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ABSTRACT

This paper considers the problem of learning the reward function and constraints
of an expert from few demonstrations. This problem can be considered as a meta-
learning problem where we first learn meta-priors over reward functions and con-
straints from other distinct but related tasks and then adapt the learned meta-priors
to new tasks from only few expert demonstrations. We formulate a bi-level op-
timization problem where the upper level aims to learn a meta-prior over reward
functions and the lower level is to learn a meta-prior over constraints. We propose
a novel algorithm to solve this problem and formally guarantee that the algorithm
reaches the set of e-stationary points at the iteration complexity O(E%) We also
quantify the generalization error to an arbitrary new task. Experiments are used
to validate that the learned meta-priors can adapt to new tasks with good perfor-
mance from only few demonstrations.

1 INTRODUCTION

Inverse reinforcement learning (IRL) has been receiving substantial research efforts due to its effec-
tiveness to recover a reward function from expert’s demonstrations that can well explain the expert’s
behavior. In practical applications, however, constraints are ubiquitous and a reward function com-
bined with a set of constraints can better explain complicated behaviors than a single reward function
(Malik et al., 2021). Therefore, inverse constrained reinforcement learning (ICRL) is proposed to
learn constraints from expert’s demonstrations. Current state-of-the-arts on IRL (Fu et al., 2018;
Imani & Ghoreishi, 2021) and ICRL (Scobee & Sastry, 2019) can either learn a reward function in
unconstrained environments or infer constraints with access to the ground truth reward but cannot
infer both. To solve this challenge, distributed ICRL (Liu & Zhu, 2022) is proposed to learn both
the reward function and constraints of the expert. In this paper, we follow the definition of ICRL in
(Liu & Zhu, 2022), which means learning both the reward function and constraints of the expert.

While the aforementioned literature can recover the reward function and constraints for single tasks,
they typically need large amounts of expert demonstrations (Yu et al., 2019). When it comes to
multiple related tasks that share common structural patterns, e.g., navigating to different locations
in a common environment (Xu et al., 2019), it could be expensive and inefficient to collect enough
demonstrations for each task and then learn the corresponding reward function and constraints sep-
arately. Meta-learning (Rajeswaran et al., 2019) has a potential to learn the reward functions and
constraints efficiently from few demonstrations. It can exploit the structural similarity of a group
of related tasks by learning meta-priors. The learned meta-priors allow for rapid adaptation to new
related tasks from only limited data. Therefore, it motivates us to leverage meta-learning to infer the
reward functions and constraints of the experts in new tasks from only few demonstrations.

Related works. IRL (Abbeel & Ng, 2004; Ziebart et al., 2008; Ziebart, 2010) and ICRL (Scobee
& Sastry, 2019; Malik et al., 2021; Liu & Zhu, 2022) have shown great success in recovering the
reward function and constraints from expert’s demonstrations. However, when it comes to multiple
related tasks, they all require large amounts of demonstrations for each task. Meta-learning (Finn
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et al., 2017; Rajeswaran et al., 2019; Xu & Zhu, 2023b) provides a way to learn from limited data by
learning the common structural patterns (i.e., meta-priors) of the related tasks and then optimizing
for rapid adaptation to unseen tasks from only few data. It has achieved state-of-the-art performance
in few-shot regression, classification (Finn et al., 2017), and reinforcement learning (Fallah et al.,
2021a; Xu & Zhu, 2022). Recently, several meta IRL algorithms are proposed to recover reward
functions from few demonstrations. In specific, (Yu et al., 2018; Xu et al., 2019) propose to learn a
reward parameter initialization that can be adapted to new tasks via only one or few gradient descent
step(s). (Yu et al., 2019; Seyed Ghasemipour et al., 2019) propose to learn a context-conditional
model that, given a new task, can encode the task and output the corresponding reward parameters.

However, the existing works on meta IRL have two limitations. (i) They do not explicitly deal
with constraints. Existing meta-learning algorithms can directly compute the gradient of the meta
objective (i.e., hyper-gradient) when only reward functions are learned (Xu et al., 2019), but cannot
compute the hyper-gradient when we also need to deal with constraints. (ii) They do not theoretically
guarantee the proposed algorithms’ convergence, and more importantly, adaptation performance
(i.e., generalization error) to new tasks. This paper proposes the first theoretical framework and
thereby an algorithm that can learn the reward function and constraints of a new task from only few
demonstrations by first learning meta-priors over reward functions and constraints. While there is
no meta IRL theoretical work, there are several theoretical works on other meta-learning problems.
We discuss our distinctions from other related meta-learning theoretical works in Appendix A.14.

Contribution statement. Our contributions are threefold. First, we extend ICRL (Liu & Zhu, 2022)
to a meta-learning setting where we learn meta-priors over reward functions and constraints in order
to adapt to new related tasks from few demonstrations. We formulate a novel bi-level optimization
problem to solve it. Second, we propose a novel “meta inverse constrained reinforcement learning”
(M-ICRL) algorithm, that can efficiently compute the hyper-gradient, to solve the problem. Third,
we provide the iteration complexity O(e%) of the algorithm reaching the set of e-stationary points.
More importantly, we quantify the generalization error to an arbitrary new task. It is shown that the
generalization error can be sufficiently small if the new task is “close” to the training tasks.

2 PROBLEM FORMULATION
This section introduces the definition of a single task and then formulates the meta-learning problem.

2.1 SINGLE TASK: ICRL

In our problem, a single task 7; is an ICRL problem (Liu & Zhu, 2022) where a learner aims to
learn the reward function and constraints of an expert from the expert’s demonstrated trajectories.
The expert’s decision making is based on a constrained Markov decision process (CMDP). The task
T:’s CMDP (S, A, ~, Po, P,r;,c;,b;) is defined via state set S, action set .4, discount factor ~y, and
initial state distribution Py. The probability of state transition to s’ from s by taking action a is
P(s'|s,a). The reward and cost functions of the expert are r;,¢; : S x A — R. A trajectory of
the CMDP is a state-action sequence ( = sg, ag, S1, a1, - -- and we use P, to denote the trajectory
distribution generated by an arbitrary policy m where the initial state is drawn from Fy. Define
Jri () & Ecop, [> oo Y'ri(se, ar)] as the expected cumulative reward under the policy 7 and
Jei () £ Ecp, [Doieo vici(st, at)] as the expected cumulative cost. The expert’s policy m; wants

to maximize .J,., () subject to J., (m) < b; where b; is a pre-defined budget. The expert can roll out
7; to demonstrate a set of D; trajectories D; = {¢/ }]D;l where (7 = s}, a}, s],a],---.

A learner observes D; and aims to use parameterized models ry and c,, with parameters 6 and w to
learn the expert’s reward function r; and cost function c; by solving the following ICRL problem:

mein L;(0,w*(9)), s.t w*(f)=argminG;(w;0). (1)

The upper-level problem aims to learn a reward function 7 that can minimize the expected negative
log-likelihood L;(0,w) £ —E¢~p, [2120 7" 10g Tuwse(ar]se)] where . is the constrained soft
Bellman policy (see the expression in Appendix A.2) (Liu & Zhu, 2022; 2024) under the reward
function ry and cost function c,,. The constrained soft Bellman policy is an extension of soft Bellman
policy (Ziebart et al., 2010; Zhou et al., 2017) to CMDPs. The soft Bellman policy is widely used

in soft Q-learning (Haarnoja et al., 2017) and soft actor-critic (Haarnoja et al., 2018).
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The lower-level function G;(w; 0) £ max, H(7) + J,, (1) — J. (7) + Je_(7;) can be regarded
as an RL problem which aims to find the policy that maximizes the entropy-regularized cumulative
reward-minus-cost (i.e., H(m) + J,,, () — Je_ (7)) where H(m) £ Ecup,[— > 1o 7' log m(ag|s)]
is the causal entropy. Note that the likelihood L; is defined on the expert’s trajectory distribution P,
while H () is defined on the trajectory distribution of its current policy 7. The last term J, (m;) in
G is constant w.r.t. . It is proved (Liu & Zhu, 2022) that the constrained soft Bellman policy is the
optimal policy of the RL problem in G;(w; ), i.e., m,.p = arg max, H(w) + Jy, (1) — J¢ (7). The
lower-level problem min,, G;(w; 6) uses adversarial learning to find a cost function ¢, that makes
the best policy (i.e., 7.,;9) perform the worst and the last term .J.. (7;) penalizes cost functions where
the expert has high cumulative cost. We discuss the formulation of (1) in detail in Appendix A.1.

Since problem (1) is defined in expectation but the learner only observes D;, in practice, the learner
solves an empirical problem defined on D;. Given a trajectory ¢V =sl,al,- -, wedefine J.(¢7) =
Yoo e(s], al) as the empirical cumulative cost. Then the empirical problem the learner solves is

ming L; (0, &% (0), D;), s.t. @*(f) = argmin,, G;(w; 8, D;) where the L; (6, w, D;) & *D% ZJD=1

S0 log Tus(af|s]) and Gi(w; 0, D;) £ maxy H(w) + Jp, (1) — o, (7) + 2 370 e, (¢F).
2.2  MULTIPLE TASKS: M-ICRL

ICRL in (1) can successfully recover the reward and cost functions of the expert (Liu & Zhu, 2022;
2024). However, it typically needs a large data set for each task when it comes to multiple related
tasks. To learn the reward and cost functions from few demonstrations, we leverage meta-learning
which optimizes for the ability to learn efficiently on new tasks. It is typically assumed in meta-
learning that there is a set of m training tasks {7;}/, which share the CMDP. The difference of
tasks is that each task 7; has its own reward function r;, cost function ¢;, and budget b;. The goal of
meta-learning is to optimize for meta-priors of reward and cost functions over the m training tasks
{T:}7, such that the reward and cost functions adapted from the learned meta-priors have good
performance on new tasks even if the new tasks only have limited data.

When it comes to meta-learning, two of the state-of-the-arts are model agnostic meta-learning
(MAML) (Finn et al., 2017) and meta-learning with implicit gradients iMAML) (Rajeswaran et al.,
2019). MAML is simple and widely implemented in RL (Fallah et al., 2021a) and IRL (Yu et al.,
2019), while iMAML shows better empirical performance (Rajeswaran et al., 2019) at the expense
of heavier computation in the lower level since MAML only needs one gradient descent but iMAML
needs to fully solve an optimization problem in the lower level. In M-ICRL, we aim to propose a
problem formulation that utilizes the advantages of both methods.

The proposed problem formulation (2)-(3) has a bi-level structure (Ji et al., 2021; Xu & Zhu, 2023a)
where we learn the reward meta-prior in the upper level and the cost meta-prior in the lower level.

m

. 1 N
min - — E Li(pi,n; (wi,w)), (2)
w o miT
* . A 2
s.t. 0 (@i, w) = argmin G;(n; ;) + §H77 - wll%, 3)
n

where ¢; £ 6 — a%Li(H,n;‘(H,w)) is the task-specific reward adaptation and 1} (p;,w) is the
task-specific cost adaptation. Note that problem (2)-(3) reduces to the ICRL problem (1) if we only
consider one task and do not perform meta-learning on reward parameter 6 nor cost parameter w,
ie, m =1, @« = 0, and A = 0. In this case, we do not have task-specific adaptations (¢;, n}).
Problem (2)-(3) reduces to MAML if we only do meta-learning on the reward parameter 6 and do
not perform meta-learning on the cost parameter w, i.e., A = 0. In this case, we only have the task-
specific reward adaptation ;. Problem (2)-(3) reduces to iMAML (explained in Appendix A.4) if
we only do meta-learning on the cost parameter w and do not perform meta-learning on the reward
parameter 6, i.e., o = 0. In this case, we only have the task-specific cost adaptation n;".

Problem (2)-(3) can reduce to the MAML that only learns 6 and the iMAML that only learns w. It
utilizes iIMAML but does not suffer from the extra computation burden usually caused by iMAML
because ICRL in (1) is already a bi-level formulation and we need to fully solve the lower-level
problem anyway. We do not use iMAML for 6 because this will lead to a “three-level” problem.
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3 THE PROPOSED ALGORITHM

This section proposes a novel algorithm that solves problem (2)-(3). Following (Fallah et al., 2020),
we partition the data set D; of each training task 7; into three subsets DY, D¢, and D! with sizes
DY, D¢ and D! respectively. The training set DY with limited data is used to compute the task-
specific adaptations ; and 7;, the evaluation set Df"al with abundant data is used to compute the
hyper-gradients (i.e., the gradients of the upper-level loss function in (2) with respect to 6 and w),
and the set D! is used to compute the second-order terms in the hyper-gradients.

For an arbitrary data set D with size D, we solve the empirical version (i.e., arg min, G, (n; 04, D)+
2|In—wl|?) of the lower-level problem (3) using (K — 1)-step gradient descent 7; (p;, w, D, k+1) =
M (i, w, D, k) — 7[V,Gi(h: (@i, w, D, k); i, D) + A7 (pi, w, D, k) —w)] where 7 is the step size.
We then use 7); (;, w, D, K) as an approximation of 7} (;, w, D) = arg min, G;(n; i, D)+ Sin—
w||?. We provide the expressions of all the gradients, including V,G;, in Appendix A.3.

