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Abstract

A reachability preserver is a basic kind of graph sparsifier, which preserves the reachability
relation of an n-node directed input graph G among a set of given demand pairs P of size
|P | = p. We give constructions of sparse reachability preservers in the online setting, where G
is given on input, the demand pairs (s, t) ∈ P arrive one at a time, and we must irrevocably
add edges to a preserver H to ensure reachability for the pair (s, t) before we can see the next
demand pair. Our main results are:

• There is a construction that guarantees a maximum preserver size of

|E(H)| ≤ O
(
n0.72p0.56 + n0.6p0.7 + n

)
.

This improves polynomially on the previous online upper bound of O(min{np0.5, n0.5p})+
n, implicit in the work of Coppersmith and Elkin [SODA ’05].

• Given a promise that the demand pairs will satisfy P ⊆ S × V for some vertex set S of
size |S| =: σ, there is a construction that guarantees a maximum preserver size of

|E(H)| ≤ O
(

(npσ)1/2 + n
)
.

A slightly different construction gives the same result for the setting P ⊆ V × S. This
improves polynomially on the previous online upper bound of O(σn) (folklore).

All of these constructions are polynomial time, deterministic, and they do not require knowl-
edge of the values of p, σ, or S. Our techniques also give a small polynomial improvement in
the current upper bounds for offline reachability preservers, and our results extend to an even
stronger model in which we must commit to a path for all possible reachable pairs in G before
any demand pairs have been received. As an application, we improve the competitive ratio for
Online Unweighted Directed Steiner Forest to O(n3/5+ε), improving on the previous bound of
O(n2/3+ε) [Grigorescu, Lin, Quanrud APPROX-RANDOM ’21].

∗This work was supported by NSF:AF 2153680.



1 Introduction

We study reachability preservers, a basic graph sparsifier that has found applications in graph
spanners and shortcut sets [25], property testing algorithms [2], flow/cut approximation algorithms
[18], Steiner network design algorithms [1], etc (see [8] for more discussion and applications).

Definition 1 (Reachability Preservers). Given a directed graph G = (V,E) and a set of demand
pairs P ⊆ V × V , a reachability preserver is a subgraph H ⊆ G with the property that, for all
(s, t) ∈ P , there is an s⇝ t path in H iff there is one in G.

The study of reachability preservers goes back at least to Directed Steiner Network (DSN), a
classic NP-hard graph algorithm, which can be phrased as the computational task of computing the
sparsest (or minimum weight) reachability preserver of a given instance G,P [26]. More recently
they have been intensively studied from an extremal perspective, where the goal is to determine
the worst-case number of edges needed for a reachability preserver, typically as a function of n (the
number of nodes in the input graph) and p := |P | (the number of demand pairs) [1,5,8,12,13,17,24].

Almost all previous work on reachability preservers operates in the offline model, where G,P
are given on input and the goal is to construct a sparse preserver H. However, there is also a long
line of algorithmic work on online Steiner network design [3, 4, 9–11, 21, 23, 24]. Here the model is
that G is given on input, and the demand pairs (s, t) ∈ P arrive one at a time. We must irrevocably
add edges to H to preserve reachability for the current demand pair before the next one arrives,
and the process can halt at any time without warning. These papers typically try to achieve a
small competitive ratio, that is, the goal is design an efficient online algorithm that achieves an
upper bound on preserver size of the form |E(H)| ≤ OPT · f(n, p) where OPT is the best offline
solution for the given instance G,P and the function f is as small as possible.

We study extremal bounds for reachability preservers in the online model. This problem has
been previously explicitly considered only in a stronger non-standard online model (see Theorem
3), or implicitly as an internal ingredient inside the aforementioned algorithms (see Section 1.2).
There is one previous paper that implies results in this setting, which is by Coppersmith and Elkin
[19], and it more strongly studies distance preservers (which must preserve exact distances among
demand pairs). Although not explicitly discussed, one can use a folklore reduction of reachability
preservers into the setting of DAGs (see Theorem 9), and then apply the analysis of Coppersmith
and Elkin to show an online upper bound of

|E(H)| ≤ O
(

min
{
np1/2, n1/2p

}
+ n

)
.

Meanwhile, in the source-restricted setting where the demand pairs satisfy P ⊆ S×V (or P ⊆ V ×S)
for some set of source nodes S, we have the online bound

|E(H)| ≤ O (n|S|) .

This construction is folklore; one simply selects paths for demand pairs in a “consistent” fashion
[7, 19], meaning that they will all lie within a set of in- and out-trees rooted at the nodes in S,
which have O(n|S|) edges in total. This simple construction remains state of the art, and has been
used recently as an ingredient in online Steiner network algorithms [21,24], thus motivating further
investigation. We note that neither of these constructions require any advance knowledge of P or
S (not even their size); this is typically considered to be an essential feature of the online model.

Although there are many more previously-known extremal bounds for offline reachability pre-
servers (see Table 1), they all rely on one or more technical tools that inherently require advance
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knowledge of the demand pairs; we discuss these tools in more detail in Section 3.3. We develop a
framework in which to analyze online reachability preservers, and we use it to prove two new upper
bounds, improving on both of the results mentioned above:

Theorem 1 (Online Pairwise Reachability Preservers). Given an n-node directed graph G, there
is an online algorithm that constructs a reachability preserver H of |P | = p total demand pairs of
size at most

|E(H)| ≤ O
(
n

2+α
3+α

+o(1)p
2

3+α + n2−2α+o(1)pα + n
)
< O

(
n0.72p0.56 + n0.6p0.7 + n

)
,

where α ≥ 0.7 is a root of 4x3 − 13x2 + 10x− 2.1

Theorem 2 (Online Source-Restricted Reachability Preservers). Given an n-node directed graph
G = (V,E), and a promise that the demand pairs will satisfy P ⊆ S × V for some set of source
nodes S ⊆ V , there is an online algorithm that constructs a reachability preserver H of p total
demand pairs of size at most

|E(H)| ≤ O
(

(n|S|p)1/2 + n
)
.

The same result holds under the promise that P ⊆ V ×S, but requires a slightly different algorithm.

All of our construction algorithms are deterministic, run in polynomial time, and do not require
any knowledge of P or S (including their size). Theorem 2 ties the state-of-the-art upper bound in
the offline sourcewise setting [1].

It may also be interesting to compare Theorem 1 to the following lower bound, proved in [8] in
a stronger online model:

Theorem 3 ([8]). Consider a stronger version of the online model where the graph G is initially
empty, and an adversary may add new edges to G in each round before providing the next demand
pair. Then there is a strategy for the adversary that guarantees that any online reachability
preserver H will have size

|E(H)| ≥ Ω
(

(np)2/3 + n
)
.

Our bound in Theorem 1 is polynomially better than this one (in exchange for a weaker adver-
sary), and so it formally separates these two models.

1.1 Other Models

A couple of the new tools that we develop for the online setting also turn out to be helpful in the
classical offline setting. This yields the following small polynomial improvement in the state of the
art:

Theorem 4 (Offline Reachability Preservers). Given an n-node directed graph G and a set of
demand pairs P , one can construct in polynomial time a reachability preserver H of size

|E(H)| ≤ O
(
n3/4p1/2 + n2−

√
2+o(1)p1/

√
2 + n

)
≤ O

(
n0.75p0.5 + n0.59p0.71 + n

)
.

1This upper bound on |E(H)| is decreasing as α increases, so one gets a correct but slightly suboptimal upper
bound by plugging in α = 0.7 (the explicit form on the right is a slight overestimate of that bound, with the exponents
rounded off). The exact value is α = 0.70086 . . . .
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Bound on |E(H)| Offline Online Citation

O
(

min
{
np1/2, n1/2p

}
+n
)

✓ ✓ [19] (implicit)

O
(
n2/3p2/3 +n

)
✓ [1]

O
(

n2

2log∗ n +p
)

✓ [1]

O
(
n3/4p1/2 + n5/8p11/16 +n

)
✓ [8]

O
( p2

2log
∗ p +n

)
✓ [8]

O
(
n3/4p1/2 + n2−

√
2+o(1)p1/

√
2 +n

)
✓ this paper

O
(
n0.73p0.54 + n0.6p0.7 +n

)
✓ ✓ this paper

O
(
(np|S|)1/2 +n

)
✓ [1]

O
(
(np|S|)1/2 +n

)
✓ ✓ this paper

For any int d ≥ 1: Ω
(
n

2
d+1 p

d−1
d +n + p

)
✓ ✓ [1], based on [19]

For p ≥ n4/9|S|2/3: Ω
(
n4/5p1/5|S|1/5 +n + p

)
✓ ✓ [1]

Table 1: The progression of upper and lower bounds on the extremal number of edges needed
for an offline/online reachability preserver. When S is present, the bound applies in the source-
restricted setting P ⊆ S × V (or P ⊆ V ×S). The terms 2log

∗ n and 2log
∗ p reflect the current lower

bounds on the Ruzsa-Szemerédi function; see [8] for discussion.

We will also consider the stronger non-adaptive version of the online model. In its strongest
form, this model would require that the selected path π(s, t) added to the preserver for each demand
pair (s, t) depends only on the input graph G, and not also on the previous demand pairs or the
current preserver H. Equivalently, after receiving the input graph G, we are required to commit to
a choice of path for every reachable pair (s, t) before any demand pairs are received. In addition to
the interpretation through the online model, this can be viewed as a parallelization of reachability
preservers: it allows one to preprocess a graph G in such a way that, given any set of demand
pairs P , we can construct a sparse reachability preserver H by adding a path for all demand pairs
(s, t) ∈ P in parallel, without the path-adding process for (s, t) even knowing the other demand
pairs in P .

We will show that our upper bounds can almost be made non-adaptive, but a little bit of extra
information is required. Making them fully non-adaptive is an interesting open problem.

Theorem 5 (Non-Adaptive Reachability Preservers). There are online algorithms satisfying The-
orem 1 and Theorem 2 where the selected path for each demand pair (s, t) depends only on the
input graph G, the set of source nodes S (for Theorem 2), and

• the index i of the current demand pair, or

• the total number p of demand pairs that will arrive.

The first (i-sensitive) part of this theorem strictly strengthens Theorem 1. The second (p-
sensitive) part is incomparable in strength to Theorem 1, since it depends on the overall number
of demand pairs p, which is unknown in Theorem 1. Both parts are incomparable in strength to
Theorem 2, since they require knowledge of the source nodes S which are unknown in Theorem 2.
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These are proved in Section 4. For comparison, the results of Coppersmith and Elkin for distance
preservers [19] imply non-adaptive reachability preservers of quality O(min{np1/2, n1/2p}+n), but
nothing further was previously known.

1.2 Application to Unweighted Directed Steiner Network

The algorithmic problem of computing the sparsest2 possible reachability preserver of an input
G,P is called Unweighted Directed Steiner Network (UDSN). This problem is NP-hard, and even
hard to approximate [20], but it is well studied from the standpoint of approximation algorithms.
After considerable research effort [1, 6, 14–16,22], the state-of-the-art is:3

Theorem 6 (Offline UDSN [1,15]). There is a randomized polynomial time algorithm for (offline)
UDSN that, given an n-node input graph G and a set of p demand pairs P , returns a reachability
preserver H of size

|E(H)| ≤ OPT ·O
(

min
{
n4/7+ε, p1/2+ε

})

where OPT is the number of edges in the sparsest possible reachability preserver of G,P .

The bound of O(n4/7+ε) follows a proof framework that was originally developed by Chlamtáč,
Dinitz, Kortsarz, and Laekhanukit [16], but then replaces a certain key internal ingredient in their
proof with an offline source-restricted reachability preserver [1].

It is an interesting open question whether the bound in Theorem 6 can be matched by an online
algorithm (in other words, is the competitive ratio for UDSN bounded by O

(
min

{
n4/7+ε, p1/2+ε

})
?).

This was partially achieved about ten years ago by Chakrabarty, Ene, Krishnaswamy, and Panigrahi
[21], who showed:

Theorem 7 (Online UDSN, parametrized on p [21]). There is a randomized polynomial time
algorithm for online UDSN that achieves a competitive ratio of O

(
p1/2+ε

)
.

