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Abstract. The hereditary discrepancy of a set system is a quantitative measure of the pseudo-4
random properties of the system. Roughly speaking, hereditary discrepancy measures how well one5
can 2-color the elements of the system so that each set contains approximately the same number of6
elements of each color. Hereditary discrepancy has numerous applications in computational geome-7
try, communication complexity and derandomization. More recently, the hereditary discrepancy of8
the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23].9

The contribution of this paper is to improve the upper and lower bounds on the hereditary10
discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system11
of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n1/4), and12
we construct lower bound examples demonstrating that this bound is tight up to polylog n factors.13
Our lower bounds hold even for planar graphs and bipartite graphs and improve a previous lower14
bound of Ω(n1/6) obtained by applying the trace bound of Chazelle and Lvov [SoCG’00] to a classical15
point-line system of Erdős.16

As applications, we improve the lower bound on the additive error for differentially-private all17
pairs shortest distances from Ω(n1/6) [Chen et al. SODA 23] to Ω̃(n1/4), and we improve the lower18

bound on additive error for the differentially-private all sets range queries problem to Ω̃(n1/4), which19
is tight up to polylog n factors [Deng et al. WADS 23].20
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1. Introduction. In graph algorithms, a fundamental problem is to efficiently23

compute the distance or shortest path information of a given input graph. Over the24

last decade or so, the community has increasingly sought a principled understanding25

of the combinatorial structure of shortest paths, with the goal to exploit this structure26

in algorithm design. That is, in various graph settings, we can ask:27

What notable structural properties hold for shortest path systems,28

that do not necessarily hold for arbitrary path systems?29

The following are a few of the major successes of this line of work:30

• An extremely popular strategy in the literature is to use hitting sets, in which31

we (often randomly) generate a set of nodes S and argue that it will hit the32

shortest path for every pair of nodes that are sufficiently far apart. Hitting33

sets rarely exploit any structure of shortest paths, as evidenced by the fact34

that most hitting set algorithms generalize immediately to arbitrary set sys-35

tems. However, they have inspired a successful line of work into graphs of36

bounded highway dimension [1, 9, 12]; very roughly, these are graphs whose37

shortest paths admit unusually efficient hitting sets of a certain kind.38
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• Shortest paths exhibit the notable structural property of consistency, i.e.,39

any subpath of the shortest path is itself the shortest path. This fact is used40

throughout the literature on graph algorithms [13, 27, 28], including, e.g., in41

the classic Floyd-Warshall algorithm for All-Pairs Shortest Paths. A recent42

line of work has sought to characterize the additional structure exhibited by43

shortest path systems beyond consistency [2, 6, 13, 23, 25, 26, 27].44

• Planar graphs have received special attention within this research program,45

and planar shortest path systems carry some notable additional structure.46

For example, it is known that planar shortest paths have unusually efficient47

tree coverings [8, 17], and that their shortest paths can be compressed into48

surprisingly small space [18, 19]. Shortest path algorithms also often benefit49

from more general structural facts about planar graphs, such as separator50

theorems [40, 43].51

The main result of this paper is a new structural separation between shortest path52

systems and arbitrary path systems, expressed through the lens of discrepancy theory.53

We will come to formal definitions of discrepancy in just a moment, but at a high level,54

discrepancy has been described as a quantitative measure of the combinatorial pseu-55

dorandomness of a discrete system [24], and it has widespread applications in discrete56

and computational geometry, random sampling and derandomization, communication57

complexity, and much more1. We will show the following:58

Theorem 1.1 (Main Result, Informal). The discrepancy of unique shortest path59

systems in weighted graphs is inherently smaller than the discrepancy of arbitrary path60

systems in graphs.61

This separation between unique shortest paths and arbitrary paths is due to the62

structural property of consistency of unique shortest path systems, which is well-63

studied in the literature [13, 27, 28].64

Our results can be placed within a larger context of prior work in computational65

geometry. A classical topic in this area is to determine the discrepancy of incidence66

structures between points and geometric range spaces such as axis-parallel rectangles,67

half-spaces, lines, and curves (cf. [20, Section 1.5]). These results have been used to68

show lower bounds for geometric range searching [54, 62].69

Indeed, systems of unique shortest paths in graphs capture some of the geometric70

range spaces studied in prior work. For instance, arrangements of straight lines in71

Euclidean space can be interpreted as systems of unique shortest paths in an associated72

graph, implying a relation between the discrepancies of these two set systems. This73

connection has recently found applications in the study of differential privacy on74

shortest path distance and range query algorithms [22, 29].75

More generally, discrepancy on graphs has also found applications in proving tight76

lower bounds on answering cut queries on graphs [33, 49].77

1.1. Formal Definitions of Discrepancy. We first define some notation that78

we use throughout the paper. We use the letter R to denote the set of real numbers79

and N to denote the set of natural numbers. For n ∈ N, we use the notation [n] to80

denote the set {1, · · · , n}. For a real number r ∈ R, we use |r| to denote the absolute81

value.82

For a vector v, we use the notation vi to denote its i-th coordinate, and for a83

matrix A, we use the notation Ai,j to denote its (i, j)-th entry. For a vector v ∈ Rn84

1We refer to the excellent textbooks of Alexander, Beck, and Chen [3], Chazelle [20], and Ma-
toušek [52] for discussion and further applications.
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THE DISCREPANCY OF SHORTEST PATHS 3

and any positive number p ∈ N≥0, we use different vector norms:85

∥v∥p := (|v1|p + · · ·+ |vn|p)1/p8687

where | · | denote the absolute value. By continuity, ∥v∥∞ := max1≤i≤n |vi|. For88

positive p, q ∈ N≥0 and any matrix A ∈ Rm×n,89

∥A∥p→q = max
∥Ax∥q
∥x∥p

.90

We reserve the symbol G for graphs with vertex set V and edge set E. We reserve91

the symbol Π to denote a given path system. For a subset U ⊆ V , we use the notation92

G[U ] to denote the subgraph induced by the vertex set U .93

Throughout the paper, we use the Õ and Ω̃ to hide poly-logarithmic factors in94

the input parameter, n.95

We first collect the basic definitions needed to understand this paper.96

Definition 1.2 (Edge and Vertex Incidence Matrices). Given a graph G =97

(V,E) and a set of paths Π in G, the associated vertex incidence matrix is given by98

A ∈ {0, 1}|Π|×|V |, where for each v ∈ V and π ∈ Π the corresponding entry is99

Aπ,v =

{
1 if v ∈ π
0 if v /∈ π.

100

The associated edge incidence matrix is given by a binary matrix A ∈ {0, 1}|Π|×|E|,101

where for each e ∈ E and π ∈ Π the corresponding entry is102

Aπ,e =

{
1 if e ∈ π
0 if e /∈ π.

103

Definition 1.3 (Discrepancy and Hereditary Discrepancy). Given a matrix A ∈104

Rm×n, its discrepancy is the quantity105

disc(A) = min
x∈{1,−1}n

∥Ax∥∞.106

Its hereditary discrepancy is the maximum discrepancy of any submatrix AY obtained107

by keeping all rows but only a subset Y ⊆ [n] of the columns; that is,108

herdisc(A) = max
Y⊆[n]

disc(AY )109

For a system of paths Π in a graph G, we will write discv(Π) and herdiscv(Π) to110

denote the discrepancy and the hereditary discrepancy of its vertex incidence matrix,111

and disce(Π) and herdisce(Π) to denote the discrepancy and the hereditary discrep-112

ancy of its edge incidence matrix.113

For intuition, the vertex discrepancy of a system of paths Π can be equivalently114

understood as follows. Suppose that we color each node in G either red or blue, with115

the goal to balance the red and blue nodes on each path as evenly as possible. The116

discrepancy associated to that particular coloring is the quantity117

max
π∈Π

∣∣∣∣ |{v ∈ π | v is colored red}| − |{v ∈ π | v is colored blue}|
∣∣∣∣.118
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The discrepancy of the system Π is the minimum possible discrepancy over all119

colorings. The hereditary discrepancy is the maximum discrepancy taken over all120

induced path subsystems Π′ of Π; that is, Π′ is obtained from Π by focusing only on121

the colors2 of a subset of vertices Y ⊆ V . Edge discrepancy can be understood in a122

similar way, coloring edges rather than vertices.123

Another related quantity is the ℓ2-discrepancy and ℓ2-hereditary discrepancy,124

which use ℓ2 norm instead of ℓ∞ norm in the definition.125

Definition 1.4 (ℓ2-Discrepancy and ℓ2-Hereditary Discrepancy). Given a matrix126

A ∈ Rm×n, its ℓ2-discrepancy is the quantity127

disc2(A) = min
x∈{1,−1}n

1√
m
∥Ax∥2.128

Its hereditary discrepancy is the maximum discrepancy of any submatrix AY obtained129

by keeping all rows but only a subset Y ⊆ [n] of the columns; that is,130

herdisc2(A) = max
Y⊆[n]

discv(AY )131

For a system of paths Π in a graph G, we will write discv,2(Π) and herdiscv,2(Π)132

to denote the ℓ2-discrepancy and the ℓ2-hereditary discrepancy of its vertex incidence133

matrix, and disce,2(Π) and herdisce,2(Π) to denote the ℓ2-discrepancy and the ℓ2-134

hereditary discrepancy of its edge incidence matrix.135

1.2. Our Results. Our main result is an upper and lower bound on the hered-136

itary discrepancy of unique shortest path systems in weighted graphs, which match137

up to hidden polylog n factors.138

Theorem 1.5 (Main Result).139

• (Upper Bound) For any n-node undirected weighted graph G with a unique140

shortest path between each pair of nodes, there exists a polynomial-time algo-141

rithm that finds a coloring for the system of shortest paths Π such that:142

herdiscv(Π) ≤ Õ(n1/4) and herdisce(Π) ≤ Õ(n1/4).143

• (Lower Bound) There are examples of n-node undirected weighted graphs144

G with a unique shortest path between each pair of nodes in which this system145

of shortest paths Π has herdiscv(Π) ≥ Ω̃(n1/4) and herdisce(Π) ≥ Ω̃(n1/4). In146

fact, in these lower bound examples we can take G to be planar or bipartite.147

The upper bound in Theorem 1.5 is constructive and algorithmic; that is, we148

provide an algorithm that colors vertices (edges, respectively) of the input graph to149

achieve vertex (edge, respectively) discrepancy Õ(n1/4) on its shortest paths (or on150

a given subsystem of its shortest paths). Notably, Theorem 1.5 should be contrasted151

with the fact that the maximum possible discrepancy of any simple path system3 of152

polynomial size in a general graph is Θ̃(n1/2). The upper bound of Õ(n1/2) follows153

by coloring the nodes randomly and applying standard Chernoff bounds. The lower154

bound is non-trivial and is proved in Appendix A – in fact, the lower bound on155

discrepancy (as well as hereditary discrepancy) for a grid graph for a polynomial156

2In the coloring interpretation, hereditary discrepancy allows a different choice of coloring for
each subsystem Π′, rather than fixing a coloring for Π and considering the induced coloring on each
Π′.

3A path system is simple if no individual path repeats nodes.
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Table 1
Overview of vertex/edge (hereditary) discrepancy on general undirected graphs and special fam-

ilies of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m
is the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree Bipartite Planar Undirected Graph

Vertex
disc Θ(1) Θ(1) O(n1/4) Θ̃(n1/4)

herdisc Θ(1) Θ̃(n1/4) Θ̃(n1/4) Ω(n1/6)[21]→ Θ̃(n1/4)

Edge
disc Θ(1) Θ(1) O(n1/4) O(n1/4)

herdisc Θ(1) Θ̃(n1/4) Θ̃(n1/4) Ω(n1/6)[21]→ Θ̃(n1/4)

Table 2
Overview of vertex/edge (hereditary) discrepancy on general directed graphs and special families

of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is
the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree Bipartite Planar Directed Graph

Vertex
disc Θ(1) Θ(1) O(n1/4) Θ̃(n1/4)

herdisc Θ(1) Θ̃(n1/4) Θ̃(n1/4) Θ̃(n1/4)

Edge
disc Θ(1) Θ(1) O(n1/4) min

{
O(m1/4), Õ(D1/2)

}
herdisc Θ(1) Θ̃(n1/4) Θ̃(n1/4) Ω̃(n1/4)

number of simple paths can be Ω(
√
n). Thus, Theorem 1.5 represents a concrete157

separation between unique shortest path systems and general path systems.158

We refer to Table 1 for our results for undirected graphs and to Table 2 for our159

results for directed graphs. All the bounds on discrepancy and hereditary discrepancy160

hold for ℓ2-discrepancy and ℓ2-hereditary discrepancy. See Section 8 for details.161

The main open question that we leave in this work is on the hereditary edge162

discrepancy of shortest paths in directed weighted graphs. We show the following:163

Theorem 1.6. For any n-node, m-edge directed weighted graph G with a unique164

shortest path between each pair of nodes, the system of shortest paths Π satisfies165

herdiscv(Π) ≤ O(n1/4) and herdisce(Π) ≤ O(m1/4).166

Lower bounds in the undirected setting immediately apply to the directed set-167

ting as well, and so this essentially closes the problem for directed hereditary vertex168

discrepancy. It is an interesting open problem whether the upper bound for directed169

hereditary edge discrepancy can be improved to Õ(n1/4) as well.170

We also leave open whether our lower bound for hereditary discrepancy extends171

to (non-hereditary) edge discrepancy as well, and to (non-hereditary) vertex or edge172

discrepancy of planar graphs.173

Applications to Differential Privacy. One application of our discrepancy lower
bound on unique shortest paths is in differential privacy (DP) [31, 32]. An algo-
rithm is differentially private if its output distributions are relatively close regardless
of whether an individual’s data is present in the data set. More formally, for two
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databases Y and Y ′ that are identical except for one data entry, a randomized algo-
rithmM is (ε, δ)-differentially private if, for any measurable set A in the range of the
algorithmM,

Pr [M(Y ) ∈ A] ≤ eε Pr [M(Y ′) ∈ A] + δ.

