufficiently large. We now apply the following anti-
concentration result of Meka, Nguyen and Vu [MNV16] which can be thought of as a general-
ization of [LO38, Erd45] to higher degree when there are many disjoint monomials of maximal
degree:
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Theorem 4.1.6 ([MNV16], Theorem 1.6 modified). There exists a constant B > 0 such
that for any degree-d multilinear polynomial P(x) over the reals with at least r many disjoint
degree-d monomials with non-zero coefficients, we have

BdY3\/log r
x~5]f.1}"[P<X) = O] < W

Applying the above theorem for r = s = M @ and taking M sufficiently large (as a function
of B), we see that

_ Bd*3,/Iog ss

PrQ(x) =0 < —— 55— <1/2<1- 1/24°1 (18)
&)

However, Theorem 4.1.6 as stated only holds over the reals. Regardless, using Claim 4.1.5,
we know that the same bound applies if all the non-zero elements of GG are of order greater

than (gfi)!. Recall that we are already assuming that the non-zero elements of GG are of order

greater than (s +1)! and that s > M 24* from the hypothesis of Lemma 4.1.1. Hence, all that
remains to be checked is that (gé)! < (s + 1)! for the above choice of r = sg = M @ Tndeed
this inequality holds for sufficiently large M. This finishes the proof of Lemma 4.1.1 in Case
2.

e Case 3: Suppose neither Case 1 nor Case 2 occur. Using a greedy algorithm that repeatedly
picks disjoint monomials of degree d for as long as possible, we can find a vertex cover of size
at most sod among the non-zero monomials of () of degree d. That is, there exists at most
sod many variables (call them y) such that any non-zero monomial of @ of degree d contains
at least one of these variables.

We will analyze the probability that Q(x) is zero by setting the y variables arbitrarily. Let
Q' denote the polynomial in the variables x\y after an arbitrary assignment to those of y.
Note that deg(Q’) < d — 1, since we set at least one variable in each monomial of degree d.
It suffices to show that Q' is non-zero to get that Pr,[Q’(z) # 0] = 1/29! by a direct use
of the DLSZ lemma. Since @) has at least s monomials and each variable is contained in at
most s; monomials, the total number of monomials containing at least one variable from y
is at most |y| - s1 < s1s2d. Hence, even upon setting the variables in y, at least s — s1s2d
monomials of @ remain unaffected. However, the monomials that do get affected can cancel
out these monomials. Nevertheless, there would be at least s — 2s150d = s —2M a ds/M 2% _
s(1 — 2d/M%) > 0 non-zero monomials in . Thus Pry[Q(x) # 0] > 1/2¢-1.

This concludes the proof of Lemma 4.1.1 assuming Claim 4.1.5, which we prove below.

Proof of Claim 4.1.5. We first reduce the number of variables of @) from n = |x| to rd by setting
the variables that are not part of the r disjoint disjoint degree-d monomials of @) arbitrarily. It
then suffices to show that this restricted polynomial, which we shall denote by Q’(y), has at most
c¢- 2" roots over {0,1}"?. Towards a contradiction, let S < {0,1}"® be a subset of size greater than
c-2"4 such that @’ evaluates to 0 on all the points in S. Consider the following {0, 1}-valued matrix
M of dimensions ¢ x |S| where ¢ = (gcll): the (i,7)-th entry of M denotes the evaluation of the
i-th monomial at the j-th point in S. Let aj,as,...,a, € [{] denote the rows corresponding to the
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disjoint monomials of Q" and for each i € [¢], let e; € {0, 1} denote the vector that takes value 1 at
the i-th index and 0 everywhere else.

We claim that there exists at least one index k € [r] such that e,, lies in the column span of M,
when M is treated as a matriz over R. We prove this by contradiction. That is, suppose that
eq, ¢ V for all k € [r], where V < R’ denotes the column space of M. Note that given any vector
u € RY, we can uniquely express it as u = ull + u' such that ul € V and u* L V (ie., <ui, v> =0
for all v € V. Denoting the orthogonal subspace of V by V=, this is equivalent to u € V). Since
eq, ¢ V', we have that ejk # 0. Hence, {x e V" | <x, ejk = 0} is a subspace of V' of co-dimension
1. Since a finite union of subspaces of co-dimension 1 is never equal to the ambient vector space over
R (which is V1 in our case), we conclude that there exists a vector p € V= such that <p, eakL> #0

for all k£ € [r]. Since <p,e|CLk> = 0 as the two vectors are in orthogonal subspaces, we get that

(p,€eq,) # 0 for all k € [r]. Moreover, since p is orthogonal to the columnspace of M, we get that
{p, My = 0 where M, € {0,1}* denotes the j-th column of M for every j € [|S|]. Let P(y) € R[y]
denote the polynomial with coefficients represented by p. Then, the above inner product relations
imply that P is a degree-d polynomial with r disjoint non-zero monomials yet it vanishes on S.
This is a contradiction to the assumption in the claim statement since |S| > ¢ - 2"%. Hence, indeed
there exists k € [r] such that e, is spanned the columns of M.

Suppose
t
€ap, = Z apMj,, (19)
p=1

where o = (a1, s, ...,0;) € Rt and M;,, Mj,, ..., M;, are linearly independent columns of M for
some t < ¢. Let us denote the submatrix indexed by the columns ji, ja, ..., j: by M’ € Rt Since
M’ is full-column-rank, let ij,is,...,i; € [¢] be the indices of the rows of M’ that are linearly
independent — we shall denote the corresponding submatrix of M’ by M” € R, Let v/ = e,,
and v” € {0,1}! be the restriction of v/ to the indices i1, 2, ...,i;. From (19), we have M'ax = v/,
and hence M"a = v”. Since M” is invertible, by Cramer’s rule, we have that o, = % for
all p € [t], where det(-) denotes the determinant and M, is the matrix M" with its p-th column
replaced by the vector v”. By multiplying det(M”) on both sides of (19), we see that there exist
integers (g € [t!] and f1,..., B € {—t!,...,t!} such that Bpe,, = 22:1 BpM;,, where we are using

the fact that the determinant of any {0, 1}'** matrix lies in {—t!,...,#}.

We can use this to argue about the polynomial Q" defined above over the group G. Assume that
the coefficient of the ith monomial in @’ is @} € G. Recall that Q" evaluates to 0 on all points in S
and that @’ has disjoint monomials corresponding to rows ay,...,a, € [¢], implying that Qflj #0
for each j € [r]. The previous paragraph implies that Q= Z;zl BpQ'(xp), where Qf, € G
denotes the coefficient of the corresponding monomial in Q" and x,, is the p-th point in S (following
the same indexing as the columns of M). Since Q' vanishes on S, we have ﬁoQ;k = 0. This is

a contradiction since Sy < t! < (fﬁl)! and we assumed that all non-zero elements of G' have order
greater than (Z‘fi)!. [
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4.2 Combinatorial bound for a product of p-groups (p < po)

In this subsection, we prove a combinatorial bound on the list size in case of Abelian groups G that
are products of p-groups for small p, i.e. Theorem 4.0.3. We say that G is a (< pg)-group if every
prime factor of |G| is smaller than py (or equivalently, that G is a finite product of p-groups where
P < po)-

The proof of the combinatorial bound in this case is quite different from results that prove similar
statements when the domain is Z; for constant p [GIXZ08, BL18]. In particular, we depart from
the analytic ideas of [BL.18] and use combinatorial and algebraic techniques based on monomial
orderings and the well-known technique of ‘fingerprinting’ (see, e.g. [GHO0]).

Monomial ordering and leading monomials. We fix variables x1,...,x, and define an order-
ing among (not necessarily multilinear) monomials in these variables as follows. Given monomials
mq,mg, we say that my < mq if deg(my) < deg(ms) or deg(my) = deg(ms) and for the least i such
that the two monomials differ in the exponent of z;, we have a lower power of x; dividing m, than
me. This is also called the graded lexicographic order.'® Some examples are as follows.

:Egl‘g < :Ezll, l‘liﬂgl‘g < :Ell‘%l‘:;

Now, given a polynomial P € P;({0,1}",G) for a group G, we define its leading monomial LM(P)
to the largest monomial (w.r.t. <) with non-zero coefficient in P. We identify LM(P) with the set
S < [n] of size at most d indexing the variables that appear in it.