Thus, the remaining question is whether the dependence on n in Theorem 6 can be recovered in
the online setting. Here the state of the art is due to, Grigorescu, Lin, and Quanrud, who obtained
a competitive ratio of n2/3+ε [24], roughly following the framework of Chlamtáč et al. [16] but with
adaptations for the online setting. As an application of our new online source-restricted preservers,
we are able to substitute them into this framework, improving the competitive ratio:

Theorem 8 (Online UDSN, parametrized on n). There is a randomized polynomial time algorithm
for online UDSN that achieves a competitive ratio of O(n3/5+ε).

1.3 Organization

• Section 2 recaps some useful technical preliminaries, largely from [8].

• Section 3.1 sets up the algorithms used to select paths for demand pairs as they arrive in the
online setting, and proves their basic properties.

• Section 3.2 proves Theorem 2.

2More generally, in algorithmic contexts one can consider a weighted version of the problem, where G has edge
weights and the goal is to construct a min-weight preserver H.

3All work to date has focused on proving an approximation ratio as a function of n or as a function of p. It is not
clear if a better approximation ratio can be achieved if we consider bounds that can depend on both n and p.
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• Section 3.3 informally overviews Theorems 1 and 4. The formal proofs are more technical, so
we give them in Appendices A and B, respectively.

• Section 4 proves Theorem 5.

• Section 5 proves Theorem 8.

2 Technical Preliminaries

We will recap some definitions and results from prior work that will be useful in our arguments to
follow.

2.1 The DAG reduction

While proving all of our upper bounds, it will be convenient to assume that the input graph is
a DAG. That this assumption is without loss of generality comes from the following standard
reduction, which we will recap somewhat briefly here:

Theorem 9 (DAG Reduction (folklore)). If there is an algorithm that constructs a reachability
preserver H of size

|E(H)| ≤ f(n, p, σ)

for any p demand pairs using |S| = σ source (or sink) nodes in an n-node DAG, then there is an
algorithm that constructs a reachability preserver H of size

|E(H)| ≤ f(n, p, σ) + 2n

in arbitrary graphs.

Proof. Given an input graph G, compute a strongly connected component (SCC) decomposition.
For each component C in the decomposition, choose an arbitrary vertex v ∈ C and an in- and
out-tree rooted at v spanning C. There are 2(|C|− 1) edges in these two trees, and hence there are
slightly less than 2n edges in total, across all trees.

We add all edges in these trees to our reachability preserver H at their first opportunity, and
then for the rest of the construction we treat each SCC as a single contracted supernode, yielding a
DAG G′. For each demand pair (s, t), we can map the nodes s, t onto the corresponding supernodes
in G′ and choose paths in G′ using our assumed DAG algorithm, to get a reachability preserver H ′

in G′ on ≤ f(n, p, σ) edges. Each edge (u, v) added to H ′ can be mapped back to any single edge in
G between the set of nodes corresponding to the supernode u and the set of nodes corresponding
to the supernode v. Since our in- and out-trees preserve strong among all nodes in each of these
sets, this will give a correct preserver in G.

2.2 Path System Definitions

A path system is a pair S = (V,Π), where V is a set of vertices and Π is a set of nonempty vertex
sequences called paths. We will next recap some basic definitions; see also [8] for more discussion.
Note that, even when the vertex set V is that of some graph G, the paths in Π are abstract
sequences of vertices that do not necessarily correspond to paths in G. The length of a path π ∈ Π,
written |π|, is its number of vertices (hence off by one from the length of the path through some
graph). The degree of a node v ∈ V , written deg(v), is the number of paths that contain v (which
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may differ significantly from its degree as a node in a graph). The size of S, written ∥S∥, is the
quantity

∥S∥ :=
∑

π∈Π
|π|.

river

second
arcfir

st
ar

c

Figure 1: A directed 3-cycle (left) and a 3-bridge (right).

We will later use so-called Turán-type methods to bound the size of certain path systems,
meaning that we will first establish that S avoids certain subsystems, and then we will bound the
maximum possible size of any path system that avoids those subsystems. We say that S′ is a
subsystem of S, written S′ ⊆ S, if it can be obtained by zero or more of the following operations:
delete a path from Π, delete a node from V , or delete one instance of a node v from a path π ∈ Π.
We will use two kinds of forbidden subsystems in this paper (see Figure 1):

• A directed k-cycle is a path system that has k nodes with a circular ordering (x0, x1, . . . , xk−1, xk =
x0), and k paths of length two each, which are all paths of the form (xi, xi+1), 0 ≤ i < k.

• A k-bridge is a path system that has k nodes with a total ordering (x1, x2, . . . , xk), and k
paths of length two each, which are (1) the path (x1, xk), called the river, and (2) the k − 1
paths of the form (xi, xi+1), 1 ≤ i < k, called the ith arc.

We note that k-bridges still count even when they are degenerate; for example, two paths that
coincide on two consecutive nodes count as a 2-bridge, and three paths that coincide on three
consecutive nodes contain a 3-bridge, etc.

A path system is acyclic if it does not contain any directed cycle as a subsystem, or equivalently,
if there is a total ordering of the vertices V such that the order of vertices within each path π ∈ Π
agrees with this ordering. We will frequently consider ordered path systems, which are path systems
with a total ordering on their path set Π. With this we will sometimes only forbid subsystems with
certain ordering constraints, e.g., 3-bridges where the last arc comes before the river in the ordering
of Π.

3 Online Reachability Preservers

3.1 Path Growth Algorithms

A key tool in our online upper bounds will be the following two (very similar) path selection
algorithms. We use these algorithms to generate a path π(s, t) for each demand pair (s, t) as it
arrives, and then we add the edges of this path to the current preserver. Our path generation
algorithms are greedy, growing paths one edge at a time and locally avoiding new edges if possible.
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Input: DAG G = (V,E), current preserver H ⊆ G, demand pair (s, t)

Let π ← (s)
while last node of π is not t do

u← last node of π
if there exists an edge (u, v) ∈ E(H) with t reachable from v then

append any such edge (u, v) to the back of π
else

append to the back of π any edge (u, v) ∈ E(G) with t reachable from v

return π

Algorithm 1: forwards-growth path generation

Input: DAG G = (V,E), current preserver H ⊆ G, demand pair (s, t)

Let π ← (t)
while first node of π is not s do

v ← first node of π
if there exists an edge (u, v) ∈ E(H) with u reachable from s then

append any such edge (u, v) to the front of π
else

append to the front of π any edge of the form (u, v) ∈ E(G) with u reachable from s

return π

Algorithm 2: backwards-growth path generation

The two algorithms are symmetric to each other, and differ only in whether we grow the path from
front to back or from back to front.

As we use these algorithms to sequentially generate paths and build our preserver, it will be
helpful to track an auxiliary path system Z = (V,Π). Each time we add a path π(s, t) to H, say
that a new edge is an edge e ∈ π(s, t) that was not previously in the preserver. We then add a
corresponding path π′ to Z, whose nodes are

π′ :=

{
{u | there is a new edge (u, v) ∈ π(s, t)} ∪ {t} if forwards-growth is used

{s} ∪ {v | there is a new edge (u, v) ∈ π(s, t)} if backwards-growth is used

and in either case, these nodes are ordered in the path π′ the same as their order in π(s, t). We will
also treat Z as an ordered path system, with the paths in Z ordered by the arrival of the demand
pairs that generated each path. The following properties of Z all follow straightforwardly from the
construction:

Lemma 10 (Properties of Z).

1. Z is acyclic,

2. ∥Z∥ = |E(H)|+ p,

3. Under forwards-growth, Z has no bridge in which the first arc comes before the river in the
ordering of Π. Under backwards-growth, Z has no bridge in which the last arc comes before
the river in the ordering of Π.
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Proof.

1. Since the input graph G = (V,E) is a DAG, the order of nodes in each path π ∈ Π agrees
with the topological ordering of the nodes in V , implying that Z is acyclic.

2. Initially, we have ∥Z∥ = |E(H)| = 0. Then, every path π′ added to Z corresponds to a path
π(s, t) that contributes exactly |π′|−1 new edges to H, so in the end we have ∥Z∥ = |E(H)|+p.

3. We will prove this for forwards-growth; the argument for backwards-growth is symmetric
(up to reversal of direction of the edges of the input graph G). Seeking contradiction, suppose
there is a bridge formed by nodes (x1, . . . , xk), arc paths π1, . . . , πk−1, and river path πr, with
π1 <Π πr. Let π(s1, t1), π(sr, tr) be the paths generated by forwards-growth corresponding
to π1, πr respectively. By construction, since x1 ∈ (π1 ∩ πr), these paths both contribute new
edges to H leaving x1; call the first one (x1, y) ∈ π(s1, t1). Now notice that the arcs witness
reachability among all of the node pairs

(y, x2)︸ ︷︷ ︸
in π1

, (x2, x3)︸ ︷︷ ︸
in π2

, . . . , (xk−1, xk)︸ ︷︷ ︸
in πk−1

, (xk, tr)︸ ︷︷ ︸
in πk

.

So by transitivity, the node pair (y, tr) is reachable. When we generate π(sr, tr) using
forwards-growth, since we have already added π(s1, t1) the edge (x1, y) is already present
in H and we have (y, tr) reachability. So the algorithm will not choose to add a new edge
leaving x1 while generating π(sr, tr), which completes the contradiction.

3.2 Online Source-Restricted Reachability Preservers

We will prove the following upper bound on source-restricted preservers in the online model:

Theorem 11. In the online model with an n-node input DAG G = (V,E) and p total demand
pairs, the final preserver H will have size

|E(H)| ≤ O
(

(np|S|)1/2 + n
)

in either of the following two settings:

• S is the set of start nodes used by the given demand pairs P (that is, P ⊆ S × V ), and the
builder generates paths in each round using the backwards-growth algorithm, or

• S is the set of end nodes used by the given demand pairs P (that is, P ⊆ V × S), and the
builder generates paths in each round using the forwards-growth algorithm.

Notably, neither the forwards- nor backwards-growth algorithm require the builder to know
the number of demand pairs p or any information about the set of source/sink nodes S. We will
only prove the latter point in Theorem 11, analyzing forwards-growth and assuming P ⊆ V × S.
The other point is symmetric.

The proof will work by analyzing the path system Z associated to the online path-adding
process; recall its essential properties in Lemma 10. Let ℓ := ∥Z∥/p be the average path length
and let d := ∥Z∥/n be the average node degree. If d ≤ O(1) then we have ∥Z∥ ≤ O(n) and the
theorem holds, so we may assume in the following that d is at least a sufficiently large constant.
Imagine that we add the paths from Z to an initially-empty system, one at a time, in the reverse
of their ordering in Π. We observe:
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Lemma 12. There is a path π ∈ Π such that when π is added in the above process, it contains at
least ℓ/4 nodes of degree at least d/4 each.

Proof. Suppose not. Then, by counting the first d/4 times each node appears in a path separate
from the remaining times, the total size of Z can be bounded as

∥Z∥ ≤ nd

4
+

pℓ

4

≤ ∥Z∥
4

+
∥Z∥

4

=
∥Z∥

2
,

which is a contradiction.

t ∈ S

π
(first in ordering, first arc)

q
2

(second
arc)

q 1
(r

iv
er

)

Figure 2: The proof of Lemma 13 works by arguing that no path π may intersect too many paths
that come later in the ordering, or else two of those paths q1, q2 will share an endpoint in S and
thus form a forbidden 3-bridge.

Lemma 13. ℓd ≤ O(|S|).
Proof. Suppose for contradiction that ℓd > 16|S|. By the previous lemma, there is a path π ∈ Π
that intersects at least ℓd/16 > |S| other paths in Π, which were added to the system before π
(and hence come later than π in the ordering of Π). By the Pigeonhole principle, and since the
demand pairs satisfy P ⊆ V × S, at least two of these intersecting paths q1, q2 end at the same
node t ∈ S. Since by Lemma 10 Z does not contain any 2-bridges, q1, q2 may not intersect at any
other nodes, and so they intersect π at two different nodes. But this implies that π, q1, q2 form a
3-bridge in which π is the first arc and it precedes both q1, q2 in the ordering of Π (see Figure 2).
This contradicts Lemma 10, completing the proof.

