Improved Shortest Path Restoration Lemmas for Multiple Edge
Failures: Trade-offs Between Fault-tolerance and Subpaths

Greg Bodwin and Lily Wang
University of Michigan EECS
{bodwin, lilyxy}@umich.edu

Abstract

The restoration lemma is a classic result by Afek, Bremler-Barr, Kaplan, Cohen, and Merritt [PODC
’01], which describes how the structure of shortest paths in a graph can change when some edges in
the graph fail. Their work shows that, after one edge failure, any replacement shortest path avoiding
this failing edge can be partitioned into two pre-failure shortest paths. More generally, this implies an
additive tradeoff between fault tolerance and subpath count: for any f, %, we can partition any f-edge-
failure replacement shortest path into k + 1 subpaths which are each an (f — k)-edge-failure replacement
shortest path. This generalized version of the result has found applications in routing, graph algorithms,
fault tolerant network design, and more.

Our main result improves this to a multiplicative tradeoff between fault tolerance and subpath count.
We show that for all f, k, any f-edge-failure replacement path can be partitioned into O(k) subpaths that
are each an (f/k)-edge-failure replacement path. We also show an asymptotically matching lower bound.
In particular, our results imply that the original restoration lemma is exactly tight in the case k = 1, but
can be significantly improved for larger k. We also show an extension of this result to weighted input
graphs, and we give an efficient algorithms that computes path decompositions satisfying our improved
restoration lemmas, which runs in near-linear time for fixed f.

1 Introduction

Suppose we want to route information, traffic, goods, or anything else along shortest paths in a distributed
network. In practice, network edges can be prone to failures, in which a link is temporarily unusable as it
awaits repair. It is therefore desirable for a system to be able to adapt to these failures, efficiently rerouting
paths on the fly into new replacement paths that avoid the currently-failing edges. An algorithm that
repairs a shortest path routing table following one or more edge failures is called a restoration algorithm
[ABBKT02]; the design of effective restoration algorithms forms a large and active body of work in both
theory and practice, see e.g., [LYXsS20, ZGKT21, WGY 15, ABBK'02, BP21] and references within. The
focus of this paper will specifically be on restoration algorithms that recover exact shortest paths in the
post-failure graph.

An ideal restoration algorithm will avoid recomputing shortest paths from scratch after each new failure
event, instead leveraging its knowledge of the pre-failure shortest paths to speed up computation. Therefore,
when designing restoration algorithms, it is often helpful to understand exactly how shortest paths in a graph
can evolve following edge failures. A restoration lemma is the general name for a structural result relating
the form of pre-failure shortest paths to post-failure shortest paths in a graph, named for their applications
in restoration algorithms.

The original restoration lemma was made explicit in a classic paper by Afek, Bremler-Barr, Kaplan,
Cohen, and Meritt [ABBK™02], and it was implicit in work before that, such as [KIM82]. All graphs in this
discussion are undirected and unweighted, until otherwise indicated.

Definition 1 (Replacement Paths). A path 7 in a graph G = (V, E) is an f-fault replacement path if there
exists a set of edges F' C E||F| < f such that 7 is a shortest path in the graph G \ F.

Theorem 2 (Original Restoration Lemma [ABBK102]). In any graph G, every f-fault replacement path
can be partitioned into f + 1 subpaths that are each a shortest path in G.

S
T

Figure 1: (Left) Suppose that two blue dashed edges in the graph fail. (Right) The restoration lemma
guarantees that any shortest s ~ ¢ path (indicated with wavy edges) in the post-failure network can be
partitioned into three subpaths, which are each a shortest path in the pre-failure network.

This restoration lemma suggests a natural approach for restoration algorithms: when f edges fail and
an s ~» t shortest path is no longer usable, we can find a replacement s ~~ t shortest path by searching
only over s ~» t paths that can be formed by concatenating f + 1 shortest paths that we have already
computed in the current routing table. Up to some subtleties involving shortest path tiebreaking [BP21],
this approach works, and has been experimentally validated as an efficient restoration strategy [ABBK™*02].
It has also found widespread theoretical application, e.g., in pricing algorithms [HS01], replacement path
algorithms [MR22, BP21, BCG™18, MMG89, CC19, GJM20], fault-tolerant variants of spanner problems
[BP21, BGPW17, CCFK17] and more. Most recently, in [DR22], Duan and Ren use the restoration lemma
to guarantee low recursion depth in their multi-fault-tolerant exact distance oracle, the first to have query
time dependent only on the number of failures rather than graph size.

1.1 The Fault Tolerance/Subpath Count Tradeoff and First Main Result

The main directions for future work left by Afek et al. concern whether one can obtain improved restoration
lemmas, by allowing one to restore using larger or more carefully-chosen base sets of paths, rather than
just shortest paths in the input graph (c.f. [ABBK102], p.277). Perhaps the most natural candidate would
be to construct f-fault replacement paths by concatenating several (f’ < f) replacement paths. Indeed,
most applications of the restoration lemma in the previous literature are actually based on a concatenation
method of this type. They use the following generalization of Theorem 2, which does not appear explicitly
in [ABBK™02] but which follows easily from the main result:

Corollary 3 ([ABBK™'02]). For any graph G and any 1 < k < f, every f-fault replacement path can be
partitioned into at most k + 1 subpaths that are each (f — k)-fault replacement paths in G.

Proof of Corollary 3, given Theorem 2. Let w be a replacement shortest path in a graph G avoiding a set of
edge failures F' = {es, ..., er}. Consider the graph G’ := G\{e1,...,es_x}. In G’, 7 is a k-fault replacement
shortest path avoiding the remaining edge failures {e;_g41,...,er}. Thus, applying Theorem 2 in G’, we
can partition 7 into k + 1 subpaths that are each a shortest path in G’. Each of these subpaths is an
(f — k)-replacement shortest path, avoiding {e1,...,ef_x}, in the original graph G. O

In other words, this corollary states that if we take our base set to be all (f — k)-fault replacement paths,
then we can improve the number of subpaths needed for the decomposition to k+ 1. However, at a technical
level this only requires a very minor extension of the original restoration lemma, and it is not clear whether
this tradeoff is optimal. The main contribution of this work is to show new asymptotically-matching upper
and lower bounds, establishing that the correct tradeoff is actually multiplicative:

Theorem 4 (Main Result). The following hold for all positive integers k, f with k < f:

e (Upper Bound) In any graph G, every f-fault replacement path can be partitioned into at most O(k)
subpaths that are each a replacement path in G avoiding at most f/k faults.

e (Lower Bound) There are graphs G and f-fault replacement paths 7 that cannot be partitioned into
2k subpaths that are each an (| f/k] — 2)-fault replacement path in G.