We will use monomial orderings in the setting when G = Z,, to show that many distinct polynomials
cannot agree with the same function at too many points. This uses crucially the following tail bound,
which we view as independently interesting. It is proved using the fairly standard technique of using
‘footprints’ [GHOO] and an idea for proving tail bounds by Panconesi and Srinivasan [PS97]. As far
as we know, such a bound for low-degree polynomials has not been observed before.

Lemma 4.2.1 (Tail bound for degree-d polynomials). Fiz any field F and any integer d > 1.
Let Sy,...,S: € Py({0,1}",F) be polynomials such that LM(S;) n LM(S;) = & for every
distinct i, € [t]. Then for every n > 0, we have

I;r {]{z € [t] | Si(a) =0}| = (1 — % + 77) -t] < exp(—Q(n?t)). (20)

The lemma is proved in Section 4.2.1 below.

We now outline the proof of the main theorem (Theorem 4.0.3) of this section, which involves
several steps.

1. The first, and more involved, step is to prove the bound in the case that G = Z, where p < pg
is prime. The proof in this case splits into three smaller steps.

(a) Pigeonhole argument: Fix an f : {0,1}" — Z,. Given a list of L polynomials

Py,...,P, € Pyg({0,1}",Z,) that are (2% — ¢)-close to f, we show how to obtain a

5 Any graded monomial order in the sense of [CL.O15, Section 2, Chapter 2] will do just as well.
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sub-list of size £ = Q(log, L) polynomials Q1, ..., Q, that moreover satisfy the property
that their leading monomials are distinct.

(b) Sunflower lemma: We then apply the Sunflower lemma (Lemma 4.1.3) to the monomi-
als LM(Q1),...,LM(Qy) to find a subset of t = Q4(¢%/%) polynomials from {Q1,...,Q¢}
whose leading monomials form a sunflower, i.e. they are pairwise disjoint except for
their common intersection.'®

(c) Using the tail bound: We can now apply the tail bound (Lemma 4.2.1) stated above
and a simple combinatorial argument to show that ¢ < poly(1/e). Overall, this leads to
a bound of L < exp (Od(l/s)o(d)) , concluding the proof in the prime case.

2. Modifying [DGKSO08b]: The second step is to ‘lift’ the list bound L that holds for Z,
(p < po) to a list bound that holds over all the finite Abelian (< pg)-groups G. In the linear
(d = 1) case handled in [ABP"24], this was done using the work of [DGKS08b], which gives
a combinatorial characterization for such a lifting. This combinatorial property holds for the
space of linear polynomials, implying (using [DGICS08b]) that a list bound of L in the prime
case ‘lifts’ to a list bound of poly(L) for all (< pg)-groups G.

Unfortunately, for d > 1, the characterization of [DGIS08b] is not applicable as stated.
However, we show that a simpler proof allows us to recover a weaker bound of LOUeg(1/),
Using the bound for the prime case, we again get a bound of exp ((’)d(l/s)o(d)) on the list
size for any Abelian (< pg)-group G.

In the rest of the section, we show how to carry out the above strategy. We start with the proof of
Lemma 4.2.1 in Section 4.2.1, followed by the prime case in Section 4.2.2 and the case of Abelian
(< po)-groups in Section 4.2.3.

4.2.1 Proof of the tail bound

To derive the tail bounds (Lemma 4.2.1) we will need the following theorem of Panconesi and
Srinivasan [PS97], which is an extension of Chernoff-Hoeffding bound.

Theorem 4.2.2. [PS97, Theorem 8.4] Let Zy,...,Z; be Boolean random variables such that for
some a € [0,1] and for every subset I < [t], we have Pr[nierZ; = 1] < alll. Then, we have the
following tail bound.

Pr [Z Zi= (a+n) 't] < exp(—Q(n*t)).
i=1

Proof of Lemma 4.2.1. We start by defining the Boolean random variables Z1,..., Z; as follows:
For i € [t], Z; = 1 exactly when S; is equal to 0, i.e. Z;(a) = 1iff S;(a) = 0. To use Theorem 4.2.2,
we need to show the following:

For each subset I < [¢],

Pl“[/\ie[Zi = 1] < Oém,

where o := (1 — 2%)

6The recently improved sunflower lemma due to Alweiss, Lovett, Wu, and Zhang [ALWZ21] unfortunately does
not lead to significantly improved parameters here, and so we stick to the classical version.

39



For simplicity in notation, assume that I = {1,...,r} and define the Zero;y < {0,1}" as the set of
common zeroes of Si,...,S, in {0,1}", ie.

Zeror := {a€ {0,1}" | S;(a) =0, for all i€ [t]}
We want to show that |Zeros| < a” - 2™,

To do this, we use the standard ‘footprint bound’ (see e.g. [GHO0] and [CLO15, §5.3]) which can be
seen as a version of the linear algebra method in combinatorics (see, e.g. [BF22]). More precisely,
we consider the vector space of functions g : Zero; — F. We denote this vector space by F; and we
will show that

dim(F7) < -a” - 2". (21)

Note that the set of indicator functions for each point in Zeroy is a basis for F; and thus dim(Fy)
is equal to |Zeros|. Combining it with Equation (21), we will get that |Zeros| < 2" - o and this
will finish the proof.

We bound dim(Fj) by constructing a spanning set for F; of size at most o’ - 2. The set Zeroy
is a subset of the product set {0,1}". We define another set of polynomials and show that their
common set of zeroes in Z; is exactly equal to Zeroy, gaining the advantage of working over a field
and use linear algebra. Define the set I’ of polynomials as follows:

/. 2 2
I = {:1:1—wl,...,xn—xn,Sl,...,Sr}

It is easy to see that the common set of zeroes of polynomials in I’ over Z, is exactly Zeroy (the
polynomial constraint 22 — x; forces the i** coordinate to be in {0, 1}).

Now, given any function g : Zeroy — F, we can express g as a polynomial (e.g. via Theorem 2.2.1).
Using a standard division algorithm for multivariate polynomials (see [CLO15, §2.3, Theorem 3]),
we can write

n T
g=2ai-(x?—$i)+2bj5j+R (22)
i=1 j=1
where a1,...,an,b1,...,bp € Zp[x1...,2,] are some polynomials and R € Zp[x; ..., z,] is such

that no monomial with non-zero coefficient in R is divisible by any of the leading monomials of the
polynomials in the set I’. In other words, R is a linear combination of multilinear monomials that
are not divisible by LM(Sy), ..., LM(S,).}”

By Equation (22), the polynomials R and g represent the same function over Zeros. It follows
that the set of multilinear monomials that are not divisible by LM(S1), ..., LM(S,) span the space
Fr1. In particular, the dimension of the vector space Fr is upper bounded by the number of such
multilinear monomials.

Fnially we argue that the number of multilinear monomials not divisible by LM(S7), ..., LM(S,)
is at most o - 2". Picking a uniformly random multilinear monomial corresponds to choosing a
uniformly random subset J < [n]. The chance that the random multilinear monomial is not divisible
by LM(S;) (j € [r]) is equal to the chance that the set J does not contain the set corresponding

to LM(S;) which is at most o = 1 — 2i since |[LM(S;)| < d. Since the leading monomials of

"The last couple of paragraphs is essentially a summary of part of [CLO15, §5.3, Proposition 4] stated here for
completeness.
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S1,...,S5, are pairwise disjoint, these events are mutually independent, leading to the conclusion
that a uniformly random multilinear monomial is not divisible by LM(Sy),...,LM(S,) is at most
«o”. This is equivalent to the desired claim.

This proves Equation (21), which concludes the proof of Lemma 4.2.1 as described above. |

We will use a corollary of this tail bound, which we now prove.

Corollary 4.2.3. Fiz any field F and any integer d = 1. Let Q1,...,Q¢ € Py({0,1}",F) be
polynomials such that LM(Q;) n LM(Q;) = & for every distinct i,j € [t]. Then for every n > 0,
we have

Pr {Hce F st |{ie[t] | Qi(a) =c}| = (1 - +n> -t] < texp(—Q(n? - t)).

Proof. Without loss of generality, assume that LM(Q1) < LM(Q2) - -+ < LM(Qy).

Assume that a € {0,1}" is chosen uniformly at random as in the statement of the corollary. For
Jj <t,let & denote the event that there is a ¢ € F such that for at least (1 — 2% + 77) -t many 17 € [t],
we have );(a) = ¢ and furthermore that j is the smallest index such that Q;(a) = c.

The event whose probability we are trying to bound is contained in & U &, - - U &, where r = t/2¢.

