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The Johnson-Lindenstrauss Lemma for Clustering and Subspace
Approximation: From Coresets to Dimension Reduction*

Moses Charikar' Erik Waingarten?

Abstract

We study the effect of Johnson-Lindenstrauss transforms in various projective clustering problems,
generalizing results which only applied to center-based clustering [40]. We ask the general question: for a
Euclidean optimization problem and an accuracy parameter € € (0,1), what is the smallest target dimension
t € N such that a Johnson-Lindenstrauss transform IT: R? — R’ preserves the cost of the optimal solution
up to a (1 4 €)-factor. We give a new technique which uses coreset constructions to analyze the effect of the
Johnson-Lindenstrauss transform. Our technique, in addition applying to center-based clustering, improves
on (or is the first to address) other Euclidean optimization problems, including:

e For (k, z)-subspace approximation: we show that ¢ = O(zk2/53) suffices, whereas the prior best bound,
of O(k/e?), only applied to the case z = 2 [13].

e For (k, z)-flat approximation: we show t = O(zk2/63) suffices, completely removing the dependence on
n from the prior bound O(zk? logn/e®) of [36].

e For (k, z)-line approximation: we show t = O((kloglogn + z + log(1/¢))/e?) suffices, and ours is the first
to give any dimension reduction result.

1 Introduction

The Johnson-Lindenstrauss lemma [35] concerns dimensionality reduction for high-dimensional Euclidean spaces.
It states that, for any set of n points z1,...,7, in R? and any € € (0, 1), there exists a map I1: R — R?, with
t = O(logn/e?) such that, for any 4, j € [n],

1

(1.1) e

Nz = zjlle < (i) = ()]l < (1 +€) - [lz — 22
From a computational perspective, the lemma has been extremely influential in designing algorithms for high-
dimensional geometric problems, partly because proofs show that a random linear map, oblivious to the data,
suffices. Proofs specify a distribution Jg,; supported on linear maps R¢ — R* which is independent of z1, . .., T,
for example, given by a ¢t x d matrix of i.i.d A (0,1/¢) entries [32 [18], and show that a draw IT ~ J,;; satisfies
with probability at least 0.9.

In this paper, we study the Johnson-Lindenstrauss transforms for projective clustering problems, building on
a line-of-work which gave dimension reduction results for center-based clustering [7, [13 6} [40]. Our goal is to
reduce the dimensionality of the input of a more general projective clustering problem from d to ¢, with ¢t < d,
without affecting the cost of the optimal solution significantly. We map d-dimensional points to ¢-dimensional
points via a random linear map IT such that the optimal cost in ¢-dimensions is within a (1 + ¢)-factor of the
optimal cost in the original d-dimensional space. We study this for a variety of problems, each of which is
specified by a set of candidate solutions C4 and a cost function. By varying the family of candidate solutions Cq4
and the cost functions considered, one obtains center-based clustering problems (like k-means and k-median), as
well as subspace approximation problems (like principal components analysis), and beyond (like clustering with
subspaces). The key question we address here is:
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Main Question: For a projective clustering problem, how small can ¢ be as a function of the dataset
size n and the accuracy parameter ¢, such that the cost of the optimization is preserved up to (1 £¢)-
factor with probability at least 0.9 over II ~ Jg,?

Our results fit into a line of prior work on the power of Johnson-Lindenstrauss maps beyond the original
discovery of [35]. These have been investigated before for various problems and in various contexts, including
nearest neighbor search [32] 27, [3], numerical linear algebra [43] [39] [50], prioritized and terminal embeddings
[211 138, 42, [12], and clustering and facility location problems [7, [13] 36} (6] [40] 411 [33] 11, [34].

1.1 Our Contribution In the (k, j)-projective clustering problem with £, cost (|29} [T}, 201 [19] [49] 36}, 25| [47]),
the goal is to cluster a dataset X = {x1,...,7,} C R? where each cluster is approximated by an affine j-
dimensional subspace. Namely, we define an objective function for (k, j)-projective clustering problems with ¢,
cost on a dataset X, which aims to minimize

min cost, (X, ¢),
where the candidate solutions C; consist of all k-tuples of j-dimensional affine subspaces. The cost function
cost, (X, -) maps each candidate solution ¢ € C4 to a cost in R>¢ given by the £,-norm of the vector of distances
between each dataset point x € X to its nearest point on one of the k subspaces. Intuitively, each point of the
dataset x; € X “pays” for the Euclidean distance to the nearest subspace in ¢ € C4, and the total cost is the
{.-norm of the n payments, one for each point.

There has been significant prior work which showed surprising results for the special case of (k, z)-clustering
(like k-means and k-median, which corresponds to (k, 0)-projective clustering with ¢,-cost) as well as for low-rank
approximation (which corresponds to (1, k)-projective clustering for non-affine subspaces with ¢5-cost) [7], [13} 6], 40].
It is important to note that the techniques in prior works are specifically tailored to the Euclidean optimization
problem at hand. For example, the results of [40], which apply for (k,0)-clustering with ¢,-norm, rely on using
center points as the approximation and do not generalize to affine subspaces beyond dimension 0. The other result
of [13] for low-rank approximation uses the specific algebraic properties of the fo-norm which characterize the
optimal low-rank approximation but do not hold generally. In summary, these prior show that for (k, z)-clustering
and low-rank approximation, even though many pairwise distances among dataset points become highly distorted,
the cost of the optimization need not be significantly distorted.

Our Results. We show that (k,0)-clustering with ¢,-norm and low-rank approximation are not isolated
incidents, but rather, part of a more general phenomenon. Our main conceptual contribution is the following:
we use algorithms for constructing coresets (via the sensitivity sampling framework of [23]) to obtain bounds on
dimension reduction. Then, the specific bounds that we obtain for the various problems depend on the sizes of
the coresets that the algorithms can produce. We can instantiate our framework to new upper bounds for the
following problems:

e (k,z)-Subspace Approximation. This problem is a restricted (1, k)-projective clustering problems with
,-cost. We seek to minimize over a k-dimensional subspace S of R the £,-norm of the n-dimensional vector
where the coordinate i € [n] encodes the distance between z; and the closest point in S

e (k,z)-Flat Approximation. This problem is exactly the (1, k)-projective clustering problem with ¢, cost.
It is similar to (k, z)-subspace approximation, except we optimize over all affine subspaces.

e (k,z)-Line Approximation. This problem corresponds to (k,1)-projective clustering with ¢,-cost. The
optimization minimizes over an arbitrary set L of k of 1-dimensional affine subspaces Iy, ..., (i.e., k lines
in RY), the ¢,-norm of the n-dimensional vector where the coordinate i € [n] encodes the distance between
x; and the closest point on any line in L.

Concretely, our quantitative results are summarized by the following theorem.

IThis is a restricted version of projective clustering because subspaces are not affine and required to go through the origin.
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Target Dimension for Johnson-Lindenstrauss Transforms
Problem New Result Prior Best
(k, z)-subspace O(zk?/e3) O(k/e?), only z = 2 [13]
(k, z)-flat O(zk?/€?) O(zk?logn/e®) [36)
(k, z)-line O((kloglogn + z + log(1/¢))/e®) None

Figure 1: Comparison to Prior Bounds

THEOREM 1.1. (MAIN RESULT—INFORMAL) Let X = {z1,...,2,} C R? be any dataset, and Ju; denote atx d
matriz of i.5.d entries from N(0,1/t). Let Cq and Cy be candidate solutions for a projective clustering problem in
R? and R?, respectively. For any e € (0,1), we have

1.2 Pr
( ) II~Ta,¢

H ming e, cost(IL(X), ¢)

-1 <e| >0.9
min.ec, cost(X, ¢) ‘ E} -

whenever:

e (k,z)-subspace and (k, z)-flat approximation: C4 and C; are all k-dimensional subspaces of ]Rfl and R?,
respectively; the cost measures the £,-norm of distances between points to the subspace; and, t = O(zk?/e3).
Similarly, the same bound on t holds for Cq and Cy varying over all affine k-dimensional subspaces.

e (k,z)-line approximation: C4 and C; are all k-tuples of lines in R? and R?, respectively; the cost measures
the €.-norm of distances between points and the nearest line; and, t = O((kloglogn + z + log(1/¢))/e3).

In all cases, the bound that we obtain is directly related to the size of the best coresets from the sensitivity sampling
framework, and all of our proofs follow the same format Our proofs are not entirely black-box applications of
coresets, since we use the specific instantiations of the sensitivity sampling framework. We believe that any
improvement on the size of the best coresets will likely lead to quantitative improvements on the dimension
reduction bounds. However, improving our current bounds by either better coresets or via a different argument
altogether (for example, improving on the cubic dependence on €) seems to require significantly new ideas.

REMARK 1.1. (HiGH PROBABILITY BOUNDS) Theorems are stated with respect to probability 0.9 and can be made
arbitrarily close to 1 (by increasing the constant factor in the dimensionality t). For high-probability guarantees,
i.e., those which hold with probability 1 —§ for any § > 0, a straight-forward adaptation would incur extra factors
of O(log(1/6)). As we will see, one factor would come from ensuring randomized coreset constructions hold with
probability 1 — &, and another factor to ensure the dimension reduction preserves distances (or subspaces spanned)
among coreset points with probability 1 — 6.

A Subtlety in “For-All” versus “Optimal” Guarantees. Our results focus on applying the Johnson-
Lindenstrauss transform and preserving the optimal cost, i.e., that the minimizing solution in the original and
the dimension reduced space have approximately the same cost. A stronger guarantee which one may hope for, a
so-called “for-all” guarantee, asks that after applying the Johnson-Lindenstrauss transform, every solution has its
cost approximately preserved before and after dimension reduction. We do not achieve “for all” guarantees, like
those appearing in [40]. However, we emphasize that various subtleties arise in what is meant by “a solution.”
In particular, prior work on dimension reduction and coresets parametrize to solutions differently—the coreset
literature considers optimal centers, and [40] to partitions of inputs.

Consider the 1-medoid problem, a constrained version of the 1-means problem. The 1-medoid cost of a dataset
X is the minimum over centers ¢ chosen from the dataset X, of the sum of squares of distances from each dataset
point z to c. The subtlety is: one can apply a Johnson-Lindenstrauss transform to ¢ = O(log(1/¢)/e?) dimensions
and preserve the 1-means cost—for 1-medoid, we show that one cannot.

2The reason we did not generalize the results to (k, j)-projective clustering with £,-cost with j > 1 is that these problems do not
admit small coresets [26]. Researchers have studied “integer (k, j)-projective clustering” where one restricts the input points to have
bounded integer coordinates, where small coresets do exists [20]. However, using this approach for dimension reduction would incur
additional additive errors, so we have chosen not to pursue this route.
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THEOREM 1.2. (JOHNSON-LINDENSTRAUSS FOR MEDOID—INFORMAL (SEE THEOREM [A.1)) For any t =
o(logn), applying a Johnson-Lindenstrauss transform to dimension t decreases the cost of the 1-medoid prob-
lem by a factor approaching 2.

