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THE DISCREPANCY OF SHORTEST PATHS*

GREG BODWIN f CHENGYUAN DENG ¥, JIE GAO §, GARY HOPPENWORTH Y,
JALAJ UPADHYAY I, AND CHEN WANG #

Abstract. The hereditary discrepancy of a set system is a quantitative measure of the pseudo-
random properties of the system. Roughly speaking, hereditary discrepancy measures how well one
can 2-color the elements of the system so that each set contains approximately the same number of
elements of each color. Hereditary discrepancy has numerous applications in computational geome-
try, communication complexity and derandomization. More recently, the hereditary discrepancy of
the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23].

The contribution of this paper is to improve the upper and lower bounds on the hereditary
discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system
of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(nl/ 4), and
we construct lower bound examples demonstrating that this bound is tight up to polylog n factors.
Our lower bounds hold even for planar graphs and bipartite graphs and improve a previous lower
bound of Q(n'/6) obtained by applying the trace bound of Chazelle and Lvov [SoCG’00] to a classical
point-line system of Erdés.

As applications, we improve the lower bound on the additive error for differentially-private all
pairs shortest distances from Q(n'/6) [Chen et al. SODA 23] to Q(n'/4), and we improve the lower
bound on additive error for the differentially-private all sets range queries problem to ﬁ(nl/ 4), which
is tight up to polylog n factors [Deng et al. WADS 23].
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1. Introduction. In graph algorithms, a fundamental problem is to efficiently
compute the distance or shortest path information of a given input graph. Over the
last decade or so, the community has increasingly sought a principled understanding
of the combinatorial structure of shortest paths, with the goal to exploit this structure
in algorithm design. That is, in various graph settings, we can ask:

What notable structural properties hold for shortest path systems,
that do not necessarily hold for arbitrary path systems?
The following are a few of the major successes of this line of work:

e An extremely popular strategy in the literature is to use hitting sets, in which
we (often randomly) generate a set of nodes S and argue that it will hit the
shortest path for every pair of nodes that are sufficiently far apart. Hitting
sets rarely exploit any structure of shortest paths, as evidenced by the fact
that most hitting set algorithms generalize immediately to arbitrary set sys-
tems. However, they have inspired a successful line of work into graphs of
bounded highway dimension [1, 9, 12]; very roughly, these are graphs whose
shortest paths admit unusually efficient hitting sets of a certain kind.
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2 G. BODWIN, C. DENG, J. GAO, G. HOPPENWORTH, J. UPADHYAY, AND C. WANG

e Shortest paths exhibit the notable structural property of consistency, i.e.,
any subpath of the shortest path is itself the shortest path. This fact is used
throughout the literature on graph algorithms [13, 27, 28], including, e.g., in
the classic Floyd-Warshall algorithm for All-Pairs Shortest Paths. A recent
line of work has sought to characterize the additional structure exhibited by
shortest path systems beyond consistency [2, 6, 13, 23, 25, 26, 27].

e Planar graphs have received special attention within this research program,
and planar shortest path systems carry some notable additional structure.
For example, it is known that planar shortest paths have unusually efficient
tree coverings [8, 17], and that their shortest paths can be compressed into
surprisingly small space [18, 19]. Shortest path algorithms also often benefit
from more general structural facts about planar graphs, such as separator
theorems [40, 43].

The main result of this paper is a new structural separation between shortest path
systems and arbitrary path systems, expressed through the lens of discrepancy theory.
We will come to formal definitions of discrepancy in just a moment, but at a high level,
discrepancy has been described as a quantitative measure of the combinatorial pseu-
dorandomness of a discrete system [24], and it has widespread applications in discrete
and computational geometry, random sampling and derandomization, communication
complexity, and much more!. We will show the following:

THEOREM 1.1 (Main Result, Informal). The discrepancy of unique shortest path
systems in weighted graphs is inherently smaller than the discrepancy of arbitrary path
systems in graphs.

This separation between unique shortest paths and arbitrary paths is due to the
structural property of consistency of unique shortest path systems, which is well-
studied in the literature [13, 27, 28].

Our results can be placed within a larger context of prior work in computational
geometry. A classical topic in this area is to determine the discrepancy of incidence
structures between points and geometric range spaces such as axis-parallel rectangles,
half-spaces, lines, and curves (cf. [20, Section 1.5]). These results have been used to
show lower bounds for geometric range searching [54, 62].

Indeed, systems of unique shortest paths in graphs capture some of the geometric
range spaces studied in prior work. For instance, arrangements of straight lines in
Euclidean space can be interpreted as systems of unique shortest paths in an associated
graph, implying a relation between the discrepancies of these two set systems. This
connection has recently found applications in the study of differential privacy on
shortest path distance and range query algorithms [22, 29].

More generally, discrepancy on graphs has also found applications in proving tight
lower bounds on answering cut queries on graphs [33, 49].

1.1. Formal Definitions of Discrepancy. We first define some notation that
we use throughout the paper. We use the letter R to denote the set of real numbers
and N to denote the set of natural numbers. For n € N, we use the notation [n] to
denote the set {1,--- ,n}. For a real number r € R, we use |r| to denote the absolute
value.

For a vector v, we use the notation v; to denote its i-th coordinate, and for a
matrix A, we use the notation A; ; to denote its (i, j)-th entry. For a vector v € R"

1'We refer to the excellent textbooks of Alexander, Beck, and Chen [3], Chazelle [20], and Ma-
tousek [52] for discussion and further applications.
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THE DISCREPANCY OF SHORTEST PATHS 3
and any positive number p € N>(, we use different vector norms:
1
lollp == (joal? + - - + oal?)'/7

where | - | denote the absolute value. By continuity, ||v]s = maxi<i<n |v;|. For
positive p, ¢ € N> and any matrix A € R"™*",

[Az]lq

Il

[Allp—q = max

We reserve the symbol G for graphs with vertex set V' and edge set E. We reserve
the symbol II to denote a given path system. For a subset U C V', we use the notation
G[U] to denote the subgraph induced by the vertex set U.

Throughout the paper, we use the O and  to hide poly-logarithmic factors in
the input parameter, n.

We first collect the basic definitions needed to understand this paper.

DEFINITION 1.2 (Edge and Vertex Incidence Matrices).  Given a graph G =
(V,E) and a set of paths 11 in G, the associated vertex incidence matrix is given by
A € {0, 1}|H‘X‘V|, where for each v € V and m € II the corresponding entry is

1 ifven
AT{',U = .
0 ifvém.
The associated edge incidence matrix is given by a binary matriz A € {0, 1}|H|X|E|,
where for each e € E and 7 € 11 the corresponding entry is

A= 1 Z:f€€71'
' 0 ifedm.

DEFINITION 1.3 (Discrepancy and Hereditary Discrepancy). Given a matriz A €
R™>"  4ts discrepancy is the quantity

disc(A) = min ||Az| co-
ze{l,—1}n
Its hereditary discrepancy is the mazimum discrepancy of any submatriz Ay obtained
by keeping all rows but only a subset Y C [n] of the columns; that is,

herdisc(A) = 1I/nc.aFc] disc(A4y)

For a system of paths II in a graph G, we will write disc, (II) and herdisc, (II) to
denote the discrepancy and the hereditary discrepancy of its vertex incidence matrix,
and disc.(IT) and herdisc,(IT) to denote the discrepancy and the hereditary discrep-
ancy of its edge incidence matrix.

For intuition, the vertex discrepancy of a system of paths II can be equivalently
understood as follows. Suppose that we color each node in G either red or blue, with
the goal to balance the red and blue nodes on each path as evenly as possible. The
discrepancy associated to that particular coloring is the quantity

max {vem | vis colored red}| — |[{v € m | v is colored blue}| |.

This manuscript is for review purposes only.
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4 G.BODWIN, C. DENG, J. GAO, G. HOPPENWORTH, J. UPADHYAY, AND C. WANG

The discrepancy of the system II is the minimum possible discrepancy over all
colorings. The hereditary discrepancy is the maximum discrepancy taken over all
induced path subsystems II' of II; that is, I is obtained from II by focusing only on
the colors? of a subset of vertices Y C V. Edge discrepancy can be understood in a
similar way, coloring edges rather than vertices.

Another related quantity is the fs-discrepancy and fo-hereditary discrepancy,
which use /5 norm instead of {5, norm in the definition.

DEFINITION 1.4 (¢2-Discrepancy and ¢-Hereditary Discrepancy). Given a matriz
A € R™ ™ jts lo-discrepancy is the quantity

1
disco(A) = min —||Az|o.
o A) = min s,
Its hereditary discrepancy is the maximum discrepancy of any submatriz Ay obtained
by keeping all rows but only a subset Y C [n]| of the columns; that is,

herdiscy(A) = max disc, (Ay)

Y Cln]

For a system of paths II in a graph G, we will write disc, 2(II) and herdisc,, (IT)
to denote the /5-discrepancy and the £o-hereditary discrepancy of its vertex incidence
matrix, and disce2(II) and herdisce 2(II) to denote the ¢3-discrepancy and the £s-
hereditary discrepancy of its edge incidence matrix.

1.2. Our Results. Our main result is an upper and lower bound on the hered-
itary discrepancy of unique shortest path systems in weighted graphs, which match
up to hidden polylog n factors.

THEOREM 1.5 (Main Result).
e (Upper Bound) For any n-node undirected weighted graph G with a unique
shortest path between each pair of nodes, there exists a polynomial-time algo-
rithm that finds a coloring for the system of shortest paths I1 such that:

herdisc, (IT) < O(n'/*) and  herdisc.(II) < O(n'/%).

e (Lower Bound) There are examples of n-node undirected weighted graphs
G with a unique shortest path between each pair of nodes in which this system
of shortest paths 11 has herdisc, (IT) > Q(n'/*) and herdisc,(II) > Q(n'/4). In
fact, in these lower bound examples we can take G to be planar or bipartite.

The upper bound in Theorem 1.5 is constructive and algorithmic; that is, we
provide an algorithm that colors vertices (edges, respectively) of the input graph to
achieve vertex (edge, respectively) discrepancy O(n'/4) on its shortest paths (or on
a given subsystem of its shortest paths). Notably, Theorem 1.5 should be contrasted
with the fact that the maximum possible discrepancy of any simple path system3 of
polynomial size in a general graph is ©(n'/?). The upper bound of O(n'/2) follows
by coloring the nodes randomly and applying standard Chernoff bounds. The lower
bound is non-trivial and is proved in Appendix A — in fact, the lower bound on
discrepancy (as well as hereditary discrepancy) for a grid graph for a polynomial

2In the coloring interpretation, hereditary discrepancy allows a different choice of coloring for
each subsystem II’, rather than fixing a coloring for II and considering the induced coloring on each
1.

3A path system is simple if no individual path repeats nodes.

This manuscript is for review purposes only.



THE DISCREPANCY OF SHORTEST PATHS 5

TABLE 1
Overview of vertex/edge (hereditary) discrepancy on general undirected graphs and special fam-
ilies of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m
is the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree | Bipartite | Planar Undirected Graph
disc | ©1) | ©@1) | omY O(nl/4)
Vertex - ~ ~
herdisc | ©(1) | ©(n'/*) | ©(n'/*) | Q(n'/%)[21] — O(n'/*)
- disc | ©(1) O(1) O(n'/%) O(n'/%)
ge ~ ~ ~
herdise | ©(1) | O(n'/4) | O(n'/4) | Q(n'/%)[21] —» ©(n!/*)
TABLE 2

Overview of vertex/edge (hereditary) discrepancy on general directed graphs and special families
of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is
the number of edges. D is the graph diameter or the longest number of hops of paths considered.

Tree | Bipartite | Planar Directed Graph
disc | ©(1) | ©(1) | om/Y O(n/%)
Vertex ~ ~ ~
herdisc | ©(1) | ©(n'/*) | O(n'/%) O(n'/*)
disc | ©1) | ©@1) |om’Y | mn {0(m1/4), 5(D1/2)}
Edge ~ - ~
herdisc | ©(1) | ©(n'/*) | O(n'/*) Q(n'/)

number of simple paths can be Q(y/n). Thus, Theorem 1.5 represents a concrete
separation between unique shortest path systems and general path systems.

We refer to Table 1 for our results for undirected graphs and to Table 2 for our
results for directed graphs. All the bounds on discrepancy and hereditary discrepancy
hold for #5-discrepancy and fs-hereditary discrepancy. See Section 8 for details.

The main open question that we leave in this work is on the hereditary edge
discrepancy of shortest paths in directed weighted graphs. We show the following:

THEOREM 1.6. For any n-node, m-edge directed weighted graph G with a unique
shortest path between each pair of nodes, the system of shortest paths I1 satisfies

herdisc, (IT) < O(n'/*) and  herdisc,(II) < O(m!/%).

