

THE DISCREPANCY OF SHORTEST PATHS*

GREG BODWIN [†], CHENGYUAN DENG [‡], JIE GAO [§], GARY HOPPENWORTH [¶],
JALAJ UPADHYAY ^{||}, AND CHEN WANG [#]

Abstract. The *hereditary discrepancy* of a set system is a quantitative measure of the pseudo-random properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of *shortest paths* has found applications in differential privacy [Chen et al. SODA 23].

The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy $O(n^{1/4})$, and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs and improve a previous lower bound of $\Omega(n^{1/6})$ obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős.

As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from $\Omega(n^{1/6})$ [Chen et al. SODA 23] to $\tilde{\Omega}(n^{1/4})$, and we improve the lower bound on additive error for the differentially-private all sets range queries problem to $\tilde{\Omega}(n^{1/4})$, which is tight up to polylog n factors [Deng et al. WADS 23].

Key words. Discrepancy, Shortest path.

MSC codes. 68Q25, 68R10, 68U05

1. Introduction. In graph algorithms, a fundamental problem is to efficiently compute the distance or shortest path information of a given input graph. Over the last decade or so, the community has increasingly sought a principled understanding of the *combinatorial structure* of shortest paths, with the goal to exploit this structure in algorithm design. That is, in various graph settings, we can ask:

What notable structural properties hold for **shortest** path systems, that do not necessarily hold for **arbitrary** path systems?

The following are a few of the major successes of this line of work:

- An extremely popular strategy in the literature is to use *hitting sets*, in which we (often randomly) generate a set of nodes S and argue that it will hit the shortest path for every pair of nodes that are sufficiently far apart. Hitting sets rarely exploit any structure of shortest paths, as evidenced by the fact that most hitting set algorithms generalize immediately to arbitrary set systems. However, they have inspired a successful line of work into graphs of bounded *highway dimension* [1, 9, 12]; very roughly, these are graphs whose shortest paths admit unusually efficient hitting sets of a certain kind.

*Submitted to the editors DATE. A preliminary version with review of related work and proof details omitted appeared in the 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). <https://doi.org/10.4230/LIPIcs.ICALP.2024.27>

Funding: This work has been partially supported by NSF through AF 2153680, CCF-2118953, CCF-2208663, IIS-2229876, DMS-2220271, DMS-2311064, and CRCNS-2207440.

[†]University of Michigan (bodwin@umich.edu).

[‡]Rutgers University (cd751@rutgers.edu).

§Rutgers University (jg1555@rutgers.edu).

University of Michigan (garytho@umich.edu)

^{||}Rutgers University (jalaj.upadhyay@rutgers.edu).

#Texas A&M University (cwangjhw@tamu.edu).

- Shortest paths exhibit the notable structural property of *consistency*, i.e., any subpath of the shortest path is itself the shortest path. This fact is used throughout the literature on graph algorithms [13, 27, 28], including, e.g., in the classic Floyd-Warshall algorithm for All-Pairs Shortest Paths. A recent line of work has sought to characterize the additional structure exhibited by shortest path systems beyond consistency [2, 6, 13, 23, 25, 26, 27].
- Planar graphs have received special attention within this research program, and planar shortest path systems carry some notable additional structure. For example, it is known that planar shortest paths have unusually efficient tree coverings [8, 17], and that their shortest paths can be compressed into surprisingly small space [18, 19]. Shortest path algorithms also often benefit from more general structural facts about planar graphs, such as separator theorems [40, 43].

The main result of this paper is a new structural separation between shortest path systems and arbitrary path systems, expressed through the lens of *discrepancy theory*. We will come to formal definitions of discrepancy in just a moment, but at a high level, discrepancy has been described as a quantitative measure of the combinatorial pseudorandomness of a discrete system [24], and it has widespread applications in discrete and computational geometry, random sampling and derandomization, communication complexity, and much more¹. We will show the following:

THEOREM 1.1 (Main Result, Informal). *The discrepancy of unique shortest path systems in weighted graphs is inherently smaller than the discrepancy of arbitrary path systems in graphs.*

This separation between unique shortest paths and arbitrary paths is due to the structural property of *consistency* of unique shortest path systems, which is well-studied in the literature [13, 27, 28].

Our results can be placed within a larger context of prior work in computational geometry. A classical topic in this area is to determine the discrepancy of incidence structures between points and geometric range spaces such as axis-parallel rectangles, half-spaces, lines, and curves (cf. [20, Section 1.5]). These results have been used to show lower bounds for geometric range searching [54, 62].

Indeed, systems of unique shortest paths in graphs capture some of the geometric range spaces studied in prior work. For instance, arrangements of straight lines in Euclidean space can be interpreted as systems of unique shortest paths in an associated graph, implying a relation between the discrepancies of these two set systems. This connection has recently found applications in the study of differential privacy on shortest path distance and range query algorithms [22, 29].

More generally, discrepancy on graphs has also found applications in proving tight lower bounds on answering cut queries on graphs [33, 49].

1.1. Formal Definitions of Discrepancy. We first define some notation that we use throughout the paper. We use the letter \mathbb{R} to denote the set of real numbers and \mathbb{N} to denote the set of natural numbers. For $n \in \mathbb{N}$, we use the notation $[n]$ to denote the set $\{1, \dots, n\}$. For a real number $r \in \mathbb{R}$, we use $|r|$ to denote the absolute value.

For a vector v , we use the notation v_i to denote its i -th coordinate, and for a matrix A , we use the notation $A_{i,j}$ to denote its (i,j) -th entry. For a vector $v \in \mathbb{R}^n$

¹We refer to the excellent textbooks of Alexander, Beck, and Chen [3], Chazelle [20], and Matoušek [52] for discussion and further applications.

85 and any positive number $p \in \mathbb{N}_{\geq 0}$, we use different vector norms:

86
$$\|v\|_p := (|v_1|^p + \cdots + |v_n|^p)^{1/p}$$

88 where $|\cdot|$ denote the absolute value. By continuity, $\|v\|_\infty := \max_{1 \leq i \leq n} |v_i|$. For
89 positive $p, q \in \mathbb{N}_{\geq 0}$ and any matrix $A \in \mathbb{R}^{m \times n}$,

90
$$\|A\|_{p \rightarrow q} = \max \frac{\|Ax\|_q}{\|x\|_p}.$$

91 We reserve the symbol G for graphs with vertex set V and edge set E . We reserve
92 the symbol Π to denote a given path system. For a subset $U \subseteq V$, we use the notation
93 $G[U]$ to denote the subgraph induced by the vertex set U .

94 Throughout the paper, we use the \tilde{O} and $\tilde{\Omega}$ to hide poly-logarithmic factors in
95 the input parameter, n .

96 We first collect the basic definitions needed to understand this paper.

97 **DEFINITION 1.2** (Edge and Vertex Incidence Matrices). *Given a graph $G =$
98 (V, E) and a set of paths Π in G , the associated vertex incidence matrix is given by
99 $A \in \{0, 1\}^{|\Pi| \times |V|}$, where for each $v \in V$ and $\pi \in \Pi$ the corresponding entry is*

100
$$A_{\pi, v} = \begin{cases} 1 & \text{if } v \in \pi \\ 0 & \text{if } v \notin \pi. \end{cases}$$

101 *The associated edge incidence matrix is given by a binary matrix $A \in \{0, 1\}^{|\Pi| \times |E|}$,
102 where for each $e \in E$ and $\pi \in \Pi$ the corresponding entry is*

103
$$A_{\pi, e} = \begin{cases} 1 & \text{if } e \in \pi \\ 0 & \text{if } e \notin \pi. \end{cases}$$

104 **DEFINITION 1.3** (Discrepancy and Hereditary Discrepancy). *Given a matrix $A \in$
105 $\mathbb{R}^{m \times n}$, its discrepancy is the quantity*

106
$$\text{disc}(A) = \min_{x \in \{1, -1\}^n} \|Ax\|_\infty.$$

107 *Its hereditary discrepancy is the maximum discrepancy of any submatrix A_Y obtained
108 by keeping all rows but only a subset $Y \subseteq [n]$ of the columns; that is,*

109
$$\text{herdisc}(A) = \max_{Y \subseteq [n]} \text{disc}(A_Y)$$

110 For a system of paths Π in a graph G , we will write $\text{disc}_v(\Pi)$ and $\text{herdisc}_v(\Pi)$ to
111 denote the discrepancy and the hereditary discrepancy of its vertex incidence matrix,
112 and $\text{disc}_e(\Pi)$ and $\text{herdisc}_e(\Pi)$ to denote the discrepancy and the hereditary discrep-
113 ency of its edge incidence matrix.

114 For intuition, the vertex discrepancy of a system of paths Π can be equivalently
115 understood as follows. Suppose that we color each node in G either red or blue, with
116 the goal to balance the red and blue nodes on each path as evenly as possible. The
117 discrepancy associated to that particular coloring is the quantity

118
$$\max_{\pi \in \Pi} \left| |\{v \in \pi \mid v \text{ is colored red}\}| - |\{v \in \pi \mid v \text{ is colored blue}\}| \right|.$$

119 The discrepancy of the system Π is the minimum possible discrepancy over all
 120 colorings. The hereditary discrepancy is the maximum discrepancy taken over all
 121 *induced path subsystems* Π' of Π ; that is, Π' is obtained from Π by focusing only on
 122 the colors² of a subset of vertices $Y \subseteq V$. Edge discrepancy can be understood in a
 123 similar way, coloring edges rather than vertices.

124 Another related quantity is the ℓ_2 -discrepancy and ℓ_2 -hereditary discrepancy,
 125 which use ℓ_2 norm instead of ℓ_∞ norm in the definition.

126 **DEFINITION 1.4** (ℓ_2 -Discrepancy and ℓ_2 -Hereditary Discrepancy). *Given a matrix*
 127 $A \in \mathbb{R}^{m \times n}$, *its ℓ_2 -discrepancy is the quantity*

$$128 \quad \text{disc}_2(A) = \min_{x \in \{1, -1\}^n} \frac{1}{\sqrt{m}} \|Ax\|_2.$$

129 *Its hereditary discrepancy is the maximum discrepancy of any submatrix A_Y obtained
 130 by keeping all rows but only a subset $Y \subseteq [n]$ of the columns; that is,*

$$131 \quad \text{herdisc}_2(A) = \max_{Y \subseteq [n]} \text{disc}_v(A_Y)$$

132 For a system of paths Π in a graph G , we will write $\text{disc}_{v,2}(\Pi)$ and $\text{herdisc}_{v,2}(\Pi)$
 133 to denote the ℓ_2 -discrepancy and the ℓ_2 -hereditary discrepancy of its vertex incidence
 134 matrix, and $\text{disc}_{e,2}(\Pi)$ and $\text{herdisc}_{e,2}(\Pi)$ to denote the ℓ_2 -discrepancy and the ℓ_2 -
 135 hereditary discrepancy of its edge incidence matrix.

136 **1.2. Our Results.** Our main result is an upper and lower bound on the hered-
 137 itary discrepancy of unique shortest path systems in weighted graphs, which match
 138 up to hidden $\text{polylog } n$ factors.

139 **THEOREM 1.5** (Main Result).

- 140 • **(Upper Bound)** *For any n -node undirected weighted graph G with a unique
 141 shortest path between each pair of nodes, there exists a polynomial-time algo-
 142 rithm that finds a coloring for the system of shortest paths Π such that:*

$$143 \quad \text{herdisc}_v(\Pi) \leq \tilde{O}(n^{1/4}) \quad \text{and} \quad \text{herdisc}_e(\Pi) \leq \tilde{O}(n^{1/4}).$$

- 144 • **(Lower Bound)** *There are examples of n -node undirected weighted graphs
 145 G with a unique shortest path between each pair of nodes in which this system
 146 of shortest paths Π has $\text{herdisc}_v(\Pi) \geq \tilde{\Omega}(n^{1/4})$ and $\text{herdisc}_e(\Pi) \geq \tilde{\Omega}(n^{1/4})$. In
 147 fact, in these lower bound examples we can take G to be planar or bipartite.*

148 The upper bound in Theorem 1.5 is constructive and algorithmic; that is, we
 149 provide an algorithm that colors vertices (edges, respectively) of the input graph to
 150 achieve vertex (edge, respectively) discrepancy $\tilde{O}(n^{1/4})$ on its shortest paths (or on
 151 a given subsystem of its shortest paths). Notably, Theorem 1.5 should be contrasted
 152 with the fact that the maximum possible discrepancy of any *simple path system*³ of
 153 polynomial size in a general graph is $\tilde{\Theta}(n^{1/2})$. The upper bound of $\tilde{O}(n^{1/2})$ follows
 154 by coloring the nodes randomly and applying standard Chernoff bounds. The lower
 155 bound is non-trivial and is proved in Appendix A – in fact, the lower bound on
 156 discrepancy (as well as hereditary discrepancy) for a grid graph for a polynomial

²In the coloring interpretation, hereditary discrepancy allows a different choice of coloring for each subsystem Π' , rather than fixing a coloring for Π and considering the induced coloring on each Π' .

³A path system is *simple* if no individual path repeats nodes.

TABLE 1

Overview of vertex/edge (hereditary) discrepancy on general undirected graphs and special families of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is the number of edges. D is the graph diameter or the longest number of hops of paths considered.

		Tree	Bipartite	Planar	Undirected Graph
Vertex	disc	$\Theta(1)$	$\Theta(1)$	$O(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$
	herdisc	$\Theta(1)$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$	$\Omega(n^{1/6})[21] \rightarrow \tilde{\Theta}(n^{1/4})$
Edge	disc	$\Theta(1)$	$\Theta(1)$	$O(n^{1/4})$	$O(n^{1/4})$
	herdisc	$\Theta(1)$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$	$\Omega(n^{1/6})[21] \rightarrow \tilde{\Theta}(n^{1/4})$

TABLE 2

Overview of vertex/edge (hereditary) discrepancy on general directed graphs and special families of graph: tree, bipartite and planar graphs. Here n is the number of vertices of the graph and m is the number of edges. D is the graph diameter or the longest number of hops of paths considered.

		Tree	Bipartite	Planar	Directed Graph
Vertex	disc	$\Theta(1)$	$\Theta(1)$	$O(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$
	herdisc	$\Theta(1)$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$
Edge	disc	$\Theta(1)$	$\Theta(1)$	$O(n^{1/4})$	$\min \{O(m^{1/4}), \tilde{O}(D^{1/2})\}$
	herdisc	$\Theta(1)$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Theta}(n^{1/4})$	$\tilde{\Omega}(n^{1/4})$

157 number of *simple* paths can be $\Omega(\sqrt{n})$. Thus, Theorem 1.5 represents a concrete
158 separation between unique shortest path systems and general path systems.

159 We refer to Table 1 for our results for undirected graphs and to Table 2 for our
160 results for directed graphs. All the bounds on discrepancy and hereditary discrepancy
161 hold for ℓ_2 -discrepancy and ℓ_2 -hereditary discrepancy. See Section 8 for details.

162 The main open question that we leave in this work is on the hereditary edge
163 discrepancy of shortest paths in *directed* weighted graphs. We show the following:

164 **THEOREM 1.6.** *For any n -node, m -edge directed weighted graph G with a unique
165 shortest path between each pair of nodes, the system of shortest paths Π satisfies*

$$166 \quad \text{herdisc}_v(\Pi) \leq O(n^{1/4}) \quad \text{and} \quad \text{herdisc}_e(\Pi) \leq O(m^{1/4}).$$

167 Lower bounds in the undirected setting immediately apply to the directed setting
168 as well, and so this essentially closes the problem for directed hereditary vertex
169 discrepancy. It is an interesting open problem whether the upper bound for directed
170 hereditary edge discrepancy can be improved to $\tilde{O}(n^{1/4})$ as well.

171 We also leave open whether our lower bound for hereditary discrepancy extends
172 to (non-hereditary) edge discrepancy as well, and to (non-hereditary) vertex or edge
173 discrepancy of planar graphs.

Applications to Differential Privacy. One application of our discrepancy lower bound on unique shortest paths is in differential privacy (DP) [31, 32]. An algorithm is *differentially private* if its output distributions are relatively close regardless of whether an individual's data is present in the data set. More formally, for two

databases Y and Y' that are identical except for one data entry, a randomized algorithm \mathcal{M} is (ϵ, δ) -differentially private if, for any measurable set A in the range of the algorithm \mathcal{M} ,

$$\Pr[\mathcal{M}(Y) \in A] \leq e^\epsilon \Pr[\mathcal{M}(Y') \in A] + \delta.$$

174 The topic of discrepancy of paths on a graph is related to two problems already
 175 studied in differential privacy: *All Pairs Shortest Distances* (APSD) [22, 36, 59] and
 176 *All Sets Range Queries* (ASRQ) [29]. In both of these problems, we assume that the
 177 graph topology is public. In the APSD problem, the edge weights are not publicly
 178 known. A query in APSD is a pair of vertices $(u, v) \in V \times V$ and the answer is the
 179 shortest distance between u and v . In contrast, in ASRQ problem, the edge weights
 180 are assumed to be known, and every edge also has a private *attribute*. Here, the range
 181 is defined by the shortest path between two vertices (based on publicly known edge
 182 weights). The answer to the query $(u, v) \in V \times V$ then is the sum of private attributes
 183 along the shortest path. In what follows, we give a high-level argument for the lower
 184 bound on DP-APSD problem; the lower bound of $\tilde{\Omega}(n^{1/4})$ for the DP-ASRQ problem
 185 also follows nearly the same argument.

186 Chen *et al.* [22] showed that DP-APSD can be formulated as a linear query
 187 problem. In this setting, we are given a vertex incidence matrix A of the $\binom{n}{2}$ shortest
 188 paths of a graph and a vector x of length n and asked to output Ax . They show that
 189 the hereditary discrepancy of the matrix A provides a lower bound on the ℓ_∞ error for
 190 any (ϵ, δ) -DP mechanism for this problem. With this argument, our new discrepancy
 191 lower bound immediately implies the following lower bounds.

192 **THEOREM 1.7** (Informal version of Corollaries 7.1 and F.1). *The (ϵ, δ) -DP APSD
 193 problem and (ϵ, δ) -DP ASRQ problem require additive error at least $\tilde{\Omega}(n^{1/4})$.*

194 The best known additive error bound for the DP-ASRQ problem is $\tilde{O}(n^{1/4})$ [29],
 195 which, by Theorem 1.7, is tight up to a polylog(n) factor. Prior to this work, the only
 196 known lower bounds for DP-ASRQ and DP-APSD were from a point-line system with
 197 hereditary discrepancy of $\Omega(n^{1/6})$ [22]. The best known additive error upper bound
 198 for DP-APSD is $\tilde{O}(n^{1/2})$ [22, 36]. Closing this gap of $n^{1/4}$ remains an interesting open
 199 problem.

200 **1.3. Our Techniques.** We provide a brief overview of techniques used for our
 201 upper and lower bounds on discrepancy separately.