Theorem does not contradict the “for-all” guarantee of [40] because there, a candidate solution for (k,z)-
clustering refers to a partition of X into k parts and not a set of centers. For k = 1, there are many possible
centers but only one partition. For (k, z)-subspace and -flat approximation, an analogous issue arises. Consider
the 1-column subset selection problem, a constrained version of the subspace approximation problem, where one
must choose a 1-dimensional subspace going through a dataset point to approximate the entire dataset. The 1-
column subset selection cost of a dataset is the minimum over 1-dimensional subspaces spanned by a dataset point
of X, of the sum of squares of distances from each dataset point x to the projection onto the subspace. Similarly
to Theorem [I.2] a Johnson-Lindenstrauss transform does not preserve the cost of 1-column subset selection.

THEOREM 1.3. (JOHNSON-LINDENSTRAUSS FOR COLUMN SUBSET SELECTION—INFORMAL (SEE THEOREM [A.2))

For any t = o(logn), applying a Johnson-Lindenstrauss transform to dimension t decreases the cost of the
1-column subset selection problem by a factor approaching 3/2.

The above theorem does not contradict the “for-all” guarantee of [13] for similar reasons (which, in addition,
crucially rely on having z = 2, and which we elaborate on in Appendix . For (k,z)-line approximation,
however, there is an interesting open problem: is it true that after applying a Johnson-Lindenstrauss transform
to t = poly(kloglogn/e), for all partitions of X into k parts, the cost of optimally approximating each part with
a line has its cost preserved.

1.2 Related Work

Dimension Reduction. Our paper continues a line of work initiated by Boutsidis, Zouzias, and Drineas
[7], who first studied the effect of a Johnson-Lindenstrauss transform for k-means clustering, and showed
that t = O(k/e?) sufficed for a (2 + ¢)-approximation. The bound was improved to (1 + €)-approximation
with ¢+ = O(k/e?) by Cohen, Elder, Musco, Musco, Persu [13], who also showed that t = O(logk/c?)
gave a (9 + e)-approximation. Becchetti, Bury, Cohen-Addad, Grandoni, Schwiegelshohn [6] showed that
t = O((logk + loglogn)log(1/e)/e%) sufficed for preserving the costs of all k-mean clusterings. Makarychev,
Makarychev, and Razenshteyn [40] improved and generalized the above bounds for all (k, z)-clustering. They
showed that t = O((log k + zlog(1/e) + 22)/&?) preserved costs to (1 = ¢)-factor.

For subspace approximation problems, [13] showed that t = O(k/e?) preserves the cost of (k,2)-subspace
approximation to (1 + ¢)-factor. In addition, [36] showed that O(zk?logn/e3) preserved the cost of the (k, z)-flat
approximation to (1 + )-factor.

Coresets. Coresets are a well-studied technique for reducing the size of a dataset, while approximately
preserving a particular desired property. Since its formalization in Agarwal, Har-Peled, and Varadarajan
[2], coresets have played a foundational role in computational geometry, and found widespread application in
clustering, numerical linear algebra, and machine learning (see the recent survey [22]). Indeed, even for clustering
problems in Euclidean spaces, there is a long line of work [4] 28] 2] [10} 37 23], 49} [48], 24} [9, [46] 311 [5] [16], [14] [15]
8| [17], 30] exploring the best coreset constructions.

Most relevant to our work is the sensitivity sampling framework of Feldman and Langberg [23], which gives
algorithms for constructing coresets for the projective clustering problems we study. In light of the results of [23],
as well as the classical formulation of the Johnson-Lindenstrauss lemma [35], it may seem natural to apply coreset
algorithms and dimensionality reduction concurrently. However, this is not without a few technical challenges.
As we will see in the next subsection, it is not necessarily the case that coreset algorithms and random projections
“commute.” Put succinctly, the random projection IT of a coreset of X may not be a coreset of the random
projection IT(X). Indeed, proving such a statement constitutes the bulk of the technical work.

1.3 Organization The following section (Section [2|) overviews the high-level plan, since all our results follow
the same technique. To highlight the technique, the first technical section considers the case of (k, z)-clustering
(Section [4)), where the technique of arguing via coresets shows to obtain ¢ = O((log(k) + zlog(1/e))/e?).
The remaining sections cover the technical material for (k, z)-subspace approximation (in Section [5)), (k, z)-flat
approximation (in Section @, and finally (k, z)-line approximation (in Section [7)).
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2 Overview of Techniques

In this subsection, we give a high-level overview of the techniques employed. As it will turn out, all results in this
paper follow from one general technique, which we instantiate for the various problem instances.

We give an abstract instantiation of the approach. We will be concerned with geometric optimization problems
of the following sort:

e For each d € N, we specify a class of candidate solutions given by a set C4. For example, in center-based
clustering, C4 may be given by a tuple of k points in R?, corresponding to k centers for a center-based
clustering. In subspace approximation, the set C; may denote the set of all k-dimensional subspaces of R<.

e There will be a cost function f;: R x Cy4 — R>o which, takes a point € R? and a potential solution ¢ € Cq,
and outputs the cost of z on ¢. Continuing on the example on center-based clustering, f; may denote the
distance from a dataset point z € R? to its nearest point in c. In subspace approximation, f; may denote
the distance from a dataset point to the orthogonal projection of that point onto the subspace c. For a
parameter z € N, we will denote the cost of using ¢ for a dataset X C R¢ by

1/z
costy (X, c) = (Z fd(;mc)Z) .

zeX

For simplicity in the notation, we will drop the subscripts from the functions f and cost when they are clear
from context.

We let Jy; denote a distribution over linear maps IT: R? — R? which will satisfy some “Johnson-Lindenstrauss”
guarantees (we will specify in the preliminaries the properties we will need). For concreteness, we will think of
IT ~ J4. given by matrix multiplication by a ¢ x d matrix of i.i.d draws of N'(0,1/t). We ask, for a particular
bound on the dataset size n € N, a geometric optimization problem (specified by {Cq}aen, fa and z), and a
parameter € € (0,1), what is the smallest ¢ € N such that with probability at least 0.9 over the draw of IT ~ Jy ,,

1
- mi t(X, c) < mi t(TL(X),c) < (1 - mi t(X,c).
T2 greucricos( ,c)firélcrgcos( (X),e) < (1+4¢) grencricos( c)

(2.3)

The right-most inequality in claims that the cost after applying IT does not increase significantly, i.e.,
mincec, cost(II(X), c) < (1 4 €) mineec, cost(X, ). This direction is easy to prove for the following reason. For
a dataset X C RY, we consider the solution ¢* € Cy minimizing cost(X, ¢*). We sample IT ~ J;; and we find
a candidate solution ¢** € C; which exhibits an upper bound on min.c¢, cost(II(X),¢) < cost(II(X),c**). For
example, in the center-based clustering, ¢* € Cy is a set of k centers in R?, and we may consider ¢** € C; as the k
centers from ¢* after applying IT. The fact that cost(II(X), ™) < (1 4 €)cost(X, ¢*) with high probability over
II ~ J4+ will follow straight-forwardly from properties of J3¢. Importantly, the optimal solution c¢* does not
depend on IT ~ Jy;. In fact, while we expect II: R? — R? to distort some distances substantially, we can pick
c** € C; so that too many distortions on these points is unlikely.

However, the same reasoning does not apply to the left-most inequality in . This is because the solution
¢** € C; which minimizes min.e¢, cost(II(X), ¢) depends on IT. Indeed, we would expect ¢** € C; to take advantage
of distortions in IT in order to decrease the cost of the optimal solution. We proceed by the following high level
plan. We identify a sequence of important events defined over the draw of IT ~ J;; which occur with probability
at least 0.9. The special property is that if I satisfies these events, we can identify, from ¢** € C; minimizing
cost(II(X), ¢**), a candidate solution ¢* € C4 which exhibits an upper bound cost(X, ¢*) < (1+¢)cost(II(X), c**).

We now specify how exactly we define, for an optimal ¢** € C; (depending on IT), a candidate solution ¢* € C;
whose cost is not much higher than cost(II(X),¢**). For that, we will use the notion of coresets. Before the
formal definition, we note there is a natural extension of cost for weighted datasets. In particular, if S C R? is
a set of points and w: S — Rx( is a set of weights for S, then we will use cost((S,w), c) as 1/z-th power of the
sum over all z € S of w(z) - fq(x,c)?.

DEFINITION 2.1. ((WEAK) CORESETS, SEE ALSO [22]) For d € N, let C4 denote a class of candidate solutions
and f: R% x Cy — R specify the cost of a point to a solution. For a dataset X C RY and a parameter ¢ € (0,1),
a (weak) e-coreset for X is a weighted set of points S C R and w: S — Rsq which satisfy

1
T+ ?é}:g cost(X, ¢) < ?élcg cost((S,w),c) < (1+¢)- gel}:ri cost(X, c).
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It will be crucial for us that these problems admit small coresets. More specifically, for the problems considered
in this paper, there exists algorithms which can produce small-size coresets from a dataset. In what follows, ALG
is a randomized algorithm which receives as input a dataset X C R? and outputs a weighted subset of points
(S, w) which is a weak e-coreset for X with high probability. Computationally, the benefit of using coresets is
that the sets S tend to be much smaller than X, so that one may compute on (S, w) and obtain an approximately
optimal solution for X. For us, the benefit will come in defining the important events. At a high level, since S
is small, the important events defined with respect to IT will only worry about distortions within the subset (or
subspace spanned by) S.

Consider the following approach:

1. We begin with the original dataset X C R?, and we consider the solution ¢ € C4 which minimizes cost(X, c).
The goal is to show that cost(X, ¢) cannot be much larger than cost(II(X), ¢**), where ¢** € C; minimizes
cost(IL(X), c**).

2. Instead of considering the entire dataset X, we execute ALG(X) and consider the weak e-coreset (S,w)
that we obtain. If we can identify a candidate solution ¢* € C4 whose cost cost((S,w),c*) < (1 +
g)cost(II(X), ¢**), we would be done. Indeed, min.cc, cost((S, w), ¢) < cost((S, w), c*), and the fact (S, w)
is a weak e-coreset implies min.ec, cost(X, ¢) < (1 + ¢) mincec, cost((S, w), ¢).