Lower bounds in the undirected setting immediately apply to the directed set-
ting as well, and so this essentially closes the problem for directed hereditary vertez
discrepancy. It is an interesting open problem whether the upper bound for directed
hereditary edge discrepancy can be improved to O(nl/ 1) as well.

We also leave open whether our lower bound for hereditary discrepancy extends
to (non-hereditary) edge discrepancy as well, and to (non-hereditary) vertex or edge
discrepancy of planar graphs.

Applications to Differential Privacy. One application of our discrepancy lower
bound on unique shortest paths is in differential privacy (DP) [31, 32]. An algo-
rithm is differentially private if its output distributions are relatively close regardless
of whether an individual’s data is present in the data set. More formally, for two

This manuscript is for review purposes only.
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databases Y and Y’ that are identical except for one data entry, a randomized algo-
rithm M is (g, §)-differentially private if, for any measurable set A in the range of the
algorithm M,

PrM(Y) € A] <e*Pr(M(Y') € A] +6.

The topic of discrepancy of paths on a graph is related to two problems already
studied in differential privacy: All Pairs Shortest Distances (APSD) [22, 36, 59] and
All Sets Range Queries (ASRQ) [29]. In both of these problems, we assume that the
graph topology is public. In the APSD problem, the edge weights are not publicly
known. A query in APSD is a pair of vertices (u,v) € V x V and the answer is the
shortest distance between u and v. In contrast, in ASRQ problem, the edge weights
are assumed to be known, and every edge also has a private attribute. Here, the range
is defined by the shortest path between two vertices (based on publicly known edge
weights). The answer to the query (u,v) € V x V then is the sum of private attributes
along the shortest path. In what follows, we give a high-level argument for the lower
bound on DP-APSD problem; the lower bound of Q(nl/ 4) for the DP-ASRQ problem
also follows nearly the same arguement.

Chen et al. [22] showed that DP-APSD can be formulated as a linear query
problem. In this setting, we are given a vertex incidence matrix A of the (g) shortest
paths of a graph and a vector = of length n and asked to output Az. They show that
the hereditary discrepancy of the matrix A provides a lower bound on the ¢, error for
any (g,0)-DP mechanism for this problem. With this argument, our new discrepancy
lower bound immediately implies the following lower bounds.

THEOREM 1.7 (Informal version of Corollaries 7.1 and F.1). The (e,d)-DP APSD
problem and (¢,8)-DP ASRQ problem require additive error at least Q(n'/*).

The best known additive error bound for the DP-ASRQ problem is O(n/*) [29],
which, by Theorem 1.7, is tight up to a polylog(n) factor. Prior to this work, the only
known lower bounds for DP-ASRQ and DP-APSD were from a point-line system with
hereditary discrepancy of Q(n'/®) [22]. The best known additive error upper bound
for DP-APSD is 6(n1/2) [22, 36]. Closing this gap of n!/* remains an interesting open
problem.

1.3. Our Techniques. We provide a brief overview of techniques used for our
upper and lower bounds on discrepancy separately.

Upper Bound Techniques. A folklore structural property of unique shortest paths
on undirected graphs is consistency. Formally, a system of paths II is consistent if
for any two paths 7y, o, their intersection 71 N 7y is a (possibly empty) contiguous
subpath of each. It is well known that, for any undirected graph G = (V, E, w) with
unique shortest paths?, its system of shortest paths II is consistent. Our discrepancy
upper bounds actually apply to any consistent system of paths — not just those that
arise as unique shortest paths in an undirected graph. Notice that unique shortest
paths on general directed graphs are not necessarily consistent, but indeed are on
directed acyclic graphs (DAGs).

We use two different proof techniques to obtain discrepancy upper bounds. First,
we consider the paths as a set system with vertices (for vertex discrepancy) or edges
(for edge discrepancy) as the ground set and then apply a standard application of pri-
mal shatter functions (Definition 3.5), which bounds the number of subsets obtained

4In general, on a weighted undirected graph one can use random perturbation to ensure all
shortest paths are unique.
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THE DISCREPANCY OF SHORTEST PATHS 7

by limiting to only s elements. For any family of consistent paths, as well as shortest
paths on directed graphs (which are not necessarily consistent), the primal shatter
function is upper bounded by O(s?). By a well known bound on discrepancy through
the primal shatter function, this immediately gives us an upper bound of O(n'/4)
for vertex discrepancy and O(ml/ 4) for edge discrepancy (since edge discrepancy is
defined on a ground set of m edges in the graph G).

When the graph is dense, this upper bound on edge discrepancy deteriorates,
becoming trivial when m = ©(n?). We thus present a second proof of O(n'/4) for
both vertex and edge discrepancy for a family of consistent paths, which explicitly
constructs a low-discrepancy coloring. This improves the bound for vertex discrepancy
by polylogarithmic factors and edge discrepancy by polynomial factors. The main
idea in this construction is to adapt the path cover technique, used in the recent
breakthrough on shortcut sets [44]. That is, we start by finding a small base set of
roughly n'/2 node-disjoint shortest paths in the distance closure of the graph. These
paths have the property that any other shortest path 7 in the graph contains at most
O(n'/?) nodes that are not in any paths in the base set. We then color randomly, as
follows:

e For every node that is not contained in any path in the base set, we assign
its color randomly. Thus, applying concentration bounds, the contribution of
these nodes to the discrepancy of 7 will be bounded by +O(n'/4).

e For every path in the base set, we choose the color of the first node in the path
at random, and then alternate colors along the path after that. Then we can
argue that by consistency, the nodes in each base path randomly contribute
+1 or —1 (or 0) to the discrepancy of 7 (see Figure 1 for a visualization). Since
there are only n'/? paths in the base set, we may again apply concentration
bounds to argue that the contribution to discrepancy from these base paths
will only be £0(n'/4).

[ ] o
*—0—0—0—0- 0 o 0 0—0—0—0—90

Fic. 1. If we color the nodes of a unique shortest path with alternating colors, then its nodes
will contribute discrepancy 0, +1, or —1 to all unique shortest paths that intersect it.

Summing together these two parts, we obtain a bound of a(nl/ 1) on discrepancy
with high probability. We can translate this to a bound on hereditary discrepancy
using the fact that consistency is a hereditary property of path systems.

Lower Bound Techniques. Lower bounds on discrepancy are typically obtained by
the trace bound (e.g., by Chazelle and Lvov [21]) on an explicit graph construction.
The state-of-the-art lower bounds on the discrepancy of unique shortest paths were
achieved using a point-line construction of Erdds [55], which had n points and n lines
in R? with each point staying on ©(n'/?) lines and each line going through ©(n'/?)
points. This point-line system also implies tight lower bounds for the Szemerédi-
Trotter theorem [61] and the discrepancy of arrangements of lines in the plane [21]. It
can be associated with a graph that possesses useful properties derived from geometry.
If edges in this graph are weighted by Euclidean distance, then the paths in the graph

This manuscript is for review purposes only.
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corresponding to straight lines are unique shortest paths by design. Two such shortest
paths (along straight lines) only intersect at most once.

Probably not a coincidence, this point-line construction also provides lower
bounds on the graph hopset problem. An (exact) hopset of a graph G with hop-
bound g is a small set of additional edges H in the distance closure of G, such that
every pair of nodes has a shortest path in G U H containing at most 5 edges. Until
recently, the state-of-the-art lower bound on the size of the hopset uses exactly the
graph derived from the point-line incidence example. Recently, a construction by
Bodwin and Hoppenworth [15] obtained stronger hopset lower bounds with a differ-
ent geometric graph construction, which still took place in R? but allowed shortest
paths to have many vertices/edges in common. We show that this construction can be
repurposed to derive a stronger lower bound of ﬁ(nl/ 4) on vertex hereditary discrep-
ancy by applying the trace bound of Larsen [46]. Combined with our upper bounds,
this substantially improves our understanding of the discrepancy of unique shortest
paths.

The above upper and lower bounds are for general graphs. Naturally, one can
ask if we have better bounds for special families of graphs. We further show that
the lower bounds remain the same for two interesting families: planar graphs and
bipartite graphs. The lower bound construction mentioned above is not planar, and
so this requires some additional work. A natural attempt is to restore planarity by
adding vertices to the construction wherever two edges cross. However, this comes
at a cost of an increase in the number of vertices and also with a potential danger
of altering the shortest paths. We show that the number of crossings is not too
much higher than n. Then, by carefully changing the weights of the edges and by
exploiting the geometric properties of the construction, we show that the topology
and incidence of shortest paths are not altered. For bipartite graphs, although the
vertex discrepancy can be made very low — by coloring the vertices on one side +1
and vertices on the other side —1 — the hereditary discrepancy can be as high as the
general graph setting. Specifically, we show a 2-lift of any graph G to a bipartite
graph which essentially keeps the same hereditary discrepancy.

2. Related Work.

2.1. Discrepancy on graphs. In graph theory, the discrepancy of a graph
introduced by Erdés [34] is defined as follows:

) -o('y)).

where e(G[U]) is the number of edges of the induced subgraph G[U] on vertices U C V

and p = % is the density of edges. If we consider a complete graph and randomly

max
ucv

color each 2edge with probability p, the above definition of discrepancy quantifies the
deviation of induced subgraphs of G from their expected size. Erdés and Spencer [35]
showed that the graph discrepancy is ©(n%/2?) when p = 1/2. This definition and
related definitions (e.g., positive discrepancy, dropping the absolute operator) have
applications to quasi-randomness [24], graph cuts and edge expansion [4, 16, 57].
There is also study of multicolor discrepancy [38, 39] that we skip here.

Of particular relevance to our work, Balogh et al. [7] studied edge discrepancy (as
defined in this paper) of (spanning) trees, paths and Hamilton cycles of a graph G.
In particular, they showed that, for any labeling of edges of G, there is a path with
discrepancy Q(n), even when the graph is a grid. Prior to this, either probabilistic
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construction exhibiting such a lower bound was known [10, 30, 48] or an explicit
construction of linear size non-planar graphs was known [5]. The construction for the
planar graph in Balogh et al. [7] can be extended to coloring of vertices such that there
is a path with vertex discrepancy Q(n) when there are exponentially many paths and
Q(y/n) when there are polynomially many paths. (see Appendix A for details).

Discrepany of paths in directed graphs has also been studied. Reimer [58] showed
that, if a directed graph has discrepancy Q(n), then the graph must have Q(n?)
edges. In the case when we do not allow antiparallel edges, Ben-Eliezer et al. [11]
showed that there is a directed graph with ©(n? log? (n)) edges such that any mapping
X : B — {—1,1} will either have a path of length Q(n) and all edges mapped to —1
or a path of length Q(nlog(n)) with all edges mapped to +1.

2.2. Connection with curve discrepancy. A classical topic in computational
geometry is to study upper and lower bounds of the discrepancy/hereditary discrep-
ancy of the incidence matrix of geometric objects and a set of points. For example,
for a set of n points and n halfplanes in R?, the n by n incidence matrix (with rows
corresponding to halfplanes and columns corresponding to points) has discrepancy
of Q(nl/ 4). For n points and n lines in the plane, the discrepancy of the incidence
matrix is Q(n'/6) [21]. In general the discrepancy of such incidence matrix is related
to the ‘complexity’ of the geometric shapes. In our setting of a graph, the set of all
pairs shortest paths defines a set system on the vertices. When the graph is planar,
the shortest paths are essentially simple curves in the plane.

We would like to compare our results with discrepancy of curves and points in the
geometric setting. Using the classification in Pach and Sharir [56], a family of simple
curves have k degree of freedom and multiplicity type s if, for any k points, there are at
most s curves passing through all of them, and any pair of curves intersect in at most
s points. Lines in the plane have degree of 2 and multiplicity of 1. A set of curves
with degree of 2 and multiplicity of 1 is called pseudolines — two pseudolines have at
most one intersection. For n points and n lines, the discrepancy is upper bounded by
O(n'/%(logn)?/3) [20] which is nearly tight by a polylogarithmic factor. The proof uses
the standard partial coloring argument with the Szeremédi-Trotter bound on point-
line incidence — for any n points and m lines there are at most O(m?/3n?/3 + m 4 n)
point-line incidences [61]. The Szeremédi-Trotter bound can be extended to a set
of pseudolines [56, 60]. Therefore the same proof and upper bound hold for the
discrepancy of pseudolines.

For a consistent set of shortest paths, two shortest paths will only intersect at a
contiguous segment, which may have multiple vertices/points. Thus using the curve
classification criterion, a consistent family of shortest paths in the plane has degree of
2 but multiplicity s that is possibly higher than a constant. In fact, our discrepancy
lower bound construction in the planar graph setting uses a design with s possibly
as high as n'/2. This is the major difference of shortest paths in a planar graph
with pseudolines, which allows the discrepancy of shortest paths to go beyond the
pseudoline upper bound of O(n'/6)°.