The topic of discrepancy of paths on a graph is related to two problems already174

studied in differential privacy: All Pairs Shortest Distances (APSD) [22, 36, 59] and175

All Sets Range Queries (ASRQ) [29]. In both of these problems, we assume that the176

graph topology is public. In the APSD problem, the edge weights are not publicly177

known. A query in APSD is a pair of vertices (u, v) ∈ V × V and the answer is the178

shortest distance between u and v. In contrast, in ASRQ problem, the edge weights179

are assumed to be known, and every edge also has a private attribute. Here, the range180

is defined by the shortest path between two vertices (based on publicly known edge181

weights). The answer to the query (u, v) ∈ V ×V then is the sum of private attributes182

along the shortest path. In what follows, we give a high-level argument for the lower183

bound on DP-APSD problem; the lower bound of Ω̃(n1/4) for the DP-ASRQ problem184

also follows nearly the same arguement.185

Chen et al. [22] showed that DP-APSD can be formulated as a linear query186

problem. In this setting, we are given a vertex incidence matrix A of the
(
n
2

)
shortest187

paths of a graph and a vector x of length n and asked to output Ax. They show that188

the hereditary discrepancy of the matrix A provides a lower bound on the ℓ∞ error for189

any (ε, δ)-DP mechanism for this problem. With this argument, our new discrepancy190

lower bound immediately implies the following lower bounds.191

Theorem 1.7 (Informal version of Corollaries 7.1 and F.1). The (ε, δ)-DP APSD192

problem and (ε, δ)-DP ASRQ problem require additive error at least Ω̃(n1/4).193

The best known additive error bound for the DP-ASRQ problem is Õ(n1/4) [29],194

which, by Theorem 1.7, is tight up to a polylog(n) factor. Prior to this work, the only195

known lower bounds for DP-ASRQ and DP-APSD were from a point-line system with196

hereditary discrepancy of Ω(n1/6) [22]. The best known additive error upper bound197

for DP-APSD is Õ(n1/2) [22, 36]. Closing this gap of n1/4 remains an interesting open198

problem.199

1.3. Our Techniques. We provide a brief overview of techniques used for our200

upper and lower bounds on discrepancy separately.201

Upper Bound Techniques. A folklore structural property of unique shortest paths202

on undirected graphs is consistency. Formally, a system of paths Π is consistent if203

for any two paths π1, π2, their intersection π1 ∩ π2 is a (possibly empty) contiguous204

subpath of each. It is well known that, for any undirected graph G = (V,E,w) with205

unique shortest paths4, its system of shortest paths Π is consistent. Our discrepancy206

upper bounds actually apply to any consistent system of paths – not just those that207

arise as unique shortest paths in an undirected graph. Notice that unique shortest208

paths on general directed graphs are not necessarily consistent, but indeed are on209

directed acyclic graphs (DAGs).210

We use two different proof techniques to obtain discrepancy upper bounds. First,211

we consider the paths as a set system with vertices (for vertex discrepancy) or edges212

(for edge discrepancy) as the ground set and then apply a standard application of pri-213

mal shatter functions (Definition 3.5), which bounds the number of subsets obtained214

4In general, on a weighted undirected graph one can use random perturbation to ensure all
shortest paths are unique.
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by limiting to only s elements. For any family of consistent paths, as well as shortest215

paths on directed graphs (which are not necessarily consistent), the primal shatter216

function is upper bounded by O(s2). By a well known bound on discrepancy through217

the primal shatter function, this immediately gives us an upper bound of O(n1/4)218

for vertex discrepancy and O(m1/4) for edge discrepancy (since edge discrepancy is219

defined on a ground set of m edges in the graph G).220

When the graph is dense, this upper bound on edge discrepancy deteriorates,221

becoming trivial when m = Θ(n2). We thus present a second proof of Õ(n1/4) for222

both vertex and edge discrepancy for a family of consistent paths, which explicitly223

constructs a low-discrepancy coloring. This improves the bound for vertex discrepancy224

by polylogarithmic factors and edge discrepancy by polynomial factors. The main225

idea in this construction is to adapt the path cover technique, used in the recent226

breakthrough on shortcut sets [44]. That is, we start by finding a small base set of227

roughly n1/2 node-disjoint shortest paths in the distance closure of the graph. These228

paths have the property that any other shortest path π in the graph contains at most229

O(n1/2) nodes that are not in any paths in the base set. We then color randomly, as230

follows:231

• For every node that is not contained in any path in the base set, we assign232

its color randomly. Thus, applying concentration bounds, the contribution of233

these nodes to the discrepancy of π will be bounded by ±Õ(n1/4).234

• For every path in the base set, we choose the color of the first node in the path235

at random, and then alternate colors along the path after that. Then we can236

argue that by consistency, the nodes in each base path randomly contribute237

+1 or −1 (or 0) to the discrepancy of π (see Figure 1 for a visualization). Since238

there are only n1/2 paths in the base set, we may again apply concentration239

bounds to argue that the contribution to discrepancy from these base paths240

will only be ±Õ(n1/4).241

Fig. 1. If we color the nodes of a unique shortest path with alternating colors, then its nodes
will contribute discrepancy 0, +1, or −1 to all unique shortest paths that intersect it.

Summing together these two parts, we obtain a bound of Õ(n1/4) on discrepancy242

with high probability. We can translate this to a bound on hereditary discrepancy243

using the fact that consistency is a hereditary property of path systems.244

Lower Bound Techniques. Lower bounds on discrepancy are typically obtained by245

the trace bound (e.g., by Chazelle and Lvov [21]) on an explicit graph construction.246

The state-of-the-art lower bounds on the discrepancy of unique shortest paths were247

achieved using a point-line construction of Erdős [55], which had n points and n lines248

in R2 with each point staying on Θ(n1/3) lines and each line going through Θ(n1/3)249

points. This point-line system also implies tight lower bounds for the Szemerédi-250

Trotter theorem [61] and the discrepancy of arrangements of lines in the plane [21]. It251

can be associated with a graph that possesses useful properties derived from geometry.252

If edges in this graph are weighted by Euclidean distance, then the paths in the graph253
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corresponding to straight lines are unique shortest paths by design. Two such shortest254

paths (along straight lines) only intersect at most once.255

Probably not a coincidence, this point-line construction also provides lower256

bounds on the graph hopset problem. An (exact) hopset of a graph G with hop-257

bound β is a small set of additional edges H in the distance closure of G, such that258

every pair of nodes has a shortest path in G ∪H containing at most β edges. Until259

recently, the state-of-the-art lower bound on the size of the hopset uses exactly the260

graph derived from the point-line incidence example. Recently, a construction by261

Bodwin and Hoppenworth [15] obtained stronger hopset lower bounds with a differ-262

ent geometric graph construction, which still took place in R2 but allowed shortest263

paths to have many vertices/edges in common. We show that this construction can be264

repurposed to derive a stronger lower bound of Ω̃(n1/4) on vertex hereditary discrep-265

ancy by applying the trace bound of Larsen [46]. Combined with our upper bounds,266

this substantially improves our understanding of the discrepancy of unique shortest267

paths.268

The above upper and lower bounds are for general graphs. Naturally, one can269

ask if we have better bounds for special families of graphs. We further show that270

the lower bounds remain the same for two interesting families: planar graphs and271

bipartite graphs. The lower bound construction mentioned above is not planar, and272

so this requires some additional work. A natural attempt is to restore planarity by273

adding vertices to the construction wherever two edges cross. However, this comes274

at a cost of an increase in the number of vertices and also with a potential danger275

of altering the shortest paths. We show that the number of crossings is not too276

much higher than n. Then, by carefully changing the weights of the edges and by277

exploiting the geometric properties of the construction, we show that the topology278

and incidence of shortest paths are not altered. For bipartite graphs, although the279

vertex discrepancy can be made very low – by coloring the vertices on one side +1280

and vertices on the other side −1 – the hereditary discrepancy can be as high as the281

general graph setting. Specifically, we show a 2-lift of any graph G to a bipartite282

graph which essentially keeps the same hereditary discrepancy.283

2. Related Work.284

2.1. Discrepancy on graphs. In graph theory, the discrepancy of a graph285

introduced by Erdős [34] is defined as follows:286

max
U⊂V

∣∣∣∣e(G[U ])− p
(
|U |
2

)∣∣∣∣ ,287
288

where e(G[U ]) is the number of edges of the induced subgraph G[U ] on vertices U ⊆ V289

and p = |E|
(n2)

is the density of edges. If we consider a complete graph and randomly290

color each edge with probability p, the above definition of discrepancy quantifies the291

deviation of induced subgraphs of G from their expected size. Erdős and Spencer [35]292

showed that the graph discrepancy is Θ(n3/2) when p = 1/2. This definition and293

related definitions (e.g., positive discrepancy, dropping the absolute operator) have294

applications to quasi-randomness [24], graph cuts and edge expansion [4, 16, 57].295

There is also study of multicolor discrepancy [38, 39] that we skip here.296

Of particular relevance to our work, Balogh et al. [7] studied edge discrepancy (as297

defined in this paper) of (spanning) trees, paths and Hamilton cycles of a graph G.298

In particular, they showed that, for any labeling of edges of G, there is a path with299

discrepancy Ω(n), even when the graph is a grid. Prior to this, either probabilistic300
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construction exhibiting such a lower bound was known [10, 30, 48] or an explicit301

construction of linear size non-planar graphs was known [5]. The construction for the302

planar graph in Balogh et al. [7] can be extended to coloring of vertices such that there303

is a path with vertex discrepancy Ω(n) when there are exponentially many paths and304

Ω(
√
n) when there are polynomially many paths. (see Appendix A for details).305

Discrepany of paths in directed graphs has also been studied. Reimer [58] showed306

that, if a directed graph has discrepancy Ω(n), then the graph must have Ω(n2)307

edges. In the case when we do not allow antiparallel edges, Ben-Eliezer et al. [11]308

showed that there is a directed graph with Θ(n2 log2(n)) edges such that any mapping309

χ : E → {−1, 1} will either have a path of length Ω(n) and all edges mapped to −1310

or a path of length Ω(n log(n)) with all edges mapped to +1.311

2.2. Connection with curve discrepancy. A classical topic in computational312

geometry is to study upper and lower bounds of the discrepancy/hereditary discrep-313

ancy of the incidence matrix of geometric objects and a set of points. For example,314

for a set of n points and n halfplanes in R2, the n by n incidence matrix (with rows315

corresponding to halfplanes and columns corresponding to points) has discrepancy316

of Ω(n1/4). For n points and n lines in the plane, the discrepancy of the incidence317

matrix is Ω(n1/6) [21]. In general the discrepancy of such incidence matrix is related318

to the ‘complexity’ of the geometric shapes. In our setting of a graph, the set of all319

pairs shortest paths defines a set system on the vertices. When the graph is planar,320

the shortest paths are essentially simple curves in the plane.321

We would like to compare our results with discrepancy of curves and points in the322

geometric setting. Using the classification in Pach and Sharir [56], a family of simple323

curves have k degree of freedom and multiplicity type s if, for any k points, there are at324

most s curves passing through all of them, and any pair of curves intersect in at most325

s points. Lines in the plane have degree of 2 and multiplicity of 1. A set of curves326

with degree of 2 and multiplicity of 1 is called pseudolines – two pseudolines have at327

most one intersection. For n points and n lines, the discrepancy is upper bounded by328

O(n1/6(log n)2/3) [20] which is nearly tight by a polylogarithmic factor. The proof uses329

the standard partial coloring argument with the Szeremédi-Trotter bound on point-330

line incidence – for any n points and m lines there are at most O(m2/3n2/3 +m+ n)331

point-line incidences [61]. The Szeremédi-Trotter bound can be extended to a set332

of pseudolines [56, 60]. Therefore the same proof and upper bound hold for the333

discrepancy of pseudolines.334

For a consistent set of shortest paths, two shortest paths will only intersect at a335

contiguous segment, which may have multiple vertices/points. Thus using the curve336

classification criterion, a consistent family of shortest paths in the plane has degree of337

2 but multiplicity s that is possibly higher than a constant. In fact, our discrepancy338

lower bound construction in the planar graph setting uses a design with s possibly339

as high as n1/2. This is the major difference of shortest paths in a planar graph340

with pseudolines, which allows the discrepancy of shortest paths to go beyond the341

pseudoline upper bound of Õ(n1/6)5.342

3. Preliminaries. A path system is a pair S = (V,Π) where V is a ground set343

of nodes and Π is a set of vertex sequences called paths. Each path may contain, at344

most, one instance of each node. We now formally define consistency, a structural345

5Using the incidence upper bound for k = 2 and s = n1/2 from [60] and partial coloring, one can

obtain a discrepancy upper bound of Õ(n1/3) for our path construction. In contrast, we obtained a

nearly tight bound of Θ̃(n1/4).
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property of unique shortest paths that will be useful.346

Definition 3.1. A path system S = (V,Π) is consistent if no two paths in S347

intersect, split apart, and then intersect again later. Formally:348

• In the undirected setting, consistency means that for all u, v ∈ V and all349

π1, π2 ∈ Π such that u, v ∈ π1 ∩ π2, we have that π1[u, v] = π2[u, v], i.e., the350

intersection of π1 and π2 is a contiguous subpath (subsequence) of π1 and π2.351

• In the directed setting, consistency means that for all u, v ∈ V and all π1, π2 ∈352

Π such that u precedes v in both π1 and π2, we have that π1[u, v] = π2[u, v].353

In every weighted graph for which all pairs shortest paths exist (i.e., no negative354

cycles), we can represent all-pairs shortest paths using a consistent path system. In355

particular, if all shortest paths are unique, then consistency is implied immediately.356

We will investigate the combinatorial discrepancy of path systems (V,Π). Usually,357

we will assume that |V | = n and |Π| is polynomial in n. We define a vertex coloring358

χ : V 7→ {−1, 1} and define the discrepancy of Π as359

disc(Π) = min
χ
χ(Π), where χ(Π) = max

π∈Π
|χ(π)| , χ(π) =

∑
v∈π

χ(v).360

Using a random coloring χ, we can guarantee that for all paths π ∈ Π [20]:

|χ(π)| ≤
√
2|π| ln(4|Π|).