202 **Upper Bound Techniques.** A folklore structural property of unique shortest paths
 203 on undirected graphs is *consistency*. Formally, a system of paths Π is *consistent* if
 204 for any two paths π_1, π_2 , their intersection $\pi_1 \cap \pi_2$ is a (possibly empty) contiguous
 205 subpath of each. It is well known that, for any undirected graph $G = (V, E, w)$ with
 206 unique shortest paths⁴, its system of shortest paths Π is consistent. Our discrepancy
 207 upper bounds actually apply to *any* consistent system of paths – not just those that
 208 arise as unique shortest paths in an undirected graph. Notice that unique shortest
 209 paths on *general directed graphs* are not necessarily consistent, but indeed are on
 210 directed acyclic graphs (DAGs).

211 We use two different proof techniques to obtain discrepancy upper bounds. First,
 212 we consider the paths as a set system with vertices (for vertex discrepancy) or edges
 213 (for edge discrepancy) as the ground set and then apply a standard application of *pri-
 214 mal shatter functions* (Definition 3.5), which bounds the number of subsets obtained

⁴In general, on a weighted undirected graph one can use random perturbation to ensure all shortest paths are unique.

215 by limiting to only s elements. For any family of consistent paths, as well as shortest
 216 paths on directed graphs (which are not necessarily consistent), the primal shatter
 217 function is upper bounded by $O(s^2)$. By a well known bound on discrepancy through
 218 the primal shatter function, this immediately gives us an upper bound of $O(n^{1/4})$
 219 for vertex discrepancy and $O(m^{1/4})$ for edge discrepancy (since edge discrepancy is
 220 defined on a ground set of m edges in the graph G).

When the graph is dense, this upper bound on edge discrepancy deteriorates, becoming trivial when $m = \Theta(n^2)$. We thus present a second proof of $\tilde{O}(n^{1/4})$ for both vertex and edge discrepancy for a family of consistent paths, which explicitly constructs a low-discrepancy coloring. This improves the bound for vertex discrepancy by polylogarithmic factors and edge discrepancy by polynomial factors. The main idea in this construction is to adapt the *path cover* technique, used in the recent breakthrough on shortcut sets [44]. That is, we start by finding a small base set of roughly $n^{1/2}$ node-disjoint shortest paths in the distance closure of the graph. These paths have the property that any other shortest path π in the graph contains at most $O(n^{1/2})$ nodes that are not in any paths in the base set. We then color *randomly*, as follows:

- For every node that is not contained in any path in the base set, we assign its color randomly. Thus, applying concentration bounds, the contribution of these nodes to the discrepancy of π will be bounded by $\pm \tilde{O}(n^{1/4})$.
- For every path in the base set, we choose the color of the first node in the path at random, and then alternate colors along the path after that. Then we can argue that by consistency, the nodes in each base path randomly contribute $+1$ or -1 (or 0) to the discrepancy of π (see Figure 1 for a visualization). Since there are only $n^{1/2}$ paths in the base set, we may again apply concentration bounds to argue that the contribution to discrepancy from these base paths will only be $\pm \tilde{O}(n^{1/4})$.

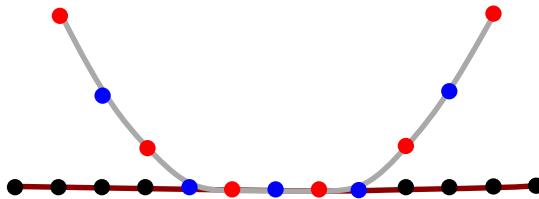


FIG. 1. If we color the nodes of a unique shortest path with alternating colors, then its nodes will contribute discrepancy 0, +1, or -1 to all unique shortest paths that intersect it.

Summing together these two parts, we obtain a bound of $\tilde{O}(n^{1/4})$ on discrepancy with high probability. We can translate this to a bound on *hereditary* discrepancy using the fact that consistency is a hereditary property of path systems.

Lower Bound Techniques. Lower bounds on discrepancy are typically obtained by the trace bound (e.g., by Chazelle and Lvov [21]) on an explicit graph construction. The state-of-the-art lower bounds on the discrepancy of unique shortest paths were achieved using a point-line construction of Erdős [55], which had n points and n lines in \mathbb{R}^2 with each point staying on $\Theta(n^{1/3})$ lines and each line going through $\Theta(n^{1/3})$ points. This point-line system also implies tight lower bounds for the Szemerédi-Trotter theorem [61] and the discrepancy of arrangements of lines in the plane [21]. It can be associated with a graph that possesses useful properties derived from geometry. If edges in this graph are weighted by Euclidean distance, then the paths in the graph

254 corresponding to straight lines are unique shortest paths by design. Two such shortest
 255 paths (along straight lines) only intersect at most once.

256 Probably not a coincidence, this point-line construction also provides lower
 257 bounds on the graph hopset problem. An (exact) hopset of a graph G with hop-
 258 bound β is a small set of additional edges H in the distance closure of G , such that
 259 every pair of nodes has a shortest path in $G \cup H$ containing at most β edges. Until
 260 recently, the state-of-the-art lower bound on the size of the hopset uses exactly the
 261 graph derived from the point-line incidence example. Recently, a construction by
 262 Bodwin and Hoppenworth [15] obtained stronger hopset lower bounds with a differ-
 263 ent geometric graph construction, which still took place in \mathbb{R}^2 but allowed shortest
 264 paths to have many vertices/edges in common. We show that this construction can be
 265 repurposed to derive a stronger lower bound of $\tilde{\Omega}(n^{1/4})$ on vertex hereditary discrep-
 266 ency by applying the trace bound of Larsen [46]. Combined with our upper bounds,
 267 this substantially improves our understanding of the discrepancy of unique shortest
 268 paths.

269 The above upper and lower bounds are for general graphs. Naturally, one can
 270 ask if we have better bounds for special families of graphs. We further show that
 271 the lower bounds remain the same for two interesting families: *planar graphs* and
 272 *bipartite graphs*. The lower bound construction mentioned above is not planar, and
 273 so this requires some additional work. A natural attempt is to restore planarity by
 274 adding vertices to the construction wherever two edges cross. However, this comes
 275 at a cost of an increase in the number of vertices and also with a potential danger
 276 of altering the shortest paths. We show that the number of crossings is not too
 277 much higher than n . Then, by carefully changing the weights of the edges and by
 278 exploiting the geometric properties of the construction, we show that the topology
 279 and incidence of shortest paths are not altered. For bipartite graphs, although the
 280 vertex discrepancy can be made very low – by coloring the vertices on one side $+1$
 281 and vertices on the other side -1 – the hereditary discrepancy can be as high as the
 282 general graph setting. Specifically, we show a 2-lift of any graph G to a bipartite
 283 graph which essentially keeps the same hereditary discrepancy.

284 2. Related Work.

285 2.1. Discrepancy on graphs.

286 In graph theory, the *discrepancy* of a graph introduced by Erdős [34] is defined as follows:

$$287 \max_{U \subseteq V} \left| e(G[U]) - p \binom{|U|}{2} \right|,$$

288 where $e(G[U])$ is the number of edges of the induced subgraph $G[U]$ on vertices $U \subseteq V$
 289 and $p = \frac{|E|}{\binom{n}{2}}$ is the density of edges. If we consider a complete graph and randomly
 290 color each edge with probability p , the above definition of discrepancy quantifies the
 291 deviation of induced subgraphs of G from their expected size. Erdős and Spencer [35]
 292 showed that the graph discrepancy is $\Theta(n^{3/2})$ when $p = 1/2$. This definition and
 293 related definitions (e.g., positive discrepancy, dropping the absolute operator) have
 294 applications to quasi-randomness [24], graph cuts and edge expansion [4, 16, 57].
 295 There is also study of multicolor discrepancy [38, 39] that we skip here.

296 Of particular relevance to our work, Balogh et al. [7] studied edge discrepancy (as
 297 defined in this paper) of (spanning) trees, paths and Hamilton cycles of a graph G .
 298 In particular, they showed that, for any labeling of edges of G , there is a path with
 299 discrepancy $\Omega(n)$, even when the graph is a grid. Prior to this, either probabilistic

301 construction exhibiting such a lower bound was known [10, 30, 48] or an explicit
 302 construction of linear size non-planar graphs was known [5]. The construction for the
 303 planar graph in Balogh et al. [7] can be extended to coloring of vertices such that there
 304 is a path with vertex discrepancy $\Omega(n)$ when there are exponentially many paths and
 305 $\Omega(\sqrt{n})$ when there are polynomially many paths. (see Appendix A for details).

306 Discrepancy of paths in directed graphs has also been studied. Reimer [58] showed
 307 that, if a directed graph has discrepancy $\Omega(n)$, then the graph must have $\Omega(n^2)$
 308 edges. In the case when we do not allow antiparallel edges, Ben-Eliezer et al. [11]
 309 showed that there is a directed graph with $\Theta(n^2 \log^2(n))$ edges such that any mapping
 310 $\chi : E \rightarrow \{-1, 1\}$ will either have a path of length $\Omega(n)$ and all edges mapped to -1
 311 or a path of length $\Omega(n \log(n))$ with all edges mapped to $+1$.

312 **2.2. Connection with curve discrepancy.** A classical topic in computational
 313 geometry is to study upper and lower bounds of the discrepancy/hereditary discrepancy
 314 of the incidence matrix of geometric objects and a set of points. For example,
 315 for a set of n points and n halfplanes in \mathbb{R}^2 , the n by n incidence matrix (with rows
 316 corresponding to halfplanes and columns corresponding to points) has discrepancy
 317 of $\Omega(n^{1/4})$. For n points and n lines in the plane, the discrepancy of the incidence
 318 matrix is $\Omega(n^{1/6})$ [21]. In general the discrepancy of such incidence matrix is related
 319 to the ‘complexity’ of the geometric shapes. In our setting of a graph, the set of all
 320 pairs shortest paths defines a set system on the vertices. When the graph is planar,
 321 the shortest paths are essentially simple curves in the plane.

322 We would like to compare our results with discrepancy of curves and points in the
 323 geometric setting. Using the classification in Pach and Sharir [56], a family of simple
 324 curves have k *degree of freedom* and *multiplicity type* s if, for any k points, there are at
 325 most s curves passing through all of them, and any pair of curves intersect in at most
 326 s points. Lines in the plane have degree of 2 and multiplicity of 1. A set of curves
 327 with degree of 2 and multiplicity of 1 is called *pseudolines* – two pseudolines have at
 328 most one intersection. For n points and n lines, the discrepancy is upper bounded by
 329 $O(n^{1/6}(\log n)^{2/3})$ [20] which is nearly tight by a polylogarithmic factor. The proof uses
 330 the standard partial coloring argument with the Szeremédi-Trotter bound on point-
 331 line incidence – for any n points and m lines there are at most $O(m^{2/3}n^{2/3} + m + n)$
 332 point-line incidences [61]. The Szeremédi-Trotter bound can be extended to a set
 333 of pseudolines [56, 60]. Therefore the same proof and upper bound hold for the
 334 discrepancy of pseudolines.

335 For a consistent set of shortest paths, two shortest paths will only intersect at a
 336 contiguous segment, which may have multiple vertices/points. Thus using the curve
 337 classification criterion, a consistent family of shortest paths in the plane has degree of
 338 2 but multiplicity s that is possibly higher than a constant. In fact, our discrepancy
 339 lower bound construction in the planar graph setting uses a design with s possibly
 340 as high as $n^{1/2}$. This is the major difference of shortest paths in a planar graph
 341 with pseudolines, which allows the discrepancy of shortest paths to go beyond the
 342 pseudoline upper bound of $\tilde{O}(n^{1/6})$ ⁵.

343 **3. Preliminaries.** A *path system* is a pair $S = (V, \Pi)$ where V is a ground set
 344 of nodes and Π is a set of vertex sequences called *paths*. Each path may contain, at
 345 most, one instance of each node. We now formally define consistency, a structural

⁵Using the incidence upper bound for $k = 2$ and $s = n^{1/2}$ from [60] and partial coloring, one can obtain a discrepancy upper bound of $\tilde{O}(n^{1/3})$ for our path construction. In contrast, we obtained a nearly tight bound of $\tilde{\Theta}(n^{1/4})$.

346 property of unique shortest paths that will be useful.

347 **DEFINITION 3.1.** *A path system $S = (V, \Pi)$ is consistent if no two paths in S 348 intersect, split apart, and then intersect again later. Formally:*

- 349 • *In the undirected setting, consistency means that for all $u, v \in V$ and all 350 $\pi_1, \pi_2 \in \Pi$ such that $u, v \in \pi_1 \cap \pi_2$, we have that $\pi_1[u, v] = \pi_2[u, v]$, i.e., the 351 intersection of π_1 and π_2 is a contiguous subpath (subsequence) of π_1 and π_2 .*
- 352 • *In the directed setting, consistency means that for all $u, v \in V$ and all $\pi_1, \pi_2 \in \Pi$ such that u precedes v in both π_1 and π_2 , we have that $\pi_1[u, v] = \pi_2[u, v]$.*

354 In every weighted graph for which all pairs shortest paths exist (i.e., no negative 355 cycles), we can represent all-pairs shortest paths using a consistent path system. In 356 particular, if all shortest paths are *unique*, then consistency is implied immediately.

357 We will investigate the combinatorial discrepancy of path systems (V, Π) . Usually, 358 we will assume that $|V| = n$ and $|\Pi|$ is polynomial in n . We define a vertex coloring 359 $\chi : V \mapsto \{-1, 1\}$ and define the *discrepancy* of Π as

$$360 \quad \text{disc}(\Pi) = \min_{\chi} \chi(\Pi), \quad \text{where } \chi(\Pi) = \max_{\pi \in \Pi} |\chi(\pi)|, \quad \chi(\pi) = \sum_{v \in \pi} \chi(v).$$

Using a random coloring χ , we can guarantee that for all paths $\pi \in \Pi$ [20]:

$$|\chi(\pi)| \leq \sqrt{2|\pi| \ln(4|\Pi|)}.$$

361 This immediately provides a few observations.

362 **OBSERVATION 3.2.** *When Π is a set of paths with size polynomial in n , then 363 $\text{disc}(\Pi) = O(\sqrt{n \log n})$. This bound is true even for paths that are possibly non- 364 consistent.*

365 **OBSERVATION 3.3.** *When the longest path in Π has D vertices we have $\text{disc}(\Pi) = 366 O(\sqrt{D \log n})$. Thus, for graphs that have a small diameter (e.g., small world graphs), 367 the discrepancy of shortest paths is automatically small.*

368 *Hereditary discrepancy* is a more robust measure of the complexity of a path 369 system (V, Π) , defined as $\text{herdisc}(\Pi) = \max_{Y \subseteq V} \text{disc}(\Pi|_Y)$, where $\Pi|_Y$ is the collection 370 of sets of the form $\pi \cap Y$ with $\pi \in \Pi$. Clearly, $\text{herdisc}(\Pi) \geq \text{disc}(\Pi)$. Sometimes the 371 discrepancy of a set system may be small while the hereditary discrepancy is large [20]. 372 Thus in the literature, we often talk about lower bounds on the hereditary discrepancy.

373 Now that we have defined vertex and edge (hereditary) discrepancy, one may wonder 374 if there is an underlying relationship between vertex and edge (hereditary) 375 discrepancy since they share the same bounds in most settings presented in Table 2. The 376 following observation shows that vertex discrepancy bounds directly imply bounds on 377 edge discrepancy.

378 **OBSERVATION 3.4.** *Denote by $\text{disc}(n)$ (and $\text{herdisc}(n)$) the maximum discrepancy 379 (minimum hereditary discrepancy, respectively) of a consistent path system of a (undi- 380 rected or directed) graph of n vertices. We have that*

- 381 1. *Let $g(x)$ be a non-decreasing function. If $\text{herdisc}_v(n) \geq g(n)$, then*

$$\text{herdisc}_e(n) \geq g(n/2).$$

- 382 2. *Let $f(x)$ be a non-decreasing function. If $\text{disc}_v(n) \leq f(n)$, then*

$$\text{disc}_e(n) \leq f(n).$$

381 *Proof.* We first show that if graph $G = (V, E, w)$ with the consistent path
 382 matrix A_v has hereditary discrepancy at least $g(n)$, we can obtain another graph
 383 $G' = (V', E', w')$ and matrix A_e as the (consistent path) edge incidence matrix with
 384 hereditary discrepancy at least $g(n/2)$. The construction is as follows.

- 385 (a) We first split each vertex $v \in V$ in G to two vertices $(v_{\text{in}}, v_{\text{out}})$ to obtain V' .
- 386 (b) For every $v \in V$, add a single edge $(v_{\text{in}}, v_{\text{out}})$ to E' .
- 387 (c) For any $v \in V$ and each edge $(u, v) \in E$ (with the fixed v), add edges $(u_{\text{out}}, v_{\text{in}})$
 388 and $(u_{\text{in}}, v_{\text{out}})$ to E' .

389 The path incident matrix A_e is defined as follows: for each path as a row a of
 390 A_v , construct a new path in G' by following the order of $u_{\text{out}} \rightarrow v_{\text{in}} \rightarrow v_{\text{out}} \rightarrow w_{\text{in}}$ for
 391 a $u \rightarrow v \rightarrow w$ sequence. For each row in A_v , we mark the used edges as 1 in A_e with
 392 the path constructed by the above process. Note that the new path system defined
 393 by A_e remains consistent: for any intersection between the two paths $P_1 \cap P_2 =$
 394 $(u_1, u_2, \dots, u_\ell)$, the intersection remains a single path of $(u_{1,\text{in}}, u_{1,\text{out}}, \dots, u_{\ell,\text{in}}, u_{\ell,\text{out}})$
 395 in A_e .

396 Let Y be the columns that induces the $g(n)$ discrepancy on G , i.e.,

$$397 \quad \min_{x \in \{-1, +1\}^{|Y|}} \|A_{v_Y} x\|_\infty = g(n).$$

398 Now, observe that, for each row in A_e , an edge $(v_{\text{in}}, v_{\text{out}})$ is marked as 1 if and only if v
 399 is marked as 1 in A_v . Therefore, we can take the new set Y' as the edges corresponding
 400 to Y , and there is

$$401 \quad \min_{x \in \{-1, +1\}^{|Y'|}} \|A_{e_{Y'}} x\|_\infty = \min_{x \in \{-1, +1\}^{|Y|}} \|A_{v_Y} x\|_\infty = g(n).$$

402 Finally, since graph G' has $n' = 2n$ vertices, we have the hereditary discrepancy to
 403 be at least $g(n'/2)$, as desired.

404 We next show that the hereditary edge discrepancy of G is at most $f(m)$, which
 405 implies the discrepancy upper bound. For a graph with n vertices, m edges, and
 406 a path incident matrix A_e , suppose Y is the set of columns (edges) that attain the
 407 hereditary discrepancy. We can add a vertex v_e for each $e \in Y$ and construct a new
 408 path incident matrix A_v , which is a matrix with $|Y|$ rows. Concretely, for each row
 409 of A_v , we simply let vertices $v_e \in Y$ be 1 if the corresponding edge is used in A_e . By
 410 the consistency of A_e , the new path incident matrix also characterizes a consistent
 411 path system (we can think of the underlying graph as the complete graph on a vertex
 412 set of Y). Note that we can get $f(m)$ discrepancy for the path system characterized
 413 by A_e as there are at most m vertices in A_e . This implies a $f(m)$ hereditary edge
 414 discrepancy on the original path system, which in turn implies the desired discrepancy
 415 upper bound.