3. Preliminaries. A path system is a pair S = (V,II) where V is a ground set
of nodes and II is a set of vertex sequences called paths. Each path may contain, at
most, one instance of each node. We now formally define consistency, a structural

5Using the incidence upper bound for k = 2 and s = n'/2 from [60] and partial coloring, one can
obtain a discrepancy upper bound of O(nl/S) for our path construction. In contrast, we obtained a
nearly tight bound of ©(n'/4).

This manuscript is for review purposes only.
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10 G. BODWIN, C. DENG, J. GAO, G. HOPPENWORTH, J. UPADHYAY, AND C. WANG

property of unique shortest paths that will be useful.

DEFINITION 3.1. A path system S = (V,II) is consistent if no two paths in S
intersect, split apart, and then intersect again later. Formally:

e In the undirected setting, consistency means that for all u,v € V and all
1,72 € II such that u,v € w1 N g, we have that 7 [u,v] = malu,v], i.e., the
intersection of w1 and o is a contiguous subpath (subsequence) of w1 and Ta.

o In the directed setting, consistency means that for allu,v € V and all my, 79 €
IT such that u precedes v in both m; and 7a, we have that m [u,v] = ma[u, v].

In every weighted graph for which all pairs shortest paths exist (i.e., no negative
cycles), we can represent all-pairs shortest paths using a consistent path system. In
particular, if all shortest paths are unique, then consistency is implied immediately.

We will investigate the combinatorial discrepancy of path systems (V,II). Usually,
we will assume that |[V| = n and |II] is polynomial in n. We define a vertex coloring
X : V= {—1,1} and define the discrepancy of II as

disc(IT) = min x(IT),  where x(IT) = max|x(r)|, x(m) = 3 _ x(v)-

veTT

Using a random coloring x, we can guarantee that for all paths = € II [20]:

Ix(m)| < /2|m| In(4]I]).
This immediately provides a few observations.

OBSERVATION 3.2. When II is a set of paths with size polynomial in n, then
disc(II) = O(y/nlogn). This bound is true even for paths that are possibly non-
consistent.

OBSERVATION 3.3. When the longest path in I has D vertices we have disc(IT) =
O(v/Dlogn). Thus, for graphs that have a small diameter (e.g., small world graphs),

the discrepancy of shortest paths is automatically small.

Hereditary discrepancy is a more robust measure of the complexity of a path
system (V,II), defined as herdisc(II) = maxy cy disc(II|y ), where II|y is the collection
of sets of the form 7 N'Y with 7 € II. Clearly, herdisc(II) > disc(II). Sometimes the
discrepancy of a set system may be small while the hereditary discrepancy is large [20].
Thus in the literature, we often talk about lower bounds on the hereditary discrepancy.

Now that we have defined vertex and edge (hereditary) discrepancy, one may won-
der if there is an underlying relationship between vertex and edge (hereditary) dis-
crepancy since they share the same bounds in most settings presented in Table 2. The
following observation shows that vertex discrepancy bounds directly imply bounds on
edge discrepancy.

OBSERVATION 3.4. Denote by disc(n) (and herdisc(n)) the mazimum discrepancy
(minimum hereditary discrepancy, respectively) of a consistent path system of a (undi-
rected or directed) graph of n vertices. We have that

1. Let g(x) be a non-decreasing function. If herdisc,(n) > g(n), then

herdisc.(n) > g(n/2).
2. Let f(x) be a non-decreasing function. If disc,(n) < f(n), then

disce(m) < f(m).

This manuscript is for review purposes only.
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THE DISCREPANCY OF SHORTEST PATHS 11

Proof. We first show that if graph G = (V,E,w) with the consistent path
matrix A, has hereditary discrepancy at least g(n), we can obtain another graph
G' = (V',E’,w') and matrix A, as the (consistent path) edge incidence matrix with
hereditary discrepancy at least g(n/2). The construction is as follows.

(a) We first split each vertex v € V in G to two vertices (vin, Vout) to obtain V.

(b) For every v € V, add a single edge (vjn, Vout) to E'.

(c) Forany v € V and each edge (u,v) € E (with the fixed v), add edges (Uout, Vin)

and (Ui, Vout) to E'.

The path incident matrix A, is defined as follows: for each path as a row a of
A, construct a new path in G’ by following the order of uoyt — Vin — Vour — Wiy for
a u — v — w sequence. For each row in A,, we mark the used edges as 1 in A, with
the path constructed by the above process. Note that the new path system defined
by A remains consistent: for any intersection between the two paths P, N Py =
(u1,ug,- - ,ue), the intersection remains a single path of (41 ,in, U1 out, - -+ » Ue,in, Ue,0ut)
in A,.

Let Y be the columns that induces the g(n) discrepancy on G, i.e.,

se{-Tt1}I7] 1oy 2lloe = g(n).
Now, observe that, for each row in A, an edge (vin, Vout) is marked as 1 if and only if v
is marked as 1 in A,,. Therefore, we can take the new set Y’ as the edges corresponding
to Y, and there is
min
ze{—1,+1317"

eyl = ze{fnl{ifl}m 14wy 2lloe = 9(n).
Finally, since graph G’ has n’ = 2n vertices, we have the hereditary discrepancy to
be at least g(n'/2), as desired.

We next show that the hereditary edge discrepancy of G is at most f(m), which
implies the discrepancy upper bound. For a graph with n vertices, m edges, and
a path incident matrix A., suppose Y is the set of columns (edges) that attain the
hereditary discrepancy. We can add a vertex v, for each e € Y and construct a new
path incident matrix A,, which is a matrix with |Y| rows. Concretely, for each row
of A,, we simply let vertices v, € Y be 1 if the corresponding edge is used in A.. By
the consistency of A., the new path incident matrix also characterizes a consistent
path system (we can think of the underlying graph as the complete graph on a vertex
set of Y). Note that we can get f(m) discrepancy for the path system characterized
by A. as there are at most m vertices in A.. This implies a f(m) hereditary edge
discrepancy on the original path system, which in turn implies the desired discrepancy
upper bound.

Finally, note that the argument remains valid when the graph is directed, which
means the results hold for both undirected and directed graphs. 0

We also use some technical tools from discrepancy theory and statistics.
3.1. Known Results in Discrepancy Theory. The first result that we discuss

is the one that gives an upper bound on the discrepancy of a set system in terms of
primal shatter function.

DEFINITION 3.5 (Primal Shatter Function). Let (X, R) be a set system, i.e., X
is a ground state and S = {S1,S2,--+,Se} with S; C X for all1 <i < (. Let s be a
positive integer. The primal shatter function, denoted as wg(s), is defined as

Tr(8) == Agg'l:a|‘§|:s HANS|SeR}.
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431
432
433

434
435

436

437
438
439
440
441

442
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The following is a well-known result of the discrepancy theory.

PROPOSITION 3.6 (Theorem 1.2 in Matousek [51]). Given a set system (X, R),
the discrepancy of a range space R whose primal shatter function is bounded by
mr(x) = cx?, for some constant ¢ >0, d > 1, is

O(nV/2-1/Cd)y,

where n is the size of the ground state, and O(-) hides the dependency on ¢ and d.

For the lower bound on the hereditary discrepancy, one general result is the trace
bound first shown by Chazelle and Lyov [21].

LEMMA 3.7 (Trace Bound of Chazelle and Lyov [21]). If A is anm by n incidence
matriz and M = AT A, then there is an absolute constant 0 < ¢ < 1 such that

herdisc(A) > 1cn-tr<M"’>/<tr<M>>2\/M _
> -

Recently, this trace bound has been improved in the exponential term through a
series of works culminating in the following bound in Larsen [46], which we also use
in our work:

LEMMA 3.8 (Trace Bound of Larsen [46]). If A is an m by n incidence matriz
and M = AT A, then

i (tr(M))2 tr(M)
herdsel) 2 St r?) - minfm,n || max{m.n}

We give various interpretations of tr(M) and tr(M?) in Lemma 3.8 that would be
useful later on. Algebraically, tr(M) is the sum of its eigenvalue while tr(M?) is the
sum of the square of the eigenvalues. Combinatorially, tr(A/) is the number of ones
in A and tr(M?) is the number of rectangles of all ones in A. Geometrically, tr(M)
is the count of point/region incidences, and tr(M?) is the number of pairs of points
in all the pairwise intersections of regions. Finally, if A is the incidence matrix for
the shortest path, tr(M?) is the number of length 4 cycles in the underlying graph.
Based on the algebraic interpretation, it means that the trace bound is non-trivial
whenever all the eigenvalues of A are fairly uniform. This can be seen by noticing
that, if {1, -+, \,} are eigenvalues of A, then tr(M)? = ncos?() tr(M), where 6 is
the angle between the vector (A1, -+, A,) and the all one-vector.

Our lower bound construction requires a hard instance of a class of graphs. For
that, we use the construction of Bodwin and Hoppenworth [15], whose key properties
that we use are stated as the following lemma:

LEMMA 3.9 (Lemma 1 of Bodwin and Hoppenworth [15]). For any p € [1,n?],
there is an infinite family of n-node undirected weighted graphs G = (V, E,w) and
sets IT of p paths in G such that

e G hasl{ =0 (W) layers. Each path in 11 starts in the first layer, ends

in the last layer, and contains exactly one node in each layer.

e Fach path in 11 is the unique shortest path between its endpoints in G.

e For any two nodes u,v € V, there are at most % paths in 11 that con-
tain both u and v, where h(u,v) is the hop-distance (number of edges on the

shortest path) between v and v in G and 1 < h(u,v) < £.
e Fach node v € V lies on at most O (%p) distinct paths in II.

This manuscript is for review purposes only.
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THE DISCREPANCY OF SHORTEST PATHS 13

Concentration Inequalities. We use the following standard variants of the
Chernoft-Hoeffding bound in our paper.

PROPOSITION 3.10 (Chernoff bound). Let Xi,...,X, be n independent random
variables with support on {0,1}. Define X := %" | X;. Then, for every § > 0, there
18

2
Pr[X2(1+6)~]E[X]]§exp<6(:_2~]E[X}>.

In particular, when § € (0, 1], there is

Pr[|X —E[X]|>§-E[X]] <2-exp <52Em> .

3

PROPOSITION 3.11 (Additive Chernoff bound). Let X1,...,X,, ben independent
random variables with support in [0,1]. Define X := 3" | X;. Then, for everyt > 0,

Pr|X — E[X]| > ] < 2 exp (-%f) .

4. General Graphs: Upper Bound Existential Proof. This section collects
the existential proof of the upper bounds on vertex- and edge-discrepancy for consis-
tent path systems in (possibly) directed graphs. Our approach uses Proposition 3.6,
which gives a discrepancy upper bound using the primal shatter function of a set
system. This approach leads to the same upper bounds for undirected and directed
graphs. In specifics, we show an upper bound of O(n'/4) holds for vertex discrep-
ancy, while the edge discrepancy is at most O(ml/ 1). That is, we show an existential
proof of Theorem 1.6 (on directed graphs) by this approach. Note that for undirected
graphs, we have achieved better edge discrepancy bounds using explicit constructions
(as shown in Subsection 5.3).

THEOREM 1.6. For any n-node, m-edge directed weighted graph G with a unique
shortest path between each pair of nodes, the system of shortest paths Il satisfies

herdisc, (II) < O(n'/%) and herdisc, (IT) < O(m!'/%).

Proof. We consider vertex discrepancy first. Let S = (V,II) be the path system
containing all [TI| = (g) unique shortest paths in G over vertex set V. We can interpret
S as a set system (e.g., by ignoring the ordering of vertices in paths 7 € II).

We claim that the primal shatter function g of S is ms(z) = O(x?). The inter-
section of any set A C V of |A| = x vertices with a path = = =n[s,¢] € II is equal to
AN[u,v] with v and v being the first and last vertex on path 7 in set A, respectively.
Then we have

{ANT |7 eI} < |AP =22,

and mg(r) = O(z?), as claimed. Since the size of the ground state is |V'| = n, Proposi-
tion 3.6 implies that the (non-hereditary) vertex discrepancy of the incidence matrix
for a family of consistent paths on an n-node graph is at most O(n'/*). An upper
bound of O(ml/ 4) for edge discrepancy on m-edge graphs follows from Observation
3.4.

Finally, to show the upper bound on hereditary discrepancy, we observe that for
any subset U C V, we can define the system II[U] of the paths in IT induced on the
nodes in U. This path system IT[U] is also consistent. Applying the above argument on
I[U] therefore give us an O(n'/*) upper bound for the discrepancy of II[U], implying

This manuscript is for review purposes only.
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14 G. BODWIN, C. DENG, J. GAO, G. HOPPENWORTH, J. UPADHYAY, AND C. WANG

our desired vertex hereditary discrepancy upper bound. A similar argument achieves
an edge hereditary discrepancy upper bound of O(ml/ 4). O

Notice that for a sparse graph (e.g., m = O(n)) this matches the bound on vertex
discrepancy, but for a dense graph (e.g., m = ©(n?)), the upper bound becomes
O(n'/?), which is no better than the upper bound by random coloring.