The specific upper bound we show is 8k+1 subpaths, although in this paper we do not focus on optimizing
the leading constant. We view Theorem 4 as a mixed bag, containing both good news and bad news for
the area. The good news is that the restoration lemma tradeoff has been substantially improved, and this
potentially opens up new avenues for restoration algorithms for routing table recovery and its applications.
The bad news is that, in the important special case k = 1 (i.e., decomposing into only two subpaths), our new
lower bound shows that the previous restoration lemma was tight: there are examples in which one cannot
decompose an f-fault replacement path into two replacement paths avoiding f — 2 faults each (previously, a
tradeoff of roughly f/2 was conceivable). This case k = 1 is particularly important in applications, especially
to spanner and preserver problems [BP21, BGPW17], and so this lower bound may close a promising avenue
for progress on these applications.

1.2 Weighted Restoration Lemmas and Second Main Result

The original paper by Afek et al. [ABBK™02] also proved a weighted restoration lemma, which gives a weaker
decomposition, but which holds also for weighted input graphs:

Theorem 5 (Weighted Restoration Lemma [ABBK™02]). For any weighted graph G and any 1 < k < f,
every f-fault replacement path © can be partitioned into k + 1 subpaths and k individual edges, where each
subpath in the partition is an (f — k)-fault replacement path in G.

More specifically, this theorem promises that the subpaths and individual edges occur in an alternating
pattern (although some of these subpaths in this pattern may be empty). One can again ask whether this
additive tradeoff between subpath count and fault tolerance per subpath is optimal. We show that it is not,
and that it can be improved to a multiplicative tradeoff, similar to Theorem 4.

Theorem 6 (Main Result, Weighted Setting). For any weighted graph G and any 1 < k < f, every f-fault
replacement path © can be partitioned into O(k) subpaths and O(k) individual edges, where each subpath in
the partition is an (f/k)-fault replacement path in G.

For many graphs of interest, this theorem can be simplified. For example, suppose we consider the
setting of graphs that represent metrics, in which we require that every edge is the shortest path between
its endpoints. Then we can consider the O(k) individual edges in the decomposition to each be a 0-fault
replacement path, and so we could correctly state that = can be partitioned into O(k) subpaths that are
each at most (f/k)-fault replacement paths. However, we also note that our weighted main result cannot be
simplified in general: one can easily construct weighted graphs containing edges (u,v) that are f-fault but
not (f — 1)-fault replacement paths between their endpoints, and therefore any weighted restoration lemma
will need to include some exceptional edges in its hypotheses, as in [ABBK*02] and Theorem 6.

1.3 Algorithmic Considerations

The proofs of our new restoration lemmas (both weighted and unweighted) are given using a simple greedy
decomposition strategy to find subpaths; essentially, we repeatedly peel off the longest possible prefix from
the input path 7 that is an f/k-fault replacement path, and then argue that this process will repeat at
most O(k) times. Although this leads to a simpler proof, a downside of this greedy procedure is that it
requires exponential time in the number of faults f. That is, given a subpath 7; C 7, it is not clear how to
test whether 7; is an f/k-fault replacement path, besides via brute force search over every subset of faults
F' C F,|F'| < f/k which takes poly(n) - exp(f) time. To obtain algorithmic results, we thus need to change
the decomposition strategy in Section 5 entirely. We show a more involved algorithm that implements our
restoration lemmas in poly(n, f) time. That is:

Theorem 7 (Unweighted Algorithmic Restoration Lemma). There is an algorithm that take on input a
graph G, a set F of |F| = f edge faults, a shortest path = in G\ F, and a parameter k, and which returns:

o A partition m =mgom o---omy into g = O(k) subpaths, and

o Fault sets Fy, ..., Fy C F with each |F;| < f/k, such that each path m; in the decomposition is a shortest
path in G\ F;

(hence the algorithm implements Theorem 4). This algorithm runs in O(m - poly(logn, f)) time, where
m = |E(G)]|.

The core of of our new decomposition approach is a reduction to the algorithmic version of Hall’s theorem;
this is somewhat involved, and so we overview it in more depth in the next part of this introduction. Using
roughly the same algorithm, we also show the algorithmic restoration lemma in the weighted setting.

Theorem 8 (Weighted Algorithmic Restoration Lemma). There is an algorithm that take on input a
weighted graph G, a set F of |F| = f edge faults, a shortest path © in G \ F, and a parameter k, and
which returns:

o A partition m =Tg o€y 0---0Mg_10eq_10Tq, where each m; is a (possibly empty) subpath, each e; is
a single edge, and ¢ = O(k), and

o Fault sets Fy, ..., F, C F with each |F;| < f/k, such that each path 7; in the decomposition is a shortest
path in G\ F;

(hence the algorithm implements Theorem 6). This algorithm runs in O(m - poly(logn, f)) time, where
m:= |E(G)|.

We remark that f is often considered to be at most polylog n in fault-tolerant exact preserver problems,
since the bounds given in most prior work become trivial for larger f; in this regime our algorithms are
near-linear time.

1.4 Technical Overview of Upper Bounds

The more involved parts of the paper are the upper bounds in Theorem 4 and 6. We will overview the proof
in the unweighted setting (Theorem 4) here; the weighted setting carries only a few additional technical
details.

Let 7 be an f-fault replacement path with endpoints (s, ¢) in an input graph G. In particular, let F be a
set of |F| < f edge faults, and suppose that 7 is a shortest s ~» ¢ path in the graph G\ F. We are also given
a parameter f/ < f, and our goal is to partition 7 into as few subpaths as possible, subject to the constraint
that each subpath is a replacement path avoiding at most f’ faults.

The Partition of 7. We use a simple greedy process to determine the partition of 7. We will determine
a sequence of nodes (s = xg,x1,...,Tk, Txr1 = t) along 7, which form the boundaries between subpaths in
the decomposition. Start with s =: xg, and given node x;, define x;11 to be the furthest node following z;
such that the subpath m[x;, z;41] is an f’-fault replacement path. We will denote the subpath 7[z;, ;1] as
m;, and so the decomposition is

T =TgO:* -0 Tk.

For each subpath we let F; C F,|F;| < f’ be an edge set of minimum size such that ; is a shortest z; ~» x;41
path in the graph G \ F;. (There may be several choices for F;, in which case we fix one arbitrarily.) Our
goal is now to show that the parameter k, defined as (one fewer than) the number of subpaths that arise
from the greedy decomposition, satisfies kf’ < O(f).