This immediately provides a few observations.361

Observation 3.2. When Π is a set of paths with size polynomial in n, then362

disc(Π) = O(
√
n log n). This bound is true even for paths that are possibly non-363

consistent.364

Observation 3.3. When the longest path in Π has D vertices we have disc(Π) =365

O(
√
D log n). Thus, for graphs that have a small diameter (e.g., small world graphs),366

the discrepancy of shortest paths is automatically small.367

Hereditary discrepancy is a more robust measure of the complexity of a path368

system (V,Π), defined as herdisc(Π) = maxY⊆V disc(Π|Y ), where Π|Y is the collection369

of sets of the form π ∩ Y with π ∈ Π. Clearly, herdisc(Π) ≥ disc(Π). Sometimes the370

discrepancy of a set system may be small while the hereditary discrepancy is large [20].371

Thus in the literature, we often talk about lower bounds on the hereditary discrepancy.372

Now that we have defined vertex and edge (hereditary) discrepancy, one may won-373

der if there is an underlying relationship between vertex and edge (hereditary) dis-374

crepancy since they share the same bounds in most settings presented in Table 2. The375

following observation shows that vertex discrepancy bounds directly imply bounds on376

edge discrepancy.377

Observation 3.4. Denote by disc(n) (and herdisc(n)) the maximum discrepancy378

(minimum hereditary discrepancy, respectively) of a consistent path system of a (undi-379

rected or directed) graph of n vertices. We have that380

1. Let g(x) be a non-decreasing function. If herdiscv(n) ≥ g(n), then

herdisce(n) ≥ g(n/2).

2. Let f(x) be a non-decreasing function. If discv(n) ≤ f(n), then

disce(m) ≤ f(m).
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Proof. We first show that if graph G = (V,E,w) with the consistent path381

matrix Av has hereditary discrepancy at least g(n), we can obtain another graph382

G′ = (V ′, E′, w′) and matrix Ae as the (consistent path) edge incidence matrix with383

hereditary discrepancy at least g(n/2). The construction is as follows.384

(a) We first split each vertex v ∈ V in G to two vertices (vin, vout) to obtain V ′.385

(b) For every v ∈ V , add a single edge (vin, vout) to E
′.386

(c) For any v ∈ V and each edge (u, v) ∈ E (with the fixed v), add edges (uout, vin)387

and (uin, vout) to E
′.388

The path incident matrix Ae is defined as follows: for each path as a row a of389

Av, construct a new path in G′ by following the order of uout → vin → vout → win for390

a u→ v → w sequence. For each row in Av, we mark the used edges as 1 in Ae with391

the path constructed by the above process. Note that the new path system defined392

by Ae remains consistent: for any intersection between the two paths P1 ∩ P2 =393

(u1, u2, · · · , uℓ), the intersection remains a single path of (u1,in, u1,out, · · · , uℓ,in, uℓ,out)394

in Ae.395

Let Y be the columns that induces the g(n) discrepancy on G, i.e.,396

min
x∈{−1,+1}|Y |

∥AvY x∥∞ = g(n).397

Now, observe that, for each row in Ae, an edge (vin, vout) is marked as 1 if and only if v398

is marked as 1 in Av. Therefore, we can take the new set Y ′ as the edges corresponding399

to Y , and there is400

min
x∈{−1,+1}|Y ′|

∥∥AeY ′x
∥∥
∞ = min

x∈{−1,+1}|Y |
∥AvY x∥∞ = g(n).401

Finally, since graph G′ has n′ = 2n vertices, we have the hereditary discrepancy to402

be at least g(n′/2), as desired.403

We next show that the hereditary edge discrepancy of G is at most f(m), which404

implies the discrepancy upper bound. For a graph with n vertices, m edges, and405

a path incident matrix Ae, suppose Y is the set of columns (edges) that attain the406

hereditary discrepancy. We can add a vertex ve for each e ∈ Y and construct a new407

path incident matrix Av, which is a matrix with |Y | rows. Concretely, for each row408

of Av, we simply let vertices ve ∈ Y be 1 if the corresponding edge is used in Ae. By409

the consistency of Ae, the new path incident matrix also characterizes a consistent410

path system (we can think of the underlying graph as the complete graph on a vertex411

set of Y ). Note that we can get f(m) discrepancy for the path system characterized412

by Ae as there are at most m vertices in Ae. This implies a f(m) hereditary edge413

discrepancy on the original path system, which in turn implies the desired discrepancy414

upper bound.415

Finally, note that the argument remains valid when the graph is directed, which416

means the results hold for both undirected and directed graphs.417

We also use some technical tools from discrepancy theory and statistics.418

3.1. Known Results in Discrepancy Theory. The first result that we discuss419

is the one that gives an upper bound on the discrepancy of a set system in terms of420

primal shatter function.421

Definition 3.5 (Primal Shatter Function). Let (X,R) be a set system, i.e., X422

is a ground state and S = {S1, S2, · · · , Sℓ} with Si ⊆ X for all 1 ≤ i ≤ ℓ. Let s be a423

positive integer. The primal shatter function, denoted as πR(s), is defined as424

πR(s) := max
A⊆X: |A|=s

|{A ∩ S | S ∈ R}| .425
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The following is a well-known result of the discrepancy theory.426

Proposition 3.6 (Theorem 1.2 in Matousek [51]). Given a set system (X,R),427

the discrepancy of a range space R whose primal shatter function is bounded by428

πR(x) = cxd, for some constant c > 0, d > 1, is429

O(n1/2−1/(2d)),430

where n is the size of the ground state, and O(·) hides the dependency on c and d.431

For the lower bound on the hereditary discrepancy, one general result is the trace432

bound first shown by Chazelle and Lyov [21].433

Lemma 3.7 (Trace Bound of Chazelle and Lyov [21]). If A is an m by n incidence434

matrix and M = A⊤A, then there is an absolute constant 0 < c < 1 such that435

herdisc(A) ≥ 1

4
cn·tr(M

2)/(tr(M))2

√
tr(M)

n
.436

Recently, this trace bound has been improved in the exponential term through a437

series of works culminating in the following bound in Larsen [46], which we also use438

in our work:439

Lemma 3.8 (Trace Bound of Larsen [46]). If A is an m by n incidence matrix440

and M = A⊤A, then441

herdisc(A) ≥ (tr(M))2

8e tr(M2) ·min{m,n}

√
tr(M)

max{m,n}
.442

We give various interpretations of tr(M) and tr(M2) in Lemma 3.8 that would be443

useful later on. Algebraically, tr(M) is the sum of its eigenvalue while tr(M2) is the444

sum of the square of the eigenvalues. Combinatorially, tr(M) is the number of ones445

in A and tr(M2) is the number of rectangles of all ones in A. Geometrically, tr(M)446

is the count of point/region incidences, and tr(M2) is the number of pairs of points447

in all the pairwise intersections of regions. Finally, if A is the incidence matrix for448

the shortest path, tr(M2) is the number of length 4 cycles in the underlying graph.449

Based on the algebraic interpretation, it means that the trace bound is non-trivial450

whenever all the eigenvalues of A are fairly uniform. This can be seen by noticing451

that, if {λ1, · · · , λn} are eigenvalues of A, then tr(M)2 = n cos2(θ) tr(M), where θ is452

the angle between the vector (λ1, · · · , λn) and the all one-vector.453

Our lower bound construction requires a hard instance of a class of graphs. For454

that, we use the construction of Bodwin and Hoppenworth [15], whose key properties455

that we use are stated as the following lemma:456

Lemma 3.9 (Lemma 1 of Bodwin and Hoppenworth [15]). For any p ∈ [1, n2],457

there is an infinite family of n-node undirected weighted graphs G = (V,E,w) and458

sets Π of p paths in G such that459

• G has ℓ = Θ
(

n√
p logn

)
layers. Each path in Π starts in the first layer, ends460

in the last layer, and contains exactly one node in each layer.461

• Each path in Π is the unique shortest path between its endpoints in G.462

• For any two nodes u, v ∈ V , there are at most ℓ
h(u,v) paths in Π that con-463

tain both u and v, where h(u, v) is the hop-distance (number of edges on the464

shortest path) between u and v in G and 1 ≤ h(u, v) ≤ ℓ.465

• Each node v ∈ V lies on at most O
(

ℓp
n

)
distinct paths in Π.466
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Concentration Inequalities. We use the following standard variants of the467

Chernoff-Hoeffding bound in our paper.468

Proposition 3.10 (Chernoff bound). Let X1, . . . , Xn be n independent random469

variables with support on {0, 1}. Define X :=
∑n

i=1Xi. Then, for every δ > 0, there470

is471

Pr [X ≥ (1 + δ) · E [X]] ≤ exp

(
− δ2

δ + 2
· E [X]

)
.472

In particular, when δ ∈ (0, 1], there is473

Pr[|X − E [X]| > δ · E [X]] ≤ 2 · exp
(
−δ

2E [X]

3

)
.474

Proposition 3.11 (Additive Chernoff bound). Let X1, . . . , Xn be n independent475

random variables with support in [0, 1]. Define X :=
∑n

i=1Xi. Then, for every t > 0,476

Pr[|X − E [X]| > t] ≤ 2 · exp
(
−2t2

n

)
.477

4. General Graphs: Upper Bound Existential Proof. This section collects478

the existential proof of the upper bounds on vertex- and edge-discrepancy for consis-479

tent path systems in (possibly) directed graphs. Our approach uses Proposition 3.6,480

which gives a discrepancy upper bound using the primal shatter function of a set481

system. This approach leads to the same upper bounds for undirected and directed482

graphs. In specifics, we show an upper bound of O(n1/4) holds for vertex discrep-483

ancy, while the edge discrepancy is at most O(m1/4). That is, we show an existential484

proof of Theorem 1.6 (on directed graphs) by this approach. Note that for undirected485

graphs, we have achieved better edge discrepancy bounds using explicit constructions486

(as shown in Subsection 5.3).487

Theorem 1.6. For any n-node, m-edge directed weighted graph G with a unique488

shortest path between each pair of nodes, the system of shortest paths Π satisfies489

herdiscv(Π) ≤ O(n1/4) and herdisce(Π) ≤ O(m1/4).490

Proof. We consider vertex discrepancy first. Let S = (V,Π) be the path system491

containing all |Π| =
(
n
2

)
unique shortest paths in G over vertex set V . We can interpret492

S as a set system (e.g., by ignoring the ordering of vertices in paths π ∈ Π).493

We claim that the primal shatter function πS of S is πS(x) = O(x2). The inter-
section of any set A ⊆ V of |A| = x vertices with a path π = π[s, t] ∈ Π is equal to
A∩π[u, v] with u and v being the first and last vertex on path π in set A, respectively.
Then we have

|{A ∩ π | π ∈ Π}| ≤ |A|2 = x2,

and πS(x) = O(x2), as claimed. Since the size of the ground state is |V | = n, Proposi-494

tion 3.6 implies that the (non-hereditary) vertex discrepancy of the incidence matrix495

for a family of consistent paths on an n-node graph is at most O(n1/4). An upper496

bound of O(m1/4) for edge discrepancy on m-edge graphs follows from Observation497

3.4.498

Finally, to show the upper bound on hereditary discrepancy, we observe that for499

any subset U ⊆ V , we can define the system Π[U ] of the paths in Π induced on the500

nodes in U . This path system Π[U ] is also consistent. Applying the above argument on501

Π[U ] therefore give us an O(n1/4) upper bound for the discrepancy of Π[U ], implying502
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our desired vertex hereditary discrepancy upper bound. A similar argument achieves503

an edge hereditary discrepancy upper bound of O(m1/4).504

Notice that for a sparse graph (e.g., m = O(n)) this matches the bound on vertex505

discrepancy, but for a dense graph (e.g., m = Θ(n2)), the upper bound becomes506

O(n1/2), which is no better than the upper bound by random coloring.507

In Subsection 5.2, we present a vertex coloring achieving hereditary discrepancy508

of Õ(n1/4). Finally, we present an explicit edge coloring with the same hereditary509

discrepancy bound in Subsection 5.3. This is a significant improvement over O(m1/4),510

especially for dense graphs.511

5. Undirected Graphs: Lower Bound and Explicit Colorings. We now512

discuss the main result (Theorem 1.5). We first show in Subsection 5.1 a hereditary513

discrepancy lower bound of Ω(n1/4/
√
log n) for both edge and vertex discrepancy in514

general undirected graphs. Then, in Subsection 5.2, we present a vertex coloring515

achieving hereditary discrepancy of Õ(n1/4). Finally, we present an explicit edge516

coloring with the same hereditary discrepancy bound in Subsection 5.3.517

5.1. Lower Bound. As suggested by Observation 3.4, we focus on the vertex518

hereditary discrepancy. We then show that this theorem implies the same lower bound519

on (non-hereditary) vertex discrepancy as well.520

Theorem 5.1. There are examples of n-vertex undirected weighted graphs G with
a unique shortest path between each pair of vertices in which this system of shortest
paths Π has

herdiscv(Π) ≥ Ω

(
n1/4√
log(n)

)
.

To obtain the lower bound, we employ the new graph construction by Bodwin and521

Hoppenworth [15], which shows that any exact hopset with O(n) edges must have at522

least Ω̃(n1/2) hop diameter. Despite seeming unrelated, this construction also sheds523

light on our problem. Another technique we use to show the hereditary discrepancy524

lower bound is the trace bound [46]. In the following proof section, we first summarize525

the construction related to our objective, then show the calculation using the trace526

bound that leads to our lower bound.527

Proof. The key properties of the graph construction in Bodwin and Hoppen-528

worth [15] that we need can be summarized in Lemma 3.9. We will make use of the529

shortest path vertex incidence matrix of the graph in Bodwin and Hoppenworth [15].530

Recall that hereditary discrepancy considers the sub-incidence matrix induced by col-531

umns corresponding to a set of vertices. We select the set of vertices occurring in532

the paths in Π, and show it leads to hereditary discrepancy at least Ω(n1/4/
√
log n).533

Specifically, take A as the incidence matrix so each row corresponds to one path in Π.534

A has dimension p× n where n is the number of vertices in G and the (i, j)-th entry535

of A is 1 is the vertex j is in the path i.536

Now define M = A⊤A. Recall that tr(M) is the number of 1s in the matrix A.537

Since by construction, every path has length ℓ, we have tr(M) = pℓ. Furthermore, let538

mij be the (i, j)-th element of matrix M , and observe that it is exactly the number539

of paths that contain vertices i and j. Note that mij = mji. Additionally, tr(M2) is540

the number of length 4 closed walks in the bipartite graph representing the incidence541
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matrix A. This implies that542

tr(M2) =

p∑
j=1

∑
u,v∈Pj ,
u̸=v

mu,v +

n∑
i=1

m2
ii =

p∑
j=1

ℓ∑
i=1

∑
u,v∈Pj ,
h(u,v)=i

mu,v + n ·O
(
pℓ

n

)2

≤
p∑

j=1

ℓ∑
i=1

ℓ · ℓ
i
+O

(
p2ℓ2

n

)
≤ pℓ2 log ℓ+O

(
p2ℓ2

n

)
.