416 Finally, note that the argument remains valid when the graph is directed, which
 417 means the results hold for both undirected and directed graphs. \square

418 We also use some technical tools from discrepancy theory and statistics.

419 **3.1. Known Results in Discrepancy Theory.** The first result that we discuss
 420 is the one that gives an upper bound on the discrepancy of a set system in terms of
 421 *primal shatter function*.

422 **DEFINITION 3.5** (Primal Shatter Function). *Let (X, \mathcal{R}) be a set system, i.e., X
 423 is a ground state and $S = \{S_1, S_2, \dots, S_\ell\}$ with $S_i \subseteq X$ for all $1 \leq i \leq \ell$. Let s be a
 424 positive integer. The primal shatter function, denoted as $\pi_{\mathcal{R}}(s)$, is defined as*

$$425 \quad \pi_{\mathcal{R}}(s) := \max_{A \subseteq X: |A|=s} |\{A \cap S \mid S \in \mathcal{R}\}|.$$

426 The following is a well-known result of the discrepancy theory.

427 PROPOSITION 3.6 (Theorem 1.2 in Matousek [51]). *Given a set system (X, \mathcal{R}) ,
428 the discrepancy of a range space \mathcal{R} whose primal shatter function is bounded by
429 $\pi_{\mathcal{R}}(x) = cx^d$, for some constant $c > 0$, $d > 1$, is*

$$430 \quad O(n^{1/2-1/(2d)}),$$

431 where n is the size of the ground state, and $O(\cdot)$ hides the dependency on c and d .

432 For the lower bound on the hereditary discrepancy, one general result is the *trace
433 bound* first shown by Chazelle and Lyov [21].

434 LEMMA 3.7 (Trace Bound of Chazelle and Lyov [21]). *If A is an m by n incidence
435 matrix and $M = A^T A$, then there is an absolute constant $0 < c < 1$ such that*

$$436 \quad \text{herdisc}(A) \geq \frac{1}{4} c^{n \cdot \text{tr}(M^2)/(\text{tr}(M))^2} \sqrt{\frac{\text{tr}(M)}{n}}.$$

437 Recently, this trace bound has been improved in the exponential term through a
438 series of works culminating in the following bound in Larsen [46], which we also use
439 in our work:

440 LEMMA 3.8 (Trace Bound of Larsen [46]). *If A is an m by n incidence matrix
441 and $M = A^T A$, then*

$$442 \quad \text{herdisc}(A) \geq \frac{(\text{tr}(M))^2}{8e \text{tr}(M^2) \cdot \min\{m, n\}} \sqrt{\frac{\text{tr}(M)}{\max\{m, n\}}}.$$

443 We give various interpretations of $\text{tr}(M)$ and $\text{tr}(M^2)$ in Lemma 3.8 that would be
444 useful later on. Algebraically, $\text{tr}(M)$ is the sum of its eigenvalue while $\text{tr}(M^2)$ is the
445 sum of the square of the eigenvalues. Combinatorially, $\text{tr}(M)$ is the number of ones
446 in A and $\text{tr}(M^2)$ is the number of rectangles of all ones in A . Geometrically, $\text{tr}(M)$
447 is the count of point/region incidences, and $\text{tr}(M^2)$ is the number of pairs of points
448 in all the pairwise intersections of regions. Finally, if A is the incidence matrix for
449 the shortest path, $\text{tr}(M^2)$ is the number of length 4 cycles in the underlying graph.
450 Based on the algebraic interpretation, it means that the trace bound is non-trivial
451 whenever all the eigenvalues of A are fairly uniform. This can be seen by noticing
452 that, if $\{\lambda_1, \dots, \lambda_n\}$ are eigenvalues of A , then $\text{tr}(M)^2 = n \cos^2(\theta) \text{tr}(M)$, where θ is
453 the angle between the vector $(\lambda_1, \dots, \lambda_n)$ and the all one-vector.

454 Our lower bound construction requires a hard instance of a class of graphs. For
455 that, we use the construction of Bodwin and Hoppenworth [15], whose key properties
456 that we use are stated as the following lemma:

457 LEMMA 3.9 (Lemma 1 of Bodwin and Hoppenworth [15]). *For any $p \in [1, n^2]$,
458 there is an infinite family of n -node undirected weighted graphs $G = (V, E, w)$ and
459 sets Π of p paths in G such that*

$$460 \quad \begin{aligned} & \bullet \text{ } G \text{ has } \ell = \Theta\left(\frac{n}{\sqrt{p \log n}}\right) \text{ layers. Each path in } \Pi \text{ starts in the first layer, ends} \\ & \text{in the last layer, and contains exactly one node in each layer.} \\ & \bullet \text{ } \text{Each path in } \Pi \text{ is the unique shortest path between its endpoints in } G. \\ & \bullet \text{ } \text{For any two nodes } u, v \in V, \text{ there are at most } \frac{\ell}{h(u, v)} \text{ paths in } \Pi \text{ that contain both } u \text{ and } v, \text{ where } h(u, v) \text{ is the hop-distance (number of edges on the} \\ & \text{shortest path) between } u \text{ and } v \text{ in } G \text{ and } 1 \leq h(u, v) \leq \ell. \\ & \bullet \text{ } \text{Each node } v \in V \text{ lies on at most } O\left(\frac{\ell p}{n}\right) \text{ distinct paths in } \Pi. \end{aligned}$$

467 **Concentration Inequalities.** We use the following standard variants of the
 468 Chernoff-Hoeffding bound in our paper.

469 **PROPOSITION 3.10** (Chernoff bound). *Let X_1, \dots, X_n be n independent random
 470 variables with support on $\{0, 1\}$. Define $X := \sum_{i=1}^n X_i$. Then, for every $\delta > 0$, there
 471 is*

$$472 \Pr[X \geq (1 + \delta) \cdot \mathbb{E}[X]] \leq \exp\left(-\frac{\delta^2}{\delta + 2} \cdot \mathbb{E}[X]\right).$$

473 *In particular, when $\delta \in (0, 1]$, there is*

$$474 \Pr[|X - \mathbb{E}[X]| > \delta \cdot \mathbb{E}[X]] \leq 2 \cdot \exp\left(-\frac{\delta^2 \mathbb{E}[X]}{3}\right).$$

475 **PROPOSITION 3.11** (Additive Chernoff bound). *Let X_1, \dots, X_n be n independent
 476 random variables with support in $[0, 1]$. Define $X := \sum_{i=1}^n X_i$. Then, for every $t > 0$,*

$$477 \Pr[|X - \mathbb{E}[X]| > t] \leq 2 \cdot \exp\left(-\frac{2t^2}{n}\right).$$

478 **4. General Graphs: Upper Bound Existential Proof.** This section collects
 479 the existential proof of the upper bounds on vertex- and edge-discrepancy for consis-
 480 tent path systems in (possibly) directed graphs. Our approach uses Proposition 3.6,
 481 which gives a discrepancy upper bound using the primal shatter function of a set
 482 system. This approach leads to the same upper bounds for undirected and directed
 483 graphs. In specifics, we show an upper bound of $O(n^{1/4})$ holds for vertex discrep-
 484 ance, while the edge discrepancy is at most $O(m^{1/4})$. That is, we show an existential
 485 proof of Theorem 1.6 (on directed graphs) by this approach. Note that for undirected
 486 graphs, we have achieved better edge discrepancy bounds using explicit constructions
 487 (as shown in Subsection 5.3).

488 **THEOREM 1.6.** *For any n -node, m -edge directed weighted graph G with a unique
 489 shortest path between each pair of nodes, the system of shortest paths Π satisfies*

$$490 \text{herdisc}_v(\Pi) \leq O(n^{1/4}) \quad \text{and} \quad \text{herdisc}_e(\Pi) \leq O(m^{1/4}).$$

491 *Proof.* We consider vertex discrepancy first. Let $S = (V, \Pi)$ be the path system
 492 containing all $|\Pi| = \binom{n}{2}$ unique shortest paths in G over vertex set V . We can interpret
 493 S as a set system (e.g., by ignoring the ordering of vertices in paths $\pi \in \Pi$).

We claim that the primal shatter function π_S of S is $\pi_S(x) = O(x^2)$. The intersection of any set $A \subseteq V$ of $|A| = x$ vertices with a path $\pi = \pi[s, t] \in \Pi$ is equal to $A \cap \pi[u, v]$ with u and v being the first and last vertex on path π in set A , respectively. Then we have

$$|\{A \cap \pi \mid \pi \in \Pi\}| \leq |A|^2 = x^2,$$

494 and $\pi_S(x) = O(x^2)$, as claimed. Since the size of the ground state is $|V| = n$, Proposition
 495 3.6 implies that the (non-hereditary) vertex discrepancy of the incidence matrix
 496 for a family of consistent paths on an n -node graph is at most $O(n^{1/4})$. An upper
 497 bound of $O(m^{1/4})$ for edge discrepancy on m -edge graphs follows from Observation
 498 3.4.

499 Finally, to show the upper bound on *hereditary discrepancy*, we observe that for
 500 any subset $U \subseteq V$, we can define the system $\Pi[U]$ of the paths in Π induced on the
 501 nodes in U . This path system $\Pi[U]$ is also consistent. Applying the above argument on
 502 $\Pi[U]$ therefore give us an $O(n^{1/4})$ upper bound for the discrepancy of $\Pi[U]$, implying

503 our desired vertex hereditary discrepancy upper bound. A similar argument achieves
 504 an edge hereditary discrepancy upper bound of $O(m^{1/4})$. \square

505 Notice that for a sparse graph (e.g., $m = O(n)$) this matches the bound on vertex
 506 discrepancy, but for a dense graph (e.g., $m = \Theta(n^2)$), the upper bound becomes
 507 $O(n^{1/2})$, which is no better than the upper bound by random coloring.

508 In Subsection 5.2, we present a vertex coloring achieving hereditary discrepancy
 509 of $\tilde{O}(n^{1/4})$. Finally, we present an explicit edge coloring with the same hereditary
 510 discrepancy bound in Subsection 5.3. This is a significant improvement over $O(m^{1/4})$,
 511 especially for dense graphs.

512 **5. Undirected Graphs: Lower Bound and Explicit Colorings.** We now
 513 discuss the main result (Theorem 1.5). We first show in Subsection 5.1 a hereditary
 514 discrepancy lower bound of $\Omega(n^{1/4}/\sqrt{\log n})$ for both edge and vertex discrepancy in
 515 general undirected graphs. Then, in Subsection 5.2, we present a vertex coloring
 516 achieving hereditary discrepancy of $\tilde{O}(n^{1/4})$. Finally, we present an explicit edge
 517 coloring with the same hereditary discrepancy bound in Subsection 5.3.

518 **5.1. Lower Bound.** As suggested by Observation 3.4, we focus on the vertex
 519 hereditary discrepancy. We then show that this theorem implies the same lower bound
 520 on (non-hereditary) vertex discrepancy as well.

THEOREM 5.1. *There are examples of n -vertex undirected weighted graphs G with
 a unique shortest path between each pair of vertices in which this system of shortest
 paths Π has*

$$\text{herdisc}_v(\Pi) \geq \Omega\left(\frac{n^{1/4}}{\sqrt{\log(n)}}\right).$$

521 To obtain the lower bound, we employ the new graph construction by Bodwin and
 522 Hoppenworth [15], which shows that any exact hopset with $O(n)$ edges must have at
 523 least $\tilde{\Omega}(n^{1/2})$ hop diameter. Despite seeming unrelated, this construction also sheds
 524 light on our problem. Another technique we use to show the hereditary discrepancy
 525 lower bound is the trace bound [46]. In the following proof section, we first summarize
 526 the construction related to our objective, then show the calculation using the trace
 527 bound that leads to our lower bound.

528 *Proof.* The key properties of the graph construction in Bodwin and Hoppen-
 529 worth [15] that we need can be summarized in Lemma 3.9. We will make use of the
 530 shortest path vertex incidence matrix of the graph in Bodwin and Hoppenworth [15].
 531 Recall that hereditary discrepancy considers the sub-incidence matrix induced by
 532 columns corresponding to a set of vertices. We select the set of vertices occurring in
 533 the paths in Π , and show it leads to hereditary discrepancy at least $\Omega(n^{1/4}/\sqrt{\log n})$.
 534 Specifically, take A as the incidence matrix so each row corresponds to one path in Π .
 535 A has dimension $p \times n$ where n is the number of vertices in G and the (i, j) -th entry
 536 of A is 1 if the vertex j is in the path i .

537 Now define $M = A^\top A$. Recall that $\text{tr}(M)$ is the number of 1s in the matrix A .
 538 Since by construction, every path has length ℓ , we have $\text{tr}(M) = p\ell$. Furthermore, let
 539 m_{ij} be the (i, j) -th element of matrix M , and observe that it is exactly the number
 540 of paths that contain vertices i and j . Note that $m_{ij} = m_{ji}$. Additionally, $\text{tr}(M^2)$ is
 541 the number of length 4 closed walks in the bipartite graph representing the incidence

542 matrix A . This implies that

$$\begin{aligned}
 \text{tr}(M^2) &= \sum_{j=1}^p \sum_{\substack{u,v \in P_j, \\ u \neq v}} m_{u,v} + \sum_{i=1}^n m_{ii}^2 = \sum_{j=1}^p \sum_{i=1}^{\ell} \sum_{\substack{u,v \in P_j, \\ h(u,v)=i}} m_{u,v} + n \cdot O\left(\frac{p\ell}{n}\right)^2 \\
 543 \quad (5.1) \quad &\leq \sum_{j=1}^p \sum_{i=1}^{\ell} \ell \cdot \frac{\ell}{i} + O\left(\frac{p^2\ell^2}{n}\right) \leq p\ell^2 \log \ell + O\left(\frac{p^2\ell^2}{n}\right).
 \end{aligned}$$

544 By setting $p = n \log n$, it follows that $\ell = \Theta\left(\frac{\sqrt{n}}{\log n}\right)$ and $\text{tr}(M) = p\ell$. Further,

$$546 \quad np\ell^2 \log \ell \leq O\left(n \cdot n \log(n) \cdot \frac{n}{\log^2 n} \cdot \log(n)\right) = O(n^3) = O(p^2\ell^2).$$

548 By equation (5.1), we have $\text{tr}(M^2) = O(p^2\ell^2/n)$. Using this and $\text{tr}(M) = p\ell$ in
 549 the trace bound in Lemma 3.8 [46] gives us

$$\begin{aligned}
 550 \quad \text{herdisc}_v(\Pi) &\geq \frac{(\text{tr}(M))^2}{8e \min\{p, n\} \cdot \text{tr}(M^2)} \sqrt{\frac{\text{tr}(M)}{\max\{p, n\}}} \\
 551 \quad &= \frac{(\text{tr}(M))^2}{8en \cdot \text{tr}(M^2)} \sqrt{\frac{\text{tr}(M)}{p}} \geq \Omega\left(\frac{p^2\ell^2}{p^2\ell^2} \sqrt{\ell}\right) \\
 552 \quad &= \Omega(\sqrt{\ell}) = \Omega\left(\frac{n^{1/4}}{\sqrt{\log(n)}}\right)
 \end{aligned}$$

553 by setting the value of ℓ . The completes the proof of the lower bound. \square

555 **5.2. Vertex Discrepancy Upper Bound – Explicit Coloring.** In this sub-
 556 section, we will upper bound the discrepancy $\chi(\Pi)$ of a consistent path system (V, Π)
 557 with $|V| = n$ and $|\Pi| = \text{poly}(n)$. This immediately implies an upper bound for the
 558 hereditary vertex discrepancy of unique shortest paths in undirected graphs.

559 **THEOREM 5.2.** *For a consistent path system $S = (V, \Pi)$ where $|V| = n$ and $|\Pi| = \text{poly}(n)$, there exists a labeling χ such that $\chi(\Pi) = O(n^{1/4} \log^{1/2}(n))$. Consequently, every n -vertex undirected graph has hereditary vertex discrepancy $O(n^{1/4} \log^{1/2}(n))$.*

562 Let $S = (V, \Pi)$ be a consistent path system with $|V| = n$ and $|\Pi| = \text{poly}(n)$. As
 563 the first step towards constructing our labeling $\chi : V \mapsto \{-1, 1\}$, we will construct
 564 a collection of paths Π' on V that will have a useful covering property, stated in
 565 Proposition 5.3, over the paths in Π .

566 **Constructing path cover Π' .** Initially, we let $\Pi' = \emptyset$. We define V' to be the set of
 567 all nodes in V belonging to a path in Π' , i.e., $V' := \bigcup_{\pi' \in \Pi'} \pi'$. While $|\pi \setminus V'| \geq n^{1/2}$
 568 for some $\pi \in \Pi$, find a (possibly non-contiguous) subpath of π of length $n^{1/2}$ that
 569 is vertex-disjoint from all paths in Π' . Formally, find a subpath $\pi' \subseteq \pi$ such that
 570 $|\pi'| = n^{1/2}$ and $\pi' \cap V' = \emptyset$. Add path π' to path cover Π' and update V' . Repeatedly
 571 add paths to path cover Π' in this manner until $|\pi \setminus V'| < n^{1/2}$ for all $\pi \in \Pi$.

572 **PROPOSITION 5.3.** *Path cover Π' satisfies the following properties:*

- 573 1. *for all $\pi \in \Pi'$, $|\pi| = n^{1/2}$,*
- 574 2. *the number of paths in Π' is $|\Pi'| \leq n^{1/2}$,*

575 3. (Disjointness Property) *The paths in Π' are pairwise vertex-disjoint,*
 576 4. (Covering Property) *For all $\pi \in \Pi$, the number of nodes in π that do not lie*
 577 *in any path in path cover Π' is at most $n^{1/2}$. Formally, let $V' = \cup_{\pi' \in \Pi'} \pi'$.*
 578 *Then $\forall \pi \in \Pi, |\pi \setminus V'| \leq n^{1/2}$,*
 579 5. (Consistency Property) *For all $\pi \in \Pi$ and $\pi' \in \Pi'$, the intersection $\pi \cap \pi'$ is*
 580 *a (possibly empty) contiguous subpath of π' .⁶*

581 *Proof.* Properties 1, 3, and 4 follow from the construction of Π' . Property 2 follows from Properties 1 and 3 and the fact that $|V| = n$. The Consistency Property of Π' is inherited from the consistency of path system S . Specifically, by the construction of Π' , path $\pi' \in \Pi'$ is a subpath of a path $\pi'' \in \Pi$. Recall that by the consistency of path system S , the intersection $\pi \cap \pi''$ is a (possibly empty) contiguous subpath of π'' . Then $\pi \cap \pi'$ is a contiguous subpath of π' since $\pi' \subseteq \pi''$. This concludes the proof. \square

588 **Constructing labeling χ .** Let $\pi' = (v_1, \dots, v_k) \in \Pi'$ be a path in our path cover. We will label the nodes of π' using the following random process. With probability 589 1/2 we define $\chi : \pi' \mapsto \{-1, 1\}$ to be

$$591 \chi(v_i) = \begin{cases} 1 & i \equiv 0 \pmod{2} \text{ and } i \in [1, k] \\ -1 & i \equiv 1 \pmod{2} \text{ and } i \in [1, k] \end{cases},$$

592 and with probability 1/2 we define $\chi : \pi' \mapsto \{-1, 1\}$ to be

$$593 \chi(v_i) = \begin{cases} -1 & i \equiv 0 \pmod{2} \text{ and } i \in [1, k] \\ 1 & i \equiv 1 \pmod{2} \text{ and } i \in [1, k] \end{cases}.$$

594 The labels of consecutive nodes in π' alternate between 1 and -1 , with vertex v_1 595 taking labels 1 and -1 with equal probability. Since the paths in path cover Π' 596 are pairwise vertex-disjoint, the labeling χ is well-defined over $V' := \cup_{\pi' \in \Pi'} \pi'$. We 597 choose random labeling for all nodes in $V \setminus V'$, i.e., we independently label each node 598 $v \in V \setminus V'$ with $\chi(v) = -1$ with probability 1/2 and $\chi(v) = 1$ with probability 1/2. 599 An illustration can be found in Figure 2.

