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Abstract

In this work, we show that the class of multivariate degree-d polynomials mapping t0, 1un
to any Abelian group G is locally correctable with rOdpplognqdq queries for up to a fraction of
errors approaching half the minimum distance of the underlying code. In particular, this result
holds even for polynomials over the reals or the rationals, special cases that were previously
not known. Further, we show that they are locally list correctable up to a fraction of errors
approaching the minimum distance of the code. These results build on and extend the prior
work of the authors [ABP`24] (STOC 2024) who considered the case of linear polynomials
(d “ 1) and gave analogous results.

Low-degree polynomials over the Boolean cube t0, 1un arise naturally in Boolean circuit
complexity and learning theory, and our work furthers the study of their coding-theoretic prop-
erties. Extending the results of [ABP`24] from linear polynomials to higher-degree polynomials
involves several new challenges and handling them gives us further insights into properties of low-
degree polynomials over the Boolean cube. For local correction, we construct a set of points in
the Boolean cube that lie between two exponentially close parallel hyperplanes and is moreover
an interpolating set for degree-d polynomials. To show that the class of degree-d polynomials
is list decodable up to the minimum distance, we stitch together results on anti-concentration
of low-degree polynomials, the Sunflower lemma, and the Footprint bound for counting com-
mon zeroes of polynomials. Analyzing the local list corrector of [ABP`24] for higher degree
polynomials involves understanding random restrictions of non-zero degree-d polynomials on a
Hamming slice. In particular, we show that a simple random restriction process for reducing
the dimension of the Boolean cube is a suitably good sampler for Hamming slices. Thus our
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exploration unearths several new techniques that are useful in understanding the combinatorial
structure of low-degree polynomials over t0, 1un.
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1 Introduction

In this paper, we consider the local correction of low-degree polynomial functions over groups
evaluated over t0, 1un and give polylogarithmic query local correctors for every constant degree.
This extends and generalizes previous work of the authors [ABP`24] who considered and solved
the analogous problem for the linear (i.e., d “ 1) case. We define some of the basic terms and
review the previous work before describing the challenges in strengthening to higher degrees and
the new tools used to overcome them.

Low degree polynomials over groups. The main objects of interest in this paper are poly-
nomial functions mapping t0, 1un to an Abelian group G. Here a function f is a polynomial of
degree at most d if it can be expressed as

ř
SĎrns:|S|ďd cS

ś
iPS xi, where the product is over the

integers and the coefficients cS come from the Abelian group G. We denote the space of polyno-
mial functions of degree at most d by Pdpt0, 1un, Gq (which we compress to Pd when G and n are
known). The standard proof of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma naturally extends
to polynomials over groups. It proves that two different degree d polynomials disagree on at least
δd :“ 2´d fraction of the domain (if d ă n), and thus form natural classes of error-correcting codes.
This paper explores the corresponding correction questions focusing on locality.
A special case that is already of interest is when the group G is the group of real numbers (or ratio-
nals) - a setting where relatively few codes are shown to exhibit local correction properties.

Local correction of polynomials. Informally, the local correction problem is that of computing,
given oracle access to a function f : t0, 1un Ñ G and a point a P t0, 1un, the value P paq of the
nearest degree d polynomial P to the function f at the point a, while making few oracle queries to
f . More formally, for functions f, g : t0, 1un Ñ G, let δpf, gq denote the fraction of points from the
domain where they differ. We say f is ε-close to g if δpf, gq ď ε and ε-far otherwise. For a given G,
we say that that Pd is pδ, qq-locally correctable if for every n there is a probabilistic algorithm that,
for every function f : t0, 1un Ñ G that is δ “ δpnq-close to some polynomial P P Pdpt0, 1un, Gq and
for every a P t0, 1un, outputs P paq with probability at least 3{4 while making at most q “ qpnq
queries to f .
One of the main quests of this work is to give non-trivial upper bounds on the query complexity q

for which Pd is pΩdp1q, qq-locally correctable.

List correction of codes. Note that pδ, qq-locally correctability of Pd requires that δ is less than
half the minimum distance of the space, i.e., δ ă δd{2. To go beyond one usually resorts to the
notion of list-decoding; and in the local setting, to notions like “local list-decoding” and “local
list correction”. Roughly list-decoding allows the decoder to output a small list of words with the
guarantee that all codewords within a given distance are included in the output. Formally we say Pd

is (combinatorially) pδ, Lq-list correctable if for every f : t0, 1un Ñ G there are at most L degree-d
polynomials P satisfying δpf, P q ď δ.1 Unlike the unique decoding problem where the maximum δ

such that a code is uniquely correctable up to δ errors is well understood, the list-decoding radius
for higher values of L is not well-understood. A natural question that we study here (for the first

1The algorithmic version would require the list of nearby polynomials to be algorithmically recoverable from f .
We don’t consider this notion in this work but move ahead to the harder “local list correction” problem.
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time in this generality) is: What is the largest δ such that Pd is pδ,Odp1qq-list correctable? We refer
to this largest value of δ as the list-decoding radius of Pd.

Local list correction of codes. Local list correction is the notion of list decoding combined
with the notion of local correction. Formalizing this definition is a bit more subtle and was first
done in [STV01]. The notion allows the decoder to work in two phases — a preprocessing phase
with q1 “ q1pnq queries to the function f , that outputs up to L algorithms φ1, . . . , φL and a query
phase, where given a P t0, 1un each algorithm φi makes q2 “ q2pnq queries to f and outputs φipaq.
We say that Pd is pδ, q1, q2, Lq-local list correctable if for every function f and polynomial P P Pd

that are δ-close, there is a decoder as above such that one of its outputs includes P with high
probability (say 3{4). See Definition 2.2.3 for a formal definition. The final goal of this paper is to
locally list-correct Pd using non-trivially small number of queries (in both the preprocessing and
query phases) where the fraction of errors approaches the list-decoding radius.

1.1 Motivation and previous work

Local decoding of polynomials over finite fields has played a central role in computational com-
plexity and in particular in breakthrough results like IP=PSPACE and the PCP theorem. While
most of these results consider functions over the entire multivariate domain (i.e., Fn), low-degree
polynomials over t0, 1un do arise quite naturally in complexity theory, notably in circuit complex-
ity capturing classes like AC0 [Raz87, Smo87] and ACC [BHLR19], and in learning theory. Many
of these results exploit basic distance properties of multivariate polynomials as given by the Ore-
DeMillo-Lipton-Schwartz-Zippel lemma (see Theorem 2.2.1). This lemma roughly says that the
space of degree-d polynomial functions mapping Sn to a field F where S Ď F is finite form an
error-correcting code of relative distance d{|S| when d ă |S|, and |S|´d{p|S|´1q when d ě |S|.
The special case of S “ F is extensively studied and heavily used, e,g., in PCPs and cryptography.
In this setting, the lemma can also be made algorithmic, with the first such instance handling the
special case of F2 dating back to the works of Reed and Muller [Ree54, Mul54]. More recently, local
list correction algorithms were discovered in the works of Goldreich and Levin [GL89] for linear
polynomials, Sudan, Trevisan and Vadhan [STV01] for higher-degree polynomials over large fields,
Gopalan, Klivans and Zuckerman [GKZ08] for higher-degree polynomials over F2, and Bhowmick
and Lovett [BL18] for polynomials over any small finite field.

The case of general S however has not received much attention and is mostly unexplored. This
was first highlighted in a relatively recent work of Kim and Kopparty [KK17] who gave polynomial
time (but not local) unique-decoding algorithms correcting errors up to half the minimum distance.
Their work exposed the fact that many other algorithmic and even some coding-theoretic questions
were not well understood when S ‰ F, and our work aims to fill some gaps in knowledge here.

Another motivation for our work is the design of locally correctable codes over the reals. A series
of works [BDYW11, DSW14, DSW17] has exposed that there are no known pΩp1q,Op1qq-locally
correctable codes over the reals of arbitrarily large dimensions. The underlying challenge here leads
to novel questions in incidence geometry. Roughly the goal here is to design a finite set of points
T Ď Rn such many pairs of points in T are contained in constant-dimensional “degenerate” sub-
spaces, where a q-dimensional subspace is said to be degenerate if it contains q ` 1 points from T .
Till recently no sets that possessed this property with q “ opnq were known, and the recent results
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of [ABP`24] may be viewed as showing that the set T “ t0, 1un Ď Rn has rOplog nq dimensional
subspaces covering most pairs of points of T . Local correctability of degree d polynomials would
translate to showing that moment vectors2 of t0, 1un (viewed as vectors in RN for N “ Opndq) also
exhibit a similar property, thus adding to the body of sets in RN that show non-trivial degenera-
cies.

Turning to previous work on local correction of polynomials over grids, the local correction question
when S “ t0, 1u was first explored by Bafna, Srinivasan and Sudan [BSS20], who mainly presented
a lower bound of rΩplog nq on the number of queries to recover even when d “ 1 and from some
op1q fraction of errors and F “ R. On the positive side, for fields of characteristic p, they gave an
Od,pp1q query algorithm to recover from Ωd,pp1q fraction of errors. This left the case for large and
zero characteristic fields open.

The recent work of the authors [ABP`24] investigated the case of general fields, and more generally,
polynomials over Abelian groups (i.e., t0, 1un Ñ G), for the special case of d “ 1. For this setting,
they consider all three questions posed in the previous section, namely the (unique) local correction
limit, the list-decoding radius, and the local list correction problem. In this setting where distinct
degree 1 polynomials disagree with each other on at least half the domain, they show that up to
1{4 fraction of errors can be uniquely locally corrected with rOplog nq queries. They further show
that the list-decoding radius approaches 1{2 and that there are rOplog nq query algorithms to locally
list correct P1 for any fraction of errors bounded away from 1{2. Their work exposes a number of
technical challenges in going beyond the d “ 1 case and we address those in this paper.

1.2 Technical challenges in extending beyond the linear case

We start by reviewing the main ideas in [ABP`24] and outlining the challenges in the higher-degree
extension. Their unique local corrector correcting up to half the minimum distance works in three
steps: Given an oracle for a function fpxq at a distance less than 1{4 from a linear polynomial
P pxq,
§ It first provides oracle access to a function f1pxq at any tiny but constant distance from P pxq,

using Op1q queries to fpxq.
§ Then the algorithm provides oracle access to a function f2pxq at distance 1{polyplog nq from

P pxq while making polyplog log nq queries to f1pxq.
§ Finally, the algorithm provides oracle access to the linear polynomial P pxq making Oplog nq

queries to f2. Composing the three steps gives the desired unique local corrector.

The first two steps in their result are general enough to work for all degrees. The third step in the
unique local corrector of [ABP`24] is the most significant one and does not extend immediately
to the higher degree setting. [ABP`24] reduce this step to show that any point in t0, 1un can be
expressed as a linear combination of rOplog nq roughly balanced vectors3. To extend their approach
to higher degrees, we would need an analogous result for the degree ď d-moment vectors of vectors
in t0, 1un but we are unable to find such an extension directly. Instead, as we elaborate further

2d-moment vector of v P t0, 1un is a vector in t0, 1upn
d
q which is an evaluation vector of v on all multilinear

monomials of degree ď d.
3Hamming weight is very close to n{2
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below, we manage to find a new path for this step, which results in a somewhat different proof even
for the linear (d “ 1) case.

Next, we turn to the combinatorial analysis of the list-decoding radius. For simplicity assume that
the Abelian group G is a finite field Fp. The analysis in the linear case [ABP`24] splits into two
cases: the low4 characteristic case (p ď 3) and the high characteristic case (p ą 5). The former
case is handled via a suitable version of the Johnson bound. In the latter setting, a key insight
used in [ABP`24] for the linear case is that non-sparse linear polynomials tend to be non-zero with
very high probability, i.e. anti-concentration of non-sparse linear polynomials. In the higher degree
setting, both analyses become much more involved. In the low characteristic case, the Johnson
bound no longer yields the right answer. For the high characteristic case, the primary obstacle is
understanding the anti-concentration statement for non-sparse low-degree polynomials.

Generalizing the result above to all Abelian groups involves multiple steps in [ABP`24] - they extend
the latter approach above to groups where every element has a sufficiently high order (specifically
order at least 5). Then they consider groups where every element has order a power of 2 or 3
separately and analyze these special cases; and finally use some “special intersection properties”
of the agreement sets5 of different polynomials with any given function to apply a counting tool
from the work of Dinur, Grigorescu, Kopparty, and Sudan [DGKS08a] to combine these different
steps. While many of the steps extend to the higher degree setting (sometimes needing heavier
machinery) the final step involving “special intersection properties” simply does not work in our
setting. (Roughly the difference emanates from the fact that the probability that two linearly
independent degree-1 functions vanish at a random point is at most 1{4, which is the square of the
probability for a single degree-1 function. This fails for degree 2.) Overcoming this barrier leads to
further new challenges in the higher-degree case.

The local list-correction algorithm for degree-1 polynomials of [ABP`24] is inspired by the local
list-correction algorithm of Reed-Muller codes from [STV01]. The high-level idea is to start with
a function fpxq that is p1{2 ´ εq-close to a set List of linear polynomials and produce a small list
of oracles such that each polynomial in List is within a small constant distance to an oracle from
the list, at which point the unique local corrector becomes applicable. This ‘error-reduction’ step
involves choosing a random subcube C of t0, 1un (as defined in Section 2 below) of sufficiently large
but constant dimension k and doing a brute-force list decoding on C to find a list List

1: it is not
hard to argue that the restricted version P 1 of each polynomial P P List appears in the list List

1

with high probability (this needs the combinatorial bound mentioned above). To complete the
error-reduction, they need to decode P at a random point b P t0, 1un. This is done by repeating
the above brute-force algorithm with the subcube Cb ‘spanned’ by C and b: informally, this is the
smallest subcube spanned by C and b and has dimension 2k (see Section 5.2.1 for details.) They
now obtain a new list of polynomials List

2 and need to isolate the polynomial P 2 corresponding
to P in this list to get P pbq. Here, [ABP`24] uses the fact that we know the restriction of P to
the subcube C inside C

b. The bad event in this case is that there are two polynomials in L2 that
disagree on b but agree on C. Bounding the probability of this event is the key step in the analysis
of [ABP`24] and is done by giving a complete understanding of which kinds of distinct polynomials
over Cb can collapse to the same polynomial over C. This kind of understanding seems difficult to
obtain for higher degrees, and we need to develop a new analysis for bounding the probability of

4The precise constants here are not important, as the analysis works as long as the p ď Op1q.
5Agreement set of a polynomial P and a function f is defined as the subset of t0, 1un on which P and f agree.
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the bad event in this setting.

We now turn to our results before elaborating on the techniques used to overcome the chal-
lenges.

1.3 Our main results

Briefly, our results provide poly-logarithmic query algorithms for unique and list-decoding to the
maximal fraction of errors that are allowed. Specifically, the unique decoding algorithm works up
to half the distance. We also establish that the list-decoding radius approaches the distance (as
the list size tends to infinity) and give matching local algorithms. We give our specific theorems
below.

Theorem 1.3.1 (Local correction algorithms for Pd up to the unique decoding radius). For
every Abelian group G and for every constant ε ą 0, the space Pd has a pδ, qq-local correction
algorithm where δ “ 1

2d`1
´ ε and q “ rOεplog nqd.

We show that if all its elements of the group have a constant order, then the query complexity of the
local correction algorithm can be brought down from rOdpplog nqdq to a constant (i.e., independent
of n). Specifically, we say that an Abelian group G is a torsion group if all its elements have finite
order, and the exponent of a torsion group is the least common multiple of the orders of all the
elements. While [BSS20] shows this only for groups underlying fields of constant characteristic and
for some constant error, we extend their proof to all groups of constant exponent and error up to
the unique-decoding radius.

Theorem 1.3.2. If G is an Abelian torsion group of exponent M , then for every ε ą 0, Pd has a
pδ, qq-local correction algorithm where δ “ 1

2d`1
´ ε and q “ OM,εp1q.

As noted earlier, some dependence on n is needed even when the degree is 1 and G is a field of
large characteristic (or characteristic 0), as an Ωplog n{ log log nq lower bound was shown in this
setting by earlier work of Bafna, Srinivasan, and Sudan [BSS20] (and shown to be tight up to
polyplog log nq factors in [ABP`24]). Our upper bound above is thus optimal to within polynomial
factors (for constant d). However, we do not know if the query complexity can be improved to, say,
Õdplog nq for degree d.

We also extend the above algorithm from Theorem 1.3.1 to the list decoding regime. For this, we
first establish a bound on the list-decoding radius. As far as we know, the following result was not
known before for G being any group other than the field F2.

Theorem 1.3.3 (Combinatorial list decoding bound for Pd). For every Abelian group G and
for every constant ε ą 0, the space Pd over any Abelian group G is p1{2d´ε, exppOdp1{εqOpdqq-
list correctable.

The above is tight in the sense that the number of codewords at distance 1{2d can depend on both
n and the size of the group G (and is infinite when G is infinite). We do not know if the dependence
on ε is tight. Note that for the setting where d “ 1, [ABP`24] gives a polynomial bound in terms
of 1{ε. Our bound as stated above is exponential and while we can see a path to improving this
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to a quasi-polynomial, we don’t see a polynomial upper bound using the proofs of this paper even
when d “ 1.

Finally, we state our local list correction result.

Theorem 1.3.4 (Local list correction for Pd). For every Abelian group G and for every
ε ą 0, the space Pd is p1{2d ´ ε,Oεp1q, rOεplog nqd, exppOdp1{εqOpdqqq-locally list correctable.

Specifically, there is a randomized algorithm A that, when given oracle access to a polynomial
f and a parameter ε ą 0, outputs with probability at least 3{4 a list of randomized algorithms
φ1, . . . , φL (L ď exppOdp1{εqOpdqq) such that the following holds. For each P P Pd that is
p1{2d ´ εq-close to f , there is at least one algorithm φi that, when given oracle access to f ,
computes P correctly on every input with probability at least 3{4.

The algorithm A makes Oεp1q queries to f , while each φi makes rOεpplog nqdq queries to f.

Remark 1.3.5. If G is an Abelian torsion group of exponent M , Pd is p1{2d ´ ε,Oεp1q, OM,εp1q,
exppOdp1{εqOpdqqq-locally list-correctable. This follows in a similar manner as Theorem 1.3.4, ex-
cept we replace the generic local corrector in the unique-decoding regime with that given by Theorem 1.3.2.

1.4 Technical tools

In the process of proving our main results, we prove several lemmas that we believe are indepen-
dently interesting.

In the proof of Theorem 1.3.1, the main step is to construct, for any a P t0, 1un, a distribution Da

over pt0, 1unqq such that the marginal distribution of each point is close to the uniform distribution
over t0, 1un, and for any degree-d polynomial P , P paq can be computed via the evaluations of P
on a sample from Da. Constructing such a distribution D reduces to the following problem of
constructing a geometric set with some nice algebraic properties. We discuss in Section 3 how such
a set leads to the distribution Da.

Question 1. Find two parallel hyperplanes in k dimensions that are ε-close in Euclidean distance
such that every non-zero degree-d multilinear polynomial is non-zero on the points of the Boolean
cube t0, 1uk lying between the two hyperplanes.

The ‘closeness’ parameter ε plays a crucial role in the efficiency of the local correction algorithm.
It is easy to see (and folklore) that we can get ε “ 1{kΩp1q. However, we show that we can obtain
a construction where ε is exponentially small in k. This is done in Lemma 3.2.1.

The proof of the combinatorial list decoding bound is broken down into two cases depending on the
order of elements in the group. The first case is when all elements have order larger than a prime
p0pdq (a constant dependent on d) and the second case is when the group is a product of p-groups
for p ă p0. For the first case, the key step is an understanding of the anti-concentration properties
of low-degree non-sparse polynomials. More precisely, we have the following question.

Question 2. Let P px1, . . . , xnq be a polynomial of degree d with at least s non-zero monomials.
Then how large can Pra„t0,1un rP paq “ 0s be?

9



If we take P “ x1x2 ¨ ¨ ¨ xd´1 ¨ Lpxd, . . . , xnq where L is a linear polynomial with s monomials, we
see that P vanishes with probability approximately 1 ´ 2´pd´1q ´ Op1q{?

s over (say) the reals.
In Lemma 4.1.1, we build on known anti-concentration results [Erd45, MNV16] show that this is
essentially the worst possible in groups with no elements of small order.

In the second case, an important step in our proof is a tail inequality for events defined by the
vanishing of low-degree polynomials over a field. Let Q1pxq, . . . , Qtpxq be t degree-d polynomials
on the same variable set. We know that each is non-zero on a random input with probability at
least 2´d and hence that the expected number of polynomials vanishing at a uniformly random
point a „ t0, 1un is at most p1 ´ 2´dq ¨ t. This leads to the following question.

Question 3. Suppose we have a collection of t degree-d polynomials. Can we bound the probability
that more than p1 ´ 2´d ` εq ¨ t many of these polynomials vanish at a random point a in t0, 1un?
Clearly, we cannot get a strong tail bound unless we impose some ‘independence’ constraints on
the polynomials (for example, we cannot hope for a strong bound if all the polynomials are in the
linear span of a small number of polynomials). We show that we can get a Chernoff-style tail bound
under the constraint that the ‘leading monomials’ (under a suitable ordering) of these polynomials
are pairwise disjoint. This is done in Lemma 4.2.1 using the ‘Footprint bound’ [GH00] (essentially
a tool from commutative algebra) and an idea due to Panconesi and Srinivasan [PS97].

We build on this result to prove an optimal bound on the list-decoding radius for degree-d poly-
nomials over small finite fields Fp (and more generally over groups that are products of p-groups,
where p ă p0). In the setting when we are working with polynomials mapping Fn

p to Fp, this was
done in the works of [GKZ08, BL18] via an involved mixture of algebraic and analytic techniques.
Unfortunately, these do not seem to be applicable here: one significant reason that appears again
and again in our work is that we cannot restrict a given function to an arbitrary subspace in our
ambient space since the domain t0, 1un does not have this algebraic structure. Instead we use other
combinatorial techniques such as the Sunflower lemma in conjunction with the above tail bound to
obtain the stated result.