We now complete the proof by algebraically rearranging the inequality from the previous lemma.
We have:

ℓd ≤ O(|S|)
(pℓ)(nd) ≤ O(|S|pn)

∥Z∥2 ≤ O(|S|pn)

∥Z∥ ≤ O(|S|pn)1/2.
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Since by Lemma 10 we have ∥Z∥ ≥ |E(H)|, this implies our desired bound on the size of the
output preserver.

3.3 Online Pairwise Reachability Preservers

By following an identical proof strategy to our upper bound in the source-restricted setting (i.e.,
exploiting forbidden ordered 2- and 3-bridges), it is possible to prove an upper bound of

|E(H)| ≤ O
(

(np)2/3 + n
)

(details omitted, since we will show a stronger bound than this). As discussed in [8], this is probably
the best upper bound one can show by exploiting only the forbidden ordered 2- and 3-bridges from
Lemma 10. Nonetheless, we will show a stronger bound, which crucially also exploits the forbidden
ordered 4-bridges from Lemma 10.

Recap of [8]. Recent work of Bodwin, Hoppenworth, and Trabelsi [8] on offline reachability
preservers introduced a framework for extremal analysis of forbidden 4-bridges, which we will
briefly recap here. First, the paper shows:

Lemma 14 (Independence Lemma, c.f. [8], Lemma 38). Let β(n, p,∞) denote the maximum
possible size of a path system with n nodes, p paths, and no bridges as subsystems. Then every
n-node directed graph and set of p demand pairs has an offline reachability preserver H of size

|E(H)| ≤ O (β(n, p,∞)) ,

and this is asymptotically tight.

Thus, it suffices to argue about the extremal size of a bridge-free path system. We remark
here that versions of this lemma are perhaps implicit at a low level in prior work, e.g. [1, 19]. It
is also an inherently offline lemma, and breaks down completely in the online setting; the reliance
on this lemma (or its underlying ideas) is essentially why the known results for offline reachability
preservers do not tend to extend to the online setting.

This previous paper then argues as follows. Assume for convenience that all paths have length
Θ(ℓ) and all nodes have degree Θ(d), for some parameters ℓ, d. Recall that the upper bound from
forbidden 2- and 3-bridges is O((np)2/3 + n), and so our goal is to show that this bound cannot be
tight. A few straightforward calculations reveal that, if this bound were tight, then for the typical
pair of paths π1, π2 in the system there will be Θ(ℓ) paths that intersect π1 and then π2. However,
no pair of these intersecting paths may have crossing intersection points with π1, π2 (see Figure 3).

π1 π2

π3

π4

Figure 3: There cannot be two paths π3, π4 that both intersect paths π1, π2, but where the points
of intersection switch places as in this picture, or else they form a 4-bridge (here π3 is the river).
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If there are Θ(ℓ) paths that intersect both π1, π2, and yet these intersecting paths cannot cross
each other, then the typical intersecting path must “lie flat” in the sense that there is not much of a
gap along either π1 or π2 to, say, the h nearest intersecting paths (for some parameter h). In order
to exploit this, the key strategy in [8] is to sample a random base path πb ∈ Π, and then analyze
the random subsystem S′ on the vertex set formed by examining the h adjacent nodes along the
paths that intersect πb (see Figure 4).

h nodes/path

πb

Figure 4: The random subsystem S′. Figure based on [8], Figure 7.

If the intersecting paths do indeed “lie flat,” then there will be many such paths within h steps
of πb along its branching paths, and thus we should expect S′ to contain many long paths. But
we can apply known upper bounds to S′ to rule out this possibility. This implies that, in fact,
the typical pair of paths π1, π2 have ≪ ℓ paths that intersect both, leading to an improved upper
bound.

Our Offline Improvements. An auxiliary result of this paper is an improvement in the bound
shown by [8]. We refer back to Theorem 4 for the statement, or Appendix B for the proof.

The source of these improvements is from an improved strategy for controlling the size of the
random subsystem S′. One of the two ways in which this part improved is by recursively bounding
the size of S′ (this is executed in Lemma 40). Although this idea is conceptually straightforward,
it requires a significant refactoring of the proof to enable it. The technical reason is that [8] bounds
the input system Z using an ℓ1 norm of path lengths (the standard notion of size) but S′ using an
ℓ2 norm of path lengths, making it impossible to directly apply the bound on Z recursively to S′.
We switch to bounding both using the ℓ2 norm everywhere, and we only move back to our desired
ℓ1 norm at the very end of the proof. The other new ingredient is an improved counting of the
contribution of “short” paths to the size of S′, which is executed in Lemma 40.

Our Online Adaptation. It will be slightly more convenient in this exposition to consider
the backwards-growth strategy for path generation here, although of course by symmetry either
strategy works (we use this convention in Appendix A as well). We will analyze the path system Z
constructed above, and in particular Lemma 10 states that bridges are forbidden in Z whose last
arc comes before the river.

Can we exploit forbidden ordered 4-bridges by following the strategy outlined above? Some
parts of the method extend easily, with minor tweaks. For example, instead of counting any paths
π that intersect the typical pair of paths π1, π2, we can restrict attention to those that also come
after π1, π2 in the ordering. Then the “crossing” in Figure 3 is still forbidden (since the river π3 is
assumed to come after the last arc π2). Relatedly, when we define S′, we need to consider only the
paths that intersect πb and come before it. Nonetheless, all these definitional adaptations turn out
to affect the relevant counting arguments by only constant factors, and so they do not harm the
argument. There are many other minor issues that we will not overview, which can be dispatched
with a little technical effort.
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However, there is one major problem: there is now potential for overlap in the paths that branch
off πb. That is, in the offline setting, we can exploit 3-bridge-freeness to argue that no two paths
that branch off πb also intersect each other, and thus every node in S′ (except those on πb itself) is
in exactly one branching path. But in the online setting, this is not so: these intersections form a
3-bridge that may be allowed (see Figure 5).

1st arc,

last

ri
ve

r

2 n
d

arc

h nodes/path

πb

Figure 5: When we generate S′ in the online/ordered setting, it is possible for the paths intersecting
πb to intersect each other: the river could come before the 2nd arc, which would not violate the
conditions of Lemma 10.

Naively, the typical node in S′ could be Θ(d) branching paths, and this complication completely
wipes out all the gains from the analysis. Although we cannot rule out the possibility of some nodes
having Θ(d) branching paths, we are able to use a more intricate maneuver to show that there is
some threshold t ≪ d such that, in expectation, the number of nodes of branching degree Ω(x)
in S′ is far less than the trivial bound of ℓdh/x for x ≥ t. This turns out to be good enough to
recover some gains from the method. We unfortunately cannot show this for t = 1, which is the
fundamental reason why our online bounds are polynomially worse than the corresponding offline
bounds.

4 Non-Adaptive Reachability Preservers

We next describe our method to convert our online algorithms to (almost) non-adaptive algorithms.
Our algorithm essentially works by simulating a greedy adversary in the online model, who repeat-
edly provides the most costly demand pair in each round, and then we set paths by running our
online algorithm against this adversary, halting at the appropriate place. Our proof will thus imply
indirectly that this greedy strategy is the most effective one for an adversary in the online model,
up to constant factors.

Our algorithms will reference an extremal function f(n, p) for online reachability preservers,
achieved by a generic path selection algorithm π(s, t | G,H). That is, we imagine an algorithm
that starts with G as any n-node graph, and H as the n-node empty graph. When each demand
pair (s, t) arrives, we select the path π(s, t | G,H) and add all of its edges to H. Then f(n, p) is
the largest possible number of edges in H after p rounds of this process.

We use this generic extremal function f , rather than the particular extremal upper bound from
Theorem 1, in order to emphasize that this bound and the technical details of the forwards- or
backwards-growth algorithms are not really important in this proof. If a future result improves on
Theorem 1, then the new bound will automatically transfer to these results as well. For simplicity
we will focus on f(n, p) here, but the proof would generalize readily to extremal functions that
incorporate additional parameters beyond n and p. This includes the online source-restricted
preservers of Theorem 11, which incorporate |S| as a parameter, although we note that these
require the set S to be given on input, so that the we know the set of possible demand pairs and
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we can properly simulate the adversary (i.e., search over the proper subset of demand pairs in the
condition of the while loop).

Input: n-node directed graph G = (V,E), number of demand pairs p
All reachable node pairs (s, t) in G have “unfinalized” path
H ← (V, ∅)
Let f(n, p) be an extremal function for online reachability preservers, achieved by a
deterministic path selection algorithm π(s, t | G,H)

while there is reachable (s, t) with > f(n, p)/p edges in π(s, t | G,H) \ E(H) do
finalize path π(s, t | G,H) for (s, t)
add edges of π(s, t | G,H) to H

foreach remaining unfinalized reachable pair (s, t) do
finalize path π(s, t | G,H) for (s, t)

Algorithm 3: known-p-non-adaptive-rps

Theorem 15. For all n-node graphs G and sequences P of |P | =: p demand pairs, the paths set
by Algorithm 3 satisfy ∣∣∣∣∣∣

⋃

(s,t)∈P
π(s, t)

∣∣∣∣∣∣
≤ 2f(n, p).

Proof. Let Q be the set of demand pairs whose paths are set in the initial while loop, and let HQ

be the subgraph H just after the paths for Q have been set and the while loop terminates. We
first note that |Q| < p, since otherwise by counting the edges contributed to H, the first p demand
pairs in Q create a subgraph HQ of size |E(HQ)| > f(n, p) which contradicts the definition of the
extremal function f . Since |Q| < p, we therefore have

|E(HQ)| ≤ f(n, p).

Meanwhile, all demand pairs in P \Q have their path set in the final for loop, and by construction
there are ≤ f(n, p)/p edges outside HQ in each path. So we have

∣∣∣∣∣∣

⋃

(s,t)∈P
π(s, t)

∣∣∣∣∣∣
≤ |E(HQ)|+

∑

(s,t)∈P\Q
|π(s, t) \ E(HQ)|

≤ f(n, p) + p ·
(
f(n, p)

p

)

= 2f(n, p).

This theorem implies that, if one uses the precomputed paths from Algorithm 3 to respond to
online queries, then the online upper bound of f(n, p) will still apply (up to a factor of 2). The
main weakness of Algorithm 3 is that it requires advance knowledge of the parameter p, in order
to compute the threshold f(n, p)/p at which we exit the initial while loop. It is tempting, but
incorrect, to think this can be generally avoided by setting all paths as in the main while loop.
Such a strategy would work for a path selection algorithm that happens to satisfy an axiom like
monotonicity, for which adding edges to H can only decrease the number of new edges in a selected
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Input: n-node directed graph G = (V,E)
Let f(n, p) be an extremal function for online reachability preservers, achieved by a
deterministic path selection algorithm π(s, t | G,H)

Let p∗ := arg maxp f(n, p) ≤ O(n)
foreach q ∈ {p∗, 2p∗, 4p∗, 8p∗, . . . } do

Run Algorithm 3 with number-of-paths parameter q
Denote selected paths by πq(s, t)

Algorithm 4: Preprocessing for Index-Sensitive Non-Adaptive Reachability Preservers

Input: demand pair (s, t), index i
// run Algorithm 4 as preprocessing

Let q be the least value in {p∗, 2p∗, 4p∗, 8p∗, . . . } with q ≥ i
Return πq(s, t)

Algorithm 5: Path Selection for Index-Sensitive Non-Adaptive Reachability Preservers

path π(s, t | G,H) (it might also be fine to tolerate an approximate version of monotonicity).
However, we note that the path selection algorithms (forwards- and backwards-growth) used in
our online upper bounds are not monotonic in this way (or even approximately monotonic).

That said, we next describe a wrapper for the algorithm that can avoid the need to know p
ahead of time:

Theorem 16. Suppose that the extremal function f(n, p) depends polynomially on its second
parameter p in the regime where p ≥ p∗.4 Then the online algorithm that runs Algorithm 4 as a
preprocessing routine upon receiving G, and which then uses Algorithm 5 to select the path added
to the preserver for each ith demand pair (s, t), will construct a reachability preserver H of size
|E(H)| ≤ O(f(n, p)).