(5.1)543

544

By setting p = n log n, it follows that ℓ = Θ
( √

n
logn

)
and tr(M) = pℓ. Further,545

npℓ2 log ℓ ≤ O
(
n · n log(n) · n

log2 n
· log(n)

)
= O(n3) = O(p2ℓ2).546

547

By equation (5.1), we have tr(M2) = O(p2ℓ2/n). Using this and tr(M) = pℓ in548

the trace bound in Lemma 3.8 [46] gives us549

herdiscv(Π) ≥ (tr(M))2

8emin{p, n} · tr(M2)

√
tr(M)

max{p, n}
550

=
(tr(M))2

8en · tr(M2)

√
tr(M)

p
≥ Ω

(
p2ℓ2

p2ℓ2

√
ℓ

)
551

= Ω(
√
ℓ) = Ω

(
n1/4√
log(n)

)
552

553

by setting the value of ℓ. The completes the proof of the lower bound.554

5.2. Vertex Discrepancy Upper Bound – Explicit Coloring. In this sub-555

section, we will upper bound the discrepancy χ(Π) of a consistent path system (V,Π)556

with |V | = n and |Π| = poly(n). This immediately implies an upper bound for the557

hereditary vertex discrepancy of unique shortest paths in undirected graphs.558

Theorem 5.2. For a consistent path system S = (V,Π) where |V | = n and |Π| =559

poly(n), there exists a labeling χ such that χ(Π) = O(n1/4 log1/2(n)). Consequently,560

every n-vertex undirected graph has hereditary vertex discrepancy O(n1/4 log1/2(n)).561

Let S = (V,Π) be a consistent path system with |V | = n and |Π| = poly(n). As562

the first step towards constructing our labeling χ : V 7→ {−1, 1}, we will construct563

a collection of paths Π′ on V that will have a useful covering property, stated in564

Proposition 5.3, over the paths in Π.565

Constructing path cover Π′. Initially, we let Π′ = ∅. We define V ′ to be the set of566

all nodes in V belonging to a path in Π′, i.e., V ′ :=
⋃

π′∈Π′ π′. While |π \ V ′| ≥ n1/2567

for some π ∈ Π, find a (possibly non-contiguous) subpath of π of length n1/2 that568

is vertex-disjoint from all paths in Π′. Formally, find a subpath π′ ⊆ π such that569

|π′| = n1/2 and π′∩V ′ = ∅. Add path π′ to path cover Π′ and update V ′. Repeatedly570

add paths to path cover Π′ in this manner until |π \ V ′| < n1/2 for all π ∈ Π.571

Proposition 5.3. Path cover Π′ satisfies the following properties:572

1. for all π ∈ Π′, |π| = n1/2,573

2. the number of paths in Π′ is |Π′| ≤ n1/2,574
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3. (Disjointness Property) The paths in Π′ are pairwise vertex-disjoint,575

4. (Covering Property) For all π ∈ Π, the number of nodes in π that do not lie576

in any path in path cover Π′ is at most n1/2. Formally, let V ′ = ∪π′∈Π′π′.577

Then ∀π ∈ Π, |π \ V ′| ≤ n1/2,578

5. (Consistency Property) For all π ∈ Π and π′ ∈ Π′, the intersection π ∩ π′ is579

a (possibly empty) contiguous subpath of π′.6580

Proof. Properties 1, 3, and 4 follow from the construction of Π′. Property 2 fol-581

lows from Properties 1 and 3 and the fact that |V | = n. The Consistency Property of582

Π′ is inherited from the consistency of path system S. Specifically, by the construc-583

tion of Π′, path π′ ∈ Π′ is a subpath of a path π′′ ∈ Π. Recall that by the consistency584

of path system S, the intersection π ∩ π′′ is a (possibly empty) contiguous subpath585

of π′′. Then π ∩ π′ is a contiguous subpath of π′ since π′ ⊆ π′′. This concludes the586

proof.587

Constructing labeling χ. Let π′ = (v1, . . . , vk) ∈ Π′ be a path in our path cover.588

We will label the nodes of π′ using the following random process. With probability589

1/2 we define χ : π′ 7→ {−1, 1} to be590

χ(vi) =

{
1 i ≡ 0 mod 2 and i ∈ [1, k]

−1 i ≡ 1 mod 2 and i ∈ [1, k]
,591

and with probability 1/2 we define χ : π′ 7→ {−1, 1} to be592

χ(vi) =

{
−1 i ≡ 0 mod 2 and i ∈ [1, k]

1 i ≡ 1 mod 2 and i ∈ [1, k]
.593

The labels of consecutive nodes in π′ alternate between 1 and −1, with vertex v1594

taking labels 1 and −1 with equal probability. Since the paths in path cover Π′595

are pairwise vertex-disjoint, the labeling χ is well-defined over V ′ := ∪π′∈Π′π′. We596

choose random labeling for all nodes in V \V ′, i.e., we independently label each node597

v ∈ V \ V ′ with χ(v) = −1 with probability 1/2 and χ(v) = 1 with probability 1/2.598

An illustration can be found in Figure 2.599

π1

π2π3

Fig. 2. In this figure, paths π1, π2, π3 ∈ Π′ from the path cover are intersecting a path π ∈
Π. Paths in the path cover are pairwise vertex-disjoint, and each path in the cover contributes
discrepancy 0, −1, or +1 to π.

Bounding the discrepancy χ(Π). Fix a path π ∈ Π. We will show that∣∣∣∣∣∑
v∈π

χ(v)

∣∣∣∣∣ = O(n1/4 log1/2(n))

with high probability. Theorem 5.2 will follow as |Π| = poly(n).600

6Note that it may not be true that π ∩ π′ is a contiguous subpath of π.
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Proposition 5.4. For each path π′ in path cover Π′,601 ∑
v∈π∩π′

χ(v) ∈ {−1, 0, 1}.602

If |π ∩ π′| ≡ 0 mod 2, then
∑

v∈π∩π′ χ(v) = 0. Moreover,603

Pr

[ ∑
v∈π∩π′

χ(v) = −1

]
= Pr

[ ∑
v∈π∩π′

χ(v) = 1

]
.604

Proof. By the Consistency Property of Π′ (as proven in Proposition 5.3), path
π ∩ π′ is a (possibly empty) contiguous subpath of π′. Then since consecutive nodes
in π′ alternate between −1 and 1, it follows that∑

v∈π∩π′

χ(v) ∈ {−1, 0, 1}.

Now note that
∑

v∈π∩π′ χ(v) ̸= 0 iff |π ∩ π′| is odd. Moreover, the first vertex605

of π ∩ π′ takes labels 1 and −1 with equal probability. This concludes the proof of606

Proposition 5.4.607

We are now ready to bound the discrepancy of π.608

Proposition 5.5. With high probability, χ(π) = O(n1/4 log1/2 n).609

Proof. We partition the nodes of π into two sources of discrepancy that we will610

bound separately. Let V ′ := ∪π′∈Π′π′.611

Discrepancy of π ∩ V ′. For each path π′ ∈ Π′, let Xπ′ be the random variable612

defined as613

Xπ′ :=
∑

v∈π∩π′

χ(v).614

We can restate the discrepancy of π ∩ V ′ as615 ∣∣∣∣∣ ∑
v∈π∩V ′

χ(v)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
π′∈Π′

Xπ′

∣∣∣∣∣ .616

By Proposition 5.4, if |π ∩ π′| is even, then Xπ′ = 0. Therefore, we may assume617

without any loss of generality that |π ∩ π′| is odd for all π′ ∈ Π′. In this case,618

Pr [Xπ′ = −1] = Pr [Xπ′ = 1] = 1/2, implying that E[
∑

π′∈Π′ Xπ′ ] = 0. Then by619

Proposition 5.3 and the Chernoff bound, it follows that for any constant c ≥ 1,620

Pr

[∣∣∣∣∣ ∑
π′∈Π′

Xπ′

∣∣∣∣∣ ≥ c · n1/4 log1/2(n)
]
≤ e−c2

n1/2 log(n)

2|Π′| ≤ e−c2/(2·log(n)) = n−c2/2.621

Discrepancy of π \ V ′. Note that by the Covering Property of the path cover (as622

proven in Proposition 5.3), |π \V ′| ≤ n1/2. Moreover, the nodes in V \V ′ are labeled623

independently at random, implying that E
[∑

v∈π\V ′ χ(v)
]
= 0. Then we may apply624

a Chernoff bound to argue that for any constant c ≥ 1,625

Pr

∣∣∣∣∣∣
∑

v∈π\V ′

χ(v)

∣∣∣∣∣∣ ≥ c · n1/4 log1/2 n
 ≤ exp{−c2n

1/2 log(n)

2|π \ V ′|
}626

≤ e−c2/(2·log(n)) = n−c2/2.627628
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We have shown that the discrepancy of our labeling is O(n1/4 log1/2(n)) for π∩V ′629

and O(n1/4 log1/2(n)) for π \ V ′ with high probability. Therefore, with high proba-630

bility, the total discrepancy of π is O(n1/4 log1/2(n)). This completes the proof of631

Proposition 5.5.632

Extending to hereditary discrepancy. Let A be the vertex incidence matrix of633

a path system S = (V,Π) on n nodes, and let AY be the submatrix of A obtained634

by taking all of its rows but only a subset Y of its columns. Then there exists a635

subset VY ⊆ V of the nodes in V such that AY is the vertex incidence matrix of the636

path system S[VY ] (path system S induced on VY ). Moreover, if path system S is637

consistent, then S[VY ] is also consistent. Then we may apply our explicit vertex dis-638

crepancy upper bound to S[VY ]. We conclude that the hereditary vertex discrepancy639

of S is O(n1/4 log1/2(n)).640

5.3. Edge Discrepancy Upper Bound – Explicit Coloring. By Theorem641

1.6, the edge discrepancy of the unique shortest paths of a (possibly directed) graph642

on m edges is O(m1/4). However, in the case of undirected graphs and DAGs, we643

can improve the edge discrepancy to O(n1/4 log1/2(n)), where n is the number of644

vertices in the graph, by modifying the explicit construction for vertex discrepancy645

in Subsection 5.2. Our proof strategy will follow the same framework as the explicit646

construction for vertex discrepancy but with some added complications in the con-647

struction and analysis.648

We first introduce some new notation that will be useful in this section. Given649

a path π and nodes u, v ∈ π, we denote by u <π v if u occurs before v on path π.650

Additionally, given a path system S = (V,Π), we define the edge set E ⊆ V × V of651

the path system as the set of all pairs of nodes u, v ∈ V that appear consecutively in652

some path in Π. Likewise, for any path π over the vertex set V , we define the edge653

set of π, E(π) ⊆ π × π, as the set of all pairs of nodes u, v ∈ π such that u, v appear654

consecutively in π and (u, v) ∈ E. Note that if path system S corresponds to paths655

in a graph G, then E will be precisely the edge set of G.656

Recall that we wish to construct an edge labeling χ : E 7→ {−1, 1} so that657

χ(Π) = max
π∈Π

∣∣∣∣∣∣
∑

e∈E(π)

χ(e)

∣∣∣∣∣∣658

is minimized. We will upper bound the discrepancy χ(Π) of consistent path systems659

such that |V | = n and |Π| = poly(n). This immediately implies an upper bound on660

the edge discrepancy of unique shortest paths in undirected graphs.661

Theorem 5.6. For all consistent path systems S = (V,Π) where |V | = n and662

|Π| = poly(n) with edge set E, there exists a labeling χ : E → {−1, 1} such that663

χ(Π) = O(n1/4 log1/2(n)).664

Consequently, every n-vertex undirected graph has hereditary edge discrepancy665

O(n1/4 log1/2(n)).666

Let S = (V,Π) be a consistent path system with |V | = n and |Π| = poly(n). As667

the first step towards constructing our labeling χ : E 7→ {−1, 1}, we will construct a668

collection of paths Π′ on V with a useful covering property over the paths in Π.669
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5.3.1. Constructing path cover Π′. Initially, we let Π′ = ∅. We define V ′ to670

be the set of all nodes in V belonging to a path in Π′, i.e.,671

V ′ :=
⋃

π′∈Π′

π′.672

While there exists a path π ∈ Π such that |π \ V ′| ≥ n1/2, our goal is to find673

a (possibly non-contiguous) subpath of π of length n1/2 that is vertex-disjoint from674

all paths in Π′. Specifically, let π′ ⊆ π be a (possibly non-contiguous) subpath of π675

containing exactly the first n1/2 nodes in π \ V ′. Add path π′ to path cover Π′ and676

update V ′. Repeatedly add paths to path cover Π′ in this manner until |π\V ′| < n1/2677

for all π ∈ Π.678

Note that our path cover Π′ is very similar to the path cover used in the explicit679

vertex discrepancy upper bound. Indeed, path cover Π′ inherits all properties of680

the path cover defined in Subsection 5.2. The key difference here is that we require681

subpaths π′ ⊆ π in Π′ to contain the first n1/2 nodes in π \ V ′. This will imply an682

additional property of our path cover, which we call the No Repeats Property.683

v1 v2 v3 v4

π1 π2

π

Fig. 3. In this figure, paths π1, π2 ∈ Π′ are intersecting a path π ∈ Π. This arrangement of
paths is forbidden by the No Repeats Property of Proposition 5.7.