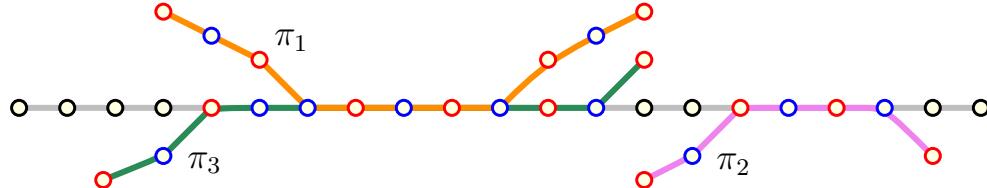


FIG. 2. In this figure, paths $\pi_1, \pi_2, \pi_3 \in \Pi'$ from the path cover are intersecting a path $\pi \in \Pi$. Paths in the path cover are pairwise vertex-disjoint, and each path in the cover contributes discrepancy 0, -1 , or $+1$ to π .

Bounding the discrepancy $\chi(\Pi)$. Fix a path $\pi \in \Pi$. We will show that

$$\left| \sum_{v \in \pi} \chi(v) \right| = O(n^{1/4} \log^{1/2}(n))$$

600 with high probability. Theorem 5.2 will follow as $|\Pi| = \text{poly}(n)$.

⁶Note that it may not be true that $\pi \cap \pi'$ is a contiguous subpath of π .

601 PROPOSITION 5.4. *For each path π' in path cover Π' ,*

602
$$\sum_{v \in \pi \cap \pi'} \chi(v) \in \{-1, 0, 1\}.$$

603 *If $|\pi \cap \pi'| \equiv 0 \pmod{2}$, then $\sum_{v \in \pi \cap \pi'} \chi(v) = 0$. Moreover,*

604
$$\Pr \left[\sum_{v \in \pi \cap \pi'} \chi(v) = -1 \right] = \Pr \left[\sum_{v \in \pi \cap \pi'} \chi(v) = 1 \right].$$

Proof. By the Consistency Property of Π' (as proven in Proposition 5.3), path $\pi \cap \pi'$ is a (possibly empty) contiguous subpath of π' . Then since consecutive nodes in π' alternate between -1 and 1 , it follows that

$$\sum_{v \in \pi \cap \pi'} \chi(v) \in \{-1, 0, 1\}.$$

605 Now note that $\sum_{v \in \pi \cap \pi'} \chi(v) \neq 0$ iff $|\pi \cap \pi'|$ is odd. Moreover, the first vertex
606 of $\pi \cap \pi'$ takes labels 1 and -1 with equal probability. This concludes the proof of
607 Proposition 5.4. \square

608 We are now ready to bound the discrepancy of π .

609 PROPOSITION 5.5. *With high probability, $\chi(\pi) = O(n^{1/4} \log^{1/2} n)$.*

610 *Proof.* We partition the nodes of π into two sources of discrepancy that we will
611 bound separately. Let $V' := \cup_{\pi' \in \Pi'} \pi'$.

612 **Discrepancy of $\pi \cap V'$.** For each path $\pi' \in \Pi'$, let $X_{\pi'}$ be the random variable
613 defined as

614
$$X_{\pi'} := \sum_{v \in \pi \cap \pi'} \chi(v).$$

615 We can restate the discrepancy of $\pi \cap V'$ as

616
$$\left| \sum_{v \in \pi \cap V'} \chi(v) \right| = \left| \sum_{\pi' \in \Pi'} X_{\pi'} \right|.$$

617 By Proposition 5.4, if $|\pi \cap \pi'|$ is even, then $X_{\pi'} = 0$. Therefore, we may assume
618 without any loss of generality that $|\pi \cap \pi'|$ is odd for all $\pi' \in \Pi'$. In this case,
619 $\Pr[X_{\pi'} = -1] = \Pr[X_{\pi'} = 1] = 1/2$, implying that $\mathbb{E}[\sum_{\pi' \in \Pi'} X_{\pi'}] = 0$. Then by
620 Proposition 5.3 and the Chernoff bound, it follows that for any constant $c \geq 1$,

621
$$\Pr \left[\left| \sum_{\pi' \in \Pi'} X_{\pi'} \right| \geq c \cdot n^{1/4} \log^{1/2} n \right] \leq e^{-c^2 \frac{n^{1/2} \log(n)}{2|\Pi'|}} \leq e^{-c^2/(2 \cdot \log(n))} = n^{-c^2/2}.$$

622 **Discrepancy of $\pi \setminus V'$.** Note that by the Covering Property of the path cover (as
623 proven in Proposition 5.3), $|\pi \setminus V'| \leq n^{1/2}$. Moreover, the nodes in $V \setminus V'$ are labeled
624 independently at random, implying that $\mathbb{E} \left[\sum_{v \in \pi \setminus V'} \chi(v) \right] = 0$. Then we may apply
625 a Chernoff bound to argue that for any constant $c \geq 1$,

626
$$\Pr \left[\left| \sum_{v \in \pi \setminus V'} \chi(v) \right| \geq c \cdot n^{1/4} \log^{1/2} n \right] \leq \exp \left\{ -c^2 \frac{n^{1/2} \log(n)}{2|\pi \setminus V'|} \right\}$$

627
$$\leq e^{-c^2/(2 \cdot \log(n))} = n^{-c^2/2}.$$

628

629 We have shown that the discrepancy of our labeling is $O(n^{1/4} \log^{1/2}(n))$ for $\pi \cap V'$
 630 and $O(n^{1/4} \log^{1/2}(n))$ for $\pi \setminus V'$ with high probability. Therefore, with high proba-
 631 bility, the total discrepancy of π is $O(n^{1/4} \log^{1/2}(n))$. This completes the proof of
 632 Proposition 5.5. \square

633 **Extending to hereditary discrepancy.** Let A be the vertex incidence matrix of
 634 a path system $S = (V, \Pi)$ on n nodes, and let A_Y be the submatrix of A obtained
 635 by taking all of its rows but only a subset Y of its columns. Then there exists a
 636 subset $V_Y \subseteq V$ of the nodes in V such that A_Y is the vertex incidence matrix of the
 637 path system $S[V_Y]$ (path system S induced on V_Y). Moreover, if path system S is
 638 consistent, then $S[V_Y]$ is also consistent. Then we may apply our explicit vertex dis-
 639 crepancy upper bound to $S[V_Y]$. We conclude that the hereditary vertex discrepancy
 640 of S is $O(n^{1/4} \log^{1/2}(n))$.

641 **5.3. Edge Discrepancy Upper Bound – Explicit Coloring.** By Theorem
 642 1.6, the edge discrepancy of the unique shortest paths of a (possibly directed) graph
 643 on m edges is $O(m^{1/4})$. However, in the case of undirected graphs and DAGs, we
 644 can improve the edge discrepancy to $O(n^{1/4} \log^{1/2}(n))$, where n is the number of
 645 vertices in the graph, by modifying the explicit construction for vertex discrepancy
 646 in Subsection 5.2. Our proof strategy will follow the same framework as the explicit
 647 construction for vertex discrepancy but with some added complications in the con-
 648 struction and analysis.

649 We first introduce some new notation that will be useful in this section. Given
 650 a path π and nodes $u, v \in \pi$, we denote by $u <_{\pi} v$ if u occurs before v on path π .
 651 Additionally, given a path system $S = (V, \Pi)$, we define the edge set $E \subseteq V \times V$ of
 652 the path system as the set of all pairs of nodes $u, v \in V$ that appear consecutively in
 653 some path in Π . Likewise, for any path π over the vertex set V , we define the edge
 654 set of π , $E(\pi) \subseteq \pi \times \pi$, as the set of all pairs of nodes $u, v \in \pi$ such that u, v appear
 655 consecutively in π and $(u, v) \in E$. Note that if path system S corresponds to paths
 656 in a graph G , then E will be precisely the edge set of G .

657 Recall that we wish to construct an edge labeling $\chi : E \mapsto \{-1, 1\}$ so that

$$658 \quad \chi(\Pi) = \max_{\pi \in \Pi} \left| \sum_{e \in E(\pi)} \chi(e) \right|$$

659 is minimized. We will upper bound the discrepancy $\chi(\Pi)$ of consistent path systems
 660 such that $|V| = n$ and $|\Pi| = \text{poly}(n)$. This immediately implies an upper bound on
 661 the edge discrepancy of unique shortest paths in undirected graphs.

662 **THEOREM 5.6.** *For all consistent path systems $S = (V, \Pi)$ where $|V| = n$ and
 663 $|\Pi| = \text{poly}(n)$ with edge set E , there exists a labeling $\chi : E \rightarrow \{-1, 1\}$ such that*

$$664 \quad \chi(\Pi) = O(n^{1/4} \log^{1/2}(n)).$$

665 *Consequently, every n -vertex undirected graph has hereditary edge discrepancy
 666 $O(n^{1/4} \log^{1/2}(n))$.*

667 Let $S = (V, \Pi)$ be a consistent path system with $|V| = n$ and $|\Pi| = \text{poly}(n)$. As
 668 the first step towards constructing our labeling $\chi : E \mapsto \{-1, 1\}$, we will construct a
 669 collection of paths Π' on V with a useful covering property over the paths in Π .

670 **5.3.1. Constructing path cover Π' .** Initially, we let $\Pi' = \emptyset$. We define V' to
 671 be the set of all nodes in V belonging to a path in Π' , i.e.,

672
$$V' := \bigcup_{\pi' \in \Pi'} \pi'.$$

673 While there exists a path $\pi \in \Pi$ such that $|\pi \setminus V'| \geq n^{1/2}$, our goal is to find
 674 a (possibly non-contiguous) subpath of π of length $n^{1/2}$ that is vertex-disjoint from
 675 all paths in Π' . Specifically, let $\pi' \subseteq \pi$ be a (possibly non-contiguous) subpath of π
 676 containing exactly the first $n^{1/2}$ nodes in $\pi \setminus V'$. Add path π' to path cover Π' and
 677 update V' . Repeatedly add paths to path cover Π' in this manner until $|\pi \setminus V'| < n^{1/2}$
 678 for all $\pi \in \Pi$.

679 Note that our path cover Π' is very similar to the path cover used in the explicit
 680 vertex discrepancy upper bound. Indeed, path cover Π' inherits all properties of
 681 the path cover defined in Subsection 5.2. The key difference here is that we require
 682 subpaths $\pi' \subseteq \pi$ in Π' to contain the *first* $n^{1/2}$ nodes in $\pi \setminus V'$. This will imply an
 683 additional property of our path cover, which we call the *No Repeats Property*.

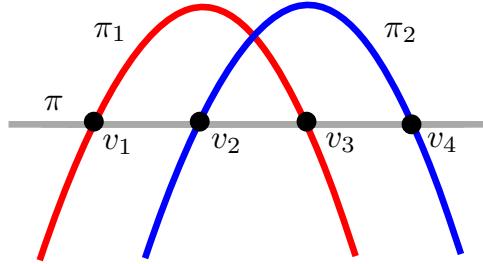


FIG. 3. In this figure, paths $\pi_1, \pi_2 \in \Pi'$ are intersecting a path $\pi \in \Pi$. This arrangement of paths is forbidden by the No Repeats Property of Proposition 5.7.

684 **PROPOSITION 5.7.** *Path cover Π' satisfies all properties of Proposition 5.3, as
 685 well as the following additional properties:*

- (Edge Covering Property) *For all $\pi \in \Pi$, the number of edges in π that are not incident to any node lying in a path in path cover Π' is at most $n^{1/2}$. Formally, let $V' = \bigcup_{\pi' \in \Pi'} \pi'$. For all $\pi \in \Pi$,*

$$|\{(u, v) \in E(\pi) \mid u \notin V' \text{ and } v \notin V'\}| \leq n^{1/2},$$

- (No Repeats Property) *For all paths $\pi \in \Pi$, $\pi_1, \pi_2 \in \Pi'$, and nodes $v_1, v_2, v_3, v_4 \in \pi$ such that $v_1, v_3 \in \pi_1$ and $v_2, v_4 \in \pi_2$, the following ordering of the vertices in Π is impossible:*

$$v_1 <_{\pi} v_2 <_{\pi} v_3 <_{\pi} v_4,$$

686 *where $x <_{\pi} y$ indicates that node x occurs in π before node y .*

687 *Proof.* All properties from Proposition 5.3 follow from an identical argument as
 688 in the original proof. The Edge Covering Property follows immediately from the
 689 Covering Property of Proposition 5.3. What remains is to prove the No Repeats
 690 Property.

691 Suppose for the sake of contradiction that there exist paths $\pi \in \Pi$, $\pi_1, \pi_2 \in \Pi'$,
 692 and nodes $v_1, v_2, v_3, v_4 \in \pi$ such that $v_1, v_3 \in \pi_1$ and $v_2, v_4 \in \pi_2$, where $v_1 <_{\pi} v_2 <_{\pi}$

693 $v_3 <_{\pi} v_4$. We will assume that path π_1 was added to Π' before path π_2 (the case
 694 where π_2 was added to Π' first is symmetric). By the construction of Π' , path $\pi_1 \in \Pi'$
 695 is a (possibly non-contiguous) subpath of a path $\pi''_1 \in \Pi$ from which it is constructed.
 696 Additionally, by the consistency of the path system S , the intersection $\pi \cap \pi''_1$ is a
 697 contiguous subpath of π . Then $v_2 \in \pi \cap \pi''_1$, and specifically, $v_2 \in \pi''_1$.

698 We assumed that $v_2 \in \pi_2$, which implies that $v_2 \notin \pi_1$, since paths in Π' are
 699 pairwise vertex-disjoint. Since path π_1 was added to Π' before path π_2 , this means
 700 that when π_1 was added to Π' , node v_2 did not belong to any path in Π' (i.e., v_2 was
 701 not in V'). Recall that in our construction of Π' , we constructed subpath $\pi_1 \subseteq \pi''_1$
 702 so that it contained exactly the *first* $n^{1/2}$ nodes in $\pi''_1 \setminus V'$. However, $v_2 \notin \pi_1$, but
 703 $v_3 \in \pi_1$, and v_2 comes before v_3 in π''_1 . This contradicts our construction of path π_1
 704 in path cover Π' .

705 **5.3.2. Constructing labeling χ .** Let $\pi' \in \Pi'$ be a path of length k in our path
 706 cover. Let $e_1, \dots, e_k \in E(\pi')$ be the edges in π' listed in the order they appear in
 707 π' . Note that since π' is a possibly non-contiguous subpath of a path in Π , pairs of
 708 nodes $u, v \in V$ that appear consecutively in π do not necessarily correspond to edges
 709 in edge set E .

710 We will label the edges in $E(\pi')$ using the following random process. With prob-
 711 ability $1/2$ we define $\chi : E(\pi') \mapsto \{-1, 1\}$ to be

$$712 \quad \chi(e_i) = \begin{cases} 1 & i \equiv 0 \pmod{2} \text{ and } i \in [1, k] \\ -1 & i \equiv 1 \pmod{2} \text{ and } i \in [1, k] \end{cases},$$

713 and with probability $1/2$ we define $\chi : E(\pi') \mapsto \{-1, 1\}$ to be

$$714 \quad \chi(e_i) = \begin{cases} -1 & i \equiv 0 \pmod{2} \text{ and } i \in [1, k] \\ 1 & i \equiv 1 \pmod{2} \text{ and } i \in [1, k] \end{cases}.$$

715 Note that the labels of consecutive edges e_i, e_{i+1} in π' alternate between 1 and
 716 -1 , with edge e_1 taking labels 1 and -1 with equal probability.

717 Since the paths in path cover Π' are pairwise vertex-disjoint, the labeling χ is
 718 well-defined over

$$719 \quad (5.2) \quad E' := \bigcup_{\pi' \in \Pi'} E(\pi').$$

721 We take a random labeling for all edges in $E \setminus E'$, i.e., we independently label each
 722 edge $e \in E \setminus E'$ with $\chi(e) = -1$ with probability $1/2$ and $\chi(e) = 1$ with probability
 723 $1/2$.

724 **5.3.3. Bounding the discrepancy ϕ .** Fix a path $\pi := \pi[s, t] \in \Pi$. We will
 725 show that

$$726 \quad \left| \sum_{e \in E(\pi)} \chi(e) \right| = O(n^{1/4} \log^{1/2}(n))$$

727 with high probability. This will complete the proof of Lemma 5.6 since $|\Pi| = \text{poly}(n)$.
 728 The proof of the following proposition follows from an argument identical to Propo-
 729 position 5.4 and hence omitted.

730 **PROPOSITION 5.8.** *For each path π' in path cover Π' ,*

$$731 \quad \sum_{e \in E(\pi) \cap E(\pi')} \chi(e) \in \{-1, 0, 1\}.$$

732 If $|E(\pi) \cap E(\pi')| \equiv 0 \pmod{2}$, then $\sum_{e \in E(\pi) \cap E(\pi')} \chi(e) = 0$. Moreover,

$$733 \quad \Pr \left[\sum_{e \in E(\pi) \cap E(\pi')} \chi(e) = -1 \right] = \Pr \left[\sum_{e \in E(\pi) \cap E(\pi')} \chi(e) = 1 \right].$$

734

735 We are now ready to bound the edge discrepancy of π . Define

$$736 \quad V' := \bigcup_{\pi' \in \Pi'} \pi' \quad \text{and} \quad E' := \bigcup_{\pi' \in \Pi'} E(\pi').$$

737 We partition the edges of the path π into three sources of discrepancy that we
738 will bound separately. Specifically, using the definition of E' in equation (5.2), we
739 split $E(\pi) \subseteq \pi \times \pi$ into the following sets E_1, E_2, E_3 :

- 740 • $E_1 := E(\pi) \cap E'$,
- 741 • $E_2 := E(\pi) \cap ((V \setminus V') \times (V \setminus V'))$, and
- 742 • $E_3 := E(\pi) \setminus (E_1 \cup E_2)$.