Proof Under Simplifying Assumptions. Our proof strategy will be to prove that an arbitrary faulty
edge e € F can appear in only a constant number of subpath fault sets F;, which implies that kf’ < O(f)
by straightforward counting. To build intuition, let us see how the proof works under two rather strong
simplifying assumptions:

e (Equal Subpath Assumption) We will assume that all subpaths in the decomposition have equal
length: |mg| = -+ = |mg|-

e (First Fault Assumption) Let us say that a shortcut for a subpath m; is an alternate x; ~ ;41
path in the original graph G that is strictly shorter than ;. Every shortcut must contain at least one
fault in F;, and conversely, every fault in F; lies on at least one shortcut (or else it may be dropped
from F;). Our second simplifying assumption is that for each e € F;, there exists a shortcut o for m;
such that e is the first fault in F; on o.

Figure 2: Under the equal subpath and first fault assumptions, we can reach contradiction if we assume that
there are three different subpaths that all have shortcuts that use e as their first fault.

With these two assumptions in hand, we are ready to prove that each faulty edge e appears in only O(1)
many fault sets F;. Suppose for contradiction that there are three separate subpaths that all have shortcuts
that use e as their first edge, and moreover that these shortcuts use e with the same orientation (in Figure 2,
the subpaths are 7, w2, 73, and the shortcut prefixes are represented by the three dotted lines from x1, x2, 3
to u). Consider the first and last of these shortcut prefixes, which we will denote as ¢(z1,u) and ¢(z3,u) (in
Figure 2, q(x1,u), q(x3,u) are colored red). Notice that g(z1,u) Ug(x3,u) forms an alternate z; ~» x3 path.
Since e is assumed to be the first fault on these shortcuts, this alternate x; ~ x3 path avoids all faults in
F. Additionally, by definition of shortcuts we have

lg(z1, u)| + [q(zs, u)| < |mi|+ |ms|.
Since we have assumed that all subpaths have the same length, we can amend this to
lg(z1, u)| + lq(ws, w)| < |mi| + [m2].

But this implies that ¢(x1,u) U g(z3,u) forms an x; ~» x5 path that is strictly shorter than the one used by
m, which contradicts that 7 is a shortest path in G\ F. This completes the simplified proof, but the challenge
is now to relax our two simplifying assumptions, which are currently doing a lot of work in the argument.

Relaxing the Equal-Subpath-Length Assumption. The equal-subpath-length assumption is the easier
of the two to relax. It is only used in one place in the previous proof: to replace |r3| with |m2| on the right-
hand side of the inequality. From this we see that |ma| > |r3| is a good case for the argument, since this
substitution remains valid. The bad case is when |m3| < |m3].

To handle this bad case, we follow a proof strategy from [ABDST20]. Let us say that a subpath is
pre-light if it is no longer than the preceding subpath, or post-light if it is no longer than the following
subpath. In the above example, 7y is pre-light if we have |m2| < |m]|, and it is post-light if |me| < |m3|. It is
possible for a particular subpath to be both pre- and post-light, or for a particular subpath to be neither. A
simple counting argument shows that either a constant fraction (nearly half) of the subpaths are pre-light,
or a constant fraction are post-light. We will specifically assume in the following discussion that a constant
fraction of the subpaths are post-light; the other case is symmetric.

We can now restrict the previous counting argument to the post-light subpaths only. That is, we can
argue that for each fault e = (u,v) considered with orientation, there are only constantly many post-light
subpaths for which it appears as the first fault of a shortcut. The same counting argument then implies an

U

Figure 3: In order to relax the first fault assumption, instead of counting (e1, ;) and (es, ;) as pairs, we
can map these to distinct FS pairs (e}, m;), (e5,7;). Our main technical step is to show that this distinct
mapping is always possible.

upper bound of |F;| < O(f/k) for the fault sets F; associated to post-light subpaths 7;, which completes the
proof.

This still uses the first-fault assumption, and we next explain how this can be relaxed. We consider the
machinery used to relax the first-fault assumption to be the main technical contribution of this paper.

Relaxing the First-Fault Assumption. Let us now consider the case where there is a fault e € F; that
is not the first fault of any shortcut for ;. We can still assume that there exists at least one shortcut o for ;
with e € o (otherwise, we can safely drop e from F;). Let e* be the first fault along that shortcut o. We will
shift the focus of our counting argument. Previously, we considered each (e € F;, m;) as a pair, and our goal
was to argue that faults e can only be paired with a constant number of subpaths m;. Now, our strategy is
to map the pair (e € F;, m;) to the different pair (e*, m;), and our goal is to argue that each fault e* can only
be paired with a constant number of subpaths 7;. We call these new pairs (e*, m;) Fault-Subpath (FS) Pairs,
and we formally describe their generation in Section 3.2. (We note that, for a technical reason, we actually
generate FS pairs using augmented subpaths that attach one additional node to 7; - but to communicate
intuition about our proof, we will ignore this detail for now.)

Although we can bound the number of FS pairs (e*,7;) as before, this only implies our desired bound
on the size of the fault sets |F}| if we can injectively map each pair (e € F;, m;) to a distinct FS pair (e*, ;).
The main technical step in this part of the proof is to show that this injective mapping is always possible.
Let T'; be a bipartite graph between vertex sets F; and F. Put an edge between nodes e € F;, e* € F if and
only if there exists a shortcut o for 7;, in which e € o and e* is the first fault in o. An injective mapping to
F'S pairs corresponds to a matching in T'; of size |F;|, i.e., a matching of maximum possible size (given that
one of the sides of the bipartition has only |F;| nodes). The purpose of this graph construction is to enable
the following application of Hall’s theorem:

Lemma 9 (Hall’s Theorem). The following are equivalent:

e The graph T'; has a matching of size |F;|. (Equivalently, one can associate each pair (e € F;,m;) to a
unique F'S pair.)

e There does not exist a subset of faults F! C F; whose neighborhood in T; is strictly smaller than F!
itself (that is, |N(F])| < |F}|).

We show that the latter property is implied by minimality of F;, which means the former property is
true as well. See Lemma 16 and surrounding discussion for details.

2 Preliminaries

Definition 10. Relative to a value of f, we call the pair (g, r) restorable if in every graph G, any f-fault
replacement path can be partitioned into ¢ subpaths which are each r-fault replacement subpaths in G.

Remark 11. (Monotonicity of Restorability) If (¢,r) is restorable, then both (¢ + 1,7) and (¢,r + 1) are
restorable. Equivalently, if (g,) is not restorable, neither (¢ — 1,r) nor (¢,r — 1) are restorable.

For notation, we will commonly write F for a set of f failing edges, and s,t for the endpoint nodes of
the replacement path under consideration, which is then written 7(s,¢ | F). To denote a subpath between
intermeidate nodes v and v, we write 7 (s,t | F)[u,v]. We will denote the ¢ r-fault replacement subpaths
as m(x;, g1 | Fig1) with o := s and x4 := ¢, and each fault subset |F;| < r. Then a decomposition of
m(s,t | F) satisfying restorability can be written

w(s,t| F)=m(xo,21 | Fi) om(z1,z0 | Fo) o...om(zq_1,24 | Fy).