3. Moving to a coreset (S, w) allows one to relate cost((S,w),c*) and cost((II(S),w),c**) by considering the
performance of IT on S. The benefit is that the important events, defined over the draw of II ~ J;, set
t as a function of |S|, instead of |X|. A useful example to consider is requiring II=! be (1 + €)-Lipschitz
on the entire subspace spanned by S, which requires t = ©(|S|/e2). For the problems considered here, a
nearly optimal ¢** € C; for (S, w) will be in the subspace spanned by S, so we may identify ¢* € C; whose
cost on (S, w) is not much higher than the cost((TL(S), w), c**) by evaluating TI~!(c**) since ¢** lies inside

span(S)ﬁ

4. The remaining step is showing cost((II(S), w), ¢**) < (14¢)cost(II(X), ¢**). In particular, one would like to
claim (II(S), w) is a weak e-coreset for II(X) and use the right-most inequality in Definition However,
it is not clear this is so. The problem is that the algorithm ALG depends on the d-dimensional representation
of X C R%, and (TI(S), w) may not be a valid output for ALG(TI(X)). As we show, this does work for (some)
coreset algorithms built on the sensitivity sampling framework (see, [23] 9])

2.0.1 Sensitivity Sampling for Step (4] In the remainder of this section, we briefly overview the sensitivity
sampling framework, and the components required to make Step [4] go through. At a high level, coreset algorithms
in the sensitivity sampling framework proceed in the following way. Given a dataset X C R?, the algorithm
computes a sensitivity sampling distribution ¢ supported on X. The requirement is that, for each potential
solution ¢ € Cg4, sampling from & gives a low-variance estimator for costq (X, c)?. In particular, we let (z) be
the probability of sampling z € X. Then, for any distribution ¢ and any c € Cgq,

(2.4) m113&[ ! fa(@, c)* ]:1.

5(x) costq, (X, ¢)?

Equation [2.4] implies that, for any m € N, if S is m i.i.d samples from & and w(z) = 1/(ma&(x)), the expectation
of costq, . ((S,w), c)? is costy (X, c)?. In addition, the algorithm designs & so that, for a parameter T' > 0,

1 fa(x, 0 \?
d(x) costy (X, c)?

If we set m > T'/e?, (2.5) and Chebyshev’s inequality implies costq . ((S, w), ¢)* 4. costq (X, c)? for each ¢ € Cy

with a high constant probability, and the remaining work is in increasing m by a large enough factor to “union

<T.

(2.5) sup E

ceCq T~G

4While the above results in bounds for ¢ which are already meaningful, we will exploit other geometric aspects of the problems
considered to get bounds on t which are logarithmic in the coreset size. For center-based clustering, [40] showed that one may apply
Kirzbraun’s theorem. For subspace approximation, we use the geometric lemmas of [44].

5We will not prove that with high probability over IT and ALG(X), (II(S),w) is a weak e-coreset for IT(X). Rather, all we need is
that the right-most inequality in Definition holds for (II(S), w) and II(X), which is what we show.
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bound” over all ¢ € Cy4. There is a canonical way of ensuring & and T satisfy (2.5): we first define o: X — R>o,
known as a “sensitivity function”, which sets for each = € X,

fd($7 C)Z
2. > —_—
( 6) U(x) o cSélCd COStd,z (Xa C)Z 7

and T= Z o(x),

zeX

which is known as the “total sensitivity.” Then, the distribution is given by letting 6(z) = o(x)/T.

We now show how to incorporate the map II ~ J4,, to argue Step Recall that we let S denote m i.i.d
draws from & and the weights be w(z) = 1/(ma&(x)). We want to argue that, with high constant probability over
the draw of (S, w) and IT ~ J;, we have

(2.7) costy . (TI(S),w), ™) < (1 +¢) - costy, . (TI(X), ™).

First, note that the analogous version of (2.4)) for cost; .(II(X),c) continues to hold. In particular, for any map
IT in the support of Jy, and ¢** € C; minimizing cost, ,(TI(X), ¢),

1 fi(Il(®),c™)* ] _
(2.8) o |:6r(a:) costy, . (TI(X ,c**)z} -t

Hence, it remains to define & satisfying (2.6)) which also satisfies one additional requirement. With high probability
over IT ~ 7+, we should have

1 fM(@), c*)*
(2.9) wE}& [(6’(:{:) . COStt,z(H(X),C**>>

The above translates to saying, for most II ~ J;; the variance of cost((IL(S),w),c**), when m = O(T/e?), is
small. Once that is established, we may apply Chebyshev’s inequality and conclude (2.7) with high constant
probabilityﬁ

<ST.

~

2.0.2 The Circularity and How to Break It One final technical hurdle arises. While one may define the
sensitivity function o(z) to be exactly sup.cc, fa(, c)*/costq . (X, c)* and automatically satisfy , it becomes
challenging to argue that holds. In the end, the complexity we seek to optimize is the total sensitivity T, so
there is flexibility in defining o while showing holds. In fact, sensitivity functions ¢ which are computationally
simple tend to be known, since an algorithm using coresets must quickly compute o(x) for every = € X.

The sensitivity functions o used in the literature (for instance, in [23| [49]) are defined with respect to an
approximately optimal ¢ € C4 (or bi-criteria approximation) for costq (X, ¢). Furthermore, the arguments used to
show these function satisfy , which we will also employ for , crucially utilize the approximation guarantee
on ¢ € Cyq. The apparent circularity appears in approximation algorithms and also shows up in the analysis here:

e For X C RY, we identify the optimal ¢ € Cy minimizing cost, . (X, c), and use ¢ to define o: X — Rxq. The
fact that ¢ € C4 is optimal (and therefore approximately optimal) allows us to use known arguments (in
particular, those in [49] [48]) to establish (2.6) and give an upper bound on 7.

e We use the proof of the “easy” direction to identify a solution ¢’ € C; with cost, ,(II(X),c) < (1 +
g)costq . (X, c) (recall this was used to establish the right-most inequality in ) From the analytical
perspective, it is useful to think of o’: II(X) — R as the function one would get from defining a
sensitivity function like in the previous step with ¢’ instead of ¢. If we could show ¢’ € C; was approximately
optimal for II(X), we could use [49, 48] again to argue (2.9). The circularity is the following. Showing
¢ € C,; is approximately optimal means showing an upper bound on min.c¢, cost ,(II(X),c) in terms of
costy . (II(X), ¢'). Since, we picked cost; ,(II(X), ') to be at most (14+¢) min.ec, costq,.(X, ¢), this is exactly
what we sought to prove.

6Since Steps EE only argued about the optimal ¢** € Ct, there is no need to “union bound” over all ¢ € C¢ in our arguments.
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If “approximately optimal” above required ¢’ € C; be a (1 + €)-approximation to the optimal II(X), we would
have a complete circularity and be unable to proceed. However, similarly to the case of approximation algorithms,
it suffices to have a poor approximation. Suppose we showed ¢’ € C; was a C-approximation, then, increasing m
by a factor depending on C' (which would affect the resulting dimensionality ¢) would account for this increase
and drive the variance back down to 2. Moreover, showing ¢’ is a O(1)-approximation with probability at
least 0.99 over II ~ J4:, given Steps is straight-forward. Instead of showing the stronger bound that
costy . ((TI(S), w), c**) < (1+4¢)costy » (IL(X), ¢**), we show that cost, , ((II(S), w), c**) < O(1)-cost, . (II(X), c**).
The latter (loose) bound is a consequence of applying Markov’s inequality to .

In summary, we overcome the circularity by going through Steps twice. In the first time, we show a
weaker O(1)-approximation. Specifically, we show that IT ~ J;, preserves the cost of min.cc, costq, ,(II(X), c)
up to factor O(1). The first time around, we won’t upper bound the variance in , and we simply use
Markov’s inequality to in order to prove a (loose) bound on Step 4l Once we’ve established the O(1)-factor
approximation, we are guaranteed that ¢’ € C; is a O(1)-approximation to min.ec, cost; »(II(X),c). This means
that, actually, the sensitivity sampling distribution & we had considered (when viewed as a sensitivity sampling
distribution for IT(X)) gives estimators with bounded variance, as in . In particular, going through Steps
once again implies that ¢’ € C; was actually the desired 1 + e-approximation.

3 Preliminaries

We specify the properties we use from the distribution Jg:. We will refer to these as “Johnson-Lindenstrauss”
distributions. Throughout the proof, we will often refer to J4: as given by a t x d matrix of i.i.d draws from
N(0,1/t). The goal of specifying the useful properties is to use other “Johnson-Lindenstrauss”-like distributions.
The first property we need is that II: R? — R? is a linear map, and that any z,y € R? satisfies

M)~ T()[2]
wd,t{ le—ol2 ]1'

We use the standard property of J; ¢, that II preserves distances with high probability, i.e., for any z,y € R,
_ 2
Pr H [TI(x) H(zy)”2 _ 1‘ > E} < UGN
II~Tat ||J,‘ - y||2

More generally, we use the conclusion of the following lemma. We give a proof when Jg is a t x d i.i.d entries of

N(0,1/t).

LEMMA 3.1. Let Jq: denote a Johnson-Lindenstrauss distribution over maps R? — R! given by a matriz
multiplication on the left by a t x d matriz of i.i.d draws of N'(0,1/t). Ift > z/e%, then for any x,y € R?,

|ITI(x) — TI(y)[I3 T (4e)2 -1
0. [(Hx—yllg - 1) ] = 100

Proof. We note that by the 2-stability of the Gaussian distribution, we have |II(z) — II(y)||3 is equivalently
distributed as ||g||3 - ||z —yl|3, where g ~ N(0, I;/t). Therefore, we have that for any A > 0 which we will optimize
shortly to be a small constant times ¢,

ITL(z) — TI(y)|I5 )+
E 2 1) < (14+MN) -1+ E allz = 1+ 1.
T~ 7 (d,t) [( 2 — yll3 (1+2) SN [(lgll5 = (1 +2)*)*]
Furthermore,
o0 p (%)
E { Z_1+)\Z+}=/ Pr ZZuduzf/ Pr 2> 9] 0¥/ 2 .
yoB o [ali =0+ = [ Pellgls = udu=3 [ rlgl >0

"We use the notation (t)* = max{t,0}.
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We will upper bound the probability that ||g||3 exceeds v by the Chernoff-Hoeffding method. In particular, recall
that ||g||2 when N (0, I;/t) is distributed as a y2-random variable with ¢ degrees of freedom, rescaled by 1/t, such
that the moment generating function of ||g||3 has the following closed form solution whenever a < ¢/2:

t 200 202
1 E D) =—-zlog(1-") < =
o (QNMW) fexp (a||g||2)]) ! og( : ) <at X

In particular, for any o < t/2, we may upper bound

[e’e] 2 2 [e’e}
) rllalz oot e (0 25) [T e (< (am 1) o)
2 Ju:(142)2 2 t ) Juaea2 2

z 202 A
< . - _ 1 241 e
< exp< ; ad+ (1+N)(z/2+ )) < 100"

by letting setting o = tA/10 whenever t > z/A2. Setting ) to be a small constant of € gives the desired guarantees.
a0
DEFINITION 3.1. (SUBSPACE EMBEDDINGS) Let d € N and A C R? denote a subspace of R?. For e > 0, a map
f: R = R? is an e-subspace embedding of A if, for any x € A,
1
1+¢

@)z < llellz < A+ &) - [1f(@)]]2-

LEMMA 3.2. Let d € N and A C R? be a subspace of dimension at most k. For e,§ € (0,1/2), let Ju; denote
a Johnson-Lindenstrauss distribution over maps RY — R given by a matriz multiplication on the left by a t x d
matriz of i.i.d draws of N'(0,1/t). If t ~ (k +log(1/8))/e?, then II ~ Ty, is an e-subspace embedding of A with
probability at least 1 — 9.