Fix any j < r. The probability of £; is upper bounded by the probability that at least a (1 — 2% + 77)
fraction of the polynomials

Qj+1—Qj,Qj12—Qj,...,Qr — Q;

all simultaneously vanish at the point a. Note that these polynomials have leading monomials
LM(Qj+1),...,LM(Qy) respectively, which are pairwise disjoint. Hence the tail bound Lemma 4.2.1
is applicable and we can bound the probability of &; by exp(—Q(n? - (t — j))) = exp(—Q(n? - t)).

The corollary follows by a union bound over the probability of &1,...,&,. |

4.2.2 Combinatorial bound for the prime case

In this subsection, we prove a combinatorial bound on the list size for degree d polynomials when
the coefficients are from Z, for a prime p. The list size is a constant dependent on d,p, and ¢
(independent of n).

Lemma 4.2.4. Fiz any d > 1 and any prime p. Then for every function f : {0,1}" — Z, we have,
List!| < exp(O,(1/2)°0@).

To prove this lemma, we follow the outline from the beginning of the section. For the rest of this
section, let f be an arbitrary function as in the statement of the lemma and let Listg ={P,...,Pp}
where L € [p,p**!) for an integer £. Note that £ = Q(log,, L).

Pigeonhole argument. We start with a pigeonhole argument that allows us to find a sub-list

of polynomials from Listf; that have distinct leading monomials. More formally we prove the
following.
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Claim 4.2.5. For each non-negative integer i < ¢, there is a function f; : {0,1}" — Z, and a set
of polynomials Q; = {Q1,...,Qi} v Q. such that

1. Q; < Listfi,

2. LM(Q1) = -+ = LM(Q;) = LM(Q) for each Q € Q, and

3. 1Qj = p.
Proof. The proof is via induction on i. For the base case ¢ = 0, we can simply take fy = f and
Qo = Listg.

Assuming the statement for ¢ < ¢, we prove it for i + 1 as follows. We define the ‘plurality
polynomial” Pl’; as follows: for every multilinear monomial m, the coefficient of m in PIl; is the
plurality of the coefficient of m among all the polynomials in Q}, where we break ties arbitrarily.

Define the function fi41 := f; — Pl; and define Q7 := {Q — PY; | Q € Q.}. Using fi+1 and Qf, we
define Q;,1 next:

Qiv1:={Q1 —Pl';,....Q; —Pl';} u{Qit1} v Qi 1,

where

e (Q;41 is chosen to be any polynomial in Q7 whose leading monomial m is as large as possible
among the leading monomials of polynomials in Q7

e Q) , is the set of polynomials in Q that have a leading monomial strictly smaller than m,
the leading monomial of ;1.

We now show that f;.1 and Q.1 satisfy the required properties.

1. It is clear that Q; 1 < Listgi because each polynomial Q € Q;.1 can be written as Q — Pl/;
for some @ € Q;. Hence 6(fi+1,Q) = 0(fi, Q) < 2% —e.

2. We have defined Q;11 = {Q1 — PV;,...,Q; — PV3,Qip1} U Q. If m; denotes the leading
monomial of Q; for j < i, we observe that the coefficient of m; in PI; is 0 since the plurality
used in defining PY’; is only taken over the polynomials in Q) all of which have a leading
monomial smaller than m; by the induction hypothesis. In particular, the leading monomial
of Q; — Pl'; is also m;. We thus have

LM(Qq —Pl';) = -+ = LM(Q; — Pl';) = LM(Qi+1)
where for the last inequality we again used the inductive hypothesis. Finally, given any
Qe Q; |, we have LM(Q) < m = LM(Q;+1) by definition of Q;_ ;.

3. Finally, we note that for any monomial m, the plurality of the coefficients of m among the
polynomials in Q is zero, since we defined Q by subtracting from each @ € Q; the ‘plurality
polynomial’ Pl';. In particular, the number of polynomials in Q that have a leading monomial
strictly smaller than m (or equivalently, the number of polynomials in Q7 where the coefficient
of m is 0) is at least |Qf|/p = p*~i~L.

This concludes the induction and hence the proof of the claim. |
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Applying Claim 4.2.5 with i = ¢, we see that there is a function f; such that |List§l | > ¢ and List!‘
contains polynomials @1, ..., Q, with distinct leading monomials. The rest of the argument will
bound /.

Sunflower lemma. We now come to the second step of the argument, which is an application of
the Sunflower lemma Lemma 4.1.3 to the set of leading monomials of @1, ..., Qy (seen as subsets of
the universe [n] of size at most d). By Lemma 4.1.3, there is a sub-collection of t = Q(¢'/¢/d) many
polynomials such that their leading monomials form a sunflower. Without loss of generality, we
assume that these polynomials are @1, ..., Q. Similarly, we assume that LM(Q1) n---nLM(Qy) =
{j1,...,Jx} for some k € {0,...,d — 1}. Let J denote this core of the sunflower.

For each i € [t], we can express the polynomial @); as a polynomial in the variables in core J,
i.e.
Qi(x1,.- wn) = D) Qialzs:jen)\J)-2?
AcJ
where £/ denotes the product of the variables in A. Note that deg(Q; ;) < d — k for each i € [t].

We also note that LM(Q;, 7) = LM(Q;)\J by the definition of our monomial order and hence the
leading monomials of LM(Q1,7),...,LM(Q: ) are pairwise disjoint.

Using the tail bound. We are now ready to conclude the bound on £ (and hence on L = |List/|)
using Corollary 4.2.3. More precisely we prove the following claim.

Claim 4.2.6. Assume i € [t] and a € {0,1}" are chosen uniformly at random from their respective
domains. Then

1 e

Prlfi(a) # Qi(@)] > 5y — = —t-exp(~Q( 1))

The statement of the claim immediately implies that t = O(log(1/¢)/e?) since we have Pra [fi(a) # Q:(a)] =
(fe, @) < 2% — e. It therefore suffices to prove the claim, which we do now.

Proof of Claim 4.2.6. We sample a in two steps: we first sample its projection to the variables
indexed by [n]\J, which we denote by a’, followed by its projection to the variables indexed by J,
which we denote by a”.

Given a fixing a’ of the variables indexed by [n]\J, we denote by f; o and Q; o the corresponding
restrictions of f; and @Q; (i € [t]) respectively. Note that each of these is a function of the k variables
indexed by J and can hence be expressed uniquely as a multilinear polynomial in these variables
(Theorem 2.2.1). Moreover, the coefficient of the monomial 27 in Q) is exactly @; s(a’).

We denote by B = B(a’) the event that

. 1 €
c € Zy such that |{i € [t] | Q;s(a’) = c}| = <1 ST §> -t

Since the polynomials @1, s,...,Q¢ s have degree at most d — k each and their leading monomials
are pairwise disjoint, we can apply Corollary 4.2.3 to bound the probability of B by t-exp(—(g%t)).

Fix any a’ such that B does not occur. In this case, the multiset of polynomials {Q; | 7 € [t]}
has the property that no polynomial appears more than (1 — 2%1@ + 5) -t times in it. In particular,
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when we choose i € [t] uniformly at random, we see that the probability that Q; a» # fya is at least

?l%k — 5. Since any pair of distinct functions on k variables disagree at at least a single point, we

have

Py lfiw(a”) # Q@) > 5 (- 5) > 31~ 5
Overall, we have
Pr(fia) # Qi(a)] = Pt [fra@’) # Qiar(al)]
> (1-Pr[B))- (;—d—§> ;%—%—Pr[zs]
> =t ep(~0(E 1)
proving the claim. ]

As noted above, Claim 4.2.6 implies that ¢ = O4(log(1/¢)/e?), implying that £ = O4(t)? = O4(1/e).
Since ¢ = Q(log, L), we get L = exp(Oyq,p(1/¢)?), proving Lemma 4.2.4.

4.2.3 Combinatorial bound for the general case

In this subsection, we prove Theorem 4.0.3 which we recall below.

Theorem 4.0.3 (Combinatorial bound for a product of p-groups where each p < pg). Let d > 1
90(d?)

and G be a product of finitely many p-groups, where each p < 2
f:{0,1}" - G we have, |List£| < exp(Oy4(1/e)0@).

Then for every function

To prove Theorem 4.0.3 for any (< pg)-groups G, we follow the argument from [ABP*24]. The
main bottleneck (as mentioned also above) is that the work of [DGIKS08b], which is useful in ‘lifting’
the combinatorial bound from the prime case to the case of general groups for degree-1 polynomials,
no longer seems to be applicable here. So the main innovation is to give a proof of such a lifting
strategy that also works for higher-degree polynomials (albeit with worse parameters).