_In Subsection 5.2, we present a vertex coloring achieving hereditary discrepancy
of O(nl/ 4). Finally, we present an explicit edge coloring with the same hereditary
discrepancy bound in Subsection 5.3. This is a significant improvement over O(m!/4),
especially for dense graphs.

5. Undirected Graphs: Lower Bound and Explicit Colorings. We now
discuss the main result (Theorem 1.5). We first show in Subsection 5.1 a hereditary
discrepancy lower bound of Q(nl/ 4/\/Togn) for both edge and vertex discrepancy in
general undirected graphs. Then, in Subsection 5.2, we present a vertex coloring
achieving hereditary discrepancy of O(n'/4). Finally, we present an explicit edge
coloring with the same hereditary discrepancy bound in Subsection 5.3.

5.1. Lower Bound. As suggested by Observation 3.4, we focus on the vertex
hereditary discrepancy. We then show that this theorem implies the same lower bound
on (non-hereditary) vertex discrepancy as well.

THEOREM b5.1. There are examples of n-vertex undirected weighted graphs G with
a unique shortest path between each pair of vertices in which this system of shortest
paths 11 has

1/4
herdisc, (II) > Q .
log(n)

To obtain the lower bound, we employ the new graph construction by Bodwin and
Hoppenworth [15], which shows that any exact hopset with O(n) edges must have at
least ﬁ(nl/ 2) hop diameter. Despite seeming unrelated, this construction also sheds
light on our problem. Another technique we use to show the hereditary discrepancy
lower bound is the trace bound [46]. In the following proof section, we first summarize
the construction related to our objective, then show the calculation using the trace
bound that leads to our lower bound.

Proof. The key properties of the graph construction in Bodwin and Hoppen-
worth [15] that we need can be summarized in Lemma 3.9. We will make use of the
shortest path vertex incidence matrix of the graph in Bodwin and Hoppenworth [15].
Recall that hereditary discrepancy considers the sub-incidence matrix induced by col-
umns corresponding to a set of vertices. We select the set of vertices occurring in
the paths in II, and show it leads to hereditary discrepancy at least Q(nl/ 1/\/Togn).
Specifically, take A as the incidence matrix so each row corresponds to one path in II.
A has dimension p x n where n is the number of vertices in G and the (i, j)-th entry
of A is 1 is the vertex j is in the path 1.

Now define M = AT A. Recall that tr(M) is the number of 1s in the matrix A.
Since by construction, every path has length ¢, we have tr(M) = pf. Furthermore, let
m;; be the (7, 7)-th element of matrix M, and observe that it is exactly the number
of paths that contain vertices i and j. Note that m;; = m; ;. Additionally, tr(M?) is
the number of length 4 closed walks in the bipartite graph representing the incidence

This manuscript is for review purposes only.
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matrix A. This implies that

DI IEES SEED 9 oib s e ()

Jj=1wu,vEP;}, j=11i=1 u,veP;,
(5.1) U;év h(u,v)=i
2€2 p2€2
Yy fro(Z8) sprogero (Z0)).
n
j=11i=1

By setting p = nlogn, it follows that £ = © ( v ) and tr(M) = pl. Further,

logn

npl*logl < O (n -nlog(n) - -log(n)> =0(n®) = O(p*r?).

log“n

By equation (5.1), we have tr(M?) = O(p*¢?/n). Using this and tr(M) = pf in
the trace bound in Lemma 3.8 [46] gives us

| (tr(0))* tr(M)
herdisc, (IT) > 8emin{p,n} - tr(M2) \| max{p, n}

B (tr(M))? tr(M) p2e?
~ 8en - tr(M?2) D =t (pQE2 ﬂ)

nl/4
= Q) =Q ()
log(n)

by setting the value of £. The completes the proof of the lower bound. ]

2. Vertex Discrepancy Upper Bound — Explicit Coloring. In this sub-
section, we will upper bound the discrepancy x(IT) of a consistent path system (V1)
with |[V| = n and |II] = poly(n). This immediately implies an upper bound for the
hereditary vertex discrepancy of unique shortest paths in undirected graphs.

THEOREM 5.2. For a consistent path system S = (V,II) where |V | =n and |II| =
poly(n), there exists a labeling x such that x(II) = O(n'/* logl/z(n)). Consequently,
every n-vertex undirected graph has hereditary vertex discrepancy O(n'/* logl/Q( ).

Let S = (V,1II) be a consistent path system with |V| = n and |II| = poly(n). As
the first step towards constructing our labeling x : V — {—1,1}, we will construct

a collection of paths II" on V that will have a useful covering property, stated in
Proposition 5.3, over the paths in II.

Constructing path cover II'. Initially, we let II' = (). We define V' to be the set of
all nodes in V belonging to a path in II', i.e., V/ := {J, 7. While |7\ V'] > n!/2
for some 7 € II, find a (possibly non-contiguous) subpath of 7 of length n'/? that
is vertex-disjoint from all paths in II’. Formally, find a subpath #’ C 7 such that
|7'| = n'/? and 7/ NV’ = (). Add path 7’ to path cover IT' and update V’. Repeatedly
add paths to path cover IT’ in this manner until |7\ V’| < n'/? for all 7 € II.

PROPOSITION 5.3. Path cover II' satisfies the following properties:
1. forall m e I, |x| = n'/2,
2. the number of paths in II' is |II'| < n'/?

This manuscript is for review purposes only.
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3. (Disjointness Property) The paths in II' are pairwise vertex-disjoint,

4. (Covering Property) For all m € II, the number of nodes in 7 that do not lie
in any path in path cover II' is at most n'/2. Formally, let V' = U’
Then Vr € I1, |7 \ V| < nl/2,

5. (Consistency Property) For all m € II and ' € I, the intersection m N7’ is
a (possibly empty) contiguous subpath of 7.5

Proof. Properties 1, 3, and 4 follow from the construction of II'. Property 2 fol-
lows from Properties 1 and 3 and the fact that |V| = n. The Consistency Property of
IT" is inherited from the consistency of path system S. Specifically, by the construc-
tion of IT’, path 7’ € II’ is a subpath of a path 7/ € II. Recall that by the consistency
of path system S, the intersection © N 7" is a (possibly empty) contiguous subpath
of #”/. Then m N «’ is a contiguous subpath of 7’ since 7/ C 7”. This concludes the
proof. 0

Counstructing labeling x. Let ©’ = (v1,...,v;) € II' be a path in our path cover.
We will label the nodes of 7’ using the following random process. With probability
1/2 we define x : 7' — {—1,1} to be

)

(v1) = 1 ¢=0 mod2andiellk]
M= 21 =1 mod 2 and ¢ € [1, k]

and with probability 1/2 we define x : ©’ — {—1,1} to be

—1 ¢=0 mod2andiellk]
X(Ui) = . . .
1 i=1 mod2andice€][l,k]

The labels of consecutive nodes in 7’ alternate between 1 and —1, with vertex v;
taking labels 1 and —1 with equal probability. Since the paths in path cover IT'
are pairwise vertex-disjoint, the labeling y is well-defined over V' := Upern’. We
choose random labeling for all nodes in V' \ V', i.e., we independently label each node
v € V\ V' with x(v) = —1 with probability 1/2 and x(v) = 1 with probability 1/2.
An illustration can be found in Figure 2.

o O
o, ™M O
Q O jo)
OO~ 0—0 OQ==Q==O OO O==O==0O==Q~~00
T O T O
3 o 2

Fic. 2. In this figure, paths 71,72, 73 € I’ from the path cover are intersecting a path w €
II. Paths in the path cover are pairwise vertex-disjoint, and each path in the cover contributes
discrepancy 0, —1, or +1 to w.

Bounding the discrepancy x(II). Fix a path = € II. We will show that

> x()

veET

with high probability. Theorem 5.2 will follow as |II| = poly(n).

= O(n'/*log*(n)

SNote that it may not be true that = N7’ is a contiguous subpath of .

This manuscript is for review purposes only.



604

605
606
607

608

616

617
618
619
620

626

THE DISCREPANCY OF SHORTEST PATHS 17

PROPOSITION 5.4. For each path ©' in path cover IT,
> xw) e {-1,0,1}.
vemrNm!

Iflmn7'| =0 mod 2, then Y . . x(v) = 0. Moreover,

Prl > X(u):—1]:Pr[ > X(v):1].

verNm! verNm!

Proof. By the Consistency Property of II' (as proven in Proposition 5.3), path
7 N7’ is a (possibly empty) contiguous subpath of #’. Then since consecutive nodes
in 7" alternate between —1 and 1, it follows that

> x(v) € {-1,0,1}.

Now note that > . - x(v) # 0 iff [x N 7’| is odd. Moreover, the first vertex
of m N7’ takes labels 1 and —1 with equal probability. This concludes the proof of
Proposition 5.4. ]

We are now ready to bound the discrepancy of .
PROPOSITION 5.5. With high probability, x(r) = O(n'/* logl/2 n).

Proof. We partition the nodes of 7 into two sources of discrepancy that we will
bound separately. Let V' := Uyre’.

Discrepancy of m N V’. For each path ©' € II', let X,» be the random variable
defined as
XTr’ = Z X(U)

vernm’

We can restate the discrepancy of m NV’ as

> x()

verNV’

> Xﬂ/|.
el

By Proposition 5.4, if |7 N #'| is even, then X+ = 0. Therefore, we may assume
without any loss of generality that |r N 7’| is odd for all #/ € II'. In this case,
Pr[X; = —1] = Pr[X =1] = 1/2, implying that E[}_ ., Xx/] = 0. Then by
Proposition 5.3 and the Chernoff bound, it follows that for any constant ¢ > 1,

S x

' ell’

2n1/2 log(n)

Pr >c- n1/4 logl/Q(n)] < e~ ¢ Tam < 6_62/(2»10g(n)) _ n_02/2.

Discrepancy of 7\ V’. Note that by the Covering Property of the path cover (as
proven in Proposition 5.3), |7\ V’| < n'/2. Moreover, the nodes in V' \ V' are labeled
independently at random, implying that E [Zv em\V x(v)| = 0. Then we may apply

a Chernoff bound to argue that for any constant ¢ > 1,

,n/?log(n)

Pr EZ\VIX(U) > c-n'*log"?n| < exp{—c A\ V] }

< 6702/(2-10g(n)) _ n702/2.
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We have shown that the discrepancy of our labeling is O(n'/4log"/?(n)) for 7NV’
and O(n'/*log'/?(n)) for = \ V’ with high probability. Therefore, with high proba-
bility, the total discrepancy of 7 is O(n'/4 logl/Q(n)). This completes the proof of
Proposition 5.5. ]

Extending to hereditary discrepancy. Let A be the vertex incidence matrix of
a path system S = (V,II) on n nodes, and let Ay be the submatrix of A obtained
by taking all of its rows but only a subset Y of its columns. Then there exists a
subset V3 C V of the nodes in V such that Ay is the vertex incidence matrix of the
path system S[Vy] (path system S induced on V). Moreover, if path system S is
consistent, then S[Vy] is also consistent. Then we may apply our explicit vertex dis-
crepancy upper bound to S[Vy]. We conclude that the hereditary vertex discrepancy
of S is O(n*/*log'/?(n)).

5.3. Edge Discrepancy Upper Bound — Explicit Coloring. By Theorem
1.6, the edge discrepancy of the unique shortest paths of a (possibly directed) graph
on m edges is O(m'/*). However, in the case of undirected graphs and DAGs, we
can improve the edge discrepancy to O(n1/4 1og1/2(n)), where n is the number of
vertices in the graph, by modifying the explicit construction for vertex discrepancy
in Subsection 5.2. Our proof strategy will follow the same framework as the explicit
construction for vertex discrepancy but with some added complications in the con-
struction and analysis.

We first introduce some new notation that will be useful in this section. Given
a path m and nodes u,v € w, we denote by u <, v if u occurs before v on path 7.
Additionally, given a path system S = (V,II), we define the edge set E C V x V of
the path system as the set of all pairs of nodes u,v € V that appear consecutively in
some path in II. Likewise, for any path 7 over the vertex set V', we define the edge
set of m, E(m) C m x 7, as the set of all pairs of nodes u,v € 7 such that u,v appear
consecutively in 7 and (u,v) € E. Note that if path system S corresponds to paths
in a graph G, then E will be precisely the edge set of G.

Recall that we wish to construct an edge labeling x : E +— {—1,1} so that

X(I) = max| > x(e)

ecE(m)

is minimized. We will upper bound the discrepancy x(II) of consistent path systems
such that |V| = n and |II| = poly(n). This immediately implies an upper bound on
the edge discrepancy of unique shortest paths in undirected graphs.