4 Center-based (k, z)-clustering
In the (k, z)-clustering problems, for any set C' C R? of k points, and point x € R%, we write

cost?(z, C) = min |z — cf|3,

and for a subset X C R,

cost?(X,C) = Z cost?(z,C) = Z Icrélél |z — cll5.
zeX zeX

We extend the above notation to weighted subsets, where for a subset S C RY with (non-negative) weights
w: S — Rxg, we write cost?((S,w),C) = > cgw(x)min.cc ||z — c[[5. The main result of this section is the
following theorem.

THEOREM 4.1. (JOHNSON-LINDENSTRAUSS FOR CENTER-BASED CLUSTERING) Let X = {x1,...,2,} C R be
any set of points, and let C C R? denote the optimal (k, z)-clustering of X. For any e € (0,1/2), suppose we let
Ja,¢ be the distribution over Johnson-Lindenstrauss maps where

P> log k + zlog(1/e)

~ 2 )

3

Then, with probability at least 0.9 over the draw of II ~ Jq .,

1
—— - cost,(X,C) < min cost,(II(X),C") < (1 + ¢)cost, (X, C).
1+e¢ C’'CR!
| =k
There are two directions to showing dimension reduction: (1) the optimal clustering in the reduced space is
not too expensive, and (2) the optimal clustering in the reduced space is not too cheap. We note that (1) is simple
because we can exhibit a clustering in the reduced space whose cost is not too high; however, (2) is much trickier,
since we need to rule out a too-good-to-be-true clustering in the reduced space.
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4.1 Easy Direction: Optimum Cost Does Not Increase

LEMMA 4.1. Let X = {z1,...,2,} C R? be any set of points and let C C R of size k be the centers of the
optimal (k,z)-clustering of X. We let Ju be the distribution over Johnson-Lindenstrauss maps. If t > z/e?,
then with probability at least 0.99 over the draw of II ~ Jq .,

1/z
(Z ITX(z) — H(C(a?))||§> < (1+ ¢e)cost (X, C),

zeX
and hence,
min_ cost, (II(X),C") < (14 ¢) min cost,(X,C).
C'CR? CCcR?
|C'T=k |CT=k

Proof. For z € X, let ¢(x) € C denote the closest point from C' to 2. We compute the expected positive deviation
from assigning II(x) to II(c(z)), and note that the cost,(II(X),II(C)) can only be lower. Hence, if we can show

1 . Lo a4 —1
4.10 ——— E II(z) - II — ||z — : < -—
(4.10) e O nE, [2;{ (M) = T ~ o = e(@)p) | S S
then by Markov’s inequality, we will obtain cost?(II(X),II(C)) < (1 4 €)*cost?(X,C), and obtain the desired
bound when raising to power 1/z. This last part follows from Lemma ]

4.2 Hard Direction: Optimum Cost Does Not Decrease We now show that after applying a Johnson-
Lindenstrauss map, the cost of the optimal clustering in the dimension-reduced space is not too cheap. This
section will be significantly more difficult, and will draw on the following preliminaries.

4.2.1 Preliminaries

DEFINITION 4.1. (WEAK AND STRONG CORESETS) Let X = {x1,...,2,} C R? be a set of points. A (weak)
e-coreset of X for (k,z)-clustering is a subset S C R of points with weights w: S — Rx>q such that,

- min cost,(X,C) < min cost,((S,w),C) < (1+¢€)- min cost,(X,C).

1+e ccr? CcRr? CcRr?
ICI<k ICI<k ICI<k
The coreset (S,w) is a strong e-coreset if, for all C = {c1,...,c .} C R?, we have

T - cost (X, C) < cost, ((S,w),C) < (1+¢)-cost.(X,C).

Notice that Definition gives an approach to finding an approximately optimal (k, z)-clustering. Given
X C R4, we find a (weak) e-coreset (S,w) and find the optimal clustering C' C R? with respect to the coreset
(S,w). Then, we can deduce that a clustering which is optimal for the coreset is also approximately optimal
for the original point set. A common and useful framework for building coresets is by utilizing the “sensitivity”
sampling framework.

DEFINITION 4.2. (SENSITIVITIES) Let n,d € N, and consider any set of points X = {x1,...,2,} C R?, as well
as k €N, z > 1. A sensitivity function o: X — Rsq for (k,2)-clustering X in R? is a function satisfying, that
forallx € X,

cost?(x,C
p OSE(.C)

cerd costZ (X, O)
IC|<k

< o(x).

The total sensitivity of the sensitivity function o is given by
G, =Y o).
reX

For a sensitivity function, we let & denote the sensitivity sampling distribution, supported on X, which samples
x € X with probability proportional to o(x).
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The following lemma gives a particularly simple sensitivity sampling distribution, which will be useful for
analyzing our dimension reduction procedure. The proof below will follow from two applications of the triangle
inequality which we reproduce from Claim 5.6 in [31].

LEMMA 4.2. Let n,d € N and consider a set of points X = {x1,...,2,} C R Let C C R? of size k be optimal
(k, z)-clustering of X, and let ¢: X — C denote the function which sends © € X to its closest point in C, and let
X, C X be the set of points where c(x) = c. Then, the function o: X — Rxq given by

|z —c(@)l | 2>

=2
o) costZ(X,.C) " Koo

is a sensitivity function for (k, z)-clustering X in R?, satisfying
Ga _ 2z—1 + 22z—1 k

Proof. Consider any set ¢’ C R? of k points, and let ¢/: X — C’ be the function which sends each z € X to its
closest point in C’. Then, we have

(4.11) lz =<' @)5 < (lx = e(@)]]2 + lle(z) — ¢ (2)]l2)” < 277l — e(2)[5 + 257 le(z) — ¢ (2)]13
(1.12) <2 el + 5 Iee) ol

22(z 1)
(4.13) <277z — e(2)|)3 + (cost?(X,C) + cost?(X,C")),

where we used the triangle inequality and Holder inequality in (4.11)), and added additional non-negative terms
in (4.12), and we finally apply the triangle inequality and Holder’s inequality once more in (4.13). Hence, using
the fact that C' is the optimal clustering, we have

i, C) oy e e@li | 2 (si(X0) N ey el 2
cost?(X,C") — cost(X,C") | X \ cost?(X,C7) - cost?(X,0) | Xl

The bound on &, follows from summing over all € X, noting the fact that > | Xe@)| = k. |

zeX

The main idea behind the sensitivity sampling framework for building coresets is to sample from a sensitivity
sampling distribution enough times in order to build a coreset. For this work, it will be sufficient to consider
the following theorem of [31], which shows that poly(k,1/e*) draws from an appropriate sensitivity sampling
distribution suffices to build strong e-coresets for (k, z)-clustering in R9.

THEOREM 4.2. (e-STRONG CORESETS FROM SENSITIVITY SAMPLING [31]) For any subset X = {x1,...,2,} C
R? and e € (0,1/2). Let C C RY of size k be the optimal (k, z)-clustering of X, and let G denote the sensitivity
sampling distribution of Lemma[{.2.

o Let (S, w) denote a random (multi-)set S C X and w: S — Rxq given by, for m = poly(k,1/e?) iterations,
sampling © ~ & i.i.d and letting w(x) = 1/(mé(z)).

e Then, with probability 1 — o(1) over the draw of (S, w), it is an e-strong coreset for X.

THEOREM 4.3. (KIRSZBRAUN THEOREM) Let Y C R% and ¢: Y — R be an L-Lipschitz map (with respect to
FEuclidean mnorms on R% and R ). There exists a map ¢ R% — R which is L-Lipschitz extending ¢, i.e.,
() = ¢(x) for allz €Y.

4.3 The Important Events We now define the important events which will allow us to prove that the optimum
(k, z)-clustering after dimension reduction does not decrease substantially. We first define the events, and then
we prove that if the events are all satisfied, then we obtain our desired lower bound.
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DEFINITION 4.3. (THE EVENTS) Let X = {z1,...,2,} C R? and C C R of size k be centers for an optimal
(k, z)-clustering of X, and & is the sensitivity sampling distribution of X with respect to C' as in Lemma We
will consider the following experiment,

1. We generate a sample (S,w) by sampling from & for m = poly(k,1/e%) i.i.d iterations x ~ & and set
w(x) = 1/(ms(x)).

2. Furthermore, we sample I1 ~ Jy+ which is a Johnson-Lindenstrauss map R¢ — RE.
3. We let S' =TI(S) C R" denote the image of II on S.
The events are the following:
e E, : The weighted (multi-)set (S,w) is a weak e-coreset for (k, z)-clustering X in R%.
e E; - The map I1: S — S’ given by restricting II is (1 + €)-bi-Lipschitz.

e E3(B) : We let C' C R of size k be the optimal centers for (k, z)-clustering II(X) in R'. The weighted
(multi-)set (TI(S),w) satisfies

COStz((H(S)a w)7 C/) <B- COSti (H(X)7 C/)

LEMMA 4.3. Let X = {x1,...,2,} C R?, and suppose (S,w) and I1: R — R? satisfy events By, By and E3(3),
then,

1
min cost, (II(X),C’") > ——————— - min cost,(X,C).
‘C’?Rf‘ ( ( ) )— 51/Z(1+€)1+1/z %C‘Rz ( )
C'l=k -

Proof. Let C' C R! of size k denote the centers which give the optimal (k, z)-clustering of TI(X) in Rf. Then, by
E37

cost?(IL(X), C’) > (1/P) - costZ((TL(S), w), C’).

Now, we use Kirszbraun’s Theorem, and extend II!: R* — R? in a (1 + ¢)-Lipschitz manner. Hence,

1 1
T cost, ((S,w), IT~1(C)) > T Crlpgéd cost, ((S,w),C").
|C//|:k

cost, ((TI(S), w),C’) >

Finally, using the fact that (S, w) is an e-weak coreset, we may conclude that

1
1+¢

cost?((S,w),C") > -costZ(X,C").

|

We now turn to showing that an appropriate setting of parameters implies that the events occur often. For
the first event, Theorem from [31] implies event E; occurs with probability 1 — o(1). We state the usual
guarantees of the Johnson-Lindenstrauss transform, which is what we need for event Es to hold.

LEMMA 4.4. Let S C R? be any set of m points, and Ja,t denote the Johnson-Lindenstrauss map, with

logm

t> 2
Then, with probability 0.99 over the draw of II ~ Jq 4, IL: S — II(S) is (1+¢€)-bi-Lipschitz, and hence, Ey occurs
with probability 0.99.
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4.3.1 A Bad Approximation Guarantee

LEMMA 4.5. (WARM-UP LEMMA) Fiz any I1 € Ju+ and let C' C R' denote the optimal centers for (k,z)-
clustering of II(X), then with probability at least 0.99 over the draw of (S,w) as per Definition [4.35,

E w(z) - min ITI(z) — ¢||5 < 100 - cost?(I(x), C"),
ceC’
z€S

with probability at least 0.99. In other words, E3(100) holds with probability at least 0.99.