Algorithm 1 Meta inverse constrained reinforcement learning (M-ICRL)

Input: Initialized reward meta-prior 6(0) and cost meta-prior w(0), task batch size B, step size «
Output: Learned meta-prior §(n) and cost meta-prior w(n)

1: forn=0,1,--- do

2:  Samples a batch of training tasks {7; }2 , with size B

3:  forall 7; do

4 Samples the demonstration set DY to compute 7;(8(n),w(n), DY, K) and ¢;(n) = 6(n) —

O‘%Li (e(n)’ ﬁl(e(n>7 w(”)? D;r7 K)’ Dgr)

5: Samples the demonstration sets D¢ and D!

6: V., Vi = Hyper—gradient(0(n),w(n), $;(n), DY, D& Db)

7:  end for

8 On+1)=0n) - WST Ve whn+1l)=wn) - WST v,
9: end for

Ateach iteration n in Algorithm 1, the learner samples B tasks from the set of training tasks {7;}7* ;.
For each sampled training task 7;, the learner first uses the training set DY to compute 7); and the
task-specific reward adaptation ¢; (line 4). Then the learner uses the training set DY, evaluation set
D;’W”, and D? to compute the hyper-gradients Vg ; and V, ; (line 6). Finally, the learners utilizes
stochastic gradient descent to update the reward and cost meta-priors (line 8).

The computation of the hyper-gradients is critical to Algorithm 1. In the following context, we first
identify the difficulties of computing the hyper-gradients and then provide our solutions.

3.1 CHALLENGES OF COMPUTING THE HYPER-GRADIENTS

ALi(pi,n; (pi,w)) and ALi(pi,n; (pi,w))
[ Ow

The hyper-gradients of problem (2)-(3) are hard to compute.

Take w as an example (the derivation of the hyper-gradients is in Appendix A.5):
5Lz(802777:<(90uw)) 82 * *
20 = |1 —agpLi0,m(0,w))| - |Ve,Lilpi,n; (¢i,w))

= V2,,Gi(n; (@i, w); i) [V, Gi(nf (i, w); i) + M|~V Lipi, mj (0i,w)) |-

(i) The second-order term %Li(e, n¥(0,w)) in the first bracket is intractable to compute since it
requires to compute V2,77 (6,w) which needs to calculate the gradient of an inverse-of-Hessian
term [V, Gi(nf (0i,w); i) + |71

(ii) The inverse-of-Hessian [meGi(nj (i, w); i) + A7t in the second bracket is expensive to
compute, especially when we use neural networks as parameterized models.

(iii) We cannot get 7);" but only its approximation since the optimization oracle is not guaranteed to
find the exact optimal solution. This will cause errors when we compute the hyper-gradients.
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3.2 MAIN IDEA TO SOLVE THE CHALLENGES

Solution to challenge (i) (Algorithm 2). The learner uses sampled data sets DY, ’ngal, and D? to
approximate the hyper-gradients:

2 A
g0 2 (1= oo La(6,7 (6,0, D), D) A1 @
2
A T 10 pF try ph ) .
Gu,i aawaa L2(97 n; (0>wa Dz )7 Dz)AG,Z + Aw,za (5)

where Ag; and A, ; are partial gradients of ﬁi(nﬁi,ﬁj(@i,w,ngal),Df"al) with respect to ¢;
and w. While the second-order terms (i.e., E?—;L and %ﬁi) in the hyper-gradients (4)-(5)
are directly computed in many meta-learning works (Finn et al., 2017; Xu et al., 2019), in
our case, it is prohibitively hard to compute. To compute the second-order terms, we need to

calculate V27 (0,w, DY) which needs to calculate the gradient of an inverse-of-Hessian term
since Vg7if (0, w, DY) = —VgnGi(ﬁf(ﬁ,w,D?);9,Dg)[V%nGi(ﬁf(G,w,D?);O,Df) + M|~ and
Vi (0,w, DY) = XN[V2, Gi(9;(0,w,Df); 0, DY) + M| " (derived in Appendix A.5). To tackle
this challenge, we use the first-order approximation to approximate the products:

66; Li (0,77 (8,w, DY), DM Ag; ~ % {;L(e +000,4,7; (0 + 00,,w, DY), D})

- %ﬁi(e — 60g4, 1 (0 — 00g 5, w, DY), D?)} ; ©)
” Li(6,75 (6.0, DY), DY) Ag,s ~ {aﬁi(a + 080,07 (0 + 00,5, w, Df), D})

9wl 26 | Bw

- %ii(e) — g, (0 — 60g.s,w, DY), D?)} : )

where ¢ is perturbation magnitude. In Algorithm 2, the learner first approximates the partial gradi-
ents Ag; and A, ; (line 1 in Algorithm 2), and then computes the first-order approximation (lines
2-4 in Algorithm 2). The output of Algorithm 2 is the approximation of the hyper-gradients (4)-(5).

Solution to challenge (ii) (Algorithm 3). The partial gradients of L;(@;, 7 (i, w, DS, D)
with respect to ; and w are respectively:

Noi = Vi, Li($i, 07 (@i, 0, DY), DE) = V2, Galif (D6, w0, DE); i, DE)-
[)\I + v%nGAz (lflj(@u w, stal); @ia D?val)]_lvni’i(@h f]j (¢17 w, DSVHI)7 nga])7 (8)
Aw,i == )\[)\I + ngéi (ﬁ: (@17 w, ngal); ¢i7 ngal)]_lvni’i ((ﬁu f]j (Sbla w, ngal)a ngal)' (9)

Note that the partial gradients (8)-(9) contain [\I + V32, G777 (¢, w, DEY); @4, DN 71V, (i,
0F (@i, w, DY), D) where the inverse-of-Hessian term is expensive to compute. Therefore, we
solve the following optimization problem instead:

min x " | A+ V3, Gi(; (@i, w, DE); @i, DY) | 2= [V Li( i 1 (1,0, DF), D] T (10)

Itis f)bvious that the optimal solution of problem (10) is [\[+V?, Gi(RF (@5, w, DY); @, D)1
v"'lLi(Sbi; 77:( <¢i7 w, D?V"ﬂ)’ ngal)'

In Algorithm 3, the learner solves the problem (10) for (K — 1)-step gradient descent to get an
approximation z (k) of the optimal solution of problem (10) (line 3 in Algorithm 3) and then use
z(K) to help approximate the partial gradients (8)-(9) (lines 5-6 in Algorithm 3).

Solution to challenge (iii). We cannot get 77} (6, w, DY) but an approximation 7j; (¢, w, DY, K). In
practice, we use this approximation to substitute for 7} (6, w, DY) in (4)-(5). Similarly, we use
the approximation 7;(;,w, D&, K) to substitute for 7; (@i, w, DY) in (8)-(9). To quantify the
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approximation error of the hyper-gradients (4)-(5) caused by ||7; (-, -, -, K) — 75 (-, -, -)||, we exploit
the Lipschitz continuity of the hyper-gradients with respect to 7. In specific, we first prove the
Lipschitz continuity of the partial gradients (8)-(9) w.r.t. 7 in Appendix A.7 and then prove the
Lipschitz continuity of the first-order approximation (6)-(7) w.r.t. n in Appendix A.8. Then, we can
see the Lipschitz continuity of the hyper-gradients (4)-(5) w.r.t. n.

Algorithm 2 Hyper-gradient(6, w, $;, DY, D¢, DP)

Input: Reward parameter 0, cost parameter w, task-specific reward adaptation ¢;, training set DY,
evaluation set ngal, the data set D to compute the second-order terms, perturbation §

Qutput: Approximate hyper-gradients Ag i—aVg, Aw iV

AQ’Z,AM ; =Partial-gradient(@;,w, D& D)

Ag_m, Aw+ ; =Partial-gradient(f + g ;,w, DF, D)

Ag_ 71,Aw_ ; =Partial-gradient(f — Ay, w, DF,Dh)

Vo, = (A9+ i AO* 2)/(25) V,i= (Aw+ i A - Z)/(Qd)

B

Algorithm 3 Partial-gradient(6, w, D1, D5)
Input: Reward parameter 6, cost parameter w, data set D1, data set Do, step size 5
QOutput: Approximate partial gradients A@ i Do i

1: Compute #; (0, w, D1, K) and initialize z(0)
2: fork=0,1,--- ,K —1do

32 a(k+1)
=xz(k)—p ([/\I + V2, Gi(1:(0,w, D1, K); 0, D1)]z(k) — V,, Li(0, (0, w, D1, K), m))
4: el end for A . -
5: A i = V‘gL‘(G,f]i(ﬂ,w,Dl,K),Dg) — VgnGi(ﬁi(ﬂ,w,Dl,K);H,Dl)x(K)
6: Ay = Mx(K)

4 THEORETICAL ANALYSIS

This section has two parts: the first part provides the convergence guarantee of Algorithm 1 and the
second part quantifies the generalization error to an arbitrary new task.

4.1 CONVERGENCE GUARANTEE

Compared to the standard stochastic gradient descent, the main difficulty of guaranteeing the con-
vergence of Algorithm 1 lies in quantifying the approximation error of the hyper-gradients. The
approximation error comes from three aspects which correspond to the three challenges in Subsec-
tion 3.1. (i) We cannot obtain the exact optimal solution 7} (-, -, -) of the lower-level problem (3) but
an approximation 7; (-, -, -, K). (ii) We cannot compute the inverse-of-Hessian term [AI + me Gi] -1

but use an iterative method to approximate the product [\ + meé I~ 1vnii in Algorithm 3. This

will result in the error between the approximate partial gradients Agﬂ, w,i (1.e., the output of Algo-
rithm 3) and the real partial gradients Ag ;, A, ; in (8)-(9). (iii) We use the first-order approximation
(6)-(7) in Algorithm 2 to approximate the real hyper-gradients (4)-(5).

In what follows, we first sequentially quantify the three approximation errors identified in the last
paragraph and then analyze the convergence of Algorithm 1. We start with the following assumption.

Assumption 1. (i) The parameterized reward function rg satisfies |ro(s, a)| < Cy, |[Vore(s, a)|| <
C,, and ||V3,r4(s,a)|| < C, for any (s,a) € S x A and any  where C,, C.., and C,. are positive
constants; (ii) The parameterized cost function c,, has similar properties with positive constants C.,
C,, and C.; (iii) The third and fourth order gradients of the reward and cost functions with respect
fo their parameters are bounded for any (s, a) and (6, w).
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Note that Assumptions 1 (i) and (ii) are standard in RL (Wang et al., 2019; Kumar et al., 2019;
Zhang et al., 2020; Zheng et al., 2023) and IRL (Guan et al., 2021). Assumption 1 (iii) is needed to
exploit the Lipschitz continuity of the hyper-gradients. Moreover, the bounded third order gradients
of the parameterized model in Assumption 1 (iii) are commonly assumed in meta RL (Fallah et al.,
2021a).

Approximation error (i). Proved in Appendix A.6, the function GG; and its empirical approximation

G; using any data set are C’V%ng—smooth for any task 7; where Cvgmg is a positive constant whose
expression is in Appendix A.6. Therefore, the lower-level objective function in (3) becomes (A —
Cvgmg)-strongly convex and (\ + CV%NG)-smooth if A > Cy2 . Choosing 7 = % and following
the standard result for strongly-convex and smooth objective functions (Nesterov, 2003; Boyd &
Vandenberghe, 2004), we have ||7;(-, -, -, K) — 0 (-, -, -)|| < O((CV%WG/)\)K).

Approximation error (ii). We next quantify the approximation error of the partial-gradients.

Lemma 1. Suppose Assumption 1 holds and let § = % where A\ > Cvgmg, then the outputs of
Algorithm 3 satisfy:

1Ag,i — Do

Cvs, G e (Ov3,C &
<o((25) - (=5))
) Cy: G Cv: G %
||Aw,i_Aw7i|§O(( nn )K+( )n\n )K)

A
Lemma 1 shows that the approximation error of the partial gradients diminishes if we increase the
iteration numbers of solving the lower-level problem and in Algorithm 3.

Approximation error (iii). With the approximation error of the partial gradients, we can quantify
the approximation error of the hyper-gradients.

Lemma 2. Suppose the conditions in Lemma 1 hold, then the outputs of Algorithm 2 satisfy:

. Co: G Co2 G 5
[|Ags —aVgi — goil| < O((V"")K + (L)K + 5>,

A A
. Cyvz: G Cyv2 G i
1A — Vi — gull < o((V;")K + ()" +5).

Lemma 2 indicates that the approximation error of the hyper-gradients can be arbitrarily small if we
solve the lower-level problem (3) for enough iterations, run Algorithm 3 for enough iterations, and
choose sufficiently small 4.

To reason about the convergence of Algorithm 1, we introduce e-approximate first order stationary
point (-FOSP) (Fallah et al., 2020): the variable (6, w) is e-FOSPif |[-L > | VL; (i, 0} (i, w))||
< e where VLi (s, 0} (91, w)) £ [(Z5 Li(wi, n} (i,0))) T, (35 Li (i 15 (0i,0))) 1T
Theorem 1 (Convergence of Algorithm 1). Suppose the conditions in Lemma 2 hold. Let o €
[0, Dle} and a(n) = ﬁ where & € (0, ﬁ] p € (3, 1), and Dy and C} are positive constants
whose existence is proved in Appendices A.8 and A.9 respectively. Then Algorithm I reaches the set
1 & .
El— > VLilwi(n),n; (pi(n),w(n)))
i=1

of e-FOSP, i.e.,
Cos, Gy, (C93,9 K

§e+0(( ) () o

1
min, {\/ D"} )

%12’02} iterations. The expressions of the positive constants C and Cy are

after at most N =
in Appendix A.9.