Equivalently, for each 1,
w(s,t | F)[xi, wiv1] = m(@s, i1 | Fig1)-

3 Upper Bound

We now prove Theorem 4. Fix any s,¢ and replacement path 7 (s,t | F), where |F| =: f. Recall that, to
prove Theorem 4, our goal is to show that for any k € R, we can partition 7 (s,t | F) into O(k) (f/k)-fault
replacement subpaths.

3.1 Subpath Generation

We generate {z;}, the vertices used to split 7 (s,t | F), by traversing along 7(s,t | F) and adding vertices
greedily to the current subpath until adding one more vertex would make that subpath no longer an f/k-
fault replacement path. More precisely, we set g := s, and then we pick each z;;1 to maximize |7 (s, |
F)[x;, x;i+1]| under the constraint that w(s,t | F)[x;, i+1] is an f/k-fault replacement subpath. We define
x} to be the vertex immediately after x; along (s, | F'), i.e., the vertex satisfying

[m(s,t | F)zi, 23]| = 1.

Let ¢ be the number of subpaths generated by this process, and so we have {x1,...,z,}. We will denote the
g corresponding subpaths of 7 (s,t | F) by

mo=n(s,t| F)z;,zipa] VO<i<qg-—1.

Here we remark that the last subpath 7, differs from the others as it is bounded by the end of 7 (s, | F)
and is not generated greedily.

Definition 12 (Augmented Subpaths). For 0 < i < g — 2, We define augmented subpaths 7 as
mp = w(s,t | F)lx, 2]
Note that no augmented subpath 7} can be an f/k-fault replacement subpath in G by greedy choice of ;.

For each 4, fix F; C F to be any minimum size fault set such that 7 is a shortest path in G \ F;. That
is, 7} is an | F;|-fault replacement path but not a c-fault replacement path for any ¢ < |F;|. By our choice of
x;, we must have

|Fi| > f/k.

Following the notation of [ABDS*20], we will denote 7/} as pre-light if its length is less than or equal to
the length of m_,, and post-light if its length is less than or equal to the length of 7j ;. From Lemma 3
of [ABDS'20], at least half of the 7} are pre-light, or at least half are post-light. We will assume without
loss of generality that for at least qgl i, m, is post-light. The other case, where at least half of the « are
pre-light, follows from a symmetric argument.!

1In particular, in the case where at least half of the m, are pre-light, one can use the following argument but substitute “left
ends” for “right ends”, and “(left) FS-pairs” for “(right) FS-pairs”.

3.2 FS-pair Generation

To bound the number of subpaths, we will use a counting argument tracking pairs of augmented subpaths
and faults which are “close” to each other. In particular, any subpath-fault pair has a fixed distance to
each other within the fault-free graph, and only a limited number of subpaths can have small distance to a
specified fault without creating a shorter path than 7(s,¢ | F'). We will formalize these ideas using FS-pairs
in this section.

Definition 13. For any (u,v)-path p’, we say a (u,v)-path p is a shortcut of p’ if len(p) < len(p’).?

Definition 14. A (right) FS-pair is a pair (e*,7}) with e* € F, ©} a post-light augmented path, and the
property that there exists a fault-free path from], ; to e* which is contained in a shortcut of ;.

We assume above that most subpaths are post-light. In the other case when most subpaths are pre-light,
we would instead define left FS-pairs, where we require 7} to be pre-light and the fault-free path from z; to
e*, and the argument would be handled symmetrically.

We will now describe the generation of right FS-pairs, starting by setting up some notation. Fix any
post-light augmented subpath #,. For a given e € F; which we refer to as the generating fault, let S,
be the set of (2, ,x;)-shortcuts of 7/ which contain e.* For a shortcut p € S., we define the base fault
b(p) € F' of p as the first fault in p traversing from zj,; to x;. More precisely, we define

b(p) = €min{j:e,eFy Where p = Ti 1e101€2. .. Eni.
For each e € F;, we define its set of base faults for 7 as
B(e) :={b(p) : p € Se}
Finally, we define the family of base faults for 7} as
B(r!) = {B(e) : e € F;}

Our next goal will be to choose a distinct base fault from each B(e) € B(7}) in order to construct at least
|F;| FS-pairs with .

Explicitly, we define an auxiliary bipartite graph I'; where one side of the bipartition is F; and the other
is the set of faults F'. For e* € F and e € F;, we have (e,e*) € E(I';) if and only if e* € B(e). In this set
up, choosing a distinct base fault for each B(e) is equivalent to finding a matching of I'; which saturates Fi.
Hall’s Theorem gives us a condition for this:

Lemma 15 (Hall’s Condition). If for every A C F; we have |[N(A)| > |A|, where N(A) is the neighborhood
of A in T, then T'; contains a matching that saturates F; (and therefore it is possible to choose a distinct
base fault for each B(e)).

We therefore only need to verify the premises of Hall’s Condition. The following lemma will be helpful.

Lemma 16. For any A C F;, the fault set F] := (F; \ A) UN(A) is also a valid fault set for w. (That is,
m, is a shortest path in G\ F}.)

Proof. First, we observe that

N(A) =

U Be)

ecA

This holds because the neighbours of each generating fault e is the set of base faults B(e) it generates.
We now need to prove that no shortcuts for n} survive in G \ F]. Let p be an arbitrary shortcut for 7}
in G. Then it must contain some fault ¢’ € Fj, since F; is a valid fault set. There are two cases:

2We include the possibility of non-simple shortcuts, which may repeat nodes and be walks. Our existential upper bound
proof would work equally well if we restricted attention to simple shortcuts, but this expanded definition will be more convenient
for algorithmic reasons outlined in Section 5.

3We consider 7; a (274 1,2:)-path in this section.

4Note that Se depends on the choice of subpath 7r2, although we do not include this parameter in the notation.

e If ¢’ € F}, then the shortcut p does not survive in G \ FJ.

e Otherwise, suppose that ¢ ¢ F/, and so in particular ¢/ € A. In this case, p’s base fault b(p) is in
B(e') C F/, and thus not in G \ F}.

Therefore there are no surviving shortcuts for 7} in G \ F. O

Notice that Lemma 15 follows from Lemma 16: since we assume that F; is a minimal fault set, we must
have that |N(A)| > A for all A C F;, since otherwise we would have |F}| < |F;|. Since Hall’s condition holds,
over any augmented subpath 7}, we can assign a unique base fault to every generating fault. Accordingly,
we can define an injective function ¢; : F; — F where ¢;(e) € B(e).