Proof. For any x € X, let ¢/(z) € C' denote the point in C” closest to II(x). Then, we note

(114) > wlo) 1) ~ @)l = B |z (o) - @l

z€S 5’(11‘:)
so that in expectation over S, we have

B| B, | s @) - @5 | = B, |- ) - (el = o112,

By Markov’s inequality, we obtain our desired bound. 0

COROLLARY 4.1. Let X = {x1,...,7,} CR? be any set of points, and C C R of size k be centers for optimally
(k, z)-clustering X. For any € € (0,1/2), let Ty be the Johnson-Lindenstrauss map with

> zlog(1/e) + logk
~ 52 Y

Then, with probability at least 0.97 over the draw of II ~ Jq .,
1 . /
-cost, (X,C) < min cost,(II(X), C").

1001/2(1 + )1 +1/2 C’'CR'
C' =k

(4.15)

Proof. We sample IT ~ J;, and (S,w) as per Definition By Lemma Lemma Theorem and
a union bound, we have events E;, Eo, and E3(100) hold with probability at least 0.97. Hence, we obtain the
desired result from applying Lemma [4.3 O

4.3.2 Improving the Approximation In what follows, we will improve upon the approximation of
Corollary significantly, to show that with large probability, E3(1 + ¢) holds. We let X = {z1,...,2,} C R?
and denote C' C R? of size k to be the optimal (k, z)-clustering of X. As before, we let c: X — C map each
xz € X to the point center in C, and o: X — R be the sensitivities of X with respect to C as in Lemma
and & be the sensitivity sampling distribution.

We define one more event, Ey, with respect to the randomness of II ~ J; ;. First, we let D, € R>( denote
the random variable given by

(4.16) D, der [HH(z) — H(c(z))]>
' T | .

[ = e(2)]l2

Notice that when II consists of i.i.d N(0,1/t), then tD?2 is distributed as y?-random variable with ¢ degrees of
freedom. We say event E4 holds whenever

(4.17) > D¥ . o(x) < 100(k + 1)2°.
zeX

PROPOSITION 4.1. With probability at least 0.99 over the draw of I ~ Jg+, event E4 holds.
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Proof. The proof will simply follow from computing the expectation of the left-hand side of (4.17)), and applying
Markov’s inequality. In particular, for every x € X, by the two-stability of the Gaussian,

E [DZ] <2
II~Ta,¢

The remaining part follows from the bound on &,. O
LEMMA 4.6. Let Il € Jy; be a Johnson-Lindenstrauss map where, for o > 1, the following events holds:
1. Guarantee from Lemma ' Y owex IM(z) = TI(c(x))||5 < a - costZ(X,C).

2. Guarantee from Corollary E letting C' C RY be the optimal (k,z)-clustering of 1(X), then
cost?(TI(X),C") > (1/a) - cost?(X, C).

3. Fvent E4 holds.

Then, if we let (S,w) denote m = poly(k,2%,1/e, &) i.i.d draws from & and w(zx) = 1/(mé(x)), with probability
at least 0.99,
cost? ((TI(S), w),C") < (1 +¢) - cost?(II(X),C").

Proof. The proof follows the same schema as Lemma [4.5] However, we give a bound on the variance of the
estimator in order to improve upon the use of Markov’s inequality. Specifically, we compute the variance of a

rescaling of .
( 1 .||H<w>—c'<w>||5)2
o(x) costZ(II(X),C")

Ver |2, [y e <
(4.18) = % > (a’(laj) ' fsifz)&(c;f)g)) '

z~S | 5(x) costi(II(X),C
zeX

By the same argument as in the proof of Lemma (applying the triangle inequality twice),

[T(2) = @)l5 _ .oy [M(2) = T(e(@)[5 | 2271 (costZ(TI(X), II(C))
costZ[M(X), 0N =2 eostZ(1(X),CY) | [Xugw)] ( cost: (TI(X), C) “)

(4.19)

Recall that we have the lower bound and the upper bound . Hence, along with the definition of D, in
(4.16)) (we remove the bold-face as II is fixed), we upper bound the left-hand side of (4.19) by

D - ||z —e(x)||5 | 227
COSti (Xa O) |Xc(w)‘

-2t (@®+1) <a? - 2'99%(DZ +1) - o(z).

In particular, we may plug this in to (7.32) and use the definition of o(x). Specifically, one obtains the variance
in (|7.32) is upper bounded by

S, - a4 . 2200z 462 . O(4 . 22002 16 - a4 . 22002
~o = = D? 1 2. g g DQZ .
e L (D1 ol e L D)

_ 100082 - o - 2302

— i

m

IN

where in the final inequality, we used the fact that E4 holds. Hence, letting m be a large enough polynomial in
poly(k,2%,1/¢,a) implies the variance is smaller than o(£2), so we can apply Chebyshev’s inequality. d

COROLLARY 4.2. Let X = {x1,...,7,} CR? by any set of points, and C C R? of size k be centers for optimally
(k, z)-clustering X. For any € € (0,1/2), let Ty be the Johnson-Lindenstrauss map with

> zlog(1/e) + logk
~ 52 °
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Then, with probability at least 0.92 over the draw of II ~ Jq 4,

o ~cost, (X, C) < Crpcigt cost, (TI(X),C").

|C' <k
Proof. We sample IT ~ J;; and (S,w) as per Definition [4.3] E Note that by Theorem [4.2] - and the setting of m,
event Eq holds with probability at least 0. 99 over the draw of (S, w). By Lemma“ Corollary‘ 4.1} and Clalm.
and the setting of m and ¢, the conditions (1)), (2) and (3 of Lemma[4.6 hold with probability at least 0.95, with
«a being set to a large enough constant, and hence event E3(1 + ¢) holds with probability at least 0.94. Finally,
event Es5 holds with probability 0.99 by Lemma and taking a union bound and Lemma gives the desired
bound. ]

5 Subspace Approximation

In the (k, 2)-subspace approzimation problem, we consider a subspace R C R of dimension less than k, which
we may encode by a collection of at most & orthonormal vectors r1,...,7, € R. We let pr: R? — R? denote the
map which sends each vector x € R? to its closest point in R, and note that
k
pr(z) = argrr};in lz —z||3 = Z<.’L‘,Ti> 1 € RY,
=€ i=1

For any subset X C R? and any k-dimensional subspace R, we let
costZ(X,R) = Z lz — pr(2)|l5 -
zeX

In this section, we will show that we may compute the optimum k-subspace approximation after applying a
Johnson-Lindenstrauss transform.

THEOREM 5.1. (JOHNSON-LINDENSTRAUSS FOR k-SUBSPACE APPROXIMATION) Let X = {x1,...,2,} C R? be
any set of points, and let R denote the optimal (k, z)-subspace approxzimation of X. For any e € (0,1), suppose
we let Jq, be the distribution over Johnson-Lindenstrauss maps where

> 7 - k2 polylog(k/s)
Then, with probability at least 0.9 over the draw of II ~ Jq .,

1
—— cost,(X,R) < min cost,(II(X),R) < (1+¢) - cost,(X, R).
1+e R'CR
dim R'<k

The proof of the above theorem proceeds in two steps, and models the argument in the previous section.
First, we show that the cost of the optimum does not increase substantially (the right-most inequality in the
theorem). This is done in the next subsection. The second step is showing that the optimum does not decrease
substantially (the left-most inequality in the theorem). The second step is done in the subsequent subsection.

5.1 Easy Direction: Optimum Cost Does Not Increase The first direction, which shows that the optimal
(k, z)-subspace approximation does not increase follows similarly to Lemma

LEMMA 5.1. Let X = {z1,...,2,} C R? by any set of points and let R C R? be optimal (k,z)-subspace
approzimation of X. For any ¢ € (0,1), we let Ty be the distribution over Johnson-Lindenstrauss maps. If
t > z/e2, then with probability at least 0.99 over the draw of TL ~ Ty,

D I (z) = T(pr(2))|5 < (1 +¢) - costz (X, R),

reX
and hence,
min  cost,(II(X),R") < (1+¢) min cost,(X,R).
R'CR* RCR*
dim R'<k dim R<k
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Proof. Note that IT is a linear map, so if we let r1,...,7x € R denote k orthonormal unit vectors spanning
R, then TI(r1),...,II(ry) € R? are k vectors spanning the subspace IT(R). Furthermore, we may consider the
k-dimensional subspace

k
II(R) def {Zai~ﬂ(ri) eR :oq,...,ap GR}.
i=1

Notice that for any = € R%, by linearity of I,

k
I(pr(x)) = Z@U —7,1i) - I(ry) € II(F),
i=1

which means that we may always upper bound

1/z
(5.20) min  cost,(TII(X),R') < (Z |TI(x) — H(pR(x))H;) .

zeX

It hence remains to upper bound the left-hand side of (5.20). We now use the fact that IT is drawn from a
Johnson-Lindenstrauss distribution. Specifically, the lemma follows from applying Markov’s inequality once we
show
1 z z (1 + E)Z -1
E [Z (1T () = T ()5 — 1~ pp<x>||2)+] <rE

cost?(X, F) m~Ta =

which follows from Lemma 3.1 O
5.2 Hard Direction: Optimum Cost Does Not Decrease

5.2.1 Preliminaries In the (k,z)-subspace approximation problem, there will be a difference between
complexities of known strong coresets and weak coresets. Our argument will only use weak coresets, which
is important for us, as strong coresets have a dependence on d (which we are trying to avoid).

DEFINITION 5.1. (WEAK CORESETS FOR (k, 2)-SUBSPACE APPROXIMATION) Let X = {z1,...,2,} C R? be a
set of points. A weak e-coreset of X for (k, z)-subspace approzimation is a weighted subset S C R? of points with
weights w: S — Rx>q such that,

1
- min cost,(X,R) < min cost,((S,w),R) < (1+¢)- min cost,(X,R).
1+e  Rcrd RCR® RCR?
dim R<k dim R<k dim R<k
Similarly to the case of (k,z)-clustering, algorithms for building weak coresets proceed by sampling
according to the sensitivity framework. We proceed by defining sensitivity functions in the context of subspace
approximation, and then state a lemma which gives a sensitivity function that we will use.