Proof. For each possible choice of q, we will add at most q paths selected by πq to the preserver. By
Theorem 15, these paths will have at most 2f(n, q) edges in their union. Additionally, letting q∗ be
the largest choice of q for which we add any corresponding paths, note that we have q∗ ≥ p ≥ q∗/2.
So we can bound the total number of edges in the preserver as:

|E(H)| ≤
∑

q∈{p∗,2p∗,4p∗,8p∗,...,q∗}
2f (n, q)

≤ O (f (n, q∗))

≤ O (f (n, p)) .

Here the second inequality holds because f depends polynomially on its second parameter, and so
this sum is asymptotically dominated by its largest term. The third inequality holds because we
have p ≥ q∗/2, and (again since f depends polynomially on its second parameter) this means the
values of f(n, q∗), f(n, p) differ by at most a constant factor.

4This phrase “depends polynomially” is intuitive but a bit informal. It is tedious to formalize it, but what we
really mean is that this theorem holds for any function f for which the latter two inequalities in the chain hold. This
includes all upper bounds shown in this paper.

14



5 Online Unweighted Directed Steiner Forest Algorithms

We will next apply our extremal bounds for online reachability preservers to the problem of Online
UDSF. As a reminder, in this problem we receive an n-node directed graph G = (V,E) on input,
and then in each round we receive a new demand pair (s, t) that is reachable in G. We must
irrevocably add edges to a reachability preserver H to ensure that (s, t) is reachable in H before
the next demand pair is received. We do not know the number of demand pairs p ahead of time.
We will denote by OPT the size of the smallest possible (offline) reachability preserver for G,P ,
where P is the set of all demand pairs received.

5.1 Recap of the Grigorescu-Lin-Quanrud Bound

Our new bound will use the structure and several technical ingredients from the previous state-of-
the-art online algorithm by Grigorescu, Lin, and Quanrud [24]. They proved:

Theorem 17 ([24]). For online UDSF, there is a randomized polynomial time algorithm with
competitive ratio O(n2/3+ε).

Their algorithm carries two parameters, T and τ , which will be set at the end by a balance. In
the following, we will say that a demand pair (s, t) is nontrivial if it is not already reachable when
it arrives, and thus it requires us to add at least one new edge to the preserver. We let p be the
total number of nontrivial demand pairs.

• For the first T nontrivial demand pairs that arrive, we use the following result by Chakrabarty
et al.:

Theorem 18 ([21]). There is a randomized polynomial-time online algorithm that constructs
a preserver of the first T demand pairs of size at most OPT ·O(T 1/2−ε).

• After the first T nontrivial demand pairs, the remaining demand pairs are further classified
using a strategy from previous work on offline DSF [6,16]. Say that a node pair (s, t) is τ -thin
if the number of vertices that lie along s⇝ t paths is at most τ , or τ -thick otherwise.

– In order to handle the thick demand pairs, just after the T th demand pair is processed,
we randomly sample a set of |S| = Cn log n/τ nodes, where C is a sufficiently large
constant. Let us say that a node pair (s, t) is hit by S if there exists a node v ∈ S
that lies along an s ⇝ t path. By standard Chernoff bounds (omitted), with high
probability, every thick pair (s, t) is hit by S; in the following we will assume that this
high-probability event occurs. We then add an in- and out-tree from each sampled node
in S, and so together these trees will contain an s ⇝ t path. This costs Õ(n2/τ) edges
in total.

– When each demand pair (s, t) arrives, we first check whether or not it is hit by S. If
so, the pair has been satisfied already by our trees and we can do nothing. If not, then
(s, t) must be τ -thin. In this case, the algorithm appeals to an LP-rounding algorithm
from [6]:

Theorem 19 ([6]). There is a randomized polynomial-time online algorithm that con-
structs a preserver of all τ -thin pairs of size at most OPT · Õ(τ).

This completes the construction. The last technical ingredient required is the following existen-
tial lower bound on OPT:
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Lemma 20 ([24]). OPT ≥ Ω(p1/2).

Proof. Any set of p demand pairs must use at least p1/2 total terminal nodes (start or end). In
order to preserve connectivity, all terminal nodes must have in- or out-degree at least 1. It follows
that any correct solution must have Ω(p1/2) edges.

Now, assuming that p ≥ T we can bound the total competitive ratio as

OPT ·O(T 1/2+ε) + Õ
(
n2

τ

)
+ OPT · Õ(t)

OPT

= O(T 1/2+ε) + Õ(τ) + Õ

(
n2

OPT · τ

)

≤ O(T 1/2+ε) + Õ(τ) + Õ

(
n2

p1/2 · τ

)

≤ O(T 1/2+ε) + Õ(τ) + Õ

(
n2

T 1/2 · τ

)
.

With a parameter balance, one can compute that the optimal setting is (essentially) T = n4/3 and
τ = n2/3, yielding the claimed competitive ratio of O(n2/3+ε). In the case where p ≤ T , the bound
on competitive ratio is simply O(T 1/2+ε), which leads to the same bound.

5.2 Our Adaptation

We improve the competitive ratio from [24]:

Theorem 21. For online DSF with uniform costs, there is a randomized polynomial time algorithm
with competitive ratio O(n3/5+ε).

We mostly follow the strategy from [24] outlined previously, but our main change is to the
handling of thick pairs. After the first T demand pairs have been processed, we again sample a set
S of |S| = Õ(n/τ) nodes, and we note that with high probability this sample hits all τ -thick pairs.
However, unlike before, we do not add in- or out-trees from S. Instead, when each new demand
pair (s, t) arrives, our strategy is to check whether or not it is hit by S. If so, then we use the two
cases of Theorem 11 to add paths for the pairs (s, v) and (v, t), at total cost O((np|S|)1/2 +n) over
all demand pairs. If (s, t) is not hit by S, then the new demand pair (s, t) must be τ -thin, and we
handle it using Theorem 19 like before.

It is intuitive at this point that handling thick pairs with an improved bound would lead to an
improved competitive ratio. But unfortunately, it is not so simple: plugging in the improved bound
to the previous competitive ratio will not lead to an improvement. The reason is that the previous
parameter settings of T = n4/3, τ = n2/3 correspond to the setting where we have |S| = Õ(n1/3)
nodes in our sample and p = T = n4/3 demand pairs in total, and in this setting our new bounds
roughly tie (up to log n factors) those obtained from using in- and out-trees. To get around this,
we will need a more nuanced version of Lemma 20:

Lemma 22. Let p′ be the number of nontrivial demand pairs that are hit by S. Then OPT ≥
Ω (p′/|S|).

Proof. Similar to Lemma 20, it suffices to argue that the demand pairs use Ω (p′/|S|) distinct
terminal nodes (start or end), since each terminal node must have (in or out) degree at least 1.
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For every demand pair (s, t) that is hit by S, there is a node v ∈ S for which we add s⇝ v and
v ⇝ t paths to the preserver. This must either be the first time we add an s⇝ v path, or the first
time we add a v ⇝ t path, since otherwise an s ⇝ t path in the preserver will already exist and
the demand pair will be trivial. Thus the number of start or end terminals that have been paired
with v increases by 1. Overall, since there are |S| possible nodes that could hit our demand pairs,
we must have at least p′/|S| terminal nodes in total.

We are now ready to calculate competitive ratio. Assuming that p ≥ T , this is

O
(
T 1/2+ε

)
+ Õ(τ) + O

(
|S|1/2n1/2p′1/2

OPT

)
+ O

( n

OPT

)

≤ O
(
T 1/2+ε

)
+ Õ(τ) + O

(
|S|1/2n1/2p′1/2

max{p′/|S|, p1/2}

)
+ O

(
n

p1/2

)
Lemmas 20, 22

= O
(
T 1/2+ε

)
+ Õ(τ) + O

(
min

{
|S|3/2n1/2

p′1/2
,
|S|1/2n1/2p′1/2

p1/2

})
+ O

(
n

p1/2

)

= O
(
T 1/2+ε

)
+ Õ(τ) + Õ

(
min

{
n2

p′1/2τ3/2
,

np′1/2

p1/2τ1/2

})
+ O

(
n

p1/2

)
|S| = Õ(n/τ)

≤ O
(
T 1/2+ε

)
+ Õ(τ) + Õ

(
min

{
n2

p′1/2τ3/2
,

np′1/2

T 1/2τ1/2

})
+ O

( n

T 1/2

)
. p ≥ T

This bound will be maximized when p′ is such that the two terms in the min balance, which occurs
when

p′ = n · T
1/2

τ
.

Under this setting, we can simplify

≤ O
(
T 1/2+ε

)
+ Õ(τ) + Õ

(
n3/2

T 1/4τ

)
+ O

( n

T 1/2

)
.

Finally, we are ready to choose τ, T to balance these terms. By setting

τ := n3/5, T := n6/5,

the above expression becomes

O
(
n3/5+ε

)
+ Õ(n3/5) + Õ

(
n3/2

n3/10 · n3/5

)
+ O

( n

n3/5

)

= O
(
n3/5+ε

)
.

Finally, as before, in the case where p ≤ T the competitive ratio is O(T 1/2+ε), giving the same
bound.
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A Online Pairwise Reachability Preservers

We will next prove Theorem 1. Recall from Lemma 10 that, if we construct our online reachability
preserver using forwards- or backwards-growth, then it suffices to bound the size of the associated
path system Z as defined in Section 3.1. In particular, under backwards-growth, Z will have the
following property:

Definition 2 (Half-Bridge-Freeness). A ordered path system is said to be half-k-bridge-free if there
are no bridges of size at most k in which the last arc comes before the river.

The focus of our proof will shift to bounding the maximum possible size of any half-bridge-free
system. That is, let H(n, p, k) denotes the maximum size of a half-k-bridge-free system with n
nodes and p paths, and then from Lemma 10 we have

∥Z∥ ≤ H(n, p,∞) ≤ H(n, p, 4).

So we may focus on providing an upper bound for H(n, p, 4).

A.1 Proof Overview

The proof gets quite technical in places, so let us start with a higher-level overview of the proof
strategy. Let Z = (V,Π) be a system with n-nodes, p-paths, and no half 2, 3, or 4 bridges. By the
standard cleaning lemma (Lemma 23), we may assume that all nodes have degree Θ(d), and all
paths have length Θ(ℓ). For simplicity, we will assume in this overview that all nodes have degree
exactly d and all paths have length exactly ℓ, which will not materially affect the argument.

Recap of Offline Proof from [8]. The previous-best offline upper bound from [8] focuses on a
collection of sets {R(π1, π3) | π1, π3 ∈ Π} which are each the subsets of paths from Π that intersect
π1 and then later intersect π3:

π1 π3

π
(1)
2

π
(2)
2

π
(3)
2

π
(4)
2

R(π1, π3) =
{
π
(1)
2 , π

(2)
2 , π

(3)
2 , π

(4)
2

}

Naively, these sets can have maximum size |R(π1, π3)| ≤ ℓ2, since there are ℓ2 ways to choose a
node from π1 and then π3, and no two paths can use the same pair of intersection points (or else
they form a forbidden 2-bridge). Some straightforward algebra from there leads to an initial but
very suboptimal bound of

∥Z∥ ≤ O
(

min
{
np1/2, n1/2p

}
+ n + p

)
.

20



The next improvement comes by observing that we can actually only pack ℓ paths between π1
and π3, rather than ℓ2. This is essentially because the paths in R(π1, π3) cannot cross each other,
as in the following picture, or else they will form a forbidden bridge:

π1 π3

π
(2)
2

π
(1)
2

Forbidden:
forms a 4-bridge

(π
(2)
2 is the river)

Redoing the algebra with this improved bound |R(π1, π3)| ≤ ℓ leads to a better bound of

∥Z∥ ≤ O
(

(np)2/3 + n + p
)
.

It is indeed possible for some sets to have size |R(π1, π3)| = ℓ, but the next round of improve-
ments works by arguing that the typical such set must be slightly smaller. For intuition: suppose
towards contradiction that every set has size exactly |R(π1, π3)| = ℓ. This can occur only if every
path π2 ∈ R(π1, π3) is perfectly aligned with π1 and π3: that is, if π2 intersects π1 on its ith node,
then it also intersects π3 on its ith node. But then - under this assumption of alignment - we can
argue that our paths must be unusually concentrated. Consider an arbitrary base path πb, and
consider the induced subsystem of nodes that come one step after πb, along paths that intersect πb:

consider subsystem
on these nodes

πb

This subsystem will have ℓd nodes, node degrees d, and (due to alignment) the paths in this
subsystem will have length ℓ. However, applying the previously-shown bounds to this subsystem
reveals that these particular parameters imply a contradiction: the typical length of a path in this
induced subsystem must actually be ≪ ℓ, giving contradiction.