For local list correction, we follow the algorithm of [ABP`24] modulo changes in parameters to
handle higher degree polynomials. The main innovation involves analyzing the behavior of degree-
d polynomials on a Hamming slice (points with a fixed Hamming weight) after a random pro-
cess of reducing the dimension. In particular, assume that we have a fixed degree-d polynomial
Rpx1, . . . , x2kq in 2k dimensions such that R is non-zero on the Hamming slice of weight k. We now
choose a random subcube C by pairing the 2k variables at random into k pairs and identifying the
variables in each pair. We would like to upper bound the probability that R is zero on the cube C

by a function that goes to 0 with k.6 We do this by addressing the following two questions.

The first question is on how the density of any fixed set on a slice changes under the aforementioned
random process. In this work, we are particularly interested in the middle slice, i.e. points of
Hamming weight k in t0, 1u2k .
Question 4. For any fixed subset S of the middle slice, how does the density of the set S X C (as
a subset of the middle slice of C) compare with the density of S?

6One might hope to prove such a statement under the weaker assumption that R is simply a non-zero multilinear
polynomial of degree d. Unfortunately, the simple example R “ x1 ` ¨ ¨ ¨ ` x2k over the group G “ F2 shows that
such a statement is not possible even in the degree-1 case.
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In Lemma 5.1.1 we show that the density is almost preserved under the random process. In other
words, this random process is a good sampler for subsets of the middle slice. To prove Lemma 5.1.1,
we show that certain kinds of Johnson graphs are good spectral expanders.

The second question is on a quantitative estimate of the number of non-zero points of a degree-d
polynomial on a Hamming slice. This is a natural question, but has not been addressed before as
far as we know.

Question 5. For a degree-d polynomial R which is non-zero on a Hamming slice, on how many
points of the Hamming slice is it non-zero?

We give a simple lower bound on the number of non-zero points for a degree-d polynomial on
the Hamming slice by modifying the proof of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma. We
show it in Lemma 5.1.6.

2 Preliminaries

Most of our notation and definitions are identical to [ABP`24].

2.1 Notation

Let pG,`q denote an Abelian group G with addition as the binary operation. For any g P G, let ´g

denote the inverse of g P G. For any g P G and integer a ě 0, a ¨ g (or simply ag) is the shorthand
notation of g ` . . . ` glooooomooooon

a times

and ´ag denotes a ¨ p´gq. We say that a group is a p-group if the order

of each element is a power of p. We say that a group is a torsion group if all its elements have
finite order. The exponent of a torsion group is the least common multiple of the orders of all its
elements.

For a natural number n, we consider functions f : t0, 1un Ñ G. We denote the set of functions
that can be expressed as a multilinear polynomial of degree d, with the coefficients being in G by
Pdpn,Gq. We will simply write Pd when n and G are clear from the context. For a polynomial P ,
we refer to the number of monomials with a non-zero coefficient as the sparsity of P and denote it
by sparspP q. Similarly we use degpP q to denote the degree of P .

For every alphabet set Σ and x,y P Σn, let δpx,yq denote the relative Hamming distance between
x and y, i.e. δpx,yq “ | ti P rns | xi ‰ yiu |{n. For 0 ď m ď n, let t0, 1unm denote the set of points
in t0, 1un of Hamming weight exactly m.

For any x P t0, 1un, |x| denotes the Hamming weight of x. Õp¨q notation hides factors that are
poly-logarithmic in its argument. For a polynomial P pxq, let varspP q denote the variables on which
P depends, i.e. the variables that appear in a monomial with non-zero coefficient in P .

For any natural number n, Un denotes the uniform distribution on t0, 1un.

2.2 Basic definitions and tools

Probabilistic notions. For any distribution X on t0, 1un, let supppXq denote the subset of
t0, 1un on which X takes non-zero probability. For two distributions X and Y on t0, 1un, the

11



statistical distance between X and Y , denoted by SDpX,Y q is defined as

SDpX,Y q “ max
TĎt0,1un

|PrrX P T s ´ PrrY P T s|

We say X and Y are ε-close if the statistical distance between X and Y is at most ε.

Coding theory notions. Fix an Abelian group G. We use Pd to denote the space of multilinear
polynomials from t0, 1un to G of degree at most d. More precisely, any element P P Pd can be
described as

P px1, . . . , xnq “
ÿ

IĎrns : |I|ďd

αI

ź

iPI

xi

where αI P G for each I. On an input a P t0, 1un, each monomial evaluates to a group element in
G and the polynomial evaluates to the sum of these group elements.

The following is a standard fact about multilinear polynomials which also holds in the setting when
the range is an arbitrary Abelian group G. The proof is standard and omitted.

Theorem 2.2.1 (Basic facts about multilinear polynomials). Let G be any Abelian group.

1. Any function f : t0, 1un Ñ G has a unique representation as a multilinear polynomial over
G. In particular two distinct multilinear polynomials cannot agree on all points in t0, 1un.

2. (DeMillo-Lipton-Schwartz-Zippel (DLSZ) lemma [DL78, Zip79, Sch80]) More generally, any
two distinct multilinear polynomials P,Q P Pd differ with probability at least 2´d at a uni-
formly random input from t0, 1un. Equivalently, δpPdq ě 2´d.

We now turn to the kinds of algorithms we will consider. Below, let F be any space of functions
mapping t0, 1un to G.

Definition 2.2.2 (Local Correction Algorithm). We say that F has a pδ, qq-local correction al-
gorithm if there is a probabilistic algorithm that, when given oracle access to a function f that is
δ-close to some P P F , and given as input some a P t0, 1un, returns P paq with probability at least
3{4. Moreover, the algorithm makes at most q queries to its oracle.

Definition 2.2.3 (Local List-Correction Algorithm). We say that F has a pδ, q1, q2, Lq-local list
correction algorithm if there is a randomized algorithm A that, when given oracle access to a
function f , produces a list of randomized algorithms φ1, . . . , φL, where each φi has oracle access to
f and have the following property: with probability at least 3{4, for each codeword P that is δ-close
to f , there exists some i P rLs such that the algorithm φi computes P with error at most 1{4, i.e.
on any input a, the algorithm φi outputs P paq with probability at least 3{4.
Moreover, the algorithm A makes at most q1 queries to f , while the algorithms φ1, . . . , φL each
make at most q2 queries to f .

Remark 2.2.4. Our algorithms can all be implemented as standard Boolean circuits with the added
ability to manipulate elements of the underlying group G. Specifically, we assume that we can store
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group elements, perform group operations (addition, inverse) and compare two group elements to
check if they are equal.

Definition 2.2.5 (Combinatorial List Decodability). We say that F is pδ, Lq-list decodable if for
any function f , the number of elements of F that are δ-close to f is at most L.

Subcubes of t0, 1un. It will be instrumental in our algorithms to be able to restrict the given
function to a small-dimensional subcube and analyze this restriction. We construct such subcubes
by first negating a subset of the variables and then identifying them into a smaller set of variables.
More precisely, we have the following definition from [ABP`24].

Definition 2.2.6 (Embedding a smaller cube into t0, 1un). Fix any k P N and k ď n. Fix a point
a P t0, 1un and a function h : rns Ñ rks. For every y P t0, 1uk, xpyq is defined with respect to a
and h as follows:

xpyqi “ yhpiq ‘ ai “
#
ai, if yhpiq “ 0

1 ‘ ai, if yhpiq “ 1

Ca,h is the subset in t0, 1un consisting of xpyq for every y P t0, 1uk, i.e. Ca,h :“
 
xpyq

ˇ̌
y P t0, 1uk

(
.

In particular, note that this subcube contains the point a, since xp0kq “ a.

Given any polynomial P px1, . . . , xnq and any subcube Ca,h as above, P restricts naturally to a
degree-d polynomial Qpy1, . . . , ykq on Ca,h obtained by replacing each xi by yhpiq ‘ ai. We use
P |Ca,h

to denote the polynomial Q.

Random subcubes. Now assume that we choose a subcube Ca,h by sampling a „ t0, 1un and
sampling a random hash function h : rns Ñ rks. For every y P t0, 1uk , xpyq is the image of y in
t0, 1un under a and h and Ca,h is the subcube consisting of all 2

k such images. From Definition 2.2.6,
we have the following simple observation: For every y P t0, 1uk, distribution of xpyq is the uniform
distribution over t0, 1un. This is because a is uniformly distributed over t0, 1un.
We use the following sampling lemma for subcubes from [ABP`24] that will be useful at multiple
points in the paper.

Lemma 2.2.7 (Sampling lemma for random subcubes). ([ABP`24, Lemma 2.4]) Sample a and h

uniformly at random, and let C “ Ca,h be the subcube of dimension k as described in Definition 2.2.6.
Fix any T Ď t0, 1un and let µ :“ |T |{2n. Then, for any ε, η ą 0

Pr
a,h

„ˇ̌
ˇ̌ |T X C|

2k
´ µ

ˇ̌
ˇ̌ ě ε


ă η

as long as k ě A
ε4η2

¨ log
´

1
εη

¯
for a large enough absolute constant A ą 0.

3 Local correction in the unique decoding regime

In this section, we prove Theorem 1.3.1, i.e. we give a local correction algorithm for degree-d
polynomials when the error is less than the unique decoding radius (half the minimum distance).
The proof of Theorem 1.3.1 will proceed in two phases:
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• We give error reduction algorithms that reduce the error from half the minimum distance to
sub-constant.

• We give a local correction algorithm for degree-d polynomials when the error is sub-constant,
say less than Odp1{plog nqdq.

The first phase follows from the error reduction algorithm of [ABP`24] and we describe it in
Section 3.3. In Section 3.1, we describe the second phase, which is the new result in this work. We
start with a proof overview of the second phase.

Proof overview. We describe the proof idea behind our local corrector for degree-d polynomials
in the sub-constant error regime. Assume that we have oracle access to f : t0, 1un Ñ G that is
δ-close to an (unknown) polynomial P P Pdpt0, 1un, Gq. For simplicity, let us assume that we want
to output the value of P at a “ 0n. The proof for an arbitrary a is more or less the same, except
for a minor change.

The idea (as in other local correction algorithms) is to query f at a set of uniformly distributed (but
not independent) points up1q, . . . ,upqq. Since these points are uniformly distributed, we are likely to
obtain P pup1qq, . . . , P pupqqq in this way. If we could use this information to determine P p0nq for any
polynomial P , then we would be done. Indeed, this strategy works whenG “ F2 [BLR93, AKK`05].
If we restrict to a random F2-linear subspace V of dimension d ` 1, then the non-zero points of
V are (marginally) uniformly distributed and determine the value of P (which is still degree d

restricted to V ) at 0n. Unfortunately, this idea does not make sense for polynomials mapping the
Boolean cube to groups other than (vector spaces over) F2.

An analogous strategy we can employ over any group is to restrict to a random subcube. More
precisely, we choose a random function h : rns Ñ rks (for d ă k ! n) according to some distribution
and consider the random subcube C “ C0n,h as defined in Section 2 above (informally, we use the
function h to identify co-ordinates in k blocks) and query the function f at points in C. To use the
strategy above, we would like to find points up1q, . . . ,upqq P C such that

(a) the points up1q, . . . ,upqq P C are uniformly distributed, and

(b) the values of P at these points determine P p0nq for an unknown degree-d polynomial P.

These two properties are in tension with each other. To see this, assume that the function h is
chosen uniformly at random. In this case, it can be checked that unless k is large (approximately?
n), the only points in t0, 1uk that correspond7 to uniformly random points in t0, 1un are the

perfectly balanced points (i.e. the points with an equal number of 0s and 1s). All other points of
t0, 1uk correspond to points with expected Hamming weight outside the range rn{2´n{k, n{2`n{ks
and hence do not ‘look uniform’. Unfortunately, querying P at the set of perfectly balanced points
does not determine P p0nq. Informally, this is because the set of perfectly balanced points lie on
a hyperplane not containing 0n, and hence even a degree-1 polynomial can ‘distinguish’ between
these points and 0n.8

7the correspondence maps y P t0, 1uk to xpyq P C as defined in Section 2
8This reasoning fails over finite fields of fixed positive characteristic and this failure was used in [BSS20] to devise

a local correction algorithm over fixed characteristic via this principle. However, this is true over fields of large
characteristic and other groups.
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We fix this by choosing h in a non-uniform manner and relaxing criterion (a) to finding nearly9

uniformly distributed points in C. More specifically, assume that we have a probability distribution
µ “ pµ1, . . . , µkq over rks, and we sample each hpiq independently according to µ. Again the points in
the cube C that are uniformly distributed correspond to points on the hyperplane

ř
jPrks µjyj “ 1{2

in t0, 1uk . However, we consider the points corresponding to y satisfying | ř
jPrks µjyj ´ 1{2| ď ε,

i.e. points in between two close-by hyperplanes, i.e. these are the ‘nearly-balanced points’ under
a weighted version of Hamming weight on t0, 1uk. Standard probabilistic arguments imply that if
ε ! 1{?

n, then these correspond to nearly uniformly distributed points in t0, 1un thus satisfying
the modified version of criterion (a). Intuitively, getting ε to be so small and meaningful at the
same time seems easier when some of the weights µ1, . . . , µk are also similarly small (though not all
of them can be since they sum to 1). Standard results about Boolean threshold functions [MTT61,
Mur71] show that a hyperplane in k dimensions of this form does not require weights smaller than
(approximately) 1{kk. This forces k “ Ω̃plog nq for this strategy. (More generally, [BSS20] showed
a lower bound of Ω̃plog nq queries even for decoding linear polynomials over the Boolean cube and
fields of large characteristic.) Indeed, we take k “ Θdplog nq, so that this strategy becomes feasible.
For this value of k, we will show that we can take ε “ 1{2Ωdpkq.

The problem of designing µ can now be stated (in a more general form) in geometric language:
find two parallel hyperplanes H1,H2 in k variables that are at distance 1{2Ωdpkq (this corresponds
to making ε small) such that evaluating a degree-d polynomial P at the points of t0, 1uk between
H1 and H2 allow us to deduce the value of P at all other points of the Boolean cube. A set with
the latter property is sometimes called a (degree-d) interpolating set in the literature. A standard
interpolating set is the set of points of Hamming weight in the range ta, . . . , a ` du for any non-
negative integer a ď k ´ d. Unfortunately, the two hyperplanes in this case are at a distance of
Ωp1{

?
kq from each other, which is not good enough in our setting. Indeed, the main technical

innovation of this section (Lemma 3.2.1 below) is finding a pair of hyperplanes with this specific
property that is exponentially close. We believe that this result is independently interesting.

To do this, we use a pair of carefully chosen Boolean threshold functions that require weights of
exponentially different magnitudes to describe. We do this in a way that allows us to prove the
interpolating set property via a modified version of the DeMillo-Lipton-Schwartz-Zippel lemma
(Lemma 3.2.1 below). To reduce the query complexity of the algorithm, we also need to choose
a small subset of the nearly-balanced points as defined above that form a small interpolating set.
Over a field, an interpolating set of size Opkdq follows immediately from a linear algebraic argument.
We can get a set S of similar size q “ Odpkdq that works for any Abelian group. We then sample
the function h as described above to obtain the corresponding (nearly uniformly distributed) points
up1q, . . . ,upqq P t0, 1un.

Comparison with [ABP`24]. At a high level, the final construction seems to use similar ideas
to an analogous step in the low-error local correction algorithm of [ABP`24], but the technical
details are quite different. If we consider the random nˆ q matrix A that contains up1q, . . . ,upqq as
its columns, then in the result of [ABP`24] it is shown how to use a single hyperplane10 with large
coefficients to define the rows of the matrix A. Here, each point in between the hyperplanes allows
us to sample a distinct column of the matrix A.

9i.e. statistically close to
10in fact the Boolean points on the hyperplane
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3.1 Regime of sub-constant error

In this subsection, we give a local correction algorithm for degree d polynomials in the setting of
sub-constant error. Formally, we prove the following statement in this subsection.

Theorem 3.1.1 (Local correction for sub-constant error). Fix a degree parameter d P Zą0

and an Abelian group G. The space Pdpt0, 1un, Gq has a pδ, qq-local correction algorithm
where q “ Odpplog nqdq and δ “ 1{100q.

To prove Theorem 3.1.1, we use Theorem 3.1.2 (see below). It roughly says that there exists a
set of points such that an arbitrary evaluation of any degree-d polynomial can be computed using
evaluations on this set and this set consists of points whose relative “weighted Hamming weights”
are very close to 1{2.
Theorem 3.1.2 (Weight balanced interpolating set). Fix a degree parameter d ě 0 and a dimension
parameter k P Zą0 that is divisible by 10pd ` 1q. There exists a set S Ď t0, 1uk such that for every
Abelian group G, S satisfies the following properties:

1. [Interpolating set]. For each point b P t0, 1uk, there exists integral coefficients c1, . . . , c|S| such

that for every degree-d polynomial Qpy1, . . . , ykq P Pdpt0, 1uk , Gq, we have,

Qpbq “
ÿ

uPS

cuQpuq

2. [Weighted balanced]. There exists positive integers w1, . . . , wk such that

S Ď
#
y P t0, 1uk

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

kÿ

j“1

wjyj ´ W

2

ˇ̌
ˇ̌
ˇ ď W

2Ωpk{pd`1qq

+
,

where W :“ řk
j“1wj.

Furthermore, |S| is at most Odpkdq.
Before we prove Theorem 3.1.2, let us first see how Theorem 3.1.2 is useful in designing a local
correction algorithm and to prove Theorem 3.1.1. Below, we assume Theorem 3.1.2 and prove
Theorem 3.1.1.

Proof of Theorem 3.1.1. Fix an input point a P t0, 1un to the local correction algorithm. Let
fpx1, . . . , xnq : t0, 1un Ñ G be the input function with δpf,Pdq ď δ. Let P pxq be the unique degree
d polynomial such that δpf, P q “ δ. Our goal is to compute P paq with probability at least 3{4
using oracle queries to fpxq.
For a fixed function h : rns Ñ rks, let Ca,h denote the subcube as defined in Definition 2.2.6.
For a probability distribution µ “ pµ1, . . . , µkq on rks, sampling a random function h : rns Ñ rks
according to µ means the following: For each i P rns sample independently hpiq „ µ, i.e. hpiq is
equal to j with probability µj. We will define it shortly using h „ µ.

Let S be the set and w1, . . . , wk be the positive integers as described in Theorem 3.1.2. Let µ :“´w1

W
, . . . ,

wk

W

¯
. We now describe the local correction algorithm.
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Algorithm 1: Local correction algorithm for sub-constant error

Input: fpx1, . . . , xnq, a P t0, 1un, δ
1 k Ð A ¨ pd ` 1q ¨ plog nq // A an absolute constant chosen below

2 Sample a random function h : rns Ñ rks according to the distribution µ // The only

source of randomness

3 gpy1, . . . , ykq Ð fpx1, . . . , xnq|Ca,h

4 Let b “ 0k and c1, . . . , c|S| be the integral coefficients for 0k from Theorem 3.1.2.

5 return
ř

uPS cu gpuq

Queries: The number of queries is equal to |S| ď Odpkdq “ Odplog nqd by Theorem 3.1.2 and the
value of k in Algorithm 1.

Correctness: We now argue that Algorithm 1 returns P paq with probability ě 3{4. Let E Ă
t0, 1un denote the set of points where f and P disagree, i.e.

E “ tx P t0, 1un | fpxq ‰ P pxqu

We have |E|{2n ď δ because δpf, P q ď δ. Recall that for each y P t0, 1uk , for all i P rns, xpyqi “
yhpiq ‘ ai, where h is function sampled in Line 1 of Algorithm 1.

We first argue that if f and P agree at xpyq for every y P S, then Algorithm 1 returns P paq. If for
every y P S, xpyq is not in E, then g “ P |S . Since xp0kq “ a, the first property of Theorem 3.1.2
implies gp0kq “ P paq.
Next we show that with probability at least 3{4, for every y P S, xpyq R E. Equivalently, we show
the following:

Pr
h

rD y P S s.t. xpyq P Es ă 1

4
(1)

First, we understand the distribution of xpyq for a fixed y P S under a random function h : rns Ñ rks
sampled according to µ. Fix any y P S and a coordinate i P rns. Since a is fixed, we have,

Pr
h„µ

rxpyqi “ 1s “ Eh„µrxpyqis “
kÿ

j“1

wj

W
¨ yj

From the second property in Theorem 3.1.2, we have,
ˇ̌
ˇ̌ Pr
h„µ

rxpyqi “ 1s ´ 1

2

ˇ̌
ˇ̌ ď 1

2Ωpk{pd`1qq

For each y P t0, 1uk , the coordinates txpyqi | i P rnsu are mutually independent (this is because hris
is sampled independently for each i P rns) and 1{2Ωpk{pd`1qq-close to the uniform distribution over
t0, 1u. From Fact 3.1.3, we know that for every y P S, xpyq is

?
n{2Ωpk{pd`1qq-close to the uniform

distribution (in statistical distance).
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Fact 3.1.3 (Closeness to the uniform distribution). (See [Man11, Theorem 5.5, Claim 5.6]). Let
η ą 0. Let D1 be a distribution on t0, 1un such that for any y „ D1, the co-ordinates of y are
independent and for all i P rns,

1{2 ´ η ď Prryi “ 1s ď 1{2 ` η.

Then D1 is Opη?
nq-close to the uniform distribution over t0, 1un.