Theorem 1 shows that Algorithm 1 reaches the set of e-FOSP at the iteration complexity O(e%)
Moreover, to reduce E[||-- 3", VL;||] and reach the set of e-FOSP within fewer iterations in



Published as a conference paper at ICLR 2024

Algorithm 1, we have the following choices: (i) increase the iteration number K of solving the
lower-level problem (3) and the iteration number K in Algorithm 3; (ii) choose smaller § in the
first-order approximations (6)-(7); (iii) sample larger size B of training tasks at each iteration n in
Algorithm 1; (iv) choose larger size DY of training data of each training task 7;.

4.2 GENERALIZATION ANALYSIS

The goal of meta-learning is to learn good meta-priors such that the reward and cost functions
adapted from the learned meta-priors can have good performance on new tasks. Theorem 1 shows
that Algorithm 1 can find meta-priors (6, @) such that the average loss function of the m training
tasks can reach the set of e-FOSP. However, it does not provide insights into how the task-specific
reward and cost adaptations (P41, 7,11 (Pm+1, @, Dm41)), adapted from the learned meta-priors
(6, @), perform on an arbitrary new task 7,,, 41 where D, is the small data set of the new task
Tm+1. Given that the loss function in our problem is the negative log-likelihood function L;, we
use L1160, w)l0=g,41,0=2, 1 ($m41.@,Dpm 1) a8 the metric to reason about the performance of the

task-specific adaptations (P11, 75,41 (Pm+1,@, Diny1)) on an arbitrary new task 7y, 41.

We start our analysis with the definition of stationary state-action distribution. For a given policy 7,
the corresponding stationary state-action distribution is 4™ (s,a) = (1 —v) Y_p , 7'PF (s, a) where
PT (s, a) is the probability of policy 7 visiting (s, a) at time ¢t. We then define the distance between
two tasks 7; and 7; as d(u™, u™i) £ Jocs Lo 0™ (5,a) — p™ (s, a)|dads. Recall that 7; is the
expert’s policy in task 7;.

Remark on the definition of the task distance. While it seems natural to use the distance between
the reward functions and the distance between the cost functions to define the distance between dif-
ferent tasks, this kind of definition can cause ambiguity because different reward and cost functions
may result in the same task. For example, in an unconstrained environment, multiplying the reward
function by a constant does not change the task because this will lead to the same optimal policy.

Proposition 1. For any new task T;,+1 and any parameters (0,w), the following relation holds:
55 2201 VLi(0,w) = Vg1 (0, w)[] < O(d(5; 272, o™, pmmt)).

Theorem 2. For an arbitrary new task Tp41, the task-specific reward and cost adaptations
(P11 (Pms1,@, Ding1)) adapted from the learned meta-priors (0,w) have the property:

E |: |VL'"7+1 (0? W) ‘0:@77%#1 )w:ﬁ:n+1(¢7n+17w)DﬁL+l) | :| ’
O €+ i id<um Mﬂ'ny,+l> + d(i ium //rerl) .
m i=1 7 m i=1 7

Theorem 2 shows that if the new task’s stationary state-action distribution is sufficiently close to the
training tasks’, the task-specific adaptations ({,,+1,7;,, 1) are near-stationary.

Theorem 3 If the learned meta-priors (0, ) of Algorithm 1 satlsfy E[L S Li(@i 0 (pi,©))]
—ming, = 3" Li(i, 0] (pi,w)) < € where §; = 6 — 0‘89 i(0,n; (0 w)), then it holds that

E[L7n+1 (@Tn—!—la 77m+1 (¢M,+1 ) (:1, Dm+1))] - Iélln Lm+1(97 w)v

§e+0< Zd ) 4 d(— Zmz ﬂm+1>

Theorem 3 shows that if the learned meta-priors (f, ) are e-optimal and the new task is close to the
training tasks, the task-specific adaptations (@, 41,7, 1) are near-optimal.
If the reward and cost functions are linear, we have the following stronger results:

Theorem 4. [f the expert’s reward and cost functions and the parameterized reward and cost
functions 1o, c., are linear, we have that (i) E[|Jy,, . (Tax , i6mi1) = Jrpi (Tmg1)|] < O +

% Z:il d(/im ) /“Lﬂ"#l)—’_d( ! Zm 1 :um :U‘Trerl)) (i) EHJCm-H (Wﬁf,L+1;¢m+1)_JCm+1 (Wm+1)H <
Ofe+ i Sy d(u™, ) 4 d(5 Y00y ™, ).
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Theorem 4 shows that (i) the cumulative reward difference and (ii) the cumulative cost difference
between the adapted policy 7, . ;47 ,, and the expert’s policy 7,41 on an arbitrary new task 7,11
can be sufficiently small if the new task is close to the training tasks.

5 EXPERIMENT

This section includes two classes of experiments to validate the effectiveness of M-ICRL. The first
experiment is conducted on a physical drone and the second experiment is conducted in Mujoco.
Due to space limit, the experiment details are included in Appendix B.

5.1 DRONE NAVIGATION WITH OBSTACLES

We conduct a navigation experiment on an AR. Drone 2.0 (Fig-
ure 1) where the drone (in the yellow box) needs to navigate to
the destination (in the green box) while avoiding collision with
the obstacles (in the red box). We use an indoor motion capture
system “Vicon” to record the trajectories of the drone. For dif-
ferent tasks, we vary the locations of the goal and the obstacles.
Given that there is no ground truth reward in this experiment, we
use two metrics “constraint violation rate” (CVR) and “success -
rate” (SR) where CVR is the percentage of the learned policy col-
liding with any obstacle and SR is the percentage of the learned
policy reaching the destination and avoiding obstacles. We use

50 training tasks and 10 test tasks where each test task has only one demonstration. We use three
baselines for comparisons: ICRL (Liu & Zhu, 2022) which does not have meta-priors and directly
learns from one demonstration without meta-priors, ICRL(pre) which naively pre-trains meta-priors
by maximizing the likelihood across all the demonstrations of all the training tasks, Meta-IRL (Xu
et al., 2019) which only learns a reward meta-prior using MAML. We include the experiment results
in the second row of Table 1. The experiment details are included in Appendix B.

Figure 1: Drone navigation

5.2 MUJOCO EXPERIMENT

We also conduct three experiments in Mujoco: Swimmer, HalfCheetah, and Walker. Given that
Mujoco can output the ground truth reward, we use cumulative reward (CR) to replace the metric
SR. Since there are no constraints in the original Mujoco environments, we add several constraints
to the three Mujoco environments. The experiment details are in Appendix B.

Table 1: Experiment results.

Task Metric M-ICRL ICRL ICRL(pre) Meta-IRL Expert

Drone SR 0.96 = 0.02 0.62 +0.07 0.71 £ 0.06 0.45 £+ 0.10 1.00 £ 0.00
CVR 0.02 £0.02 0.16 £0.10 0.11£0.08 0.33£0.12 0.00 £+ 0.00

Swimmer CR 322.56 +48.68 | 76.44 +£18.26 | 199.03 +53.24 | 113.66 +32.51 | 376.10 & 51.51
CVR 0.04 £0.02 0.22+£0.13 0.16 £ 0.06 0.35£0.18 0.00 £ 0.00

HalfCheetah CR 228.78 £54.23 | 60.74 £32.63 | 156.89 £ 50.47 | 108.05 £ 36.89 | 264.00 & 165.56
CVR 0.03 £0.01 0.28 £0.19 0.20+0.11 0.31£0.10 0.00 £ 0.00

Walker CR 712.40 £ 96.53 | 144.79 &+ 66.37 | 311.86 +56.99 | 165.86 £ 70.08 | 752.40 +84.71
CVR 0.00 £ 0.00 0.26 £0.18 0.22 £0.09 0.42 £0.26 0.00 £ 0.00

From Table 1, we observe that M-ICRL achieves the best performance in all the four experiments.
Meta-IRL has much higher constraint violation rate than the other three algorithms. This shows the
benefits of learning both the reward function and constraints. ICRL(pre), which simply learns meta-
priors across all the demonstrations of all the tasks, performs poorly. This illustrates the benefits of
our meta-learning design for M-ICRL. We discuss the experiment results in detail in Appendix B.
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6 CONCLUSION AND FUTURE WORKS

We propose M-ICRL, the first theoretical framework that can learn reward and cost functions of the
expert from few demonstrations by first learning meta-priors from other related tasks. It is shown
both theoretically and empirically that M-ICRL is effective to adapt to new tasks from few demon-
strations. Despite its benefits, one limitation is that M-ICRL assumes that the states and actions are
fully observable, however, this may not hold in some real-world problems due to practical issues
such as noise. A future direction is to extend M-ICRL to partially observable MDPs (POMDPs).
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A APPENDIX

This section includes the proof and simulation details. At the beginning, we define the empirical
cumulative reward. Given a trajectory ¢, the empirical cumulative reward is defined as .J,(¢) =

(oo}
Zt:o ’}/tr(st, at)'
A.1 THE DERIVATION OF PROBLEM (1)

The derivation of problem (1) is first introduced in (Liu & Zhu, 2022). For the sake of better
understanding, we include it here. The fundamental idea of the ICRL problem (1) is to learn a
reward function in the upper level and learn the corresponding policy and constraints in the lower
level. In the following, we first introduce the lower-level problem and then introduce the bi-level
problem formulation.

The lower-level optimization problem. Given a reward function ry, the lower-level problem aims
to learn the corresponding policy (and constraints). Therefore, we formulate the following con-
strained RL problem (11):

max H(m) + Jp, (1), st pie, (1) = pie, (71), 11

where ji., (1) £ Ecop, [ oo 7 e: (51, ar)] is the expected cumulative cost feature of policy 7 and
¢c, is the cost feature of task 7;. Problem (11) aims to find a policy that maximizes the entropy-
regularized cumulative reward H (1) + J,., () subject to the constraint of cost expectation matching.
The cost feature expectation matching follows the idea of “feature expectation matching” in (Abbeel
& Ng, 2004; Ziebart et al., 2008; 2010).

We cannot directly solve problem (11) because it is non-convex. Therefore, we use dual methods
and solve its dual problem. The dual problem of problem (11) is (Liu & Zhu, 2022)

min G;(w;0) = H(Tw) + Jry (Twse) + WT(NQ (i) = pe, (7)), 12)
where w is the dual variable and 7, is the constrained soft Bellman policy. Since (Liu & Zhu,
2022) studies linear cost functions, w ' pi, (7) = J. (7). Here, we extend the domain from linear

cost functions to non-linear cost functions and directly use J., (7). We use the dual problem (12) as
the lower-level problem in (1).

The bi-level optimization problem. (Liu & Zhu, 2022) has proved that the optimal solution of
the primal problem (11) is 7, (9),0 Where w*(f) = argmin,, G;(w; ). The upper-level problem
aims to learn a reward function ry such that the corresponding policy (i.e., the optimal solution of
problem (11)) can minimize the negative log-likelihood of the expert’s trajectories:

min L0, (0)) £ Berp, [~ 7' 108 e o ]so)]
t=0
s.t. w*(#) = argmin G;(w; 9).

w

Then we reach the problem formulation in (1).

A.2 NOTIONS AND NOTATIONS

Define J7 (s) £ Ecop, [>re0V'To(5e, ai)|so = s] and JT (s, a) £ Ecor [Y oo 7'ro(se, ar)|so
= s,ap = a]. Similarly, we can define J7 (s) and J7 (s,a).

Define H™(s,a) £ —E¢op, [ roo 7' logm(at|st)|so = s,a9 = a] and H™(s) £ —E¢p.[> ooy
v log m(ay|st)|so = s].

The constrained soft Bellman policy (Liu & Zhu, 2022) is

soft

eXp( w;@(sva’))
exp(V35(s))

Sh(5,0) = ra(s,0) — euss) 7 [ P(SIs, @)V
s'eS

Tuso(als) =

13
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vzbe) =toe( [ ewl@zhsw)da).
’ ac A ’

We can approximate the constrained soft Bellman policy using soft Q-learning or soft actor-critic by
treating (19 — ¢,,) as the reward function.

Lemma 3. We have that

o0
Vg log m,.e(als) = I [Z Y Vore(se, ar)|so = s,a0 = a
t=0

oo
- ECNP%;S [Z Y'Vorg(se, ar)|so = s,
t=0

Vi logmye(als) = Ecup, [Z YV o (51, at)|50 = 5]
t=0

0o
- ECNPTI'M;H [Z /ytvwcw(sta a,t)‘SO = S,a0 = a]~
t=0

Proof.