More precisely we prove the following lemma, that in conjunction with Lemma 4.2.4 immediately
implies Theorem 4.0.3.

Lemma 4.2.7. Fiz any ¢ > 0 and any positive integer d. Let S be a set of primes such that for
each p € S, we know that the space Py({0,1}",Z,) is (2% — g, L)-list decodable for some positive
integer L. Then, for every finite Abelian group G that is a product of p-groups for p € S, it holds
that Py({0,1}", G) is (2% — ¢, L)-list decodable, where L' = LOd(og1/e),

The proof of the lemma is inspired by the proof of the analogous combinatorial bound in [DGIS08b],
but needs less structure on the codewords in the underlying code.

Proof. Fix any function f : {0,1}" — G. We want to bound the size of List/.

We start by defining a sequence of quotient groups of GG as follows. We start with Gg = GG. Having
defined G;, we define G;;1 by fixing any element h; € G; of prime order p; € S (such an element
always exists in an Abelian group by a trivial argument, but one can also use Cauchy’s theorem (see
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e.g. [Con]) which applies to all groups) and defining G; 1 = G;/H; where H; is the group generated
by h;. We stop when the group G; is the trivial group containing just the identity element.

Assume that the sequence of groups thus constructed is Gy = G, ..., Gy = {0}. We define a sequence
of functions f; : {0,1}" — G; (i € {0,...,h}) inductively by defining fy = f and f;+1 by

fir1(a) = fi(a) (mod Gjy).

for each a € {0,1}". We also define List/i to be a subset of P4({0,1}",G;) in the natural way.

Finally, we define a tree T of height h as follows. For each i € {0, ..., h}, we add one vertex at level
1 in T for each P; € Listgi; note that, in particular, there is exactly one vertex at level h. Further,
the children of the polynomial P, ;i at level i + 1 in T are (the vertices corresponding to) those
polynomials P; at level ¢ such that

Pi(x) = Pi41(x) (mod Hy).
It will be useful to note that by Theorem 2.2.1, the above equality holds both in terms of the
evaluations of the two polynomials and also in terms of their coefficients.

It is easy to see that each P; at level ¢ is a child of a unique P, at level i+ 1, namely the polynomial
P11 defined by the equality above. We thus have indeed defined a tree T. The size of Listg is
upper bounded by the number of leaves (or paths) of T, which we bound using the following claim.

Notation. Recall that each vertex v of the tree is associated to a polynomial P over group G;
where i denotes the level of v. We define by agr(v) the fraction of points of agreement between P
and f;. Further, let p(v) = agr(v) — (1 — 2%) .
Claim 4.2.8. The tree T defined above has the following properties.

1. FEach non-leaf vertex in T has at most L children.

2. If v is a child of u, then p(u) = p(v).

3. If u has two distinct children v and w, then p(u) = p(v) + p(w).

Using the above claim, we can finish the proof of the lemma as follows. Let ¢ = [log L]. We show
that for any node u with children vy, ..., v, we have

p(u)’ = p(or)" + - + p(ur)". (23)
Assuming this, we get by induction from the root r of T" that

p(r)t = Z p(v)t = - (# of leaves of T) > & - |List!|

v a leaf

where for the second inequality, we used the fact that p(v) = e for all nodes v in the tree (by
definition of p and the properties of the polynomials associated to each v). Since p(r) < 1, we
immediately get |List!| < (1/¢)¢ = LOU°81/2) a5 desired.
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It remains to prove Equation (23) and Claim 4.2.8, which we do in that order. To see Equation (23),
we assume without loss of generality that ¢ > 2 (otherwise the inequality is trivial) and that
p(vi) = p(va) = -+ = p(vy). Then we have

p(v1)" + -+ + p(v)" < (p(v1) + p(v2))" < p(u)*

where the second inequality is a consequence of Item 3 of Claim 4.2.8 and the first inequality
follows by examining the expansion of (p(v1) + p(v2))¢ which contains one term that is p(v;)* and
26 —1>L—1>t—1(Claim 4.2.8 Ttem 1) terms that are at least p(v2)*.

Proof of Claim 4.2.8. Assume u is a vertex at some level 4 + 1 in the tree. Then u corresponds to
a polynomial P taking values in the group G;,1. Assume that u has children vq,...,v;. Each child
v; is associated to a polynomial @); over Gj.

Let A(u) denote the set of points where P agrees with f;; and similarly, let A(v;) denote the set
of points where (); agrees with f;. By the definition of the tree T, we have A(v;) is contained in
A(u) for each j and this implies Item 2 of the claim.

To prove the other two items, we need some notation. Let h; € G; be the group element used to
define H; and hence G;,1 above. Fix any system of coset representatives cq,...,cy of H; in G;.
Given any g € G;, we can write g uniquely as

g=g+g - hi (24)

where g € {c1,...,cp} and ¢’ € {0,...,p; — 1} (since h; has order p;).

Hence, for each j € [t], we can write

Qj(x) = Z arz’ = Z aral + Z oyl |-y

|1|<d 11|<d [1|<d
5,_1 | ——
Qi(x) Q) (x)

Since h; has order p;, we can think of Q;- as taking values in Z,, .

We note for any two j, k € [t], the polynomials Qj and Qk are in fact exactly the same. This is
because

P(x) = Qj(x) = Qr(x) (mod H;)

by definition of the tree T, implying that the coefficients of @); and Q) are all the same modulo
H;. By the uniqueness of the decomposition in Equation (24), the polynomials Qj and Qk must
therefore be the same. We denote this polynomial Q Note that this also implies that Q; and Q)
are distinct for any distinct j, k € [t], since otherwise Q; = Q.

Let Fy(x) = f;(x) — Q(x). In a similar way to what we did above, we can write for each x € {0,1}",
Fi(x) = Fi(x) + F/(x) - h;

where again we think of F] as taking values in Z,,.
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Fix any x € {0,1}". We have

x € A(v;) = fi(x) = Q;(x) < F;(x) = Q;(x) ~h; = F/(x) = Q;-(x)

where the last equality holds as elements of Zj,. In particular, this implies that since Q; € Listgi,

we must also have Q;- € Listf ‘. Using the hypothesized bound of L from the prime case (statement
of Lemma 4.2.7), we get t < L implying the first item of the claim.

Finally, we note using the same reasoning that if x € A(v;) n A(vy) for distinct j and k, we must

have Q;- (x) = @}.(x). Since distinct degree-d polynomials can agree on at most a (1 — 2i) fraction

d
of inputs (Theorem 2.2.1), we see that [A(vj) N A(vg)| < 2" - o where a denotes (1 — 2%) We have

(p(u) + @) - 2" = [A(u)| = [A(v;) v Avg)| = [A(v;)] + [A(vr)] = [A(v;) © A(vg)]|

(p(vj) + @) - 2" + (p(vop) + @) - 2" — - 2" = (p(vj) + p(vg) + ) - 2"
where we used the fact that A(u) contains A(v;) and A(v) (argued above) for the first inequality.
This proves Item 3 and concludes the proof. |

5 Local list correction

In this section, we design a local list corrector (see Definition 2.2.3) for the class Py and prove
Theorem 1.3.4.

Let G be an Abelian group and f : {0,1}" — G be any function with oracle access to it. Let Listg
denote the set of degree d polynomials that are (1/2¢ — ¢)-close to f, and let L(e) = |List{|. Recall
from Theorem 1.3.3 that L(g) = exp(Qy(1/¢)°D).

Our local list corrector has two phases, inspired by previous work [GL89, STVO1, ABP24].

e First we construct L' = O(L(¢/2)) algorithms with oracle access such that with high prob-
ability, for each polynomial in the list Listg , there exists an algorithm that is d-close to the
polynomial where § < 1/(10 - 2¢+1), i.e. 4 is in the unique decoding regime.

e Secondly we apply the (unique) local corrector for the class Py from Theorem 1.3.1 on each
of the algorithms from the first phase.

We state the main theorem of this section below that describes the first phase of our local list
corrector. Recall that A7 denotes that the algorithm A has oracle access to the function f.