743 Sets E_1 and E_2 roughly correspond to the two sources of discrepancy considered in
744 the vertex discrepancy upper bound, while set E_3 corresponds to a new source of
745 discrepancy requiring new arguments to bound. We begin with set E_1 .

746 PROPOSITION 5.9 (Discrepancy of E_1). *With high probability, $|\sum_{e \in E_1} \chi(e)| =$*
747 $O(n^{1/4} \log^{1/2} n)$.

748 *Proof.* The proposition follows from an argument similar to Proposition 5.5. For
749 each path $\pi' \in \Pi'$, let $X_{\pi'}$ be the random variable defined as

$$750 \quad X_{\pi'} := \sum_{e \in E(\pi) \cap E(\pi')} \chi(e).$$

751 We can restate the discrepancy of $E_1 = E(\pi) \cap E'$ as

$$752 \quad \left| \sum_{e \in E_1} \chi(e) \right| = \left| \sum_{\pi' \in \Pi'} X_{\pi'} \right|.$$

By Proposition 5.8, if $|E(\pi) \cap E(\pi')| \equiv 0 \pmod{2}$, then $X_{\pi'} = 0$, so without any loss of generality, we may assume that $|E(\pi) \cap E(\pi')|$ is odd for all $\pi' \in \Pi'$. In this case,

$$\Pr [X_{\pi'} = -1] = \Pr [X_{\pi'} = 1] = 1/2,$$

753 implying that $\mathbb{E}[\sum_{\pi' \in \Pi'} X_{\pi'}] = 0$. Then, by Proposition 5.7 and the Chernoff bound,
754 it follows that for any constant $c \geq 1$,

$$755 \quad \Pr \left[\left| \sum_{\pi' \in \Pi'} X_{\pi'} \right| \geq c \cdot n^{1/4} \log^{1/2} (n) \right] \leq e^{-c^2 \frac{n^{1/2} \log(n)}{2|\Pi'|}} \leq e^{-c^2/2 \cdot \log(n)} \leq n^{-c^2/2}. \quad \square$$

756 We now bound the discrepancy of $E_2 = E(\pi) \cap ((V \setminus V') \times (V \setminus V'))$.

757 PROPOSITION 5.10 (Discrepancy of E_2). *With high probability, $|\sum_{e \in E_2} \chi(e)| =$*
758 $O(n^{1/4} \log^{1/2} (n))$.

759 *Proof.* The proposition follows from an argument similar to Proposition 5.5. Note
 760 that by the Edge Covering Property of the path cover (Proposition 5.7),

761 $|E_2| = |\{(u, v) \in E(\pi) \mid u, v \notin V'\}| \leq n^{1/2}.$

762 Moreover, the edges in $E \setminus E'$ are labeled independently at random, so we may apply
 763 a Chernoff bound to argue that for any constant $c \geq 1$,

764 $\Pr \left[\left| \sum_{e \in E_2} \chi(e) \right| \geq c \cdot n^{1/4} \log^{1/2}(n) \right] \leq e^{-c^2 \frac{n^{1/2} \log(n)}{2|E_2|}} \leq e^{-c^2/2 \cdot \log(n)} \leq n^{-c^2/2}.$

765 completing the proof. \square

766 Finally, we upper bound the discrepancy of the remainder of the edges, $E_3 =$
 767 $E(\pi) \setminus (E_1 \cup E_2)$.

768 PROPOSITION 5.11 (Discrepancy of E_3). *With high probability, $|\sum_{e \in E_3} \chi(e)| =$*
 769 $O(n^{1/4} \log^{1/2}(n))$.

770 *Proof.* Let

771 $k := |\{\pi' \in \Pi' \mid \pi \cap \pi' \neq \emptyset\}|$

772 denote the number of paths in our path cover that intersect π . We define a function
 773 $f : \mathbb{Z}_{\geq 0} \mapsto \mathbb{Z}_{\geq 0}$ such that $f(\phi)$ equals the largest possible value of $|E_3|$ when $\phi = k$.
 774 Note that f is well-defined since $0 \leq |E_3| \leq |E|$. We will prove that $f(\phi) \leq 4\phi$, by
 775 recursively decomposing path π .

776 When $\phi = 1$, there is only one path $\pi' \in \Pi'$ that intersects π . Then the only
 777 edges in E_3 are of the form

778 $E(\pi) \cap ((V' \times (V \setminus V')) \cup ((V \setminus V') \times V')) = E(\pi) \cap ((\pi' \times (V \setminus \pi')) \cup ((V \setminus \pi') \times \pi')).$

779 By the Consistency Property of Proposition 5.7, path π' can intersect π and then split
 780 apart at most once. Then

781 $f(1) = |E_3| = |E(\pi) \cap ((\pi' \times (V \setminus \pi')) \cup ((V \setminus \pi') \times \pi'))| \leq 2.$

782 When $\phi > 1$, we will split our analysis into the two cases:

783 • **Case 1.** There exists paths $\pi'_1, \pi'_2 \in \Pi'$ and nodes $v_1, v_2, v_3 \in \pi$ such that
 784 $v_1, v_3 \in \pi'_1$ and $v_2 \in \pi'_2$ and $v_1 <_{\pi} v_2 <_{\pi} v_3$. In this case, we can assume
 785 without any loss of generality that $\pi[v_1, v_3] \cap \pi'_1 = \{v_1, v_3\}$ (e.g., by choosing
 786 v_1, v_3 so that this equality holds). Let x be the node immediately following
 787 v_1 in π , and let y be the node immediately preceding v_3 in π . Recall that
 788 s is the first node of π and t is the last node of π . It will be useful for the
 789 analysis to split π into three subpaths:

790 $\pi = \pi[s, v_1] \circ \pi[x, y] \circ \pi[v_3, t],$

791 where \circ denotes the concatenation operation. Define

792 $\phi_1 := |\{\pi' \in \Pi' \mid \pi[x, y] \cap \pi' \neq \emptyset\}|$
 793 $\phi_2 := |\{\pi' \in \Pi' \mid (\pi[s, v_1] \circ \pi[v_3, t]) \cap \pi' \neq \emptyset\}|.$

795 We claim that $\phi_1 < \phi$, $\phi_2 < \phi$, and $\phi_1 + \phi_2 = \phi$. We will use these facts to
 796 establish a recurrence relation for f . By our assumption that $\pi[v_1, v_3] \cap \pi'_1 =$

797 $\{v_1, v_3\}$, it follows that $\pi[x, y] \cap \pi'_1 = \emptyset$, and so $\phi_1 < \phi$. Likewise, by the No
798 Repeats Property of Proposition 5.7,

$$799 (\pi[s, v_1] \circ \pi[v_3, t]) \cap \pi'_2 = \emptyset.$$

800 Therefore, $\phi_2 < \phi$. Finally, observe that more generally, if there exists a
801 path $\pi' \in \Pi'$ such that $\pi' \cap \pi[x, y] \neq \emptyset$ and $\pi' \cap (\pi[s, v_1] \circ \pi[v_3, t]) \neq \emptyset$, then
802 the No Repeats Property of Proposition 5.7 is violated. We conclude that
803 $\phi_1 + \phi_2 = \phi$.

804 Now $|E_3|$ can be upper bounded by the following inequality:

$$805 |E_3| \leq |E_3 \cap E(\pi[x, y])| + |E_3 \cap E(\pi[s, v_1] \circ \pi[v_3, t])| + 2.$$

806 Then using the observations about ϕ_1, ϕ_2 , and ϕ in the previous paragraph,
807 we obtain the following recurrence for f :

$$808 f(\phi) \leq f(\phi_1) + f(\phi_2) + 2 = f(i) + f(\phi - i) + 2,$$

809 where $0 < i < \phi$.

- 810 • **Case 2.** There exists a path $\pi' \in \Pi'$ and $v_1, v_2 \in \pi$ such that $\pi \cap \pi' =$
811 $\pi[v_1, v_2] \cap V'$. Let x be the node immediately preceding v_1 in π , and let y be
812 the node immediately following v_2 in π . Again, we split π into three subpaths:

$$813 \pi[s, t] = \pi[s, x] \circ \pi[v_1, v_2] \circ \pi[y, t].$$

814 Let

$$815 \phi_1 := |\{\pi' \in \Pi' \mid \pi[v_1, v_2] \cap \pi' \neq \emptyset\}|
816 \phi_2 := |\{\pi' \in \Pi' \mid (\pi[s, x] \circ \pi[y, t]) \cap \pi' \neq \emptyset\}|.$$

818 Our assumption in Case 2 follows that $\phi_1 = 1$ and $\phi_2 = \phi - 1$. Since $|E_3|$ can
819 be upper bounded by the inequality

$$820 |E_3| \leq |E_3 \cap E(\pi[v_1, v_2])| + |E_3 \cap E(\pi[s, x] \circ \pi[y, t])| + 2,$$

821 we immediately obtain the recurrence

$$822 f(\phi) \leq f(\phi_1) + f(\phi_2) + 2 \leq f(1) + f(\phi - 1) + 2.$$

823 Taking our results from Case 1 and Case 2 together, we obtain the recurrence relation

$$824 f(\phi) \leq \begin{cases} \max \{f(i) + f(\phi - i) + 2, f(1) + f(\phi - 1) + 2\} & \phi > 1 \text{ and } 1 < i < \phi \\ 2 & \phi = 1 \end{cases}.$$

825 Applying this recurrence at most ϕ times, we find that

$$826 f(\phi) \leq \phi \cdot f(1) + 2\phi \leq 4\phi.$$

827 Finally, since $k \leq |\Pi'| \leq n^{1/2}$ and we defined f so that $f(k)$ equals the largest possible
828 value of $|E_3|$, we conclude that

$$829 |E_3| \leq f(k) \leq f(n^{1/2}) = O(n^{1/2}).$$

830 Since the edges in $E_3 \subseteq E \setminus E'$ are labeled independently at random, we may apply a
831 Chernoff bound as in Proposition 5.10 to argue that $\chi(E_3) = O(n^{1/4} \log^{1/2}(n))$ with
832 high probability. \square

833 We have shown that with high probability, the discrepancy of our edge labeling
 834 is $O(n^{1/4} \log^{1/2}(n))$ for E_1, E_2 , and E_3 , so we conclude that the total discrepancy of
 835 π is $O(n^{1/4} \log^{1/2}(n))$. A straightforward extension of this argument implies identical
 836 bounds for hereditary discrepancy. We defer this proof to the full version of our paper
 837 [14].

838 **6. Planar Graphs.** In this section, we will extend our hereditary vertex dis-
 839 crepancy lower bound for unique shortest paths in undirected graphs to the planar
 840 graph setting.

841 **THEOREM 6.1.** *There exists an n -vertex undirected planar graph with hereditary*
 842 *vertex discrepancy at least $\Omega\left(\frac{n^{1/4}}{\log^2(n)}\right)$.*

843 To prove this theorem, we will first give an abbreviated presentation of the graph
 844 construction in [15] that we used implicitly to obtain the $\Omega(n^{1/4}/\sqrt{\log n})$ hereditary
 845 vertex discrepancy lower bound in Theorem 5.1. Then we will describe a simple
 846 procedure to make this graph planar and argue that the shortest path structure of
 847 this planarized graph remains unchanged.

848 **6.1. Graph Construction of Bodwin and Hoppenworth.** Take n to be
 849 a large enough positive integer, and take $p = n \log n$. We will describe an n -node
 850 weighted undirected graph $G = (V, E, w)$ originally constructed in Bodwin and Hop-
 851 penworth [15].

852 *Vertex Set V .* We will use $\ell = \Theta\left(\frac{n^{1/2}}{\log n}\right)$ as a positive integer parameter for our
 853 construction. The graph G we create will consist of ℓ layers, denoted as L_1, \dots, L_ℓ .
 854 Each layer will have n/ℓ nodes, arranged from 1 to n/ℓ . Initially, we will assign a
 855 tuple label (i, j) to the j th node in the L_i layer. We will interpret the node labeled
 856 (i, j) as a point in \mathbb{R}^2 with integral coordinates. The vertex set V of graph G is made
 857 up of these n nodes distributed across ℓ layers.

858 Next we will randomize the node labels in V . For each layer L_i , where i ranges
 859 from 1 to ℓ , we randomly and uniformly pick a real number in the interval $(0, 1)$ and
 860 we call it ψ_i . After that, for each node in layer L_i of the graph G that is currently
 861 labeled (i, j) , we relabel it as

$$862 \left(i, j + \sum_{k=1}^j \psi_k \right).$$

863 These new labels for the nodes in V are also treated as points in \mathbb{R}^2 . We can imagine
 864 this process as adding a small epsilon of structured noise to the points corresponding
 865 to the nodes in the graph. The purpose of this noise is technical, but serves the
 866 purpose of achieving ‘symmetry breaking’ (see Section 2.4 of [15] for details).

867 *Edge Set E .* All edges will be between subsequent layers L_i, L_{i+1} within G . It
 868 will be helpful to think of the edges in G as directed from L_i to L_{i+1} , although in
 869 actuality G will be undirected. We represent the set of edges in G between layers L_i
 870 and L_{i+1} as E_i . For any edge $e = (v_1, v_2) \in E$, the edge e will be associated with the
 871 specific vector $\vec{u}_e := v_2 - v_1$. The 2nd coordinate of \vec{u}_e will be labeled as u_e . Hence,
 872 for all e found in E , \vec{u}_e is written as $(1, u_e)$.

873 For each $i \in [1, \ell - 1]$, let

$$874 C_i := \{(1, \psi_{i+1} + x) : x \in [0, n/\ell^2]\}.$$

875 We will refer to the vectors in C_i as *edge vectors*. For each $v \in L_i$ and edge vector
 876 $\vec{c} \in C_i$, if $v + \vec{c} \in V$, then add edge $(v, v + \vec{c})$ to E_i . After adding these edges to E_i ,

877 we will have that

$$878 \quad C_i = \{\vec{u}_e \mid e \in E_i\}.$$

879 Finally, for each $e \in E$, if $\vec{u}_e = (1, u_e)$, then we assign edge e the weight $w(e) :=$
880 u_e^2 . This completes the construction of our graph $G = (V, E, w)$.

881 PROPOSITION 6.2. *Consider the graph drawing of graph G where the nodes v in
882 V are drawn as points at their associated coordinates in \mathbb{R}^2 and the edges (u, v) in E
883 are drawn as straight-line segments from u to v . This graph drawing has $O(n \log^6 n)$
884 edge crossings.*

885 *Proof.* First note that if edges $e_1, e_2 \in E$ cross in our graph drawing of G , then
886 edges e_1 and e_2 are between the same two layers of G (i.e., $e_1, e_2 \in L_i \times L_{i+1}$ for some
887 $i \in [1, \ell - 1]$). Additionally, all edges between L_i and L_{i+1} are from the j th vertex in
888 L_i to the $(j+k)$ th vertex in L_{i+1} , where $j \in [1, n/\ell]$ and $k \in [0, \Theta(\log^2 n)]$.

889 Now fix an edge $(u, v) \in E \cap (L_i \times L_{i+1})$ for some $i \in [1, \ell - 1]$. If an edge
890 $(u', v') \in E \cap (L_i \times L_{i+1})$ crosses (u, v) , then $|u - u'| \leq \log^2 n$. Then there are at
891 most $O(\log^2 n)$ nodes incident to edges that cross (u, v) in our drawing. Since each
892 node in G has degree $O(\log^2 n)$, this implies that at most $O(\log^4 n)$ edges cross (u, v)
893 in our drawing. Since $|E| = O(n \log^2 n)$, we conclude that our graph drawing has
894 $O(n \log^6 n)$ edge crossings. \square

895 *Direction Vectors and Paths Π .* Our next step is to generate a set of unique
896 shortest paths Π . The paths Π are identified by first constructing a set of vectors
897 $D \subseteq \mathbb{R}^2$ called *direction vectors*, which are defined next.

898 Let $q = \Theta\left(\frac{\ell}{\log n}\right) = \Theta\left(\frac{n^{1/2}}{\log^2 n}\right)$ be an integer. We choose our set of direction
899 vectors D to be

$$900 \quad D := \left\{ \left(1, x + \frac{y}{q} \right) \mid x \in \left[1, \frac{n}{4\ell^2} - 1 \right] \text{ and } y \in [0, q] \right\}.$$

901 Note that adjacent direction vectors in D differ only by $1/q$ in their second coordinate.
902 Each of our paths π in Π will have an associated direction vector $\vec{d} \in D$, and for all
903 $i \in [1, \ell - 1]$, path π will take an edge vector in C_i that is closest to \vec{d} in some sense.

904 *Paths Π .* We first define a set $S \subseteq L_1$ containing half of the nodes in the first
905 layer L_1 of G :

$$906 \quad S := \left\{ (1, j + \psi_1) \in L_1 \mid j \in \left[1, \frac{n}{2\ell} \right] \right\}.$$

907 We will define a set of pairs of nodes P so that $P \subseteq S \times L_\ell$. For every node $s \in S$
908 and direction vector $\vec{d} \in D$, we will identify a pair of endpoints $(s, t) \in S \times L_\ell$ and a
909 corresponding unique shortest path $\pi_{s,t}$ to add to Π .

910 Let $v_1 \in S$, and let $\vec{d} = (1, d) \in D$. The associated path π has start node v_1 . We
911 iteratively grow π , layer-by-layer, as follows. Suppose that currently $\pi = (v_1, \dots, v_i)$,
912 for $i < \ell$, with each $v_i \in L_i$. To determine the next node $v_{i+1} \in L_{i+1}$, let $E_i^{v_i} \subseteq E_i$
913 be the edges in E_i incident to v_i , and let

$$914 \quad e_i := \operatorname{argmin}_{e \in E_i^{v_i}} (|u_e - d|).$$

915 By definition, e_i is an edge whose first node is v_i ; we define $v_{i+1} \in L_{i+1}$ to be the
916 other node in e_i , and we append v_{i+1} to π . After this process terminates, we will
917 have a path $\pi = (v_1, \dots, v_\ell)$. Denote π as π_{v_1, v_ℓ} and add path π_{v_1, v_ℓ} to Π . Repeating
918 for all $v_1 \in S$ and $\vec{d} \in D$ completes our construction of Π . Note that although we did

919 not prove it, each path $\pi_{s,t} \in \Pi$ is a unique shortest $s \rightsquigarrow t$ path in G by Lemma 2 of
 920 Bodwin and Hoppenworth [15].

921 Lemma 1 of Bodwin and Hoppenworth [15] summarizes the key properties of G , Π
 922 that are needed to prove the hereditary vertex discrepancy lower bound for unique
 923 shortest paths in undirected graphs in Theorem 5.1. We restate this key lemma in
 924 Lemma 3.9 of Section 5.