VoQt(s,0) = Voro(s,a) + 9 / P18, ) VoVig(s)ds'
s’'e
Vo fyre s D@ )

_ VQTG(S,G) _|_fy/ P(s/‘s,a) eXp(V(j?g(S')) d5'7

s'eS
ex soft 5’,a' \v4 soft s’,a’
= Vorg(s,a) + ’y/ P(s|s, a)/ P(QT0( szt Q/Qw’e( )da’ds',
eS8 a’€A eXP(Vu};e (s)

S

@ Vore(s,a) Jrfy/ P(s'|5,a)/ Two(als)V ij’fé(s’,a’)da’ds’,
'es a’eA

S

where (a) follows the definition of 7,,.9. Keep the expansion, we can see that

oo
VoQ(s,a) = Bcur, 1> 7' Voro(si, ar)lso = s,a0 = al,
t=0
oo
VoV3%(s) = Ecar,, ,[Y 7' Voro(si, ar)lso = s].
t=0

Therefore, we can see that

Vo log m.e(als) = Vngf,’;f;(s, a) — V@Vj?gt(s),

o0 o0
= Ecwp,_ (D 7'Vora(se ar)lso = s,a0 = a] — Ecup, [y 7' Vere(si,ar)lso = 5.
t=0 t=0

Similarly, we can get

Vi logmug(als) = Ecwp, , [Z V'V wew (8t at)|so = s
t=0

o0
— E¢vp,, [Z V'V w8t ai)|so = s, a0 = a).
t=0

14
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Lemma 4. We have the following relations:

VoH™#(s,a)

= -V, logm,.e(als) + Eewr,, [Z V'V 10g o0 (ar|s ) [H™0 (s, a) — 1]
t=1

SOZS,G/O:G]7

oo
VuH™"(s) = Bewr, [Z 7'V 10g o (ae|s0) [H™ (s, ar) — 1] 0 = ]
t=0

Vool (s,a) = Vi,co(s, a)

o0

+ Ecp,,, {Z V[ Vuwtu(st, ar) + Vi log mug(adse) - Jes* (si, a0)]|s0 = s,a0 = a],
=1

8025:|7

S()ZS,CLOZCL:|7

805:|.

VoH™?(s,a) = =V, log mya(als) + ’y/ P(s'|s,a) -V ,H™* (s")ds',
s’eS

t
Vudes " (s) = E¢np,,, {Z V' [Vucw(st ar) + Vo log mue(arls:) - Je (st ar)]
t=0

[ee]
Vodrg™ (s,a) = Ecur, {Z V'V log Tusg(arlse) - Jrg™ (e, ar)
t=1

Vedrg?(s) = Ecp, , {Z V'V log g (aclse) - Jrg? (se, ar)

t=0

Proof.

=-V, 1Og7rw;9(a/|s) + ’Y/

P(s'|s,a) - Vw/ Two(d'|s"YH™ (s, a’)da'ds’,
s'eS a’'€A

= —V,logm,.g(als) —|—'y/ P(5’|s,a)/ l:vwﬂw;g(a,/|8/) CH™0 (s a')
'eS a’' €A

S

+ Mp(d'|s") - Vo H ™0 (s, a')} da'ds’,

= —V,logm,e(als) + 7/ P(s|s, a)/ Two(a']s’) - [Vu log Ty, (a’|s") - H™°(s',a’)
reS a’eA

S

+ V H™ (s, a')} da'ds’.

Keep the expansion, we have that

Vo H™*(s,a)

= —V, logm,.(als) + E¢p,,, [Z V'V 10g Tog (ar|s ) [H™ 0 (s, at) — 1]

t=1
S = S:| .

Vudel(s,a) = Vycu(s,a) + fy/ P(s']s,a) - Vi, Jos? (s')ds',
s'eS

so—s,ao—a],

VoH™(s) = Ecwp, [Z V'V o log musg (ase) [H™ (s¢, ar) — 1]
t=0

Similarly, we can see that

= Vucu(s,a) + 'y/

P(s'|s,a) - Vw/ Twp(d'|s)Jes (s, a")da'ds'
s'eS a’'€ A

= Vucw(s,a) + fy/

P(sls.a) [ malals) [vw log o (@/]8') - 2 (5, ')
s'eS a’' €A
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+ Vo Jo (s a’)] da'ds’.

Keep the expansion, we can get
Vde?(s,a) = Vi,cu(s, a)

[eS)
+ ECNPWW;Q |:Z ’Yt [Vu}cw (8t7 a't) + Vw IOg T‘-w;@(at|8t) Jcm (Sta at)}
t=1

SQZS,GQZG:|,

5028:|.

Vides?(s) = E¢ap,, 9{27 Vetuw (s, ar) + Vi log me.a(aclse) - Joo™ (si, ar)]

VoI (s,a) = / P(s5, ) - Vo J2* (s)dS

s'eS
3 [ POl Vo [ a5
s'eS a’'€A

fy/ P(s'|s,a) - / {Vuﬂrw;g(aﬂs’) I8 al) + Twg(a'ls’) - Vo dr (s, a')} da'ds’,
s'eS a’€eA
=1 [ PE1sa) [ man(ls) Vo m(als) I (ol

s'eS a’e€A

= E¢np,, S[Z’ytv log g (ag|se) - Jry (st, ar)
t=1

So = S,ap9 = (l:| .
Therefore, we can get that

Vol (s) = Ecep, {Z V'V log Mg (arlse) - Jrg™ (s, ar)
t=0

8028:|.

A.3 EXPRESSIONS OF GRADIENTS

We provide the expressions of all the gradients below:

VoGi(w;0) = Vi, Je, (m) — Ecnp,,, [Z V'V Cw (51, ar)],
t=0

w cw CJ ECNPWMB [Z’ytvwcw(staat)]v

t=0

V.Gi(w;0,D) =

HMU

VeGi(w;0) = Ecep, [Z Y'Vorg(se, ar)] — Vo, (i),
t=0

VGi(w;0,D) = Ecp, ZW Vorg(st, ar)] ZVGJTQ ¢),

Lz: o (Com(st) + V2, (st at))] :
> (

0
6

ViwGi(w;0) = V2,Gi(w:0,D) = —Ecp,

0
ViQGi(w;H) = Viaéi(w;ﬁ,’l)) = _ECNPM; [ Y'Vg log w0 (als)(VeJZ, (s,a)|7r_,rw;9)q7
t=0

VoLi(0,w) = Ecwp, 1> 7' Voro(se, ar)] = VoJp, (m),

o0

D
VoLi(,w,D) = Ecwp, D> A'Vere(si,ar)] Z
=0 =

16
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VuLi(0,w) =V,Je,(m) — ECNPM:Q [Z 'Vtvwcw(stv at)]a
t=0
D )
va Z w cw CJ ECNPWMQ [Z ’thwcw(staat)}a
j=1 t=0

Mg

V2.Li(0,w) = V2, Li(6,w, D) = —Ecp, | [

(=)

~t (Covw(st) + V2, cw(st, at)>:| )

8W

VE;OLi(evw) VQGL (9 w D) _ECNPw 0 |: v v@ IOgWW;Q(CL'S)(vacTL (S7a)7r—7rw;e)—r:|v

where the expression of Cov,,(s) is in (14).

Proof. Derivation of VG, and V.G

Since 7.9 = argmax, H(rw) + J,, (1) — J¢, (7), the following holds for any (s,a) € S x A:
0

@) <H(7r) + Ty (1) = T, (W))

0,

Tt =Tw;6

where we change policy to be time-dependent but force it to be stationary i.e., m; = 7. Therefore
we have that

am(aas) (H(vr) + g (1) = J, (W))

)
T=Tws0

oo

—7'P (s)(log musa(als) + 1) + P77 (s) Benp, [ >

777— logﬂ_w;ﬁ(a‘r|57)|5t =$,ar = a]

T=t+1
o
+ Py (s) (wtm(s, a) —7'cu(s,a) + E<~PWW;9[ Z Y (ro(se, at) — cw(se, at))|se = s,ar = a]),
T=t+1

= ~"P;(s) {H““‘v" (s,a) — 1+ Jr (s,a) — Jo (s, a)} =0. (13)

Recall that G;(w; 0) = H(my:0) + Jrp (Twie) — Jey, (Twi0) + Je, (). Therefore, we have that

VuGi(w;0) = / Py(so) - {VWH“““" (50) + Vi Jrs % (s0) — VWJ;L“‘”G(SO)] dso + Vi, Je, (1)
soES

(oo}
@ Po(so) - Ec~p,,, {Z 0 (Vw log 7eu;0(ar|st)-
S0ES ' +=0

(Hm B(Sm at) -1+ J’Ig (5t7at) Jgfs(sta at)) - Vwcw(Sm at)>:| dso + V. ( )
b (oo}
(:) Vw!]w(ﬂ-i) - ECNPWW;Q [Z ’thwcw(sta at)}v

t=0

where (a) follows Lemma 4 and (b) follows (13). With similar derivation, we can get

V.Gi(w;0,D) Zv Je, () = Ecup, ) [D 7' Vet an)].
t=0

Derivation of V2 _G; and V2 G,.

17
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We know that Vo, J7 (5,0)|r=n.s = VeEcnr, 207 Vwcu(star)lso = s,a0 = a] and
VudZ (8)lr=ruo = VoEcnp, 132207 Vutu(st, ar)lso = s].

o0

V2 Gi(w;0) = ~VuEcp,,, [Z V'V w8t ar)],

t=0

=- Po(s0)Vaw Tw0(aolso) - VuJe, (505 0)|r=r.s daodso,
S0ES ap€A

_ / Pols0) / Vom0 (ao]0) - VI (50, 30) rer o
S0ES ap€A L

+ Ww;e(ao|80) -V (VwJ;L (So, a())|7T—7Tw;g):| dagdsg,

_ / Pols0) / Vo (ao]0) - VI (50,30) ner s
spES ap€EA

+ 7Tw;0(%|80) 'Vw(vwcw(s()a ao) +/ P(S1|50, ao)Vwaw(&)Iw:m;gd&) daodsp.
s1E€S

Keep the expansion, we can get that

Tw;o
V2,Gi(w;0) = — / £ f) / Tusi0(a]8) Vo 108 o0 (al8) Vo (I (5, 0) | nzr,,) T dads
sES - acA

— Eewr, D> 7'V2,cu(st,a0)].
t=0

Define the covariance

Cov,(s) £ / Two(als)Velog me0(als) (Vo (8,a)|r=r,., )Tda,
acA

D [ lals) |FuT 5.0~ T o (T2 (50 ) 14
acA

where (c) follows Lemma 3. Therefore, we have that

VEGi(wi0) = B, |30 (Covalo0) + Thcusnan) |

t=0
and similarly we can get

Viwéi(w;H,D) = —FE¢op,,, [Z At (Covw(st) + Viwcw(st,at)>].

t=0

Derivation of V2 ,G; and V2 ,G,
viGGi(w; 9) = _VQECNPWN;Q [Z ,ytvwcw(sta at)]v
=0

=- PO(SO)VG/ Two(aolso) - VoI (80, a0)|r=r,,.,daodso,
S0ES ap€EA

—— [ nbso | [vemwsw-va:w<50,ao>|ﬂ_m
soES ap€EA

+ Tu0(aolso) - Vo(Vwew (S0, ao) —|—/ P(s1]50,a0)VwJi (81)|r=n,.,d51)|daodso.
s1E€S

Keep the expansion, we can get

Twio (g
V2,Gi(w; 0) = 7/ ,ulgy)/ Two(als)Vg logww;g(a|s)(vafw(s,a)\ﬂ:m;e)—rdads,
SES - acA

18



Published as a conference paper at ICLR 2024

= B, | 1 Vol08 mofals) (Vo IE, (. 0lemr ).
t=0

and similarly we can get

V24Ca(wi0,D) = ~Einr, | 37 Vo 08 (el (VT (5.0 ror )|
t=0

Derivation of Vy L, and ng/i.

oo
VgL,‘ (9, w) = —Ec,\,p7r [Z Vg 1og Tw;0 (at|st)],
t=0

= —L¢p, [Z 'Yt (ECNPWM [Z Vtvere(SuAt)\So = 8¢, Ag = a4
t=0

t=0

= Ecapn,, [ 7"Vore(Si, Ar)lSo = St]>] )

t=0

= —E¢~p, [Z ok (Vere(st,at) + Ecnr, [ 7 Vore(St, A0)|So = st Ao = ai]

t=0 =1
o0

- E¢vp,, [Z Y'Vore(Si, Ar)|So = St])] ;
t=0

= —FEcwp, [Z ~* <V«97’9(5t, at) + ’YECNPm;e [Z V'Vore(Ss, Ar)|So = 8441
t=0 t=0

— Ecnr,, [ 7' Voro(Si, A)|So = St])] ;

t=0

= —E¢~p, [Z V'Vore(se, ar) — Ecwp,_,[>_ 7' Vore(Se, Ar)|So = 80]} ;

t=0 t=0

= E¢ep,,, [Z V'Vore(se,ar)] — Vodp, (7).

t=0

Similarly, we can get

0o D
~ 1 o .
VoLi(0,w,D) = Ecwp, ,[> 7' Voro(si, a)] - 5 > Vodr, (¢7).
j=1

t=0
Derivation of V, L; and Vwﬁi.
The derivation follows the similar steps of the derivation of VyL; and ng)i, thus we omit it.

Derivation of V2 L; and V2 L;.

We know that V,L; = VG and thus V2 L; = V2 _G;.