By the definition of statistical distance, we have that for every y P S,

Pr
h

rxpyq P Es ď
?
n{2Ωpk{pd`1qq ` δ

Taking a union bound over all y P S, we have,

Pr
h

rDy P S s.t. xpyq P Es ď |S|
´?

n{2Ωpk{pd`1qq ` δ
¯

Recall that the number of queries is q “ |S| and by assumption δ ă 1{100q. Thus, we get

Pr
h

rDy P S s.t. xpyq P Es ď Õp?
nq

2Ωpk{pd`1qq
` 1

100
ď 1

4

as long as the constant A in Algorithm 1 is chosen to be large enough. This shows Equation (1) as
claimed and thus we have described a pδ, qq local correction algorithm for Pd. �

3.2 Weight balanced interpolating set

In this subsection, we prove Theorem 3.1.2. We start by proving Lemma 3.2.1, which is our main
technical lemma of this subsection. The difference between Lemma 3.2.1 and Theorem 3.1.2 is in
the first condition. In Lemma 3.2.1 we require that every non-zero degree-d polynomial is non-zero
on S. Later, we will see that this is sufficient to allow us to compute Q at any point.11

Lemma 3.2.1 (Main lemma for local correction). Fix a degree parameter d ě 0 and a
dimension parameter k P Zą0 such that k is divisible by 10 ¨ pd ` 1q. There exists a set
S Ď t0, 1uk such that for every Abelian group G, the set S satisfies the following properties:

• For every non-zero degree-d polynomial Qpy1, . . . , ykq P Pdpt0, 1uk , Gq, there exists a
point z P S such that Qpzq ‰ 0.

• There exists positive integers w1, . . . , wk such that

S Ď
#
y P t0, 1uk

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

kÿ

j“1

wjyj ´ W

2

ˇ̌
ˇ̌
ˇ ď W

2Ωpk{pd`1qq

+
,

where W :“ řk
j“1wj.

Furthermore, |S| is at most Odpkdq.

11For polynomials over fields, this follows simply from linear algebra. For Abelian groups, the proof is similar, but
we need a result from the theory of Diophantine linear equations.
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Proof of Lemma 3.2.1. Let r “ 10 ¨ pd ` 1q and let Σ :“ t0, 1ur . Let m “ k{r. In this proof, it will
be convenient to make the following identification:

rmrs – rms ˆ rrs and t0, 1uk “ Σm

We interpret y P t0, 1umr as y “ pyr1s, . . . ,yrmsq where for every i P rms, yris “ pyri, 1s, . . . , yri, rsq P
Σ “ t0, 1ur .
We now describe the weights w1, . . . , wk. For every for pi, jq P rms ˆ rrs – rmrs, let wpi,jq :“ 2i´1.
Define the set Bm as follows.

Bm :“
#
y P Σm

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

mÿ

i“1

rÿ

j“1

wpi,jqyri, js ´ Wm

2

ˇ̌
ˇ̌
ˇ ď t

+
“

#
y P Σm

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

mÿ

i“1

2i´1
rÿ

j“1

yri, js ´ Wm

2

ˇ̌
ˇ̌
ˇ ď t

+

where Wm :“ řm
i“1 2

i´1
řr

j“1 1 “ rp1` 2 ¨ ¨ ¨ ` 2m´1q and t “ rd
2

s. We will choose the set S to be a
subset of Bm. Note that t “ Wm{2m, which shows that the weights are as required by the second
item of the statement of the lemma.

More generally, we can define a subset Bℓ Ď t0, 1uℓ¨r for each ℓ P rms in a similar way. We let Wℓ

denote the sum of the weights in this case. We will need the following claim about extending points
in Bℓ to points in Bℓ`1 in many different ways.

Claim 3.2.2. Fix ℓ P rm´1s. Let b “ pbr1s, . . . ,brℓsq be any point in Bℓ. There exists an interval
(i.e. set of consecutive integers) Ib Ď t0, . . . , ru of size at least d ` 1 such that for every point
z P t0, 1ur such that |z| P Ib, the point b1 “ pz,br1s, . . . ,brℓsq P Bℓ`1.

Proof of Claim 3.2.2. Note that Wℓ`1 “ 2Wℓ ` r. Since b P Bℓ, we have

ℓÿ

i“1

|bris| ¨ 2i´1 “ Wℓ

2
` τ (2)

for some integer τ such that |τ | ď t (here |bris| is the Hamming weight of bris). For b1 “
pz,br1s, . . . ,brℓsq to lie in Bℓ`1, we need

|z| `
ℓÿ

i“1

|bris| ¨ 2i P
„
Wℓ`1

2
´ t,

Wℓ`1

2
` t


.

By Equation (2) and the relationship between Wℓ and Wℓ`1, the latter is equivalent to |z| P Ib :“
r r
2

´ 2τ ´ t, r
2

´ 2τ ` ts. Since r{2 ě 5pd ` 1q ě 2|τ | ` t, the interval Ib Ď t0, . . . , ru and further,
|Ib| “ 2t ` 1 ě d ` 1. �

We also need a basic fact about degree-d polynomials over the Boolean cube. This is a combination
of a few folklore facts, but we prove it here for completeness.

Claim 3.2.3. Fix any n ě 1 and degree parameter d ď n. For every interval I Ď t0, . . . , nu (i.e. set
of consecutive integers) of size pd ` 1q, there exists a set HI,d Ď t0, 1un of size at most p2pn ` 1qqd
such that
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• HI,d consists only of points z such that |z| P I, and

• For any non-zero P P Pdpt0, 1un, Gq, there is a point z P HI,d such that P pzq ‰ 0.

Proof of Claim 3.2.3. Assume that I “ ta, a`1, . . . , a`du for some a P r0, n´ds. For every subset
A Ď rns of size ď d, we define the set HA

I,d as follows:

HA
I,d :“

!
x1a0n´|A|´a

ˇ̌
ˇ x P t0, 1u|A|

)
,

where x1a0n´|A|´a is a shorthand notation for the point where the variables indexed by A are set
to x, the first a variables of the remaining variables are set to 1, and the last pn´ |A| ´aq variables
of the remaining variables are set to 0. In other words, HA

I,d consists of points where the variables

indexed by rnszA are set to 1a0n´|A|´a (this has Hamming weight a) and the variables indexed by
A can be any point of Hamming weight ď |A| ď d. We define the set HI,d as follows:

HI,d “
ď

AĎrns
|A|ďd

HA
I,d

For every subset A, the set HA
I,d consists only of points z such that |z| P I, and so thus every point

in HI,d. Note that for each subset A Ď
`rns

ďd

˘
, the set |HA

I,d| ď 2d. The size of HI,d is at most

2d ¨ přd
i“0

`
n
i

˘
q ď p2pn ` 1qqd.

Next we show that for any non-zero P P Pdpt0, 1un, Gq, there is a point z P HI,d such that
P pzq ‰ 0. Fix any non-zero polynomial P P Pdpt0, 1un, Gq. P can be uniquely expressed as the
following multilinear polynomial:

P px1, . . . , xnq “
ÿ

AĎrns
|A|ďd

cAx
A,

where xA is the product of variables indexed by the set A. Since P is a non-zero polynomial, at
least one of the coefficients cA’s is non-zero. Let A0 be the maximal (with respect to the inclusion
partial order) subset with a non-zero coefficient. Set the variables outside A0 to 1a0n´|A0|´a. The
resulting polynomial is a non-zero degree d polynomial in variables indexed by A0, i.e. in ď d

variables. We know (Theorem 2.2.1) that every non-zero degree-d polynomial is non-zero on the
Boolean cube. Thus the resulting polynomial is non-zero on a point in t0, 1u|A0 |. This implies that
P is non-zero on a point in H

A0

I,d Ď HI,d. �

We now show how to construct the set S as required in the statement of the lemma. In fact, we
will show a stronger property: for each ℓ P rms and j P t0, . . . , du, we show that there is a set
Sℓ,j Ď Bℓ that satisfies the first item of the lemma w.r.t. the space of polynomials Pjpt0, 1uℓ¨r , Gq.
Furthermore, for each ℓ, j, we will have |Sℓ,j| ď p2pr ` 1qqj ¨ ℓj.
We prove the above by induction on ℓ ` j. The base case corresponds to ℓ “ 1 and j “ 0, where
we can take Sℓ,0 to be any fixed point z P Bℓ.

Now consider the inductive case for some j ą 0. Given a non-zero polynomial P pyr1s, . . . ,yrℓsq P
Pjpt0, 1uℓ¨r , Gq, we can decompose it as a polynomial in the variables in yr1s with coefficients
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coming from the space of polynomials in the remaining variable sets yr2s, . . . ,yrℓs. This gives the
following equality.

P pyr1s, . . . ,yrℓsq “
ÿ

AĎrrs:|A|ďj

QApyr2s, . . . ,yrℓsq ¨ yr1sA (3)

where yr1sA denotes the product of the variables in yr1s indexed by A and QA denotes the sum
of all monomials in yr2s, . . . ,yrℓs multiplying this monomial. Note that QA has degree at most
j ´ |A|.
Fix a set A0 such that QA0

is non-zero and |A0| is as large as possible. Assume that |A0| “ j1 P
t0, . . . , ju. We know by induction that there is a point b P Sℓ´1,j´j1 such that QA0

pbq ‰ 0. Let
Pbpyr1sq denote the restriction of the polynomial P when the variable sets yr2s, . . . ,yrℓs are set
according to b. The polynomial Pb is a non-zero polynomial of degree j1.

We want to extend b to an assignment also setting the variables yr1s that keeps the polynomial P
non-zero. By Claim 3.2.2, there is an interval Ib of size at least pd ` 1q such that for any z such
that |z| P Ib, the point pz,br1s, . . . ,brℓ ´ 1sq P Bℓ. Fix any subinterval Ib,j1 Ď Ib of size j1 ` 1. By

Claim 3.2.3, there is a set HI
b,j1 ,j1 Ď t0, 1ur of size at most p2pr ` 1qqj1

such that each point z has
Hamming weight in I and further Pbpzq ‰ 0.

We have thus shown that P must be non-zero at one of the points in the following set.

Sℓ,j,j1 “ tpz,br1s, . . . ,brℓ ´ 1sq | b “ pbr1s, . . . ,brℓ ´ 1sq P Sℓ´1,j´j1, z P HI
b,j1 ,j1u.

However, the above assumes that we know the parameter j1 of P. To define the set Sℓ,j, we take a
union of all the sets Sℓ,j,j1 for j1 P t0, . . . , ju. This satisfies the required inductive property.

It remains to bound |Sℓ,j|. We have

|Sℓ,j| ď
jÿ

j1“0

|Sℓ,j,j1| ď
jÿ

j1“0

|Sℓ´1,j´j1| ¨ |HI,j1| ď
jÿ

j1“0

p2pr ` 1qqpj´j1q ¨ pℓ ´ 1qj´j1 ¨ p2pr ` 1qqj1

“ p2pr ` 1qj ¨ ppℓ ´ 1qj ` pℓ ´ 1qj´1 ` ¨ ¨ ¨ ` pℓ ´ 1q0q ď p2pr ` 1qqj ¨ ℓj

proving the required bound on |Sℓ,j|. This proves the inductive claim.

To conclude the proof of Lemma 3.2.1, if we take S “ Sm,d, then we have a set with the required
properties and size. �

We now show how Lemma 3.2.1 implies Theorem 3.1.2. We recall Theorem 3.1.2 here.

Theorem 3.1.2 (Weight balanced interpolating set). Fix a degree parameter d ě 0 and a dimension
parameter k P Zą0 that is divisible by 10pd ` 1q. There exists a set S Ď t0, 1uk such that for every
Abelian group G, S satisfies the following properties:

1. [Interpolating set]. For each point b P t0, 1uk, there exists integral coefficients c1, . . . , c|S| such

that for every degree-d polynomial Qpy1, . . . , ykq P Pdpt0, 1uk , Gq, we have,

Qpbq “
ÿ

uPS

cuQpuq
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2. [Weighted balanced]. There exists positive integers w1, . . . , wk such that

S Ď
#
y P t0, 1uk

ˇ̌
ˇ̌
ˇ

ˇ̌
ˇ̌
ˇ

kÿ

j“1

wjyj ´ W

2

ˇ̌
ˇ̌
ˇ ď W

2Ωpk{pd`1qq

+
,

where W :“ řk
j“1wj.

Furthermore, |S| is at most Odpkdq.

Proof of Theorem 3.1.2. Let S Ď t0, 1uk be the subset as given by Lemma 3.2.1. Fix any point
b P t0, 1uk. Let Bd denote the set of multilinear monomials of degree ď d in tx1, . . . , xku. Bd

forms a spanning set of Pdpt0, 1uk , Gq for every G, i.e. every polynomial Q P Pdpt0, 1uk , Gq can
be expressed as a unique linear combination of monomials from Bd (with coefficients from G). Fix
some total orders on S and Bd.

Construct the matrix M of dimensions |Bd| ˆ |S| as follows: The rows are indexed by monomials
in Bd and the columns are indexed by points in S. For 1 ď i ď |Bd| and 1 ď j ď |S|, M ri, js is
equal to mpuq, where m is the ith monomial in Bd and u is the jth point in S. In other words, the
jth column of M denotes the vector whose entries are the evaluation of all the monomials in the
spanning set Bd of the jth point in S.

We will first prove Claim 3.2.4 and later show that Claim 3.2.4 is enough to prove Theorem 3.1.2.

Claim 3.2.4. Let M be the matrix of dimensions |Bd| ˆ |S| as described above. Define β P Z|Bd|

as follows: For 1 ď i ď |Bd|, βi is equal to mpbq, where m is the ith monomial of Bd. There exists
an integral vector c “ pc1, . . . , c|S|q such that the following equation is satisfied:

Mc “ β (4)

Equivalently, there exists an integral vector c “ pc1, . . . , c|S|q such that for every monomial m P Bd,

ÿ

uPS

cumpuq “ mpbq.

Proof. To prove the existence of an integral vector c, we need the following lemma.

Lemma 3.2.5. [Sch86, Corollary 4.1.a] Let A be a rational matrix and let a be a rational vector.
Then the system Ax “ a has an integral solution x if and only if for every row vector y for which
yA is integral, ya is an integer.

Lemma 3.2.5 says that to show the existence of an integral solution c to Equation (4), it is equivalent
to show that for every rational row vector y P Q|Bd| for which yM is integral, yβ is an integer.

Consider any y P Q|Bd| for which yM is integral. Let H denote the quotient group Q{Z, which
can be identified with rational numbers in r0, 1q where addition is carried out modulo 1. Define
y1 to be the image of y in H under the natural projection from Q to H, i.e. for each coordinate
1 ď i ď |Bd|, y1

i :“ yi ´ tyiu.
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In what follows, we are still treating the entries of β and M as integers, and thus it makes sense
to multiply these entries with the entries of y1 to get elements of H. The hypothesis that yM is
integral is equivalent to saying that over the group H, y1M “ 0|S| P H |S| is the all-zeroes vector.
Similarly, showing that yβ is an integer is equivalent to showing that y1β is 0.

Assume for the sake of contradiction that y1β is non-zero. LetQ be the polynomial in Pdpt0, 1uk , Hq
whose coefficient vector is y1, i.e.

Qpxq :“
ÿ

mPBd

y1
mm

The hypothesis y1M “ 0 means that the polynomial Q vanishes on S. On the other hand, y1β P
p0, 1q means Qpbq is non-zero, i.e. Q is a non-zero polynomial. So we have a non-zero polynomial
Q that vanishes on the set S, which contradicts Theorem 3.1.2. Hence y1β “ 0, implying that yβ
is an integer.

As y is an arbitrary row vector for which yM is integral, using Lemma 3.2.5 we get the existence
of an integral solution to Equation (4). This finishes the proof of Claim 3.2.4. �

Finally, we argue that Claim 3.2.4 is sufficient to finish the proof of Theorem 3.1.2. This is essen-
tially because Pdpt0, 1uk , Gq is spanned by Bd. Consider any polynomial Q P Pdpt0, 1uk , Gq. There
exists coefficients α1, . . . , α|Bd| such that

Qpxq “
ÿ

mPBd

αmm

Let c1, . . . , c|S| be the coefficients from the above claim. Then we have,

ÿ

uPS

cuQpuq “
ÿ

uPS

cu
ÿ

mPBd

αmmpuq “
ÿ

mPBd

αm

ÿ

uPS

cumpuq

Since Mc “ β, for every m P Bd, we have,

ÿ

uPS

cumpuq “ mpbq

Thus we get,

ÿ

uPS

cuQpuq “
ÿ

mPBd

αm

ÿ

uPS

cumpuq “
ÿ

mPBd

αmmpbq “ Qpbq

This finishes the proof of Theorem 3.1.2. �

3.3 Error close to half the minimum distance (Proof of Theorem 1.3.1)

In this subsection, we explain the second step towards proving Theorem 1.3.1. In the previous
subsection, we described a local correction algorithm for Pd when the error is 1{Odpplog nqdq. We
now want to locally correct degree-d polynomials when the error is close to the unique decoding
radius, which is 1{2d`1.
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Suppose we have oracle access to a function f that is p1{2d`1´εq-close to Pdpt0, 1uk , Gq for some
constant ε ą 0 and let P be the unique polynomial in Pdpt0, 1uk , Gq such that δpf, P q ď p1{2d`1´εq.
The idea is to design a randomized algorithm A that has oracle access to the function f and returns
a probabilistic oracle Af such that δpAf , P q ă 1{Opplog nqdq, with high probability. The algorithm
A will be referred to as error reduction algorithm. More specifically, the error reduction algorithm
A will have two subroutines as follows:

1. There is a randomized algorithm A1 that reduces the error from p1{2d`1 ´εq down to 1{1000.
2. There is a randomized algorithm A2 that reduces the error from 1{1000 down to 1{Opplog nqdq.

[ABP`24] gave the error reduction algorithms A1 and A2, which we state below.

Lemma 3.3.1 (Error reduction for error close to half the minimum distance). [ABP`24, Lemma
3.13] Fix any Abelian group G and a positive integer d. For any η1, δ, where η ă δ and δ ă 1{2d`1´ε

for ε ą 0, there exists a randomized algorithm A1 with the following properties:
Let f : t0, 1un Ñ G be a function and let P : t0, 1un Ñ G be a degree d polynomial such that

δpf, P q ď δ, and let Af
1 denotes that A has oracle access to f , then

PrrδpAf
1 , P q ą η1s ă 1{20,

where the above probability is over the internal randomness of A1, and for every x P t0, 1un, Af
1

makes 2k queries to f , where k “ polyp1
ε
, 1
η1

q.

Lemma 3.3.2 (Error reduction for constant error). [ABP`24, Lemma 3.8] Fix any Abelian group
G and a positive integer d. The following holds for η1 ă 1{2Opdq and K “ 2Opdq where the Op¨q
hides a large enough absolute constant.

For any η2 ă η1, there exists a randomized algorithm A2 with the following properties: Let f :
t0, 1un Ñ G be a function and let P : t0, 1un Ñ G be a degree-d polynomial such that δpf, P q ď δ,

and let Af
2 denotes that A2 has oracle access to f , then

PrrδpAf
2 , P q ą η2s ă 1{20,

where the above probability is over the internal randomness of Af
2 . Further, for every x P t0, 1un,

A
f
2 makes KT queries to f and T “ O

ˆ
log

ˆ
logp1{η2q
logp1{δq

˙˙
.

Using Lemma 3.3.1 and Lemma 3.3.2 along with Theorem 3.1.1, we get Theorem 1.3.1. We restate
Theorem 1.3.1 and finish the proof.

Theorem 1.3.1 (Local correction algorithms for Pd up to the unique decoding radius). For every
Abelian group G and for every constant ε ą 0, the space Pd has a pδ, qq-local correction algorithm
where δ “ 1

2d`1
´ ε and q “ rOεplog nqd.

Proof of Theorem 1.3.1. Let f be a function with oracle access that is δ-close to a degree-d poly-
nomial P P Pdpt0, 1uk , Gq.

1. Lemma 3.3.1 (with η1 “ 1{2Opdq chosen to satisfy the hypothesis of Lemma 3.3.2) yields an

oracle A
f
1 that makes Oεp1q queries to f and is η1-close to P with probability at least 19{20.

We fix the randomness of Af
1 so that this holds.
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2. With probability at least 19{20, we have oracle access to a function A
f
1 that is 1{2Opdq-close

to P . Let g :“ A
f
1 . Lemma 3.3.2 (with η2 “ 1{Opplog nqdq) yields a probabilistic oracle A

g
2

that makes polyplog log n, dq queries to g and is η2-close to P with probability at least 19{20.
We again fix the randomness of Ag

2 so that this holds.

In other words, we have oracle access to an oracle Ag
2 that makes polyplog log n, dq¨Oεp1q queries to f

and is η2-close to P with probability at least 9{10. We now apply the local correction algorithm from
Theorem 3.1.1 with oracle access to A

g
2 to get a local correction algorithm for Pd with δ “ 1{2d`1´ε

for any constant ε ą 0 and q “ Õεpplog nqdq. �

Remark 3.3.3. It should be noted that Theorem 1.3.1 also follows from the theorem on local list-
correction Theorem 1.3.4 along with known results on locally testing low-degree polyomials [BSS20].
However, we state this theorem separately for multiple reasons. Firstly, a weaker form of this
theorem is required for the results on local list-correction. Secondly, the above result is natural and
this gives a simpler proof of this than the one outlined above. And finally, this proof yields a better
dependence on the degree parameter d.

Having finished the proof of Theorem 1.3.1, in the following subsection, we now prove Theorem 1.3.2
by giving a local correction algorithm with improved query complexity for groups of small exponent
(see Section 2 for a definition of exponent of a group).

3.4 Local correction for groups of constant exponent

In this subsection, we show that we can bring down the query complexity of local correction from
rOdpplog nqdq to a constant (i.e., independent of n) when G is an Abelian torsion group of constant
exponent. More specifically, we prove Theorem 1.3.2 from the introduction.