Proposition 5.7. Path cover Π′ satisfies all properties of Proposition 5.3, as684

well as the following additional properties:685

• (Edge Covering Property) For all π ∈ Π, the number of edges in π that are
not incident to any node lying in a path in path cover Π′ is at most n1/2.
Formally, let V ′ = ∪π′∈Π′π′. For all π ∈ Π,

|{(u, v) ∈ E(π) | u ̸∈ V ′ and v ̸∈ V ′}| ≤ n1/2,

• (No Repeats Property) For all paths π ∈ Π, π1, π2 ∈ Π′, and nodes
v1, v2, v3, v4 ∈ π such that v1, v3 ∈ π1 and v2, v4 ∈ π2, the following ordering
of the vertices in Π is impossible:

v1 <π v2 <π v3 <π v4,

where x <π y indicates that node x occurs in π before node y.686

Proof. All properties from Proposition 5.3 follow from an identical argument as687

in the original proof. The Edge Covering Property follows immediately from the688

Covering Property of Proposition 5.3. What remains is to prove the No Repeats689

Property.690

Suppose for the sake of contradiction that there exist paths π ∈ Π, π1, π2 ∈ Π′,691

and nodes v1, v2, v3, v4 ∈ π such that v1, v3 ∈ π1 and v2, v4 ∈ π2, where v1 <π v2 <π692
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v3 <π v4. We will assume that path π1 was added to Π′ before path π2 (the case693

where π2 was added to Π′ first is symmetric). By the construction of Π′, path π1 ∈ Π′694

is a (possibly non-contiguous) subpath of a path π′′
1 ∈ Π from which it is constructed.695

Additionally, by the consistency of the path system S, the intersection π ∩ π′′
1 is a696

contiguous subpath of π. Then v2 ∈ π ∩ π′′
1 , and specifically, v2 ∈ π′′

1 .697

We assumed that v2 ∈ π2, which implies that v2 ̸∈ π1, since paths in Π′ are698

pairwise vertex-disjoint. Since path π1 was added to Π′ before path π2, this means699

that when π1 was added to Π′, node v2 did not belong to any path in Π′ (i.e., v2 was700

not in V ′). Recall that in our construction of Π′, we constructed subpath π1 ⊆ π′′
1701

so that it contained exactly the first n1/2 nodes in π′′
1 \ V ′. However, v2 ̸∈ π1, but702

v3 ∈ π1, and v2 comes before v3 in π′′
1 . This contradicts our construction of path π1703

in path cover Π′.704

5.3.2. Constructing labeling χ. Let π′ ∈ Π′ be a path of length k in our path705

cover. Let e1, . . . , ek ∈ E(π′) be the edges in π′ listed in the order they appear in706

π′. Note that since π′ is a possibly non-contiguous subpath of a path in Π, pairs of707

nodes u, v ∈ V that appear consecutively in π do not necessarily correspond to edges708

in edge set E.709

We will label the edges in E(π′) using the following random process. With prob-710

ability 1/2 we define χ : E(π′) 7→ {−1, 1} to be711

χ(ei) =

{
1 i ≡ 0 mod 2 and i ∈ [1, k]

−1 i ≡ 1 mod 2 and i ∈ [1, k]
,712

and with probability 1/2 we define χ : E(π′) 7→ {−1, 1} to be713

χ(ei) =

{
−1 i ≡ 0 mod 2 and i ∈ [1, k]

1 i ≡ 1 mod 2 and i ∈ [1, k]
.714

Note that the labels of consecutive edges ei, ei+1 in π′ alternate between 1 and715

−1, with edge e1 taking labels 1 and −1 with equal probability.716

Since the paths in path cover Π′ are pairwise vertex-disjoint, the labeling χ is717

well-defined over718

E′ := ∪π′∈Π′E(π′).(5.2)719720

We take a random labeling for all edges in E\E′, i.e., we independently label each721

edge e ∈ E \ E′ with χ(e) = −1 with probability 1/2 and χ(e) = 1 with probability722

1/2.723

5.3.3. Bounding the discrepancy ϕ. Fix a path π := π[s, t] ∈ Π. We will724

show that725 ∣∣∣∣∣∣
∑

e∈E(π)

χ(e)

∣∣∣∣∣∣ = O(n1/4 log1/2(n))726

with high probability. This will complete the proof of Lemma 5.6 since |Π| = poly(n).727

The proof of the following proposition follows from an argument identical to Propo-728

sition 5.4 and hence omitted.729

Proposition 5.8. For each path π′ in path cover Π′,730 ∑
e∈E(π)∩E(π′)

χ(e) ∈ {−1, 0, 1}.731
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If |E(π) ∩ E(π′)| ≡ 0 mod 2, then
∑

e∈E(π)∩E(π′) χ(e) = 0. Moreover,732

Pr

 ∑
e∈E(π)∩E(π′)

χ(e) = −1

 = Pr

 ∑
e∈E(π)∩E(π′)

χ(e) = 1

 .733

734

We are now ready to bound the edge discrepancy of π. Define735

V ′ :=
⋃

π′∈Π′

π′ and E′ :=
⋃

π′∈Π′

E(π′).736

We partition the edges of the path π into three sources of discrepancy that we737

will bound separately. Specifically, using the definition of E′ in equation (5.2), we738

split E(π) ⊆ π × π into the following sets E1, E2, E3:739

• E1 := E(π) ∩ E′,740

• E2 := E(π) ∩ ((V \ V ′)× (V \ V ′)), and741

• E3 := E(π) \ (E1 ∪ E2).742

Sets E1 and E2 roughly correspond to the two sources of discrepancy considered in743

the vertex discrepancy upper bound, while set E3 corresponds to a new source of744

discrepancy requiring new arguments to bound. We begin with set E1.745

Proposition 5.9 (Discrepancy of E1). With high probability,
∣∣∑

e∈E1
χ(e)

∣∣ =746

O(n1/4 log1/2 n).747

Proof. The proposition follows from an argument similar to Proposition 5.5. For748

each path π′ ∈ Π′, let Xπ′ be the random variable defined as749

Xπ′ :=
∑

e∈E(π)∩E(π′)

χ(e).750

We can restate the discrepancy of E1 = E(π) ∩ E′ as751 ∣∣∣∣∣∑
e∈E1

χ(e)

∣∣∣∣∣ =
∣∣∣∣∣ ∑
π′∈Π′

Xπ′

∣∣∣∣∣ .752

By Proposition 5.8, if |E(π) ∩ E(π′)| ≡ 0 mod 2, then Xπ′ = 0, so without any
loss of generality, we may assume that |E(π) ∩ E(π′)| is odd for all π′ ∈ Π′. In this
case,

Pr [Xπ′ = −1] = Pr [Xπ′ = 1] = 1/2,

implying that E[
∑

π′∈Π′ Xπ′ ] = 0. Then, by Proposition 5.7 and the Chernoff bound,753

it follows that for any constant c ≥ 1,754

Pr

[∣∣∣∣∣ ∑
π′∈Π′

Xπ′

∣∣∣∣∣ ≥ c · n1/4 log1/2(n)
]
≤ e−c2

n1/2 log(n)

2|Π′| ≤ e−c2/2·log(n) ≤ n−c2/2.
755

We now bound the discrepancy of E2 = E(π) ∩ ((V \ V ′)× (V \ V ′)).756

Proposition 5.10 (Discrepancy of E2). With high probability,
∣∣∑

e∈E2
χ(e)

∣∣ =757

O(n1/4 log1/2(n)).758
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Proof. The proposition follows from an argument similar to Proposition 5.5. Note759

that by the Edge Covering Property of the path cover (Proposition 5.7),760

|E2| = |{(u, v) ∈ E(π) | u, v ̸∈ V ′}| ≤ n1/2.761

Moreover, the edges in E \E′ are labeled independently at random, so we may apply762

a Chernoff bound to argue that for any constant c ≥ 1,763

Pr

[∣∣∣∣∣∑
e∈E2

χ(e)

∣∣∣∣∣ ≥ c · n1/4 log1/2(n)
]
≤ e−c2

n1/2 log(n)
2|E2| ≤ e−c2/2·log(n) ≤ n−c2/2.764

completing the proof.765

Finally, we upper bound the discrepancy of the remainder of the edges, E3 =766

E(π) \ (E1 ∪ E2).767

Proposition 5.11 (Discrepancy of E3). With high probability,
∣∣∑

e∈E3
χ(e)

∣∣ =768

O(n1/4 log1/2(n)).769

Proof. Let770

k := |{π′ ∈ Π′ | π ∩ π′ ̸= ∅}|771

denote the number of paths in our path cover that intersect π. We define a function772

f : Z≥0 7→ Z≥0 such that f(ϕ) equals the largest possible value of |E3| when ϕ = k.773

Note that f is well-defined since 0 ≤ |E3| ≤ |E|. We will prove that f(ϕ) ≤ 4ϕ, by774

recursively decomposing path π.775

When ϕ = 1, there is only one path π′ ∈ Π′ that intersects π. Then the only776

edges in E3 are of the form777

E(π)∩ ((V ′× (V \ V ′))∪ ((V \ V ′)× V ′)) = E(π)∩ ((π′ × (V \ π′))∪ ((V \ π′)× π′)).778

By the Consistency Property of Proposition 5.7, path π′ can intersect π and then split779

apart at most once. Then780

f(1) = |E3| = |E(π) ∩ ((π′ × (V \ π′)) ∪ ((V \ π′)× π′))| ≤ 2.781

When ϕ > 1, we will split our analysis into the two cases:782

• Case 1. There exists paths π′
1, π

′
2 ∈ Π′ and nodes v1, v2, v3 ∈ π such that783

v1, v3 ∈ π′
1 and v2 ∈ π′

2 and v1 <π v2 <π v3. In this case, we can assume784

without any loss of generality that π[v1, v3]∩ π′
1 = {v1, v3} (e.g., by choosing785

v1, v3 so that this equality holds). Let x be the node immediately following786

v1 in π, and let y be the node immediately preceding v3 in π. Recall that787

s is the first node of π and t is the last node of π. It will be useful for the788

analysis to split π into three subpaths:789

π = π[s, v1] ◦ π[x, y] ◦ π[v3, t],790

where ◦ denotes the concatenation operation. Define791

ϕ1 := |{π′ ∈ Π′ | π[x, y] ∩ π′ ̸= ∅}|792

ϕ2 := |{π′ ∈ Π′ | (π[s, v1] ◦ π[v3, t]) ∩ π′ ̸= ∅}|.793794

We claim that ϕ1 < ϕ, ϕ2 < ϕ, and ϕ1 + ϕ2 = ϕ. We will use these facts to795

establish a recurrence relation for f . By our assumption that π[v1, v3]∩π′
1 =796
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{v1, v3}, it follows that π[x, y] ∩ π′
1 = ∅, and so ϕ1 < ϕ. Likewise, by the No797

Repeats Property of Proposition 5.7,798

(π[s, v1] ◦ π[v3, t]) ∩ π′
2 = ∅.799

Therefore, ϕ2 < ϕ. Finally, observe that more generally, if there exists a800

path π′ ∈ Π′ such that π′ ∩ π[x, y] ̸= ∅ and π′ ∩ (π[s, v1] ◦ π[v3, t]) ̸= ∅, then801

the No Repeats Property of Proposition 5.7 is violated. We conclude that802

ϕ1 + ϕ2 = ϕ.803

Now |E3| can be upper bounded by the following inequality:804

|E3| ≤ |E3 ∩ E(π[x, y])|+ |E3 ∩ E(π[s, v1] ◦ π[v3, t])|+ 2.805

Then using the observations about ϕ1, ϕ2, and ϕ in the previous paragraph,806

we obtain the following recurrence for f :807

f(ϕ) ≤ f(ϕ1) + f(ϕ2) + 2 = f(i) + f(ϕ− i) + 2,808

where 0 < i < ϕ.809

• Case 2. There exists a path π′ ∈ Π′ and v1, v2 ∈ π such that π ∩ π′ =810

π[v1, v2]∩ V ′. Let x be the node immediately preceding v1 in π, and let y be811

the node immediately following v2 in π. Again, we split π into three subpaths:812

π[s, t] = π[s, x] ◦ π[v1, v2] ◦ π[y, t].813

Let814

ϕ1 := |{π′ ∈ Π′ | π[v1, v2] ∩ π′ ̸= ∅}|815

ϕ2 := |{π′ ∈ Π′ | (π[s, x] ◦ π[y, t]) ∩ π′ ̸= ∅}|.816817

Our assumption in Case 2 follows that ϕ1 = 1 and ϕ2 = ϕ− 1. Since |E3| can818

be upper bounded by the inequality819

|E3| ≤ |E3 ∩ E(π[v1, v2])|+ |E3 ∩ E(π[s, x] ◦ π[y, t])|+ 2,820

we immediately obtain the recurrence821

f(ϕ) ≤ f(ϕ1) + f(ϕ2) + 2 ≤ f(1) + f(ϕ− 1) + 2.822

Taking our results from Case 1 and Case 2 together, we obtain the recurrence relation823

f(ϕ) ≤

{
max {f(i) + f(ϕ− i) + 2, f(1) + f(ϕ− 1) + 2} ϕ > 1 and 1 < i < ϕ

2 ϕ = 1
.824

Applying this recurrence at most ϕ times, we find that825

f(ϕ) ≤ ϕ · f(1) + 2ϕ ≤ 4ϕ.826

Finally, since k ≤ |Π′| ≤ n1/2 and we defined f so that f(k) equals the largest possible827

value of |E3|, we conclude that828

|E3| ≤ f(k) ≤ f(n1/2) = O(n1/2).829

Since the edges in E3 ⊆ E \E′ are labeled independently at random, we may apply a830

Chernoff bound as in Proposition 5.10 to argue that χ(E3) = O(n1/4 log1/2(n)) with831

high probability.832
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We have shown that with high probability, the discrepancy of our edge labeling833

is O(n1/4 log1/2(n)) for E1, E2, and E3, so we conclude that the total discrepancy of834

π is O(n1/4 log1/2(n)). A straightforward extension of this argument implies identical835

bounds for hereditary discrepancy. We defer this proof to the full version of our paper836

[14].837

6. Planar Graphs. In this section, we will extend our hereditary vertex dis-838

crepancy lower bound for unique shortest paths in undirected graphs to the planar839

graph setting.840

Theorem 6.1. There exists an n-vertex undirected planar graph with hereditary841

vertex discrepancy at least Ω
(

n1/4

log2(n)