THEOREM 5.6. For all consistent path systems S = (V,II) where |V| = n and
III| = poly(n) with edge set E, there exists a labeling x : E — {—1,1} such that

X(1) = O(n'/*log! 2 (n)).

Consequently, every n-vertex undirected graph has hereditary edge discrepancy
O(n'/*1og?(n)).

Let S = (V,1I) be a consistent path system with |[V| = n and |II| = poly(n). As
the first step towards constructing our labeling x : E — {—1, 1}, we will construct a
collection of paths IT' on V' with a useful covering property over the paths in II.
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5.3.1. Constructing path cover II'. Initially, we let II' = (). We define V' to
be the set of all nodes in V' belonging to a path in IT', i.e.,

V= U 7.

o’ eIl’

While there exists a path m € TI such that |7\ V| > n'/2) our goal is to find
a (possibly non-contiguous) subpath of 7 of length n'/? that is vertex-disjoint from
all paths in II'. Specifically, let 7" C 7 be a (possibly non-contiguous) subpath of =
containing exactly the first n'/2 nodes in \ V’. Add path 7’ to path cover II' and
update V’. Repeatedly add paths to path cover II’ in this manner until |7\ V’| < n'/2
for all = € II.

Note that our path cover II’ is very similar to the path cover used in the explicit
vertex discrepancy upper bound. Indeed, path cover II' inherits all properties of
the path cover defined in Subsection 5.2. The key difference here is that we require
subpaths 7/ C 7 in II to contain the first n'/? nodes in 7\ V’. This will imply an
additional property of our path cover, which we call the No Repeats Property.

Fi1c. 3. In this figure, paths w1, 72 € II' are intersecting a path w € II. This arrangement of
paths is forbidden by the No Repeats Property of Proposition 5.7.

PROPOSITION 5.7. Path cover II' satisfies all properties of Proposition 5.3, as
well as the following additional properties:
e (Edge Covering Property) For all m € II, the number of edges in 7 that are
not incident to any node lying in a path in path cover II' is at most n'/2.
Formally, let V! = Uperpn’. For all w €11,

{(u,v) € E(n) |ug V' and v & V'}| < n'/?,

e (No Repeats Property) For all paths m € II, m,me € II', and nodes
v1,V2,V3,Uq4 € T such that v1,v3 € T and va,v4 € T, the following ordering
of the vertices in Il is impossible:

V1 <z V2 <g V3 <g Vg,

where © <, y indicates that node x occurs in w before node y.

Proof. All properties from Proposition 5.3 follow from an identical argument as
in the original proof. The Edge Covering Property follows immediately from the
Covering Property of Proposition 5.3. What remains is to prove the No Repeats
Property.

Suppose for the sake of contradiction that there exist paths © € II, my, e € IT/,
and nodes vy, v9,v3,v4 € T such that vi,v3 € m and v, v4 € Ty, Where v1 <; vo <;
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vy <p vq. We will assume that path m; was added to II' before path 7o (the case
where o was added to II' first is symmetric). By the construction of I, path m € I’
is a (possibly non-contiguous) subpath of a path 7} € II from which it is constructed.
Additionally, by the consistency of the path system S, the intersection = N 7 is a
contiguous subpath of 7. Then vy € m N 7Y, and specifically, ve € 7f'.

We assumed that vy € mo, which implies that vy &€ 71, since paths in II' are
pairwise vertex-disjoint. Since path m; was added to I’ before path s, this means
that when 7 was added to IT', node vy did not belong to any path in I’ (i.e., vy was
not in V’). Recall that in our construction of I, we constructed subpath m C 7
so that it contained exactly the first n'/? nodes in @/ \ V’. However, vy ¢ 71, but
vy € 71, and ve comes before v3 in 7). This contradicts our construction of path m
in path cover II'.

5.3.2. Constructing labeling y. Let 7’ € II' be a path of length & in our path
cover. Let eq,...,ex € E(x') be the edges in 7’ listed in the order they appear in
7', Note that since 7’ is a possibly non-contiguous subpath of a path in II, pairs of
nodes u,v € V that appear consecutively in 7 do not necessarily correspond to edges
in edge set E.

We will label the edges in E(7’) using the following random process. With prob-
ability 1/2 we define x : E(n’) — {—1,1} to be

)

1 =0 mod2andic€][l,k]
x(e;) = L ,
-1 i=1 mod2andie€ll,k

and with probability 1/2 we define x : E(7’) — {—1,1} to be

-1 4=0 mod2andi€[l,k]
x(ei) = - : ~
1 i=1 mod2andie€llk
Note that the labels of consecutive edges e;, ;11 in 7" alternate between 1 and
—1, with edge e; taking labels 1 and —1 with equal probability.

Since the paths in path cover IT' are pairwise vertex-disjoint, the labeling x is
well-defined over

(52) El = Uﬂ./En/E(Tl',).

We take a random labeling for all edges in E\ F’, i.e., we independently label each
edge e € E \ F’ with x(e) = —1 with probability 1/2 and x(e) = 1 with probability
1/2.

5.3.3. Bounding the discrepancy ¢. Fix a path 7 := 7[s,t] € II. We will
show that

Y x(e)| = 0" log"*(n))
e€E(m)

with high probability. This will complete the proof of Lemma 5.6 since |II| = poly(n).
The proof of the following proposition follows from an argument identical to Propo-
sition 5.4 and hence omitted.

PROPOSITION 5.8. For each path 7' in path cover 1T,

> xle)e{-1,0,1}.

e€E(m)NE(n’)
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w2 If|E(m) NE(r')] =0 mod 2, then }_ c gimnp) X(€) = 0. Moreover,

733 Pr Z x(e)=—-1| =Pr Z x(e) =1

ecE(m)NE(x") ecE(m)NE(n’)
734
735 We are now ready to bound the edge discrepancy of w. Define
736 V= U 7' and E = U E(r").
=g =g
737 We partition the edges of the path 7 into three sources of discrepancy that we

738 will bound separately. Specifically, using the definition of E’ in equation (5.2), we
739 split E(m) C w X 7 into the following sets Ey, Eo, E3:

740 o Fy:=E(m)NE,
741 o Er:=E(mN((V\V')x(V\V')), and
742 o FE3:=E(m)\ (E1U Ey).

743 Sets F7 and FEs roughly correspond to the two sources of discrepancy considered in
744 the vertex discrepancy upper bound, while set E3 corresponds to a new source of
745 discrepancy requiring new arguments to bound. We begin with set Fj.

746 PROPOSITION 5.9 (Discrepancy of Ey). With high probability, |>_,cp, x(e)| =
717 O(n'/*log!/? n).
748 Proof. The proposition follows from an argument similar to Proposition 5.5. For

749 each path n’ € IT', let X, be the random variable defined as

750 Xor = Z x(e).

e€EE(m)NE(w’)

751 We can restate the discrepancy of Ey = E(r) N E’ as

Z x(e) Z Xl

ecEq ' ell’

By Proposition 5.8, if |E(7) N E(7')] =0 mod 2, then X, = 0, so without any
loss of generality, we may assume that |E(r) N E(7’)| is odd for all 7’ € II'. In this
case,

Pr [XW/ = —].] =Pr [Xﬂ—/ = ].] = 1/27

- =

53 implying that E[}"_, ., Xxv] = 0. Then, by Proposition 5.7 and the Chernoff bound,
54 it follows that for any constant ¢ > 1,

Pr [ Z X,
755

7 eIl
756 We now bound the discrepancy of Fy = E(m) N ((V\ V') x (V\ V")).
757 PROPOSITION 5.10 (Discrepancy of Es). With high probability, |Ze€E2 X(e)| =
755 O(n/*log!?(n)).

2nl/2 log(n)

> c-nl/4 log1/2(n)1 <e I < e—c2/2~10g(n) < n—cz/z.
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Proof. The proposition follows from an argument similar to Proposition 5.5. Note
that by the Edge Covering Property of the path cover (Proposition 5.7),

|B2| = [{(u,0) € B(r) | u,0 ¢ V' <0/,

Moreover, the edges in E'\ E’ are labeled independently at random, so we may apply
a Chernoff bound to argue that for any constant ¢ > 1,

Pr [ Z x(e)

ecFEy
completing the proof.

2n1/210g(n)

> c-nl/4 logl/Q(n)] <e CTEm < efc2/2~log(n) < n702/2'

Finally, we upper bound the discrepancy of the remainder of the edges, EF3 =
E(m)\ (E1 U Ey).

PROPOSITION 5.11 (Discrepancy of Es). With high probability, |ZeEE3 X(e)| =
O(n'/*1og'?(n)).

Proof. Let

k={r"ell'| Nz’ #0}

denote the number of paths in our path cover that intersect m. We define a function
f 1 Z>o — Z>¢ such that f(¢) equals the largest possible value of |E5| when ¢ = k.
Note that f is well-defined since 0 < |E3| < |E|. We will prove that f(¢) < 4¢, by
recursively decomposing path 7.

When ¢ = 1, there is only one path «’ € II' that intersects m. Then the only
edges in E3 are of the form

E(mn (V! x (VAV)U(V\V) x V")) = E(@) N0 (@' x (VA7) U((V\7') x 7).

By the Consistency Property of Proposition 5.7, path 7’ can intersect m and then split
apart at most once. Then

fQ) = |Es| = [E(m) 0 ((«" x (VA7) U((V\7) x )| < 2.

When ¢ > 1, we will split our analysis into the two cases:

e Case 1. There exists paths 77,7, € II' and nodes vy, vs,v3 € m such that
v,v3 € ) and vy € 7h and v1 <; v <, v3. In this case, we can assume
without any loss of generality that 7[vy, vs] N7 = {v1,v3} (e.g., by choosing
v1,v3 so that this equality holds). Let x be the node immediately following
v1 in 7, and let y be the node immediately preceding vs in w. Recall that
s is the first node of 7 and t is the last node of 7. It will be useful for the
analysis to split 7 into three subpaths:

™= ﬂ—[87 Ul] © W[.’E, y] © 7T[’U3, ﬂv
where o denotes the concatenation operation. Define

¢r = {r' eIl [ m[z,y| N’ # O}
oo = {7 € II'| (n[s,v1] o w[vs, t]) N7’ £ O}

We claim that ¢1 < ¢, ¢2 < ¢, and ¢1 + P2 = ¢. We will use these facts to
establish a recurrence relation for f. By our assumption that 7[vy, vs]N7] =
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{v1,v3}, it follows that w[z,y] N7} = 0, and so ¢ < ¢. Likewise, by the No
Repeats Property of Proposition 5.7,

(m[s,v1] o vz, t]) Ny = 0.

Therefore, ¢o < ¢. Finally, observe that more generally, if there exists a
path ' € I such that 7’ N «[z,y] # @ and ©' N (7[s, v1] o w[vs, t]) # O, then
the No Repeats Property of Proposition 5.7 is violated. We conclude that

¢1+ d2 = ¢
Now |Es5| can be upper bounded by the following inequality:

|Es| < [Es N E(xlz, y])| + [Es N E(xls, 1] o wlos, t])] + 2.

Then using the observations about ¢1, ¢, and ¢ in the previous paragraph,
we obtain the following recurrence for f:

f(@) < f(on) + f(¢2) +2=f(i) + f(¢—i) + 2,

where 0 < i < ¢.

e Case 2. There exists a path 7’ € II' and vy,vo € 7 such that t N7’ =
m[v1,v2] NV, Let x be the node immediately preceding v; in 7, and let y be
the node immediately following vs in 7. Again, we split 7 into three subpaths:

w[s, t] = (s, z] o w[vy, vo] o Ty, t].
Let
¢1 = {r' €I | wlor, va] N 7" # 0}
¢z = {n" € I'| (n[s,z] o7y, t]) N " £ O}].

Our assumption in Case 2 follows that ¢; = 1 and ¢ = ¢ — 1. Since |E3| can
be upper bounded by the inequality

|Es| < |Es N E(w[vy,ve))| + |Es N E(ws, x] o [y, t])| + 2,
we immediately obtain the recurrence

f(@) < f(o1)+ f(P2) +2< fF(1) + flp— 1)+ 2.

Taking our results from Case 1 and Case 2 together, we obtain the recurrence relation

£6) < max {f(i) + f(¢—i)+2, f()+ f¢—1)+2} ¢>landl<i<¢

~ 12 b=1 ’
Applying this recurrence at most ¢ times, we find that
f(9) <o f(1)+2¢ < 49

Finally, since k < |II'| < n'/? and we defined f so that f(k) equals the largest possible
value of |E5|, we conclude that

|Bs| < f(k) < f(n'?) = O(n'/?),

Since the edges in E3 C E'\ E’ are labeled independently at random, we may apply a
Chernoff bound as in Proposition 5.10 to argue that y(Es) = O(n'/*log'/?(n)) with
high probability. 0
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We have shown that with high probability, the discrepancy of our edge labeling
is O(n'/* logl/Q(n)) for Fq, Fs, and E3, so we conclude that the total discrepancy of
7 is O(n*/*1log!/?(n)). A straightforward extension of this argument implies identical

bounds for hereditary discrepancy. We defer this proof to the full version of our paper
[14].