Theorem 5.0.1 (Approximate oracles). Fix n € N, ¢ > 0. Let f : {0,1}" — G be
any function. There exists a randomized algorithm .A{ that makes at most Og(1) oracle
queries and outputs deterministic algorithms Yy, ..., W, satisfying the following property:
with probability at least 3/4, for every polynomial P € Listg, there exists a j € [L'] such that
§(W;, P) < 1/(10 - 24+1) | and moreover, for every x € {0,1}", ¥; computes P(x) by making
at most O:(1) oracle queries to f. Here L' = O(L(e/2)log L(g/2)) = O(1).
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The algorithm 4 is in fact nearly identical to a similar algorithm from [ABP24] for the case
d = 1. The main novelty in this paper is in extending the analysis of the algorithm to the case
of larger degrees. In particular, we prove the following technical lemmas, which we believe are
independently interesting.

e A sampling lemma for Hamming slices using subcubes: Let k£ be an even integer
and C be a subcube of {0,1}?* be obtained by partitioning the 2k co-ordinates into k pairs
uniformly at random and identifying the co-ordinates in each pair (equivalently, we choose
a random hash function h : [2k] — [k] that is 2-to-1 and consider the subcube Cps ), as
defined in Section 2). We show that this process has good sampling properties in the sense
that the density of a set S < {0,1}%* of vectors of Hamming weight k is roughly preserved in
the subcube C. More formally, we show

|S n C| |S]

Pcr[ G @)

See Section 5.1.1 for a formal statement and the proof.

1 - 1
T | T e

e DLSZ lemma for low-degree polynomials over Hamming slices: We also give a simple
proof of the fact that if a polynomial P € Py({0,1}?*, G) does not vanish on the set of points
of Hamming weight k, then it does not vanish at an Q4(1) fraction of it. While there have
been many works (see [Srill, Fill6, FI19, Fil23]) addressing the properties of polynomial
functions over slices in recent years (especially over the reals), we do not know if this fact has
appeared in the literature before in this generality. See Section 5.1.2 for a formal statement
and the proof.

Putting the above two lemmas together, one can easily derive the following consequence. Fix a
degree-d polynomial R € P4({0,1}%*, @) that does not vanish on the Hamming slice of weight k.
Then, the probability that it vanishes on a random subcube C chosen as above is very small, taking
a sufficiently large k. This corollary will play a crucial role in the proof of Theorem 5.0.1. The
analogous statement for degree 1 was proved in [ABP™24]. However, the proof there is based on a
strategy that utilizes an understanding of the structure of the polynomial R in a way that seems
difficult to implement for higher degrees.

We start with the proofs of the above lemmas in Section 5.1 and then give the proofs of Theorem 5.0.1
and Theorem 1.3.4 in subsequent sections (which closely follow the analogous proofs in [ABP " 24]
modulo the above facts).

5.1 The main technical lemmas

We prove now the main new technical lemmas that we use to prove Theorem 5.0.1. Throughout
this section, we use {0, 1}, to denote strings in {0,1}" of Hamming weight exactly m.

5.1.1 Sampling Hamming slices via subcubes

Throughout this section, we fix an even positive integer k and consider a random k-dimensional
subcube C < {0,1}%* obtained as follows. We partition the 2k coordinates into k pairs uniformly
at random and identify the coordinates in each pair. Equivalently, we choose a uniformly random
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map h : [2k] — [k] that is 2-to-1, and set C = Cyzi j, (Where the latter subcube is as defined in
Definition 2.2.6).

Lemma 5.1.1 (Sampling lemma for Hamming slices). There is an absolute constant n > 0
such that for every set S < {0, 1}%’“, we have
1 1
> <o (%)

Pr[
C

Remark 5.1.2. The above lemma is seen to be tight up to the value of the constant n. Consider
S < {0, 1}%’“ containing exactly those points that differ in the first two co-ordinates. It is easily seen

that |S| = Q <(2kk)) and further S n C = & whenever the random partitioning defining C pairs the
first two co-ordinates with each other. The latter event occurs with probability Q(1/k).

1S 1Sng
(42)

(%)

The proof is via a standard second moment bound, the main step of which is a bound on the
spectral gap of a suitable graph. We start with some notations and then state this bound.

An undirected graph G is an (N, D, \)-ezpander if it is a D-regular graph on N vertices and
the magnitude of the second-largest eigenvalue of its adjacency matrix (in absolute value) is at
most A - D. We refer to the monograph of Hoory, Linial and Wigderson [HLWO06] for a more
thorough treatment of expander graphs. We will use primarily the following lemma, due to Alon
and Chung [ACSS].

Lemma 5.1.3 (Expander Mixing Lemma). Let G = (V, E) be an (N, D, \)-expander and let S, T <
V' be any sets of density o and T respectively. Then, for u a uniformly random vertex of V and v
a uniformly random neighbour of u, we have

Prlue SAveT]—o-71| <A\

u,v

We apply the above lemma to a combinatorially defined graph called the Johnson graph. We
define the undirected graph J(2k, k, d) with vertex set V = {0, 1}2*, where two points a,b € V are
connected exactly when their Hamming distance A(a,b) = 2d '8 (note that this number is always
even). The main technical lemma is the following.

Lemma 5.1.4 (Eigenvalues of the Johnson graph). Let J(2k, k,d) be defined as above and
assume that d is such that |d —k/2| < C\/klogk for C > 0 being an absolute constant. Then

J(2k, k,d) is a ((2:), (5)2, %)-ewpander for some absolute constants A > 0 and n € (0,1)
depending only on C.

We start by proving the sampling lemma Lemma 5.1.1 assuming Lemma 5.1.4.

Proof of Lemma 5.1.1. Throughout, let o denote the density of S inside {0, 1}ik

18Not to be confused with the degree of polynomials d used in the other sections of the paper.
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Recall that C = Cger , contains a unique point z(y) € {0,1}% for each point y € {0,1}*. Define an
indicator random variable Zy that is 1 exactly when z(y) € S. We note that for each y € {0, 1}2 /25 the

point z(y) is a uniformly random element of {0, 1}?*, implying that E[Zy] = o for each y € {0, 1}} s
Let Z:=|Sn (| = Zye{071}2/2 Zy,. We thus have E[Z] = (,;;2) - 0.
We prove the lemma via a second moment estimate. The variance of Z can be bounded as follows.

Var[Z] = ). Cov[Zu, 2]

u,vE{O,l}z/2

We divide the above sum into two parts depending on A(u,v). Let I = [k/2 — Cy/klogk,k/2 +
Cv/klog k]| for a suitably large absolute constant (to be chosen below).

Var[Z] = Z Cov|Zy, Zv] + Z Cov|Zy, Zy]
u,ve{O,l}llz/2 u,ve{O,l}Z/z
A(u,v)el A(u,v)¢l

E\? 1
< Z COV[Zuyzv] + <k7/2> . k‘Q(C),

u,ve{0,1} ,
A(u,v)el

where the last inequality follows from standard concentration bounds for sampling without replace-
ment [Hoe63]. Now it remains to upper bound Cov[Zy, Zy] for a pair (u,v) € {0, 1}@2 x {0, 1}@2
such that A(u,v) € I. Fix such a pair (u,v) and note that A(u,v) = 2d for some integer d such
that |d — (k/4)] < (C/2) - v/klogk. Then we have,

Cov[Zy, Zy] = B[ZuZy] — E[Z4|E[Zy] = Pr[z(u) e S A z(v) € S] — o2

Moreover, the distribution of the random point z(v) given x(u) can be checked to be the uniform
distribution over the neighbours of z(u) in the graph J(2k, k, 2d).'® We can thus apply Lemma 5.1.4

to see that 4
COV[ZU,ZV] < H

for some absolute constants A > 0 and 1 € (0, 1) depending on C. Continuing the variance compu-
tation above, we get

Var[Z] <

k2 k2
() A (i) _ o) [k 2
K O Tk \k/2
for a large enough choice of the constant C' (and the corresponding 7). Now, by Chebyshev’s

inequality, we have
k 1 k Var[Z] O(1)
Z—0- = < <
7 </<;/2>’ o/t (k:/2>] Lk W

Pr{
C

which implies the statement of Lemma 5.1.1. |

9More precisely, z(u) and z(v) differ exactly at the co-ordinates given by h™*(D) where D < [k] is the set of 2d
co-ordinates where u and v differ. Given z(u), this is a uniformly random set D’ < [2k] of size 4d subject to the
constraint that symmetric difference of D’ and the support of xz(u) has size exactly 4d.
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It remains to prove Lemma 5.1.4, which we do below.