We will construct our FS-pairs for «} as {(¢:(e), 7)) | e € F;}, and since ¢; is injective, we get |F;| dis-
tinct FS-pairs from 7}. We repeat this process for every post-light augmented subpath. It follows that we
will generate at least (¢ — 1)f/(2k) FS-pairs, since we have (¢ — 1)/2 post-light augmented subpaths which
have corresponding fault sets F; each with at least f/k faults.

3.3 Analysis of FS-pairs
Lemma 17. Fach fault in F will be in at most 4 FS-pairs.

Proof. Recall that only post-light 7} will be in FS-pairs. Suppose, for a contradiction, that there is some
fault e = (u, v) associated with 5 7} in FS-pairs. By pigeonhole, at least 3 of the 7, have fault-free paths (as
subsets of some shortcut) from their right ends ,; to u, or at least 3 of the 7; have fault-free paths from
their right ends to v. Without loss of generality assume this is u. Let these subpaths be 7}, 77, and 7, with
a < b < c. We will also label the fault-free paths as pg, pp, and p.. We have

[Pl < [mal =2 and |pc| < [me| -2
since the shortcut of 7/, which p, is on has length at least |p,| + 1 when we include e, and same with p..
Since 7}, is post-light, we have
mag1l > |mal.
With each 7 being extended from m; by one vertex, we have also

[Tav1] > [mal-

Moreover, since a < b < ¢, a + 1 # c. Note that the distance from z/,,; to 2, in G\ F is equal to their
distance along 7(s,t|F'), a shortest path they’re both on, which gives us a lower bound of

dG\F(x:1+1ax/c+1) =7(s,t] F)[miz+17x/c+l]

¢
= > Imi
i=a+1
> [map1| + ||
> |ma| + |7
However, p, and p, give a fault-free path from x, ; to 2/, ; in G\ F also, which upper bounds their distance
as

denr Ty 15 Ty 1) < denp(Toyr,w) + deyp(u, 2y)

< |pal + [pe]
< mp| + || — 4
= |mq| + |7e| — 2.

Which contradicts 7(s,t | F') being a shortest path. Therefore, each fault in F' is associated with at most 4
w; over all FS-pairs. O

We are now ready to finish the proof of Theorem 4. We can generate at least % FS-pairs, but each fault

is in at most 4 FS-pairs, and there are only f faults, so we have
g-1)f

(
25

Rearranging, we can upper bound ¢, the number of subpaths as

q < 8k+1.

Corollary 18. For any partition of w(s,t | F) into subpaths 7;, there are at most 4f right F'S-pairs containing
post-light augmented subpaths {m}}.

Again, in the other case where most subpaths are pre-light, the relevant corollary is that there are at
most 4f left FS-pairs containing pre-light augmented subpaths {x}}. The proof is essentially identical.

4 Weighted Upper Bound

We next prove Theorem 6. Recall that the goal is to prove that in any weighted graph G, every f-fault
replacement path 7 can be partitioned into

T=TpO0€pOM ©€10++-0€3_20Tg_1

where each e; is an edge and each m; is a (possibly empty) subpath of 7 that is an (f/k)-fault replacement
path in G, with ¢ = O(k).

Our proof strategy will be similar to the previous argument with some minor changes: we still choose m;
greedily as the longest subpath which is an (f/k)-fault replacement path, and we will take the next edge in
the subpath as the e; to interweave. Let ¢ be the number of subpaths resulting from this decomposition; our
goal is to upper bound ¢ to be linear in k.

We will define 7} as m; augmented with e; (again 7r(’1 is undefined). We define z; as the vertex at the end
of 7_; and at the beginning of 7;, so that for any 4,

m(s,t | F)ws, xip1] = 7 =m0 e;.

Unlike in the unweighted setting, we no longer have overlaps in the 7}. We will assess whether subpaths
7, are pre-light or post-light based on their weighted length, and proceed supposing that at least half of the
subpaths are post-light. We generate FS-pairs with post-light subpaths as before, using the property that by
maximality of m;, each 7 necessarily fails to be an (f/k)-fault replacement path. Using the same argument
based on Hall’s Theorem as before, this guarantees that we get at least % distinct FS-pairs.

Now we can complete the proof of Theorem 6 by the following lemma to limit the number of FS-pairs
each fault is in, which is analogous to Lemma 17 and has a similar proof. Theorem 6 follows as we can again
upper bound % by 4f to bound gq.

Lemma 19. Fach (weighted) fault in F will be in at most 4 FS-pairs.

Proof. Similarly to Lemma 17 we will prove the lemma by showing that no fault can be in 5 FS-pairs.
Suppose, for a contradiction, that we have fault e = (u, v) in 5 FS-pairs. Without loss of generality at least
3 subpaths =), 7}, and 7/, have fault-free paths which are contained in shortcuts from their right ends 41,
ZTpt1, and z.41 to u. Let these paths be p,, pp, and p.. Since each path is contained in a shortcut using e,
we have
w(pe) < w(nl) —w(e) and w(p.) < w(nl) —w(e).
Since 7/, is post-light, we have
(1) = w(r).

10

Again we can use that a +1 < ¢ and that 7(s,t | F') is a shortest path to lower bound the weighted distance
of Za41 10 Zeqq in G\ F as

de\r(Tat1, Ter1) = w(m(s,t | F)[Tat1, Tey])

= 3wl

i=a+1
> w(mgyq) + w(m)
> w(mg) + w(m).

However we can use the fault free paths of p, and p. to upper bound the distance from x,11 t0 o1 in G\ F
to get a contradiction with the previous lower bound:

denr(Tat1,Tey1) < dayp(Tay1, w) + denp(U, Tey1)
< w(pa) + w(pe)
< w(r) +w(rl) — 2w(e). O

In the case that at least half of the subpaths are pre-light, we will generate FS-pairs with pre-light
subpaths by defining base faults relative to the left ends z; of subpaths 7. In the analysis, we replace zq41,
ZTpt1, and Toy1 with x4, 2 and z.. Our analysis of p,, py, and p. are unchanged. Comparing subpaths, we
instead use the pre-light property of 7/, to get

w(me_1) 2 w(m).

Then the analysis on the distance is a lower bound of

de\F(Ta,) = w(m(s,t | F)[za,zc])

and an upper bound of

da\r(Ta; Te) < da\F(Ta,u) + do\r(u,)
< w(pa) + w(pe)
< w(rh) +w(wl) — 2w(e).

5 Algorithmic Path Decomposition

We will next prove Theorem 7, which holds for unweighted input graphs, and then afterwards describe the
(minor) changes needed to adapt the algorithm to the weighted setting. As a reminder of our goal: we are
given a graph G, a fault set F', a replacement path 7(s,t | F'), and a parameter k on input. Our goal is to
find nodes {z;} and fault sets F;, which partitions n(s,¢ | F) into ¢ = O(k) replacement paths avoiding f/k
faults each, as

w(s,t| F)=m(xo,21 | Fi) om(z1,z0 | F2) o...om(zq—1,24 | Fy).