Formalizing this intuition gets rather technical. The key moving parts that were not covered in
the above sketch are:

• We need to select the base path πb randomly rather than arbitrarily, and then measure the
expected value of the various statistics of the system.

• We focus on a subsystem formed by h nodes along paths intersecting πb, rather than just 1
node. (Here h is a new parameter, set by a parameter balance at the end of the proof.)

• The proof involves toggling between bounding the sum of path lengths (which is ∥Z∥), and
bounding the sum of squared path lengths. This is necessary because (1) the sum of sizes of
R(π1, π3) sets naturally scales with the sum of squared path lengths, rather than the sum of
path lengths, and (2) when we focus on our induced subsystem, it may break the cleaning
lemma: it is not still guaranteed that all paths have the same length when restricted to that
subsystem.
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A New Optimization. One of the ways the current proof differs from [8] is in an improved
handling of the toggling between sum-of-path-lengths and sum-of-squared-path-lengths. Roughly,
instead of switching back and forth between these as the proof proceeds, the proof focuses almost
entirely on sum-of-squared-path-lengths. This has several advantages in efficiency; perhaps most
notably, it lets us recursively apply our bound on the size of Z to control the size of the induced
subsystem, rather than only applying the bound ∥Z∥ ≤ O((np)2/3 + n + p) once. This is what
leads to our improvements in the offline setting. This is also mildly helpful in the online setting,
but there are other necessary changes that lead to losses that more than eclipse this improvement.

Changes in the Online Setting. The first change that is required in the online setting is in
the definition of the sets R(π1, π3). Instead of including all paths π2 in these sets that intersect π1
followed by π3, we only include such paths π2 that come after both π1 and π3 in the ordering. This
restriction only affects the relevant counting by constant factors, and it also suffices to achieve the
crucial total-ordering property of the R(π1, π3) sets:

π1 π3

π
(2)
2

π
(1)
2

Forbidden:
if π

(1)
2 comes after π3,

then this forms a
forbidden half-4-bridge

(π
(2)
2 is the river)

A more serious problem arises when considering the induced subsystem. In the offline setting,
the induced subsystem has ℓdh total nodes. This holds because there are ℓd paths that branch
from πb, and these paths may not intersect each other, or else they form a 3-bridge.

ℓhd nodes

πb

With only half-bridges forbidden, however, it is possible for these branching paths to intersect
each other. This will form a 3-bridge, but it will not necessarily form a half-3-bridge. This might
lead to significantly fewer than ℓdh nodes in the induced subsystem.

possibly fewer than
ℓhd nodes

πb

A lot of our new technical work is to control the amount of overlap that might occur, thus
giving a nontrivial lower bound on the number of nodes in the induced subsystem. Roughly, we
do this by recursively applying our bounds on the size of a half-bridge-free system in yet another
way. Still though, the lower bound on number of nodes is still ≪ ldh, and this is the fundamental
reason why our bounds in the online setting are polynomially worse than the analogous bounds in
the offline setting.
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A.2 Setup of Formal Proof and Initial Bound

We start with the following standard lemma:

Lemma 23 (Cleaning Lemma – c.f. [8], Lemma 10). There exists a half-k-bridge free system on
≤ n vertices, ≤ p path whose size is Θ(H(n, p, k)) such that every vertex has degree between d/4
and 4d and every path has length between ℓ/4 and 4ℓ where d, ℓ are the average degree and average
path length respectively.

Proof. Start with a half-k-bridge free system S with n nodes, p paths, and size β(n, p, k). Fix d as
the average node degree and ℓ as the average path length (which do not change as we modify the
system). Then, perform of the following steps:

• While there exists a node of degree < d/4 or a path of degree < ℓ/4, remove the node or path
from the system.

• While there exists a node v of degree > d, split it into two nodes {v1, v2}. Replace each
instance of v in a path with either v1 or v2 in such a way that deg(v1) ∈ {deg(v2), deg(v2)+1}.

• While there exists a path π of length > ℓ, split it into two node-disjoint subpaths π1, π2, with
|π1| ∈ {|π2|, |π2|+ 1}.

It is clear from the construction that all remaining nodes have degree in the range [d/4, d], and
that all remaining paths have length in the range [ℓ/4, ℓ], and that the modified system is still half-
k-bridge-free. Additionally, by unioning over the nodes and paths, the overall size of the system
decreases by < nd/4 + pℓ/4 = ∥S∥/2 due to deletions, so the size is still Θ(β(n, p, k)), and the
lemma is satisfied.

Let ℓ and d denotes the average path length and average node degree respectively, then we have
∥Z∥ = nd = pℓ. For the rest of this section, we assume ℓ and d are at least a sufficiently large
constant, otherwise we immediately have ∥Z∥ ≤ O(n+ p). By the cleaning lemma, we may assume
that every vertex has degree between d/4 and 4d and every path has length between ℓ/4 and 4ℓ.

We write π1 < π2 if the path π1 comes before π2 in the ordering. For nodes a, b ∈ π1, write
a <π1 b if a comes before b in the path π1.

Definition 3 (R Sets). Let

R = {(π1, π2, π3) : π1 ∩ π2 <π2 π2 ∩ π3, π3 < π2}.
For any two paths π1, π3, we define

R(π1, π3) := {π2 : (π1, π2, π3) ∈ R}.
Lemma 24 (c.f. [8], Section 3.2.4). For any pair of paths π1, π3, there is a total ordering of
the elements of R(π1, π3), denoted <R such that if πa <R πb then πa ∩ π1 <π1 πb ∩ π1 and
πa ∩ π3 ≤π3 πb ∩ π3. As a corollary, we have |R(π1, π3)| ≤ O(ℓ).

Proof. We first note that for πa, πb ∈ R(π1, π3) we have if πa ̸= πb then πa ∩ π1 ̸= πb ∩ π1. Suppose
not, and without loss of generality assume πa ∩ π3 ≤π3 πb ∩ π3. If πa ∩ π3 = πb ∩ π3 then πa, πb
forms a 2-bridge, which is a contradiction. Otherwise, πa ∩ π3 <π3 πb ∩ π3, so πa, π3, πb forms a 3
bridge with π3 being the last arc and πb is the river and π3 < πb, which is also a contradiction.

Thus we can order the elements of R(π1, π3) by πa <R πb if π1 ∩ πa <π1 π1 ∩ πb. It suffices to
show that if π1 ∩ πa <π1 π1 ∩ πb then πa ∩ π3 ≤π3 πb ∩ π3. Suppose, for contradiction, that there
is πa, πb such that π1 ∩ πa <π1 π1 ∩ πb but πa ∩ π3 >π3 πb ∩ π3. Then we have π1, πb, π3, πa forms a
4-bridge with π3 being the last arc and πa is the river, and π3 < πa, contradiction.
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Lemma 25. Let x1, . . . , xn be numbers that are at most m and the average is at least a. Then for
any t < a the number of numbers that is at least t is at least a−t

m−a · n.

Proof. We apply Markov’s inequality to the random variable m− x where x is sampled uniformly
from x1, . . . , xn. This gives

Pr [m− x ≥ m− a] ≥ a− t

m− a
,

so the number of numbers that is at least t must be at least a−t
m−a · n.

Lemma 26 (Rephrasing of [8], Lemma 23). |R| ≥ Ω
(
pℓ2d2

)

Proof. For a vertex u let

f(u) :=
∑

π∋u
|{y ∈ π : u >π y}|,

e.g. the number of vertices that strictly precede u in some path. Note that

1

n

∑

u∈V
f(u) =

1

n

∑

π∈Π

(|π|
2

)
≥ 1

n
p

(
ℓ/4

2

)
≥ 1

n
· pℓ

2

33
=

dℓ

33

while for each u we have f(u) ≤ 4d · 4ℓ = 16dℓ. Thus by Lemma 25 there is at least n
1054 = Ω(n)

vertices u such that f(u) ≥ dℓ
66 . Call such a vertex good.

Now consider any good vertex u. Let du be degree of u. For each π ∋ u define f(u, π) to be the
number of vertex that strictly precede u in π. Then we have

1

du

∑

π∋u
f(u, π) =

1

du
f(u) ≥ dℓ

66du
≥ ℓ

132

while for each π we have f(u, π) ≤ 2ℓ. So by Lemma 25 there is at least Ω(du) = Ω(d) path π ∋ u
such that f(u, π) ≥ ℓ

200 . Call such a path good. Let dg be the number of good paths (through u.)
Now consider any pair π2, π3 of good path. Note that π2 < π3 or π3 < π2 by assumption. Thus

there are at least
(
dg
2

)
= Ω(d2) pair of good path π3 < π2 for each good vertex u.

Now for a good pair π3 < π2, consider all the vertices preceding u in π2, there are at least
ℓ
36 = Ω(ℓ) such vertices by the definition of good path. Fix such a vertex v. Each such v has Ω(d)
path π1 passing through them. As we goes through Ω(n) good vertex u, each with Ω(d2) pair of
good path π3 < π2 passing through u, and each with Ω(ℓ) vertex v such that v <π2 u, each with
Ω(d) path π1 passing through v, we have at least Ω(nd2ℓd) = Ω(pℓ2d2) elements in the set R.

Lemma 27 (Initial bound). We have H(n, p, 4) ≤ O(n + n2/3p2/3 + p).

Proof. We have

Ω(pℓ2d2) ≤ |R| ≤
∑

π1,π3∈Π
|R(π1, π3)| ≤ O(p2ℓ).

Rearranging gives ∥Z∥ ≤ n2/3p2/3.

24



A.3 Bootstrapping

Our strategy from now on will be the following. Starting with the initial bound above, we will
recursively improve the bound. For the recursive improvement step, we sample a path, called the
base path uniformly at random from Π. For each of the Θ(ℓ) vertices on the base path, consider the
Θ(d) paths that pass through it. Then for each such path consider the h vertices that immediately
follow the vertex on the base path, where h ≤ ℓ is a parameter that will be chosen later (if there
are few than h vertices following the base path vertex, consider all of them.) Each such sequence
of at most O(h) vertices is called a branching path. Thus at most O(ℓdh) vertices are considered,
and consider the subsystem induced by these vertices, which we shall call the h-system induced by
the base path. Let Q denotes the set of tuple (π1, π3, u, v) such that π1, π3 are branching paths,
u ∈ π1, v ∈ π3, u /∈ πb (πb is the base path), and u <π2 v for some other path π2, and π3 < π2.
Then we will argue that the structural property of the graph force |Q| to be high in expectation,
that is, we prove a lower bound of Q in term of ℓ, d, n, p, h. Then, we shall use the current bound
for H(n, p, 4), applied appropriately on parts of the h-system, to prove an upper bound for |Q|.
Comparing the upper and lower bound for |Q| would lead to a better bound for H(n, p, 4), which
converges to the final bound claimed.

Let us start with the lower bound for Q.

Lemma 28 (c.f. [8], Lemma 24). If ℓ ≥ h ≥ Cp
ℓd2

for some large enough constant C, we have

E[|Q|] ≥ Ω


 h

ℓp

∑

π1,π3∈Π
|R(π1, π3)|2


 .

Proof. For any vertices a and path π such that a ∈ π, let π[a] denotes the number of vertices in π
that is weakly before a. Fix a pair π1, π3. Given πa, πb in R(π1, π3), we say πa is close behind πb if
0 < π1[πa ∩ π1]− π1[πb ∩ π1] ≤ h and 0 ≤ π3[πa ∩ π3]− π3[πa ∩ π3] ≤ h. The point of this definition
is that, if πb is pick as the base path, then (π1, π3, πa ∩ π1, πa ∩ π3) is a tuple in Q, in which case
we say πa is charged to the pair (π1, π3).

We first show that if h ≥ 18 ℓ
|R(π1,π3| then the expected number of paths charged to (π1, π3) is

at least
h

36ℓp
|R(π1, π3)|2.