A.4 THE REDUCTION OF (2)-(3) To IMAML

From A.3, we can see that VyG;(w; 0) = VoL;(0,w) and V,,G;(w; 0) = V,,L;(6,w). Therefore,
we know that L; (0, w) = G;(w; 0) + ¢ where c is a constant, and thus G; can also serve as a negative
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log-likelihood function. When v = 0, problem (2)-(3) becomes:
* : A 2
mln — ZL (0,17 (0,w)), s.t.nf(0,w)=argminG;(n;0)+ §||77 —wl|?,
n

which is equivalent to

A
— L; (0,77 (0, om0 = in L;(0; Ziln — wl?.
Iglgl - Z i (0,w) s.t. 0 (0, w) arg;mn (0;m) + 9 l[n — wl|

If we ignore the reward parameter 6, this is the standard formulation of iMAML (Rajeswaran et al.,
2019) for the cost parameter w.

A.5 THE DERIVATION OF THE HYPER-GRADIENTS

From implicit function theorem, we can get that
Von; (0,w) = —[V3,Gi(n; (6,w); 0) + A7 V3,Gi(n; (6, w); 0),
Vi (0,w) = A[V2,Gi(n; (0,w); ) + AT~

Therefore using the chain rule, we can derive the partial gradients:

S L0.05(0,0)) = VL0, (0.6)) + (Va0 0,0) Vot (0,0
= VL0, (6.6)) = V3,Gi (0,0 O)[V3, a0 (0.)3) + M1~ Li(0,: (0,0),
o L4(0,56,9)) = [(Vy L0, (6,))) Vo 0,0,

= A[V2,Gi(n; (0,w);0) + M| 7'V, Li (0,77 (0,w)).

With the partial gradients, we can derive the hyper-gradients:
OLi(pi, m; (pir,w)) _ Opi 0
: 7L 2 iyW)),
2

- [r-agmnaie, w>>]£m@i,nﬂw>>,

7

2

— [I 8692 (6,50, w))} : {Vq;Li(%,?ﬁ(%w))

— V5,Gi(0; (0i,w); 00) [V, Gi(n} (9, w); i) + M|~V Li(pi, (05, w)) |

aLi(Qpia nj(@law)) _ [(aLZ(QDZvn:((plaw)) )T%]T
dw dy Ow

P ) OLi( i, m; (i, w))
= *amLi(eﬂh (0,w)) - Dy

V2, G (6,w);0) + )7V, Li (8, m; (6,w)).

aLi(@ia 777(9% w)) )T 877:(3017 w) ]T

+ an Ow

A.6 THE SMOOTHNESS OF G; AND (;

From Lemma A.3, we know that

V2 Gi(w;0) = V2, Gi(w;0,D) = —Ecp,, {Z ok (Covw(st) + V2 (s, at)ﬂ,

t=0

Cove(st) =/ Tuwio(als) {Vwaw(s,a)lﬁm;g - Vwaw(S)ITr:m.,g](Vwaw(S,a)lwmw;e)Tda-
acA

20
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Assumption 1 (ii) assumes that ||V,,c,(s,a)|| < C. and ||[V2 ¢, (s,a)|| < C. for any (s,a) €
S x A. Therefore, we have that

g CC g éc
[V (8,a) =m0l < 1= IV d 2 (8,a)[n=myll < T
1Bear 1> 2"V eu(snan]ll < S
T pore ww — 1 . 7
Then, we know that
. 20,  2C. 2C,
IVeuCGilws Ol = IVE.Culwi . D)l < T2 - 7= + 7= £ 0w,

Similarly, we can prove that there exists constants CV%GG and Cyz, o such that [|V2,Gi(w; )] =
1V24Gi(w;6,D)|| < Cy2,c and 1V3Gi(w; 0)]| = [|V34Gi(w; 0,D)|| < Cvz,6-

From Appendix A.3, we can see that wa/i = Vw(?i and ng/i = V@G‘Z—. Therefore, the second-
order terms of L; can also be bounded by these constants.

Lemma 5. There are positive constant Cv:fmngi, CvfmeGi, and CV?,QQGV- such that
IV3,mGi(m; 0)l| = ||V, Ga(n;0,D)|| < Cvs, o [IV3,,Gi(m;0)]] = ||V3,,Gi(n;0,D)]| <

nnmn

O o and ||V Gilm:0)]| = || V3o Ci(n: 0. D)|| < Cs, ¢ for any (n, 6) and any task T

Proof. From Lemma A.3, we know that
V2LGi(wi0) = VA Giwi0.D) = ~Eewr, |31 (Covu o) 4 Tueatonan) )|
t=0

Covafs) = [ a0l | VT (sl = VT Sleere| (T (5,0 )
acA

Now we take a look at the term Cov,, (s;) + V2 ¢ (8¢, ar).

[ICovi(st) + Vi culse, ar)l| < [[Cove(s0)l| + V2 colst, ar)ll,

IV IZ, (8, @) r=rs = V2 (8)lr=rmeo || - IV I, (8, @) lrmroo || + [ Vo co(st, ar)l,
20, C,
11—y 1—»v
VwCov,,(st)

= vw/ Ww;9(a|s) |:vw‘]:;, (57 a’)|ﬂ':ﬂw;9 - Vw‘]:;) (5)|ﬂ'—ﬂ'w;e:| (vw‘]gw (Sva)‘ﬂ:ﬂw;e)—rda’
acA

IN

< +C,, (15)

< [ Vumaels) [w;us,am_m w;;<s>|ﬂ_w} (Va7 (5,0)nen.,) da
acA

(16)
+/ Ww;O(als)vw |:va£ (S’a>|77:77w;3 - Vngw (3)|7r—7rw;e] : (VwJ:w (Sva”ﬂ:ﬂu;s)—rda
acA
(I7)
[ malals) [T 5.y =TT O | T (VI ()l
acA
(18)

Now, we bound each term (16)-(18).
First, we bound the term (16)

| Feratals) [w;; (520 — VT, <s>ﬂ_m;9] (Va7 (5,0)lnen.s) T da,
acA
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:/ Two(als)Vy log mye(als)-
acA

[wz; (5:0) o — VT, <s>|ﬂ-ww;9} (VT (5,0 n—n) "da,

(i) / 7Tw;9(a‘5) |:ECNP7\-W_9 [Z ’ytvwcw(st, at)|50 — S]
aeA C =0

~ Eer,, [ 7 Vitu(star)lso = s.a9 = a]].
t=0

[w;; (52 ners — VT, <s>|7r—w} (Vo7 (5,0 n—n.) da,

where (a) follows Lemma 3. Therefore, we can see that

1 Vomaaals) [T (5 = T Sl | (VoI (50l rr )l
ac

20. 2C. C.
<

=17 1-9 1-7 (19)
Second, we bound the term (17)
VodZ,(8,0)|r=ry = VoFEenr, ,[Y 7 V(s ar)] = =V2,Gi(w; 0). (20)

t=0

(b)
Therefore, ||V, JT (5,0)|x=r. .|| = [|V2,Gi(w;0)]| < Cvz ¢ where (b) follows A.6. Similarly,
we can see that ||V, J7 (5)[r=r..,|| < Cvz, . Then we have

I meolals)Ve [w;; (8, @) e — wg(sm_m;e} (VT (@)l ) T dal,
ac

< QCVEMG . CV?MG‘ 21
Third, we bound the term (18)

1 muslals) [wz;w, @ lrr w:w<s>|w-w] Vo (VoI (5,0) nr) dal,
ae

Cor (22)
S

Therefore, we can see that

(© 2C0. 20. C. 2C.
< : : +2Cy:2: G-Cy2 G+
=y 1=7v 1—-n " ” I—vy

where (c) follows (19)-(22).

[|VCovy(st)]| Cvz (23)

Define Covyu(s,a) £ Ecup, ,[27207 (Covu(st) + VZcu(stai))lso = s,a0 = a] and
Covuu(s) £ Ecap, ,[2i0 7 (Covi(si) + V2,¢u(st, ar))]so = s]. We can see that
@ 1 < 202 ~ >
Covyu(s,a)|| £ — | —= +C. ), 24)
Icovantsall € (255,
where (d) follows (15).

Therefore,

V2, Gi(wi0) = — /

Py(s50)Ve / Tuw;0(@0]50)CoVe (S0, ao)dagdso,
spES

ap€EA
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= - Po(So)/ VuTw0(aolso) - Cove (o, ao)
S0ES ap€eA

+ 71",‘,;9((10|SQ)VWCOVww (807 ao):l dCLQdS()7

Y / Vo m(a0]50) - CoVe (50, 0) + g (] 50)-
S0ES ap€A

Ve (Covw(so, ap) + V2 cu(s0,a0) + 'y/ P(s1]s0, ao)Covww(sl)dslﬂ dagdsg.

1ES

Keep the expansion, we can see that

V2 Gi(w;0) = E¢wp,,, {Z 7t (Vw log 7.0 (at|st) - COVi (S, at)
t=0

+ V,Cov,, (s, a:) + V3 co (st at))] ,

e s ~2
(S) : i - ff; o i’y <(120°' E + éc> + E¢eny, [VwCovw(st, ar) + Vf,m,cw(st,at)}7
(2) 1 .2@. 1 ( 202 +@)
T l-q 1-v 1-4\(1-72 °°
2C. 20, C. 2C.

3
T—ny 1—~ 1—~ + 2CV§WG : CV,?m 1—~ CmeG + ECGWW 0 [vwwwcw(stv at):| )

where (e) follows Lemma 3 and (24) and (f) follows (23). Assumption 1 (iii) assumes that
[|V3 ,.Co(s,a)|| is bounded for any (s,a) € S,.A, therefore, there is a positive constant
Cvs, G, such that [|V3,, G(n;0)|| < Cvs,  for any (n,6) and any task 7;. We can also get

p nmm
IV3,,Gi(n:0,D)|| < Cys_ .

nnm nnn

Similarly, we can prove the existence of Ovl:mec and Cv%ega.

Lemma 6. There are positive constants CV4 e Cys er Cya ez CV4999G’ and Cv‘éeeeG such
nn n

that ||vmynn ( )H - annnn (7779 D)H < qu11177r7 menoGz(Wﬁ)H = ||v$m,9Gz(7779’
D)l < Cvs 60 IVineoeGilm Ol = [IV300Gi(m: 0. D)l < Cos 6 V300 Gi(m; 0)]] =
||V2990Gi(n,0,D)|| < Cyi,,,c and V5000 Gi (1 0)|| = | V990G (77»9 D)|| < Cvs,, .

Proof. We can derive the constants following the proof idea of Lemma 5 and thus we omit the
proof. O

A.7 PROOF OF LEMMA 1

Following the standard results for (A — Cvgmg)—strongly convex and (A + Cvz, ¢)-smooth objective
functions (Nesterov, 2003; Boyd & Vandenberghe, 2004), we know that

|2(K) — M+ V2, Gi(7i(¢1, 0, DF K); ¢, DY) 71V, Li( i, 115 (@1, w0, DEN, K), DY),
Co2
< O<(V;"G) > (25)

Define H(1; i) £ A + V2, G (1; @i, DE™), therefore A — Cz o < [[H(n;¢0)|| < A+ Cy2

& (a)
and ||V, H(n; o)l = |V3,,Gi(n; i, DY)|| < Cvs,  where (a) follows Lemma 5. Therefore,

nnm

[H(n1, 0]~ = [H(nz, 0],
= |[[H(n2: 0)] " {H (n25 i) — Hnws ) HH (15 03)] ]
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< |[H (23001 1M 00T - [1H (025 04) — Hms 0a) ],

P T —T 26)
N~ ol — 2.
(A= Cys o)
N ()
We know that ||V, L; (0,7, )H ||V Gi(n;0,D)|| < Cyz, ¢ where (b) follows A.3 and (c)

. (d
follows A.6, and ||V, L;(6,n,D)|| < 1(%# where (d) follows A.3. Therefore we have the following

=

1[H (15 0] Vi Li(0i,m1, D) — [Hn2; 0:)]~ Vi Li( i, m2, D),

< [[H(m; )] Vo Li(@im, D) — [H(nz; i)~ Vi Li(i,m, D)
+[[[H (2 04)] " Vi Li (1,11, D) — [H(n2s 04)] ™ Vi Li( 1,72, D)
< 1M (ms )]~ = [Hn2s 0] - 1IVaLi(wi, m, D)

+ IV Li(pi,m, D) — Vi Li(pi, m2, D) - I[H@]500)] I,

(e) Cyvs ¢C.

nnn

< s = gl + —ZC {1y — ] @7)
7( )(/\ Coo G)Q N — N2 A—Cv'zcm 21|,

’7’I

where (e) follows (26). Therefore, we have that
|2(K) = (M0 (pi,w0, DF™); ¢)] ™ Vi Li (@3, 55 (i, w, DY), DEN),
< |2(K) = [H(Hi(pi,w, DF, K); ¢3)] ' Vo Li(@s, 0i (i, w, DY, K), DF||
+[H (@i w0, D, K )3 20)] Vo Li( @iy (4, w0, DE, K), DY)
— [H(0F (00, DY™); 0)] ™ Vi L3, 7 (G0, 00, DF), D),

(f) CVQG CVQG
< nn nn
< o(TTRER 4 (<0,

where (f) follows (25) and (27).