Theorem 1.3.2. If G is an Abelian torsion group of exponent M , then for every ε ą 0, Pd has a
pδ, qq-local correction algorithm where δ “ 1

2d`1 ´ ε and q “ OM,εp1q.

We note that to prove Theorem 1.3.2 for every δ “ 1
2d`1 ´ε, it suffices to show the following lemma

for some constant δ “ ΩM,dp1q, since the error reduction steps from Section 3.3 can be applied
without change.

Lemma 3.4.1. For every Abelian torsion group G of exponent M , the family Pd has a pδ, qq-local
correction algorithm for some δ “ ΩM,dp1q and q “ OM,dp1q.
The proof of the above lemma proceeds in an identical manner to the analysis of [BSS20] where
the authors show this when G is the underlying group of a field of constant characteristic. They do
this by using Lucas’ theorem which gives a criterion for a binomial coefficient to be divisible by a
given prime. To handle the more general case of groups of constant exponent, we instead make use
of Kummer’s theorem which may be thought of as an analog of Lucas’ theorem for prime powers.
We state Kummer’s theorem below, where the notation Sppnq denotes the sum of the digits of n
when written in base p.

Theorem 3.4.2 (Kummer’s theorem [Kum52]). Let p P N be a prime. Then for any integers

a ě b ě 0, the largest power of p that divides
`
a
b

˘
is equal to

Sppbq`Sppa´bq´Sppaq
p´1

.

We are now ready to prove Lemma 3.4.1.
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Proof of Lemma 3.4.1. Let M “ śℓ
j“1 p

rj
j be the prime factorization of M (so ℓ ď logM). For each

j P rℓs, let sj P N be the smallest integer such that p
rjsj
j ą d. Then, we choose k “

ś
jPrℓs p

3rjsj
j .

Note that p
rjpsj´1q
j ď d and hence k ď

ś
jPrℓspdp

rj
j q3 ď d3ℓM3 “ OM,dp1q. We set δ “ 1

4p2kk q “
ΩM,dp1q.
We claim that the algorithm below (Algorithm 2) is the desired local corrector. For a given point
a P t0, 1un, it queries f and outputs P paq with probability at least 3{4, where P P Pd is the unique
degree-d polynomial such that δpf, P q ď δ. It is similar to Algorithm 1 in that it samples a random
subcube Ca,h passing through a and queries it, but the crucial difference now is that we use a
different interpolating set in the last step (as opposed to the “weight balanced interpolating set”
of Theorem 3.1.2). In particular, we will prove following claim.

Claim 3.4.3. There exist integers cb for b P
`

r2ks
k

˘
such that for every degree-d polynomial Qpyq P

Pdpt0, 1u2k , Gq, we have that

Qp02kq “
ÿ

bPpr2ks
k q

cb ¨ Qpbq. (5)

Algorithm 2: Local correction algorithm for sub-constant error

Input: fpx1, . . . , xnq, a P t0, 1un, δ “ 1

4p2kk q
1 Sample a uniformly random function h : rns Ñ r2ks
2 gpy1, . . . , y2kq Ð fpx1, . . . , xnq|Ca,h

3 Let pcbq
bPpr2ks

k q be the integral coefficients given by Claim 3.4.3.

4 return
ř

bPpr2ks
k q cb ¨ gpbq

Assuming the correctness of Claim 3.4.3, we shall now finish the proof of Lemma 3.4.1.

Queries: The local corrector makes
`
2k
k

˘
“ OM,dp1q queries since to get the value of gpbq for some

b P
`r2ks

k

˘
, we only need to know fpxpbqq under the mapping h.

Correctness: For every b P
`r2ks

k

˘
, we note that the corresponding query point xpbq P t0, 1un is

uniformly distributed since the map h used in Algorithm 2 is uniformly random and b has equal
number of zeroes and ones. Hence, with probability at least 1 ´ δ ¨

`
2k
k

˘
ě 3{4, gpbq “ Qpbq

for all b P
`r2ks

k

˘
, where Q P Pdpt0, 1u2k , Gq is the restriction of P on the subcube Ca,h. Hence,

by Claim 3.4.3, the outputted value equals Qp02kq “ P paq with probability at least 3/4. �

It remains to prove Claim 3.4.3. For every b P
`

r2ks
k

˘
, we set cb “ 0 if b contains a 1 in any of

the last k ´ d coordinates and we set cb “ A otherwise, where A P Z will be decided later. Recall

that M “ ś
jPrℓs p

rj
j and k “ ś

jPrℓs p
3rjsj
j , and we have that p

rjsj
j ą d ě p

rjpsj´1q
j for all j P rℓs.
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By linearity, it suffices to show (5) for Qpyq of the form g ¨ ś
jPI yj for all I P

`r2ks
ďd

˘
and g P G.

According to our assignment of cb, it is clear that (5) holds true (LHS = RHS = 0) if I contains any

of the last k ´ d coordinates. Otherwise, we have that I Ď
`rk`ds

ďd

˘
. If I “ H, we have Qp02kq “ g

and
ř

bPpr2ks
k q cb ¨ Qpbq “

`
k`d
k

˘
A ¨ g. On the other hand, if |I| “ i ě 1, we have Qp02kq “ 0 and

ř
bPpr2ks

k q cb ¨ Qpbq “
`
k`d´i
k´i

˘
A ¨ g since every non-zero term must have bj “ 1 for all j P I. Hence,

it suffices to find an integer A satisfying the following two conditions:

g “
ˆ
k ` d

k

˙
A ¨ g, for all g P G, and

0 “
ˆ
k ` d ´ i

k ´ i

˙
A ¨ g, for all g P G and i P rds.

Since the order of every element g divides the exponent M of the group, for the above two conditions
to hold, it suffices if for all j P rℓs and i P rds, pj does not divide

`
k`d
k

˘
and that p

rj
j divides

`
k`d´i
k´i

˘
.

Then we can take A to be any integer such that A
`
k`d
k

˘
` A1M “ 1 for some integer A1 (such A

and A1 are guaranteed to exist as M and
`
k`d
k

˘
are coprime). The rest of the proof is dedicated to

verifying these divisibility constraints hold.

• pj does not divide
`
k`d
k

˘
: We will represent all the numbers k, d, i etc. in base pj. We note

that the last rjsj digits of k are zeroes since p
rj
j divides k. Furthermore, since d ă p

rjsj
j , all

the digits of d except the last rjsj many are zeroes. Hence, the sum of digits of k ` d is equal
to the sum of the digits of k and d combined. That is, Spjpkq ` Spjpdq ´ Spjpk ` dq “ 0.
Applying Kummer’s theorem (Theorem 3.4.2) now finishes the proof.

• p
rj
j divides

`
k`d´i
k´i

˘
: By Kummer’s theorem (Theorem 3.4.2), it suffices to show that

Spjpdq ` Spjpk ´ iq ´ Spjpk ` d ´ iq
pj ´ 1

ě rj .

We note that Spjpk`d´iq “ Spjpkq`Spj pd´iq by the same argument as the above paragraph.
In addition, we have the trivial bounds Spjpdq ě 1 and Spjpd ´ iq ď ppj ´ 1qrjsj. Finally,
we give a lower bound for Spjpk ´ iq. Since k has at least 3rjsj trailing zeroes, we get that
Spjpk ´ 1q ě Spjpkq ` 3rjsjppj ´ 1q ´ 1. But observe that Spjpk´ iq “ Spjppk ´ 1q ´ pi´ 1qq “
Spjpk´1q ´Spjpi´1q since the number of trailing ppj ´1q’s of k´1 exceeds the total number
of (non-zero) digits of pi ´ 1q. Therefore, we get

Spjpdq ` Spjpk ´ iq ´ Spjpk ` d ´ iq ě 1 ` Spjpk ´ 1q ´ Spjpi ´ 1q ´ Spjpkq ´ Spjpd ´ iq
ě 1 ` p3rjsjppj ´ 1q ´ 1q ´ ppj ´ 1qrjsj ´ ppj ´ 1qrjsj
ě rjsjppj ´ 1q
ě rjppj ´ 1q.

This finishes the proof of Claim 3.4.3 and hence Lemma 3.4.1 and Theorem 1.3.2.

4 Combinatorial list-decoding bound

In this section, we are going to prove the following theorem.
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Theorem 1.3.3 (Combinatorial list decoding bound for Pd). For every Abelian group G and for
every constant ε ą 0, the space Pd over any Abelian group G is p1{2d ´ ε, exppOdp1{εqOpdqq-list
correctable.

In other words, we will show that for any function f : t0, 1un Ñ G, the number of degree-d
polynomials that are p1{2d ´ εq-close to f is exppOdp1{εqOpdqq.
We use the following result of [ABP`24] which gives a naive double-exponential upper bound on
the list size. While [ABP`24] prove it for linear polynomials, the same proof extends to higher
degree without much change.

Claim 4.0.1 ([ABP`24], Claim 4.1). For any function f : t0, 1un Ñ G, the number of degree-d
polynomials that are p1{2d ´ εq-close to f is at most 22

n
.

We will subsequently improve the above bound to something independent of n, but to do that, we
will need this naive bound. Furthermore, using a result from previous work [ABP`24, Claim 4.2],12

we know that proving Theorem 1.3.3 for finite Abelian G implies the same theorem for all Abelian
G. Hence, we will assume that G is a finite Abelian group. By using the structure theorem of finite
Abelian groups, we can decompose G as

G – G1 ˆ G2,

where G1 is the product of finitely many p-groups where each p is a prime number that is at least
p0 (for some appropriate choice of p0 “ p0pdq to be fixed later) and G2 is the product of finitely
many p-groups where each p is a prime less than p0. We provide upper bounds for list-decoding
over G1 and G2 separately and combine the two bounds to get a final bound on the list size over
G. We state the upper bounds formally below, where we use the notation List

f
ε to denote the set

of degree-d polynomials that are p1{2d ´ εq-close to f .

Theorem 4.0.2 (Combinatorial bound for a product of p-groups where each p ě p0). Let d ě 1

and G be a product of finitely many p-groups, where each p ě p0 “ 22
αd3

for a sufficiently large

constant α. Then for every function f : t0, 1un Ñ G, we have |Listfε | ď p1{εq22
Opd3q

.

In particular, the list size is polynomial in 1{ε for a constant d.

We now state the combinatorial bound for the second case.

Theorem 4.0.3 (Combinatorial bound for a product of p-groups where each p ă p0). Let d ě 1

and G be a product of finitely many p-groups, where each p ď 22
Opd2q

. Then for every function
f : t0, 1un Ñ G we have, |Listfε | ď exppOdp1{εqOpdqq.
Assuming Theorem 4.0.2 and Theorem 4.0.3, we immediately get Theorem 1.3.3 because for any
function f with co-domain G “ G1 ˆG2 can be written as f “ pf1, f2q where f1 has co-domain G1

and f2 has co-domain G2. Furthermore, if P “ pP1, P2q P List
f
ε , then for each i P r2s, Pi must be in

List
fi
ε .

We move on to proving the above two theorems in the next two subsections respectively.

12Though this result is only stated for degree 1 in [ABP`24], it works without any change for all degrees.
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4.1 Combinatorial bound for a product of p-groups (p ě p0)

Our proof of Theorem 4.0.2 builds upon some of the ideas of the combinatorial bound of [ABP`24]
(Theorem 4.4) which handles degree d “ 1. However, there are various places where higher de-
gree polynomials are not as well-behaved and need more complicated analysis. Indeed the anti-
concentration bound (see Lemma 4.1.1 below) we need is more involved and can be of independent
interest. Before the full proof, we now give a rough outline of the proof of Theorem 4.0.2. It can
be divided into the following two parts.

1. Anti-concentration of non-sparse polynomials: Suppose there are two degree-d poly-
nomials P1 and P2, both p1{2d ´ εq-close to a function f . Then they must agree with each
other on a sufficiently large fraction of the domain. Indeed, δpP1, P2q ď δpf, P1q ` δpf, P2q ă
1{2d`1{2d “ 1{2d´1. Hence, the density of the zeroes of P “ P1´P2 in t0, 1un is greater than
1´1{2d´1. Suppose that it is at least 1´1{2d´1`c for some constant c.13 Our main idea here
is that this cannot happen for polynomials P with many monomials. In particular, we show
that if P has sufficiently large sparsity (defined as the number of non-zero monomials), then
this fraction is less than 1 ´ 1{2d´1 ` c. This allows us to reduce the combinatorial bound to
the case of just counting polynomials of “small” sparsity (by a small blow-up in the list size).
We expand more on this in the second step. Going back to showing the anti-concentration
bound itself, we will prove the following.

Lemma 4.1.1 (Anti-concentration bound for non-sparse polynomials). For all positive
integers d, s and for every Abelian group G in which all the non-zero elements have
order greater than ps ` 1q!, the following holds: For every degree-d polynomial Qpxq
over G of sparsity at least s, we have

Pr
x„t0,1un

rQpxq ‰ 0s ě 1{2d´1 ´ 2Opd3q{
?
s.

When d “ 1, [ABP`24] show an anti-concentration lemma along the lines of Littlewood and
Offord [LO38] which bounds the density of the zeroes of non-sparse linear polynomials by
an arbitrarily small constant (as long as the sparsity is large enough). However, even for
d “ 2, this problem is somewhat subtle. For example P pxq “ x1 ¨ P 1px2, . . . , xnq (where
P 1 is of degree 1 and large sparsity), is always 0 when x1 “ 0. In other words, we cannot
hope to bound the density of the zeroes of non-sparse degree-2 polynomials by an arbitrarily
small constant. Nevertheless, we can still argue that it cannot be much larger than 1{2 (i.e.,
1´1{2d´1 when d “ 2). For this particular example of P “ x1 ¨P 1, we note that when x1 “ 1,
we can defer to the d “ 1 case to bound the fraction of roots by a small constant (say c) and
when x1 “ 0, P pxq is always zero; thus the fraction of roots of P over t0, 1un is less than
1{2 ` c, which is what we wanted to prove. We formalize this for general polynomials (of
large sparsity) and general degree d. In particular, we rely on an anti-concentration bound of
Meka, Nguyen and Vu [MNV16] when P has many disjoint (non-zero) monomials of degree d

– in other words, a “d-matching”. Otherwise, there has to be a small vertex cover among the
monomials and we use this to reduce to the case of smaller degree (and perform an induction
on the degree). There is the further complication of the fact that [MNV16] state their results

13We will show the existence of such a c in the formal proof.

29



only for polynomials over the reals whereas our goal is to also prove it over groups without
elements of small order. However, we show that we can use a linear-algebraic argument to
deduce the same bound for our setting by making use of the anti-concentration statement
over the reals.

2. Counting sparse polynomials: We want to show that the number of degree-d polynomi-
als P1, P2, . . . , Pt of constant sparsity that are p1{2d ´ εq-close to a function f is polyp1{εq.
The case of d “ 1 was handled by [ABP`24] by reducing (at least implicitly) to the case of
P1, . . . , Pt depending on disjoint sets of variables and uses the “independence” of such poly-
nomials to get a bound on t. This part of the reduction is more involved for higher degrees.
The reduction in [ABP`24] occurs by setting certain subsets of variables to constants. For
linear polynomials, [ABP`24] has the advantage that setting one variable cannot make a
polynomial zero (assuming it depends on at least two variables). However, even for d “ 2, we
cannot afford to set variables to arbitrary constants. For example, P pxq “ x1 ¨ px2 `3x3 ´x4q
vanishes if we set x1 “ 0. We get around this by analyzing the structure of the polynomials
and setting variables in two stages: in each stage we prove that the list size does not change
too much. We defer the remaining details about these two stages (and the full argument)
to Section 4.1.1.

We now proceed with the proof of Theorem 4.0.2 with all the details. We will start by assuming the
anti-concentration lemma (Lemma 4.1.1) and deducing Theorem 4.0.2 in Section 4.1.1. We then
show how to prove Lemma 4.1.1 in Section 4.1.2.

4.1.1 Pruning the list

Roughly speaking, we first show that it suffices to bound the number of “sparse polynomials” in
the list to get an upper bound on the total list size. From now on, we will use sparspP q to denote
the number of monomials with non-zero coefficient in the polynomial P.

Reducing to counting sparse polynomials. Let P1, P2, . . . , Pt be all the distinct degree-d
polynomials that are p1{2d ´ εq-close to f . We consider the following graph G with vertex set rts
and an edge between i and j if and only if sparspPi ´ Pjq ď s0 where s0 “ 2Opd3q is large enough
so that the probability on the RHS of Lemma 4.1.1 is at least 1{2d´1 ´ 0.5{22d. Here we are using
the fact for a sufficiently large constant α, the order of all the non-zero elements of G are greater

than p0 “ 22
αd3 ě ps0 ` 1q!.

We now show that G cannot contain an independent set of size ℓ “ 4d. Here, we are assuming
t ą ℓ as otherwise we are done. That is, without loss of generality, assume that the polynomials
P1, P2, . . . , Pℓ are such that sparspPi ´ Pjq ě s0 for all i ‰ j P rℓs. We will use the following
fact.

Lemma 4.1.2 (e.g. [Juk11], Lemma 2.1). Suppose A1, . . . , Aℓ Ď U are subsets each of size r such
that the pairwise intersections Ai X Aj are of size at most r1 for all i ‰ j P rℓs. Then the size of
the union of the sets Yℓ

i“1Ai is at least r2ℓ{pr ` pℓ ´ 1qr1q.
We take U to be t0, 1un and for i P rℓs, Ai to be any subset of tx | fpxq “ Pipxqu of size
p1 ´ 1{2dq2n and apply the above lemma. We note that for any i ‰ j P rℓs, |Ai X Aj | ď r1 for
r1 “ 2npp1 ´ 1{2d´1q ` 0.5{22dq by applying Lemma 4.1.1 for Q “ Pi ´ Pj since we have assumed
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that sparspPi ´ Pjq ě s0. Since | Yℓ
i“1 Ai| ď 2n, we obtain

2n ě pp1 ´ 1{2dq2nq2ℓ
p1 ´ 1{2dq2n ` pℓ ´ 1qp1 ´ 1{2d´1 ` 0.5{22dq2n .

Simplifying the above, we get that ℓ ă 4d. Thus, there is no independent set of size 4d in G, which
in turn implies by Turán’s theorem that there is at least one vertex ν P rts of G with degree at
least

t1 ě t{4d ´ 1. (6)

Let ν1, ν2, . . . , νt1 be distinct neighbors of ν. Then consider the polynomials Qi “ Pνi ´ Pν for
i P rt1s. We note that sparspQiq ď s0 and δpQi, f

1q ď 1{2d ´ ε for f 1 “ f ´ Pν .

We now bucket the polynomials Q1, Q2, . . . , Qt1 based on which subset of variables they depend
on14. Since the sparsity of each Qi is at most s0, it must depend on at most s0d variables.

In the next paragraph, we bound the size of each bucket.

Counting sparse polynomials depending on the same set of variables. We will show
that the number of polynomials Q that depend (only) on the variables xi for i P I for some fixed

I P
` rns

ďs0d

˘
such that Q is p1{2d ´ εq-close to f 1 is at most p2{εq22s0d . Suppose that Q1, Q2, . . . , Qt2

are such polynomials over the variables indexed by I and we want to show that t2 ď p2{εq22s0d .
Note that if f 1 also depends only on the variables indexed by I, then we get the bound 22

s0d by
applying Claim 4.0.1. However, in general, f 1 can depend on variables outside I and this results in
an additional 2{ε factor.

To make this precise, we define a function f2 : t0, 1uI Ñ G over just the variables in I as f2pyq “
f 1pzq where z|I “ y and z|Ic is a uniformly random Boolean assignment. Let Xi be the indicator
random variable for the event that δpf2, Qiq ď 1{2d ´ ε{2 for i P rt2s. Since δpf 1, Qiq ď 1{2d ´ ε, we
conclude that with probability at least ε{2, it holds that δpf2, Qiq ď 1{2d´ε{2 i.e., PrrXi “ 1s ě ε{2.
By linearity of expectation, there must be a setting of z|Ic such that for the corresponding f2, at
least pε{2qt2 indices i P rt2s exist such that δpQi, f

2q ď 1{2d ´ ε{2. But by Claim 4.0.1 this is at

most 22
s0d . Hence, we get t2 ď p2{εq22s0d .

Therefore, there must be at least t1{pp2{εq22s0dq non-empty buckets. Recall that we label each
bucket by a subset of variables that the polynomials in that bucket depend on i.e., a subset of rns
of size at most k “ s0d. Thus there must be at least

t3 ě t1{pp2{εq22s0dq (7)

non-empty buckets that are labeled with a subset of rns of size at most k.

14We say that a polynomial Qpxq depends on xi if xi appears in at least one monomial that has non-zero coefficient
in Q.
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Reducing to the case where the variable sets form a sunflower. We now invoke the
sunflower lemma with the sets Si’s below being the labels of those non-empty buckets.

Lemma 4.1.3 ([ER60], Theorem 3). Suppose S1, S2, . . . , St3 are distinct subsets of rns of size at
most k with t3 ě k!pr ´ 1qk for some integer r ě 3. Then there exists at least r sets among
S1, S2, . . . , St3 that form a sunflower. That is, there exists distinct indices i1, i2, . . . , ir P rt3s and
C Ď rns (called the core of the sunflower) such that C “ Sij1

X Sij2
for all j1 ‰ j2 P rrs, and SijzC

are non-empty for all j P rrs.
Using the bound k ď s0d, we can take

r “ pt3{ps0dq!q1{s0d (8)

in the above lemma. Now, since the corresponding buckets are non-empty, we can choose one (ar-
bitrary) polynomial from each bucket that forms the sunflower – suppose, without loss of general-
ity, that Q1, Q2, . . . , Qr are polynomials depending on variables indexed by subsets S1, S2, . . . , Sr Ď
rns respectively such that the Si’s form a sunflower, say with core C Ď rns. Furthermore, recall
that we have δpf 1, Qiq ď 1{2d ´ ε for all i P rrs.