6. Planar Graphs. In this section, we will extend our hereditary vertex dis-
crepancy lower bound for unique shortest paths in undirected graphs to the planar
graph setting.

THEOREM 6.1. There exists an n-vertex undirected planar graph with hereditary

vertex discrepancy at least §) (%)

To prove this theorem, we will first give an abbreviated presentation of the graph
construction in [15] that we used implicitly to obtain the Q(n'/*/y/Togn) hereditary
vertex discrepancy lower bound in Theorem 5.1. Then we will describe a simple
procedure to make this graph planar and argue that the shortest path structure of
this planarized graph remains unchanged.

6.1. Graph Construction of Bodwin and Hoppenworth. Take n to be
a large enough positive integer, and take p = nlogn. We will describe an n-node
weighted undirected graph G = (V, E, w) originally constructed in Bodwin and Hop-
penworth [15].

Vertex Set V. We will use £ = © (f(‘)lg/z) as a positive integer parameter for our
construction. The graph G we create will consist of ¢ layers, denoted as Lq,..., L.
Each layer will have n/¢ nodes, arranged from 1 to n/¢. Initially, we will assign a
tuple label (i, ) to the jth node in the L; layer. We will interpret the node labeled
(i,7) as a point in R? with integral coordinates. The vertex set V of graph G is made
up of these n nodes distributed across ¢ layers.

Next we will randomize the node labels in V. For each layer L;, where ¢ ranges
from 1 to ¢, we randomly and uniformly pick a real number in the interval (0,1) and
we call it ¢;. After that, for each node in layer L; of the graph G that is currently

labeled (4, 7), we relabel it as
J
(z‘,j +y m) .
k=1

These new labels for the nodes in V' are also treated as points in R2. We can imagine
this process as adding a small epsilon of structured noise to the points corresponding
to the nodes in the graph. The purpose of this noise is technical, but serves the
purpose of achieving ‘symmetry breaking’ (see Section 2.4 of [15] for details).

Edge Set E. All edges will be between subsequent layers L;, L;+1 within G. It
will be helpful to think of the edges in G as directed from L; to L;y1, although in
actuality G will be undirected. We represent the set of edges in G between layers L;
and L;11 as E;. For any edge e = (v1,v2) € E, the edge e will be associated with the
specific vector . := vo — v1. The 2nd coordinate of i, will be labeled as wu.. Hence,
for all e found in F, @, is written as (1,u.).

For each i € [1,£ — 1], let

Ci = {1,911 + ) : 2 €[0,n/*}.

We will refer to the vectors in C; as edge vectors. For each v € L; and edge vector
ce Cy if v+ €V, then add edge (v,v + ©) to E;. After adding these edges to F;,
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we will have that
C;={u. | e€ E;}.

Finally, for each e € E,| if @, = (1, ue), then we assign edge e the weight w(e) :=
u2. This completes the construction of our graph G = (V, E, w).

PROPOSITION 6.2. Consider the graph drawing of graph G where the nodes v in
V are drawn as points at their associated coordinates in R? and the edges (u,v) in E
are drawn as straight-line segments from w to v. This graph drawing has O(n log® n)
edge crossings.

Proof. First note that if edges e, es € F cross in our graph drawing of G, then
edges e; and ey are between the same two layers of G (i.e., e1,ea € L; X L;11 for some
i €[1,£—1]). Additionally, all edges between L; and L, are from the jth vertex in
L; to the (j 4 k)th vertex in L; 1, where j € [1,n/¢] and k € [0, ©(log® n)].

Now fix an edge (u,v) € EN(L; x L;y1) for some ¢ € [1,¢ — 1]. If an edge
(u',v') € EN(L; x Liy1) crosses (u,v), then |u — u/| < logn. Then there are at
most O(log®n) nodes incident to edges that cross (u,v) in our drawing. Since each
node in G has degree O(log® n), this implies that at most O(log* n) edges cross (u,v)
in our drawing. Since |E| = O(nlog®n), we conclude that our graph drawing has
O(nlog®n) edge crossings. O

Direction Vectors and Paths II.. Our next step is to generate a set of unique
shortest paths II. The paths II are identified by first constructing a set of vectors

D C R? called direction vectors, which are defined next.
nl/2

Let ¢ = © ( L ) =0 (—) be an integer. We choose our set of direction

logn log? n

vectors D to be
D := 1, x+ Y such that =z € [1 o 1} and y € [0, q]
. I ) 162 y ’ q N

Note that adjacent direction vectors in D differ only by 1/¢ in their second coordinate.
Each of our paths 7 in IT will have an associated direction vector de D, and for all
i € [1,£ — 1], path 7 will take an edge vector in C; that is closest to d in some sense.

Paths T1.. We first define a set S C L; containing half of the nodes in the first
layer Ly of G:

S = {(1,]’ +11) € L1 such that j € [1, %} }

We will define a set of pairs of nodes P so that P C S x Ly. For every node s € S
and direction vector d € D, we will identify a pair of endpoints (s,t) € S x Ly and a
corresponding unique shortest path m,; to add to II.

Let v; € S, and let d = (1,d) € D. The associated path 7 has start node v;. We
iteratively grow 7, layer-by-layer, as follows. Suppose that currently m = (vq,...,v;),
for i < ¢, with each v; € L;. To determine the next node v;41 € L1, let E" C E;
be the edges in F; incident to v;, and let

€; := argmin e poi (e — d)).

By definition, e; is an edge whose first node is v;; we define v;11 € L;y1 to be the
other node in e;, and we append v;41 to m. After this process terminates, we will
have a path m = (v1,...,v;). Denote 7 as m,, ., and add path m,, ,, to II. Repeating

for all v; € S and deD completes our construction of II. Note that although we did
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not prove it, each path 74 € II is a unique shortest s ~» ¢ path in G’ by Lemma 2 of
Bodwin and Hoppenworth [15].

Lemma 1 of Bodwin and Hoppenworth [15] summarizes the key properties of G, II
that are needed to prove the hereditary vertex discrepancy lower bound for unique
shortest paths in undirected graphs in Theorem 5.1. We restate this key lemma in
Lemma 3.9 of Section 5.

To obtain a Q(n'/*) lower bound for hereditary vertex discrepancy of unique short-
est paths in planar graphs, we need to convert the graph G into a planar graph while
ensuring that the unique shortest path structure of the graph remains unchanged.

6.2. Planarization of Graph G. In the previous subsection, we outlined the
construction of the graph G = (V, E,w) and set of paths IT from Bodwin and Hop-
penworth [15]. This graph has an associated graph drawing with O(n) edge crossings
by Proposition 6.2. We will now ‘planarize’ graph G by embedding it within a larger
planar graph G’. We will use the standard strategy of replacing each edge crossing in
our graph drawing of G with a new vertex, causing each crossed edge to be subdivided
into a path.

Planarization Procedure:.

1. We start with the current non-planar graph G = (V, E, w) with the associated
graph drawing described in Proposition 6.2.

2. For every edge crossing in the drawing of G, letting point p € R? be the
location of the crossing, draw a vertical line in the plane through p. Add a
new node to graph G at every point where this vertical line intersects the
drawing of an edge. This step may blow up the number of nodes in the graph
by quite a lot, but the resulting graph will be planar and layered.

3. We re-set all edge weights in the graph as follows. For each edge (u,v) in the
graph, letting p,,, p, € R? be the locations of nodes u, v € V in the drawing, we
re-set the weight of edge (u, v) to be the squared Euclidean distance between
Pu and py, i.e.,

wl((u,0)) = [pa — poll®

4. Finally, we remove excess nodes added to the graph in step 2. We perform
the following operation for each node v of degree 2 in the resulting graph.
Let (z,v) and (v,y) be the two edges incident to v. Add edge (z,y) to the
graph and assign it weight w((z,y)) = w((z,v)) + w((v,y)). Remove node v
and edges (x,v) and (v,y) from the graph. Note that the graph will remain
planar after this operation.
Denote the planar graph resulting from this procedure as G’ = (V' E’,w’). The
following proposition follows immediately from Proposition 6.2 and the planarization
procedure.

PROPOSITION 6.3. Graph G' is planar and has O(nlog®n) nodes.

Unique Shortest Paths in G'. Each edge e = (u,v) € E in graph G is the preimage
of a u ~» v path 7, in graph G’ resulting from our planarization procedure. Likewise,
each path 7 € II is the preimage of a path 7’ in G’ obtained by replacing each edge
e € m with path 7. Let the set Il of paths in G’ denote the image of the set of paths
IT in G under our planarization procedure. As a final step towards proving Theorem
6.1, we need to argue that the unique shortest path structure of GG is unchanged by
our planarization procedure.

LEMMA 6.4. Fach path in 11’ is the unique shortest path between its endpoints in
G'.
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We now verify that graph G’ and paths II’ have the unique shortest path prop-
erty as stated in Lemma 6.4. We will require the following proposition about the
construction of graph G’ from [15] that we state without proof.

PROPOSITION 6.5 (c.f. Proposition 1 of [15]). With probability 1, for every i €
[1,¢—1] and every direction vector d = (1,d) € D, there is a unique vector (1,¢) € C;
that minimizes |c — d| over all choices of (1,c¢) € C;.

Additionally, our unique shortest paths argument will make use of the following tech-
nical proposition also proven in [15].

PROPOSITION 6.6 (c.f. Proposition 3 of [15]). Let b,x1,...,xx € R. Now con-
sider T1,...,Z, such that
o [Z; —b| <|z; —b| for alli € [1,k], and
® Zf:l Ti = Zf:l i
Then

k k
2 22
E Ty > E 7,
i=1 i=1

with equality only if |&; — b| = |x; — b| for all i € [1,k].
Using Propositions 6.5 and 6.6, we can now prove Lemma 6.4.

Proof of Lemma 6.4. As an immediate step toward proving Lemma 6.4, we will
argue that we can make two assumptions about G’ without loss of generality.

First, we may assume that G’ is layered in the following sense: V' can be parti-
tioned into k layers (for some k > 0) such that each path 7w € I’ begins in the first
layer, ends in the last layer, and has exactly one node in each layer. Observe that
after step 2 of the planarization procedure, graph G’ is layered with respect to paths
IT" in this sense. Moreover, step 4 of the planarization procedure does not change the
structure of the set of paths II'. Thus we can safely assume G’ is layered with respect
to paths IT'.

Second, we can assume, without loss of generality, that G’ is a directed graph and
that all edges in L; X L;y1 in G’ are directed from L; to L;y1. This assumption can
be made using a blackbox reduction that is standard in the area (see Section 4.6 of
6.1 for details).

Fix an s ~ t path 7’ € I in graph G’, and let path w € II in G be the associated
preimage of 7’. Let (1,z) € D be the direction vector associated with path 7. Note
that by Proposition 6.5, for each layer L;, there is a unique vector (1,¢) € C; that
minimizes |¢ — d| over all choices of (1,¢) € C;. By our construction of the paths in
II, path 7 will travel along an edge with edge vector (1, ¢).

In graph G’, there are additional layers between layers L; and L;;1, due to step
2 of our planarization procedure. If path =« traveled along an edge with edge vector
(1,¢) from L; to L;11 in G, then in each layer L’ in G’ between L; and L;;, graph
G’ will take an edge vector («,c), where 0 < o < 1. Moreover, again by Proposition
6.5, this edge vector (o, c¢) will be the unique edge vector from layer L’ minimizing
lc —d|.

Let ¢’ be the number of layers in G’. Let Z1,...,%p_1 € R be real numbers such
that the ith edge of 7’ has the corresponding vector (ay,#;) for ¢ € [1,¢ — 1] and
0 < a; < 1. Now consider an arbitrary s ~ t path 7* in G, where 7* # 7’. Since
all edges in G are directed from L; to L;y1, it follows that 7* has ¢/ — 1 edges. Let
Z1,...,Te—1 € R be real numbers such that the ith edge of 7* has the corresponding
vector (aj,x;) € C; for i € [1,£ — 1] and 0 < a; < 1. Now observe that since 7* and
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7’ are both s ~ t paths, it follows that

-1 -1
LT 3
i=1 i=1
Additionally, by our construction of 7/, it follows that
|2 — x| < |z; — x|
for all 4 € [1,£ — 1]. In particular, since 7* # 7/, there must be some j € [1,¢' — 1]

such that &; # z;, and so by Proposition 6.5, |; — x| < |z; — z| with probability 1.
Then by Proposition 6.6,

-1 =
w(r') = Z w(e) = Z:ﬁ? < fo = Z w(e) = w(r™).

ecm! eem*
This implies that the path 7’ is a unique shortest s ~ ¢t path in G’, as desired. 0

Finishing the Proof.