From A.3, we know that

(28)

V2,G;(w;0) = V2,G;(w;0,D) = —E¢wp,,, [Z 7'V log T (als) (VI (8,0)|rer.) " |-
t=0

N (9)
Therefore, ||V2,G;(w;0,D)|| < ﬁ 1297

(g) follows Lemma 3 and (20). O

Then we have that

180 = Boal| < Vo Li(6, (0, D, K), D) = VoLi(6,; (6,1, D), D)
+11V5,Gi(9:(0,w, D, K); 0, D)a(K)

— V3,Gi(} (0,w, D); 0, D) [H(} (¢, w, D); ¢3)] Vi Li(p1, 5] (41,0, D), D),

n
<

A4(07W7DaK) - ﬁ:(07w7D)||

+|‘Vgnéi(ﬁi(9’w7DaK) ):L‘( )

— Vi, Gi(f:(0,w, D, K); 0, D)H(A; (%1, w0, D); $:)) ' Vi Li(s, A5 (81, w0, D), D)|

+Hvznéi(m(e,wm,K);e,m[%( (P w, D>7 )] "Vl (wyz (¢i,w, D), D)
Cr i -

< m”nl(evwvtpv‘[{) —; (evw’D)H
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vnf’ (95 77 (‘plvw D) )|| + |‘V§néi(ﬁi(67w7D7K)597D) - Vgnéi(ﬁ:(97w7D);9,D)||-
[0 (1,0, D); 60)] ™'V Li( i 7 (86,0, D), D),

) C’ A CV,,G OV?,G
< 1—~ |[7:(0,w, D, K) — ni(9,w7D)|+O(( )\” ) + ( )\17 )K)

+[IV3,Gi(#i(6,w, D, K);0,D) — Vi, G (i (6,0, D); 6, D)||

|| H(nz (410170‘} D) 4101)] VULZ(<)01777:(¢17W’D)7D)H
@ C,

Cv2 a Cvz @
< . _n* nn nn K
_1_¢m@mpmvvma%bm+00 Sy 4 (ZTK)
1 C. -

"’79G )\ Cvz el 1
Cv2 c Cv,,G
< o((ZH 4 (TS,

where (h) follows A.3, () follows A.6 and (28), and () follows Lemma 5.

||Aw,i - A = )\||3§‘( 7) - [H(A*(G w D)'9)]71V‘f7£i(07ﬁ;(07w7p)7D)||a

(k) Cv: ¢ Cv: ¢
< nn nn
O (TR 4 (S0,

where (k) follows (28).

A.8 PROOF OF LEMMA 2

We first provide the approximation error of the first-order approximation and then provide the ap-
proximation error of the hyper-gradients.

Claim 1. There are positive constants Dy, Dy and D,, such that |\5‘—;2L¢(9,17§(0,w))||

||a.923 i(0,m5(6,w), D)|| < Dy, SHaos (0,0 (0,w)]| = |Z5Li(0.07(0,w), D)|| < Dy, and
||awaeagLi(0a7ﬁ(9 w))” = Hawaeag (Qvnf(eaw),D)H < D,.

Proof. We first show that || aa—;Li (0,mF(0,w))|| is bounded and the boundedness of || %Li(ﬁ, n; (0,
w))|| follows the similar idea.

2
8892 10,77 (0,w)) = Vi Li(0,n7 (0, w)) + 2(Von; (6,w)) " Vg Li (0,77 (0,w))

(v90n:(97w))—rvﬂ[’i(9’ 77;( (9,&1)) + (V9n;(evw))vamLi(97 i (9’ w))v977i (9,&1). (29)

To show that ||§—:2L¢(0, 77 (0, w))|| is bounded, we need to show that each term in (29) is bounded.
From A.3, we know that V,G; = VL, and V¢G; = VyL;, and thus G; = L; + C where C'is a
constant. Therefore, we know that [[V5, L[, [[V,Li||, and ||V}, L;|| are bounded from Appendix

Ce
A.6. Moreover, ||V, L;|| < =
Then, we only need to show that ||[Ven*(0,w)|| and ||[VZ,n*(6,w)|| are bounded next. From
A5, we know that Vo7 (6,w) = —[V2, Gi(nf(0,w);0) + M|7'V2,Gi(n; (0, w); 0). Therefore,

Co2

(a)
[[Von; (0, w)|| < ﬁ where (a) follows A.6.
nm

Vion; (0,w) = = [V, Gi(1; (0,w):0) + A7 [(Von; (6,w)) " V3, Gi(n; (0, w): 0)
+ Ve Gi(n; (0,w);0)] - [V, Gi (7 (0, w); 0) + N7 V3, G (0, w); 6)

= [V, Gi(n (0,w);0) + ] 7' V500G (n (0, w); 0).
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We can see that || V2,77 (6, w)|| is bounded because all its terms are bounded. In specific, A.6 shows
that the second-order terms of G; are bounded and Lemma 5 shows that the third-order terms of G;
are bounded. Therefore, Dy exists.

From A.3, we know that V,G; = VL; and VyG; = VgL;, and thus G; = L; + C where C'is a
constant. Therefore, we know that ||V3, Lil|, ||V, o Li||, and [V, L;|| are bounded from Lemma

5. Then we can get the boundedness of || 86933 L;(0,nf(0,w))|| once we prove the boundedness of
VG005 (6, w)]].

Vioon; (0,w) = =2([V3,Gi(n; (0,w); 0) + M)~ [(Von; (0,w) " V5, Gi(n7 (6, w); 0)

+ Voo Gi(n; (0,w);0)] - [V, Gi(; (6,0); 0) + M)~ [(Von; (8,w)) " V5, Ga(n; (6, w); 0)

+ Voo Gi(n; (0,0); 0)] [V, Gi(n; (0,w); 0) + M| V3,Gi(n; (0,w); 0) — [V5,Gi(nj (0,w); 0)
+ M (V55 (8,w)) TV, G5 (8,w):0) + (Vor; (0,w)) " - [(Von; (6,w)) "

VG (0 (0,w):0) + V30 Gi (177 (8,0); 0) + (Von; (8,w)) " V9 Gi(n; (6, w); 0)

+ VanooGi(n; (0,w); 0)][V7, G175 (0,w); 0) + M| 713G (1 (0,w); 6)

= [V, Gi(n (0,w);0) + M| (Ven; (0,w)) V3, G0 (8,w); 0) + V336G (0, w); 0))
(VoG (0,w);0) + M7 Ve Gi (7 (0, w): 0) — [V, Gi(nf (0,w);0) + A7
(V000G (17 (6, 0); 0) + (Vor1; (6,0)) " V399, G (m (8,w); 0)]-

Even if the expression looks complicated, we can conclude that || V3,,7; (6, w)]| is bounded because

each term in the expression is bounded. In speicifc, the fourth-order terms of G, are bounded
(Lemma 6) .Then Dy exists and similarly D,, exists. O]

Then, we have the following inequality:

0
%Lz(ﬁ + 5A9, 7]:((9 + 5A9,w))
) . 2
< %Ll(aa i (0760)) 892 (9 ; (0 w))(;Ag + 7||5A9H27
0
%Ll(ﬁ - 5A9,77:(9 - 5A97W))
0, ” ,
= 89 (0 5 (9 w)) 892 (0 i (0 W))(SAH - 7||5A0H ;
8 8
= L0+ 600,170+ 50, 0)) — 5 La(0 ~ 0,7 (0~ 20,)
82
< 2 L0, (0,)) + Dol
0
%Ll(ﬁ + 5A9,’I7:<(9 + 5A9,w))
B ) ”
> L1007 0,0) + 5 L0, (6,0))580 — 1|52,
0
%Liw — 00y, i (0 — Ap,w))
3 32

< S Li0,07(0,) — S L0, (6,))58 + 1[50,

062

8 6
= 5 Lil0 + 080,77 (0 + 500, 0)) — 25 Li(0 — 686,17 (0 — 50, w))
2, ,

> 5z Li(0,17(8,0))500 — Dgl[0A]|".

Therefore, we can conclude that

H [ (04 600, (0 + 609, w)) — —Li(0 — 6Ag, 17 (0 — 6, w))

0
00
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82

5
~ 5 =114 (30)

Li(0,n;(6,w))Ag

S;n;ilarly, we can find that the approximation error of %Li(& 15 (6,w))Ag is upper bounded by
2% 10|

||A0,7L - Oéve,i - 99,i||

. 92 .
<|[Ap,i — Agl| + Ve, — 892L (0,97 (0, w, D)) Ag il
(a) Cv2c ~ COvza aDyd
< (=T 4 (TR 4 25 Ao

Cv2c  COvza
_ nn nn S
(( ) () )
where (a) follows Lemma 1 and (30).

A\ el

. c
Similarly, we can get ||Ay,; — aVy i — guil| < O(( v/’\’"G)K + (—=)K + 5).

A.9 PROOF OF THEOREM 1

We define a function f;(#,w) such that Vy f; (6, w) = Ag,i—avw and V,, f;(6,w) = Aw,i—avw.
Recall that

Ae,i - V(pi/i(gbiaﬁi(¢i5w7D§va]7K)7pgval) ( (SD’M 7D?V31,K);¢i7psval).

2 A eval .~ qyeval A . eval eval

[/\I+vnnGi(ni(<pi7W’Di 7K)a§0u,D‘ )] (90 (@w D' K)7Di )a

Ayi =AM + V3, Gi(0i(@i,w, DF™); @4, Dev“l K)|7'VyLi(@i,0i( s, w, DY, K), DY),
Therefore, we can see that HAg,iH and ||Aw1|| are bounded because the second-order terms of G;
are bounded (A.6) and the first-order terms of L; are also bounded (see the expressions in A.3).
Since Ag ; and A, ; are first-order approximations using partial gradients, ||Ag ;|| and ||A,, ;|| are

bounded. Therefore, there exists positive constants Cvy, ; and Cy, ; such that ||V f;(0,w)|| <
Cv,yand ||V, fi(0,w)|| < Oy, ;-

There are m training tasks and we denote the distribution of the training tasks by Pr. We define
f(0,w) & E;iup,[f:(0,w)] and thus we have:

2

(O
By [V0J(6.6) = Vf(0)] =0, B |90f(6,0) - Zveflewm] < St
G1)

C2
Eip, [wa(e,w) —wai(ﬁ,w)} =0, Eiwp, [||v F(0,w) vafz (0, w ||2] Ve f.
(32)
Claim 2. The gradient Vg f;(0,w) is Cy-Lipschitz continuous in (0,w) and V,, f;(0,w) is C,-
Lipschitz continuous in (6,w) for any task T;. Thus f; is Cy-smooth.

Proof. To prove the existence of Cy, it suffices to show that ||V, f;(0,w)|| and ||V3_ fi(0,w)]|| are
bounded. We know that ||VZ, f;(6,w)|| < H%A(MH + OzH%V(MH. Since Vg ; is the first-order
approximation, ||%V0,¢H < H%Agﬂ |/d. Therefore, it suffices to show that ||%Ag’i|| is bounded.

9 .
%Aa,m

= v«%G[A’i(ev 77(7 R 7K)) - VgenGz(ﬁ(v R '7K); 9)3}([_() - VgnGl(ﬁ(v R '7K); H)Vgl‘(f_()
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We know that the second-order terms of L; and G; (Appendix A.6) and the third-order terms of G;
are bounded (Lemma 5). Therefore, it suffices to show that ||z(K)|| and ||V ez (K)|| are bounded.

z(k+1),

= 0(8) = (N + 93, G 0.0 D1, K0:0,D0))5(8) = U, (0,010, D1, K. D)
We know that ||[A\] + V2, G;(;(0,w, D1, K);0,D1)]|| and ||V, Li(0,7:(0,w, D1, K), Ds)|| are
bounded. Therefore, ||x(K)|| is bounded because K is a finite number.

We define g(k) £ [M + V2,G;(5:(0,w, D1, K);0,D1)]z(k) — V,Li(0,%:(0,w, D1, K), D).
Then, we know ||Vyx(0)|| and ||Vg(0)|| are bounded. Suppose ||Voz(k)|| and ||Vgg(k)|| are
bounded, then ||Voz(k + 1)|| < [|[Vox(k)|| + B]|Veg(k)|| is bounded and ||Vog(k + 1)|| <
1V5,6Gi(:(0. w0, D1, K); 6, D)||- || ()| +|IAL+ V5, Gi (1 (6, w0, D1, K); 6, D1)||- || Vo (k)| +
||V%9f/i(0,ﬁi(9,w,l)1,K),D2)|| is bounded because the second-order terms of L; and G; are

bounded (Appendix A.6) and the third-order terms of G; are bounded (Lemma 5). By induction
and given that K is a finite number, we know that ||Vyx(K)|| is bounded.