Reducing to the case where the variable sets are pairwise disjoint. The main idea is to
set the variables in the core of the sunflower at random. However, we will need to do this in two
steps.

• For the sake of analysis, we shall relabel the variables indexed by C by z “ tz1, z2, . . . , zn0
u

arbitrarily (note that an empty core C corresponds to n0 “ 0). We also relabel the variables

indexed by SizC by ypiq “ typiq
1 , y

piq
2 , . . . , y

piq
ni u for i P rrs and some integers ni ě 1. Then, being

a degree-d polynomial, we can express each polynomial Qipxq “ Qipz,ypiqq as a polynomial
in the ypiq variables with coefficients being some polynomials over z variables. That is,

Qipz,ypiqq “
ÿ

IPprnis
ďd q

pypiqqIQi,Ipzq, (9)

where pypiqqI denotes the monomial corresponding to taking the product of variables indexed
by I and Qi,I is a polynomial of degree at most d ´ |I|. Since Qi depends on the variables
ypiq, there must exist a non-empty subset I for which the polynomial Qi,Ipzq is non-zero.

Thus, we can define the y-degree of each Qi as the maximum size of an I P
`rnis

ďd

˘
such that

Qi,Ipzq ‰ 0. By pigeonhole principle, there must be at least r{d indices i P rrs such that the
corresponding y-degrees of Qi’s are identical – we will denote this by d1 P rds. Without loss
of generality, we will assume that Q1, Q2, . . . , Qr1 have y-degree equal to d1 for some

r1 ě r{d. (10)

Now for each i P rr1s, let mpiq Ď C denote an arbitrary non-zero monomial of Qi,Ipzq for an

arbitrary I P
`rnis

d1

˘
such that Qi,I ‰ 0. Note that mpiq can only take at most 2|C| ď 2s0d

values. Thus, by pigeonhole principle, there exist at least

r2 ě r1{2s0d (11)
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indices for all which mpiq “ C 1 for some C 1 Ď C. Again, without loss of generality, we assume
that Q1, Q2, . . . , Qr2 are such polynomials.

We now show that there exists an assignment to variables in CzC 1 such that

r3 ě r2ε{2 (12)

many of the respective restricted polynomials Q1
1, Q

1
2, . . . , Q

1
r3 (here we are again assuming

that the first r3 polynomials satisfy this property) depend on at least one variable outside
C i.e., on some variable(s) in their respective ypiq. Furthermore, the distance from the corre-
sponding restriction of f2 is small, i.e., δpf3, Q1

iq ď 1{2d ´ε{2 for all i P rr3s. For a uniformly
random assignment to the variables in CzC 1, we have that the expected distance δpf3, Q1

iq is
at most 1{2d ´ ε. Hence, with probability at least ε{2 over the choice of the random assign-
ment, we have that δpf3, Q1

iq ď 1{2d ´ ε{2 for each i P rr2s. Now, by linearity of expectation,
we conclude that there exists at least one assignment such that δpf3, Q1

iq ď 1{2d ´ ε{2 holds
for at least r2ε{2 many polynomials.

• We note that none of the restricted polynomials Q1
i become zero or become identical to

each other since for each i, there exists an I P
`rnis

d1

˘
such that Qi,Ipzq remains non-zero.

This is because, by construction, it contains the monomial zC
1
with a non-zero coefficient

as a monomial of maximum degree, and setting the variables outside C 1 cannot change the
coefficient of this monomial. Let z1 Ď z be the variables indexed by C 1 and let Q1

i,Ipz1q denote
the restriction of Qi,Ipzq for each i P rr3s and I P

`rnis
ďd

˘
corresponding to the above assignment

to the variables in CzC 1. We have

Q1
ipz1,ypiqq “

ÿ

IPprnis
ďd q

pypiqqIQ1
i,Ipz1q.

Therefore, for each i, there exists an Ii P
`rnis

d1

˘
for which Q1

i,Ii
pz1q has a non-zero coefficient

for the product of all z1 variables. Thus we conclude that for a random setting of z1 “ a,

with probability at least 1{2degpQ1
i,Ii

q
it holds that Q1

i,Ii
paq ‰ 0. But notice that degpQ1

i,Ii
q ď

d ´ d1 since degpQ1
iq ď d and |Ii| “ d1. Hence, by linearity of expectation, there exists some

assignment a P t0, 1uC1
such that at least r3{2d´d1

of the corresponding restricted polynomials
(which we will denote by Q2

i pypiqq “ Q1
ipz1 “ a,ypiqq) are non-constant. In particular, the

coefficient of pypiqqI is non-zero in Q2
i .

We further claim that δpf4, Q2
i q ď 1{2d1 ´ ε{2 where f4 is the restriction of f3 obtained

by setting z1 “ a. This follows by recalling that δpf3, Q1
iq ď 1{2d ´ ε{2 and we are setting

d ´ d1 variables to get f4 and Q2
i . Indeed, δpf4, Q2

i q ď 2d´d1 p1{2d ´ ε{2q ď 1{2d1 ´ ε{2 for
any choice of a. In turn, this implies that for the setting z1 “ a, we have m ě r3{2d´d1

polynomials Q2
1, Q

2
2, . . . , Q

2
m of degree at most d1 (recall that the y-degree of the polynomials

we are considering is d1) depending on pairwise disjoint sets of variables yp1q,yp2q, . . . ,ypmq

respectively such that δpf4, Q2
i q ď 1{2d1 ´ ε{2.

Counting polynomials depending on pairwise disjoint variables. For the rest of the analy-
sis, we treat f4 and the polynomialsQ2

i as functions over all the n variables even though we fixed the

values of certain variables in the preceding steps. With this setup, note that PrxPt0,1un,iPrms

„
f4pxq “
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Q2
i pxq


ě 1 ´ 1{2d1 ` ε{2, which implies that with probability at least ε{4 over the choice of x,

we have that PriPrmsrf4pxq “ Q2
i pxqs ě 1 ´ 1{2d1 ` ε{4. Note that for any such x P t0, 1un, if

Q2
i pxq “ f3pxq, then Q2

i pxq “ Q2
j pxq for at least p1 ´ 1{2d1 ` ε{4qm ´ 1 many j P rmsztiu. In

particular, this gives

Pr
xPt0,1un

„
Di P rms :

ˇ̌
ˇ̌tj | Q2

jpxq “ Q2
i pxqu

ˇ̌
ˇ̌ ě p1 ´ 1{2d1 ` ε{4qm ´ 1


ě ε{4. (13)

We will now prove an upper bound on the same quantity above: fixing an arbitrary i P rms and
an arbitrary setting to the variables appearing in Qi, we see that since the polynomials depend
on disjoint subsets of variables, the indicator random variables for the events Q2

j pxq “ Q2
i pxq for

a uniformly random x P t0, 1un are Bernoulli random variables bernppjq for some pj ď 1 ´ 1{2d1

(here we are applying the Schwartz-Zippel lemma Theorem 2.2.1) and across j P rmsztiu. Thus, by
a Chernoff bound, we have

Pr
xPt0,1un

„ˇ̌
ˇ̌tj | Q2

jpxq “ Q2
i pxqu

ˇ̌
ˇ̌ ě p1 ´ 1{2d1 ` ε{4qpm ´ 1q


ď expp´Ωpε2mqq. (14)

Applying a union bound over i P rms for (14) and combining with (13), we get ε{4 ď m expp´Ωpε2mqq,
which gives that

m ď Op1{ε3q. (15)

Chaining together the sequence of inequalities in t, t1, t3, r, r1, r2, r3 and m, and using s0 “ 2Opd3q

and ε ď 1{2d, we get the desired bound on the list size:

t ď p1{εq22
Opd3q

.

This finishes the proof of Theorem 4.0.2 assuming Lemma 4.1.1.

4.1.2 Anti-concentration lemma

We now prove the anti-concentration lemma (Lemma 4.1.1). That is, we will show that there exists
an absolute constant M ą 0 such that for any degree-d polynomial Qpxq of sparsity at least s, over
an Abelian group G in which all non-zero elements have order greater than ps ` 1q!, that

Pr
xPt0,1un

rQpx ‰ 0qs ě 1{2d´1 ´ Md3{
?
s.

Note that the above bound is trivial unless s ě M2d3 .

The proof proceeds by an induction on d.

The base case. For d “ 1, we use the known anti-concentration result of Littlewood and Of-
ford [LO38], or rather the subsequent improvement due to Erdős [Erd45]:
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Theorem 4.1.4 ([Erd45], Theorem 2 modified). There exists a constant B ą 0 such that any
degree-1 multilinear polynomial P pxq over the reals with at least r many variables with non-zero
coefficients, we have

Pr
x„t0,1un

rP pxq “ 0s ď B?
r
.

However, we cannot apply the above theorem directly since G need not be the group of real numbers.
Nevertheless, using a simple linear algebraic argument, we show in the below claim that the same
anticoncentration inequality actually holds as long as the non-zero elements of G have order greater
than s!.

Claim 4.1.5. Suppose that every degree-d multilinear polynomial P pxq P Rrxs with at least r

disjoint non-zero monomials of degree d has at most c ¨ 2n roots over t0, 1un for some c “ cpd, rq.
Then the following holds for every Abelian group G in which the order of all the non-zero elements
is greater than

`
rd
ďd

˘
!: Every degree-d polynomial Qpxq over G with at least r disjoint non-zero

monomials of degree d has at most c ¨ 2n roots over t0, 1un.
For a degree-1 polynomial with sparsity s, we can apply Claim 4.1.5 and Theorem 4.1.4 with
r “ s ´ 1 to get the base case (as long as M is a large enough constant). This finishes the proof
of Lemma 4.1.1 for the base case d “ 1, assuming Claim 4.1.5.

The induction step. Suppose d ě 2 and that the claim is true for all degrees until d ´ 1. To
then prove it for degree d, we split the analysis into three cases, where the parameters s1 and s2
are to be fixed later.

• Case 1: There exists at least one variable (say x1) that is contained in at least s1 monomials
of Q. That is, let

Qpx1, x2, . . . , xnq “ x1Q1px2, . . . , xnq ` Q2px2, . . . , xnq, (16)

where we have degpQ1q ď d ´ 1 and sparspQ1q ě s1. We analyze the probability that Qpxq
by first setting the variables x2, x3, . . . , xn and then setting the value of x1. By induction
hypothesis, we have that

Pr
px2,...,xnq„t0,1un´1

rQ1px2, . . . , xnq ‰ 0s ě 1{2d´2 ´ M pd´1q3{?
s1 (17)

Interpreting (16) as a linear polynomial in x1 with coefficients being Q1 and Q2, we have
that PrrQpxq ‰ 0s ě PrrQ1px2, . . . , xnq ‰ 0s ¨ PrrQpxq ‰ 0 | Q1px2, . . . , xnq ‰ 0s. By
the DLSZ lemma (Theorem 2.2.1) for degree-1 polynomials, we have that the second factor
above PrrQpxq ‰ 0 | Q1px2, . . . , xnq ‰ 0s is at least 1{2. Combined with (17), we thus get that

PrrQpxq ‰ 0s ě 1{2 ¨
´
1{2d´2 ´ M pd´1q3{?

s1

¯
ě 1{2d´1 ´ Md3{?

s, by taking s1 “ s{M2d2

and M a sufficiently large constant.

• Case 2: There exist s2 “ Md2 many disjoint monomials of degree d of Q (with non-
zero coefficients), again assuming M is sufficiently large. We now apply the following anti-
concentration result of Meka, Nguyen and Vu [MNV16] which can be thought of as a general-
ization of [LO38, Erd45] to higher degree when there are many disjoint monomials of maximal
degree:
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Theorem 4.1.6 ([MNV16], Theorem 1.6 modified). There exists a constant B ą 0 such
that for any degree-d multilinear polynomial P pxq over the reals with at least r many disjoint
degree-d monomials with non-zero coefficients, we have

Pr
x„t0,1un

rP pxq “ 0s ď Bd4{3
?
log r

r1{p4d`1q
.

Applying the above theorem for r “ s2 “ Md2 and taking M sufficiently large (as a function
of B), we see that

PrrQpxq “ 0s ď Bd4{3
?
log s2

s
1{p4d`1q
2

ď 1{2 ď 1 ´ 1{2d´1. (18)

However, Theorem 4.1.6 as stated only holds over the reals. Regardless, using Claim 4.1.5,
we know that the same bound applies if all the non-zero elements of G are of order greater
than

`
rd
ďd

˘
!. Recall that we are already assuming that the non-zero elements of G are of order

greater than ps` 1q! and that s ě M2d3 from the hypothesis of Lemma 4.1.1. Hence, all that
remains to be checked is that

`
rd
ďd

˘
! ď ps ` 1q! for the above choice of r “ s2 “ Md2 . Indeed

this inequality holds for sufficiently large M . This finishes the proof of Lemma 4.1.1 in Case
2.

• Case 3: Suppose neither Case 1 nor Case 2 occur. Using a greedy algorithm that repeatedly
picks disjoint monomials of degree d for as long as possible, we can find a vertex cover of size
at most s2d among the non-zero monomials of Q of degree d. That is, there exists at most
s2d many variables (call them y) such that any non-zero monomial of Q of degree d contains
at least one of these variables.

We will analyze the probability that Qpxq is zero by setting the y variables arbitrarily. Let
Q1 denote the polynomial in the variables xzy after an arbitrary assignment to those of y.
Note that degpQ1q ď d ´ 1, since we set at least one variable in each monomial of degree d.
It suffices to show that Q1 is non-zero to get that PrzrQ1pzq ‰ 0s ě 1{2d´1 by a direct use
of the DLSZ lemma. Since Q has at least s monomials and each variable is contained in at
most s1 monomials, the total number of monomials containing at least one variable from y

is at most |y| ¨ s1 ď s1s2d. Hence, even upon setting the variables in y, at least s ´ s1s2d

monomials of Q remain unaffected. However, the monomials that do get affected can cancel
out these monomials. Nevertheless, there would be at least s´ 2s1s2d “ s´ 2Md2ds{M2d2 “
sp1 ´ 2d{Md2q ą 0 non-zero monomials in Q1. Thus PrxrQpxq ‰ 0s ě 1{2d´1.

This concludes the proof of Lemma 4.1.1 assuming Claim 4.1.5, which we prove below.

Proof of Claim 4.1.5. We first reduce the number of variables of Q from n “ |x| to rd by setting
the variables that are not part of the r disjoint disjoint degree-d monomials of Q arbitrarily. It
then suffices to show that this restricted polynomial, which we shall denote by Q1pyq, has at most
c ¨ 2rd roots over t0, 1urd. Towards a contradiction, let S Ď t0, 1urd be a subset of size greater than
c ¨2rd such that Q1 evaluates to 0 on all the points in S. Consider the following t0, 1u-valued matrix
M of dimensions ℓ ˆ |S| where ℓ “

`
rd
ďd

˘
: the pi, jq-th entry of M denotes the evaluation of the

i-th monomial at the j-th point in S. Let a1, a2, . . . , ar P rℓs denote the rows corresponding to the
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disjoint monomials of Q1 and for each i P rℓs, let ei P t0, 1uℓ denote the vector that takes value 1 at
the i-th index and 0 everywhere else.

We claim that there exists at least one index k P rrs such that eak lies in the column span of M ,
when M is treated as a matrix over R. We prove this by contradiction. That is, suppose that
eak R V for all k P rrs, where V Ď Rℓ denotes the column space of M . Note that given any vector
u P Rℓ, we can uniquely express it as u “ u‖ ` uK such that u‖ P V and uK K V (i.e.,

@
uK,v

D
“ 0

for all v P V . Denoting the orthogonal subspace of V by V K, this is equivalent to uK P V K). Since
eak R V , we have that eK

ak
‰ 0. Hence, tx P V K |

@
x, eK

ak

D
“ 0u is a subspace of V K of co-dimension

1. Since a finite union of subspaces of co-dimension 1 is never equal to the ambient vector space over
R (which is V K in our case), we conclude that there exists a vector p P V K such that

@
p, eak

K
D

‰ 0

for all k P rrs. Since
A
p, e

‖
ak

E
“ 0 as the two vectors are in orthogonal subspaces, we get that

xp, eaky ‰ 0 for all k P rrs. Moreover, since p is orthogonal to the columnspace of M , we get that
xp,Mjy “ 0 where Mj P t0, 1uℓ denotes the j-th column of M for every j P r|S|s. Let P pyq P Rrys
denote the polynomial with coefficients represented by p. Then, the above inner product relations
imply that P is a degree-d polynomial with r disjoint non-zero monomials yet it vanishes on S.
This is a contradiction to the assumption in the claim statement since |S| ą c ¨ 2rd. Hence, indeed
there exists k P rrs such that eak is spanned the columns of M .

Suppose

eak “
tÿ

p“1

αpMjp , (19)

where α “ pα1, α2, . . . , αtq P Rt and Mj1 ,Mj2 , . . . ,Mjt are linearly independent columns of M for
some t ď ℓ. Let us denote the submatrix indexed by the columns j1, j2, . . . , jt by M 1 P Rℓˆt. Since
M 1 is full-column-rank, let i1, i2, . . . , it P rℓs be the indices of the rows of M 1 that are linearly
independent – we shall denote the corresponding submatrix of M 1 by M2 P Rtˆt. Let v1 “ eak
and v2 P t0, 1ut be the restriction of v1 to the indices i1, i2, . . . , it. From (19), we have M 1α “ v1,

and hence M2α “ v2. Since M2 is invertible, by Cramer’s rule, we have that αp “ detpM2
p q

detpM2q for

all p P rts, where detp¨q denotes the determinant and M2
p is the matrix M2 with its p-th column

replaced by the vector v2. By multiplying detpM2q on both sides of (19), we see that there exist
integers β0 P rt!s and β1, . . . , βt P t´t!, . . . , t!u such that β0eak “ řt

p“1 βpMjp , where we are using

the fact that the determinant of any t0, 1utˆt matrix lies in t´t!, . . . , t!u.
We can use this to argue about the polynomial Q1 defined above over the group G. Assume that
the coefficient of the ith monomial in Q1 is Q1

i P G. Recall that Q1 evaluates to 0 on all points in S

and that Q1 has disjoint monomials corresponding to rows a1, . . . , ar P rℓs, implying that Q1
aj

‰ 0

for each j P rrs. The previous paragraph implies that β0Q
1
ak

“ řt
p“1 βpQ

1pxpq, where Q1
ak

P G

denotes the coefficient of the corresponding monomial in Q1 and xp is the p-th point in S (following
the same indexing as the columns of M). Since Q1 vanishes on S, we have β0Q

1
ak

“ 0. This is

a contradiction since β0 ď t! ď
`
rd
ďd

˘
! and we assumed that all non-zero elements of G have order

greater than
`
rd
ďd

˘
!. �
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4.2 Combinatorial bound for a product of p-groups (p ă p0)

In this subsection, we prove a combinatorial bound on the list size in case of Abelian groups G that
are products of p-groups for small p, i.e. Theorem 4.0.3. We say that G is a pă p0q-group if every
prime factor of |G| is smaller than p0 (or equivalently, that G is a finite product of p-groups where
p ă p0).

The proof of the combinatorial bound in this case is quite different from results that prove similar
statements when the domain is Zn

p for constant p [GKZ08, BL18]. In particular, we depart from
the analytic ideas of [BL18] and use combinatorial and algebraic techniques based on monomial
orderings and the well-known technique of ‘fingerprinting’ (see, e.g. [GH00]).

Monomial ordering and leading monomials. We fix variables x1, . . . , xn and define an order-
ing among (not necessarily multilinear) monomials in these variables as follows. Given monomials
m1,m2, we say that m1 ĺ m2 if degpm1q ă degpm2q or degpm1q “ degpm2q and for the least i such
that the two monomials differ in the exponent of xi, we have a lower power of xi dividing m1 than
m2. This is also called the graded lexicographic order.15 Some examples are as follows.

x2x
2
3 ĺ x41, x1x2x

2
3 ĺ x1x

2
2x3

Now, given a polynomial P P Pdpt0, 1un, Gq for a group G, we define its leading monomial LMpP q
to the largest monomial (w.r.t. ĺ) with non-zero coefficient in P. We identify LMpP q with the set
S Ď rns of size at most d indexing the variables that appear in it.

We will use monomial orderings in the setting when G “ Zp to show that many distinct polynomials
cannot agree with the same function at too many points. This uses crucially the following tail bound,
which we view as independently interesting. It is proved using the fairly standard technique of using
‘footprints’ [GH00] and an idea for proving tail bounds by Panconesi and Srinivasan [PS97]. As far
as we know, such a bound for low-degree polynomials has not been observed before.

Lemma 4.2.1 (Tail bound for degree-d polynomials). Fix any field F and any integer d ě 1.
Let S1, . . . , St P Pdpt0, 1un,Fq be polynomials such that LMpSiq X LMpSjq “ H for every
distinct i, j P rts. Then for every η ą 0, we have

Pr
a

„
|ti P rts | Sipaq “ 0u| ě

ˆ
1 ´ 1

2d
` η

˙
¨ t


ď expp´Ωpη2tqq. (20)

The lemma is proved in Section 4.2.1 below.

We now outline the proof of the main theorem (Theorem 4.0.3) of this section, which involves
several steps.

1. The first, and more involved, step is to prove the bound in the case that G “ Zp where p ă p0
is prime. The proof in this case splits into three smaller steps.

(a) Pigeonhole argument: Fix an f : t0, 1un Ñ Zp. Given a list of L polynomials
P1, . . . , PL P Pdpt0, 1un,Zpq that are p 1

2d
´ εq-close to f , we show how to obtain a

15Any graded monomial order in the sense of [CLO15, Section 2, Chapter 2] will do just as well.
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sub-list of size ℓ “ Ωplogp Lq polynomials Q1, . . . , Qℓ that moreover satisfy the property
that their leading monomials are distinct.