LEMMA 6.7 (c.f. Lemma 1 of [15]). There is an infinite family of ©(nlog®n)-
node planar undirected weighted graphs G' = (V', E',w’) and sets II' of |II'| = nlogn
paths in G’ with the following properties:

e Fach path in IT' is the unique shortest path between its endpoints in G.
e Let G be the n-node undirected weighted graph and let I1 be the set of |II| =

nlogn paths described in Lemma 3.9 when p = nlogn. Then Il is an induced
path subsystem of II'.

Proof. This follows immediately from Proposition 6.3, Lemma 6.4, and the above
discussion about the set of paths IT' in G’. O

Let N := ©(nlog®n) be the number of nodes in G’. By Lemma 6.7,
herdisc, (II") > herdisc, (IT).
Likewise, by the proof of Theorem 5.1, herdisc, (IT) > Q(n'/4). We conclude that
' / . nl/4 N1/4
herdisc, (II") > herdisc, (II) > Q2 (@) =0 <log2N) :

7. Trees and Bipartite Graphs. For graphs with simple topology such as
line, tree and bipartite graphs, both of the vertex and edge discrepancy are constant.
However, a distinction can be observed on hereditary discrepancy for bipartite graphs.
Formally, we have the following results.

LEMMA 7.1. Let T = (V, E,w) be a undirected tree graph, the hereditary discrep-
ancy of the shortest path system induced by T is ©(1).

Proof. To start with, it is obvious that a lower bound of (1) on both edge and
vertex (hereditary) discrepancy always holds for any family of graphs. We therefore
first focus on the O(1) discrepancy upper bound for bipartite graphs |

LEMMA 7.2. Let G = (V,E,w) be a general bipartite graph, then it has ©(1)
discrepancy, but G(nl/ 4) hereditary discrepancy.

Proof. To start with, it is obvious that a lower bound of (1) on both edge and
vertex (hereditary) discrepancy always holds for any family of graphs. We therefore
first focus on the O(1) discrepancy upper bound for bipartite graphs (including trees).
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Analysis of discrepancy.. We start with the vertex discrepancy. For a bipartite
graph G = (LU R, E), a simple scheme achieves constant vertex discrepancy: assign
coloring ‘+1’ to every v € L and ‘—1’ to every u € R. Observe that every shortest
path either has length of 1, or alternates between L and R, thus summing up assigned
colors along the shortest path gives 4+1 vertex discrepancy at most 1. Finally, we
apply Observation 3.4 to argue that the edge discrepancy is also O(1).

Analysis of hereditary discrepancy.. We prove this statement by showing that we
can reduce the hereditary discrepancy of bipartite graphs to general graphs by the 2-
lift construction. Concretely, suppose we are given a path system that is characterized
by G = (V, E,w) and matrix A, such that the hereditary discrepancy is at least f(n),
and let the set of columns that attains the maximum hereditary discrepancy be Y.
We will construct a new n’-vertex graph G’ with a new matrix A’, in which we have
a set of columns Y’ induces at least f(n’/2) discrepancy. Such a graph is a valid
instance of the family of the bipartite graphs, and an Q(n'/*) hereditary discrepancy
on G would imply an Q(n’'/4) hereditary discrepancy on G'.

We now describe a detailed algorithm, Algorithm 7.1, for the 2-lift graph construc-
tion as follows. In the procedure, we slightly abuse the notation to interchangeably
use the set with one element and the element itself, i.e., we use {a} to denote a when
the context is clear.

Algorithm 7.1 Construction 2-Lift: an algorithm to construct bipartite graph with
high hereditary discrepancy.

Require: A consistent path system characterized by a general undirected graph G =
(V, E,w) and matrix A with hereditary discrepancy at least f(n);
Ensure: A consistent path system characterized by bipartite graph graph G’ =
(V', E',w') and matrix A" with hereditary discrepancy at least f(n'/2);
Vertices V': each vertex v € V', make two copies of vertices vy, vg € V'.
Edges E’: Maintain a “side indicator” s € {L, R}, and initialize s = L.
for each vertex v € V with an arbitrary order: do
Add all edges (vs, uqr,ry\s) such that u € N(v).
Delete v from N(u) for all u € N(v).
Switch the side indicator, i.e., s < {L, R} \ s.
end for
Path system A’: for each row a of A, starting from the the first vertex with 1,
add 1 to the row of A’ to the vertex whose degree is not 0.

IR LA S A e

Note that for any vertex v € V, only one of (v, vg) is used in the matrix A’”. We
now argue that A’ is a valid collection of path systems. Note that for a single path P
in A, we can always follow the vertices with non-zero degree, and connect the edges
to a valid path in A’. Furthermore, two paths would conflict with each other only
if there exists an edge that “shortcut” an even-sized path, i.e., both (vi,ve, -+, vor)
and (vi,ver) are in the path system. However, this would violate the consistency
property of A. As such, all the rows in A’ can find a valid path in G'.

Let Y be the columns that attains the f(n) discrepancy on G, and we slightly
abuse the notation to use f(n) to denote both the indices of the columns in A and
the vertex set A C V. Since we have an bijective mapping between the vertices in Y’
and the vertices we account for in G’, we have the hereditary discrepancy to be at
least f(n) = f(n'/2), as desired. d
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8. Bounds on />-discrepancy. Consider a set of p paths on a graph G, the
incidence matrix A of p rows and n columns has the (i, j)-th element to be 1 if the
corresponding vertex v; stays on the i-th path, and 0 otherwise. Then we consider
the vertex fo-discrepancy discy(A) and hereditary discrepancy herdisca(A).

Since disca(A) < disc(A) and herdisca(A) < herdisc(A), the upper bounds on
discrepancy and hereditary discrepany for path systems remain as upper bounds for
{5 (hereditary) discrepancy, that is, O(,/n) for general paths (that are not necessary
shortest paths and not necessarily consistent), and O(nl/ 4) for shortest paths or
consistent paths.

For lower bound on /¢ discrepancy, we first recall the following result in
Larsen [46]:

LEMMA 8.1 ([46]). For an m x n real matriz A, let \y > Xa > -+ A\, > 0 denote
the eigenvalues of AT A. For all positive integers k < min{n, m}, we have

herdiscy(A) > ﬁ\ / L
eV 8mmn

In the proof of the trace bound, Chazelle and Lvov [21] have shown that for k =
tr2(M)/(2tr M?), we have Ay > tr(M)/4min{n,m}. Setting it in Lemma 8.1, we
have the same asymptotic trace bound for ¢s-hereditrary as in Lemma 3.8.

. tr2(M) tr(M)
herdiscy (A) > '
er lSC2( ) = % min{m, n} tr M2\ 32n max{m, n}

Using the same calculation as in the proof of Theorem 5.1, we get the equivalent
bound on ¢;-hereditary discrepancy for the set II of shortest paths in Lemma 3.9:

nl/4
herdisc, o(II) > Q | — | .

V/log(n)

Notice that the same lower bound argument generates a lower bound of Q(n'/%) on
£y discrepancy for the Erdds point-line system.

Again if we drop the consistency property (or uniqueness of shortest paths), the
{5 hereditary discrepancy can be much higher. Consider a graph G with two vertices
s and t, together with 2n vertices u;,v;, ¢ € [n]. We connect s with uy, v, and ¢ with
Up, Up. In addition, u;, v; are both connected to w;11,v;41, for 1 <4 < n —1. Now
we can encode the n x n Hadanard matrix H by n paths from s to ¢. Each row of
H corresponds to a path F;. If the jth element is 1, we take u;, otherwise, we take
v;. The incidence matrix A considering only vertices vq,vs, - - - v, would be precisely
+(H+J), where J is an nxn matrix of all 1. It is known that || Az||3 > n(n—1)/4 [20].
Thus herdisce(A) = Q(y/n).

In summary, all bounds of hereditary discrepancy presented in the paper hold for
{5 hereditary discrepancy for path systems on a graph.

9. Applications to Differential Privacy. In light of our new unique shortest
path hereditary discrepancy lower bound result, significant progress can be made to-
wards closing the gap in the error bounds for the problem of Differentially Private
All Pairs Shortest Distances (APSD) [59, 22, 36]. Likewise, the problem of Differen-
tially Private All Sets Range Query (ASRQ) [29] now has a tight error bound (up to
logarithmic factors). We present the DP-APSD problem formally and show the proof
of the new lower bound corresponding to Theorem 1.7. Details on the DP-ASRQ
problem are deferred to Appendix D.
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9.1. All Pairs Shortest Distances. Given a weighted undirected graph G =
(V, E,w) of size n, the private mechanism is supposed to output an n by n matrix
D’ = M(G) of approximate all pairs shortest paths distances in G, and the privacy
guarantee is imposed on two sets of edge weights that are considered ‘neighboring’,
i.e., with ¢; difference at most 1. Our goal is to minimize the maximum additive error
of any entry in the APSD matrix, i.e., the {, distance of D’ — D where D is the
true APSD matrix. This line of work was initiated by [59], where an algorithm was
proposed with O(n) additive error. Recently, concurrent works [22, 36] breaks the
linear barrier by presenting an upper bound of 5(n1/ 2). Meanwhile, the only known
lower bound is Q(n'/%), due to [22], using a hereditary discrepancy lower bound based
on the point-line system of [21]. With our improved hereditary discrepancy lower
bound, we are able to show an Q(n'/*/y/logn) lower bound on the additive error of
the DP-APSD problem.

COROLLARY 9.1. Given an n-node undirected graph, for any 5 € (0,1) and
£,6 >0, no (g,0)-DP algorithm for APSD has additive error of o(n*/*/\/logn) with
probability 1 — .

The connection between the APSD problem and the shortest paths hereditary
discrepancy lower bound was shown in [22], which implies that simply plugging in
the new exponent gives the result above. For the sake of completeness, we give the
necessary definition to formally define the DP-APSD problem, and show the main
arguments towards proving Corollary 9.1.

DEFINITION 9.2 (Neighboring weights [59]). For a graph G = (V, E), let w,w’ :
E — R2% be two weight functions that map any e € E to a non-negative real number,
we say w,w’ are neighboring, denoted as w ~ w' if Y p|w(e) —w'(e)| < 1.

DEFINITION 9.3 (Differentially Private APSD [59]). Let w,w’ : E — RZ% be
weight functions, and A be an algorithm taking a graph G = (V, E) and w as input.
The algorithm A is (g,0)-differentially private on G if for any neighboring weights
w ~w' (See Definition 9.2) and all sets of possible output C, we have: Pr[A(G,w) €
C] <e®-PrlA(G,w") € C] +6.

We say the private mechanism A is a-accurate if the o norm of |A(G,w) —
f(G,w)| is at most «, where f indicates the function returning the ground truth
shortest distances.

Proof of Corollary 9.1. First, suppose A € R(G)xn is the shortest path vertex
incidence matrix on the graph G. Previous work [22] has shown that the linear query
problem on A can be reduced to the DP-APSD problem, formally stated as follows.

LEMMA 9.4 (Lemma 4.1 in [22]).  Let (V,II) be a shortest path system with
incidence matriz A, if there exists an (£,0) DP algorithm that is a-accurate for the
APSD problem with probability 1 — 8 on a graph of size 2|V|, then there exists an
(e,9) DP algorithm that is a-accurate for the A-linear query problem with probability
1-—2.

Now all we need to show is that the A-linear query problem has a lower bound
of Q(n'/*/,/log(n)). We note the following result by [54].

LEMMA 9.5. For any 8 € (0,1), there exists €,6 such that for any A, no (¢,0)-DP
algorithm is herdisc(A)/2-accurate for the A-query problem with probability 1 — 3.

Combining Lemma 9.4 and 9.5, we find that additive error needed for the DP-
APSD problem is at least the hereditary discrepancy of its vertex incidence matrix,
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implying Corollary 9.1. The lower bound for ASRQ also follows using the same
argument (see Appendix D). d

10. Conclusion and Open Problems. This paper reported new bounds on
the hereditary discrepancy of set systems of unique shortest paths in graphs. We leave
several open questions:

1. An open problem is to improve our edge discrepancy upper bound in di-
rected graphs. Standard techniques in discrepancy theory imply an upper
bound of min{O(m'/*), O(D'/?)} for this problem, leaving a gap with our
Q(n'/*/\/Togn) lower bound when m = w(n). Unfortunately, we were not
able to extend our low-discrepancy edge and vertex coloring arguments for
undirected graphs to the directed setting, due to the pathological example in
Figure 4.

2. Using our discrepancy lower bound, we gave an improved lower bound of
Q(nl/ 4) on answering all pair shortest distance problem under the constraints
of (1,1/n)-differential privacy. In contrast, the best known upper bound re-
mains é(nl/ 2) for the same problem. Closing this gap remains an interesting
open question.