Therefore, Cy exists and similarly we can prove that C,, exists. Thus, we can conclude the existence
of Cy. O

From Claim 2, we can also see that f is C's-smooth. Therefore
FOn+1),w(n+1)) < f(0(n),w(n)) + [Vof(0(n),w(n))] " [(n+1) — 6(n)]
+ [V f(0(n),w(n))] T [w(n + 1) — w(n)] + %[H@(n +1) = 0(n) || + [[w(n + 1) — w(n)||?],

B
T iy X Dot + 115 3 Va0, wu)] )
3 =1
Take expectation over training task distribution P7 on both sides, we get that
[ (0(n + 1), w(n + 1),
< B{f(B(n),w(n))] + E{EZ-NPT [—am) (IVef(H(n%w(n))llz ¥ ||vwf<e<n>,w<n>>||2>

+ SO (190 0000, I + 19000 )P ) + LG (190 000),

1 & 1 &
() = 55 2 Vo)) + IV 0 00) = 5 3 VO, w)]?) |

< B0, win)] + (Cf(o‘;”” - a(n)>E[IIVf(H(n%w(n))IIQ]

A 2+ 2 ),

=3 (a(n) - W)E[Wf(e(n),w(n))ﬂ,

Crla(n))?
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N—1 N-1 2
= Y aam BT FO. )P < 3 (at - L 19 600) )P

< BLO(0), w(0) ~ fON),w(N) + 32 ez v ez ),
n=0

= 3 S EITTO0). )] < X aetEVS @m0

< B[f(8(0),w(0)) = F(B(N),w(N))] + o (O3, +CRy),
1 N-1 ) "~
= 5 2 EUIVS6). )],
e a(n))?
< s B [F000).0(0) - SO V)] + 3 S 08, + k)

where (a) follows (31)-(32) and & < 5 +C . Therefore, we have that

N—

1= e
Z [1VF(O(n), )] < N;E||Vf(9(n)7w(n))ll2] <\t g G
where C; 2 ;QE[fw(oxw(o» - f<9<N>7w<N>>} and Cy & L ) Srlgmlce o

C3% ;). Note that 3~ (a(n))? is finite because av(n) o (n+1)p and p € (1,1).
We have the convergence of £, the next step is to quantify || E[V f]— Eip, [ Li(0i, n} (i, w))]||
and [|E[Vo f] = Binpy (55 Li( i 07 (9, )]l

Claim 3. There exist positive constants Dg and D, such that H%Li(%, ni(¢i,w))|| < Dy and
25 Li (i, m (91, w))|| < D

Proof. From the proof of Claim 1, we know that || L;(6, 7} (6,w))|| is bounded. From Appendix
A3 we know VggL; = VyeG; and from Appendix A.6 we know ||VyG;|| is bounded, therefore

125 Li (i (@i )| < 1T — g Li (6,17 (8,))| - 1 25 Li(i, m7 (pi, )| is bounded. Thus,
Dy exists and similarly we can prove that D, exists. O

gl |

<E H ‘EDgﬂin,ng,DgEiNPT [Vofi(0(n),w(n)) — go,]

Eppm, s [ VoS (0(0), (1)) = iy |, Ll ). s )] \

|

00

(b) Cy2 G Cv2: G %
<o<( Vi) (Y )K+5)

o *
' HED;_.-MHW,DEEMT (90, — 2= La(ios(m), m(n),w(n)))]]

o *
+ || Bo oo oy Bevrlans = g it o) |
(c) Cyv: G g Cv2 G ¢ aD?
<0 nn + nn +5)+ —0) 34
(T + () a) o ot 34
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where (b) follows Lemma 2 and (c) follows Lemma 5.10 in (Fallah et al., 2020) if o € [0, 58].

Similarly, we can get

Cys G Cy: G g 2
<0<( Tin YKy (T )R +5> oDi (35)

X i (VDI
B[ Bopm. .01 B (95000, 00) = VEtisto) st )| |

Cyv: G Cv: G g D2+ D2

A min, {/Dff iy

E\||Epwin pea pn Einpr [V fi(0(n),w(n)) — gLi(%(n)mZ‘ (i(n),w(n)))]
[ = !

With (34) and (35), we have that

Therefore, we have that

E[H;lﬁ;wm( (il H] H‘EiNPT[VLi(wm),nf(w(n»w(n)))]|

J

< | Bopo pom IV 160), w(n»m]
+ || Bo s oy By 19 5100 0) — 32 Liliin) 2 (i) )]

|

< | Eppo s IV £ 60) o) |
(Cv2 )K+<CV>2\ G)’ 6)4_"’([)3"‘[)3)’
min{/DJ 17,
NZ B | Bope s oI19 £ 0n) o) ]
+0(<C;"G>K+<Cvi"G>K )+ et
(z) Ncl’ : +& mlé?i/g?z) O((Cvi"G)K+(CV§\"G)R+5>’
§e+0<(cv§"’G)K+(Cvi"G)K +mm{1\/m>

where (d) follows (36) and (e) follows (33). To find the iteration number N, we have that

Ci Cs

— <
N T BN =
C 02 Cl CQ min{C’1 Cg}
2> == > I Sl St it P
T 2N Y BN BN TBN= BN
min{Cy, Cy}
N> L ey
- Be?

A.10 PROOF OF PROPOSITION 1

From Appendix A.3, we know that

VoLi(0,w) = E¢ep,,, [Z V'V oro(se, ar)] — Vodr, (1),
t=0
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VuLi(0,w) = Ve, (m) = Bcap, 1> 7' Vtu(st, ar)].

t=0

Note that Vo J,, (7;) = Ecup, [D o0V Vere(se, ar)] = ﬁ Jocs Joea ™ (s,a)Verg(s, a)dads
and Vi, Je, (1) = Ecap, [Y o0 7V Vatw (s, ar)] = ﬁ Jocs Joea W7 (8,a)Vycu(s, a)dads.

Therefore, we have that

1 m
||E ZVLZ'(Q,UJ) - VLerl(evw)Hv

1 & 1 &
<= D VoLi(0,w) = VoLma(0,w)l| + || Vo Li(t,w) = Vo Lmia(6,0)]]

=1 i=1

IN

1 1
HE Z Vory (1) = Vo (Tms )|+ 11— D Voo (1) = Voo ()

i=1
1
/365 /aeA (m
1
Y
/ ( wri(s,a) — pmr (s, a)) dads
s€S JacA

1
C +C / / 72 7Tm+1(8’a)
€s Jacal™

C +C T Tm 1 o Ti Tm41
= Z,u st —O(d(%2ﬂ ) +))

Ti(s,a) — pmr (s, a)) Vorg(s,a)dads

Ti(s,a) — p"mr (s, a)) Vww(s,a)dads

(Cr +C.),

12 1L 11

S

‘,H
3 =

dads,

where (a) follows Assumption 1 (i) (ii).

A.11 PROOF OF THEOREM 2

From Theorem 1, we know that we can find meta-priors (6, w) such that

el et <

where @; = 0 — aZ L;(0,77(0,w)). From (4)-(5), we know that

0 0? ~ 0

7L2 71'7 ;k 71')7 = I 9 i 0 7LZ 71'7 ;,k 71'77 )

Sy (o (60@) = | 1= g L (0:0)| - 5Ll (902

O L@ (@) =~ LB (0.)) - L1 (21.9)) + L0 (20,)
aw (3 So’tvni QOZ; - awaa 777, a(p K3 (Pum QD’H aw 1 @17772' 8027 .
From Appendix A.6, we know that the second-order terms of L; are bounded. From the expression
of Vo L; in Appendix A.3, we can see that ||VgL;|| is bounded. Therefore, we know that

5 Lils i (5@l = Ol 5 it (@i ),

o . L o L
H%Li(%m (@i, @)l = O(IIQLZ(%m (@i, @)II)-

Therefore, we can see that

IVLi(0, 97 (0,0))lo=p. w=sl1* < ||*L (@1, (@0, @)|* + || Li(@i, 7 (@6, @))II,
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=0(ll34 8) Li(@i, 15 (@1, @))|I* + H Li(@3, 15 (@1, @))II),
*O(HVL (@317 (@0, 0))|*),
= [[VLi(6, 7 i (0,w)lo=p; w=all < O(|IVLi(®i,n; (#:, ’))II)

éEII*ZVL (0,17 (0, w))lo=g: w=all] < O(E H*ZVL @i ;i (i, @))|I]) < O(e).

1=1 =1

(37)

From Appendix A.6, we know that there exists a positive constant C'y2 1, such that || V2 L; (0, w)]|| <
C'y21.. Therefore, we have that

1 m
Efll— > VL0, o=p,m=n: (200) — VLi(O,)o=p 1 =iz, ., Il

i=1
1 m
= E[H% Z VLZ'(97 77)|9:<ﬁ7:ﬂ7:77i*(¢i7@) - VLi(av 77)|9:<,5m+1777:777*n+1(¢m,+1@)H]v
i=1
Cy2r, o v . _ _
<L ZE{M = G| + |07 (@i, @) =m0 (Prmrr, @) |
=1
) 1 m
DO( S, 5, (38)
=1

where (a) follows Claim 4.

Claim 4. L5715 — ] < O(L S, dum, pmo=) and &30, |l (51.5) -
* — _ m o - K
M1 (P, @) < O( 070 d(p™, 1)),

Proof. Follow the proof of Claim 1, we can see that that there exists a positive constant C,, such
that || aeanL (0,1} (0,w))|| < Cy,. Moreover, we know that there exists a constant C' such that

||V977 i{[VynGi + M|71|| < C because the second-order terms of G; are bounded (Appendix
A6).

1¢, a9 . 9,
o 18— Bl = D g Lo (00.0) = L0 0.

m a .
= 23 I 1 0) = gy mia B 6.

=1

) . 9,
g D1 601 6.) = 5O 0.
aCop = , *
< TIY  a (6,0)) = 07 (6,w))|
=1

a0 N 3
e D g 170.0) ~ L0 i)

m

aC * * « *
S m977 ||nm+1(9v W)) - n; (9,&)))” + E Z |:||v9Lm+1 (97 7; (9, OJ))

i=1

- veLi(ea Th*(evw))H + é||anm+1(9ﬂ7f(9aw)) - anl(evn;k(eﬁw))H s

~ m

© aCy g~ 1 , c ]
< %Zunmu(@,w)fm (Q’WNH%Zd(u i m+1)

i=1 i=1

where (b) follows Proposition 1. Now, we bound the term ||n};, ., (6, w) — 7 (6, w)||.
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‘We know that

. Al .
Vo |G 1512 0,1:0) + 32 (01) — ol =0,

* 1 *
2 (06) = 5 [0 = VoG (s (0.:6) |
Therefore, we can get that
* * 1 * *
141 (0, w) — i (0, w)|| = MVaGmit (0 1(8,w);0) = VyGi (i (6, w); 0,
=O0(|Vyde,, ,, (Tmy1) = Vipde, (m)l]),
< CeO(d(p™, pmmr)).

Therefore, we can see that = 3™ | [|@; — Gi1|| < O( S d(p™, pmm+1)) and similarly we
can get & 3, (107 (81 @) — tyr (Psns @) ]| < O(L S, d(u™, o). O

Therefore, we have that

EH |VLW+1 (9’ w) ‘9:¢m+1 W=k ‘ |]7

1 m
<E {IVLm+1(9aw)|0—@m+1,w—ﬁ;l+1 - > VL0, w)lo=ppn 1 =i, |

i=1

1 m
+ HE Z VLi(8,w)l0=g: w=n: (3:.0) = VLi(0,w)0=¢ i1 0=z, |
i—1

1 m
+|n1§ZVanwn&w“wwxwwn]

i=1
Z d(p™, pmm) d(% Do) e,

i=1
where (c) follows (38), (37), and Proposition 1.

A.12 PROOF OF THEOREM 3

The proof is similar to the proof in Appendix A.11. The key step is to find the relation similar to
Proposition 1 which is the following claim.

Claim 5. For a given (0,w), it holds that

1 m
1= Li(0,w) = L (6,0)]| < O(d ZM“ prm)
i=1

Proof. Recall that

L;(0,w) = —E¢np,, Zlogﬂw o(atlse)] = / / (s,a)logm,.g(als)dads.
t=0 €S
Therefore, we have that

1 m
- ZLi(e,w) = L1 (0, w)]],

/ /'*Zusa 1 (s, 0)] - || 1og T (als)|dads,
€S Ja

m
€A i—1

_ Us Tm+1
d(m ;u NTEEESS)

where (a) follows that fact that (6,w) is fixed and thus there is a positive constant D such that
|| log my:0(als)|| < D forany (s,a) € S x A. O
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Remark 1. Note that Claim 5 does not hold for any (s, a) € S x A, it only holds for given (specific)
(0,w). However, this is enough because we only need to use Claim 5 at several specific points, e.g.,

(95737 n?(@ia ‘D)) and (@m-&-la ﬁ;kn+1)'
‘We can see that
ElLm+1(@m+1, 41 (Pm+1, @, Dint1))] — Iglgl Lypy1(0,w),

= E[Lm11(Pma1, Mg 1 (Pma1,0))] — min Lypy1(0,w),

~ . ~ 1., _ . )
<E {Lm+1(¢m+1,ﬁm+1(@m+1vw)) - ZLi(me,an(somﬂ,w))]
=1
m 1 m
+ E[m D Lil@mts Mg (Pry1,@)) — — ZLi(%,n;‘(wi,w»}
=1 =1
f B[ LS L@ @o@)| - 1S min Ler i (e0))
- i iy 15 iy W - min L iy /g iy W
mi:1 Wiy T (P mi:1 b iy T (P
£ LS tmin Lt (p1n0)) — min Ly (0.0)
— min L; (i, n; (@i, w)) — min L,, ,W).
m — 0,w Pir 1 P 6,w +

The first and fourth terms are bounded by O(d(L "7, ™, p™+1)) (Claim 5), and the third term
is bounded by e. Now, we look at the second term. Since ||VyL;(0,w)|| and ||V, L;(0,w)]|| are
both bounded (see the expressions in Appendix A.3), there is a positive constant Cvz, such that
IVL(0, w)|| < Cvr.