(b) Sunflower lemma: We then apply the Sunflower lemma (Lemma 4.1.3) to the monomi-
als LMpQ1q, . . . ,LMpQℓq to find a subset of t “ Ωdpℓ1{dq polynomials from tQ1, . . . , Qℓu
whose leading monomials form a sunflower, i.e. they are pairwise disjoint except for
their common intersection.16

(c) Using the tail bound: We can now apply the tail bound (Lemma 4.2.1) stated above
and a simple combinatorial argument to show that t ď polyp1{εq. Overall, this leads to
a bound of L ď exp

`
Odp1{εqOpdq

˘
, concluding the proof in the prime case.

2. Modifying [DGKS08b]: The second step is to ‘lift’ the list bound L that holds for Zp

(p ă p0) to a list bound that holds over all the finite Abelian pă p0q-groups G. In the linear
(d “ 1) case handled in [ABP`24], this was done using the work of [DGKS08b], which gives
a combinatorial characterization for such a lifting. This combinatorial property holds for the
space of linear polynomials, implying (using [DGKS08b]) that a list bound of L in the prime
case ‘lifts’ to a list bound of polypLq for all pă p0q-groups G.

Unfortunately, for d ą 1, the characterization of [DGKS08b] is not applicable as stated.
However, we show that a simpler proof allows us to recover a weaker bound of LOplogp1{εqq.
Using the bound for the prime case, we again get a bound of exp

`
Odp1{εqOpdq

˘
on the list

size for any Abelian pă p0q-group G.

In the rest of the section, we show how to carry out the above strategy. We start with the proof of
Lemma 4.2.1 in Section 4.2.1, followed by the prime case in Section 4.2.2 and the case of Abelian
pă p0q-groups in Section 4.2.3.

4.2.1 Proof of the tail bound

To derive the tail bounds (Lemma 4.2.1) we will need the following theorem of Panconesi and
Srinivasan [PS97], which is an extension of Chernoff-Hoeffding bound.

Theorem 4.2.2. [PS97, Theorem 3.4] Let Z1, . . . , Zt be Boolean random variables such that for
some α P r0, 1s and for every subset I Ď rts, we have Pr r^iPIZi “ 1s ď α|I|. Then, we have the
following tail bound.

Pr

«
tÿ

i“1

Zi ě pα ` ηq ¨ t
ff

ď expp´Ωpη2tqq.

Proof of Lemma 4.2.1. We start by defining the Boolean random variables Z1, . . . , Zt as follows:
For i P rts, Zi “ 1 exactly when Si is equal to 0, i.e. Zipaq “ 1 iff Sipaq “ 0. To use Theorem 4.2.2,
we need to show the following:
For each subset I Ď rts,

Prr^iPIZi “ 1s ď α|I|,

where α :“
`
1 ´ 1

2d

˘
.

16The recently improved sunflower lemma due to Alweiss, Lovett, Wu, and Zhang [ALWZ21] unfortunately does
not lead to significantly improved parameters here, and so we stick to the classical version.
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For simplicity in notation, assume that I “ t1, . . . , ru and define the ZeroI Ď t0, 1un as the set of
common zeroes of S1, . . . , Sr in t0, 1un, i.e.

ZeroI :“ ta P t0, 1un | Sipaq “ 0, for all i P rtsu

We want to show that |ZeroI | ď αr ¨ 2n.
To do this, we use the standard ‘footprint bound’ (see e.g. [GH00] and [CLO15, §5.3]) which can be
seen as a version of the linear algebra method in combinatorics (see, e.g. [BF22]). More precisely,
we consider the vector space of functions g : ZeroI Ñ F. We denote this vector space by FI and we
will show that

dimpFIq ď ¨αr ¨ 2n. (21)

Note that the set of indicator functions for each point in ZeroI is a basis for FI and thus dimpFIq
is equal to |ZeroI |. Combining it with Equation (21), we will get that |ZeroI | ď 2n ¨ αr and this
will finish the proof.

We bound dimpFIq by constructing a spanning set for FI of size at most αr ¨ 2n. The set ZeroI
is a subset of the product set t0, 1un. We define another set of polynomials and show that their
common set of zeroes in Zn

p is exactly equal to ZeroI , gaining the advantage of working over a field
and use linear algebra. Define the set I 1 of polynomials as follows:

I 1 :“
 
x21 ´ x1, . . . , x

2
n ´ xn, S1, . . . , Sr

(

It is easy to see that the common set of zeroes of polynomials in I 1 over Zn
p is exactly ZeroI (the

polynomial constraint x2i ´ xi forces the ith coordinate to be in t0, 1u).
Now, given any function g : ZeroI Ñ F, we can express g as a polynomial (e.g. via Theorem 2.2.1).
Using a standard division algorithm for multivariate polynomials (see [CLO15, §2.3, Theorem 3]),
we can write

g “
nÿ

i“1

ai ¨ px2i ´ xiq `
rÿ

j“1

bjSj ` R (22)

where a1, . . . , an, b1, . . . , br P Zprx1 . . . , xns are some polynomials and R P Zprx1 . . . , xns is such
that no monomial with non-zero coefficient in R is divisible by any of the leading monomials of the
polynomials in the set I 1. In other words, R is a linear combination of multilinear monomials that
are not divisible by LMpS1q, . . . ,LMpSrq.17

By Equation (22), the polynomials R and g represent the same function over ZeroI . It follows
that the set of multilinear monomials that are not divisible by LMpS1q, . . . ,LMpSrq span the space
FI . In particular, the dimension of the vector space FI is upper bounded by the number of such
multilinear monomials.

Fnially we argue that the number of multilinear monomials not divisible by LMpS1q, . . . ,LMpSrq
is at most αr ¨ 2n. Picking a uniformly random multilinear monomial corresponds to choosing a
uniformly random subset J Ď rns. The chance that the random multilinear monomial is not divisible
by LMpSjq (j P rrs) is equal to the chance that the set J does not contain the set corresponding
to LMpSjq which is at most α “ 1 ´ 1

2d
since |LMpSjq| ď d. Since the leading monomials of

17The last couple of paragraphs is essentially a summary of part of [CLO15, §5.3, Proposition 4] stated here for
completeness.
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S1, . . . , Sr are pairwise disjoint, these events are mutually independent, leading to the conclusion
that a uniformly random multilinear monomial is not divisible by LMpS1q, . . . ,LMpSrq is at most
αr. This is equivalent to the desired claim.

This proves Equation (21), which concludes the proof of Lemma 4.2.1 as described above. �

We will use a corollary of this tail bound, which we now prove.

Corollary 4.2.3. Fix any field F and any integer d ě 1. Let Q1, . . . , Qt P Pdpt0, 1un,Fq be
polynomials such that LMpQiq X LMpQjq “ H for every distinct i, j P rts. Then for every η ą 0,
we have

Pr
a

„
Dc P F s.t. |ti P rts | Qipaq “ cu| ě

ˆ
1 ´ 1

2d
` η

˙
¨ t


ď t expp´Ωpη2 ¨ tqq.

Proof. Without loss of generality, assume that LMpQ1q ň LMpQ2q ¨ ¨ ¨ ň LMpQtq.
Assume that a P t0, 1un is chosen uniformly at random as in the statement of the corollary. For
j ă t, let Ej denote the event that there is a c P F such that for at least

`
1 ´ 1

2d
` η

˘
¨ t many i P rts,

we have Qipaq “ c and furthermore that j is the smallest index such that Qjpaq “ c.

The event whose probability we are trying to bound is contained in E1 Y E2 ¨ ¨ ¨ Y Er where r “ t{2d.
Fix any j ď r. The probability of Ej is upper bounded by the probability that at least a

`
1 ´ 1

2d
` η

˘

fraction of the polynomials

Qj`1 ´ Qj, Qj`2 ´ Qj , . . . , Qt ´ Qj

all simultaneously vanish at the point a. Note that these polynomials have leading monomials
LMpQj`1q, . . . ,LMpQtq respectively, which are pairwise disjoint. Hence the tail bound Lemma 4.2.1
is applicable and we can bound the probability of Ej by expp´Ωpη2 ¨ pt ´ jqqq “ expp´Ωpη2 ¨ tqq.
The corollary follows by a union bound over the probability of E1, . . . , Er. �

4.2.2 Combinatorial bound for the prime case

In this subsection, we prove a combinatorial bound on the list size for degree d polynomials when
the coefficients are from Zp for a prime p. The list size is a constant dependent on d, p, and ε

(independent of n).

Lemma 4.2.4. Fix any d ě 1 and any prime p. Then for every function f : t0, 1un Ñ Zp we have,
|Listfε | ď exppOd,pp1{εqOpdqq.
To prove this lemma, we follow the outline from the beginning of the section. For the rest of this
section, let f be an arbitrary function as in the statement of the lemma and let Listfε “ tP1, . . . , PLu
where L P rpℓ, pℓ`1q for an integer ℓ. Note that ℓ “ Ωplogp Lq.

Pigeonhole argument. We start with a pigeonhole argument that allows us to find a sub-list

of polynomials from List
f
ε that have distinct leading monomials. More formally we prove the

following.
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Claim 4.2.5. For each non-negative integer i ď ℓ, there is a function fi : t0, 1un Ñ Zp and a set
of polynomials Qi “ tQ1, . . . , Qiu Y Q1

i such that

1. Qi Ď List
fi
ε ,

2. LMpQ1q ŋ ¨ ¨ ¨ ŋ LMpQiq ŋ LMpQq for each Q P Q1
i, and

3. |Q1
i| ě pℓ´i.

Proof. The proof is via induction on i. For the base case i “ 0, we can simply take f0 “ f and
Q0 “ List

f
ε .

Assuming the statement for i ă ℓ, we prove it for i ` 1 as follows. We define the ‘plurality
polynomial’ Pl1i as follows: for every multilinear monomial m, the coefficient of m in Pl1i is the
plurality of the coefficient of m among all the polynomials in Q1

i, where we break ties arbitrarily.

Define the function fi`1 :“ fi ´ Pl1i and define Q2
i :“ tQ ´ Pl1i | Q P Q1

iu. Using fi`1 and Q2
i , we

define Qi`1 next:

Qi`1 :“ tQ1 ´ Pl1i, . . . , Qi ´ Pl1iu Y tQi`1u Y Q1
i`1,

where

• Qi`1 is chosen to be any polynomial in Q2
i whose leading monomial m is as large as possible

among the leading monomials of polynomials in Q2
i ,

• Q1
i`1 is the set of polynomials in Q2

i that have a leading monomial strictly smaller than m,
the leading monomial of Qi`1.

We now show that fi`1 and Qi`1 satisfy the required properties.

1. It is clear that Qi`1 Ď List
fi
ε because each polynomial Q̃ P Qi`1 can be written as Q ´ Pl1i

for some Q P Qi. Hence δpfi`1, Q̃q “ δpfi, Qq ď 1
2d

´ ε.

2. We have defined Qi`1 “ tQ1 ´ Pl1i, . . . , Qi ´ Pl1i, Qi`1u Y Q1
i`1. If mj denotes the leading

monomial of Qj for j ď i, we observe that the coefficient of mj in Pl1i is 0 since the plurality
used in defining Pl1i is only taken over the polynomials in Q1

i all of which have a leading
monomial smaller than mj by the induction hypothesis. In particular, the leading monomial
of Qj ´ Pl1i is also mj. We thus have

LMpQ1 ´ Pl1iq ŋ ¨ ¨ ¨ ŋ LMpQi ´ Pl1iq ŋ LMpQi`1q

where for the last inequality we again used the inductive hypothesis. Finally, given any
Q P Q1

i`1, we have LMpQq ň m “ LMpQi`1q by definition of Q1
i`1.

3. Finally, we note that for any monomial m, the plurality of the coefficients of m among the
polynomials in Q2

i is zero, since we defined Q2
i by subtracting from each Q P Q1

i the ‘plurality
polynomial’ Pl1i. In particular, the number of polynomials in Q2

i that have a leading monomial
strictly smaller than m (or equivalently, the number of polynomials in Q2

i where the coefficient
of m is 0) is at least |Q1

i|{p ě pℓ´i´1.

This concludes the induction and hence the proof of the claim. �
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Applying Claim 4.2.5 with i “ ℓ, we see that there is a function fℓ such that |Listfℓε | ě ℓ and List
fℓ
ε

contains polynomials Q1, . . . , Qℓ with distinct leading monomials. The rest of the argument will
bound ℓ.

Sunflower lemma. We now come to the second step of the argument, which is an application of
the Sunflower lemma Lemma 4.1.3 to the set of leading monomials of Q1, . . . , Qℓ (seen as subsets of
the universe rns of size at most d). By Lemma 4.1.3, there is a sub-collection of t “ Ωpℓ1{d{dq many
polynomials such that their leading monomials form a sunflower. Without loss of generality, we
assume that these polynomials are Q1, . . . , Qt. Similarly, we assume that LMpQ1qX¨ ¨ ¨ XLMpQtq “
tj1, . . . , jku for some k P t0, . . . , d ´ 1u. Let J denote this core of the sunflower.

For each i P rts, we can express the polynomial Qi as a polynomial in the variables in core J ,
i.e.

Qipx1, . . . , xnq “
ÿ

AĎJ

Qi,Apxj : j P rnszJq ¨ xA

where xA denotes the product of the variables in A. Note that degpQi,Jq ď d ´ k for each i P rts.
We also note that LMpQi,Jq “ LMpQiqzJ by the definition of our monomial order and hence the
leading monomials of LMpQ1,Jq, . . . ,LMpQt,J q are pairwise disjoint.

Using the tail bound. We are now ready to conclude the bound on ℓ (and hence on L “ |Listfε |)
using Corollary 4.2.3. More precisely we prove the following claim.

Claim 4.2.6. Assume i P rts and a P t0, 1un are chosen uniformly at random from their respective
domains. Then

Pr
i,a

rfℓpaq ‰ Qipaqs ě 1

2d
´ ε

2
´ t ¨ expp´Ωpε2 ¨ tqq.

The statement of the claim immediately implies that t “ Oplogp1{εq{ε2q since we have Pra rfℓpaq ‰ Qipaqs “
δpfℓ, Qiq ď 1

2d
´ ε. It therefore suffices to prove the claim, which we do now.

Proof of Claim 4.2.6. We sample a in two steps: we first sample its projection to the variables
indexed by rnszJ , which we denote by a1, followed by its projection to the variables indexed by J ,
which we denote by a2.

Given a fixing a1 of the variables indexed by rnszJ, we denote by fℓ,a1 and Qi,a1 the corresponding
restrictions of fℓ and Qi (i P rts) respectively. Note that each of these is a function of the k variables
indexed by J and can hence be expressed uniquely as a multilinear polynomial in these variables
(Theorem 2.2.1). Moreover, the coefficient of the monomial xJ in Qi,a1 is exactly Qi,Jpa1q.
We denote by B “ Bpa1q the event that

Dc P Zp such that
ˇ̌
ti P rts | Qi,Jpa1q “ cu

ˇ̌
ě

ˆ
1 ´ 1

2d´k
` ε

2

˙
¨ t.

Since the polynomials Q1,J , . . . , Qt,J have degree at most d ´ k each and their leading monomials
are pairwise disjoint, we can apply Corollary 4.2.3 to bound the probability of B by t¨expp´Ωpε2tqq.
Fix any a1 such that B does not occur. In this case, the multiset of polynomials tQi,a1 | i P rtsu
has the property that no polynomial appears more than p1´ 1

2d´k ` ε
2
q ¨ t times in it. In particular,
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when we choose i P rts uniformly at random, we see that the probability that Qi,a1 ‰ fℓ,a1 is at least
1

2d´k ´ ε
2
. Since any pair of distinct functions on k variables disagree at at least a single point, we

have

Pr
i,a2

rfℓ,a1pa2q ‰ Qi,a1pa2qs ě 1

2k
¨
ˆ

1

2d´k
´ ε

2

˙
ě 1

2d
´ ε

2

Overall, we have

Pr
i,a

rfℓpaq ‰ Qipaqs “ Pr
a1,i,a2

rfℓ,a1pa2q ‰ Qi,a1pa2qs

ě p1 ´ Pr
a1

rBsq ¨
ˆ

1

2d
´ ε

2

˙
ě 1

2d
´ ε

2
´ Pr rBs

ě 1

2d
´ ε

2
´ t ¨ expp´Ωpε2 ¨ tqq

proving the claim. �

As noted above, Claim 4.2.6 implies that t “ Odplogp1{εq{ε2q, implying that ℓ “ Odptqd “ Odp1{εqd.
Since ℓ “ Ωplogp Lq, we get L “ exppOd,pp1{εqdq, proving Lemma 4.2.4.

4.2.3 Combinatorial bound for the general case

In this subsection, we prove Theorem 4.0.3 which we recall below.

Theorem 4.0.3 (Combinatorial bound for a product of p-groups where each p ă p0). Let d ě 1

and G be a product of finitely many p-groups, where each p ď 22
Opd2q

. Then for every function
f : t0, 1un Ñ G we have, |Listfε | ď exppOdp1{εqOpdqq.
To prove Theorem 4.0.3 for any pă p0q-groups G, we follow the argument from [ABP`24]. The
main bottleneck (as mentioned also above) is that the work of [DGKS08b], which is useful in ‘lifting’
the combinatorial bound from the prime case to the case of general groups for degree-1 polynomials,
no longer seems to be applicable here. So the main innovation is to give a proof of such a lifting
strategy that also works for higher-degree polynomials (albeit with worse parameters).

More precisely we prove the following lemma, that in conjunction with Lemma 4.2.4 immediately
implies Theorem 4.0.3.

Lemma 4.2.7. Fix any ε ą 0 and any positive integer d. Let S be a set of primes such that for
each p P S, we know that the space Pdpt0, 1un,Zpq is p 1

2d
´ ε, Lq-list decodable for some positive

integer L. Then, for every finite Abelian group G that is a product of p-groups for p P S, it holds
that Pdpt0, 1un, Gq is p 1

2d
´ ε, L1q-list decodable, where L1 “ LOdplog 1{εq.

The proof of the lemma is inspired by the proof of the analogous combinatorial bound in [DGKS08b],
but needs less structure on the codewords in the underlying code.

Proof. Fix any function f : t0, 1un Ñ G. We want to bound the size of Listfε .

We start by defining a sequence of quotient groups of G as follows. We start with G0 “ G. Having
defined Gi, we define Gi`1 by fixing any element hi P Gi of prime order pi P S (such an element
always exists in an Abelian group by a trivial argument, but one can also use Cauchy’s theorem (see
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e.g. [Con]) which applies to all groups) and defining Gi`1 “ Gi{Hi where Hi is the group generated
by hi. We stop when the group Gi is the trivial group containing just the identity element.

Assume that the sequence of groups thus constructed isG0 “ G, . . . , Gh “ t0u. We define a sequence
of functions fi : t0, 1un Ñ Gi (i P t0, . . . , hu) inductively by defining f0 “ f and fi`1 by

fi`1paq “ fipaq pmod Giq.

for each a P t0, 1un. We also define List
fi
ε to be a subset of Pdpt0, 1un, Giq in the natural way.

Finally, we define a tree T of height h as follows. For each i P t0, . . . , hu, we add one vertex at level
i in T for each Pi P List

fi
ε ; note that, in particular, there is exactly one vertex at level h. Further,

the children of the polynomial Pi`1 at level i ` 1 in T are (the vertices corresponding to) those
polynomials Pi at level i such that

Pipxq “ Pi`1pxq pmod Hiq.

It will be useful to note that by Theorem 2.2.1, the above equality holds both in terms of the
evaluations of the two polynomials and also in terms of their coefficients.

It is easy to see that each Pi at level i is a child of a unique Pi`1 at level i`1, namely the polynomial
Pi`1 defined by the equality above. We thus have indeed defined a tree T . The size of Listfε is
upper bounded by the number of leaves (or paths) of T , which we bound using the following claim.

Notation. Recall that each vertex v of the tree is associated to a polynomial P over group Gi

where i denotes the level of v. We define by agrpvq the fraction of points of agreement between P

and fi. Further, let ρpvq “ agrpvq ´
`
1 ´ 1

2d

˘
.

Claim 4.2.8. The tree T defined above has the following properties.

1. Each non-leaf vertex in T has at most L children.

2. If v is a child of u, then ρpuq ě ρpvq.
3. If u has two distinct children v and w, then ρpuq ě ρpvq ` ρpwq.

Using the above claim, we can finish the proof of the lemma as follows. Let ℓ “ rlogLs. We show
that for any node u with children v1, . . . , vt, we have

ρpuqℓ ě ρpv1qℓ ` ¨ ¨ ¨ ` ρpvtqℓ. (23)

Assuming this, we get by induction from the root r of T that

ρprqℓ ě
ÿ

v a leaf

ρpvqℓ ě εℓ ¨ (# of leaves of T ) ě εℓ ¨ |Listfε |

where for the second inequality, we used the fact that ρpvq ě ε for all nodes v in the tree (by
definition of ρ and the properties of the polynomials associated to each v). Since ρprq ď 1, we
immediately get |Listfε | ď p1{εqℓ “ LOplog 1{εq as desired.
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It remains to prove Equation (23) and Claim 4.2.8, which we do in that order. To see Equation (23),
we assume without loss of generality that t ě 2 (otherwise the inequality is trivial) and that
ρpv1q ě ρpv2q ě ¨ ¨ ¨ ě ρpvtq. Then we have

ρpv1qℓ ` ¨ ¨ ¨ ` ρpvtqℓ ď pρpv1q ` ρpv2qqℓ ď ρpuqℓ

where the second inequality is a consequence of Item 3 of Claim 4.2.8 and the first inequality
follows by examining the expansion of pρpv1q ` ρpv2qqℓ which contains one term that is ρpv1qℓ and
2ℓ ´ 1 ě L ´ 1 ě t ´ 1 (Claim 4.2.8 Item 1) terms that are at least ρpv2qℓ.