925 To obtain a $\tilde{\Omega}(n^{1/4})$ lower bound for hereditary vertex discrepancy of unique short-
 926 est paths in *planar* graphs, we need to convert the graph G into a planar graph while
 927 ensuring that the unique shortest path structure of the graph remains unchanged.

928 **6.2. Planarization of Graph G .** In the previous subsection, we outlined the
 929 construction of the graph $G = (V, E, w)$ and set of paths Π from Bodwin and Hop-
 930 penworth [15]. This graph has an associated graph drawing with $\tilde{O}(n)$ edge crossings
 931 by Proposition 6.2. We will now ‘planarize’ graph G by embedding it within a larger
 932 planar graph G' . We will use the standard strategy of replacing each edge crossing in
 933 our graph drawing of G with a new vertex, causing each crossed edge to be subdivided
 934 into a path.

935 *Planarization Procedure:*

- 936 1. We start with the current non-planar graph $G = (V, E, w)$ with the associated
 937 graph drawing described in Proposition 6.2.
- 938 2. For every edge crossing in the drawing of G , letting point $p \in \mathbb{R}^2$ be the
 939 location of the crossing, draw a vertical line in the plane through p . Add a
 940 new node to graph G at every point where this vertical line intersects the
 941 drawing of an edge. This step may blow up the number of nodes in the graph
 942 by quite a lot, but the resulting graph will be planar and layered.
- 943 3. We re-set all edge weights in the graph as follows. For each edge (u, v) in the
 944 graph, letting $p_u, p_v \in \mathbb{R}^2$ be the locations of nodes $u, v \in V$ in the drawing, we
 945 re-set the weight of edge (u, v) to be the squared Euclidean distance between
 946 p_u and p_v , i.e.,

$$947 \quad w((u, v)) = \|p_u - p_v\|^2.$$

- 948 4. Finally, we remove excess nodes added to the graph in step 2. We perform
 949 the following operation for each node v of degree 2 in the resulting graph.
 950 Let (x, v) and (v, y) be the two edges incident to v . Add edge (x, y) to the
 951 graph and assign it weight $w((x, y)) = w((x, v)) + w((v, y))$. Remove node v
 952 and edges (x, v) and (v, y) from the graph. Note that the graph will remain
 953 planar after this operation.

954 Denote the planar graph resulting from this procedure as $G' = (V', E', w')$. The
 955 following proposition follows immediately from Proposition 6.2 and the planarization
 956 procedure.

957 **PROPOSITION 6.3.** *Graph G' is planar and has $O(n \log^6 n)$ nodes.*

958 *Unique Shortest Paths in G' .* Each edge $e = (u, v) \in E$ in graph G is the preimage
 959 of a $u \rightsquigarrow v$ path π_e in graph G' resulting from our planarization procedure. Likewise,
 960 each path $\pi \in \Pi$ is the preimage of a path π' in G' obtained by replacing each edge
 961 $e \in \pi$ with path π_e . Let the set Π' of paths in G' denote the image of the set of paths
 962 Π in G under our planarization procedure. As a final step towards proving Theorem
 963 6.1, we need to argue that the unique shortest path structure of G is unchanged by
 964 our planarization procedure.

965 **LEMMA 6.4.** *Each path in Π' is the unique shortest path between its endpoints in
 966 G' .*

967 We now verify that graph G' and paths Π' have the unique shortest path prop-
 968 erty as stated in Lemma 6.4. We will require the following proposition about the
 969 construction of graph G' from [15] that we state without proof.

970 PROPOSITION 6.5 (c.f. Proposition 1 of [15]). *With probability 1, for every $i \in$*
 971 *$[1, \ell - 1]$ and every direction vector $\vec{d} = (1, d) \in D$, there is a unique vector $(1, c) \in C_i$*
 972 *that minimizes $|c - d|$ over all choices of $(1, c) \in C_i$.*

973 Additionally, our unique shortest paths argument will make use of the following tech-
 974 nical proposition also proven in [15].

975 PROPOSITION 6.6 (c.f. Proposition 3 of [15]). *Let $b, x_1, \dots, x_k \in \mathbb{R}$. Now con-
 976 sider $\hat{x}_1, \dots, \hat{x}_k$ such that*

- 977 • $|\hat{x}_i - b| \leq |x_i - b|$ for all $i \in [1, k]$, and
- 978 • $\sum_{i=1}^k x_i = \sum_{i=1}^k \hat{x}_i$.

979 Then

$$980 \sum_{i=1}^k x_i^2 \geq \sum_{i=1}^k \hat{x}_i^2,$$

981 with equality only if $|\hat{x}_i - b| = |x_i - b|$ for all $i \in [1, k]$.

982 Using Propositions 6.5 and 6.6, we can now prove Lemma 6.4.

983 *Proof of Lemma 6.4.* As an immediate step toward proving Lemma 6.4, we will
 984 argue that we can make two assumptions about G' without loss of generality.

985 First, we may assume that G' is layered in the following sense: V' can be parti-
 986 tioned into k layers (for some $k > 0$) such that each path $\pi \in \Pi'$ begins in the first
 987 layer, ends in the last layer, and has exactly one node in each layer. Observe that
 988 after step 2 of the planarization procedure, graph G' is layered with respect to paths
 989 Π' in this sense. Moreover, step 4 of the planarization procedure does not change the
 990 structure of the set of paths Π' . Thus we can safely assume G' is layered with respect
 991 to paths Π' .

992 Second, we can assume, without loss of generality, that G' is a directed graph and
 993 that all edges in $L_i \times L_{i+1}$ in G' are directed from L_i to L_{i+1} . This assumption can
 994 be made using a blackbox reduction that is standard in the area (see Section 4.6 of
 995 6.1 for details).

996 Fix an $s \rightsquigarrow t$ path $\pi' \in \Pi'$ in graph G' , and let path $\pi \in \Pi$ in G be the associated
 997 preimage of π' . Let $(1, x) \in D$ be the direction vector associated with path π . Note
 998 that by Proposition 6.5, for each layer L_i , there is a unique vector $(1, c) \in C_i$ that
 999 minimizes $|c - d|$ over all choices of $(1, c) \in C_i$. By our construction of the paths in
 1000 Π , path π will travel along an edge with edge vector $(1, c)$.

1001 In graph G' , there are additional layers between layers L_i and L_{i+1} , due to step
 1002 2 of our planarization procedure. If path π traveled along an edge with edge vector
 1003 $(1, c)$ from L_i to L_{i+1} in G , then in each layer L' in G' between L_i and L_{i+1} , graph
 1004 G' will take an edge vector (α, c) , where $0 < \alpha \leq 1$. Moreover, again by Proposition
 1005 6.5, this edge vector (α, c) will be the unique edge vector from layer L' minimizing
 1006 $|c - d|$.

1007 Let ℓ' be the number of layers in G' . Let $\hat{x}_1, \dots, \hat{x}_{\ell'-1} \in \mathbb{R}$ be real numbers such
 1008 that the i th edge of π' has the corresponding vector (α_i, \hat{x}_i) for $i \in [1, \ell' - 1]$ and
 1009 $0 < \alpha_i \leq 1$. Now consider an arbitrary $s \rightsquigarrow t$ path π^* in G , where $\pi^* \neq \pi'$. Since
 1010 all edges in G are directed from L_i to L_{i+1} , it follows that π^* has $\ell' - 1$ edges. Let
 1011 $x_1, \dots, x_{\ell'-1} \in \mathbb{R}$ be real numbers such that the i th edge of π^* has the corresponding
 1012 vector $(\alpha_i, x_i) \in C_i$ for $i \in [1, \ell - 1]$ and $0 < \alpha_i \leq 1$. Now observe that since π^* and

1013 π' are both $s \rightsquigarrow t$ paths, it follows that

1014
$$\sum_{i=1}^{\ell'-1} \hat{x}_i = \sum_{i=1}^{\ell'-1} x_i.$$

1015 Additionally, by our construction of π' , it follows that

1016
$$|\hat{x}_i - x| \leq |x_i - x|$$

1017 for all $i \in [1, \ell - 1]$. In particular, since $\pi^* \neq \pi'$, there must be some $j \in [1, \ell' - 1]$
 1018 such that $\hat{x}_j \neq x_j$, and so by Proposition 6.5, $|\hat{x}_j - x| < |x_j - x|$ with probability 1.

1019 Then by Proposition 6.6,

1020
$$w(\pi') = \sum_{e \in \pi'} w(e) = \sum_{i=1}^{\ell-1} \hat{x}_i^2 < \sum_{i=1}^{\ell-1} x_i^2 = \sum_{e \in \pi^*} w(e) = w(\pi^*).$$

1021 This implies that the path π' is a unique shortest $s \rightsquigarrow t$ path in G' , as desired. \square

1022 *Finishing the Proof.*

1023 LEMMA 6.7 (c.f. Lemma 1 of [15]). *There is an infinite family of $\Theta(n \log^6 n)$ -
 1024 node planar undirected weighted graphs $G' = (V', E', w')$ and sets Π' of $|\Pi'| = n \log n$
 1025 paths in G' with the following properties:*

- *Each path in Π' is the unique shortest path between its endpoints in G .*
- *Let G be the n -node undirected weighted graph and let Π be the set of $|\Pi| = n \log n$ paths described in Lemma 3.9 when $p = n \log n$. Then Π is an induced path subsystem of Π' .*

1030 *Proof.* This follows immediately from Proposition 6.3, Lemma 6.4, and the above
 1031 discussion about the set of paths Π' in G' . \square

Let $N := \Theta(n \log^6 n)$ be the number of nodes in G' . By Lemma 6.7,

$$\text{herdisc}_v(\Pi') \geq \text{herdisc}_v(\Pi).$$

1032 Likewise, by the proof of Theorem 5.1, $\text{herdisc}_v(\Pi) \geq \Omega(n^{1/4})$. We conclude that

1033
$$\text{herdisc}_v(\Pi') \geq \text{herdisc}_v(\Pi) \geq \Omega\left(\frac{n^{1/4}}{\sqrt{\log n}}\right) = \Omega\left(\frac{N^{1/4}}{\log^2 N}\right).$$

1034 **7. Trees and Bipartite Graphs.** For graphs with simple topology such as
 1035 line, tree and bipartite graphs, both of the vertex and edge discrepancy are constant.
 1036 However, a distinction can be observed on hereditary discrepancy for bipartite graphs.
 1037 Formally, we have the following results.

1038 LEMMA 7.1. *Let $T = (V, E, w)$ be a undirected tree graph, the hereditary discrepancy
 1039 of the shortest path system induced by T is $\Theta(1)$.*

1040 *Proof.* To start with, it is obvious that a lower bound of $\Omega(1)$ on both edge and
 1041 vertex (hereditary) discrepancy always holds for any family of graphs. We therefore
 1042 first focus on the $O(1)$ discrepancy upper bound for bipartite graphs. \square

1043 LEMMA 7.2. *Let $G = (V, E, w)$ be a general bipartite graph, then it has $\Theta(1)$
 1044 discrepancy, but $\tilde{\Theta}(n^{1/4})$ hereditary discrepancy.*

1045 *Proof.* To start with, it is obvious that a lower bound of $\Omega(1)$ on both edge and
 1046 vertex (hereditary) discrepancy always holds for any family of graphs. We therefore
 1047 first focus on the $O(1)$ discrepancy upper bound for bipartite graphs (including trees).

1048 *Analysis of discrepancy..* We start with the vertex discrepancy. For a bipartite
 1049 graph $G = (L \cup R, E)$, a simple scheme achieves constant vertex discrepancy: assign
 1050 coloring ‘+1’ to every $v \in L$ and ‘-1’ to every $u \in R$. Observe that every shortest
 1051 path either has length of 1, or alternates between L and R , thus summing up assigned
 1052 colors along the shortest path gives +1 vertex discrepancy at most 1. Finally, we
 1053 apply Observation 3.4 to argue that the edge discrepancy is also $O(1)$.

1054 *Analysis of hereditary discrepancy..* We prove this statement by showing that we
 1055 can reduce the hereditary discrepancy of bipartite graphs to general graphs by the 2-
 1056 lift construction. Concretely, suppose we are given a path system that is characterized
 1057 by $G = (V, E, w)$ and matrix A , such that the hereditary discrepancy is at least $f(n)$,
 1058 and let the set of columns that attains the maximum hereditary discrepancy be Y .
 1059 We will construct a new n' -vertex graph G' with a new matrix A' , in which we have
 1060 a set of columns Y' induces at least $f(n'/2)$ discrepancy. Such a graph is a valid
 1061 instance of the family of the bipartite graphs, and an $\Omega(n^{1/4})$ hereditary discrepancy
 1062 on G would imply an $\Omega(n^{1/4})$ hereditary discrepancy on G' .

1063 We now describe a detailed algorithm, Algorithm 7.1, for the 2-lift graph construc-
 1064 tion as follows. In the procedure, we slightly abuse the notation to interchangeably
 1065 use the set with one element and the element itself, i.e., we use $\{a\}$ to denote a when
 1066 the context is clear.

Algorithm 7.1 Construction 2-Lift: an algorithm to construct bipartite graph with
 high hereditary discrepancy.

Require: A consistent path system characterized by a general undirected graph $G =$
 (V, E, w) and matrix A with hereditary discrepancy at least $f(n)$;
Ensure: A consistent path system characterized by bipartite graph graph $G' =$
 (V', E', w') and matrix A' with hereditary discrepancy at least $f(n'/2)$;
 1: Vertices V' : each vertex $v \in V$, make two copies of vertices $v_L, v_R \in V'$.
 2: Edges E' : Maintain a “side indicator” $s \in \{L, R\}$, and initialize $s = L$.
 3: **for** each vertex $v \in V$ with an arbitrary order: **do**
 4: Add *all* edges $(v_s, u_{\{L, R\} \setminus s})$ such that $u \in N(v)$.
 5: Delete v from $N(u)$ for all $u \in N(v)$.
 5: Switch the side indicator, i.e., $s \leftarrow \{L, R\} \setminus s$.
 6: **end for**
 7: Path system A' : for each row a of A , starting from the the first vertex with 1,
 add 1 to the row of A' to the vertex whose degree is not 0.

1067 Note that for any vertex $v \in V$, only one of (v_L, v_R) is used in the matrix A' . We
 1068 now argue that A' is a valid collection of path systems. Note that for a single path P
 1069 in A , we can always follow the vertices with non-zero degree, and connect the edges
 1070 to a valid path in A' . Furthermore, two paths would conflict with each other only
 1071 if there exists an edge that “shortcut” an even-sized path, i.e., both $(v_1, v_2, \dots, v_{2k})$
 1072 and (v_1, v_{2k}) are in the path system. However, this would violate the consistency
 1073 property of A . As such, all the rows in A' can find a valid path in G' .

1074 Let Y be the columns that attains the $f(n)$ discrepancy on G , and we slightly
 1075 abuse the notation to use $f(n)$ to denote both the indices of the columns in A and
 1076 the vertex set $A \subseteq V$. Since we have an bijective mapping between the vertices in Y
 1077 and the vertices we account for in G' , we have the hereditary discrepancy to be at
 1078 least $f(n) = f(n'/2)$, as desired. \square

1079 **8. Bounds on ℓ_2 -discrepancy.** Consider a set of p paths on a graph G , the
 1080 incidence matrix A of p rows and n columns has the (i, j) -th element to be 1 if the
 1081 corresponding vertex v_j stays on the i -th path, and 0 otherwise. Then we consider
 1082 the vertex ℓ_2 -discrepancy $\text{disc}_2(A)$ and hereditary discrepancy $\text{herdisc}_2(A)$.

1083 Since $\text{disc}_2(A) \leq \text{disc}(A)$ and $\text{herdisc}_2(A) \leq \text{herdisc}(A)$, the upper bounds on
 1084 discrepancy and hereditary discrepancy for path systems remain as upper bounds for
 1085 ℓ_2 (hereditary) discrepancy, that is, $\tilde{O}(\sqrt{n})$ for general paths (that are not necessary
 1086 shortest paths and not necessarily consistent), and $\tilde{O}(n^{1/4})$ for shortest paths or
 1087 consistent paths.

1088 For lower bound on ℓ_2 discrepancy, we first recall the following result in
 1089 Larsen [46]:

1090 **LEMMA 8.1** ([46]). *For an $m \times n$ real matrix A , let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$ denote
 1091 the eigenvalues of $A^\top A$. For all positive integers $k \leq \min\{n, m\}$, we have*

$$1092 \text{herdisc}_2(A) \geq \frac{k}{e} \sqrt{\frac{\lambda_k}{8\pi mn}}.$$

1093 In the proof of the trace bound, Chazelle and Lvov [21] have shown that for $k =$
 1094 $\text{tr}^2(M)/(2\text{tr } M^2)$, we have $\lambda_k \geq \text{tr}(M)/4\min\{n, m\}$. Setting it in Lemma 8.1, we
 1095 have the same asymptotic trace bound for ℓ_2 -hereditary as in Lemma 3.8.

$$1096 \text{herdisc}_2(A) \geq \frac{\text{tr}^2(M)}{2e \min\{m, n\} \text{tr } M^2} \sqrt{\frac{\text{tr}(M)}{32\pi \max\{m, n\}}}.$$

1097 Using the same calculation as in the proof of Theorem 5.1, we get the equivalent
 1098 bound on ℓ_2 -hereditary discrepancy for the set Π of shortest paths in Lemma 3.9:

$$1099 \text{herdisc}_{v,2}(\Pi) \geq \Omega\left(\frac{n^{1/4}}{\sqrt{\log(n)}}\right).$$

1100 Notice that the same lower bound argument generates a lower bound of $\Omega(n^{1/6})$ on
 1101 ℓ_2 discrepancy for the Erdős point-line system.

1102 Again if we drop the consistency property (or uniqueness of shortest paths), the
 1103 ℓ_2 hereditary discrepancy can be much higher. Consider a graph G with two vertices
 1104 s and t , together with $2n$ vertices $u_i, v_i, i \in [n]$. We connect s with u_1, v_1 and t with
 1105 u_n, v_n . In addition, u_i, v_i are both connected to u_{i+1}, v_{i+1} , for $1 \leq i \leq n-1$. Now
 1106 we can encode the $n \times n$ Hadamard matrix H by n paths from s to t . Each row of
 1107 H corresponds to a path P_i . If the j th element is 1, we take u_j , otherwise, we take
 1108 v_j . The incidence matrix A considering only vertices v_1, v_2, \dots, v_n would be precisely
 1109 $\frac{1}{2}(H+J)$, where J is an $n \times n$ matrix of all 1. It is known that $\|Ax\|_2^2 \geq n(n-1)/4$ [20].
 1110 Thus $\text{herdisc}_2(A) = \Omega(\sqrt{n})$.

1111 In summary, all bounds of hereditary discrepancy presented in the paper hold for
 1112 ℓ_2 hereditary discrepancy for path systems on a graph.