® 1 - T ks
< O(%Zd(/‘ Ry m“))v

i=1
where (b) follows Claim 4. Therefore, we have that

E[Lmy1(Pm+1; 1 (Pm+1, @, Dmg1))] — %151 Lyt1(0,w),

m

1 T ™ 1 - Uy ™
< e+0(azd(u 1z ”"“)er(%z/i L)
i=1 =1

A.13 PROOF OF THEOREM 4

If the reward functions and cost functions are linear, there are reward and cost feature vectors
¢r(+,-) and @.(-,-) defined over state-action space. The expert’s reward function of the new
task Tppp1 are rpq1 = Gggb?« and ¢qp1 = wgghc. The parameterized reward and cost func-
tions are respectively 19 = 07¢, and ¢, = w!' (¢c). We define the expected cumulative re-
ward feature as i, (7) Ecp, >t 07 dr(st,ar)] and expected cumulative cost feature as

A
pe(m) £ Eenp, [ eV de(st, ar)]. Therefore, from Appendix A.3, we can see that for any (6, w)
and any task 7;:

VoLi(0,w) = ﬂr(ww;G) — pr(mi),  VoLi(0,w) = pe(m;) — NC(ﬂ'w;G)-
Therefore, we know that
EH |VoLyi1(6,w) ‘0:¢m+1 W=7 1 (Pm+41,0,Dimt1) | ”’

< E[|IVLp41(0,w)

|9:¢m+1 sw=1y, 1 (Pm+1,0,Dmy1) ‘ H )
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m

1 T Uy 1 S T T
SOl =3 d(u ) 4 (=S )

=1

Thus we have that

EHJTerl (TrﬁfnJrl;@erl ) - ‘]Tm+1 (ﬂ-m-‘rl) ”7

< ENl0s]l - [lur (i, iomin) = pe(Tma)ll],

_ 0<E[||ur<m;n+l;¢m+l> - ur<7rm+1>||]),

= O (EH |VL771+1 (9? (JJ) ‘0:¢vn+1 5w:ﬁ:n+1(¢7”+11(;})D’HL+1) | ]) ’

1 T s 1 S T Uy
<Ot - D dum ) d( = 3 )
=1

=1

Similarly, we can get

EHJCerl (ﬂﬁ:n_',l;@m.«#l) - Jcm+1 (ﬂ-erl) < O 6 +— Z d ™, Trm+1 + d Z wr /’Lﬂ—nwl

A.14 OUR DISTINCTIONS FROM RELATED META-LEARNING THEORETICAL WORKS

Although there is no theoretical work on meta IRL, there are theoretical works on general meta-
learning problems that study convergence and generalization. In specific, (Fallah et al., 2020) studies
the convergence of MAML, (Fallah et al., 2021b) studies the generalization of MAML, and (Denevi
et al., 2019) studies the generalization of iMAML. In this section, we discuss our significant distinc-
tions from these works from three perspectives: problem, algorithm, and theoretical analysis.

Problem: Neither MAML nor iMAML can be directly applied to solve our problem even if we
reduce their general problem formulation to the context of IRL. Therefore, we propose the novel
problem formulation (2)-(3) to learn both the reward and cost meta-priors.

Algorithm: A key step of both MAML and iMAML is to compute the hyper-gradient. In MAML,
the hyper-gradient is assumed to be directly computed. In iMAML, they use conjugate gradient to
help compute the hyper-gradient. In our case, we have an additional challenge to compute the hyper-
gradient, i.e., Challenge (i) mentioned in Subsection 3.1, that does not occur in MAML or iMAML.
To solve this new challenge, we design an additional algorithm (i.e., Algorithm 2) that uses the
first-order approximation (6)-(7). Moreover, instead of using conjugate gradient to solve Challenge
(i1) mentioned in Subsection 3.1, we use a new algorithm (Algorithm 3) to solve it. Compared to
iMAML (Rajeswaran et al., 2019) that assumes to find a ¢’-approximate, Algorithm 3 enables us to
guarantee the finite-time approximation error in Lemma 1 and Lemma 2.

Theoretical analysis: We first talk about the convergence guarantee and then talk about the gen-
eralization analysis. For the convergence guarantee, first, we have additional algorithms (i.e., Al-
gorithms 2-3) to tackle the additional challenges and thus we need additional analysis (Subsections
A.7-A.8) to justify Lemmas 1-2. Note that Lemmas 1-2 and the corresponding proof are novel com-
pared to (Fallah et al., 2020; 2021b; Denevi et al., 2019). Moreover, for the proof of Theorem 1 in
Subsection A.9, we use a novel technique to prove the convergence, i.e., we first construct a new
function f; and provide the convergence of f;. Then the convergence of L; can be derived by using
the error between f; and L;. This technique can simplify the analysis and is totally different from
(Fallah et al., 2020).

For the generalization analysis, Proposition 1 and its proof is novel compared to (Fallah et al., 2021b;
Denevi et al., 2019) since we leverage a unique property (i.e., distance between tasks and bounded
gradient of the parameterized models ry and c,,) of our problem to prove this. Similarly, Theorems
2-3 require to leverage the special property of our problem to prove. Theorem 4 quantifies the
cumulative reward and cost difference between the adapted policy and the expert policy, which is
definitely novel.
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A.15 COMPARISON TO META CONSTRAINED REINFORCEMENT LEARNING (KHATTAR
ET AL., 2023)

First, (Khattar et al., 2023) studies a different problem. (Khattar et al., 2023) studies meta con-
strained RL where the constraint (cost function) is given while we study meta ICRL where the cost
function needs to be learned.

For dealing with the constraint, (Khattar et al., 2023) has a constrained RL problem to solve for
each task. It uses a constrained RL algorithm called CRPO (Xu et al., 2021) to solve the constrained
RL problem and get a corresponding task-specific policy. We have a cost learning problem in the
lower level and we use gradient descent to obtain a corresponding task-specific cost adaptation. One
similarity between ((Khattar et al., 2023) and our work is that we both do not require the exact task-
specific adaptation and this makes the theoretical analysis of the meta learning performance more
challenging.

For dealing with meta-learning, (Khattar et al., 2023) studies an online setting where at each online
iteration, a new task is input and a corresponding task-specific policy adaptation is computed. At
each online iteration, it updates the policy meta-prior by minimizing the KL divergence between the
policy meta-prior and the current task-specific policy adaptation via one or multiple online gradient
descent steps. In contrast, we utilize a bi-level optimization framework where we learn the meta-
priors in the upper level such that the corresponding task-specific adaptations can maximize the
likelihood of the demonstrations of each task. In order to optimize for the meta-priors, we need
to compute the hyper-gradient which is very challenging in our case. We propose several novel
approximation methods and algorithm designs to approximate the hyper-gradient. In conclusion,
the meta-prior in our case is learned such that the task-specific adaptations adapted from the meta-
prior have good performance on each specific task while the meta-prior in (Khattar et al., 2023) is
learned such that the meta-prior is close to task-specific adaptations according to the metric of KL
divergence.

B EXPERIMENT DETAILS

This section includes the experiment details. It has two subsections where the first subsection in-
cludes the experiment details of the drone experiment and the second subsection includes the exper-
iment details of the Mujoco experiment. We first explain the four baselines in detail.

* The baseline ICRL does not have meta-priors and directly learn from one trajectory from
scratch.

* The baseline ICRL(pre) naively learns meta-priors across all demonstrations of all the
training tasks. In specific, ICRL(pre) first solves ming - > | Li(0,w*(0), D), s.t. w*(6)
= argmin, = > 7, Gi(w;0,D;) where D; 2 {D¥ D™ D'},  The obtained
results of this problem (i.e., 6 and w*(#)) are the meta-priors of ICRL(pre).
ICRL(pre) then uses these meta-priors as initializations to solve the problem
ming Ly 1(0,w* (), Ding1), s.t. w*(0) = argmin,, Gpuy1(w; 0, Dyyq) for an arbitrary
new task T,11.

¢ The baseline Meta-IRL is from (Xu et al., 2019) which is a combination of maximum
entropy IRL (Ziebart et al., 2008) and MAML (Finn et al., 2017).

B.1 DRONE NAVIGATION WITH OBSTACLES

RL has been applied to many applications, including wireless network Huang et al. (2023) and
motion planning Liu & Zhu (2024). Here, we study a motion planning problem. For the drone
experiment, we cannot directly train the algorithm on the physical drone because this may cause
damage to the drone. In specific, given learned reward and cost parameters (0, w), we need to use
soft Q learning or soft actor-critic to find the corresponding constrained soft Bellman policy. This
RL step requires the drone to interact with the environment and thus improves its policy. During the
learning process, the drone may inevitably execute some dangerous behaviors, such as colliding with
obstacles or the wall. To avoid the damage of the drone, we build a simulator in Gazebo (Figure 2)
that imitates the physical environment with the scale 1 : 1. We train the algorithm on the simulated
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drone in the simulator and the empirical results, i.e., CVR and SR, are counted in the simulator.
Once we obtain a learned policy that has good performance in the simulator, we implement the
policy on the physical drone.

Discussion of the sim-to-real problem. In some cases, the models that
have good performance in the simulator may not have good performance in
the real world due to the reason that the simulator cannot 100% precisely
imitate the physical world Sun et al. (2023); Wang & Cao (2024). However,
in our case, the sim-to-real issue is not significant because of two reasons: (i)
the simulated drone is built according to the dynamics of a real Ar. Drone 2.0
(Huang & Sturm, 2014); (ii) the states and actions are just the coordinates of
the location and the heading direction of the drone instead of some low-level
control such as the motor’s velocity, etc. Given that Vicon can output precise
pose of the physical drone and the simulator is built on the 1 : 1 scale. If
a learned trajectory can succeed in the simulator, it can succeed in the real
world given that the low-level control of both the simulated and physical
drones are given.

In this experiment, the state of the drone is its 3-D coordinate (x,y, z) and Figure 2: Simulator
the action of the drone is also a 3-D coordinate (dz, dy, dz) which captures
the heading direction of the drone. We ﬁx the length of each step as 0.1 and thus the next state is

dZ . .
(-t 104/(dz)2+ +(dz2’y 10\/(da: dy 124+ (dz)2’ +10\/(dz)2+(dy)2 (dz)2)'lnthlseXpenmem’

we do not need the drone to change its height so that we usually fix the value of z and set dz = 0.
The goal is an 1 x 1 square. Denote the coordinate of the center of the goal as (Zgoal; Ygoal ) then for
all the different tasks, Zgoa € (0.5,6.5) and ygou € (10,11). The obstacle is a 3 x 1 square. Denote
the coordinate of the lower left end of the obstacle as (Zobstacles Yobstacle )> the for the different tasks,

Tobstacle € (0, 4) and Yobstacle € (45 5)

Note that we do not need features to help learn the reward function. Even if features can be learned
Wu et al. (2024); Chen et al. (2023), the extra requirement of needing features can be impractical in
various scenarios. We use neural networks to parameterize the reward and cost functions. In specific,
the neural networks have two layers where the activation functions are relu and each layer has 64
neurons. For each training task, the training set only has one demonstration and the evaluation set
has 50 demonstrations. We set Dh Deval The result in table 1 shows the mean and the standard
deviation over the 10 training tasks

B.2 MUJOCO EXPERIMENT

(a) Swimmer (b) HalfCheetah (c) Walker2D

Figure 3: The three Mujoco environments.

For all the three Mujoco experiments, we consider the random velocity task (Seyed Ghasemipour
et al., 2019). In specific, the robots (i.e., swimmer, halfcheetah, and walker) need to reach and
sustain at a target velocity. For different tasks, the target velocity is different. The design of the
reward function is that the robots will receive reward +1 if they are at the target velocity and reward
0 otherwise. The neural networks of all the three experiments have two hidden layers, and each
layer has 256 neurons. The activation function of the first hidden layer is relu and the activation
function of the second hidden layer is tanh. For all the three Mujoco experiments, we have 50
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training tasks and 10 test tasks. Each test task only has one demonstration. For the training tasks,
the training set has one demonstration and the evaluation set has 64 demonstrations. Similar to the
drone experiment, we set DI = D,

The target velocity of the three experiments is designed in a similar way. In specific, the target
velocity v € [0.5,3.5]. For a given target velocity v, the reward is +1 if the velocity is within
[v,v 4 0.3] and 0 otherwise. For the constraint, the Swimmer experiment constrains all the states
whose front tip angle is larger than ag where ay € [0.9, 1.2]. The HalfCheetah experiment constrains
all the states whose front tip height is larger than ko where hg € [0.5, 1.0]. The Walker experiment
constrains all the states whose top height is smaller than h; where h; € [0.6,0.9].

Discussion of the experiment results in Table 1. From Table 1, we can observe that M-ICRL
achieves similar SR/CR and CVR with the expert. ICRL has much worse SR/CR performance
because it only has one demonstration for each test task, and it does not have meta-priors. Meta-IRL
has the worst CVR performance because it only learns a reward function and it is difficult for a single
reward function to capture the function of both the ground truth reward function and ground truth
constraints. The bad CVR performance will also result in bad performance of SR and CVR even if
Meta-IRL may estimate the ground truth reward function well, because the episode terminates if any
constraint is violated. ICRL(pre) has the second-best performance because it has abundant training
data and it learns both the reward function and constraints. However, ICRL(pre) has much worse
performance than M-ICRL because ICRL(pre) only naively trains over all the data of all the training
tasks.
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