5.1 Fault Set Reducing Subroutine

Before describing our main algorithm, we will start with a useful subroutine, driven by an observation about
the matching step in FS-pair generation. In our upper bound proof, we used a process for generating FS-pairs
to bound the number of subpaths in the decomposition. We used minimum size of the fault set F; associated
to each augmented subpath 7} to argue that we could generate |F;| distinct FS-pairs.

11

The observation is that, letting F; be any (not necessarily minimum) valid fault set for #} (that is, «} is
a shortest path in G \ F;), if we can produce an FS-pair for every fault in F; then our previous argument
works. On the other hand, if we cannot produce an FS-pair for every fault in F;, then our previous argument
gives us a process by which we can find a strictly smaller fault set F/ that is also valid for 7/, by replacing
the subset of F; with the reduced set of their base faults.

The subroutine FAULTREDUCE runs this process iteratively, in order to find a fault set F; for the input
subpath 7; that can be used to generate |F;| FS-pairs (from both the left and right). We note the subtlety
that F; is not necessarily a minimum valid fault set for m;: as in Figure 4, there may exist a smaller valid
fault set, but the algorithm will halt nonetheless if it can certify that the appropriate number of FS-pairs
can be generated.

o €
(Left) base _—p--
faults / N F/
X Ti+1

Figure 4: This subpath and fault set F; produces multiple FS-pairs via a saturated matching using the faults
on the left as base faults, but its minimum fault set is only one edge {e}.

Algorithm 1 FAULTREDUCE (m;)

Construct I'y,.

Construct I'g.

loop
Compute max matching My, for F; in I'f.
Compute max matching Mg for F; in I'g.
if |Mp| < |F;| or |Mg| < |F;| then

Reduce F;

else return F;

The essential properties of Algorithm 1 are captured by the following lemma.

Lemma 20. Relative to a graph G and fault set F, there is a subroutine (Algorithm 1 - FaultReduce) that
runs in polynomial time with the following behavior:

o The input is a path m; that is a shortest path in G\ F.
o The output is a fault set F; C F, such that:

— m; is a shortest path in G\ F;, and
— one can generate |F;| left- and |F;| right-FS-pairs of m; from F;.

We will next provide additional details on some of the steps in Algorithm 1, and then prove Lemma 20.

Construction of I';, and I'r. As in our previous proof, the graphs I'y,I'g are the graphs representing
the association between faults in F; and left or right (respectively) base faults in F'. More specifically:

12

e Both I';, and ' are bipartite graphs with vertex set F; U F, where F; is the current fault set, and F
is all initial faults.

Thus faults in F; are represented by two vertices, one on each side of the bipartition.

e In I';, we place an edge from e € F; to e, € F if and only if e, is a left base fault for e. The edges of
I'r are defined similarly, with respect to right base faults.

These graph constructions require us to efficiently check whether or not a particular fault e, € F' acts as
a (left or right) base fault for some e € F;. We next describe this process:

Lemma 21. Given a subpath 7;, a valid fault set F;, and faults e € F;, e, € F, we can check whether or not
ep is a left and/or right base fault of e in polynomial time.

Proof. First, the following notation will be helpful. Let z;,x;41 be the endpoints of the input subpath ;.
We will write d(z;,z;41 | ey ~ €) for the length of the shortest (possibly non-simple) (x;, x;+1)-path that
contains both e, and e, and which specifically uses e, as the first fault in F' along the path. We define
d(xi41,x; | ep ~ €) similarly. Note that e, is a left base fault for e if and only if

d(xi, i1 | €p ~ €) < |7
and that e is a right base fault for e if and only if
d($i+1,$i | ep ~ 6) < |7Tz|

Thus, it suffices to compute the values of the left-hand side of these two inequalities. We will next describe
computation of d(x;, x;11 | ep ~ ¢€); the other computation is symmetric. There are two cases, depending
on whether or not ¢, = e. Let e = (u,v), e, = (up,vp). When e, # e, the formula is:

d(zi, rip1 | ey ~) = min{de\ p(2i, up) + dg(vp, u) + dg (v, Ti11) + 2,
denr (i, up) + dg(vp,v) + da(u, zi41) + 2,
denr (i, vp) + da(up, u) +da(v, Ti41) + 2,
da\r (i, vp) + da(up, v) + da(u, Tip1) + 2}

The four parts are needed since we consider paths that use e, e, with either orientation, and the +2 term
arises to count the contribution of the edges e, e, themselves. In the case where e, = e, the formula is

d(zi, ziy1 | € ~) = min{de\ p(zi, u) + da(v, zig1) + 1, dey p(24,v) + da(u, i401) + 13 O

Reducing F;. Next, we provide more detail on the step of reducing the fault set F;. This uses Hall’s
condition, in an analogous way to our previous proof. When we compute max matchings My, Mg for
'z, TR, if we successfully find matchings of size |Mp| > |F;| or |Mg| > |F;|, then we have certified the
ability to generate | F;| left and right FS-pairs as in Section 3.2, and so the algorithm can return F; and halt.
Otherwise, suppose without loss of generality that |M| < |F;|. By Hall’s condition, that means there exists
a fault subset A C F; such that the set of base faults B C F used by faults in A is strictly smaller than A
itself. For the reduction step, we set F; < F; U B\ A, which reduces the size of |F;|. By Lemma 16, this
maintains the invariant that F; is a valid fault set for the input path ;.

In order to efficiently find the non-expanding fault subset A C F;, we may compute the max matching in
Ty, (or T'r) using a primal-dual algorithm that returns both a max matching and a certificate of maximality
of this form. For example, the Hungarian algorithm will do [CLRS09].

5.2 Main Algorithm

COMPUTESUBPATHS, described in Algorithm 2, performs a greedy search for subpath boundaries. In each
round, we set the next subpath boundary node z;41 to be the furthest node from the previous subpath
boundary node x;, such that the corresponding subpath is certified by the algorithm FAULTREDUCE to have
size at most f/k. Thus, considering the augmented subpath that we get by adding an additional node to ;,
we can generate at more than f/k left and right FS-pairs from this subpath.

We next state the algorithm; for ease of notation we label the vertices of the input path (st | F') as
§ = 1vg,V1,...,Vp =t.

13

Algorithm 2 COMPUTESUBPATHS (7 (s,t | F), F, k)
g < S.
1< 0.
while z; #t do
Binary search for largest y such that the fault set returned by FAULTREDUCE(w (s, t)[x;,vy]) has size
< f/k.
141+ 1.
Tj < Vy.

return {z;}}_,

Theorem 22. Algorithm 2 is correct and runs in polynomial time.