1113 **9. Applications to Differential Privacy.** In light of our new unique shortest
 1114 path hereditary discrepancy lower bound result, significant progress can be made to-
 1115 wards closing the gap in the error bounds for the problem of Differentially Private
 1116 All Pairs Shortest Distances (APSD) [59, 22, 36]. Likewise, the problem of Differen-
 1117 tially Private All Sets Range Query (ASRQ) [29] now has a tight error bound (up to
 1118 logarithmic factors). We present the DP-APSD problem formally and show the proof
 1119 of the new lower bound corresponding to Theorem 1.7. Details on the DP-ASRQ
 1120 problem are deferred to Appendix D.

1121 **9.1. All Pairs Shortest Distances.** Given a weighted undirected graph $G =$
 1122 (V, E, w) of size n , the private mechanism is supposed to output an n by n matrix
 1123 $D' = \mathcal{M}(G)$ of approximate all pairs shortest paths distances in G , and the privacy
 1124 guarantee is imposed on two sets of edge weights that are considered ‘neighboring’,
 1125 i.e., with ℓ_1 difference at most 1. Our goal is to minimize the maximum additive error
 1126 of any entry in the APSD matrix, i.e., the ℓ_∞ distance of $D' - D$ where D is the
 1127 true APSD matrix. This line of work was initiated by [59], where an algorithm was
 1128 proposed with $O(n)$ additive error. Recently, concurrent works [22, 36] breaks the
 1129 linear barrier by presenting an upper bound of $\tilde{O}(n^{1/2})$. Meanwhile, the only known
 1130 lower bound is $\Omega(n^{1/6})$, due to [22], using a hereditary discrepancy lower bound based
 1131 on the point-line system of [21]. With our improved hereditary discrepancy lower
 1132 bound, we are able to show an $\Omega(n^{1/4}/\sqrt{\log n})$ lower bound on the additive error of
 1133 the DP-APSD problem.

1134 COROLLARY 9.1. *Given an n -node undirected graph, for any $\beta \in (0, 1)$ and
 1135 $\varepsilon, \delta > 0$, no (ε, δ) -DP algorithm for APSD has additive error of $o(n^{1/4}/\sqrt{\log n})$ with
 1136 probability $1 - \beta$.*

1137 The connection between the APSD problem and the shortest paths hereditary
 1138 discrepancy lower bound was shown in [22], which implies that simply plugging in
 1139 the new exponent gives the result above. For the sake of completeness, we give the
 1140 necessary definition to formally define the DP-APSD problem, and show the main
 1141 arguments towards proving Corollary 9.1.

1142 DEFINITION 9.2 (Neighboring weights [59]). *For a graph $G = (V, E)$, let $w, w' : E \rightarrow \mathbb{R}^{\geq 0}$ be two weight functions that map any $e \in E$ to a non-negative real number, we say w, w' are neighboring, denoted as $w \sim w'$ if $\sum_{e \in E} |w(e) - w'(e)| \leq 1$.*

1143 DEFINITION 9.3 (Differentially Private APSD [59]). *Let $w, w' : E \rightarrow \mathbb{R}^{\geq 0}$ be weight functions, and \mathcal{A} be an algorithm taking a graph $G = (V, E)$ and w as input. The algorithm \mathcal{A} is (ε, δ) -differentially private on G if for any neighboring weights $w \sim w'$ (See Definition 9.2) and all sets of possible output \mathcal{C} , we have: $\Pr[\mathcal{A}(G, w) \in \mathcal{C}] \leq e^\varepsilon \cdot \Pr[\mathcal{A}(G, w') \in \mathcal{C}] + \delta$.*

1144 We say the private mechanism \mathcal{A} is α -accurate if the ℓ_∞ norm of $|\mathcal{A}(G, w) - f(G, w)|$ is at most α , where f indicates the function returning the ground truth shortest distances.

1145 Proof of Corollary 9.1. First, suppose $\mathbf{A} \in \mathbb{R}^{\binom{n}{2} \times n}$ is the shortest path vertex
 1146 incidence matrix on the graph G . Previous work [22] has shown that the linear query
 1147 problem on \mathbf{A} can be reduced to the DP-APSD problem, formally stated as follows.

1148 LEMMA 9.4 (Lemma 4.1 in [22]). *Let (V, Π) be a shortest path system with
 1149 incidence matrix \mathbf{A} , if there exists an (ε, δ) DP algorithm that is α -accurate for the
 1150 APSD problem with probability $1 - \beta$ on a graph of size $2|V|$, then there exists an
 1151 (ε, δ) DP algorithm that is α -accurate for the \mathbf{A} -linear query problem with probability
 1152 $1 - \beta$.*

1153 Now all we need to show is that the \mathbf{A} -linear query problem has a lower bound
 1154 of $\Omega(n^{1/4}/\sqrt{\log(n)})$. We note the following result by [54].

1155 LEMMA 9.5. *For any $\beta \in (0, 1)$, there exists ε, δ such that for any \mathbf{A} , no (ε, δ) -DP
 1156 algorithm is herdisc(\mathbf{A})/2-accurate for the \mathbf{A} -query problem with probability $1 - \beta$.*

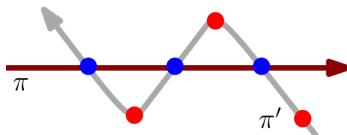
1157 Combining Lemma 9.4 and 9.5, we find that additive error needed for the DP-
 1158 APSD problem is at least the hereditary discrepancy of its vertex incidence matrix,

1167 implying Corollary 9.1. The lower bound for ASRQ also follows using the same
 1168 argument (see Appendix D). \square

1169 **10. Conclusion and Open Problems.** This paper reported new bounds on
 1170 the hereditary discrepancy of set systems of unique shortest paths in graphs. We leave
 1171 several open questions:

1172 1. An open problem is to improve our edge discrepancy upper bound in di-
 1173 rected graphs. Standard techniques in discrepancy theory imply an upper
 1174 bound of $\min\{O(m^{1/4}), \tilde{O}(D^{1/2})\}$ for this problem, leaving a gap with our
 1175 $\Omega(n^{1/4}/\sqrt{\log n})$ lower bound when $m = \omega(n)$. Unfortunately, we were not
 1176 able to extend our low-discrepancy edge and vertex coloring arguments for
 1177 undirected graphs to the directed setting, due to the pathological example in
 1178 Figure 4.

1179 2. Using our discrepancy lower bound, we gave an improved lower bound of
 1180 $\tilde{\Omega}(n^{1/4})$ on answering all pair shortest distance problem under the constraints
 1181 of $(1, 1/n)$ -differential privacy. In contrast, the best known upper bound re-
 1182 mains $\tilde{O}(n^{1/2})$ for the same problem. Closing this gap remains an interesting
 1183 open question.



1184 FIG. 4. An example in directed graphs that demonstrates how coloring unique shortest paths
 with alternating colors can fail to imply low discrepancy.

REFERENCES

1185 [1] I. ABRAHAM, A. FIAT, A. V. GOLDBERG, AND R. F. WERNECK, *Highway dimension, shortest*
 1186 *paths, and provably efficient algorithms*, in Proceedings of the twenty-first annual ACM-
 1187 SIAM symposium on Discrete Algorithms, SIAM, 2010, pp. 782–793.

1188 [2] S. AKMAL AND N. WEIN, *A local-to-global theorem for congested shortest paths*, in 31st Annual
 1189 European Symposium on Algorithms (ESA 2023), 2023, pp. 8:1–8:17.

1190 [3] J. R. ALEXANDER, J. BECK, AND W. W. CHEN, *Geometric discrepancy theory and uniform*
 1191 *distribution*, Handbook of discrete and computational geometry, (2004), p. 279.

1192 [4] N. ALON, *On the edge-expansion of graphs*, Combinatorics, Probability and Computing, 6
 1193 (1997), pp. 145–152.

1194 [5] N. ALON AND F. R. CHUNG, *Explicit construction of linear sized tolerant networks*, Discrete
 1195 Mathematics, 72 (1988), pp. 15–19.

1196 [6] S. A. AMIRI AND J. WARGALLA, *Disjoint shortest paths with congestion on DAGs*, arXiv pre-
 1197 print arXiv:2008.08368, (2020).

1198 [7] J. BALOGH, B. CSABA, Y. JING, AND A. PLUHÁR, *On the discrepancies of graphs*, Electronic
 1199 Journal of Combinatorics, 27 (2020).

1200 [8] L. BALZOTTI, *Non-crossing shortest paths are covered with exactly four forests*, arXiv preprint
 1201 arXiv:2210.13036, (2022).

1202 [9] H. BAST, D. DELLING, A. GOLDBERG, M. MÜLLER-HANNEMANN, T. PAJOR, P. SANDERS,
 1203 D. WAGNER, AND R. F. WERNECK, *Route planning in transportation networks*, Algorithm
 1204 engineering: Selected results and surveys, (2016), pp. 19–80.

1205 [10] J. BECK, *On size Ramsey number of paths, trees, and circuits. i*, Journal of Graph Theory, 7
 1206 (1983), pp. 115–129.

1207 [11] I. BEN-ELIEZER, M. KRIVELEVICH, AND B. SUDAKOV, *The size Ramsey number of a directed*
 1208 *path*, Journal of Combinatorial Theory, Series B, 102 (2012), pp. 743–755.

1209 [12] J. BLUM, Y. DISSER, A. E. FELDMANN, S. GUPTA, AND A. ZYCH-PAWLEWICZ, *On sparse hitting*
 1210 *sets: From fair vertex cover to highway dimension*, in 17th International Symposium on

1211 Parameterized and Exact Computation (IPEC 2022), H. Dell and J. Nederlof, eds., vol. 249
 1212 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, 2022,
 1213 Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 5:1–5:23.

1214 [13] G. BODWIN, *On the structure of unique shortest paths in graphs*, in Proceedings of the Thirtieth
 1215 Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2019, pp. 2071–2089.

1216 [14] G. BODWIN, C. DENG, J. GAO, G. HOPPENWORTH, J. UPADHYAY, AND C. WANG, *The discrepancy*
 1217 *of shortest paths*, arXiv preprint arXiv:2401.15781, (2024).

1218 [15] G. BODWIN AND G. HOPPENWORTH, *Folklore sampling is optimal for exact posets: Confirming*
 1219 *the \sqrt{n} barrier*, in Proceedings of the 64th IEEE Symposium on Foundations of Computer
 1220 Science (FOCS) 2023, 2023, pp. 701–720.

1221 [16] B. BOLLOBÁS AND A. D. SCOTT, *Discrepancy in graphs and hypergraphs*, More Sets, Graphs
 1222 and Numbers: A Salute to Vera Sós and András Hajnal, (2006), pp. 33–56.

1223 [17] H.-C. CHANG, J. CONROY, H. LE, L. MILENKOVIC, AND S. SOLOMON, *Covering planar metrics*
 1224 *(and beyond): $O(1)$ trees suffice*, in 2023 IEEE 64th Annual Symposium on Foundations
 1225 of Computer Science (FOCS), 2023, pp. 2231–2261.

1226 [18] H.-C. CHANG, P. GAWRYCHOWSKI, S. MOZES, AND O. WEIMANN, *Near-optimal distance emu-*
 1227 *lator for planar graphs*, in 26th Annual European Symposium on Algorithms (ESA 2018),
 1228 2018, pp. 16:1–16:17.

1229 [19] H.-C. CHANG, R. KRAUTHGAMER, AND Z. TAN, *Near-linear ϵ -emulators for planar graphs*,
 1230 arXiv preprint arXiv:2206.10681, (2022).

1231 [20] B. CHAZELLE, *The Discrepancy Method: Randomness and Complexity*, Cambridge University
 1232 Press, 2000.

1233 [21] B. CHAZELLE AND A. LVOV, *A trace bound for the hereditary discrepancy*, in Proceedings of the
 1234 sixteenth annual symposium on Computational geometry, SCG '00, New York, NY, USA,
 1235 May 2000, Association for Computing Machinery, pp. 64–69.

1236 [22] H. CHEN, B. GHAZI, R. KUMAR, P. MANURANGSI, S. NARAYANAN, J. NELSON, AND Y. XU,
 1237 *Differentially private all-pairs shortest path distances: Improved algorithms and lower*
 1238 *bounds*, in Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
 1239 (SODA), 2023, pp. 5040–5067.

1240 [23] M. CHUDNOVSKY, D. CIZMA, AND N. LINIAL, *The structure of metrizable graphs*, Discrete &
 1241 Computational Geometry, (2024), pp. 1–20.

1242 [24] F. R. K. CHUNG, R. L. GRAHAM, AND R. M. WILSON, *Quasi-random graphs*, Combinatorica,
 1243 9 (1989), pp. 345–362.

1244 [25] D. CIZMA AND N. LINIAL, *Geodesic geometry on graphs*, Discrete & Computational Geometry,
 1245 68 (2022), pp. 298–347.

1246 [26] D. CIZMA AND N. LINIAL, *Irreducible nonmetrizable path systems in graphs*, Journal of Graph
 1247 Theory, 102 (2023), pp. 5–14.

1248 [27] D. COPPERSMITH AND M. ELKIN, *Sparse sourcewise and pairwise distance preservers*, SIAM
 1249 Journal on Discrete Mathematics, 20 (2006), pp. 463–501.

1250 [28] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, *Introduction to algorithms*,
 1251 MIT press, 2022.

1252 [29] C. DENG, J. GAO, J. UPADHYAY, AND C. WANG, *Differentially private range query on shortest*
 1253 *paths*, in Proceedings of the 18th Algorithms and Data Structures Symposium (WADS
 1254 2023), Springer, 2023, pp. 340–370.

1255 [30] A. DUDEK AND P. PRALAT, *An alternative proof of the linearity of the size-ramsey number of*
 1256 *paths*, Combinatorics, Probability and Computing, 24 (2015), pp. 551–555.

1257 [31] C. DWORK, F. MCSHERRY, K. NISSIM, AND A. SMITH, *Calibrating noise to sensitivity in private*
 1258 *data analysis*, in Proceedings of the Third Conference on Theory of Cryptography, Springer,
 1259 2006, pp. 265–284.

1260 [32] C. DWORK AND A. ROTH, *The algorithmic foundations of differential privacy*, Foundations and
 1261 Trends® in Theoretical Computer Science, 9 (2014), pp. 211–407.

1262 [33] M. ELIÁŠ, M. KAPRALOV, J. KULKARNI, AND Y. T. LEE, *Differentially private release of syn-*
 1263 *thetic graphs*, in Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
 1264 Algorithms, SIAM, 2020, pp. 560–578.

1265 [34] P. ERDŐS, *On combinatorial questions connected with a theorem of Ramsey and van der Waer-*
 1266 *den*, Mat. Lapok, 14 (1963), pp. 29–37.

1267 [35] P. ERDŐS AND J. SPENCER, *Imbalances in k -colorations*, Networks, 1 (1972), pp. 379–385.

1268 [36] C. FAN, P. LI, AND X. LI, *Breaking the linear error barrier in differentially private graph*
 1269 *distance release*, arXiv preprint arXiv:2204.14247, (2022).

1270 [37] H. FICHTENBERGER, M. HENZINGER, AND J. UPADHYAY, *Constant matters: Fine-grained er-*
 1271 *ror bound on differentially private continual observation*, in International Conference on
 1272 Machine Learning, PMLR, 2023, pp. 10072–10092.

1273 [38] A. FRESCHI, J. HYDE, J. LADA, AND A. TREGLOWN, *A note on color-bias Hamilton cycles in*
 1274 *dense graphs*, SIAM Journal on Discrete Mathematics, 35 (2021), pp. 970–975.

1275 [39] L. GISHBOLINER, M. KRIVELEVICH, AND P. MICHAELI, *Discrepancies of spanning trees and*
 1276 *Hamilton cycles*, Journal of Combinatorial Theory, Series B, 154 (2022), pp. 262–291.

1277 [40] S. HAR-PELED, *A simple proof of the existence of a planar separator*, arXiv preprint
 1278 arXiv:1105.0103, (2011).

1279 [41] M. HENZINGER, J. UPADHYAY, AND S. UPADHYAY, *Almost tight error bounds on differentially*
 1280 *private continual counting*, in Proceedings of the 2023 Annual ACM-SIAM Symposium on
 1281 Discrete Algorithms (SODA), SIAM, 2023, pp. 5003–5039.

1282 [42] M. HENZINGER, J. UPADHYAY, AND S. UPADHYAY, *A unifying framework for differentially pri-*
 1283 *ate sums under continual observation*, in Symposium on Discrete Algorithms, 2024.

1284 [43] M. R. HENZINGER, P. KLEIN, S. RAO, AND S. SUBRAMANIAN, *Faster shortest-path algorithms*
 1285 *for planar graphs*, Journal of Computer and System Sciences, 55 (1997), pp. 3–23.

1286 [44] S. KOGAN AND M. PARTER, *New diameter-reducing shortcuts and directed hopsets: Breaking the*
 1287 *barrier*, in Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
 1288 (SODA), SIAM, 2022, pp. 1326–1341.

1289 [45] S. KWAPIEŃ AND A. PELCZYŃSKI, *The main triangle projection in matrix spaces and its appli-*
 1290 *cations*, Studia Mathematica, 34 (1970), pp. 43–67.

1291 [46] K. G. LARSEN, *Constructive discrepancy minimization with hereditary L2 guarantees*, in 36th
 1292 International Symposium on Theoretical Aspects of Computer Science (STACS 2019),
 1293 R. Niedermeier and C. Paul, eds., vol. 126 of Leibniz International Proceedings in In-
 1294 formatics (LIPIcs), Dagstuhl, Germany, 2019, Schloss Dagstuhl – Leibniz-Zentrum für
 1295 Informatik, pp. 48:1–48:13.

1296 [47] T. LEE, A. SHRAIBMAN, AND R. ŠPALEK, *A direct product theorem for discrepancy*, in 2008
 1297 23rd Annual IEEE Conference on Computational Complexity, IEEE, 2008, pp. 71–80.

1298 [48] S. LETZTER, *Path Ramsey number for random graphs*, Combinatorics, Probability and Com-
 1299 puting, 25 (2016), pp. 612–622.

1300 [49] J. LIU, J. UPADHYAY, AND Z. ZOU, *Optimal bounds on private graph approximation*, in Pro-
 1301 ceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
 1302 SIAM, 2024, pp. 1019–1049.

1303 [50] R. MATHIAS, *The Hadamard operator norm of a circulant and applications*, SIAM journal on
 1304 matrix analysis and applications, 14 (1993), pp. 1152–1167.

1305 [51] J. MATOUŠEK, *Tight upper bounds for the discrepancy of half-spaces*, Discrete Comput. Geom.,
 1306 13 (1995), pp. 593–601.

1307 [52] J. MATOUŠEK, *Geometric Discrepancy: An Illustrated Guide*, Springer Science & Business
 1308 Media, May 1999.

1309 [53] J. MATOUŠEK, A. NIKOLOV, AND K. TALWAR, *Factorization norms and hereditary discrepancy*,
 1310 International Mathematics Research Notices, 2020 (2020), pp. 751–780.