For each 0 < i ≤ z := |π1|+|π3|+h, let ai denotes the number of pair (π2, j) such that π2 ∈ R(π1, π3)
and 0 < j ≤ h such that

i = π1[π1 ∩ π2] + π3[π2 ∩ π3] + j.

Then we have
z∑

i=1

ai = h|R(π1, π3)|

since there are |R(π1, π3)| ways to chose π2 and h ways to choose j. Note that

2z ≤ 2(4ℓ + 4ℓ + ℓ) = 18ℓ ≤ h |R(π1, π3)| .
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It follows that

z∑

i=1

(
ai
2

)
=

1

2

(
z∑

i=1

a2i −
z∑

i=1

ai

)
≥ 1

2

(
z∑

i=1

a2i −
z∑

i=1

ai

)

≥ 1

2


1

z

(
z∑

i=1

ai

)2

−
z∑

i=1

ai


 Cauchy -Schwarz

=
1

2

(
h2|R(π1, π3)|2

z
− h|R(π1, π3)|

)

≥ h2|R(π1, π3)|2
4z

since h|R(π1, π3)| ≥ 2z.

Note that
∑z

i=1

(
ai
2

)
is the number of unordered pair of distinct tuple (πa, ja) and (πb, jb) such

that
π1[π1 ∩ πa] + π3[πa ∩ π3] + ja = π1[π1 ∩ πb] + π3[πb ∩ π3] + jb.

Call such a pair of tuples an aligned pair. It is clear that if πa = πb then this would implies ja = jb,
which contradicts the fact that these are distinct tuples, so we have πa ̸= πb. Since we count the
number of unordered pair of distinct tuple (πa, ja) and (πb, jb), we may assume πb <R πa, where
<R is the ordering as in Lemma 24. Note that then we have

0 < π1[π1 ∩ πa]− π1[π1 ∩ πb], 0 ≤ π3[π3 ∩ πa]− π3[π3 ∩ πb]

and
(π1[π1 ∩ πa]− π1[π1 ∩ πb]) + (π3[π3 ∩ πa]− π3[π3 ∩ πb]) = jb − ja ≤ h. (1)

so this implies that πa is close behind πb. Conversely, if πa is close behind πb then from (1), the
number of way to pick corresponding jb, ja such that (πa, ja), (πb, jb) forms an aligned pair is at
most h since we need jb − ja to have a specific value. Thus the number of close behind pairs πa, πb
is at least 1

h the number of aligned pairs, which is at least

1

h

(
h2|R(π1, π3)|2

4
z

)
=

h|R(π1, π3|2
4z

≥ h|R(π1, π3)|2
36ℓ

.

Thus the expected number of path charged to (π1, π3) when sampling a base path at random is at
least

h|R(π1, π3)|2
36ℓp

.

Now the expected total number of elements in Q is at least

∑

(π1,π3):|R(π1,π3)|≥ 18ℓ
h

h|R(π1, π3)|2
36ℓp

=
∑

π1,π3

h|R(π1, π3)|2
36ℓp

−
∑

(π1,π3):|R(π1,π3)|< 18ℓ
h

h|R(π1, π3)|2
36ℓp

≥
∑

π1,π3

h|R(π1, π3)|2
36ℓp

− p2
(
h(18ℓ/h)2

36ℓp

)

≥ h

36ℓp

(
∑

π1,π3

|R(π1, π3)|2 − 400p2ℓ2/h2

)
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Note that by Cauchy-Schwarz we have

∑

π1,π3

|R(π1, π3)|2 ≥
1

p2

(
∑

π1,π3

|R(π1, π3)|
)2

≥ Ω

(
1

p2
(
pℓ2d2

)2
)
≥ Ω

(
ℓ4d4

)

and if h ≥ Cp
ℓd2

we have 400p2ℓ2/h2 ≤ 400
C2 ℓ

4d4. Thus by choosing C to be large enough, we have

∑

π1,π3

|R(π1, π3)|2 − 400p2ℓ2/h2 ≥ Ω

(
∑

π1,π3

|R(π1, π3)|2
)

and thus

E[|Q|] ≥ Ω


 h

ℓp

∑

π1,π3∈Π
|R(π1, π3)|2


 .

We now start proving the upper bound for |Q|. Our strategy is as follows. Given a vertex u
in the h system, let its branching degree be the number of branching path passing through u. We
will split the vertices into O(log n) buckets, each with branching degree between x and 2x for some
x. A Cauchy-Schwarz argument would show that, roughly speaking, at least 1

O(logn) of elements
in Q comes from pairs u, v in the same bucket. Note that if u, v is on a same path π2 and have
branching degree Θ(x), this will contributes x2 elements to Q. The number of pairs of vertices on
the same path is the sum of the square of path length of certain subsystem, so it is helpful to have
an upper bound on the sum of the square path length. We would also need upper bounds on the
number of vertices of branching degree x or higher, since larger degree vertices contributes more to
Q. We first start by giving an upper bound for sum of the square of path length.

Lemma 29. Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0 be a decreasing sequence of nonnegative real numbers
and b1, . . . , bn is a sequence of nonnegative real numbers such that

k∑

i=1

ai ≤
k∑

i=1

bi

for any 1 ≤ k ≤ n, then we have
n∑

i=1

a2i ≤
n∑

i=1

b2i .

Proof. Without loss of generality, we may assume b1 ≥ · · · ≥ bn, (otherwise we sort the bi descend-
ingly, it is clear that the assumption

∑k
i=1 ai ≤

∑k
i=1 bi still hold with the sorted sequence.) Let

an+1 = bn+1 = 0. We have

n∑

i=1

b2i −
n∑

i=1

a2i =

n∑

i=1

(bi − ai)(bi + ai)

=

n∑

i=1




i∑

j=1

(bj − aj)


 (bi + ai − bi+1 − ai+1)

≥ 0

where we used summation-by-part in the last equality above.
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Lemma 30 (Continuous version). Let a1 ≥ a2 ≥ · · · ≥ an ≥ 0 be a decreasing sequence of
nonnegative real numbers and f : [0, n]→ R≥0 is a nonnegative function such that

k∑

i=1

ai ≤
∫ k

0
f

for any 1 ≤ k ≤ n, then we have
n∑

i=1

a2i ≤
∫ n

0
f2.

Proof. Let

bi :=

∫ i

i−1
f

then we have
k∑

i=1

ai ≤
k∑

i=1

bi

for any 1 ≤ k ≤ n, so by Lemma 29 we have

n∑

i=1

a2i ≤
n∑

i=1

b2i =

n∑

i=1

(∫ i

i−1
f

)2

≤
n∑

i=1

∫ i

i−1
f2 =

∫ n

0
f2

where the inequality
(∫ i

i−1 f
)2
≤
∫ i
i−1 f

2 follows from Cauchy-Schwarz (applied with f and the

constant function 1.)

Lemma 31. Let S′ be a half-4-bridge free system on at most n1 vertices and average degree at
most d, and max length at most ℓ. Suppose that we have

H(n, p, 4) ≤ O
(
n + nap2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 0.701 and 8

11 − 0.001 ≤ a < 3
4 . Let ∥S′∥22 denotes the sum of the path length squared.

Then

∥S′∥22 ≤ O

(
n1(ℓ + d) + n

3/2
1 d

3−4a
2−2a + n

1
b
1 d

2− 1
b

)
.

Proof. Let a1 ≥ · · · ≥ ap be the length of the paths in the system. We have ∥S′∥ ≤ O(n1d). Then
for each 1 ≤ k ≤ p we have

k∑

i=1

ai ≤ C min(kℓ,max(n1, n
a
1k

2−2a, n2−2b
1 kb, k), n1d)

for some absolute constant C, since the longest k path forms a half-4-bridge free system. Thus let
f be the derivative of the above function with respect to k, which, through some straightforward
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calculus (omitted), turns out to be

f(x) =





Cℓ, 0 ≤ x ≤ min

(
n1
ℓ ,

n
a

2a−1
1

ℓ
1

2a−1

)
,

0, min

(
n1
ℓ ,

n
a

2a−1
1

ℓ
1

2a−1

)
≤ x ≤ min

(√
n1,

n
a

2a−1
1

ℓ
1

2a−1

)
,

(2− 2a)Cna
1x

1−2a, min

(√
n1,

n
a

2a−1
1

ℓ
1

2a−1

)
≤ x ≤ min

(
n

2b+a−2
2a+b−2

1 , n
1/2
1 d

1
2−2a

)
,

bCn2−2b
1 xb−1, min

(
n

2b+a−2
2a+b−2

1 , n
1/2
1 d

1
2−2a

)
≤ x ≤ min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d

1
2−2a , n2

1

)
,

1, min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d

1
2−2a , n2

1

)
≤ x ≤ min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d

1
2−2a , n1d, p

)
,

0, min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d

1
2−2a , n1d, p

)
≤ x ≤ p,

we have
k∑

i=1

ai ≤
∫ k

0
f.

Thus
p∑

i=1

a2i ≤
∫ p

0
f2 ≤ O

(
n1(ℓ + d) + n

3/2
1 d

3−4a
2−2a + n

1
b
1 d

2− 1
b

)
,

where we omitted some straightforward calculus calculations.

We now start proving bounds on the number of vertices with branching degree Ω(x).

Lemma 32. Fix a vertex v. Consider h previous vertices in the each of the Θ(d) path passing
through v. Suppose that we have

H(n, p, 4) ≤ O(n + nap2−2a + n2−2bpb + p)

with 2
3 ≤ b < 0.701 and 8

11 − 0.001 ≤ a < 3
4 . Consider the induced system on those O(dh) vertices.

Then the number of path of length at least Ω(x) in the subsystem is at most

O

(
min{dh

x
+

(dh)
a

2a−1

x
1

2a−1

+
(dh)2

x
1

1−b

,
d2h

x
}
)
.

Proof. Let px be the number of paths. Note that there are O(dh) with degree O(d) so we have
xpx ≤ (dh)d so

px ≤ O

(
d2h

x

)
.

If x is at most a constant we are done since this term is smaller in the min. Otherwise we have

pxx ≤ O
(
dh + (dh)ap2−2a

x + (dh)2−2b pbx

)
.

Rearranging algebraically gives

px ≤ O

(
dh

x
+

(dh)
a

2a−1

x
1

2a−1

+
(dh)2

x
1

1−b

)
.
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Lemma 33. Let nx denotes the number of vertices in the subsystem that has branching degree
Ω(x), not including those on the base path itself. Suppose that we have

H(n, p, 4) ≤ O
(
n + nap2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 0.701 and 8

11 − 0.001 ≤ a < 3
4 . Then we have

E[nx] ≤ O

(
ℓh

x
+

ℓd
1−a
2a−1h

a
2a−1

x
1

2a−1

+
ℓdh2

x
1

1−b

)
,

and nx ≤ O( ℓdhx ) deterministically.

Proof. There are O(ℓd) branching paths, so the number of vertices on these path couting with
multiplicity is at most O(ℓdh). Thus the number of vertices that is on Ω(x) of the branching paths
is at most O

(
ℓdh
x

)
deterministically. By Lemma 32, there are at most

O

(
ndh

x
+

n(dh)
a

2a−1

x
1

2a−1

+
n(dh)2

x
1

1−b

)

pairs of vertex v and path πb such that v is in at least Ω(x) of the branching path if πb was pick as a
base path, and v /∈ πb. Thus the expected number of vertices which lies in at least Ω(x) branching
path when a random base path is chosen is at most

O

(
ndh

px
+

n(dh)
a

2a−1

px
1

2a−1

+
n(dh)2

px
1

1−b

)
= O

(
ℓh

x
+

ℓd
1−a
2a−1h

a
2a−1

x
1

2a−1

+
ℓdh2

x
1

1−b

)
.

A.4 Completing the Proof

The previous lemma relates the value of H(n, p, 4) to nx, which in turn relates to upper bounds
on Q. Since an upper bound on Q implies an upper bound on H(n, p, 4) in turn, it is intuitive
that this will imply some upper bound on H(n, p, 4). It requires some straightforward but tedious
algebra to realize this upper bound.