Proof of Lemma 5.1.4. We use the known exact expressions for the eigenvalues of the Johnson
graphs [Del78]. In particular, following [[<ar99, Corollary 2], we know that the eigenvalues of the

adjacency matrix of J(2k, k,d) are f3, ..., By, where for every 0 < s < k,?°
2 s k—r k—s+r
s = —1)°" 2
P 720( ) <r><k—d—r><d—s+r> (25)

Furthermore, for 0 < s < k, the eigenvalue 35 has multiplicity (2;“) — (821“1).

2
Clearly, 5y = (Z) , which is equal to the degree of the graph. It suffices to show that the magni-
tude of the remaining eigenvalues are all at most Okﬁ}) - By, where 7 is as in the statement of the
Lemma 5.1.4. By assuming that the constant factor in the O(1) term is large enough, we may

assume that k is greater than a large enough absolute constant.

We split the analysis of the remaining eigenvalues into two regimes, the first being when 1 < s < (4
for a suitably large constant Cy depending on C' (chosen below), and the second when s > C}.

Case 1: 1 < s < (. In this case, we analyze 5 using Equation (25). We need the following
simple fact about binomial coefficients, which is easily verified from the standard definition using
factorials.
Fact 5.1.5. Fix any non-negative integers r < £ < k. Then
k —r\" k—r k AN
) < < S I
14 k—r {—r l k
In particular, we note that for £ € {d,k — d} and r < s < (1, we have
1 1 1 - £—r - J4 - 1 14+ 1
2 KVA) T k—r k2 ki/4 )’

and thus for large enough k, we have by Fact 5.1.5

<k‘ﬁ;ir> - (kﬁd> '%‘(14:7) and (S:ji:) = <Z> : 251% (1£7)

for v = O(s - k~/4). Here the notation a = b- (1 + v) denotes that a € [b- (1 —7),b- (1 +)].
Plugging this into Equation (25) above, we see that

S () & () 0 g () s
< (Z)z : % Zj:(_l)sr (:) (1 i@(,y))|

20The bound in [Kar99] looks slightly different than what is stated here, since the parameter b in that statement
is the size of the intersection of the supports of the two points, which implies that b = k — d.

‘58| =
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ro 3(0)) < (1) 5 omez - () ot

E\NZ 1

< - —_ .

d) 28
oQ)

We have thus shown that |Bs| < |Bo] - 1&—/14’ proving the required bound in this case.

S ()

r=0

Case 2: s > (7. In this case, we use an argument from [BCIMI&], which utilizes just the

multiplicity ms = (25) — (52161) of the eigenvalue ;. We note that mg > % . (é’f) as long as k is large
enough.

Let M denote the adjacency matrix of the Johnson graph J(2k, k,d). We know that the squared
Frobenius norm of M (i.e. the sum of the squares of the entries of M) is the sum of the squares of
its eigenvalues and hence at least 32mg. On the other hand, since M is an adjacency matrix, this
quantity is simply the number of edges in the graph J(2k, k,d). In particular, we have

2
< () )

8:] < % () ()= %’? (3):

Recall that |[d—k/2| < Cy/klog k, implying that (’;) > 2k.[;—0(C%) by standard binomial estimates.?!

2
Thus, for C; large enough in comparison with C' and for k large enough, we see that |3,| < % (Z) =

yielding the bound

B—ko. This finishes the analysis of Case 2 and hence finishes the proof of the lemma. |

5.1.2 DLSZ lemma over Hamming slices

Lemma 5.1.6 (A DLSZ lemma over Hamming slices). The following holds for any non-
negative integers integers n,k,d where k < n and d < min{k,n — k}. Let R € P;({0,1}",G)
be a polynomial such that R does not vanish at some point in {0,1}. Then

{a€ {0,1}7 | R(a) # 0}| > (’;__Qdd)

Proof. As is standard, we proceed by induction on d. The base case d = 0 is trivial.
Fix d > 1. Let R(z1,...,2,) be a degree d polynomial that does not vanish on all of {0,1}}.

We can assume that d is strictly smaller than min{k,n — k} by the following reasoning. If d =
min{k,n — k}, the claim reduces to showing that R is non-zero at least one point of {0,1}}, which
trivially follows from the hypothesis. We can also assume that R does not evaluate to the same
non-zero value on all of {0, 1}} since otherwise, the lemma is trivially true.

2for example, when d < k/2, we can use [KY 15, Lemma 4] with p = 1/2 to lower bound oF Di<d (k) which itself

i
is at most 02(:) . (Z)
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Without loss of generality, we assume that R(p) # R(q) where p € {0,1}} is the point where the
first k£ co-ordinates are 1 and q is obtained from p by flipping the first and last co-ordinates to 0
and 1 respectively (note that this makes sense as 1 < d < min{k,n — k}).

By replacing x,, by the linear polynomial k—) . _, x;, we get a degree-d polynomial R'(z1,...,zp—1)
not involving the variable x,, but that nevertheless evaluates to the same value as R at every point
in {0, 1}}. Moreover, we can assume that R’ is multilinear since the inputs are Boolean.

We write
R = le(a:Q, e ,xn_l) + Q(JZQ, . ,Jjn_l).

where P has degree at most d — 1. Note that P(p’) # 0 where p’ € {0,1}}" is the point obtained
by restricting p to its middle n — 2 co-ordinates, since otherwise R'(p) = R’(q) in contradiction to
our assumptions above.

Thus, we see that P does not vanish on all of {0, 1}2:%. Applying the inductive hypothesis, we see
that for
S"={a' €{0,1}772 | P(a) # 0},

we have |5"| > (72_721_—2((;:11))) = (2.

For each a’ € S’, we note that we get at least one distinct point a € {0,1}} such that R'(a) is
non-zero. This is because setting the variables xo, ..., z,_1 according to a’ restricts the polynomial

R’ to a non-zero linear polynomial, which must be non-zero at least one of the extensions of a’ to
a point a € {0, 1}}.

This shows that R’ (and hence R) is non-zero at at least (T;g__%id) many points in {0, 1}}, proving the
inductive claim. |
5.1.3 A useful corollary

We will use Lemma 5.1.1 and Lemma 5.1.6 in the form of the following corollary.

Corollary 5.1.7. Fix a degree parameter d. Let k be an even positive integer such that k = d,
and R € P4({0,1}%* G) be such that R computes a non-zero function on the slice {0,1}2%. Let
h . [2k] — [Kk] be a uniformly random 2-to-1 function and define C = Cyzx j, (the notation is from
Definition 2.2.6). Then if R|c denotes the natural restriction of R to the subcube C as a polynomial
i k variables, we have

. 1
Fér[R|c vanishes on all of {0, 1}£/2] ¥ (ﬁ)

for some absolute constant n > 0.

Proof. Let S < {0, 1}%’“ denote the set of points of {0, 1}ik where R does not vanish. By Lemma 5.1.6,

we know that [S| = (*f_2%) = o - (*F). Note that R|c vanishes on {O,l}ﬁ/2 exactly when
S n C= . By Lemma 5.1.1, the probability of the latter event is at most Oy (k%) . |

Remark 5.1.8. We remark that the above corollary is false under the weaker assumption that
R is just a non-zero polynomial. A simple example is given by the linear polynomial ¥ | x; in
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the setting of G = Fo.?2 However, the assumption that R is non-zero on {0, 1}%’“ eliminates this
example. Interestingly, this is exactly the condition we need in the analysis of the error-reduction
algorithm (Theorem 5.0.1) below (the reason is essentially in Observation 5.2.2 below).

5.2 The error-reduction algorithm (Theorem 5.0.1)

As mentioned above, the proof now closely follows the proof of the analogous theorem in [ABP " 24],
which in turn was based on ideas from [STV01].

5.2.1 Preliminaries and useful observations

In this subsection, we give an overview of the algorithms A{ and Wq,..., ¥, as mentioned in
Theorem 5.0.1.

We first describe a combinatorial construction from [ABP " 24] that will be useful in our local list
correctors. Given an embedding of a subcube C and a point b, we would like to find a subcube C’
such that C and b are contained in C’. For completeness, we state the definition and observations
from [ABPT24] here.

Definition 5.2.1 (Subcube spanned by C and b). [ABP" 2/, Definition 9]. Let C = Cyy, be
an embedding of a subcube of dimension k (see Definition 2.2.6). For any point b € {0,1}", let
v := a®b. Pick a uniformly random permutation o : [2k] — [2k]. Define a hash function
B i [n] — [2k] as follows: For all i€ [n],

B = a(j), if h(i)=j and v; =0
v o(j+k), if h(i) =3 and v; = 1.

For every z € {0,1}%* x(z) is defined as follows:
.Z'(Z)Z = Zh’(i) @ a;.