)
.842

To prove this theorem, we will first give an abbreviated presentation of the graph843

construction in [15] that we used implicitly to obtain the Ω(n1/4/
√
log n) hereditary844

vertex discrepancy lower bound in Theorem 5.1. Then we will describe a simple845

procedure to make this graph planar and argue that the shortest path structure of846

this planarized graph remains unchanged.847

6.1. Graph Construction of Bodwin and Hoppenworth. Take n to be848

a large enough positive integer, and take p = n log n. We will describe an n-node849

weighted undirected graph G = (V,E,w) originally constructed in Bodwin and Hop-850

penworth [15].851

Vertex Set V . We will use ℓ = Θ
(

n1/2

logn

)
as a positive integer parameter for our852

construction. The graph G we create will consist of ℓ layers, denoted as L1, . . . , Lℓ.853

Each layer will have n/ℓ nodes, arranged from 1 to n/ℓ. Initially, we will assign a854

tuple label (i, j) to the jth node in the Li layer. We will interpret the node labeled855

(i, j) as a point in R2 with integral coordinates. The vertex set V of graph G is made856

up of these n nodes distributed across ℓ layers.857

Next we will randomize the node labels in V . For each layer Li, where i ranges858

from 1 to ℓ, we randomly and uniformly pick a real number in the interval (0, 1) and859

we call it ψi. After that, for each node in layer Li of the graph G that is currently860

labeled (i, j), we relabel it as861 (
i, j +

j∑
k=1

ψk

)
.862

These new labels for the nodes in V are also treated as points in R2. We can imagine863

this process as adding a small epsilon of structured noise to the points corresponding864

to the nodes in the graph. The purpose of this noise is technical, but serves the865

purpose of achieving ‘symmetry breaking’ (see Section 2.4 of [15] for details).866

Edge Set E. All edges will be between subsequent layers Li, Li+1 within G. It867

will be helpful to think of the edges in G as directed from Li to Li+1, although in868

actuality G will be undirected. We represent the set of edges in G between layers Li869

and Li+1 as Ei. For any edge e = (v1, v2) ∈ E, the edge e will be associated with the870

specific vector u⃗e := v2 − v1. The 2nd coordinate of u⃗e will be labeled as ue. Hence,871

for all e found in E, u⃗e is written as (1, ue).872

For each i ∈ [1, ℓ− 1], let873

Ci := {(1, ψi+1 + x) : x ∈ [0, n/ℓ2]}.874

We will refer to the vectors in Ci as edge vectors. For each v ∈ Li and edge vector875

c⃗ ∈ Ci, if v + c⃗ ∈ V , then add edge (v, v + c⃗) to Ei. After adding these edges to Ei,876
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we will have that877

Ci = {u⃗e | e ∈ Ei}.878

Finally, for each e ∈ E, if u⃗e = (1, ue), then we assign edge e the weight w(e) :=879

u2e. This completes the construction of our graph G = (V,E,w).880

Proposition 6.2. Consider the graph drawing of graph G where the nodes v in881

V are drawn as points at their associated coordinates in R2 and the edges (u, v) in E882

are drawn as straight-line segments from u to v. This graph drawing has O(n log6 n)883

edge crossings.884

Proof. First note that if edges e1, e2 ∈ E cross in our graph drawing of G, then885

edges e1 and e2 are between the same two layers of G (i.e., e1, e2 ∈ Li×Li+1 for some886

i ∈ [1, ℓ− 1]). Additionally, all edges between Li and Li+1 are from the jth vertex in887

Li to the (j + k)th vertex in Li+1, where j ∈ [1, n/ℓ] and k ∈ [0,Θ(log2 n)].888

Now fix an edge (u, v) ∈ E ∩ (Li × Li+1) for some i ∈ [1, ℓ − 1]. If an edge889

(u′, v′) ∈ E ∩ (Li × Li+1) crosses (u, v), then |u − u′| ≤ log2 n. Then there are at890

most O(log2 n) nodes incident to edges that cross (u, v) in our drawing. Since each891

node in G has degree O(log2 n), this implies that at most O(log4 n) edges cross (u, v)892

in our drawing. Since |E| = O(n log2 n), we conclude that our graph drawing has893

O(n log6 n) edge crossings.894

Direction Vectors and Paths Π.. Our next step is to generate a set of unique895

shortest paths Π. The paths Π are identified by first constructing a set of vectors896

D ⊆ R2 called direction vectors, which are defined next.897

Let q = Θ
(

ℓ
logn

)
= Θ

(
n1/2

log2 n

)
be an integer. We choose our set of direction898

vectors D to be899

D :=

{(
1, x+

y

q

)
such that x ∈

[
1,

n

4ℓ2
− 1
]
and y ∈ [0, q]

}
.900

Note that adjacent direction vectors in D differ only by 1/q in their second coordinate.901

Each of our paths π in Π will have an associated direction vector d⃗ ∈ D, and for all902

i ∈ [1, ℓ− 1], path π will take an edge vector in Ci that is closest to d⃗ in some sense.903

Paths Π.. We first define a set S ⊆ L1 containing half of the nodes in the first904

layer L1 of G:905

S :=
{
(1, j + ψ1) ∈ L1 such that j ∈

[
1,
n

2ℓ

]}
.906

We will define a set of pairs of nodes P so that P ⊆ S × Lℓ. For every node s ∈ S907

and direction vector d⃗ ∈ D, we will identify a pair of endpoints (s, t) ∈ S × Lℓ and a908

corresponding unique shortest path πs,t to add to Π.909

Let v1 ∈ S, and let d⃗ = (1, d) ∈ D. The associated path π has start node v1. We910

iteratively grow π, layer-by-layer, as follows. Suppose that currently π = (v1, . . . , vi),911

for i < ℓ, with each vi ∈ Li. To determine the next node vi+1 ∈ Li+1, let E
vi
i ⊆ Ei912

be the edges in Ei incident to vi, and let913

ei := argmine∈E
vi
i
(|ue − d|).914

By definition, ei is an edge whose first node is vi; we define vi+1 ∈ Li+1 to be the915

other node in ei, and we append vi+1 to π. After this process terminates, we will916

have a path π = (v1, . . . , vℓ). Denote π as πv1,vℓ and add path πv1,vℓ
to Π. Repeating917

for all v1 ∈ S and d⃗ ∈ D completes our construction of Π. Note that although we did918
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not prove it, each path πs,t ∈ Π is a unique shortest s⇝ t path in G by Lemma 2 of919

Bodwin and Hoppenworth [15].920

Lemma 1 of Bodwin and Hoppenworth [15] summarizes the key properties of G,Π921

that are needed to prove the hereditary vertex discrepancy lower bound for unique922

shortest paths in undirected graphs in Theorem 5.1. We restate this key lemma in923

Lemma 3.9 of Section 5.924

To obtain a Ω̃(n1/4) lower bound for hereditary vertex discrepancy of unique short-925

est paths in planar graphs, we need to convert the graph G into a planar graph while926

ensuring that the unique shortest path structure of the graph remains unchanged.927

6.2. Planarization of Graph G. In the previous subsection, we outlined the928

construction of the graph G = (V,E,w) and set of paths Π from Bodwin and Hop-929

penworth [15]. This graph has an associated graph drawing with Õ(n) edge crossings930

by Proposition 6.2. We will now ‘planarize’ graph G by embedding it within a larger931

planar graph G′. We will use the standard strategy of replacing each edge crossing in932

our graph drawing of G with a new vertex, causing each crossed edge to be subdivided933

into a path.934

Planarization Procedure:.935

1. We start with the current non-planar graph G = (V,E,w) with the associated936

graph drawing described in Proposition 6.2.937

2. For every edge crossing in the drawing of G, letting point p ∈ R2 be the938

location of the crossing, draw a vertical line in the plane through p. Add a939

new node to graph G at every point where this vertical line intersects the940

drawing of an edge. This step may blow up the number of nodes in the graph941

by quite a lot, but the resulting graph will be planar and layered.942

3. We re-set all edge weights in the graph as follows. For each edge (u, v) in the943

graph, letting pu, pv ∈ R2 be the locations of nodes u, v ∈ V in the drawing, we944

re-set the weight of edge (u, v) to be the squared Euclidean distance between945

pu and pv, i.e.,946

w((u, v)) = ∥pu − pv∥2.947

4. Finally, we remove excess nodes added to the graph in step 2. We perform948

the following operation for each node v of degree 2 in the resulting graph.949

Let (x, v) and (v, y) be the two edges incident to v. Add edge (x, y) to the950

graph and assign it weight w((x, y)) = w((x, v)) + w((v, y)). Remove node v951

and edges (x, v) and (v, y) from the graph. Note that the graph will remain952

planar after this operation.953

Denote the planar graph resulting from this procedure as G′ = (V ′, E′, w′). The954

following proposition follows immediately from Proposition 6.2 and the planarization955

procedure.956

Proposition 6.3. Graph G′ is planar and has O(n log6 n) nodes.957

Unique Shortest Paths in G′. Each edge e = (u, v) ∈ E in graph G is the preimage958

of a u⇝ v path πe in graph G′ resulting from our planarization procedure. Likewise,959

each path π ∈ Π is the preimage of a path π′ in G′ obtained by replacing each edge960

e ∈ π with path πe. Let the set Π
′ of paths in G′ denote the image of the set of paths961

Π in G under our planarization procedure. As a final step towards proving Theorem962

6.1, we need to argue that the unique shortest path structure of G is unchanged by963

our planarization procedure.964

Lemma 6.4. Each path in Π′ is the unique shortest path between its endpoints in965

G′.966
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We now verify that graph G′ and paths Π′ have the unique shortest path prop-967

erty as stated in Lemma 6.4. We will require the following proposition about the968

construction of graph G′ from [15] that we state without proof.969

Proposition 6.5 (c.f. Proposition 1 of [15]). With probability 1, for every i ∈970

[1, ℓ− 1] and every direction vector d⃗ = (1, d) ∈ D, there is a unique vector (1, c) ∈ Ci971

that minimizes |c− d| over all choices of (1, c) ∈ Ci.972

Additionally, our unique shortest paths argument will make use of the following tech-973

nical proposition also proven in [15].974

Proposition 6.6 (c.f. Proposition 3 of [15]). Let b, x1, . . . , xk ∈ R. Now con-975

sider x̂1, . . . , x̂k such that976

• |x̂i − b| ≤ |xi − b| for all i ∈ [1, k], and977

•
∑k

i=1 xi =
∑k

i=1 x̂i.978

Then979
k∑

i=1

x2i ≥
k∑

i=1

x̂2i ,980

with equality only if |x̂i − b| = |xi − b| for all i ∈ [1, k].981

Using Propositions 6.5 and 6.6, we can now prove Lemma 6.4.982

Proof of Lemma 6.4. As an immediate step toward proving Lemma 6.4, we will983

argue that we can make two assumptions about G′ without loss of generality.984

First, we may assume that G′ is layered in the following sense: V ′ can be parti-985

tioned into k layers (for some k > 0) such that each path π ∈ Π′ begins in the first986

layer, ends in the last layer, and has exactly one node in each layer. Observe that987

after step 2 of the planarization procedure, graph G′ is layered with respect to paths988

Π′ in this sense. Moreover, step 4 of the planarization procedure does not change the989

structure of the set of paths Π′. Thus we can safely assume G′ is layered with respect990

to paths Π′.991

Second, we can assume, without loss of generality, that G′ is a directed graph and992

that all edges in Li × Li+1 in G′ are directed from Li to Li+1. This assumption can993

be made using a blackbox reduction that is standard in the area (see Section 4.6 of994

6.1 for details).995

Fix an s⇝ t path π′ ∈ Π′ in graph G′, and let path π ∈ Π in G be the associated996

preimage of π′. Let (1, x) ∈ D be the direction vector associated with path π. Note997

that by Proposition 6.5, for each layer Li, there is a unique vector (1, c) ∈ Ci that998

minimizes |c − d| over all choices of (1, c) ∈ Ci. By our construction of the paths in999

Π, path π will travel along an edge with edge vector (1, c).1000

In graph G′, there are additional layers between layers Li and Li+1, due to step1001

2 of our planarization procedure. If path π traveled along an edge with edge vector1002

(1, c) from Li to Li+1 in G, then in each layer L′ in G′ between Li and Li+1, graph1003

G′ will take an edge vector (α, c), where 0 < α ≤ 1. Moreover, again by Proposition1004

6.5, this edge vector (α, c) will be the unique edge vector from layer L′ minimizing1005

|c− d|.1006

Let ℓ′ be the number of layers in G′. Let x̂1, . . . , x̂ℓ′−1 ∈ R be real numbers such1007

that the ith edge of π′ has the corresponding vector (αi, x̂i) for i ∈ [1, ℓ′ − 1] and1008

0 < αi ≤ 1. Now consider an arbitrary s ⇝ t path π∗ in G, where π∗ ̸= π′. Since1009

all edges in G are directed from Li to Li+1, it follows that π∗ has ℓ′ − 1 edges. Let1010

x1, . . . , xℓ′−1 ∈ R be real numbers such that the ith edge of π∗ has the corresponding1011

vector (αi, xi) ∈ Ci for i ∈ [1, ℓ − 1] and 0 < αi ≤ 1. Now observe that since π∗ and1012
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π′ are both s⇝ t paths, it follows that1013

ℓ′−1∑
i=1

x̂i =

ℓ′−1∑
i=1

xi.1014

Additionally, by our construction of π′, it follows that1015

|x̂i − x| ≤ |xi − x|1016

for all i ∈ [1, ℓ − 1]. In particular, since π∗ ̸= π′, there must be some j ∈ [1, ℓ′ − 1]1017

such that x̂j ̸= xj , and so by Proposition 6.5, |x̂j − x| < |xj − x| with probability 1.1018

Then by Proposition 6.6,1019

w(π′) =
∑
e∈π′

w(e) =

ℓ−1∑
i=1

x̂2i <

ℓ−1∑
i=1

x2i =
∑
e∈π∗

w(e) = w(π∗).1020

This implies that the path π′ is a unique shortest s⇝ t path in G′, as desired.1021

Finishing the Proof.1022

Lemma 6.7 (c.f. Lemma 1 of [15]). There is an infinite family of Θ(n log6 n)-1023

node planar undirected weighted graphs G′ = (V ′, E′, w′) and sets Π′ of |Π′| = n log n1024

paths in G′ with the following properties:1025

• Each path in Π′ is the unique shortest path between its endpoints in G.1026

• Let G be the n-node undirected weighted graph and let Π be the set of |Π| =1027

n log n paths described in Lemma 3.9 when p = n log n. Then Π is an induced1028

path subsystem of Π′.1029

Proof. This follows immediately from Proposition 6.3, Lemma 6.4, and the above1030

discussion about the set of paths Π′ in G′.1031

Let N := Θ(n log6 n) be the number of nodes in G′. By Lemma 6.7,

herdiscv(Π
′) ≥ herdiscv(Π).