Proof. In Corollary 18 from our upper bound section, we showed that there exist only O(f) total right
FS-pairs using post-light subpaths (and, symmetrically, there exist only O(f) left FS-pairs using pre-light
subpaths). Since at least half of the augmented subpaths are pre-light or half are post-light, and by Lemma
20 every augmented subpath can generate at least f/k left and right FS-pairs, altogether we will have at
most O(k) subpaths.

For runtime, we always generate a linear number of subpaths, and locating the endpoint of each requires
calling the subroutine logn times. Thus the entire algorithm runs in polynomial time, specifically O(m -
poly(log(n), f)) time: each reduction of the subroutine takes O(m) time for distance computations to build
', and I'g and poly(f) time for max matchings. O

A similar approach works in the weighted setting, since the method of counting FS-pairs extends to the
structure in Theorem 6 and upper bounds the number of interweaved subpaths and edges. The construction
of auxiliary graphs I';, and I'p requires checking the weighted distance, but the matching and FS-pair
generation is the same. We change the algorithm to add the next edge into the decomposition of (s, | F')
after finding a maximal subpath with fault set at most f/k. The upper bound for the number of subpaths
based on enough FS-pairs being generated follows from the analysis in Theorem 6.

6 Lower Bounds

As a warmup, we begin by showing our lower bound against decomposition into 2 subpaths. This graph
will form a building block which we will sequentially compose into graphs where the number of subpaths
required is amplified, to attain our main lower bound for 2k subpaths.

Our 2 subpath lower bound consists of a long shortest path after the failure of many additional ‘shortcut-
ting’ edges. The additional edges are constructed so any two of them will always provide a shortcut for both
halves of the long path, and at least one subpath entirely contains one of these halves. This necessitates the
inclusion of almost every shortcutting edge into a replacement path’s fault set and requires that subpath to
be a (f — 1)-replacement path. This is illustrated in Figure 5 and described in the following proof.

Proposition 23. For all f > 2, (2, f — 2) is not restorable.
Proof. We will first assume for convenience that f is even, and return to the case where f is odd at the

end. Let ¢ = f/2 and let Gy be the graph as illustrated in Figure 5. Formally: the vertices of Gy are
1,2,...,N =297t — 1 (labeled clockwise in Figure 5), and its edge set is E; U E5 U E3, where

By = {2k, 2911 — 22 0 <k < g -3}
By = {(2FF2, 2971 oM 0 <k < g -3}
Es:={(i,i+1),1<i<N -1}

In Figure 5, the edges in F; are drawn in blue and slope upwards to the right, and the edges in Fy are drawn
in yellow and slope upwards to the left. E3 is in black and forms the outer curve. Let F' := F; U Es, and

14

32 29+l _ 39
16 29+l _ 16
8 291 _ g

1 29+l 1

Figure 5: If the blue and yellow edges fail (i.e. all straight-line edges on the inside of the outer semicircle),
then we can’t partition the remaining shortest path (black edges along the outer semicircle) into two subpaths
that are both (f — 2)-fault replacement paths. For clarity, only power of two vertices are drawn here, but
the outer cycle contains 297! — 1 vertices.

notice there is a unique replacement path (1, N | F') which consists of F3, the outer curve. Note that G is
symmetric about the vertex m = 29, which is also the midpoint of 7(1, N | F'). Define the “half-arcs” of this
graph as w(1,m | F) and 7(m, N | F), the two subpaths partitioning 7 (1, N | F') into equal parts divided at
midpoint m. (We note that this partitioning will be used again in Lemma 25 as well.)

Let € w(1, N | F) be an arbitrary vertex, which splits the path into a prefix from 1 to x and a suffix from
x to N. Let Fy, I5 respectively be minimum-size fault sets such that the prefix and suffix are replacement
paths avoiding Fy, F». We will write the prefix and suffix as

m(l,z | Fy) and =(x, N | Fy).
By symmetry of the construction we may assume without loss of generality that x > m, and so
7m(1,m | F) Cw(l,z| Fy).

We will now proceed to show that F; must contain every edge in F; and all but one edge in F5, and hence
B > f—1.

First Part (Proof of F; C Fy). Consider 7(1,x | Fy); suppose for a contradiction that there is an edge
(26,2911 —2¢2) ¢ By \ Fy, with ¢ < g — 3. Then we can construct a path p, a shortcut from 1 to x by
traversing through (2¢,29%1 — 2¢*2) and then using edges in E3 to get to x. Explicitly, this path is:

o (1,2,...29) 0/(2¢,297L —2042) o (2971 — 2642 x4 1 x) if @ < 291 — 9et2
P=9(1,2,...29) 0 (20,2971 — 2042) o (291 — 2042 g — 1, 2) if x> 29+1 — 2042

15

In the first case, the length of p is
Ip| = 2¢ 4+ 29t —2¢F2 _ o

Since by assumption z > m = 29, we have 297! — x < 29 < z, so we can upper bound
Ip| < 2¢—2°F2 4 1.
In the second case, the length of the path is
Ip| = 2¢ + 2672 —29%1 1 o,
Since ¢ < g — 3, we can directly upper bound the path length as
Ip| <2973 42971 291 4 g,

In either case, the length of p is strictly less than 2 —1, the length of shortest path 7(1, x | F), a contradiction.
We must therefore have E; C Fy.

Second Part (Proof of |E;\ Fi| <1): Suppose for a contradiction that there are two edges of E5 which
Fy does not contain: (2012 29+ — 29) and (2042 29+1 — 2%) with @ < b. Then in G\ F; we have a walk w
from 1 to 2 defined as

w=(1,2,...2042) o (2052 29+1 _ 9y o (29%1 _ 90 99+1 _ga _q 90+l _ 9b)
0 (2041 20 obH2) o (2642 902 L1 a1 1),
of length
w| =207 — 2% 4 2° + 1 + 2 — 2°F2
:x—3(2b—2a)+1

Then the length of w will be strictly less than x — 1, the length of (1,2 | F'), a contradiction. Thus we must
include all of F' in F} except at most one edge from Fs.

Finally, in the case that f is odd, we instead construct Gy with g = [f/2], and take any edge out of E;
or F5, which does not change the analysis. O

Our lower bound with two subpaths generalises to our main lower bound result, which we rewrite below:
Proposition 24. For any k € N, (2k, | f/k] — 2) is not restorable.

Proof. Assume for convenience that k divides f. We will glue k copies of the graph with f/k faults in the
previous proposition together, and then show that for any division of a particular f-fault replacement path
into subpaths, one subpath must contain one of the half-arcs as defined before, and its fault set will have to
include f/k — 1 faults.