Proof of Claim 4.2.8. Assume u is a vertex at some level i ` 1 in the tree. Then u corresponds to
a polynomial P taking values in the group Gi`1. Assume that u has children v1, . . . , vt. Each child
vj is associated to a polynomial Qj over Gi.

Let Apuq denote the set of points where P agrees with fi`1 and similarly, let Apvjq denote the set
of points where Qj agrees with fi. By the definition of the tree T , we have Apvjq is contained in
Apuq for each j and this implies Item 2 of the claim.

To prove the other two items, we need some notation. Let hi P Gi be the group element used to
define Hi and hence Gi`1 above. Fix any system of coset representatives c1, . . . , cM of Hi in Gi.

Given any g P Gi, we can write g uniquely as

g “ ĝ ` g1 ¨ hi (24)

where ĝ P tc1, . . . , cM u and g1 P t0, . . . , pi ´ 1u (since hi has order pi).

Hence, for each j P rts, we can write

Qjpxq “
ÿ

|I|ďd

αIx
I “

ÿ

|I|ďd

α̂Ix
I

loooomoooon
Q̂jpxq

`

¨
˝ ÿ

|I|ďd

α1
Ix

I

˛
‚

loooooomoooooon
Q1

jpxq

¨hi.

Since hi has order pi, we can think of Q1
j as taking values in Zpi .

We note for any two j, k P rts, the polynomials Q̂j and Q̂k are in fact exactly the same. This is
because

P pxq “ Qjpxq “ Qkpxq pmod Hiq
by definition of the tree T , implying that the coefficients of Qj and Qk are all the same modulo
Hi. By the uniqueness of the decomposition in Equation (24), the polynomials Q̂j and Q̂k must
therefore be the same. We denote this polynomial Q̂. Note that this also implies that Q1

j and Q1
k

are distinct for any distinct j, k P rts, since otherwise Qj “ Qk.

Let Fipxq “ fipxq ´ Q̂pxq. In a similar way to what we did above, we can write for each x P t0, 1un,

Fipxq “ F̂ipxq ` F 1
i pxq ¨ hi

where again we think of F 1
i as taking values in Zpi .
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Fix any x P t0, 1un. We have

x P Apvjq ðñ fipxq “ Qjpxq ðñ Fipxq “ Q1
jpxq ¨ hi ùñ F 1

i pxq “ Q1
jpxq

where the last equality holds as elements of Zpi. In particular, this implies that since Qj P List
fi
ε ,

we must also have Q1
j P List

F 1
i

ε . Using the hypothesized bound of L from the prime case (statement
of Lemma 4.2.7), we get t ď L implying the first item of the claim.

Finally, we note using the same reasoning that if x P Apvjq X Apvkq for distinct j and k, we must
have Q1

jpxq “ Q1
kpxq. Since distinct degree-d polynomials can agree on at most a p1 ´ 1

2d
q fraction

of inputs (Theorem 2.2.1), we see that |Apvjq X Apvkq| ď 2n ¨ α where α denotes p1 ´ 1
2d

q. We have

pρpuq ` αq ¨ 2n “ |Apuq| ě |Apvjq Y Apvkq| “ |Apvjq| ` |Apvkq| ´ |Apvjq X Apvkq|
ě pρpvjq ` αq ¨ 2n ` pρpvkq ` αq ¨ 2n ´ α ¨ 2n “ pρpvjq ` ρpvkq ` αq ¨ 2n

where we used the fact that Apuq contains Apvjq and Apvkq (argued above) for the first inequality.
This proves Item 3 and concludes the proof. �

�

5 Local list correction

In this section, we design a local list corrector (see Definition 2.2.3) for the class Pd and prove
Theorem 1.3.4.

Let G be an Abelian group and f : t0, 1un Ñ G be any function with oracle access to it. Let Listfε
denote the set of degree d polynomials that are p1{2d ´ εq-close to f , and let Lpεq “ |Listfε |. Recall
from Theorem 1.3.3 that Lpεq “ exppOdp1{εqOpdqq.
Our local list corrector has two phases, inspired by previous work [GL89, STV01, ABP`24].

• First we construct L1 “ rOpLpε{2qq algorithms with oracle access such that with high prob-
ability, for each polynomial in the list List

f
ε , there exists an algorithm that is δ-close to the

polynomial where δ ă 1{p10 ¨ 2d`1q, i.e. δ is in the unique decoding regime.

• Secondly we apply the (unique) local corrector for the class Pd from Theorem 1.3.1 on each
of the algorithms from the first phase.

We state the main theorem of this section below that describes the first phase of our local list
corrector. Recall that Af denotes that the algorithm A has oracle access to the function f .

Theorem 5.0.1 (Approximate oracles). Fix n P N, ε ą 0. Let f : t0, 1un Ñ G be

any function. There exists a randomized algorithm A
f
1 that makes at most Oεp1q oracle

queries and outputs deterministic algorithms Ψ1, . . . ,ΨL1 satisfying the following property:
with probability at least 3{4, for every polynomial P P List

f
ε , there exists a j P rL1s such that

δpΨj , P q ă 1{p10 ¨ 2d`1q, and moreover, for every x P t0, 1un, Ψj computes P pxq by making
at most Oεp1q oracle queries to f . Here L1 “ OpLpε{2q log Lpε{2qq “ Oεp1q.
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The algorithm A1 is in fact nearly identical to a similar algorithm from [ABP`24] for the case
d “ 1. The main novelty in this paper is in extending the analysis of the algorithm to the case
of larger degrees. In particular, we prove the following technical lemmas, which we believe are
independently interesting.

• A sampling lemma for Hamming slices using subcubes: Let k be an even integer
and C be a subcube of t0, 1u2k be obtained by partitioning the 2k co-ordinates into k pairs
uniformly at random and identifying the co-ordinates in each pair (equivalently, we choose
a random hash function h : r2ks Ñ rks that is 2-to-1 and consider the subcube C02k,h as
defined in Section 2). We show that this process has good sampling properties in the sense
that the density of a set S Ď t0, 1u2k of vectors of Hamming weight k is roughly preserved in
the subcube C. More formally, we show

Pr
C

«ˇ̌
ˇ̌
ˇ
|S X C|`

k
k{2

˘ ´ |S|`
2k
k

˘
ˇ̌
ˇ̌
ˇ ě 1

kΩp1q

ff
ď 1

kΩp1q
.

See Section 5.1.1 for a formal statement and the proof.

• DLSZ lemma for low-degree polynomials over Hamming slices: We also give a simple
proof of the fact that if a polynomial P P Pdpt0, 1u2k , Gq does not vanish on the set of points
of Hamming weight k, then it does not vanish at an Ωdp1q fraction of it. While there have
been many works (see [Sri11, Fil16, FI19, Fil23]) addressing the properties of polynomial
functions over slices in recent years (especially over the reals), we do not know if this fact has
appeared in the literature before in this generality. See Section 5.1.2 for a formal statement
and the proof.

Putting the above two lemmas together, one can easily derive the following consequence. Fix a
degree-d polynomial R P Pdpt0, 1u2k , Gq that does not vanish on the Hamming slice of weight k.

Then, the probability that it vanishes on a random subcube C chosen as above is very small, taking
a sufficiently large k. This corollary will play a crucial role in the proof of Theorem 5.0.1. The
analogous statement for degree 1 was proved in [ABP`24]. However, the proof there is based on a
strategy that utilizes an understanding of the structure of the polynomial R in a way that seems
difficult to implement for higher degrees.

We start with the proofs of the above lemmas in Section 5.1 and then give the proofs of Theorem 5.0.1
and Theorem 1.3.4 in subsequent sections (which closely follow the analogous proofs in [ABP`24]
modulo the above facts).

5.1 The main technical lemmas

We prove now the main new technical lemmas that we use to prove Theorem 5.0.1. Throughout
this section, we use t0, 1unm to denote strings in t0, 1un of Hamming weight exactly m.

5.1.1 Sampling Hamming slices via subcubes

Throughout this section, we fix an even positive integer k and consider a random k-dimensional
subcube C Ď t0, 1u2k obtained as follows. We partition the 2k coordinates into k pairs uniformly
at random and identify the coordinates in each pair. Equivalently, we choose a uniformly random
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map h : r2ks Ñ rks that is 2-to-1, and set C “ C02k ,h (where the latter subcube is as defined in
Definition 2.2.6).

Lemma 5.1.1 (Sampling lemma for Hamming slices). There is an absolute constant η ą 0
such that for every set S Ď t0, 1u2kk , we have

Pr
C

«ˇ̌
ˇ̌
ˇ

|S|`
2k
k

˘ ´ |S X C|`
k
k{2

˘
ˇ̌
ˇ̌
ˇ ě 1

kη

ff
ď O

ˆ
1

kη

˙
.

Remark 5.1.2. The above lemma is seen to be tight up to the value of the constant η. Consider
S Ď t0, 1u2kk containing exactly those points that differ in the first two co-ordinates. It is easily seen

that |S| “ Ω
´`

2k
k

˘¯
and further S X C “ H whenever the random partitioning defining C pairs the

first two co-ordinates with each other. The latter event occurs with probability Ωp1{kq.
The proof is via a standard second moment bound, the main step of which is a bound on the
spectral gap of a suitable graph. We start with some notations and then state this bound.

An undirected graph G is an pN,D, λq-expander if it is a D-regular graph on N vertices and
the magnitude of the second-largest eigenvalue of its adjacency matrix (in absolute value) is at
most λ ¨ D. We refer to the monograph of Hoory, Linial and Wigderson [HLW06] for a more
thorough treatment of expander graphs. We will use primarily the following lemma, due to Alon
and Chung [AC88].

Lemma 5.1.3 (Expander Mixing Lemma). Let G “ pV,Eq be an pN,D, λq-expander and let S, T Ď
V be any sets of density σ and τ respectively. Then, for u a uniformly random vertex of V and v

a uniformly random neighbour of u, we have

ˇ̌
ˇ̌Pr
u,v

ru P S ^ v P T s ´ σ ¨ τ
ˇ̌
ˇ̌ ď λ.

We apply the above lemma to a combinatorially defined graph called the Johnson graph. We
define the undirected graph Jp2k, k, dq with vertex set V “ t0, 1u2kk , where two points a,b P V are
connected exactly when their Hamming distance ∆pa,bq “ 2d 18 (note that this number is always
even). The main technical lemma is the following.

Lemma 5.1.4 (Eigenvalues of the Johnson graph). Let Jp2k, k, dq be defined as above and
assume that d is such that |d´k{2| ď C

?
k log k for C ą 0 being an absolute constant. Then

Jp2k, k, dq is a p
`
2k
k

˘
,
`
k
d

˘2
, A
kη

q-expander for some absolute constants A ą 0 and η P p0, 1q
depending only on C.

We start by proving the sampling lemma Lemma 5.1.1 assuming Lemma 5.1.4.

Proof of Lemma 5.1.1. Throughout, let σ denote the density of S inside t0, 1u2kk .

18Not to be confused with the degree of polynomials d used in the other sections of the paper.
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Recall that C “ C02k ,h contains a unique point xpyq P t0, 1u2k for each point y P t0, 1uk . Define an

indicator random variable Zy that is 1 exactly when xpyq P S.We note that for each y P t0, 1uk
k{2, the

point xpyq is a uniformly random element of t0, 1u2kk , implying that ErZys “ σ for each y P t0, 1uk
k{2.

Let Z :“ |S X C| “ ř
yPt0,1uk

k{2
Zy. We thus have ErZs “

`
k
k{2

˘
¨ σ.

We prove the lemma via a second moment estimate. The variance of Z can be bounded as follows.

VarrZs “
ÿ

u,vPt0,1uk
k{2

CovrZu, Zvs

We divide the above sum into two parts depending on ∆pu,vq. Let I “ rk{2 ´ C
?
k log k, k{2 `

C
?
k log ks for a suitably large absolute constant (to be chosen below).

VarrZs “
ÿ

u,vPt0,1uk
k{2

∆pu,vqPI

CovrZu, Zvs `
ÿ

u,vPt0,1uk
k{2

∆pu,vqRI

CovrZu, Zvs

ď
ÿ

u,vPt0,1uk
k{2

∆pu,vqPI

CovrZu, Zvs `
ˆ

k

k{2

˙2

¨ 1

kΩpCq
,

where the last inequality follows from standard concentration bounds for sampling without replace-
ment [Hoe63]. Now it remains to upper bound CovrZu, Zvs for a pair pu,vq P t0, 1uk

k{2 ˆ t0, 1uk
k{2

such that ∆pu,vq P I. Fix such a pair pu,vq and note that ∆pu,vq “ 2d for some integer d such
that |d ´ pk{4q| ď pC{2q ¨

?
k log k. Then we have,

CovrZu, Zvs “ ErZuZvs ´ ErZusErZvs “ Prrxpuq P S ^ xpvq P Ss ´ σ2.

Moreover, the distribution of the random point xpvq given xpuq can be checked to be the uniform
distribution over the neighbours of xpuq in the graph Jp2k, k, 2dq.19 We can thus apply Lemma 5.1.4
to see that

CovrZu, Zvs ď A

kη

for some absolute constants A ą 0 and η P p0, 1q depending on C. Continuing the variance compu-
tation above, we get

VarrZs ď
`

k
k{2

˘2 ¨ A
kη

`
`

k
k{2

˘2

kΩpCq
ď Op1q

kη
¨
ˆ

k

k{2

˙2

for a large enough choice of the constant C (and the corresponding η). Now, by Chebyshev’s
inequality, we have

Pr
C

„ˇ̌
ˇ̌Z ´ σ ¨

ˆ
k

k{2

˙ˇ̌
ˇ̌ ě 1

kη{4
¨

ˆ
k

k{2

˙
ď VarrZs

1
kη{2 ¨

`
k
k{2

˘2 ď Op1q
kη{2

which implies the statement of Lemma 5.1.1. �

19More precisely, xpuq and xpvq differ exactly at the co-ordinates given by h´1pDq where D Ď rks is the set of 2d
co-ordinates where u and v differ. Given xpuq, this is a uniformly random set D1 Ď r2ks of size 4d subject to the
constraint that symmetric difference of D1 and the support of xpuq has size exactly 4d.
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It remains to prove Lemma 5.1.4, which we do below.

Proof of Lemma 5.1.4. We use the known exact expressions for the eigenvalues of the Johnson
graphs [Del78]. In particular, following [Kar99, Corollary 2], we know that the eigenvalues of the
adjacency matrix of Jp2k, k, dq are β0, . . . , βk, where for every 0 ď s ď k,20

βs “
sÿ

r“0

p´1qs´r

ˆ
s

r

˙ˆ
k ´ r

k ´ d ´ r

˙ˆ
k ´ s ` r

d ´ s ` r

˙
(25)

Furthermore, for 0 ď s ď k, the eigenvalue βs has multiplicity
`
2k
s

˘
´

`
2k
s´1

˘
.

Clearly, β0 “
`
k
d

˘2
, which is equal to the degree of the graph. It suffices to show that the magni-

tude of the remaining eigenvalues are all at most Op1q
kη

¨ β0, where η is as in the statement of the
Lemma 5.1.4. By assuming that the constant factor in the Op1q term is large enough, we may
assume that k is greater than a large enough absolute constant.

We split the analysis of the remaining eigenvalues into two regimes, the first being when 1 ď s ď C1

for a suitably large constant C1 depending on C (chosen below), and the second when s ą C1.

Case 1: 1 ď s ď C1. In this case, we analyze βs using Equation (25). We need the following
simple fact about binomial coefficients, which is easily verified from the standard definition using
factorials.

Fact 5.1.5. Fix any non-negative integers r ď ℓ ď k. Then
ˆ
k

ℓ

˙
¨
ˆ
ℓ ´ r

k ´ r

˙r

ď
ˆ
k ´ r

ℓ ´ r

˙
ď

ˆ
k

ℓ

˙
¨
ˆ
ℓ

k

˙r

.

In particular, we note that for ℓ P td, k ´ du and r ď s ď C1, we have

1

2

ˆ
1 ´ 1

k1{4

˙
ď ℓ ´ r

k ´ r
ď ℓ

k
ď 1

2
¨

ˆ
1 ` 1

k1{4

˙
,

and thus for large enough k, we have by Fact 5.1.5
ˆ

k ´ r

k ´ d ´ r

˙
“

ˆ
k

k ´ d

˙
¨ 1

2r
¨ p1 ˘ γq and

ˆ
k ´ s ` r

d ´ s ` r

˙
“

ˆ
k

d

˙
¨ 1

2s´r
¨ p1 ˘ γq

for γ “ Ops ¨ k´1{4q. Here the notation a “ b ¨ p1 ˘ γq denotes that a P rb ¨ p1 ´ γq, b ¨ p1 ` γqs.
Plugging this into Equation (25) above, we see that

|βs| “
ˇ̌
ˇ̌
ˇ

sÿ

r“0

p´1qs´r

ˆ
s

r

˙
¨ 1

2r
¨
ˆ

k

k ´ d

˙
¨ p1 ˘ γq ¨ 1

2s´r
¨

ˆ
k

d

˙
¨ p1 ˘ γq

ˇ̌
ˇ̌
ˇ

ď
ˆ
k

d

˙2

¨ 1

2s
¨
ˇ̌
ˇ̌
ˇ

sÿ

r“0

p´1qs´r

ˆ
s

r

˙
¨ p1 ˘ Opγqq

ˇ̌
ˇ̌
ˇ

20The bound in [Kar99] looks slightly different than what is stated here, since the parameter b in that statement
is the size of the intersection of the supports of the two points, which implies that b “ k ´ d.
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ď
ˆ
k

d

˙2

¨ 1

2s
¨
˜ˇ̌

ˇ̌
ˇ

sÿ

r“0

p´1qs´r

ˆ
s

r

˙ˇ̌
ˇ̌
ˇ ` Opγq ¨

sÿ

r“0

ˆ
s

r

˙¸
ď

ˆ
k

d

˙2

¨ 1

2s
¨ Opγq ¨ 2s “

ˆ
k

d

˙2

¨ Opγq.

We have thus shown that |βs| ď |β0| ¨ Op1q

k1{4 , proving the required bound in this case.

Case 2: s ą C1. In this case, we use an argument from [BCIM18], which utilizes just the
multiplicity ms “

`
2k
s

˘
´

`
2k
s´1

˘
of the eigenvalue βs. We note that ms ě 1

2
¨
`
2k
C1

˘
as long as k is large

enough.

Let M denote the adjacency matrix of the Johnson graph Jp2k, k, dq. We know that the squared
Frobenius norm of M (i.e. the sum of the squares of the entries of M) is the sum of the squares of
its eigenvalues and hence at least β2

sms. On the other hand, since M is an adjacency matrix, this
quantity is simply the number of edges in the graph Jp2k, k, dq. In particular, we have

β2
sms ď

ˆ
2k

k

˙
¨

ˆ
k

d

˙2

,

yielding the bound

|βs| ď Op1q`
k
C1

˘

dˆ
2k

k

˙
¨

ˆ
k

d

˙
ď Op2kq`

k
C1

˘ ¨
ˆ
k

d

˙
.

Recall that |d´k{2| ď C
?
k log k, implying that

`
k
d

˘
ě 2k ¨k´OpC2q by standard binomial estimates.21

Thus, for C1 large enough in comparison with C and for k large enough, we see that |βs| ď 1
k

¨
`
k
d

˘2 “
β0

k
. This finishes the analysis of Case 2 and hence finishes the proof of the lemma. �

5.1.2 DLSZ lemma over Hamming slices

Lemma 5.1.6 (A DLSZ lemma over Hamming slices). The following holds for any non-
negative integers integers n, k, d where k ď n and d ď mintk, n ´ ku. Let R P Pdpt0, 1un, Gq
be a polynomial such that R does not vanish at some point in t0, 1unk . Then

|ta P t0, 1unk | Rpaq ‰ 0u| ě
ˆ
n ´ 2d

k ´ d

˙
.

Proof. As is standard, we proceed by induction on d. The base case d “ 0 is trivial.

Fix d ě 1. Let Rpx1, . . . , xnq be a degree d polynomial that does not vanish on all of t0, 1unk .
We can assume that d is strictly smaller than mintk, n ´ ku by the following reasoning. If d “
mintk, n ´ ku, the claim reduces to showing that R is non-zero at least one point of t0, 1unk , which
trivially follows from the hypothesis. We can also assume that R does not evaluate to the same
non-zero value on all of t0, 1unk since otherwise, the lemma is trivially true.

21for example, when d ď k{2, we can use [KY15, Lemma 4] with p “ 1{2 to lower bound 1

2k

ř
iďd

`
k

i

˘
which itself

is at most Opkq

2k
¨

`
k

d

˘
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Without loss of generality, we assume that Rppq ‰ Rpqq where p P t0, 1unk is the point where the
first k co-ordinates are 1 and q is obtained from p by flipping the first and last co-ordinates to 0
and 1 respectively (note that this makes sense as 1 ď d ď mintk, n ´ ku).
By replacing xn by the linear polynomial k´

ř
iăn xi, we get a degree-d polynomial R1px1, . . . , xn´1q

not involving the variable xn but that nevertheless evaluates to the same value as R at every point
in t0, 1unk . Moreover, we can assume that R1 is multilinear since the inputs are Boolean.

We write
R1 “ x1P px2, . . . , xn´1q ` Qpx2, . . . , xn´1q.

where P has degree at most d ´ 1. Note that P pp1q ‰ 0 where p1 P t0, 1un´2
k´1 is the point obtained

by restricting p to its middle n ´ 2 co-ordinates, since otherwise R1ppq “ R1pqq in contradiction to
our assumptions above.