Likewise, by the proof of Theorem 5.1, herdiscv(Π) ≥ Ω(n1/4). We conclude that1032

herdiscv(Π
′) ≥ herdiscv(Π) ≥ Ω

(
n1/4√
log n

)
= Ω

(
N1/4

log2N

)
.1033

7. Trees and Bipartite Graphs. For graphs with simple topology such as1034

line, tree and bipartite graphs, both of the vertex and edge discrepancy are constant.1035

However, a distinction can be observed on hereditary discrepancy for bipartite graphs.1036

Formally, we have the following results.1037

Lemma 7.1. Let T = (V,E,w) be a undirected tree graph, the hereditary discrep-1038

ancy of the shortest path system induced by T is Θ(1).1039

Proof. To start with, it is obvious that a lower bound of Ω(1) on both edge and1040

vertex (hereditary) discrepancy always holds for any family of graphs. We therefore1041

first focus on the O(1) discrepancy upper bound for bipartite graphs1042

Lemma 7.2. Let G = (V,E,w) be a general bipartite graph, then it has Θ(1)1043

discrepancy, but Θ̃(n1/4) hereditary discrepancy.1044

Proof. To start with, it is obvious that a lower bound of Ω(1) on both edge and1045

vertex (hereditary) discrepancy always holds for any family of graphs. We therefore1046

first focus on the O(1) discrepancy upper bound for bipartite graphs (including trees).1047
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Analysis of discrepancy.. We start with the vertex discrepancy. For a bipartite1048

graph G = (L ∪ R,E), a simple scheme achieves constant vertex discrepancy: assign1049

coloring ‘+1’ to every v ∈ L and ‘−1’ to every u ∈ R. Observe that every shortest1050

path either has length of 1, or alternates between L and R, thus summing up assigned1051

colors along the shortest path gives +1 vertex discrepancy at most 1. Finally, we1052

apply Observation 3.4 to argue that the edge discrepancy is also O(1).1053

Analysis of hereditary discrepancy.. We prove this statement by showing that we1054

can reduce the hereditary discrepancy of bipartite graphs to general graphs by the 2-1055

lift construction. Concretely, suppose we are given a path system that is characterized1056

by G = (V,E,w) and matrix A, such that the hereditary discrepancy is at least f(n),1057

and let the set of columns that attains the maximum hereditary discrepancy be Y .1058

We will construct a new n′-vertex graph G′ with a new matrix A′, in which we have1059

a set of columns Y ′ induces at least f(n′/2) discrepancy. Such a graph is a valid1060

instance of the family of the bipartite graphs, and an Ω(n1/4) hereditary discrepancy1061

on G would imply an Ω(n′1/4) hereditary discrepancy on G′.1062

We now describe a detailed algorithm, Algorithm 7.1, for the 2-lift graph construc-1063

tion as follows. In the procedure, we slightly abuse the notation to interchangeably1064

use the set with one element and the element itself, i.e., we use {a} to denote a when1065

the context is clear.1066

Algorithm 7.1 Construction 2-Lift: an algorithm to construct bipartite graph with
high hereditary discrepancy.

Require: A consistent path system characterized by a general undirected graph G =
(V,E,w) and matrix A with hereditary discrepancy at least f(n);

Ensure: A consistent path system characterized by bipartite graph graph G′ =
(V ′, E′, w′) and matrix A′ with hereditary discrepancy at least f(n′/2);

1: Vertices V ′: each vertex v ∈ V , make two copies of vertices vL, vR ∈ V ′.
2: Edges E′: Maintain a “side indicator” s ∈ {L,R}, and initialize s = L.
3: for each vertex v ∈ V with an arbitrary order: do
4: Add all edges (vs, u{L,R}\s) such that u ∈ N(v).
5: Delete v from N(u) for all u ∈ N(v).
5: Switch the side indicator, i.e., s← {L,R} \ s.
6: end for
7: Path system A′: for each row a of A, starting from the the first vertex with 1,

add 1 to the row of A′ to the vertex whose degree is not 0.

Note that for any vertex v ∈ V , only one of (vL, vR) is used in the matrix A′. We1067

now argue that A′ is a valid collection of path systems. Note that for a single path P1068

in A, we can always follow the vertices with non-zero degree, and connect the edges1069

to a valid path in A′. Furthermore, two paths would conflict with each other only1070

if there exists an edge that “shortcut” an even-sized path, i.e., both (v1, v2, · · · , v2k)1071

and (v1, v2k) are in the path system. However, this would violate the consistency1072

property of A. As such, all the rows in A′ can find a valid path in G′.1073

Let Y be the columns that attains the f(n) discrepancy on G, and we slightly1074

abuse the notation to use f(n) to denote both the indices of the columns in A and1075

the vertex set A ⊆ V . Since we have an bijective mapping between the vertices in Y1076

and the vertices we account for in G′, we have the hereditary discrepancy to be at1077

least f(n) = f(n′/2), as desired.1078
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8. Bounds on ℓ2-discrepancy. Consider a set of p paths on a graph G, the1079

incidence matrix A of p rows and n columns has the (i, j)-th element to be 1 if the1080

corresponding vertex vj stays on the i-th path, and 0 otherwise. Then we consider1081

the vertex ℓ2-discrepancy disc2(A) and hereditary discrepancy herdisc2(A).1082

Since disc2(A) ≤ disc(A) and herdisc2(A) ≤ herdisc(A), the upper bounds on1083

discrepancy and hereditary discrepany for path systems remain as upper bounds for1084

ℓ2 (hereditary) discrepancy, that is, Õ(
√
n) for general paths (that are not necessary1085

shortest paths and not necessarily consistent), and Õ(n1/4) for shortest paths or1086

consistent paths.1087

For lower bound on ℓ2 discrepancy, we first recall the following result in1088

Larsen [46]:1089

Lemma 8.1 ([46]). For an m× n real matrix A, let λ1 ≥ λ2 ≥ · · ·λn ≥ 0 denote1090

the eigenvalues of A⊤A. For all positive integers k ≤ min{n,m}, we have1091

herdisc2(A) ≥
k

e

√
λk

8πmn
.1092

In the proof of the trace bound, Chazelle and Lvov [21] have shown that for k =1093

tr2(M)/(2 trM2), we have λk ≥ tr(M)/4min{n,m}. Setting it in Lemma 8.1, we1094

have the same asymptotic trace bound for ℓ2-hereditrary as in Lemma 3.8.1095

herdisc2(A) ≥
tr2(M)

2emin{m,n} trM2

√
tr(M)

32πmax{m,n}
.1096

Using the same calculation as in the proof of Theorem 5.1, we get the equivalent1097

bound on ℓ2-hereditary discrepancy for the set Π of shortest paths in Lemma 3.9:1098

herdiscv,2(Π) ≥ Ω

(
n1/4√
log(n)

)
.1099

Notice that the same lower bound argument generates a lower bound of Ω(n1/6) on1100

ℓ2 discrepancy for the Erdös point-line system.1101

Again if we drop the consistency property (or uniqueness of shortest paths), the1102

ℓ2 hereditary discrepancy can be much higher. Consider a graph G with two vertices1103

s and t, together with 2n vertices ui, vi, i ∈ [n]. We connect s with u1, v1 and t with1104

un, vn. In addition, ui, vi are both connected to ui+1, vi+1, for 1 ≤ i ≤ n − 1. Now1105

we can encode the n × n Hadanard matrix H by n paths from s to t. Each row of1106

H corresponds to a path Pi. If the jth element is 1, we take uj , otherwise, we take1107

vj . The incidence matrix A considering only vertices v1, v2, · · · vn would be precisely1108
1
2 (H+J), where J is an n×nmatrix of all 1. It is known that ∥Ax∥22 ≥ n(n−1)/4 [20].1109

Thus herdisc2(A) = Ω(
√
n).1110

In summary, all bounds of hereditary discrepancy presented in the paper hold for1111

ℓ2 hereditary discrepancy for path systems on a graph.1112

9. Applications to Differential Privacy. In light of our new unique shortest1113

path hereditary discrepancy lower bound result, significant progress can be made to-1114

wards closing the gap in the error bounds for the problem of Differentially Private1115

All Pairs Shortest Distances (APSD) [59, 22, 36]. Likewise, the problem of Differen-1116

tially Private All Sets Range Query (ASRQ) [29] now has a tight error bound (up to1117

logarithmic factors). We present the DP-APSD problem formally and show the proof1118

of the new lower bound corresponding to Theorem 1.7. Details on the DP-ASRQ1119

problem are deferred to Appendix D.1120
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9.1. All Pairs Shortest Distances. Given a weighted undirected graph G =1121

(V,E,w) of size n, the private mechanism is supposed to output an n by n matrix1122

D′ =M(G) of approximate all pairs shortest paths distances in G, and the privacy1123

guarantee is imposed on two sets of edge weights that are considered ‘neighboring’,1124

i.e., with ℓ1 difference at most 1. Our goal is to minimize the maximum additive error1125

of any entry in the APSD matrix, i.e., the ℓ∞ distance of D′ − D where D is the1126

true APSD matrix. This line of work was initiated by [59], where an algorithm was1127

proposed with O(n) additive error. Recently, concurrent works [22, 36] breaks the1128

linear barrier by presenting an upper bound of Õ(n1/2). Meanwhile, the only known1129

lower bound is Ω(n1/6), due to [22], using a hereditary discrepancy lower bound based1130

on the point-line system of [21]. With our improved hereditary discrepancy lower1131

bound, we are able to show an Ω(n1/4/
√
log n) lower bound on the additive error of1132

the DP-APSD problem.1133

Corollary 9.1. Given an n-node undirected graph, for any β ∈ (0, 1) and1134

ε, δ > 0, no (ε, δ)-DP algorithm for APSD has additive error of o(n1/4/
√
log n) with1135

probability 1− β.1136

The connection between the APSD problem and the shortest paths hereditary1137

discrepancy lower bound was shown in [22], which implies that simply plugging in1138

the new exponent gives the result above. For the sake of completeness, we give the1139

necessary definition to formally define the DP-APSD problem, and show the main1140

arguments towards proving Corollary 9.1.1141

Definition 9.2 (Neighboring weights [59]). For a graph G = (V,E), let w,w′ :1142

E → R≥0 be two weight functions that map any e ∈ E to a non-negative real number,1143

we say w,w′ are neighboring, denoted as w ∼ w′ if
∑

e∈E |w(e)− w′(e)| ≤ 1.1144

Definition 9.3 (Differentially Private APSD [59]). Let w,w′ : E → R≥0 be1145

weight functions, and A be an algorithm taking a graph G = (V,E) and w as input.1146

The algorithm A is (ε, δ)-differentially private on G if for any neighboring weights1147

w ∼ w′ (See Definition 9.2) and all sets of possible output C, we have: Pr[A(G,w) ∈1148

C] ≤ eε · Pr[A(G,w′) ∈ C] + δ.1149

We say the private mechanism A is α-accurate if the ℓ∞ norm of |A(G,w) −1150

f(G,w)| is at most α, where f indicates the function returning the ground truth1151

shortest distances.1152

Proof of Corollary 9.1. First, suppose A ∈ R(
n
2)×n is the shortest path vertex1153

incidence matrix on the graph G. Previous work [22] has shown that the linear query1154

problem on A can be reduced to the DP-APSD problem, formally stated as follows.1155

Lemma 9.4 (Lemma 4.1 in [22]). Let (V,Π) be a shortest path system with1156

incidence matrix A, if there exists an (ε, δ) DP algorithm that is α-accurate for the1157

APSD problem with probability 1 − β on a graph of size 2|V |, then there exists an1158

(ε, δ) DP algorithm that is α-accurate for the A-linear query problem with probability1159

1− β.1160

Now all we need to show is that the A-linear query problem has a lower bound1161

of Ω(n1/4/
√
log(n)). We note the following result by [54].1162

Lemma 9.5. For any β ∈ (0, 1), there exists ε, δ such that for any A, no (ε, δ)-DP1163

algorithm is herdisc(A)/2-accurate for the A-query problem with probability 1− β.1164

Combining Lemma 9.4 and 9.5, we find that additive error needed for the DP-1165

APSD problem is at least the hereditary discrepancy of its vertex incidence matrix,1166
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implying Corollary 9.1. The lower bound for ASRQ also follows using the same1167

argument (see Appendix D).1168

10. Conclusion and Open Problems. This paper reported new bounds on1169

the hereditary discrepancy of set systems of unique shortest paths in graphs. We leave1170

several open questions:1171

1. An open problem is to improve our edge discrepancy upper bound in di-1172

rected graphs. Standard techniques in discrepancy theory imply an upper1173

bound of min{O(m1/4), Õ(D1/2)} for this problem, leaving a gap with our1174

Ω(n1/4/
√
log n) lower bound when m = ω(n). Unfortunately, we were not1175

able to extend our low-discrepancy edge and vertex coloring arguments for1176

undirected graphs to the directed setting, due to the pathological example in1177

Figure 4.1178

2. Using our discrepancy lower bound, we gave an improved lower bound of1179

Ω̃(n1/4) on answering all pair shortest distance problem under the constraints1180

of (1, 1/n)-differential privacy. In contrast, the best known upper bound re-1181

mains Õ(n1/2) for the same problem. Closing this gap remains an interesting1182

open question.1183

Fig. 4. An example in directed graphs that demonstrates how coloring unique shortest paths
with alternating colors can fail to imply low discrepancy.
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Appendix A. Discrepancy Bounds for Paths Without Consistency. In1330

a graph when we consider simple paths without the consistency requirement, there1331

is a strong lower bound on both vertex and edge discrepancy. In particular, we have1332

the following theorem.1333

This manuscript is for review purposes only.