CP is the set of points x(z) for all z € {0,1}**, i.e. CP:= {x(z) | z € {0,1}?*}.

Since b/ refines the partition induced by h, C = CP. Also define w € {0,1}%* as follows: for
J € [k], wo;) = 0 and wy(j4x) = 1. Then x(w) = b, meaning b € CP. Next, we make a couple
of observations that will be useful while analyzing the correctness probability of our local list
correctors.

Observation 5.2.2. [ABP" 2/, Observation 5.2]. Let a be sampled uniformly from {0,1}" and
h:[n] — [k] be a uniformly random function. For a uniformly random b ~ {0,1}"*, C as defined
above is a random embedding of a subcube of dimension 2k (as defined in Section 2). Note that
b = x(w) for some w of Hamming weight ezxactly k.

22In the linear case, [ABP " 24] showed that this is essentially the only ‘bad’ example. However, for degrees 2 and
higher, there are many more such examples. This is what makes Corollary 5.1.7 more challenging to prove in our
setting.
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Observation 5.2.3. Assume that a,b € {0,1}" and h : [n] — [k] are chosen independently and
uniformly at random and define C and C® as above. Conditioned on the choice of the 2k-dimensional
cube CP (which we identify with {0,1}2% ), we may define the distribution of C (which is a subcube
of dimension k in CP) as follows. We sample a random map p : [2k] — [k] that is 2-to-1 (i.e. for
each j € [k], |p~1({4})| is of size exactly 2) and identify the variables in each pair. More formally,
we set C = Cpar , following the notation in Definition 2.2.0.

Finally, we will use the following non-local list decoding algorithm from [ABP " 24].

Theorem 5.2.4 ([ABP"24], Theorem A.2). Fiz any Abelian group G and degree parameter d.

There is a poly(2”d+1)—tz’me algorithm that, given oracle access to a function f : {0,1}" — G
produces a list of all polynomials P € Py such that §(f, P) < 1/2¢.

5.2.2 Overview of the algorithms

In this subsection, we give an overview of our local list correction algorithm for Py({0,1}",G). As
mentioned before, our algorithm is mostly similar to the local list correction algorithm for [ABP 24,
Section 5.2|, except for some changes in the parameters to handle degree d polynomials instead of
degree 1 polynomials. Nevertheless, we present the overview and the algorithm for the sake of
completeness.

Similar to [STVO01], the local list correction algorithm has two key steps. The first step is to produce
oracles that approximate the polynomials in the list and the second step is to apply the unique local
corrector from Section 3 on each of the approximating oracles. In this subsection, we describe the
first step i.e. to produce oracles such that each polynomial in the list is approximated sufficiently
well by an oracle.

For the overview below, let f(x1,...,x,) be the input function and Listg denotes the set as described
earlier.

1. First step (advice): We construct a randomized algorithm .A{ that makes oracle queries to
the input function f and produces a list of oracles such that with high probability (over the
randomness of .A{ ), for every polynomial P € Listg , there exists an oracle that is 1/(10-2%+1)-
close?® to P (this is within the unique decoding radius of P4({0,1}", G)). We give an overview
of the algorithm .A{ below:

e Choose a random subcube C of dimension k (which is a polynomial in the list size and
from the previous section we know that the list size is a constant dependent on ¢).
Then find all the degree d polynomials that are (1/2¢ — ¢/2)-close to f on the subcube
C. Repeat this step a few times. Let’s call this set of polynomials (union over all the
repetitions) as 7. Since C is a random subcube, with high probability, restriction of
every polynomial in List{; will be in the set T'. The restriction of each P € Listf; to C
(which is in T") will be advice for P in the second step.

e The algorithm A{ also samples a random permutation on ¢ on 2k variables. The oracles
in the next step will use this permutation while locally list correcting (it is the same

% This step is essentially an error reduction because we start with a function f that is (1/2% — ¢)-close to P and
A7 produces a list of oracles such that one of them is 1/(10 - 2d)-close to P.
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permutation for every oracle). For each polynomial @) in 7', the algorithm A; produces
an oracle ¥[C, o, Q] with the polynomial’s evaluation on the cube C as advice.

2. Second step (approximation): Suppose we want to locally list correct f at a point b €
{0,1}". Each algorithm ¥[C, o, Q] creates a subcube C' of dimension 2k that is spanned by
C and b. Then the oracle computes all degree d polynomials that have distance at most
(1/2¢ — ¢/2) from f on the subcube C’ and uses the advice on the subcube C to filter out
P(b), where P|c = Q.

5.2.3 Formal description of the algorithms

In this subsection, we describe the algorithms that will prove Theorem 5.0.1. The algorithms in this
subsection are the same as in [ABP 24, Section 5.2] with minor modifications in the parameters
to make it work for the class P;. We state the algorithms here for the sake of completeness.

Notation: Let C be a k-dimensional subcube of {0,1}" as defined in Definition 2.2.6. Let @ :
{0,1}* — G a polynomial in P4({0,1}*, G) where the polynomial Q is a function on the subcube C.
We will use U[C, 0,Q] to denote a deterministic algorithm that has the description of the subcube
C, a permutation o : [2k] — [2k], and evaluation of Q on C hardwired inside it>*.

Algorithm 4 is a randomized algorithm that outputs the descriptions of the deterministic oracles
and Algorithm 3 describes the oracles themselves.

( )

Algorithm 3: Approximating Algorithm V[C, o, Q]
Input: Oracle access to the function f, a point b € {0, 1}"

1 Let C' be a subcube spanned by C and b using o // see Definition 5.2.1
2 Let w € {0,1}?* such that 2(w) € C' and z(w) = b /] |w| =k
3 Query f on the subcube C’/ // Number of queries is 22F
4 Find all polynomials Ry, ..., Ry € Pyg({0,1}2¢, G) that are (2% — £)-close to flcr

// using Theorem 5.2.4
// L" < L(g/2)

(9]

if there exists an i € [L"] such that R;|c = Q then

6 L pick any such ¢ and return R;(w)
7 else
8 L return 0 // An arbitrary value

Now we describe the randomized Algorithm 4 that returns the descriptions of the deterministic
oracles.

24In the final algorithm, C will be a random subcube of dimension O:(1) and Q with high probability be equal to
P|c, for some P € Listf
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Algorithm 4: Algorithm A,
Input: Oracle access to the function f

1 Choose k «— By - (L(E/Q)/E)C // By and ¢ chosen below
2 Set ¢ « log L(e)

3T —

4 repeat

5 Sample a ~ U,, and a random hash function h : [n] — [k] // the first source of

randomness

6 Construct the subcube C := Cy 3, // see Definition 2.2.6
7 Query f on the subcube C // Number of queries is 2"

8 Find all polynomials Q1,...,Qr € Pg({0,1}*, G) that are (2% — £)-close to flc
// using Theorem 5.2.4

9 Pick a uniformly random permutation @ § [Qk] - [Qk] // the second source of
randomness

10 T—Tu{(CoQ1),...,(C,o,Qr)} // L' < L(/2)

11 until ¢ times

12 return V[C, 0, Q] for all (C,0,Q) €T // Size of T is < /(L

5.3 Analysis of the algorithms

In this subsection, we analyze Algorithm 3 and Algorithm 4.

Query complexity: Algorithm 4 makes 2¥ = exp(B, - poly(L(£/2)) queries to f and returns the
description of /L' = L(¢/2)log L(¢) oracles. Each oracle (see Algorithm 3) makes 22 = exp(By -
poly(L(e/2)) queries to f. Hence the total number of queries to f is exp(Qq(poly(L(g/2))).

Correctness: We want to show that with probability > 3/4, for every polynomial P € Listg ,
there exists an output oracle ¥[C, o, Q] that is (1/(10 - 2¢71))-close to P. We prove this in the
following steps.

» In a single iteration for Algorithm 4, the following holds: For every polynomial P € Listg , with
probability at least 9/10, there exists a 1/(10 - 24+1)-close approximating oracle ¥[C, o, Q;]. We
prove this is in Lemma 5.3.1.

» As we have /£ independent iterations, the probability that there is no 1/(10 - 2%+1)-close approxi-
mating oracle for P is at most 1/10°. By a union bound for all polynomials P € Listg , we get the

desired correctness probability in Theorem 5.0.1.

» Since each iteration produces a list of size at most L(e/2), overall we obtain a list of size O(L(e/2)-
log L(¢)) as claimed.