Thus, we see that P does not vanish on all of t0, 1un´2
k´1 . Applying the inductive hypothesis, we see

that for
S1 “ ta1 P t0, 1un´2

k´1 | P pa1q ‰ 0u,

we have |S1| ě
`
n´2´2pd´1q
k´1´pd´1q

˘
“

`
n´2d
k´d

˘
.

For each a1 P S1, we note that we get at least one distinct point a P t0, 1unk such that R1paq is
non-zero. This is because setting the variables x2, . . . , xn´1 according to a1 restricts the polynomial
R1 to a non-zero linear polynomial, which must be non-zero at least one of the extensions of a1 to
a point a P t0, 1unk .

This shows that R1 (and hence R) is non-zero at at least
`
n´2d
k´d

˘
many points in t0, 1unk , proving the

inductive claim. �

5.1.3 A useful corollary

We will use Lemma 5.1.1 and Lemma 5.1.6 in the form of the following corollary.

Corollary 5.1.7. Fix a degree parameter d. Let k be an even positive integer such that k ě d,

and R P Pdpt0, 1u2k , Gq be such that R computes a non-zero function on the slice t0, 1u2kk . Let
h : r2ks Ñ rks be a uniformly random 2-to-1 function and define C “ C02k ,h (the notation is from
Definition 2.2.6). Then if R|C denotes the natural restriction of R to the subcube C as a polynomial
in k variables, we have

Pr
C

rR|C vanishes on all of t0, 1ukk{2s ď Od

ˆ
1

kη

˙

for some absolute constant η ą 0.

Proof. Let S Ď t0, 1u2kk denote the set of points of t0, 1u2kk whereR does not vanish. By Lemma 5.1.6,

we know that |S| ě
`
2k´2d
k´d

˘
“ 1

2Opdq ¨
`
2k
k

˘
. Note that R|C vanishes on t0, 1uk

k{2 exactly when

S X C “ H. By Lemma 5.1.1, the probability of the latter event is at most Od

`
1
kη

˘
. �

Remark 5.1.8. We remark that the above corollary is false under the weaker assumption that
R is just a non-zero polynomial. A simple example is given by the linear polynomial

řn
i“1 xi in
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the setting of G “ F2.
22 However, the assumption that R is non-zero on t0, 1u2kk eliminates this

example. Interestingly, this is exactly the condition we need in the analysis of the error-reduction
algorithm (Theorem 5.0.1) below (the reason is essentially in Observation 5.2.2 below).

5.2 The error-reduction algorithm (Theorem 5.0.1)

As mentioned above, the proof now closely follows the proof of the analogous theorem in [ABP`24],
which in turn was based on ideas from [STV01].

5.2.1 Preliminaries and useful observations

In this subsection, we give an overview of the algorithms A
f
1 and Ψ1, . . . ,ΨL1 as mentioned in

Theorem 5.0.1.

We first describe a combinatorial construction from [ABP`24] that will be useful in our local list
correctors. Given an embedding of a subcube C and a point b, we would like to find a subcube C

1

such that C and b are contained in C
1. For completeness, we state the definition and observations

from [ABP`24] here.

Definition 5.2.1 (Subcube spanned by C and b). [ABP`24, Definition 9]. Let C “ Ca,h be
an embedding of a subcube of dimension k (see Definition 2.2.6). For any point b P t0, 1un, let
v :“ a ‘ b. Pick a uniformly random permutation σ : r2ks Ñ r2ks. Define a hash function
h1 : rns Ñ r2ks as follows: For all i P rns,

h1piq “
#
σpjq, if hpiq “ j and vi “ 0

σpj ` kq, if hpiq “ j and vi “ 1.

For every z P t0, 1u2k, xpzq is defined as follows:

xpzqi “ zh1piq ‘ ai.

C
b is the set of points xpzq for all z P t0, 1u2k, i.e. C

b :“
 
xpzq

ˇ̌
z P t0, 1u2k

(
.

Since h1 refines the partition induced by h, C Ă C
b. Also define w P t0, 1u2k as follows: for

j P rks, wσpjq “ 0 and wσpj`kq “ 1. Then xpwq “ b, meaning b P C
b. Next, we make a couple

of observations that will be useful while analyzing the correctness probability of our local list
correctors.

Observation 5.2.2. [ABP`24, Observation 5.2]. Let a be sampled uniformly from t0, 1un and
h : rns Ñ rks be a uniformly random function. For a uniformly random b „ t0, 1un, Cb as defined
above is a random embedding of a subcube of dimension 2k (as defined in Section 2). Note that
b “ xpwq for some w of Hamming weight exactly k.

22In the linear case, [ABP`24] showed that this is essentially the only ‘bad’ example. However, for degrees 2 and
higher, there are many more such examples. This is what makes Corollary 5.1.7 more challenging to prove in our
setting.
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Observation 5.2.3. Assume that a,b P t0, 1un and h : rns Ñ rks are chosen independently and
uniformly at random and define C and C

b as above. Conditioned on the choice of the 2k-dimensional
cube C

b (which we identify with t0, 1u2k), we may define the distribution of C (which is a subcube
of dimension k in C

b) as follows. We sample a random map ρ : r2ks Ñ rks that is 2-to-1 (i.e. for
each j P rks, |ρ´1ptjuq| is of size exactly 2) and identify the variables in each pair. More formally,
we set C “ C02k ,ρ following the notation in Definition 2.2.6.

Finally, we will use the following non-local list decoding algorithm from [ABP`24].

Theorem 5.2.4 ([ABP`24], Theorem A.2). Fix any Abelian group G and degree parameter d.

There is a polyp2nd`1q-time algorithm that, given oracle access to a function f : t0, 1un Ñ G

produces a list of all polynomials P P Pd such that δpf, P q ă 1{2d.

5.2.2 Overview of the algorithms

In this subsection, we give an overview of our local list correction algorithm for Pdpt0, 1un, Gq. As
mentioned before, our algorithm is mostly similar to the local list correction algorithm for [ABP`24,
Section 5.2], except for some changes in the parameters to handle degree d polynomials instead of
degree 1 polynomials. Nevertheless, we present the overview and the algorithm for the sake of
completeness.

Similar to [STV01], the local list correction algorithm has two key steps. The first step is to produce
oracles that approximate the polynomials in the list and the second step is to apply the unique local
corrector from Section 3 on each of the approximating oracles. In this subsection, we describe the
first step i.e. to produce oracles such that each polynomial in the list is approximated sufficiently
well by an oracle.

For the overview below, let fpx1, . . . , xnq be the input function and List
f
ε denotes the set as described

earlier.

1. First step (advice): We construct a randomized algorithm A
f
1 that makes oracle queries to

the input function f and produces a list of oracles such that with high probability (over the

randomness of Af
1), for every polynomial P P List

f
ε , there exists an oracle that is 1{p10 ¨2d`1q-

close23 to P (this is within the unique decoding radius of Pdpt0, 1un, Gq). We give an overview

of the algorithm A
f
1 below:

• Choose a random subcube C of dimension k (which is a polynomial in the list size and
from the previous section we know that the list size is a constant dependent on ε).
Then find all the degree d polynomials that are p1{2d ´ ε{2q-close to f on the subcube
C. Repeat this step a few times. Let’s call this set of polynomials (union over all the
repetitions) as T . Since C is a random subcube, with high probability, restriction of
every polynomial in List

f
ε will be in the set T . The restriction of each P P List

f
ε to C

(which is in T ) will be advice for P in the second step.

• The algorithm A
f
1 also samples a random permutation on σ on 2k variables. The oracles

in the next step will use this permutation while locally list correcting (it is the same

23This step is essentially an error reduction because we start with a function f that is p1{2d ´ εq-close to P and
A

f
1
produces a list of oracles such that one of them is 1{p10 ¨ 2dq-close to P .
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permutation for every oracle). For each polynomial Q in T , the algorithm A1 produces
an oracle ΨrC, σ,Qs with the polynomial’s evaluation on the cube C as advice.

2. Second step (approximation): Suppose we want to locally list correct f at a point b P
t0, 1un. Each algorithm ΨrC, σ,Qs creates a subcube C

1 of dimension 2k that is spanned by
C and b. Then the oracle computes all degree d polynomials that have distance at most
p1{2d ´ ε{2q from f on the subcube C

1 and uses the advice on the subcube C to filter out
P pbq, where P |C “ Q.

5.2.3 Formal description of the algorithms

In this subsection, we describe the algorithms that will prove Theorem 5.0.1. The algorithms in this
subsection are the same as in [ABP`24, Section 5.2] with minor modifications in the parameters
to make it work for the class Pd. We state the algorithms here for the sake of completeness.

Notation: Let C be a k-dimensional subcube of t0, 1un as defined in Definition 2.2.6. Let Q :
t0, 1uk Ñ G a polynomial in Pdpt0, 1uk , Gq where the polynomial Q is a function on the subcube C.
We will use ΨrC, σ,Qs to denote a deterministic algorithm that has the description of the subcube
C, a permutation σ : r2ks Ñ r2ks, and evaluation of Q on C hardwired inside it24.

Algorithm 4 is a randomized algorithm that outputs the descriptions of the deterministic oracles
and Algorithm 3 describes the oracles themselves.

Algorithm 3: Approximating Algorithm ΨrC, σ,Qs
Input: Oracle access to the function f , a point b P t0, 1un

1 Let C1 be a subcube spanned by C and b using σ // see Definition 5.2.1

2 Let w P t0, 1u2k such that xpwq P C
1 and xpwq “ b // |w| “ k

3 Query f on the subcube C1 // Number of queries is 22k

4 Find all polynomials R1, . . . , RL2 P Pdpt0, 1u2k , Gq that are
`

1
2d

´ ε
2

˘
-close to f |C1

// using Theorem 5.2.4

// L2 ď Lpε{2q

5 if there exists an i P rL2s such that Ri|C “ Q then
6 pick any such i and return Ripwq
7 else
8 return 0 // An arbitrary value

Now we describe the randomized Algorithm 4 that returns the descriptions of the deterministic
oracles.

24In the final algorithm, C will be a random subcube of dimension Oεp1q and Q with high probability be equal to
P |C, for some P P List

f
ε
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Algorithm 4: Algorithm A1

Input: Oracle access to the function f

1 Choose k Ð Bd ¨ pLpε{2q{εqc // Bd and c chosen below

2 Set ℓ Ð logLpεq
3 T Ð H
4 repeat
5 Sample a „ Un and a random hash function h : rns Ñ rks // the first source of

randomness

6 Construct the subcube C :“ Ca,h // see Definition 2.2.6

7 Query f on the subcube C // Number of queries is 2k

8 Find all polynomials Q1, . . . , QL1 P Pdpt0, 1uk , Gq that are
`

1
2d

´ ε
2

˘
-close to f |C

// using Theorem 5.2.4

9 Pick a uniformly random permutation σ : r2ks Ñ r2ks // the second source of

randomness

10 T Ð T Y tpC, σ,Q1q, . . . , pC, σ,QL1 qu // L1 ď Lpε{2q

11 until ℓ times

12 return ΨrC, σ,Qs for all pC, σ,Qq P T // Size of T is ď ℓL1

5.3 Analysis of the algorithms

In this subsection, we analyze Algorithm 3 and Algorithm 4.

Query complexity: Algorithm 4 makes 2k “ exppBd ¨ polypLpε{2qq queries to f and returns the
description of ℓL1 “ Lpε{2q log Lpεq oracles. Each oracle (see Algorithm 3) makes 22k “ exppBd ¨
polypLpε{2qq queries to f . Hence the total number of queries to f is exppOdppolypLpε{2qqq.

Correctness: We want to show that with probability ě 3{4, for every polynomial P P List
f
ε ,

there exists an output oracle ΨrC, σ,Qs that is p1{p10 ¨ 2d`1qq-close to P . We prove this in the
following steps.

§ In a single iteration for Algorithm 4, the following holds: For every polynomial P P List
f
ε , with

probability at least 9{10, there exists a 1{p10 ¨ 2d`1q-close approximating oracle ΨrC, σ,Qjs. We
prove this is in Lemma 5.3.1.

§ As we have ℓ independent iterations, the probability that there is no 1{p10 ¨ 2d`1q-close approxi-
mating oracle for P is at most 1{10ℓ. By a union bound for all polynomials P P List

f
ε , we get the

desired correctness probability in Theorem 5.0.1.

§ Since each iteration produces a list of size at most Lpε{2q, overall we obtain a list of size OpLpε{2q¨
logLpεqq as claimed.

We start by proving Lemma 5.3.1, which is the primary lemma for the correctness of our local list
correctors.
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Lemma 5.3.1 (Correctness of Local List Correction). The following holds as long as the
constants Bd (depending on d) and c in Algorithm 4 are chosen to be large enough. Fix
any polynomial P P List

f
ε . In each iteration of the loop in Algorithm 4, the probability

(over the randomness of the algorithm) that there does not exist a 1 ď j ď L1 such that
δpΨrC, σ,Qj s, P q ď 1{p10 ¨ 2d`1q is at most 1{10.

Proof. Fix an iteration of the loop in Algorithm 4. Let EP denote the event that there does not
exist a j such that δpΨrC, σ,Qj s, P q ď 1{p10 ¨ 2d`1q. We want to upper bound the probability of
the “bad” event EP by 1{10. Recall that the sources of randomness in Algorithm 4 are point a,
hash function h, and permutation σ. We will show that

E
a,h,σ

rmin
j

δpΨrC, σ,Qj s, P qs “ E
a,h,σ

rmin
j

Pr
b

rΨrC, σ,Qj spbq ‰ P pbqss ď 1

100 ¨ 2d`1
, (26)

from which Lemma 5.3.1 follows via an application of Markov’s inequality.

Define the following auxiliary events, depending on the choice of a, h and σ, along with the choice
of a random input b.

1. Event E1,P (only depends on a, h): In the current iteration of the loop in Algorithm 4, the
algorithm does not find a polynomial Qj such that Qj “ P |C.

2. Event E2,P (depends on a, h, σ,b): For the triples pC, σ,Qq added to T in this iteration of
Algorithm 4, the corresponding oracle ΨrC, σ,Qs is such that when we run this oracle on
input b, there does not exist a polynomial Ri such that Ri “ P |C1 . Note that this event only
depends on the choice of the cube C, σ and b but not on the specific polynomial Q. Hence,
the event is exactly the same for each triple pC, σ,Qq in T. In particular, we may fix any one
such triple.

3. Event E3,P (depends on a, h, σ,b): For the triples pC, σ,Qq added to T in this iteration of
Algorithm 4, the corresponding oracle ΨrC, σ,Qs is such that when we run this oracle on input
b, there exist two polynomials Ri1 and Ri2 such that Ri1pwq ‰ Ri2pwq but Ri1 |C “ Ri2 |C.
Here w is, as defined in Algorithm 3, the point in t0, 1u2k of Hamming weight k such that
xpwq P C

1 and xpwq “ b. As for the event E2,P , we may fix a triple pC, σ,Qq P T while
analyzing this event.

We will need the following two claims that show that any of the aforementioned events occur with
a small probability.

Claim 5.3.2. Pra,hrE1,P s,Pra,h,σ,brE2,P s ď 1{p10000 ¨ 2d`1q.

Claim 5.3.3. Pra,h,σ,brE3,P s ď 1{p10000 ¨ 2d`1q.

Let us proceed with the proof of Lemma 5.3.1 assuming the above two claims. We first show that
if EP occurs, then at least one of the auxiliary events occurs. This implies that it is sufficient to
upper bound the probability of the auxiliary events occurring and use a union bound.
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For a, h such that the event E1,P does not occur, we can fix a j˚ P rL1s such that P |C “ Qj˚. Thus,
we have

E
a,h,σ

rmin
j

Pr
b

rΨrC, σ,Qj spbq ‰ P pbqss ď Pr
a,h

rE1,P s ` E
a,h,σ

r1 E1,P ¨ Pr
b

rΨrC, σ,Qj˚ spbq ‰ P pbqss
(27)

Fix any a, h such that the event E1,P does not occur. Further, if the event E2,P does not occur,
then there is an i˚ ď L2 such that P |C1 “ Ri˚ . In particular, Ri˚ |C “ P |C “ Qj˚ .

Finally, if event E3,P also does not occur, then there is no i ‰ i˚ such that Ri˚pwq ‰ Ripwq but
Ri|C “ Ri˚ |C. In particular, the only possible output of the algorithm ΨrC, σ,Qj˚ s on input w is
Ri˚pwq “ P pxpwqq “ P pbq.
We have thus shown that

E
a,h,σ

r1 E1,P ¨ Pr
b

rΨrC, σ,Qj˚ spbq ‰ P pbqss ď Pr
a,h,σ,b

rE2,P _ E3,P s ď Pr
a,h,σ,b

rE2,P s ` Pr
a,h,σ,b

rE3,P s.

Plugging the above into Equation (27), we get

E
a,h,σ

rmin
j

Pr
b

rΨrC, σ,Qj spbq ‰ P pbqs ď Pr
a,h

rE1,P s ` Pr
a,h,σ,b

rE2,P s ` Pr
a,h,σ,b

rE3,P s. (28)

Using Claim 5.3.2 and Claim 5.3.3, we get,

E
a,h,σ

rmin
j

Pr
b

rΨrC, σ,Qj spbq ‰ P pbqs ď 3

10000 ¨ 2d`1
ď 1

100 ¨ 2d`1

So now it remains to prove Claim 5.3.2 and Claim 5.3.3. We start with Claim 5.3.2 which essentially
follows from Lemma 2.2.7.

Proof of Claim 5.3.2. Recall that δpP, fq ď p1{2d ´ εq. Equivalently, the set of points T

where f and P differ has density at most p1{2d ´ εq in t0, 1un. For a cube C, the non-
existence of Qj such that Qj “ P |C is equivalent to δpP |C, f |Cq ą p1{2d ´ ε{2q.
For a random a and a random h, the subcube C is a random subcube. Using Lemma 2.2.7
for the subset T as mentioned above, we get that for k ě 1{ε5,

Pr
C

„
δpP |C, f |Cq ą 1

2d
´ ε

2


ď 1

10000 ¨ 2d`1
.

Here, we are assuming that Bd and c are large enough so that k as defined in Algorithm 4
satisfies the hypothesis of Lemma 2.2.7. Hence PrrE1,P s ď 1{p10000 ¨ 2d`1q.
Using Observation 5.2.2, we know that for a random a, h and a random permutation σ,
the subcube C1 is a random subcube of dimension 2k in t0, 1un as required in Lemma 2.2.7.
Proceeding as above, we get the stated upper bound on PrrE2,P s. �

Now it remains to prove Claim 5.3.3, which we prove next.

Proof of Claim 5.3.3. We start by conditioning the choice of the subcube C
1. This fixes

the polynomials R1, . . . , RL2 obtained in Line 4 of Algorithm 3. Fix any two distinct
polynomials Ri1 , Ri2 : t0, 1u2k Ñ G in this list that differ at at least one point in t0, 1u2k
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of Hamming weight k (in particular, this includes pairs of polynomials that differ at the
point w such that xpwq “ b).

We want to upper bound the probability of the event that Ri1|C “ Ri2 |C. In the end, we
use a union bound over the number of all possible pairs pRi1 , Ri2q.
Define the polynomial R :“ Ri1 ´ Ri2 , where R : t0, 1u2k Ñ G is a non-zero degree d

polynomial, defined on the subcube C1. We want to upper bound the probability that R|C
is identically zero polynomial. Using Observation 5.2.3 and Corollary 5.1.7, we see that
the probability of this is at most Odp1{kηq for some absolute constant η ą 0. For k as
defined in Algorithm 4 where Bd is large enough (depending on d) and c is a large enough
absolute constant, we get a probability of at most 1{p10000 ¨ 2d`1 ¨ Lpε{2q2q.
Since L2 ď Lpε{2q, a union bound over all such pairs Ri1 , Ri2 yields the bound stated in
the claim. �

As discussed above, we have proved Claim 5.3.2 and Claim 5.3.3 and substituting them in Equation (28),
we get the desired bound, and this concludes the correctness of the local list correction algo-
rithm. �

5.4 Local list corrector

Let us now see how Theorem 5.0.1 implies Theorem 1.3.4. Let us first recall Theorem 1.3.4.

Theorem 1.3.4 (Local list correction for Pd). For every Abelian group G and for every ε ą 0, the
space Pd is p1{2d ´ ε,Oεp1q, rOεplog nqd, exppOdp1{εqOpdqqq-locally list correctable.

Specifically, there is a randomized algorithm A that, when given oracle access to a polynomial f and
a parameter ε ą 0, outputs with probability at least 3{4 a list of randomized algorithms φ1, . . . , φL

(L ď exppOdp1{εqOpdqq) such that the following holds. For each P P Pd that is p1{2d ´ εq-close to
f , there is at least one algorithm φi that, when given oracle access to f , computes P correctly on
every input with probability at least 3{4.

The algorithm A makes Oεp1q queries to f , while each φi makes rOεpplog nqdq queries to f.

Proof of Theorem 1.3.4. We first run the algorithm given by Theorem 5.0.1 and it outputs ψ1, . . . , ψL1

for L1 ď exppOdp1{εqOpdqq (by Theorem 1.3.3). Next we run our local correction algorithm for
Pd (see Theorem 1.3.1 and Section 3) with ψ1, . . . , ψL1 as oracles, and these algorithms will be
φ1, . . . , φL1 . This completes the description of the local list correction algorithm Af for Pd, and
the bound on correctness probability follows from the correctness probability of Theorem 1.3.1 and
Theorem 5.0.1.

The algorithm A1 makes Oεp1q queries to f as stated in Theorem 5.0.1, and then each φi makes
Oεp1q ¨ Õplog nq “ Õεplog nq queries to f . �
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