THE DISCREPANCY OF SHORTEST PATHS 35

Theorem A.1. There is a planar graph G = (V,E) such that the following is1334

true for any coloring f : V 7→ {−1, 1} of vertices V :1335

1. There is a family Π of simple paths with |Π| = O(exp(n)) and vertex discrep-1336

ancy of Ω(n).1337

2. There is a family Π of simple paths with |Π| = O(n) and vertex discrepancy1338

of Ω(
√
n).1339

The same claim holds true for edge discrepancy as well.1340

Proof. The first claim follows from Proposition 1.6 in [7], which says that the1341

edge discrepancy of paths on a k × ℓ grid graph is at least Ω(kℓ). To prove vertex1342

discrepancy, we make two additional remarks about this construction. First, for our1343

purpose, it is sufficient to consider only an n×2 grid graph G. The set of paths in the1344

construction of [7] consists of all paths that start from the top left corner and bottom1345

left corner going to the right and possibly taking a subset of the vertical edges in the1346

grid graph. The number of paths is O(2n). Second, for vertex discrepancy, we define1347

a companion graph G′. Specifically, for each grid edge e in G, we place a vertex v of1348

G′ on e. We connect two vertices in G′ if and only if the corresponding edges in G1349

share a common vertex. The graph G′ is still planar. In additional, a path P in G1350

maps to a corresponding path P ′ in G′ where vertices on P ′ follow the same order1351

of the corresponding edges on P . See Figure 5 for an example. Therefore the edge1352

discrepancy in G and the vertex discrepancy of G′ are the same.

Fig. 5. A n× 2 grid graph (with vertices shown in hollow and edges in black) G with one path
(in blue) starting from the top left corner go the right. The solid vertices and edges in dashed red
define the companion graph G′. The corresponding path in G′ is shown in pink.

1353

For the second claim, we take an n×n Hadamard matrix H with n as power of 2.
The elements in H are +1 or −1. All the rows are pairwise orthogonal. For example,
the Hadamard matrix with n = 8 is

H8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


It is known [20] that the matrix A = {aij} = 1

2 (H + J) with J as an n× n matrix of1354

all 1 has discrepancy at least Ω(
√
n).1355

Now we try to embed the matrix A by paths on a 2× n grid graph G with a grid1356

of two rows and n columns. Denote by ej as the jth vertical edge in G, 1 ≤ j ≤ n.1357

For the ith row of A, we define set Xi = {ej : aij = 1}. We then define two paths1358

P (Xi), P
′(Xi) on G.1359

• Path P (Xi) starts from the top left corner of G going to the right and the1360

vertical edges visited by P (Xi) are precisely Xi.1361
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• Path P ′(Xi) starts from the bottom left corner of G going to the right and,1362

similar to P (Xi), the vertical edges visited by P (Xi) are precisely Xi.1363

Note that P (Xi) and P
′(Xi) each contains edges Xi (see Figure 6 for an illustration).1364

Also P (Xi) and P ′(Xi) do not share any horizontal edges, and collectively cover all1365

horizontal edges in G. In addition, we define two paths P and P ′ with P starting1366

from the top left corner and visiting all the top horizontal edges and P ′ starting from1367

the bottom left corner and visiting all bottom horizontal edges. We have 2n+2 paths1368

in total – each row i of the Hadamard matrix contributes 2 paths, and we additionally1369

use P and P ′.1370

P (Xi)

P ′(Xi)

Fig. 6. A n× 2 grid graph G with two paths P (Xi) and P ′(Xi). The ith row of matrix A, i.e.,
Ai = ( 1

2
(H + J))i, corresponds to Xi = (1, 1, 0, 1, 1, 1, 0, 0).

For any {±1} coloring f on edges in the grid graph G, define D as the maximum1371

absolute value of the sum of the colors of edges of each path, among all the 2n + 21372

paths. We now argue that D = Ω(
√
n).1373

First we define an n-dimensional vector χ ∈ {+1,−1}n with χj = f(ej), i.e., the1374

color of the jth vertical edge in G. Since the discrepancy of matrix A is Ω(
√
n), there1375

must be one row vector ai in A such that ai · χ ≥ c
√
n for some constant c. In other1376

words, the sum of the colors of the edges in Xi is x =
∑

ej∈Xi
f(ej) with |x| ≥ c

√
n.1377

Without loss of generality, we assume x > 0, which in turn implies x ≥ c
√
n.1378

Now we define1379

z1 :=
∑

e∈P (Xi)\Xi

f(e) and z2 :=
∑

e∈P ′(Xi)\Xi

f(e).1380

If max{z1, z2} ≥ 0, then we are done as the total sum of colors of either P (X) or1381

P ′(X) is at least x ≥ c
√
n. Otherwise, suppose we have z1 < 0 and z2 < 0. We now1382

have from path P (Xi), D ≥ x + z1, and from path P ′(Xi), D ≥ x + z2. Further,1383

consider paths P and P ′, the total sum of colors of all the horizontal edges is z1 + z2.1384

Since both z1 and z2 are negative, there should be1385

2D ≥
∑
e∈P

f(e) +
∑
e∈P ′

f(e) = −z1 − z2.1386

Summing up all three inequalities, we have 4D ≥ 2x. Thus D ≥ x/2 ≥ c
√
n/2.1387

This finishes the proof for edge discrepancy, and the vertex discrepancy bound can1388

be obtained using the same trick as in the proof of claim 1.1389

The above theorem provides lower bounds for the discrepancy. Since hereditary1390

discrepancy is at least as high as discrepancy, the lower bounds also hold for hereditary1391

discrepancy.1392

Note that the paths used in the above theorem are 2-approximate shortest paths.1393

The shortest path from top left corner to the top right corner of the n × 2 grid is of1394

length n − 1 while all paths used are of length at most 2n − 2. The shortest path1395
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from top left corner to bottom right corner is of length n and all paths used in the1396

construction are of length at most 2n − 1. Therefore when we relax from shortest1397

paths to 2-approximate shortest paths the discrepancy bounds substantially go up. If1398

we replace each horizontal edge by a chain of ⌈1/ε⌉ vertices, we can make these paths1399

to be (1 + ε)-approximate shortest paths for any ε > 0.1400

Grid graphs are a special family of planar graphs. Actually for grid graphs we1401

can say a bit more on discrepancy of shortest paths. If we take shortest paths on an1402

unweighted grid graph (without even requiring consistency property and there could1403

be exponentially many shortest path between two vertices), the discrepancy is O(1).1404

Specifically, for vertex discrepancy on a k × ℓ grid graph of left bottom corner at1405

the origin and the top right corner at coordinate (k − 1, ℓ − 1), if we give a color1406

of +1 to all vertices of coordinate (x, y) with even x + y and a color of −1 to all1407

other vertices, any shortest path visits a sequence of vertices with sum of coordinates1408

alternating between even and odd values and thus has a total color of O(1). For edge1409

discrepancy, for all horizontal edges we give color +1 (−1) if the left endpoint is at1410

an even (odd) x-coordinate and the right endpoint is at an odd (even) x-coordinate.1411

We do the same for vertical edges. Again any shortest path has a ‘staircase’ shape1412

and a total coloring of O(1).1413

Appendix B. Relation Between Discrepancy and Hereditary Discrep-1414

ancy in General Graphs.1415

In Theorem 5.1, we showed a construction of a path weighted graph G whose1416

system of unique shortest paths Π satisfies herdiscv(Π) ≥ Ω(n1/4/
√
log(n)). Here, we1417

will observe that this result extends to discrepancy:1418

Theorem B.1. There are examples of n-node undirected weighted graphs G with1419

a unique shortest path between each pair of nodes in which this system of shortest1420

paths Π has1421

discv(Π) ≥ Ω

(
n1/4√
log(n)

)
.1422

Proof. Let G be the graph from Theorem 5.1, and let Π be its system of unique1423

shortest paths. By definition of hereditary discrepancy, there exists an induced path1424

subsystem Π′ ⊆ Π with1425

discv(Π
′) ≥ Ω

(
n1/4√
log(n)

)
.1426

Recall that, by induced subsystem, we mean that we may view the paths of Π as1427

abstract sequences of nodes, and then Π′ is obtained from Π by deleting zero or more1428

nodes and deleting all occurrences of those nodes from the middle of paths. Thus the1429

paths in Π′ are not still paths in Π, but they are paths in a different graph G′ on1430

n′ ≤ n nodes. It thus suffices to argue that all paths in Π′ are1431

It thus suffices to argue that there is a graph G′ on n′ ≤ n nodes in which all1432

paths in Π′ are unique shortest paths. Indeed, this is well known, and is shown e.g.1433

in [13] (c.f. Lemma 2.4.4 and 2.4.11). To sketch the proof: suppose that a node v is1434

deleted from the initial system Π. Consider each path π ∈ Π that contains v as an1435

internal node, i.e., it has the form1436

π = (. . . , u, v, x, . . . ).1437

When v is removed, the path now contains the nodes u, x consecutively, and so we1438

must add (u, x) as a new edge to G′ so that π is a path in G′. We judiciously set1439
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the edge weight to be w(u, x) := w(u, v) + w(v, x). The weighted length of the path1440

π does not change, and yet the distances of G′ majorize those of G, which implies1441

that π is still a unique shortest path in G′. Inducting this analysis over each deleted1442

vertex leads to the desired claim.1443

Appendix C. Application in Matrix Analysis. Hereditary discrepancy1444

is intrinsically related to factorization norm, which has found applications in many1445

ares of computer science, including but not limited to quantum channel capacity,1446

communication complexity, etc. For any complex matrix A ∈ Cm×n, its factorization1447

norm, denoted by γ2(A), is defined as the following optimization problem:1448

γ2(A) = min {∥L∥2→∞∥R∥1→2 : A = LR} .(C.1)14491450

One can write (C.1) in a form of a semi-definite program (see Lee et al. [47]) and1451

also show that the Slater point exists. In particular, the primal and dual program1452

coincides. An interesting question in matrix analysis is to estimate the factorization1453

norm of different class of matrices. In a series of work, various authors have computed1454

tight bounds on the factorization norm of certain class of matrices:1455

• If A is a unitary matrix, then γ2(A) = 1.1456

• If A ∈ Rn×n is a positive semidefinite matrix with entries Aij , then1457

γ2(A) = max
1≤i≤n

Aii.1458

• Mathias [50]: A satisfies the property that
√
A⊤A • I =

√
AA⊤ • I = tr(A)

n I,1459

then1460

γ2(A) =
Tr(A⊤A)

n
.1461

In particular, if A ∈ {0, 1}n is a lower-triangular one matrix, then γ2(A) =1462

Θ(log n) [37, 41, 45].1463

• If A ∈ Rn×n is a lower-triangular Toeplitz matrix with entries decreasing1464

either polynomially or exponentially, then γ2(A) = Θ(1) [42].1465

Our tight bound on hereditary discrepancy for consistent path on graphs allows us1466

to give tight bound on the factorization norm for the corresponding incidence matrix.1467

In particular, we use the following result:1468

Lemma C.1 (Matoušek et al. [53]). For any real m×n matrix A ∈ Rm×n, there1469

exists absolute constants 0 < c < C such that1470

c
γ2(A)√
log(m)

≤ herdisc(A) ≤ Cγ2(A) log(m).1471

Combining Lemma C.1 with our results, we have the following corollary:1472

Corollary C.2. Let AG be the incident matrix for unique shortest path system1473

on an n vertices graph G. Then if G is bipartite, planar, or any general graph, then1474

γ2(AG) = Θ̃(n1/4).1475

Appendix D. Differentially Private All Sets Range Queries. Here we1476

introduce the DP-ASRQ problem and show its connection to the DP-APSD problem.1477

Given an undirected graph G, the problem of All Sets Range Queries (ASRQ)1478

considers each edge associated with a certain attribute, and the range is the set of1479

edges along a shortest path. Two type of queries are considered here: the bottleneck1480
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query returns the largest/smallest attribute in a range; while the counting query1481

returns the summation of all attributes.1482

At a schematic level, the ASRQ problem with counting queries is very similar to1483

the APSD problem: the graph topology is public and the edge attributes are consid-1484

ered private. Only that the shortest path structure is dictated by the edge weights1485

to be protected in the APSD problem, however, irrelevant to the edge attributes in1486

the ASRQ problem. This subtle difference has consequential caveat in the algorithm1487

design: the graph topology can be used, for example, to construct an exact hopset1488

first then apply perturbations to the edge attributes in the ASRQ problem; neverthe-1489

less, approach of this kind violates protecting the sensitive information in the APSD1490

problem, since adversarial inference can be made on edge weights when the graph1491

topology information is used. This observation also notes that the APSD problem1492

is strictly harder than the ASRQ problem: recall that the best additive error upper1493

bound of the APSD problem is still Õ(n1/2), while the other has Õ(n1/4) [29]. There-1494

fore, plugging in our new hereditary lower bound essentially closes the gap for the1495

ASRQ problem.1496

Corollary D.1 (Formal version of Theorem 1.7). Given an n-node undirected1497

graph, for any β ∈ (0, 1) and any ε, δ > 0, no (ε, δ)-DP algorithm for ASRQ has1498

additive error of o(n1/4) with probability 1− β.1499

Definition D.2 (Differentially Private Range Queries). Let (R = (X,S), f) be1500

a system of range queries and w,w′ : X → R≥0 be neighboring attribute functions.1501

Furthermore, let A be an algorithm that takes (R, f, w) as input. Then A is (ε, δ)-1502

differentially private on G if, for all pairs of neighboring attribute functions w,w′ and1503

all sets of possible outputs C, we have Pr[A(R, f, w) ∈ C] ≤ eε ·Pr[A(R, f, w′) ∈ C]+δ.1504

If δ = 0, we say A is ε-differentially private on G.1505

To complete this section, we give the formal definition of the ASRQ problem1506

above. The definition of neighboring attributes follows Definition 9.2. The lower1507

bound proof of Corollary D.1 simply imitates the APSD problem, because the re-1508

duction from the linear query problem still holds despite the difference between two1509

problems. The proof is omitted to avoid redundancy.1510
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