DEFINITION 5.2. (SENSITIVITIES) Let n,d € N, and consider any set of points X = {z1,...,2,} C R%, as well
as k € N and z > 1. A sensitivity function o: X — Rsq for (k, 2)-subspace approzimation in R? is a function
satisfying that, for all x € X,

|z — pr(2)[3
su ———= < o(x).
Rc]gd cost?(X,R) — (=)
dim R<k

The total sensitivity of the sensitivity function o is given by
Go = > olx).
rzeX

For a sensitivity function, we let & denote the sensitivity sampling distribution, supported on X, which samples
x € X with probability proportional to o(x).
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We now state a specific sensitivity function that we will use. The proof will closely follow a method for
bounding the total sensitivity of [49]. The resulting weak e-coreset will have a worse dependence than the best-
known coresets for this problem; however, the specific form of the sensitivity function will be especially useful
for us. Specifically, the non-optimality of the sensitivity function will not significantly affect the final bound on
dimension reduction.

LEMMA 5.2. (THEOREM 18 OF [49]) Let n,d € N, and consider any set of points X = {x1,...,7,} C R%, as
well as k € N with k < d, and z > 1. Suppose R C R? is the optimal (k, z)-subspace approzimation of X in RY.
Then, the function o: X — R>q given by

z—1 |z — pr(2)|I3 1+ 9271 gqup [(pr(z), w)|?

T (X R) B T ex ona), w)F
is a sensitivity function for (k,z)-subspace approzimation of X in R?, satisfying
S, < 271 4 2% (| 4 1)1He,
Proof. Consider any subspace R’ C R¢ of dimension at most k. Then, for any z € X
lz = pre (@)l < llz = pre(pr())5 < 2771 (2 — pr(2)II5 + llpR(2) = PR (PR(2))]3)

)
(5.21) < 2o ('fos_t;&(gf - cost(X, R) + ”p’zgg@p}% R(')((p)’j‘gy”é ~cost§(pR(X),R')> .

Notice that cost?(pr(X), R') < 227 !(costZ(X, R)+cost?(X, R')) by the triangle inequality and Hélder’s inequality,
and that cost?(X, R) < cost?(X, R') since R is the optimal (k, z)-subspace approximation. Hence, dividing the
left- and right-hand side of (5.21) we have

z

lz = pr @5 _oomr o= pr@)5 | oo llpr(@) = pr(pR(@))I3
cost?(X,R) — cost?(X, R) cost?(pr(X), R)

It remains to show that, for any set of points Y C R (in particular, the set {pr(z): x € X}), and any y € Y/,

_ , z _ z U z
sup ly PR (y)/IIQ < sup ly ZpH(y)Ilz — sup I(y >! ~
R/ CR? COStz (K R ) HCR? COStz (Ya H) u€eRd Yy EY |<y 5 ’U,>‘
dim R'<k dim H=d—1

In particular, note that for any subspace R’ C R? of dimension at most k, there exists a (d — 1)-dimensional
subspace H C R? containing R’ given by all vectors orthogonal to y — pr/(y). In particular, cost?(Y, H) <
cost?(Y, R') since R’ is contained in H, and ||y — pu(y)|l2 = ||y — pr(y)||2 by the definition of H. The bound
on the total sensitivity then follows from Lemma 16 in [49], where we use the fact that {pgr(x): 2 € X} liesin a
k-dimensional subspace. 0

We will use the following geometric theorem of [44] in our proof. The theorem says that an approximately
optimal (k, z)-subspace approximation lies in the span of a small set of points. We state the lemma for weighted
point sets, even though [44] state it for unweighted points. We note that adding weights can be simulated by
replicating points.

LEMMA 5.3. (THEOREM 3.1 [44]) Let d,k € N, and consider a weighted set of points S C R? with weights
w: S — Rsq, as well as ¢ € (0,1) and z > 1. There exists a subset Q C S of O(k?log(k/e)/e) and a k-
dimensional subspace R’ C RY within the span of Q satisfying

cost,((S,w), R') < (1+¢) min - cost.((S,w), R).
RCR
dimCng
Lemma [5.2] gives us an appropriate sensitivity function, and Lemma [5.3] limits the search of the subspace to
just a small set of points. Similarly to the case of (k, z)-clustering, we can use this to construct weak e-coresets
for (k, z)-subspace approximation. The following theorem is Theorem 5.10 from [31]. We state the theorem with
the sensitivity function of Lemma [5.2)
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THEOREM 5.2. (THEOREM 5.10 FROM [31]) For any subset X = {xy,...,2,} C R? and e € (0,1/2), let &
denote the sensitivity sampling distribution from the sensitivity function of Lemmal[5.2.

o Let (S,w) denote the random (multi-)set S C X and w: S — Rx>q given by, for
m = poly((k+1)%,1/e)
iterations, sampling x ~ & i.i.d and letting w(x) = 1/(mé(z)).
e Then, with probability 1 — o(1) over the draw of (S,w), it is an e-weak coreset for (k,z)-subspace

approzimation of X.

5.3 The Important Events Similarly to the previous section, we define the important events, over the
randomness in IT such that, if these are satisfied, then the optimum of (k,z)-subspace approximation after
dimension reduction does not decrease substantially. We first define the events, and then we prove that if the
events are all satisfied, then we obtain our desired approximation.

DEFINITION 5.3. (THE EVENTS) Let X = {z1,...,2,} C R%, and & the sensitivity sampling distribution of X
from Lemma[5.2. We consider the following experiment,

1. We generate a sample (S,w) by sampling from & for m = poly(k*,1/e) i.i.d iterations * ~ & and set
w(x) =1/(ms(x)).
2. Furthermore, we sample I ~ J4, which is a Johnson-Lindenstrauss map R? — R?.
3. We let S" =TI(S) C R" denote the image of II on S.
The events are the following:
o E; : The weighted (multi-)set (S,w) is a weak e-coreset for (k, z)-subspace approzimation of X in R?.

e E, : The map II: R — R? satisfies the following condition. For any choice of O(k*log(k/e)/€) points of
S, IT is an e-subspace embedding of the subspace spanned by these points.

e E3(B) : Let R’ C R? denote the k-dimensional subspace for optimal (k, z)-subspace approzimation of TI(X)
in Rt. Then,
cost?((TL(S), w),R') < B - cost?(II(X),R/).

LEMMA 5.4. Let X = {z1,...,2,} C R%, and suppose (S,w) and I1: R? — R* satisfy events By, By, and E3(3).
Then,

1
min cost,(II(X),R) > —————— - min cost,(X,R).
min, (IL(X), R') = e A, (X, R)
dim R’ <k dim R<k

Proof. Consider a fixed IT and (S, w) satisfying the three events of Definition Let R’ C R’ be the k-
dimensional subspace which minimizes cost?(II(X),R’). Then, by event E3(8), we have cost?((IL(S),w),R’) <
B-cost?(II(X),R’). Now, we apply Lemmato (TI(S), w), and we obtain a subset Q C S of size O(k? log(k/¢)/e)
for which there exists a k-dimensional subspace R C R? within the span of TI(Q) which satisfies

1/z
(Zw(g;) -IT(z) — pre (H(I))|I§> = cost((TI(S), w), R") < (1 +¢) - cost((TL(S), w), R').
€S

Note that R” is a k-dimensional subspace lying in the span of II(Q). For any = € S, we will use the fact that Es is
satisfied to say that IT is an e-subspace embedding of the subspace spanned by QU{z}. This will enable us to find
a subspace U C R? of dimension k whose cost of approximating (S, w) is at most (1 + ¢) - cost, ((IL(S), w), R").

Specifically, we write vy, ..., vs € RY, as orthogonal unit vectors which span R”. Because R” lies in the span
of TI(Q), there are vectors uy, ..., u; € R? in the span of Q which satisfy

ve=II(ug) €RY  for = Z coyy € R
yeQ
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Hence, the subspace U given by the span of all vectors in U is a k-dimensional subspace lying in the span of Q.
For z € S, we may write the coefficients v,(x) = (II(z),v¢), and we may express projection pg~(II(x)) € R? as

k k k
pr(IL(x)) = Zw(l‘) cvp =11 Z (Z 'YK(CC)CK,y> y | =10 (Z W(@W) .
=1

£=1 yeQ \/L=1

which is a linear combination of ). By event E,, IT is an e-subspace embedding of the subspace spanned by

QU {x}, so

k

T — Z Ye(x)ug

(=1

< (14 9)|(2) = pr (TL(z)) 2.
2

[z = pu ()2 <

Combining the inequalities, we have
cost, ((S,w),U) < (1+¢) - cost, ((II(S),w), R"),
and finally, since (S, w) is a e-weak coreset, we obtain the desired inequality. O

We note that event E; will be satisfied with sufficiently high probability from Theorem [5.2 Furthermore,
event Es is satisfied with sufficiently high probability from the following simple lemma. All that will remain is
showing that event E5(f) is satisfied.

LEMMA 5.5. Let S € R? be any set of m points and £ € N, and let Ja denote the Johnson-Lindenstrauss map,
with ’
> logm.

~

22
Then, with probability 0.99 over the draw of IL ~ J4+, II is an e-subspace embedding for all subspaces spanned by
{ vectors of S.

m

Proof. There are at most ( L,) subspaces spanned by ¢ vectors of S. If IT is a subspace embedding for all of them,
we obtain our desired conclusion. We use Lemma with § to be a sufficiently small constant factor of 1/m’
and union bound. ]

5.3.1 A Bad Approximation Guarantee

LEMMA 5.6. (WARM-UP LEMMA) Fiz any Il € Jy and let R© C R' denote the k-dimensional subspace for
optimal (k, z)-subspace approzimation of II(X) in Rt. Then, with probability at least 0.99 over the draw of (S, w)
as per Definition[5.3,

> w(x) - [T(z) - pg (TI())|5 < 100 - cost?(TI(X), R').

€S

In other words, event E3(100) holds with probability at least 0.99.

Proof. Similarly to the proof of Lemma |4.5] we compute the expectation of the left-hand side of the inequality
and use Markov’s inequality.

622 B| B, |z I - ol | - E, |

x~S O’((L’) x~G

@) |T(x) — pr(TI1(x))]|5| = cost?(TI(X), R)).

|

COROLLARY 5.1. Let X = {x1,...,2,} C R? be any set of points. For any e € (0,1/2), let T be the Johnson-

Lindenstrauss map with

z - k% - polylog(k/e)
23

Then, with probability at least 0.97 over the draw of II ~ Jq .,

1 . /
m . COStZ(X, R) S RI/TlClEt COStZ (H(X), R )
dim R'<k

t2
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Proof. We sample IT ~ J;, and (S, w) as per Definition By Theorem and Lemma and a union
bound, events E; and E3(100) hold with probability at least 0.98. Event Es occurs with probability at least 0.99
by apply Lemma with m = poly(k?,1/¢) and £ = O(k?log(k/e)/e). Hence, we apply Lemma d

5.3.2 Improving the Approximation We now improve on the approximation of Corollary in a fashion
similar to that of Subsection We will show that with large probability, E3(1 + ¢) holds. We let
X ={x1,...,2,} CR% and R C R? be the subspace of dimension k for optimal (k, z)-subspace approximation of
X in R%. As before, we let o: X — R>¢ be the sensitivities of X with respect to R (as in Lemma , and & be
the sensitivity sampling distribution.