We take k copies of Gy, as defined in Proposition 23, denoted by Gy /i, G2 f/k, - - - Gk, sk, labeling the ver-
tices of G; /1, as (4, j) where j is the label of the corresponding vertex in Gy /. We identify each (i, 29+ 1)
with (i 41,1). The edges in this graph are the union of all edges of the G; /i (see Figure 6), and we define
F as the union of the fault sets of each G/, as defined in the proof of Proposition 23. Let Ej; denote the
E; for G; 5, with j € {1,2}, so that formally

k
F .= U (El,i UEQJ).
i=1

Let s := (1,1), t := (k,29%1 —1). Consider n(s,t | F). This f-fault replacement path is precisely the
non-fault edges in G, or the union of E3; over each of the G; ¢/

We now bring in the previous half-arc structure from the case with two subpaths. This graph con-
tains all the half-arcs of each G t/i, and the half-arcs can be expressed either as 7(s,t)[(i,1), (4,m)] or
7(s,t)[(i,m), (1,291 — 1)]. From Proposition 23, we have the following:

16

N\ /. ‘ N\ /

(1,1) (1,m) (1,297 — 1) (2,m) (2,291 —1) (k—1,
=(2,1) =(3,1) =

Figure 6: The top figure depicts one copy of G/, and the bottom depicts all the copies combined together.

Lemma 25. A path containing a half-arc of any Gy, subgraph cannot be a (f/k — 2)-fault replacement
path.

Proof. Following from the argument of Proposition 23, a fault replacement path containing a half arc of
G2/, must have its fault set contain at least every edge in Ey; U Ey; except possibly one. Thus any fault
set of that path has size at least f/k — 1. O

We will show that any division of 7(s, ¢ | F') into 2k subpaths will result in one subpath containing a half-
arc, and thus failing to be a (f/k — 2)-fault replacement path. Suppose we have some choice of boundary
vertices x1,Za,...To,—1 and corresponding fault subsets Fy, Fy,...Fy, so that each 7(s,t)[x;—1,2;] is a
shortest path in G\ F;.

Let the interior vertices of a path denote all its vertices except its first and last. Note that w(s,t | F)
contains 2k half-arcs, and any half-arc which does not have any x; in its interior vertices will be completely
contained in some (s, t)[z;_1,2;]. The interior vertices of all 2k half-arcs are disjoint, and we only have
2k — 1 x; which can be in the interior of half arcs. Therefore some subpath 7 (s,t)[x;—1, ;] must contain
a half-arc, and its fault set |F;| must have size at least f/k — 1. Thus we will always get that one of the
subpaths cannot be a (f/k — 2)-fault replacement subpath, proving the lower bound.

In the case when k does not divide f, we choose graphs which are as even as possible to combine; Let a
be the remainder of f divided by k. We glue a copies of G| /5|41 to (kK — a) copies of G| /). In this case
the subpath which contains a half-arc might contain a half arc of G| y/x, and will enforce a fault set of size
only | f/k] — 1. O

If we want a similar result using this method for the case for an odd number of subpaths, say 2k — 1, we
still need to construct k copies of Gy, since half-arcs come in pairs, and we get the same bound on fault
sets. Alternatively, we can also use monotonicity to directly get:

Corollary 26. For any k € N, (2k — 1, | f/k] — 2) is not restorable.

Acknowledgments
We are grateful to Vijaya Ramachandran for helpful references to prior work, to Dmitry Paramonov for

insightful writing suggestions, and to an anonymous reviewer for exceptionally helpful and thorough com-
ments.

17

References

[ABBK'02] Yehuda Afek, Anat Bremler-Barr, Haim Kaplan, Edith Cohen, and Michael Merritt. Restoration

[ABDS*20]

[BCGT18]

[BGPW17]

[BP21]

[CC19]

[CCFK17]

[CLRS09]

[DR22]

[GIM20]

[HSO01]

[KIMS2]

[LYXsS20]

[MMGS9]

[MR22]

by path concatenation: fast recovery of mpls paths. Distributed Computing, 15:273-283, 2002.

Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen Kobourov, and Richard Spence.
Weighted additive spanners. In Isolde Adler and Haiko Miiller, editors, Graph-Theoretic Con-
cepts in Computer Science, pages 401-413, Cham, 2020. Springer International Publishing.

Davide Bilo, Keerti Choudhary, Luciano Guala, Stefano Leucci, Merav Parter, and Guido
Proietti. Efficient oracles and routing schemes for replacement paths. In 35th Symposium
on Theoretical Aspects of Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

Greg Bodwin, Fabrizio Grandoni, Merav Parter, and Virginia Vassilevska Williams. Preserving
Distances in Very Faulty Graphs. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and
Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 73:1-73:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Greg Bodwin and Merav Parter. Restorable shortest path tiebreaking for edge-faulty graphs. In
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, PODC’21,
page 435-443, New York, NY, USA, 2021. Association for Computing Machinery.

Shiri Chechik and Sarel Cohen. Near optimal algorithms for the single source replacement
paths problem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2090-2109. STAM, 2019.

Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1+¢)-approximate f-sensitive dis-
tance oracles. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1479-1496. STAM, 2017.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

Ran Duan and Hanlin Ren. Maintaining exact distances under multiple edge failures. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2022, page 1093-1101, New York, NY, USA, 2022. Association for Computing Machinery.

Manoj Gupta, Rahul Jain, and Nitiksha Modi. Multiple source replacement path problem.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 339-348,
2020.

John Hershberger and Subhash Suri. Vickrey prices and shortest paths: What is an edge worth?
In Proceedings 42nd IEEE symposium on foundations of computer science, pages 252-259. IEEE,
2001.

Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An efficient algorithm for k shortest simple
paths. Networks, 12(4):411-427, 1982.

Bao Ju Liu, Peng Yu, Qiu Xue-song, and Lei Shi. Survivability-aware routing restoration
mechanism for smart grid communication network in large-scale failures. EURASIP journal on
wireless communications and networking, 2020:1-21, 2020.

Kavindra Malik, Ashok K Mittal, and Santosh K Gupta. The k most vital arcs in the shortest
path problem. Operations Research Letters, 8(4):223-227, 1989.

Vignesh Manoharan and Vijaya Ramachandran. Near optimal bounds for replacement paths
and related problems in the congest model. arXiv preprint arXiv:2205.14797, 2022.

18

[WGY™15] Rui Wang, Suixiang Gao, Wenguo Yang, Zhipeng Jiang, et al. Restorable energy aware routing
with backup sharing in software defined networks. J. Commun., 10(8):551-561, 2015.

[ZGK*21] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach, Yiting Xia, and Ying Zhang.
Arrow: restoration-aware traffic engineering. In Proceedings of the 2021 ACM SIGCOMM 2021

Conference, pages 560-579, 2021.

19