We start by proving Lemma 5.3.1, which is the primary lemma for the correctness of our local list
correctors.
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Lemma 5.3.1 (Correctness of Local List Correction). The following holds as long as the
constants By (depending on d) and ¢ in Algorithm 4 are chosen to be large enough. Fiz
any polynomial P € Listg. In each iteration of the loop in Algorithm 4, the probability
(over the randomness of the algorithm) that there does not exist a 1 < j < L' such that
§(¥[C,o,Q;], P) < 1/(10 - 24+1) is at most 1/10.

Proof. Fix an iteration of the loop in Algorithm 4. Let £p denote the event that there does not
exist a j such that §(¥[C,0,Q;], P) < 1/(10- 24+1) " We want to upper bound the probability of
the “bad” event Ep by 1/10. Recall that the sources of randomness in Algorithm 4 are point a,
hash function h, and permutation . We will show that

E [min 6(¥[C,0,Q,], P)] = E [min Pr{¥[C,0,Q;](b) # P(B)]] < —

ah,o” j aho j b 100 - 2d+1° (26)

from which Lemma 5.3.1 follows via an application of Markov’s inequality.

Define the following auxiliary events, depending on the choice of a, h and o, along with the choice
of a random input b.

1. Event & p (only depends on a,h): In the current iteration of the loop in Algorithm 4, the
algorithm does not find a polynomial @; such that @; = P|c.

2. Event & p (depends on a, h,o,b): For the triples (C,o,Q) added to T" in this iteration of
Algorithm 4, the corresponding oracle V[C, o, @] is such that when we run this oracle on
input b, there does not exist a polynomial R; such that R; = P|c/. Note that this event only
depends on the choice of the cube C,o and b but not on the specific polynomial (). Hence,
the event is exactly the same for each triple (C,0,@Q) in 7. In particular, we may fix any one
such triple.

3. Event & p (depends on a,h,o,b): For the triples (C,0,Q) added to T in this iteration of
Algorithm 4, the corresponding oracle W[C, o, ] is such that when we run this oracle on input
b, there exist two polynomials R;, and R;, such that R;, (w) # R;,(w) but R; |c = Ri,|c.
Here w is, as defined in Algorithm 3, the point in {0,1}** of Hamming weight k such that
z(w) € C' and z(w) = b. As for the event & p, we may fix a triple (C,0,Q) € T while
analyzing this event.

We will need the following two claims that show that any of the aforementioned events occur with
a small probability.

Claim 5.3.2. Pra,h[gl,p],Pra,h7g7b[527p] < 1/(10000 - 2d+1).
Claim 5.3.3. Praj 0p[€,p] < 1/(10000 - 2¢+1).
Let us proceed with the proof of Lemma 5.3.1 assuming the above two claims. We first show that

if £€p occurs, then at least one of the auxiliary events occurs. This implies that it is sufficient to
upper bound the probability of the auxiliary events occurring and use a union bound.
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For a, h such that the event & p does not occur, we can fix a j* € [L] such that P|c = Q;+. Thus,
we have

LE [min Pr[¥[C,0,Q;j](b) # P(b)]] < Pri€ip] + E [1-g , Pr[¥[C,0,Q;x](b) # P(b)]]
(27)

Fix any a,h such that the event & p does not occur. Further, if the event & p does not occur,
then there is an ¢* < L” such that P|c = R;x. In particular, Rx|c = Plc = Q.

Finally, if event & p also does not occur, then there is no ¢ # ¢* such that R;x(w) # R;(w) but
Ri|c = R*|c. In particular, the only possible output of the algorithm W[C, o, Q;«] on input w is
R;x(w) = P(x(w)) = P(b).

We have thus shown that

E [1-g - Pr[¥[C,0,Q;«](b) # P(b)]] < Pr [&apv&p]< Pr [&p]+ Pr [&p]

ah,o b a,h,o,b a,h,o0,b a,h,0,b
Plugging the above into Equation (27), we get

E [minPr[¥[C,0,Q;](b) # P(b)] < Pr[éip] + Pr [&p] + Pr [&p] (28)

aho j b a, a,h,o, a,h,o,b

Using Claim 5.3.2 and Claim 5.3.3, we get,

3 1
E [min Pr[¥ ](b) # P(b)] < <
iy, I Br[WIC, 0, Q5](b) = P(B)] < 55557571 < T5p g
So now it remains to prove Claim 5.3.2 and Claim 5.3.3. We start with Claim 5.3.2 which essentially
follows from Lemma 2.2.7.

Proof of Claim 5.3.2. Recall that §(P, f) < (1/2¢ — ¢). Equivalently, the set of points T
where f and P differ has density at most (1/2¢ — ¢) in {0,1}". For a cube C, the non-
existence of @; such that Q; = P|c is equivalent to 6(P|c, f|c) > (1/2¢ —¢/2).

For a random a and a random h, the subcube C is a random subcube. Using Lemma 2.2.7
for the subset T as mentioned above, we get that for k > 1/¢°,

1 € 1
Pr| (P = | € .
cr{ (Ple: fle) > 53 2] 10000 - 2441
Here, we are assuming that By and c are large enough so that k as defined in Algorithm 4

satisfies the hypothesis of Lemma 2.2.7. Hence Pr[&; p] < 1/(10000 - 24+1).

Using Observation 5.2.2, we know that for a random a,” and a random permutation o,
the subcube C’ is a random subcube of dimension 2k in {0, 1}" as required in Lemma 2.2.7.
Proceeding as above, we get the stated upper bound on Pr[&; p]. |

Now it remains to prove Claim 5.3.3, which we prove next.

Proof of Claim 5.3.3. We start by conditioning the choice of the subcube C’. This fixes
the polynomials Ry,...,Rp» obtained in Line 4 of Algorithm 3. Fix any two distinct
polynomials R;,, R;, : {0,1}?* — G in this list that differ at at least one point in {0, 1}2*
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of Hamming weight k& (in particular, this includes pairs of polynomials that differ at the
point w such that z(w) = b).

We want to upper bound the probability of the event that R; |c = R;,|c. In the end, we
use a union bound over the number of all possible pairs (R;,, R;, ).

Define the polynomial R := R;, — R;,, where R : {0,1}?) — G is a non-zero degree d
polynomial, defined on the subcube C'. We want to upper bound the probability that R|c
is identically zero polynomial. Using Observation 5.2.3 and Corollary 5.1.7, we see that
the probability of this is at most O4(1/k") for some absolute constant n > 0. For k as
defined in Algorithm 4 where By is large enough (depending on d) and ¢ is a large enough
absolute constant, we get a probability of at most 1/(10000 - 29+1 - L(g/2)2).

Since L” < L(g/2), a union bound over all such pairs R;,, R;, yields the bound stated in
the claim. |

As discussed above, we have proved Claim 5.3.2 and Claim 5.3.3 and substituting them in Equation (28),
we get the desired bound, and this concludes the correctness of the local list correction algo-
rithm. |

5.4 Local list corrector
Let us now see how Theorem 5.0.1 implies Theorem 1.3.4. Let us first recall Theorem 1.3.4.

Theorem 1.3.4 (Local list correction for Pq). For every Abelian group G and for every e > 0, the
space Py is (1/2% —&,0.(1), O (log n)%, exp(Oy4(1/)° D)) -locally list correctable.

Specifically, there is a randomized algorithm A that, when given oracle access to a polynomial f and
a parameter € > 0, outputs with probability at least 3/4 a list of randomized algorithms ¢1,...,¢L
(L < exp(Oy(1/2)° D)) such that the following holds. For each P € Py that is (1/2% — )-close to
f, there is at least one algorithm ¢; that, when given oracle access to f, computes P correctly on
every input with probability at least 3/4.

The algorithm A makes Oc(1) queries to f, while each ¢; makes O.((logn)?) queries to f.

Proof of Theorem 1.3.4. We first run the algorithm given by Theorem 5.0.1 and it outputs 91, ..., ¥
for I/ < exp(O4(1/2)°@) (by Theorem 1.3.3). Next we run our local correction algorithm for
Py (see Theorem 1.3.1 and Section 3) with 11,...,1 as oracles, and these algorithms will be
&1,...,6. This completes the description of the local list correction algorithm A/ for Py, and
the bound on correctness probability follows from the correctness probability of Theorem 1.3.1 and
Theorem 5.0.1.

The algorithm A; makes O;(1) queries to f as stated in Theorem 5.0.1, and then each ¢; makes

O:(1) - O(logn) = O(logn) queries to f. |
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