We define one more events, E4 with respect to the randomness in IT ~ J;:. Let D, € R, denote the
random variable given by

et ITI(z) = TW(pr(2) 2

(5.23) D,
[z = pr(2)ll2
We say event E4 holds whenever
(5.24) > D¥.o(x) <100-2° - &,,

zeX

which holds with probability at least 0.99 over the draw of II ~ 7y, similarly to the proof of Claim and
Lemma (.2
LEMMA 5.7. Let Il € Jy+ be a Johnson-Lindenstrauss map where, for o > 1, the follows events hold:

1. Guarantee from Lemma ' Y owex I(z) = T(pr(x))|5 < a-costZ(X, R).

2. Guarantee from Corollary E letting R C R be the optimal (k, z)-subspace approzimation of 1I(X), then

cost?(X, R) < acost?(TI(X), R).

3. Fvent E4 holds.

Then, if we let (S,w) denote m = poly(k®,1/e,q) i.i.d draws from & and w(z) = 1/(ma(x)), with probability at

least 0.99,
cost? ((TI(S),w), R") < (1 +¢) - costZ(II(X), R').

Proof. Again, the proof is similar to that of Lemma [4.6] where we bound the variance of the estimator to apply
Chebyshev’s inequality. In particular, we have

1 @) - pr(L(=)[5]] _ S0 1 0(x) = prr () 57
(5:25) Véar L]Es {6(93) costZ(II(X), R') ” = m g{ (U(:E) cost?*(I1(X), R') )

Similarly to the proof of Lemma we will upper bound
[1(z) — prr (I ()13
cost?(TI(X), R)
as a function of o(z) and D, (given by (5.23) without boldface as II is fixed). Toward this bound, we simplify

the notation by letting y, = pr(z) € R? and Y = {y, : 2 € X}. Then, since II: R? — R’ is a linear map, for any
reX

(5.26) N 75 1) S (50 |

veRtE:yeX¢<[Kym07v>k __ueRdEZyeX¢<yfau>kl

In particular, if we let M € R™*? be the matrix given by having the rows be points y, € Y, then writing IT € R%**,
we have MTI € R"*? is the matrix whose rows are Il(y,); in particular, one may compare the left- and right-hand
sides of (5.26)) by letting u = ITv € R%. Thus, we have

() — pr (W(@)) 13 < () = prr (TM(ya)) I3 < 257 (=) — (yo) 15 + 1T(ye) — pr (T(y2))13)

5.27 cot(ps. M= wals xR
( ) - ( * cost?(X, R) cost; (X, R) +
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We may now apply the triangle inequality, as well as and , and we have

cost?(TI(Y), R') < 2*! (costz ), R) + Z ITT(x yz)||2>
reX
(5.28) < 277 (cost?(TI(X), R') + a - cost?(X, R)) < 27711 + a?) - cost?(TI(X), R').
Finally, we note that, similarly to the proof of Lemma [5.2]
(y,) — (M (y., z z
529 INGe) —pre M)l ) 40(0).0)
cost (H(Y) R) vER? Za: rex |< (Y

|
), v)|*
Continuing to upper-bound the left-hand side of (5 - 5.27) by plugging in (5.26)), (5.29) and (5.28]),

1) — pre (@D _ e s lo = vells | oer, (g, 0}
< 2% Dy . ——— 2= 2% 1
costZ(I(X), B)  ~ S oz x,y) T A S el
<DZ-(a*+1)-0(x).

In particular, the bound on the variance in (5.25)) is at most

S G2
~o . 24z 2 1 2 2z < o, 5z( 2
> 90?11 Y Do) < O2 97 (a? +1),
zeX
so letting m = poly(k*,1/e, ) gives the desired bound on the variance. 0

COROLLARY 5.2. Let X = {x1,...,1,} C R? be any set of points, and let R C R? be the subspace for optimal
(k, z)-subspace approzimation of X. For any e € (0,1/2), let Ja+ be the Johnson-Lindenstrauss map with

i 2 - k? polylog(k‘/s)
Then, with probability at least 0.92 over the draw of II ~ Jq .,

1 /
W - cost,, (X R) < RIj/ﬂClEt cost, (H(X),R )

Proof. We sample IT ~ 7, and (S, w) as per Deﬁmtlonn Again, Theorem guarantees that E; occurs with
probability at least 0.99 over the draw of (S, w). By Lemman Corollary 5. and - the condition (|1 .
and are satisfied with probability at least 0.95, so we may apply Lemma |5.7| and have E3(1 + ¢) holds W1th
probability at least 0.94. Finally, event E, holds with probability at least 0.99 by Lemma Taking a union
bound and applying Lemma gives the desired bound. ]

6 k-Flat Approximation
In the (k, z)-flat approzimation problem, we consider subspace R C R of dimension less than k, which we may

encode by a collection of at most k orthonormal vectors r1,...,7, € R, as well as a translation vector 7 € R%.
The k-flat specified by R and 7 is given by the affine subspace

F:{x—i-TERd:CCER}.

We let pr: R? — R denote the map which sends each 2 € R to its closest point on F, and we note that

pr(x) = argmin |z — 3 S o
=1

For any X C R%, we let
costZ(X, F) < Y [l = pr ()
zeX
In this section, we show that we may find the optimal k-flat approximation after applying a Johnson-Lindenstrauss
map. The proof will be almost exactly the same as the (k, z)-subspace approximation problem. Indeed, it only
remains to incorporate a translation vector.
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THEOREM 6.1. (JOHNSON-LINDENSTRAUSS FOR k-FLAT APPROXIMATION) Let X = {x1,...,2,} C R be any
set of points, and let F C R? denote the optimal (k, z)-flat approzimation of X. For any ¢ € (0,1), suppose we
let Jaz be a distribution over a Johnson-Lindenstrauss maps where

2
r> z-k -polgflog(k/e).
€

Then, with probability at least 0.9 over the draw of II ~ Jq .,

1

—— -cost,(X,F) < mi t,(TI(X), F') < (1 4 ¢) - cost, (X, F).

o costs( LF/“,?.%MCOS (IL(X), F') < (1+¢) - cost. (X, F)
in R

6.1 Easy Direction: Optimum Cost Does Not Increase

LEMMA 6.1. Let X = {x1,...,2,} C R? by any set of points and let F C R? be the optimal (k,z)-flat
approzimation of X. We let Jq. be the distribution over Johnson-Lindenstrauss maps. If t 2 z/?, then with
probability at least 0.99 over the draw of II ~ Jq 4,

Y () = (pr(2))ll5 < (1 +e) - costZ (X, F),
reX

and hence,

min cost, (IL(X), F') < (1 +¢) - cost, (X, F).
F' k:»ftlat
in R*

The proof follows in a similar fashion to Lemma[{.T]and Lemmal[5.1] In particular, there is a natural definition
of a k-flat TI(F) C R?, and the proof proceeds by upper bounding the expected dilation of ||II(z) — II(pr(z))]]5.

6.2 Hard Direction: Optimum Cost Does Not Decrease

6.2.1 Preliminaries The proof in this section follows similarly to that of (k, z)-subspace approximation.

DEFINITION 6.1. (WEAK CORESETS FOR (k, 2)-FLAT APPROXIMATION) Let X = {x1,...,2,} C R? be a set of
points. A weak e-coreset of X for (k,z)-flat approzimation is a weighted subset S C RY of points with weights
w: S = Rx>g such that,

1 . . .
o F%}Jg@tcos‘cz(}(, F) < Fril_ljgllatcostz((s, w), F)<(1+¢)- F%}ﬁatCOStZ(X’ F)
in R? in R? in RY
DEFINITION 6.2. (SENSITIVITIES) Letn,d € N, and consider any set of points X = {z1,...,z,} C R, as well as

k€N and z > 1. A sensitivity function o: X — Rxq for (k, 2)-flat approzimation in R is a function satisfying
that, for all x € X,

[z = pr(@)|3
—— =< .
perd COStZ(X,F) — o (@)
k-flat

The total sensitivity of the senstivity function o is given by
S, = Z o(x).
zeX

For a sensitivity function, we let ¢ denote the sensitivity sampling distribution, supported on X, which samples
x € X with probability proportional to o(x).

The sensitivity function we use here generalizes that of the previous section. In particular, the proof will
follow similarly, and we will defer to the arguments in the previous section.
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LEMMA 6.2. Let n,d € N, and consider any set of points X = {xy,...,2,} C R?, as well as k € N with k < d
and z > 1. Suppose F C R is the optimal (k,z)-flat approzimation of X in R%. Then, the function o: X — Rx>o
given by

1 Nz =pr@)5 | jo.1 [{pr(z), u) — ¢I*
o(r)y =271 2 9% L gyp
COStz(Xv F) ue]R'i Zg;’eX |<pF(£L‘/),’U,> - (b‘z
PER

is a sensitivity function for (k,z)-flat approvimation of X in R?, satisfying
Go‘ S 2z71 4 22271(14: =+ 2)1+z.

Proof. Consider any k-flat F/ C RY, given by a subspace R C R? of dimension at most k, and a translation
7 € R%. As in the proof of Lemma

[z = pr (2)]

5 et 2= pp@IE | 2o llor(@) — pre(pr())]3
cost?(X, F’)

cost? (X, F) cost?(pr(X), F')

We now have that for any Y € R%, and any y € Y,

— ’ z _ z
Iy =P W)l _ o =7l

gt COSEI(Y,FY) T ocpayera Doyey (Y — T, u)|=
k-flat

Finally, for each y € Y € R?, we may consider appending an additional coordinate and consider y* € R4+ where
the d 4+ 1-th entry is 1. Then, by linearity

_ z * z
sup sup (y—rwl* sup (v, v)

T€Rd yeR? Ey'ey Iy —, U>|Z veERI+L Zy’EY |<y/*>v>|z’

and the bound on the total sensitivity follows from Lemma [5.2 ]

In the (k, z)-subspace approximation section, we used a lemma (Lemma/5.3]) to narrow down the approximately
optimal subspaces to those spanned by at most O(k?log(k/c)/e) points. Here, we use a similar lemma in order
to find an approximately optimal translation vector 7 € R?, which is spanned by a small subset of points.

LEMMA 6.3. (LEMMA 3.3 [45]) Let d,k € N, and consider a weighted set of points S C R with weights
w: S — Rsg, as well as € € (0,1) and z > 1. Suppose F C R is the optimal (k,z)-flat approzimation of
X, encoded by a k-dimensional subspace R C R% and translation vector 7 € R?. There exists a subset Q C S of
size O(log(1/€)/e) and a point 7' € conv(Q) such that the k-flat

Fr={r"+yeR’:yeR}

satisfies
cost, ((S,w), F') < (1 +¢) - cost,((S,w), F).