We will next start combining the upper bound on the sum of square of path length, and on nx,
for upper bounds on |Q|. Note that, nx only counts vertices that are not on the base path, but
an element (π1, π3, u, v) could potentially have v ∈ πb (the base path.) Thus we have to deal with
elements (π1, π3, u, v) of Q with v ∈ πb separately. Define

Q1 := {(π1, π3, u, v) ∈ Q : v /∈ πb}

and
Q2 := {(π1, π3, u, v) ∈ Q : v ∈ πb}.

Lemma 34. Suppose that we have

H(n, p, 4) ≤ O
(
n + nap2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 0.701 and 8

11 − 0.001 ≤ a < 3
4 . Suppose h ≤ min(ℓ, d). Then we have

E[|Q1|] ≤ Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
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Proof. Firstly, we consider the tuples (π1, π3, u, v) such that v /∈ πb, let the number of such tuple
be Q1. For each path π and x, let Qπ denotes the contribution of π to Q1, which is the number of
tuple (π1, π3, u, v) such that u <π v and π1, π3 are branching paths passing through u and v, and
u, v /∈ πb, and π3 < π2. Let πx denotes the number of vertices on π with branching degree between
x and 2x, not including vertices in the base graph if any. Then we have

Q1 =
∑

π

Qπ ≤
∑

π

(
∑

x

xπx

)2

≤ O(log n)
∑

π

∑

x

(xπx)2 Cauchy-Schwarz

≤ O(log n)
∑

x

x2
∑

π

π2
x

≤ O(log n)
∑

x

x2
(
nxℓ + n3/2

x d
3−4a
2−2a + n

1
b
x d

2− 1
b

)
Lemma 31

where in all of the above, the sum over x runs over all powers of 2 from x = Θ(1) up to x = Θ(d).
Thus

E[Q1] ≤ Õ

(
∑

x

x2
(
E[nx]ℓ + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

))
.

Since the above sum has O(log n) term, it suffices to show that for any x we have

x2
(
E[nx](ℓ + d) + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

)
≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)

We consider the possible values of x.

• Case 1: x ≤ O(h
1−b
b ).

Note that x = h
1−b
b is the threshold at which ℓdh

x = ℓdh2

x
1−b
b

. We have nx ≤ O
(
ℓdh
x

)
determinis-

tically, so we have

x2
(
E[nx](ℓ + d) + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

)

≤ x2

((
ℓdh

x

)
(ℓ + d) +

(
ℓdh

x

)3/2

d
3−4a
2−2a +

(
ℓdh

x

) 1
b

d2−
1
b

)

≤ O
(

(ℓ + d)ℓdhx + (ℓdh)3/2x1/2d
3−4a
2−2a + (ℓdh)

1
b x2−

1
b d2−

1
b

)

≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
since x ≤ h

1−b
b .

• Case 2: Ω
(
h

1−b
b

)
≤ x ≤ O

(
(dh)

(3a−2)(1−b)
2a+b−2

)
.

In this case, E[nx] ≤ O

(
ℓdh2

x
1

1−b

)
. We still have nx ≤ O

(
ℓdh
x

)
deterministically. Hence

E[nt
x] ≤ O

(
E[nx]

(
ℓdh

x

)t−1
)
≤ O

(
ℓdh2

x
1

1−b

(
ℓdh

x

)t−1
)

= O

(
(ℓd)tht+1

x
b

1−b
+t

)
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for any constant t ≥ 1. Thus we have

x2
(
E[nx](ℓ + d) + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

)

≤ x2

((
ℓdh2

x
1

1−b

)
(ℓ + d) +

(
(ℓd)3/2h5/2

x
b

1−b
+ 3

2

)
d

3−4a
2−2a +

(
(ℓd)

1
b h

b+1
b

x
b

1−b
+ 1

b

)
d2−

1
b

)

≤ O

(
(ℓ + d)ℓdh2x−

2b−1
1−b + (ℓd)3/2h5/2x

− 3b−1
2(1−b)d

3−4a
2−2a + (ℓd)

1
b h

b+1
b x

− 3b2−3b+1
b(1−b) d2−

1
b

)

≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
since x ≥ h

1−b
b .

Remark. It is not a coincidence that the bound for these first two cases is the same. In
the first case, we obtained an upper bound which turns out to be an increasing function
in x: namely, the function

f1(x) := (ℓ + d)ℓdhx + (ℓdh)3/2x1/2d
3−4a
2−2a + (ℓdh)

1
b x2−

1
b d2−

1
b .

Thus the upper bound is obtained from plugging in the largest value of x, which is h
1−b
b .

Meanwhile, in the second case, we obtained an upper bound which turns out to be an
decreasing function in x: namely, the function

f2(x) := (ℓ + d)ℓdh2x−
2b−1
1−b + (ℓd)3/2h5/2x

− 3b−1
2(1−b)d

3−4a
2−2a + (ℓd)

1
b h

b+1
b x

− 3b2−3b+1
b(1−b) d2−

1
b .

Thus the upper bound is when we plug in the smallest value of x which is h
1−b
b . Notice

that these two f1, f2 functions are obtained by plugging in appropriate upper bound for

E[nx],E[n
3/2
x ],E[n

1
b
x ]. Since x = h

1−b
b is the threshold value at which ℓdh

x = ℓdh2

x
1−b
b

, the

appropriate upper bound for E[nx],E[n
3/2
x ],E[n

1
b
x ] in these two cases would be the same

when x = h
1−b
b , which means that f1(x) = f2(x) when x = h

1−b
b , and thus the two upper

bounds agree.

• Case 3: Ω

(
(dh)

(3a−2)(1−b)
2a+b−2

)
≤ x ≤ O

(
(dh)

1
2

)
.

In this case,

E[nx] ≤ O

(
ℓd

1−a
2a−1h

a
2a−1

x
1

2a−1

)
.

We still have nx ≤ O
(
ℓdh
x

)
deterministically. Hence

E[nt
x] ≤ O

(
E[nx]

(
ℓdh

x

)t−1
)
≤ O

((
ℓd

1−a
2a−1h

a
2a−1

x
1

2a−1

)(
ℓdh

x

)t−1
)

We can then give an upper bound for the value of

x2
(
E[nx]ℓ + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

)
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by plugging in the upper bound for E[nt
x] as done in the previous case, and thus would obtain

an upper bound as some function f3(x). To simplify calculations, we will just compute the
power of x in the terms here. Note that E[nt

x] is bounded by a term whose power of x is

− 1

2a− 1
− (t− 1)

Then the power of x in the first, second and third term respectively would be

2− 1

2a− 1
− (t− 1)

for t = 1, 32 ,
1
b respectively. Note that

2− 1

2a− 1
− (t− 1) ≤ 2− 1

2a− 1
< 0

since a < 3
4 and t ≥ 1, so the function f3 is decreasing in x. So we have f3(x) is largest when

x = Θ

(
(dh)

(3a−2)(1−b)
2a+b−2

)
.

By similar reasoning to last case, we have that f3(x) = f2(x) when

x = Θ

(
(dh)

(3a−2)(1−b)
2a+b−2

)
.

And we proved

f2(x) ≤ f2(h
1−b
b ) ≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)

so we have

f3(x) ≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
.

• Case 4: Ω
(

(dh)
1
2

)
≤ x ≤ O(d).

In this case we have E[nx] ≤ O( ℓhx ), and nx ≤ O
(
ℓdh
x

)
. Thus

E[nt
x] ≤ O

((
ℓh

x

)(
ℓdh

x

)t−1
)

= O
(
ℓtdt−1htx−t

)
.

Thus

x2
(
E[nx](ℓ + d) + E[n3/2

x ]d
3−4a
2−2a + E[n

1
b
x ]d2−

1
b

)

≤ O
(

(ℓ + d)ℓhx + ℓ3/2d1/2+
3−4a
2−2ah3/2x1/2 + ℓ

1
b dh

1
b x2−

1
b

)

≤ O
(

(ℓ + d)ℓdh + ℓ3/2d
5−6a
2−2ah3/2 + ℓ

1
b d3−

1
b h

1
b

)
since x ≤ d

≤ O

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
.
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Lemma 35. Suppose that we have H(n, p, 4) ≤ O(n + nap2−2a + n2−2bpb + p) with 2
3 ≤ b < 0.701

and 8
11 − 0.001 ≤ a < 3

4 . Suppose h ≤ min(ℓ, d). Then we have

E[|Q2|] ≤ Õ
(
ℓ3/2d2h5/4

)
+ O(ℓ2d2)

Proof. Let Q2x denotes the set of tuple in Q2 such that u has branching degree between x and 2x
Now, fix a vertex u, we show an upper bound on the number of pairs (πb, v) such that the

h-system with base path πb has Θ(x) branching path passing through u, and v ∈ πb, and v follows
u in some path - call such a pair important. Let px denotes the number of paths with at least x
vertices in the O(dh) vertices that precedes u no further than h away in some path. Consider the
system T induced by taking the paths to be these px path, and taking the vertices to be the union
of the O(dℓ) vertices that follow u in some path and the O(dh) vertices that precedes u no further
than h away in some path. Note that the number of important pairs (πb, v) is no more than ∥T∥.
Note that T is source-restricted into the O(dh) vertices preceding u. This is because if the source
of a path πb was a vertex v that follows u in some path π instead of preceding u, let v′ be one of
the Θ(x) vertex on πb that precede u in some path π′, then πb, π

′, π forms a 3-cycle. Also, T has
at most px paths and at most O(dℓ) vertices. Thus by the bound on the path system in the proof
of Theorem 11 we have

∥T∥ ≤ O
(
ℓd + ((ℓd)(dh)px)1/2

)
= O

(
ℓd + ℓ1/2dh1/2p1/2x

)

Recall from Lemma 32 that we have

px ≤ O

(
min

{
dh

x
+

(dh)
a

2a−1

x
1

2a−1

+
(dh)2

x
1

1−b

,
d2h

x

})

and we now use a crude bound

px ≤ O

(
min

{
dh

x
+

(dh)
a

2a−1

x
1

2a−1

+
(dh)2

x
1

1−b

,
d2h

x

})
≤ O

(
min

{
dh

x
+

(dh)2

x3
,
d2h

x

})

Thus
∥T∥ ≤ O

(
ℓd + min

{
ℓ1/2d3/2hx−1/2 + ℓ1/2d2h3/2x−3/2, ℓ1/2d2hx−1/2

})

We then have that the number of triples (u, πb, v) such that u has branching degree Θ(x) when
πb is selected as the base path and v ∈ πb and v follows u in some path is at most n times the
above bound, and the note that such a triple (u, πb, v) contributes Θ(xd) to the size of Q2x with
probability 1

p . Thus we have

E[|Q2x|] ≤ O

(
nxd

p

(
ℓd + min

{
ℓ1/2d3/2hx−1/2 + ℓ1/2d2h3/2x−3/2, ℓ1/2d2hx−1/2

}))

≤ O
(
ℓ2dx + min

{
ℓ3/2d3/2hx1/2 + ℓ3/2d2h3/2x−1/2, ℓ3/2d2hx1/2

})
.

Note that
min

{
ℓ3/2d3/2hx1/2 + ℓ3/2d2h3/2x−1/2, ℓ3/2d2hx1/2

}
≤ ℓ3/2d2h5/4

for all x ≤ d, by some omitted casework. Thus we have

E[|Q2|] ≤
∑

x

O(ℓ2dx) +
∑

x

O
(
ℓ3/2d2h5/4

)
= O

(
ℓ2d2

)
+ Õ

(
ℓ3/2d2h5/4

)
.

where the sum runs over all powers of 2, and the
∑

xO(ℓ2dx) term is a geometric series that is
dominated by the largest term, which is when x = Θ(d).
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Lemma 36. Suppose that we have H(n, p, 4) ≤ O(n + nap2−2a + n2−2bpb + p) with 2
3 ≤ b < 0.701

and 8
11 − 0.001 ≤ a < 3

4 . Suppose h ≤ min(ℓ, d). Then we have

E[|Q|] ≤ Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2 + ℓ3/2d2h5/4
)

+ O(ℓ2d2).

Proof. We have

E[|Q|] = E[|Q1|] + E[|Q2|]

≤ Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2

)
+ O(ℓ2d2) + Õ

(
ℓ3/2d2h5/4

)

= Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2 + ℓ3/2d2h5/4
)

+ O(ℓ2d2).