F1a. 4. An example in directed graphs that demonstrates how coloring unique shortest paths
with alternating colors can fail to tmply low discrepancy.
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THEOREM A.l. There is a planar graph G = (V, E) such that the following is
true for any coloring f : V +— {—1,1} of vertices V :
1. There is a family 11 of simple paths with |II| = O(exp(n)) and vertex discrep-
ancy of Q(n).
2. There is a family 11 of simple paths with |II| = O(n) and vertex discrepancy
of Q).

The same claim holds true for edge discrepancy as well.

Proof. The first claim follows from Proposition 1.6 in [7], which says that the
edge discrepancy of paths on a k x ¢ grid graph is at least Q(k¢). To prove vertex
discrepancy, we make two additional remarks about this construction. First, for our
purpose, it is sufficient to consider only an n x 2 grid graph G. The set of paths in the
construction of [7] consists of all paths that start from the top left corner and bottom
left corner going to the right and possibly taking a subset of the vertical edges in the
grid graph. The number of paths is O(2™). Second, for vertex discrepancy, we define
a companion graph G’. Specifically, for each grid edge e in G, we place a vertex v of
G’ on e. We connect two vertices in G’ if and only if the corresponding edges in G
share a common vertex. The graph G’ is still planar. In additional, a path P in G
maps to a corresponding path P’ in G’ where vertices on P’ follow the same order
of the corresponding edges on P. See Figure 5 for an example. Therefore the edge
discrepancy in G and the vertex discrepancy of G’ are the same.

Fi1G. 5. A n X 2 grid graph (with vertices shown in hollow and edges in black) G with one path
(in blue) starting from the top left corner go the right. The solid vertices and edges in dashed red
define the companion graph G'. The corresponding path in G’ is shown in pink.

For the second claim, we take an n x n Hadamard matrix H with n as power of 2.
The elements in H are +1 or —1. All the rows are pairwise orthogonal. For example,
the Hadamard matrix with n = 8 is

11 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
Hs=17 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

It is known [20] that the matrix A = {a;;} = 5(H + J) with J as an n x n matrix of
all 1 has discrepancy at least Q(y/n).
Now we try to embed the matrix A by paths on a 2 x n grid graph G with a grid
of two rows and n columns. Denote by e; as the jth vertical edge in G, 1 < j < n.
For the ith row of A, we define set X; = {e; : a;; = 1}. We then define two paths
P(Xi), P/(Xl) on G.
e Path P(X;) starts from the top left corner of G going to the right and the
vertical edges visited by P(X;) are precisely X;.
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e Path P/(X;) starts from the bottom left corner of G' going to the right and,
similar to P(X;), the vertical edges visited by P(X;) are precisely X;.

Note that P(X;) and P’(X;) each contains edges X; (see Figure 6 for an illustration).
Also P(X;) and P’(X;) do not share any horizontal edges, and collectively cover all
horizontal edges in G. In addition, we define two paths P and P’ with P starting
from the top left corner and visiting all the top horizontal edges and P’ starting from
the bottom left corner and visiting all bottom horizontal edges. We have 2n + 2 paths
in total — each row i of the Hadamard matrix contributes 2 paths, and we additionally

use P and P’.
P(X;) | | | | |
P’(Xi)l | | | |

F1c. 6. A n x 2 grid graph G with two paths P(X;) and P’(X;). The ith row of matriz A, i.e.,
A; = (%(H + J))s, corresponds to X; = (1,1,0,1,1,1,0,0).

For any {#1} coloring f on edges in the grid graph G, define D as the maximum
absolute value of the sum of the colors of edges of each path, among all the 2n + 2
paths. We now argue that D = Q(y/n).

First we define an n-dimensional vector x € {+1,—1}" with x; = f(e;), i.e., the
color of the jth vertical edge in G. Since the discrepancy of matrix A is Q(y/n), there
must be one row vector a; in A such that a; - x > ¢y/n for some constant c. In other
words, the sum of the colors of the edges in Xj is v =}, v, f(e;) with [z > cy/n.
Without loss of generality, we assume z > 0, which in turn implies z > c/n.

Now we define

z1 = Z fle) and z5:= Z f(e).

e€P(X;)\X; ee P (X:)\X;

If max{z1,22} > 0, then we are done as the total sum of colors of either P(X) or
P'(X) is at least x > ¢y/n. Otherwise, suppose we have z; < 0 and 23 < 0. We now
have from path P(X;), D > = + 21, and from path P'(X;), D > x + z3. Further,
consider paths P and P’, the total sum of colors of all the horizontal edges is z1 + zs.
Since both z; and 2o are negative, there should be

2D > Zf(e) + Z fle) =—z1 — zo.

ecP eepP’

Summing up all three inequalities, we have 4D > 2z. Thus D > z/2 > cy/n/2.
This finishes the proof for edge discrepancy, and the vertex discrepancy bound can
be obtained using the same trick as in the proof of claim 1. 0

The above theorem provides lower bounds for the discrepancy. Since hereditary
discrepancy is at least as high as discrepancy, the lower bounds also hold for hereditary
discrepancy.

Note that the paths used in the above theorem are 2-approximate shortest paths.
The shortest path from top left corner to the top right corner of the n x 2 grid is of
length n — 1 while all paths used are of length at most 2n — 2. The shortest path

This manuscript is for review purposes only.



1396
1397
1398
1399
1400
1401
1402

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

1437

1438
1439

THE DISCREPANCY OF SHORTEST PATHS 37

from top left corner to bottom right corner is of length n and all paths used in the
construction are of length at most 2n — 1. Therefore when we relax from shortest
paths to 2-approximate shortest paths the discrepancy bounds substantially go up. If
we replace each horizontal edge by a chain of [1/e] vertices, we can make these paths
to be (1 + &)-approximate shortest paths for any € > 0.

Grid graphs are a special family of planar graphs. Actually for grid graphs we
can say a bit more on discrepancy of shortest paths. If we take shortest paths on an
unweighted grid graph (without even requiring consistency property and there could
be exponentially many shortest path between two vertices), the discrepancy is O(1).
Specifically, for vertex discrepancy on a k x £ grid graph of left bottom corner at
the origin and the top right corner at coordinate (k — 1,¢ — 1), if we give a color
of +1 to all vertices of coordinate (x,y) with even x + y and a color of —1 to all
other vertices, any shortest path visits a sequence of vertices with sum of coordinates
alternating between even and odd values and thus has a total color of O(1). For edge
discrepancy, for all horizontal edges we give color +1 (—1) if the left endpoint is at
an even (odd) z-coordinate and the right endpoint is at an odd (even) z-coordinate.
We do the same for vertical edges. Again any shortest path has a ‘staircase’ shape
and a total coloring of O(1).

Appendix B. Relation Between Discrepancy and Hereditary Discrep-
ancy in General Graphs.

In Theorem 5.1, we showed a construction of a path weighted graph G whose
system of unique shortest paths IT satisfies herdisc, (IT) > Q(n'/*/,/log(n)). Here, we
will observe that this result extends to discrepancy:

THEOREM B.1. There are examples of n-node undirected weighted graphs G with
a unique shortest path between each pair of nodes in which this system of shortest

paths 11 has
/4
disc,(I1) > Q [ —| .

V/log(n)

Proof. Let G be the graph from Theorem 5.1, and let II be its system of unique
shortest paths. By definition of hereditary discrepancy, there exists an induced path

subsystem II' C II with
nl/4
disc,(I) > Q| — | .
V/log(n)

Recall that, by induced subsystem, we mean that we may view the paths of II as
abstract sequences of nodes, and then I’ is obtained from II by deleting zero or more
nodes and deleting all occurrences of those nodes from the middle of paths. Thus the
paths in II’ are not still paths in II, but they are paths in a different graph G’ on
n’ < n nodes. It thus suffices to argue that all paths in IT are

It thus suffices to argue that there is a graph G’ on n’ < n nodes in which all
paths in II’ are unique shortest paths. Indeed, this is well known, and is shown e.g.
n [13] (c.f. Lemma 2.4.4 and 2.4.11). To sketch the proof: suppose that a node v is
deleted from the initial system II. Consider each path = € II that contains v as an
internal node, i.e., it has the form

When v is removed, the path now contains the nodes u,x consecutively, and so we
must add (u,z) as a new edge to G’ so that 7 is a path in G’. We judiciously set
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the edge weight to be w(u,x) := w(u,v) + w(v,x). The weighted length of the path
7 does not change, and yet the distances of G’ majorize those of G, which implies
that 7 is still a unique shortest path in G’. Inducting this analysis over each deleted
vertex leads to the desired claim. O

Appendix C. Application in Matrix Analysis. Hereditary discrepancy
is intrinsically related to factorization norm, which has found applications in many
ares of computer science, including but not limited to quantum channel capacity,
communication complexity, etc. For any complex matrix A € C™*", its factorization
norm, denoted by ~2(A), is defined as the following optimization problem:

(C.1) 72(A) = min{[| L[z o0l [ Rll1»2 - A = LR} .

One can write (C.1) in a form of a semi-definite program (see Lee et al. [47]) and
also show that the Slater point exists. In particular, the primal and dual program
coincides. An interesting question in matrix analysis is to estimate the factorization
norm of different class of matrices. In a series of work, various authors have computed
tight bounds on the factorization norm of certain class of matrices:

e If A is a unitary matrix, then v5(4) = 1.

e If A e R" ™ is a positive semidefinite matrix with entries A;;, then

R

A) = A,
72( ) féliagxn 2%

e Mathias [50]: A satisfies the property that VAT Ael = VAAT ol = %H,
then
~ Tr(ATA)

VZ(A) - T

In particular, if A € {0,1}" is a lower-triangular one matrix, then y5(A4) =
O(logn) [37, 41, 45].
e If A € R"™ " is a lower-triangular Toeplitz matrix with entries decreasing
either polynomially or exponentially, then v5(A4) = O(1) [42].
Our tight bound on hereditary discrepancy for consistent path on graphs allows us
to give tight bound on the factorization norm for the corresponding incidence matrix.
In particular, we use the following result:

LEMMA C.1 (Matousek et al. [53]). For any real m x n matriz A € R™*", there
exists absolute constants 0 < ¢ < C' such that

72(4) < herdisc(A4) < Cvy2(A) log(m).

¢ +v/log(m)

Combining Lemma C.1 with our results, we have the following corollary:

COROLLARY C.2. Let Ag be the incident matriz for unique shortest path system
on an n vertices graph G. Then if G is bipartite, planar, or any general graph, then

12(Ag) = ©(n'/4).

Appendix D. Differentially Private All Sets Range Queries. Here we
introduce the DP-ASRQ problem and show its connection to the DP-APSD problem.
Given an undirected graph G, the problem of All Sets Range Queries (ASRQ)
considers each edge associated with a certain attribute, and the range is the set of
edges along a shortest path. Two type of queries are considered here: the bottleneck
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query returns the largest/smallest attribute in a range; while the counting query
returns the summation of all attributes.

At a schematic level, the ASRQ problem with counting queries is very similar to
the APSD problem: the graph topology is public and the edge attributes are consid-
ered private. Only that the shortest path structure is dictated by the edge weights
to be protected in the APSD problem, however, irrelevant to the edge attributes in
the ASRQ problem. This subtle difference has consequential caveat in the algorithm
design: the graph topology can be used, for example, to construct an exact hopset
first then apply perturbations to the edge attributes in the ASRQ problem; neverthe-
less, approach of this kind violates protecting the sensitive information in the APSD
problem, since adversarial inference can be made on edge weights when the graph
topology information is used. This observation also notes that the APSD problem
is strictly harder than the ASRQ problem: recall that the best additive error upper
bound of the APSD problem is still O(n'/2), while the other has O(n'/4) [29]. There-
fore, plugging in our new hereditary lower bound essentially closes the gap for the
ASRQ problem.

COROLLARY D.1 (Formal version of Theorem 1.7). Given an n-node undirected
graph, for any B € (0,1) and any €,8 > 0, no (¢,6)-DP algorithm for ASRQ has
additive error of o(n'/*) with probability 1 — 3.

DEFINITION D.2 (Differentially Private Range Queries). Let (R = (X,S), f) be
a system of range queries and w,w' : X — RZ0 be neighboring attribute functions.
Furthermore, let A be an algorithm that takes (R, f,w) as input. Then A is (e,9)-
differentially private on G if, for all pairs of neighboring attribute functions w,w’ and
all sets of possible outputs C, we have Pr[A(R, f,w) € C] < e*-Pr[A(R, f,w') € C]+4.
If 6 =0, we say A is e-differentially private on G.

To complete this section, we give the formal definition of the ASRQ problem
above. The definition of neighboring attributes follows Definition 9.2. The lower
bound proof of Corollary D.1 simply imitates the APSD problem, because the re-
duction from the linear query problem still holds despite the difference between two
problems. The proof is omitted to avoid redundancy.
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