1311 [54] S. MUTHUKRISHNAN AND A. NIKOLOV, *Optimal private halfspace counting via discrepancy*, in
 1312 Proceedings of the forty-fourth annual ACM symposium on Theory of computing, 2012,
 1313 pp. 1285–1292.

1314 [55] J. PACH AND P. K. AGARWAL, *Combinatorial Geometry*, John Wiley & Sons, Oct. 2011.

1315 [56] J. PACH AND M. SHARIR, *On the number of incidences between points and curves*, Comb.
 1316 Probab. Comput., 7 (1998), pp. 121–127.

1317 [57] E. RÄTY, B. SUDAKOV, AND I. TOMON, *Positive discrepancy, MaxCut, and eigenvalues of*
 1318 *graphs*, arXiv preprint arXiv:2311.02070, (2023).

1319 [58] D. REIMER, *The Ramsey size number of dipaths*, Discrete mathematics, 257 (2002), pp. 173–
 1320 175.

1321 [59] A. SEALFON, *Shortest paths and distances with differential privacy*, in Proceedings of the 35th
 1322 ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, 2016,
 1323 pp. 29–41.

1324 [60] L. A. SZÉKELY, *Crossing numbers and hard Erdős problems in discrete geometry*, Comb.
 1325 Probab. Comput., 6 (1997), pp. 353–358.

1326 [61] E. SZEMERÉDI AND W. T. TROTTER, JR, *Extremal problems in discrete geometry*, Combinator-
 1327 ica, 3 (1983), pp. 381–392.

1328 [62] C. D. TOTH, J. O'ROURKE, AND J. E. GOODMAN, *Handbook of discrete and computational*
 1329 *geometry*, CRC Press, 2017.

1330 **Appendix A. Discrepancy Bounds for Paths Without Consistency.** In
 1331 a graph when we consider simple paths without the consistency requirement, there
 1332 is a strong lower bound on both vertex and edge discrepancy. In particular, we have
 1333 the following theorem.

1334 THEOREM A.1. *There is a planar graph $G = (V, E)$ such that the following is
 1335 true for any coloring $f : V \mapsto \{-1, 1\}$ of vertices V :*

- 1336 1. *There is a family Π of simple paths with $|\Pi| = O(\exp(n))$ and vertex discrepancy
 1337 of $\Omega(n)$.*
- 1338 2. *There is a family Π of simple paths with $|\Pi| = O(n)$ and vertex discrepancy
 1339 of $\Omega(\sqrt{n})$.*

1340 *The same claim holds true for edge discrepancy as well.*

1341 *Proof.* The first claim follows from Proposition 1.6 in [7], which says that the
 1342 edge discrepancy of paths on a $k \times \ell$ grid graph is at least $\Omega(k\ell)$. To prove vertex
 1343 discrepancy, we make two additional remarks about this construction. First, for our
 1344 purpose, it is sufficient to consider only an $n \times 2$ grid graph G . The set of paths in the
 1345 construction of [7] consists of all paths that start from the top left corner and bottom
 1346 left corner going to the right and possibly taking a subset of the vertical edges in the
 1347 grid graph. The number of paths is $O(2^n)$. Second, for vertex discrepancy, we define
 1348 a companion graph G' . Specifically, for each grid edge e in G , we place a vertex v of
 1349 G' on e . We connect two vertices in G' if and only if the corresponding edges in G
 1350 share a common vertex. The graph G' is still planar. In addition, a path P in G
 1351 maps to a corresponding path P' in G' where vertices on P' follow the same order
 1352 of the corresponding edges on P . See Figure 5 for an example. Therefore the edge
 discrepancy in G and the vertex discrepancy of G' are the same.

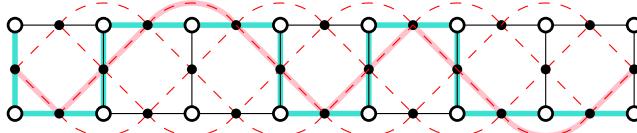


FIG. 5. A $n \times 2$ grid graph (with vertices shown in hollow and edges in black) G with one path (in blue) starting from the top left corner go the right. The solid vertices and edges in dashed red define the companion graph G' . The corresponding path in G' is shown in pink.

1353 For the second claim, we take an $n \times n$ Hadamard matrix H with n as power of 2.
 The elements in H are $+1$ or -1 . All the rows are pairwise orthogonal. For example,
 the Hadamard matrix with $n = 8$ is

$$H_8 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \end{pmatrix}$$

1354 It is known [20] that the matrix $A = \{a_{ij}\} = \frac{1}{2}(H + J)$ with J as an $n \times n$ matrix of
 1355 all 1 has discrepancy at least $\Omega(\sqrt{n})$.

1356 Now we try to embed the matrix A by paths on a $2 \times n$ grid graph G with a grid
 1357 of two rows and n columns. Denote by e_j as the j th vertical edge in G , $1 \leq j \leq n$.
 1358 For the i th row of A , we define set $X_i = \{e_j : a_{ij} = 1\}$. We then define two paths
 1359 $P(X_i), P'(X_i)$ on G .

- 1360 • Path $P(X_i)$ starts from the top left corner of G going to the right and the
 1361 vertical edges visited by $P(X_i)$ are precisely X_i .

1362 • Path $P'(X_i)$ starts from the bottom left corner of G going to the right and,
 1363 similar to $P(X_i)$, the vertical edges visited by $P(X_i)$ are precisely X_i .

1364 Note that $P(X_i)$ and $P'(X_i)$ each contains edges X_i (see Figure 6 for an illustration).
 1365 Also $P(X_i)$ and $P'(X_i)$ do not share any horizontal edges, and collectively cover all
 1366 horizontal edges in G . In addition, we define two paths P and P' with P starting
 1367 from the top left corner and visiting all the top horizontal edges and P' starting from
 1368 the bottom left corner and visiting all bottom horizontal edges. We have $2n+2$ paths
 1369 in total – each row i of the Hadamard matrix contributes 2 paths, and we additionally
 1370 use P and P' .

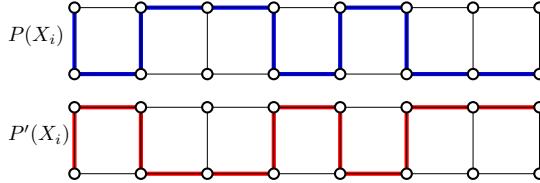


FIG. 6. A $n \times 2$ grid graph G with two paths $P(X_i)$ and $P'(X_i)$. The i th row of matrix A , i.e., $A_i = (\frac{1}{2}(H + J))_i$, corresponds to $X_i = (1, 1, 0, 1, 1, 0, 0)$.

1371 For any $\{\pm 1\}$ coloring f on edges in the grid graph G , define D as the maximum
 1372 absolute value of the sum of the colors of edges of each path, among all the $2n+2$
 1373 paths. We now argue that $D = \Omega(\sqrt{n})$.

1374 First we define an n -dimensional vector $\chi \in \{+1, -1\}^n$ with $\chi_j = f(e_j)$, i.e., the
 1375 color of the j th vertical edge in G . Since the discrepancy of matrix A is $\Omega(\sqrt{n})$, there
 1376 must be one row vector a_i in A such that $a_i \cdot \chi \geq c\sqrt{n}$ for some constant c . In other
 1377 words, the sum of the colors of the edges in X_i is $x = \sum_{e_j \in X_i} f(e_j)$ with $|x| \geq c\sqrt{n}$.
 1378 Without loss of generality, we assume $x > 0$, which in turn implies $x \geq c\sqrt{n}$.

1379 Now we define

$$1380 \quad z_1 := \sum_{e \in P(X_i) \setminus X_i} f(e) \quad \text{and} \quad z_2 := \sum_{e \in P'(X_i) \setminus X_i} f(e).$$

1381 If $\max\{z_1, z_2\} \geq 0$, then we are done as the total sum of colors of either $P(X)$ or
 1382 $P'(X)$ is at least $x \geq c\sqrt{n}$. Otherwise, suppose we have $z_1 < 0$ and $z_2 < 0$. We now
 1383 have from path $P(X_i)$, $D \geq x + z_1$, and from path $P'(X_i)$, $D \geq x + z_2$. Further,
 1384 consider paths P and P' , the total sum of colors of all the horizontal edges is $z_1 + z_2$.
 1385 Since both z_1 and z_2 are negative, there should be

$$1386 \quad 2D \geq \sum_{e \in P} f(e) + \sum_{e \in P'} f(e) = -z_1 - z_2.$$

1387 Summing up all three inequalities, we have $4D \geq 2x$. Thus $D \geq x/2 \geq c\sqrt{n}/2$.
 1388 This finishes the proof for edge discrepancy, and the vertex discrepancy bound can
 1389 be obtained using the same trick as in the proof of claim 1. \square

1390 The above theorem provides lower bounds for the discrepancy. Since hereditary
 1391 discrepancy is at least as high as discrepancy, the lower bounds also hold for hereditary
 1392 discrepancy.

1393 Note that the paths used in the above theorem are 2-approximate shortest paths.
 1394 The shortest path from top left corner to the top right corner of the $n \times 2$ grid is of
 1395 length $n-1$ while all paths used are of length at most $2n-2$. The shortest path

1396 from top left corner to bottom right corner is of length n and all paths used in the
 1397 construction are of length at most $2n - 1$. Therefore when we relax from shortest
 1398 paths to 2-approximate shortest paths the discrepancy bounds substantially go up. If
 1399 we replace each horizontal edge by a chain of $\lceil 1/\varepsilon \rceil$ vertices, we can make these paths
 1400 to be $(1 + \varepsilon)$ -approximate shortest paths for any $\varepsilon > 0$.

1401 Grid graphs are a special family of planar graphs. Actually for grid graphs we
 1402 can say a bit more on discrepancy of shortest paths. If we take *shortest paths* on an
 1403 unweighted grid graph (without even requiring consistency property and there could
 1404 be exponentially many shortest path between two vertices), the discrepancy is $O(1)$.
 1405 Specifically, for vertex discrepancy on a $k \times \ell$ grid graph of left bottom corner at
 1406 the origin and the top right corner at coordinate $(k - 1, \ell - 1)$, if we give a color
 1407 of $+1$ to all vertices of coordinate (x, y) with even $x + y$ and a color of -1 to all
 1408 other vertices, any shortest path visits a sequence of vertices with sum of coordinates
 1409 alternating between even and odd values and thus has a total color of $O(1)$. For edge
 1410 discrepancy, for all horizontal edges we give color $+1$ (-1) if the left endpoint is at
 1411 an even (odd) x -coordinate and the right endpoint is at an odd (even) x -coordinate.
 1412 We do the same for vertical edges. Again any shortest path has a ‘staircase’ shape
 1413 and a total coloring of $O(1)$.

1414 **Appendix B. Relation Between Discrepancy and Hereditary Discrep-
 1415 ancy in General Graphs.**

1416 In Theorem 5.1, we showed a construction of a path weighted graph G whose
 1417 system of unique shortest paths Π satisfies $\text{herdisc}_v(\Pi) \geq \Omega(n^{1/4}/\sqrt{\log(n)})$. Here, we
 1418 will observe that this result extends to discrepancy:

1419 **THEOREM B.1.** *There are examples of n -node undirected weighted graphs G with
 1420 a unique shortest path between each pair of nodes in which this system of shortest
 1421 paths Π has*

$$1422 \text{disc}_v(\Pi) \geq \Omega\left(\frac{n^{1/4}}{\sqrt{\log(n)}}\right).$$

1423 *Proof.* Let G be the graph from Theorem 5.1, and let Π be its system of unique
 1424 shortest paths. By definition of hereditary discrepancy, there exists an induced path
 1425 subsystem $\Pi' \subseteq \Pi$ with

$$1426 \text{disc}_v(\Pi') \geq \Omega\left(\frac{n^{1/4}}{\sqrt{\log(n)}}\right).$$

1427 Recall that, by induced subsystem, we mean that we may view the paths of Π as
 1428 abstract sequences of nodes, and then Π' is obtained from Π by deleting zero or more
 1429 nodes and deleting all occurrences of those nodes from the middle of paths. Thus the
 1430 paths in Π' are not still paths in Π , but they are paths in a different graph G' on
 1431 $n' \leq n$ nodes. It thus suffices to argue that all paths in Π' are

1432 It thus suffices to argue that there is a graph G' on $n' \leq n$ nodes in which all
 1433 paths in Π' are unique shortest paths. Indeed, this is well known, and is shown e.g.
 1434 in [13] (c.f. Lemma 2.4.4 and 2.4.11). To sketch the proof: suppose that a node v is
 1435 deleted from the initial system Π . Consider each path $\pi \in \Pi$ that contains v as an
 1436 internal node, i.e., it has the form

$$1437 \pi = (\dots, u, v, x, \dots).$$

1438 When v is removed, the path now contains the nodes u, x consecutively, and so we
 1439 must add (u, x) as a new edge to G' so that π is a path in G' . We judiciously set

1440 the edge weight to be $w(u, x) := w(u, v) + w(v, x)$. The weighted length of the path
 1441 π does not change, and yet the distances of G' majorize those of G , which implies
 1442 that π is still a unique shortest path in G' . Inducting this analysis over each deleted
 1443 vertex leads to the desired claim. \square

1444 **Appendix C. Application in Matrix Analysis.** Hereditary discrepancy
 1445 is intrinsically related to *factorization norm*, which has found applications in many
 1446 areas of computer science, including but not limited to quantum channel capacity,
 1447 communication complexity, etc. For any complex matrix $A \in \mathbb{C}^{m \times n}$, its factorization
 1448 norm, denoted by $\gamma_2(A)$, is defined as the following optimization problem:

1449 (C.1)
$$\gamma_2(A) = \min \{ \|L\|_{2 \rightarrow \infty} \|R\|_{1 \rightarrow 2} : A = LR \}.$$

1451 One can write (C.1) in a form of a semi-definite program (see Lee et al. [47]) and
 1452 also show that the Slater point exists. In particular, the primal and dual program
 1453 coincides. An interesting question in matrix analysis is to estimate the factorization
 1454 norm of different class of matrices. In a series of work, various authors have computed
 1455 tight bounds on the factorization norm of certain class of matrices:

1456 • If A is a unitary matrix, then $\gamma_2(A) = 1$.
 1457 • If $A \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix with entries A_{ij} , then

1458
$$\gamma_2(A) = \max_{1 \leq i \leq n} A_{ii}.$$

1459 • Mathias [50]: A satisfies the property that $\sqrt{A^\top A} \bullet \mathbb{I} = \sqrt{AA^\top} \bullet \mathbb{I} = \frac{\text{tr}(A)}{n} \mathbb{I}$,
 1460 then

1461
$$\gamma_2(A) = \frac{\text{Tr}(A^\top A)}{n}.$$

1462 In particular, if $A \in \{0, 1\}^n$ is a lower-triangular one matrix, then $\gamma_2(A) = \Theta(\log n)$ [37, 41, 45].

1463 • If $A \in \mathbb{R}^{n \times n}$ is a lower-triangular Toeplitz matrix with entries decreasing
 1464 either polynomially or exponentially, then $\gamma_2(A) = \Theta(1)$ [42].

1465 Our tight bound on hereditary discrepancy for consistent path on graphs allows us
 1466 to give tight bound on the factorization norm for the corresponding incidence matrix.
 1467 In particular, we use the following result:

1468 LEMMA C.1 (Matoušek et al. [53]). *For any real $m \times n$ matrix $A \in \mathbb{R}^{m \times n}$, there
 1469 exists absolute constants $0 < c < C$ such that*

1470
$$c \frac{\gamma_2(A)}{\sqrt{\log(m)}} \leq \text{herdisc}(A) \leq C \gamma_2(A) \log(m).$$

1471 Combining Lemma C.1 with our results, we have the following corollary:

1472 COROLLARY C.2. *Let A_G be the incident matrix for unique shortest path system
 1473 on an n vertices graph G . Then if G is bipartite, planar, or any general graph, then
 1474 $\gamma_2(A_G) = \tilde{\Theta}(n^{1/4})$.*

1475 **Appendix D. Differentially Private All Sets Range Queries.** Here we
 1476 introduce the DP-ASRQ problem and show its connection to the DP-APSD problem.

1477 Given an undirected graph G , the problem of All Sets Range Queries (ASRQ)
 1478 considers each edge associated with a certain attribute, and the range is the set of
 1479 edges along a shortest path. Two type of queries are considered here: the *bottleneck*
 1480

1481 query returns the largest/smallest attribute in a range; while the *counting* query
 1482 returns the summation of all attributes.

1483 At a schematic level, the ASRQ problem with counting queries is very similar to
 1484 the APSD problem: the graph topology is public and the edge attributes are consid-
 1485 ered private. Only that the shortest path structure is dictated by the edge weights
 1486 to be protected in the APSD problem, however, irrelevant to the edge attributes in
 1487 the ASRQ problem. This subtle difference has consequential caveat in the algorithm
 1488 design: the graph topology can be used, for example, to construct an exact hopset
 1489 first then apply perturbations to the edge attributes in the ASRQ problem; nevertheless,
 1490 approach of this kind violates protecting the sensitive information in the APSD
 1491 problem, since adversarial inference can be made on edge weights when the graph
 1492 topology information is used. This observation also notes that the APSD problem
 1493 is strictly harder than the ASRQ problem: recall that the best additive error upper
 1494 bound of the APSD problem is still $\tilde{O}(n^{1/2})$, while the other has $\tilde{O}(n^{1/4})$ [29]. There-
 1495 fore, plugging in our new hereditary lower bound essentially closes the gap for the
 1496 ASRQ problem.

1497 **COROLLARY D.1** (Formal version of Theorem 1.7). *Given an n -node undirected
 1498 graph, for any $\beta \in (0, 1)$ and any $\varepsilon, \delta > 0$, no (ε, δ) -DP algorithm for ASRQ has
 1499 additive error of $o(n^{1/4})$ with probability $1 - \beta$.*

1500 **DEFINITION D.2** (Differentially Private Range Queries). *Let $(\mathcal{R} = (X, \mathcal{S}), f)$ be
 1501 a system of range queries and $w, w' : X \rightarrow \mathbb{R}^{\geq 0}$ be neighboring attribute functions.
 1502 Furthermore, let \mathcal{A} be an algorithm that takes (\mathcal{R}, f, w) as input. Then \mathcal{A} is (ε, δ) -
 1503 differentially private on G if, for all pairs of neighboring attribute functions w, w' and
 1504 all sets of possible outputs \mathcal{C} , we have $\Pr[\mathcal{A}(\mathcal{R}, f, w) \in \mathcal{C}] \leq e^\varepsilon \cdot \Pr[\mathcal{A}(\mathcal{R}, f, w') \in \mathcal{C}] + \delta$.
 1505 If $\delta = 0$, we say \mathcal{A} is ε -differentially private on G .*

1506 To complete this section, we give the formal definition of the ASRQ problem
 1507 above. The definition of neighboring attributes follows Definition 9.2. The lower
 1508 bound proof of Corollary D.1 simply imitates the APSD problem, because the re-
 1509 duction from the linear query problem still holds despite the difference between two
 1510 problems. The proof is omitted to avoid redundancy.