Lemma 37. Suppose that we have

H(n, p, 4) ≤ O(n + nap2−2a + n2−2bpb + p)

with 2
3 ≤ b < 0.701 and 8

11 − 0.001 ≤ a < 3
4 . Then

H(n, p, 4) ≤ Õ

(
n

2+b
3+b p

2
3+b + n

8b−4b2−2

11b−4b2−3 p
7b−2b2−2

11b−4b2−3 + ℓ3/2d2h5/4
)

+ O(n + p).

Proof. We set h = Cp
ℓd2

where C is a large enough constant. We can assume h ≤ min(ℓ, d), since oth-

erwise through some simple calculations (omitted) we immediately get ∥Z∥ ≤ O
(
n3/4p1/2 + n1/2p3/4

)

which is better than the above bound. Then we have

Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b + ℓ

1
b d2h

4b−2b2−1

b2 + ℓ3/2d2h5/4
)

+ O(ℓ2d2)

≥ E[Q] Lemma 36

≥ Ω


 h

ℓp

∑

π1,π3∈Π
|R(π1, π3)|2


 Lemma 28

≥ Ω


 h

ℓp3




∑

π1,π3∈Π
|R(π1, π3)|




2
 Cauchy-Schwarz

≥ Ω

(
h

ℓp3
(
pℓ2d2

)2
)

Lemma 26

= Ω(ℓ2d2).

By choosing C to be large enough, the constant inside Ω(ℓ2d2) is larger than the constant inside
O(ℓ2d2), so we must have

Õ

(
ℓ2dh

1
b + ℓ

3
2d

6−7a
2−2ah

2b+1
2b

+ℓ3/2d2h5/4
+ ℓ

1
b d2h

4b−2b2−1

b2 + ℓ3/2d2h5/4
)
≥ Ω

(
ℓ2d2

)
.

Rearranging, and applying the identity ∥Z∥ = nd = pℓ, we get

∥Z∥ ≤ Õ

(
n

2+b
3+b p

2
3+b + n

8b−4b2−2

11b−4b2−3 p
7b−2b2−2

11b−4b2−3

)
.

(Note: this bound removes some terms that do not end up dominating the sum.)
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Theorem 38. Let α ≈ 0.7009 be a root of 4x3 − 13x2 + 10x− 2. Then

H(n, p, 4) ≤ O
(
n + n

2+α
3+α

+o(1)p
2

3+α + n2−2α+o(1)pα + p
)
.

Consider the sequences a0 = 8
11 , b0 = 2

3 , ai+1 = g(bi) and bi+1 = f(bi) where

g(x) =
2 + x

3 + x
, f(x) :=

7x− x2 − 2

11x− 4x2 − 3

Note that 8
11 ≤ a0 < 3

4 and 2
3 ≤ b0 ≤ α. Since f is increasing and f(x) > x for 2

3 ≤ b0 ≤ α and
f(α) = α, we have that 2

3 < bi < α for all i ≥ 1 and bi is an increasing sequence that converges to
α. It follows that 8

11 ≤ ai <
3
4 for all ai. Lemma 27 shows that we have

H(n, p, 4) ≤ O
(
n + na0p2−2a0 + n2−2b0pb0 + p

)

and so Lemma 37 shows that we have

H(n, p, 4) ≤ Õ
(
na1p2−2a1 + n2−2b1pb1

)
+ O(n + p)

so for any ε > 0 we have

H(n, p, 4) ≤ O
(
na1−εp2−2a1+2ε + n2−2b1+2εpb1−ε + n + p

)

We will prove by induction on i that for any ε > 0 we have

H(n, p, 4) ≤ O
(
nai−εp2−2ai+2ε + n2−2bi+2εpbi−ε + n + p

)

Above we showed the claim is true for i = 1. Suppose the claim is true for i, we show it’s true
for i + 1. Fix ε > 0. Note that bi+1 = f(bi) and f is continuous so there is δ > 0 such that
f(x) > bi+1 − ε for bi − δ < x < bi and g is continuous so there is δ1 such that g(x) > ai+1 − ε for
bi − δ1 < x < bi. Take δ′ = 1

2 min{δ, δ1, 0.001, bi − 2
3} we have

H(n, p, 4) ≤ O
(
nai−δ′p2−2ai+2δ′ + n2−2bi+2δ′pbi−δ′ + n + p

)

where 8
11 − 0.001 < ai − δ′ < 3

4 and 2
3 < bi − δ′ < α. Thus by Lemma 37 we have

H(n, p, 4) ≤ O
(
na′i+1p2−2a′i+1 + n2−2b′i+1pb

′
i+1 + n + p

)

where a′i+1 = g(bi − δ′) > ai+1 − ε and b′i+1 = f(bi − δ′) > bi+1 − ε, and so the claim is true for
i + 1. Finally, it suffices to show that for any ε > 0 we have

H(n, p, 4) ≤ O
(
n + n

2+α
3+α

+εp
2

3+α
−2ε + n2−2α+2εpα−ε + p

)
.

Fix ε > 0. Note that bi converges to α so ai converges to 2+α
3+α so there is i such that ai >

2+α
3+α + ε/2

and bi > α− ε/2. Then by the above claim we have

H(n, p, 4) ≤ O
(
nai−ε/2p2−2ai+ε + n2−2bi+εpbi−ε/2 + n + p

)

≤ O
(
n + n

2+α
3+α

−εp
2

3+α
+2ε + n2−2α+2εpα−ε + p

)

as desired.
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We next prove Theorem 4. See Appendix A.1 for a high-level view of the changes from [8] implicit
in the following proof.

As in [8], we use β(n, p, 4) to denote the maximum size of a path system that is 4-bridge-free,
where we say a path system is k-bridge-free if it has no bridge of size at most k. Furthermore,
as shown in [8] (via the Independence Lemma, overviewed in Section 3.3 that in order to prove
Theorem 4, it suffices to prove that

β(n, p, 4) ≤ O
(
n + n3/4p1/2 + n2−

√
2+o(1)p

1√
2 + p

)
.

We will use the same strategy as for bounding H(n, p, 4). First note that a similar cleaning
lemma hold for bridge-free system.

Lemma 39 (Cleaning Lemma for bridge-free systems – c.f. [8], Lemma 10). There exists a k-bridge
free system on ≤ n vertices, ≤ p path whose size is Θ(H(n, p, k)) such that every vertex has degree
between d/4 and 4d and every path has length between ℓ/4 and 4ℓ where d, ℓ are the average degree
and average path length respectively.

The proof is almost identical to Lemma 23, except that we argue that the modified system
remains bridge-free instead of half-bridge free, so we omit the proof.

We shall follow the same strategy with bounding H(n, p, 4). That is, we also use recursion and
select the random h-system. Note that Lemma 24, Lemma 26, Lemma 27 and Lemma 28 holds in
this setting as well, since it holds in a more general setting. In fact the total ordering of Lemma
24 has the following property: If πa <R πb then πa ∩ π1 <π1 πb ∩ π1 and πa ∩ π3 <π3 πb ∩ π3. This
is because if πa ∩ π3 = πb ∩ π3, then π1, πb, πa will form a 3 bridge.

As a result, when bounding |Q|, we no longer need to deal with the case an element (π1, π3, u, v)
of Q has v in the base path. Also note that due to 3-bridge free, all nodes have branching degree 1.

We have the following version of Lemma 31.

Lemma 40. Let S′ be a 4-bridge free system on at most n1 = Θ(ℓdh) vertices and average degree
at most d, and max length at most ℓ. Suppose that we have

β(n, p, 4) ≤ O
(
n + n3/4p2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 3

4 . Then

∥S′∥22 ≤ O

(
n1ℓ + n

3/2
1 log(n1) + n

1
b
1 d

2− 1
b

)

Proof. The proof is similar to Lemma 31, so we will sketch it here. Let a1 ≥ · · · ≥ ap be the length
of the paths in the system, and so we have

k∑

i=1

ai ≤ C min(kℓ,max(n1, n
3/4
1 k1/2, n2−2b

1 kb, k), n1d)

for some absolute constant C. Letting f be the derivative of the above function with respect to k,
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i.e

f(x) =





Cℓ, 0 ≤ x ≤ min

(
n1
ℓ ,

n
3/2
1
ℓ2

)
,

0, min

(
n1
ℓ ,

n
3/2
1
ℓ2

)
x ≤ min

(√
n1,

n
3/2
1
ℓ2

)
,

1
2Cn

3/4
1 x−1/2, min

(√
n1,

n
3/2
1
ℓ2

)
≤ x ≤ min

(
n

8b−5
4b−2

1 , n
1/2
1 d2

)
,

bCn2−2b
1 xb−1, min

(
n

8b−5
4b−2

1 , n
1/2
1 d2

)
≤ x ≤ min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d2

)
,

0, min

(
n
2− 1

b
1 d

1
b , n

1/2
1 d2

)
≤ x ≤ p,

we have
k∑

i=1

ai ≤
∫ k

0
f

. Thus we have

p∑

i=1

a2i ≤
∫ p

0
f2

≤ O

(
n1ℓ + n

3/2
1 log n1 + n

1
b
1 d

2− 1
b

)
.

Note that in this case we directly have an upper bound for |Q|.
Lemma 41. Suppose that we have

β(n, p, 4) ≤ O
(
n + n3/4p2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 3

4 . Then we have

|Q| ≤ O
(
ℓ2dh + (ℓdh)3/2 log n + ℓ

1
b d2h

1
b

)

Proof. Each pair (u, v) in the same path in the subsystem contributes only one element to Q, since
they only have branching degree 1. Thus |Q| is less than the sum of square of path length of the
randomly sampled h-system, which has at most n1 = Θ(ℓdh) vertices. Plugging in n1 = Θ(ℓdh) we
have

|Q| ≤ O
(
ℓ2dh + (ℓdh)3/2 log n + ℓ

1
b d2h

1
b

)
.

Lemma 42. Suppose that we have

β(n, p, 4) ≤ O
(
n + n3/4p2−2a + n2−2bpb + p

)

with 2
3 ≤ b < 3

4 . Then we have

β(n, p, 4) ≤ O
(
n + n3/4p1/2 + n

2
b+1 p

2b+1
2b+2 + p

)
.

Proof. Similar to the non-adaptive setting, we set h = Cp
ℓd2

where C is a large enough constant. We
can assume h ≤ min(ℓ, d), since otherwise by some straightforward calculations, we immediately
get

∥Z∥ ≤ O
(
n1/2p3/4 + n3/4p1/2

)

38



which is better than the above bound. Then we have

O
(
ℓ2dh + (ℓdh)3/2 log n + ℓ

1
b d2h

1
b

)

≥ E[|Q|] Lemma 40

≥ Ω


 h

ℓp

∑

π1,π3∈Π
|R(π1, π3)|2


 Lemma 28

≥ Ω


 h

ℓp3




∑

π1,π3∈Π
|R(π1, π3)|




2
 Cauchy-Schwarz

≥ Ω

(
h

ℓp3
(
pℓ2d2

)2
)

Lemma 26

= Ω(ℓ2d2).

Rearranging, and using the identity ∥Z∥ = nd = pℓ, we get

∥Z∥ ≤ O
(
n + n3/4p1/2 + n

2
b+1 p

2b+1
2b+2 + p

)

(noting again that some terms would end up never dominating the sum and thus have been re-
moved).

Theorem 43. We have β(n, p, 4) ≤ O
(
n + n3/4p1/2 + n2−

√
2+o(1)p

1√
2 + p

)
.

Proof. Note that by Lemma 27 we have β(n, p, 4) ≤ O
(
n + n2/3p2/3 + p

)
. Let b0 = 2

3 and bi+1 =
2bi+1
2bi+2 . Then we have

β(n, p, 4) ≤ O
(
n + n3/4p1/2+n2−2b0pb0 + p

)

and using Lemma 42, by induction we have

β(n, p, 4) ≤ O
(
n + n3/4p1/2+n2−2bipbi + p

)

for all i. Since bi converges to 1√
2

we have β(n, p, 4) ≤ O
(
n + n3/4p1/2 + n2−

√
2+o(1)p

1√
2 + p

)
.
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