THEOREM 6.2. (s-WEAK CORESETS FOR k-FLATS VIA SENSITIVITY SAMPLING) For any subset X
{21,...,0,} CR? and ¢ € (0,1/2), let & denote the sensitivity sampling distribution.

o Let (S,w) denote the random (multi-)set S C X and w: S — Rxq given by, for
m = poly((k +2)%, 1/e)

iterations, sampling © ~ & i.i.d and letting w(x) = 1/(mé(x)).

o Then, with probability 1 — o(1) over the draw of (S,w), it is an e-weak coreset for (k,z)-subspace
approzimation of X.
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6.3 The Important Events The important events we consider mirror those the subspace approximation
problem. The only event which would change is Eo, where we require IT to be an e-subspace embedding for all
subsets of O(k?log(k/c)/e) + O(log(1/€)/e) points from S. This will allow us to incorporate the translation 7/
from Lemma

DEFINITION 6.3. (THE EVENTS) Let X = {x1,...,2,} C RY, and G the sensitivity sampling distribution of X
of Lemma[6.2. We consider the following experiment,

1. We generate a sample (S,w) by sampling from & for m = poly(k*,1/e) i.i.d iterations * ~ & and set
w(x) =1/(ms(x)).
2. Furthermore, we sample II ~ J4+, which is a Johnson-Lindenstrauss map R¢ — RE.
3. We let S' =TI(S) C R? denote the image of TI on S.
The events are the following:
o E, : The weighted (multi-)set (S, w) is a weak e-coreset for (k, z)-flat approzimation of X in R

o E, : The map II: R — R? satisfies the following condition. For any choice of O(k*log(k/e)/€) points of
S, IT is an e-subspace embedding of the subspace spanned by these points.

e E;3(3) : Let F' C R! denote the optimal (k,z)-flat approzimation of IL(X) in Rt. Then,
cost?((TI(S), w),F’') < B - cost?(IL(X), F’).

LEMMA 6.4. Let X = {x1,...,2,} C R, and suppose (S, w) and I1: R — R satisfy events E1, Eq, and E3(B).
Then,

1
min cost,(IL(X), F') > ————— - min cost,(X, F).
i oK) ') 2 i iy oo,
in R? in R

Proof. Consider a fixed IT and (S, w) satisfying the three events of Definition Let F' C R? be the k-flat
which minimizes cost?(II(X), F’). Suppose that F’ is specified by a k-dimensional subspace R’ and a translation
7/. Then, by event Es(/3), we have cost?((II(S),w), F') < - cost?(II(X), F’). Now, we apply Lemma to
(TI(S),w), and we obtain a subset Q C S of size O(log(1/¢)/e) for which there exists a translation vector 7 € R?
within the conv(II(Q)) such that k-flat F” given by 7/ and R’ satisfies

1/z
<Z w(z) - [[TI(z) — PF”(H(SE))HZ) = cost. ((TI(S), w), F") < (1 +¢) - cost,,((T(S), w), F).
€S

Furthermore, by Lemmato the weighted vectors (II(S) — 7", w) there exists a subset Q" C II(S) — 7" of size
O(k?log(k/e)/e) and a k-dimensional subspace R” C R¢ within the span of Q' such that the k-flat F"’ specified
by R” and 7" satisfies

1/z
(Z w(z) - [[I(z) — ppr (H(w))||§> = cost ((II(S), w), F") < (1 +¢)* - cost, (IL(S), w), F").
€S

Recall that (i) R” is a k-dimensional subspace lying in the span of II(Q’), (ii) 7" € R? is within conv(II(Q)), and
(iii) for any = € S, IT is an e-subspace embedding of the span of Q U Q" U {x}. Similarly to Lemma we may
find a k-flat U such that for every x € S,

[z = pu(@)[l2 < (1 + &)[[TL(z) — pp (TL(z))]l2,

and hence
cost, ((S,w),U) < (1+¢) - cost, ((IL(S),w), F").

Finally, since (S, w) is a e-weak coreset, we obtain the desired inequality. 0

8Here, we are using the short-hand TI(S) — 7 <f {II(z) — " € Rt : z € S}.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3195



Downloaded 03/03/25 to 165.123.229.33 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

As in the previous section, events E; and Eo hold with sufficiently high probability. All that remains is
showing that E3(1 4 €) holds with sufficiently high probability. We proceed in a similar fashion, where we first
show a loose approximation guarantee, and later improve on it.

LEMMA 6.5. Fiz any I1 € Ju4 and let F' C R denote the k-flat for optimal (k, z)-flat approzimation of IL(X) in
RY. Then with probability at least 0.99 over the draw of (S,w) as per Definition @,

Y w(@) - [W(z) = pp (L(z))]5 < 100 - costZ(I1(X), F').
€S

In other words, event E3(100) holds with probability at least 0.99.

COROLLARY 6.1. Let X = {x1,...,2,} C R? be any set of points. For any e € (0,1/2), let T be the Johnson-
Lindenstrauss map with
; 2 - k? polgflog(lc/e)
€

Then, with probability at least 0.97 over the draw of II ~ Jq .,

1 . . )
AT i, cost, (X, F) < nin, cost, (TI(X), F').
k-flat k-flat

6.3.1 Improving the approximation The improvement of the approximation, follows from upper bounding
the variance, as in the (k, z)-clustering problem, and the (k, z)-subspace approximation problem. In particular, we
show that E3(1+¢) holds. Fix X = {z1,...,7,} C R? and F C R? be the optimal (k, z)-flat approximation of X
in R%. The sensitivity function o: X — R specified in Lemma specify the sensitivity sampling distribution
0.

We let E4 denote the following event with respect to the randomness in IT ~ J; . For each x € X, we let

D, € R denote the random variable

p. def [H(z) — (pp(z))[2
’ [z = pr (@)l

and as in (5.23) and (5.24), event E4, which occurs with probability at least 0.99, whenever

Z D?* . g(x) < 100-2° - &,.
reX

LEMMA 6.6. Let Il € Jg,; be a Johnson-Lindensrauss map where, for a > 1, the following events hold:
1. Guarantee from Lemma' > wex IM(x) = (pr(2))[|5 < a - costi(X, F).

2. Guarantee from Corollary @ letting F' C RY be the optimal (k,z)-flat approxzimation of T(X), then
cost?(X, F) < acost?(II(X), F').

3. Event E4 holds.

Then, if we let (S,w) denote m = poly(k*,1/e,a) i.i.d draws from & and w(x) = 1/(md(x)), with probability at
least 0.99,
cost?((TI(S), w), F') < (1 +¢) - cost?(II(X), F").

Proof. We similarly bound the variance of

1 |[H(z) — pr (I(2)) | S, 1 |I(z) — pr (T(2))][3
Vars LES [5(@ costz(II(X), F) HSmZX< (r)  cost®(I(X), F) )

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

3196



Downloaded 03/03/25 to 165.123.229.33 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

It is not hard to show, as in the proof of Lemma [5.7} that writing y, = pr(z) € R? and Y = {y, : # € X}, that

[ (z) — prr (1)) I3 |z — pr(2)[3 |(1(ya), v) — pl*

<27 laDz . +22%72(1 4 o?) sup ,
cost (I(X), F") Y costi (X, F) vert 2oarex [(M(Yar), v) — pf?
neER
and similarly to before, we have
[(M(ye), v) — pl* (Y, w) — I

sup < sup .
veER? Zx’ex |<H(yo:’)vv> - N'Z weER? Zgg'eX |<yw’au> - ¢|Z
HER PER

This implies that the variance is at most

4
2422, Soa” Z D% . g(x) < &?

m
reX

by setting m = poly((k + 2)*,1/e,a) to be large enough when E4 holds, and we apply Chebyshev’s inequality.
0

COROLLARY 6.2. Let X = {x1,...,2,} C R? be any set of points, and let F C R? be the optimal (k,z)-flat
approzimation of X. For any € € (0,1/2), let J4+ be the Johnson-Lindenstrauss map with

z - k? - polylog(k/¢)
23

t2

Then, with probability at least 0.92 over the draw of II ~ Jq .,

: !
(e -cost, (X, F) < Fméﬁt cost, (II(X), F").
k-flat
7 k-Line Approximation

In the (k, 2)-line approzimation problem, we consider a collection of k lines in R?. A line is encoded by a vector
v € R? and a unit vector v € S, where we will write

lv,u)={v+t-ueR: teR}.

For a single line ¢ encoded by v and u, we write p;: R? — R as the orthogonal projection of a point onto ¢, i.e.,
the closest vector which lies on the line, where

pe(z) = argmin ||z — y||3 = v + (x — v, u)u.
yeL

For any set of k lines, L = {¢,...,¢;}, and a point z € X, we write

cost (z, L) = min [lo — pa()]5,

and for any dataset X C R? and set of lines L, we consider the map ¢: X — L which sends a point z to its
nearest line in L. Then, we write

cost?(X,L) = Z |z — Pe(z) ()3,
rzeX

as the cost of representing the points in X according to the & lines in L. In this section, we show that we may
find the optimal (k, z)-line approximation after applying a Johnson-Lindenstrauss map. Specifically, we prove:
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THEOREM 7.1. (JOHNSON-LINDENSTRAUSS FOR (k, 2)-LINE APPROXIMATION) Let X = {x1,...,z,} C R? be
any set of points, and let L = {{y,... 0} denote a set of lines in R? for optimally (k, z)-line approzimation of
X. For any € € (0,1), suppose we let Jq be a distribution over Johnson-Lindenstrauss maps where

-, kloglogn + z + log(1/¢)
t 2 =3
Then, with probability at least 0.9 over the draw of II ~ Jq .,

1
—— cost,(X,L) < min cost,(TI(X), L") < (1+¢) - cost,(X,L).
1+e¢ L' k lines
in R

7.1 Easy Direction: Optimum Cost Does Not Increase

LEMMA 7.1. Let X = {z1,...,2,} C R be any set of points and let L = {{1,..., 0} be a set of k lines in R?
for optimal (k, z)-line approximation of X, and for each x € X, let £(x) € L be the line assigned to x. We let
Ja.x be the distribution over Johnson-Lindenstrauss maps. If t 2 2 /€%, then with probability at least 0.99 over the
draw of II ~ J 4,

1/z
(Z IT(z) — TL(pe(a) (x))||§> < (1+¢)-cost. (X, L),

rzeX
and hence,
‘min  cost,(TL(X), L") < (1 +¢) - cost, (X, L).
v ki
By now, there is a straight-forward way to prove the above lemma. For each set of k lines L = {{1,...,¢;}

in R?, there is an analogous definition of k lines IT(L) in Rf. Hence, we use the two-stability of the Gaussian as
in previous sections to upper bound the cost cost, (II(X),II(L)).

7.2 Hard Direction: Optimum Cost Does Not Decrease

7.2.1 Preliminaries At a high level, we proceed with the same argument as in previous sections: we consider
a sensitivity function for (k, z)-line approximation of X in R, and use it to build a weak coreset, as well as argue
that sensitivity sampling is a low-variance estimator of the optimal (k,z)-line approximation in the projected
space. The proof in this section will be significantly more complicated than the previous section. Defining the
appropriate sensitivity functions, which will give a low-variance estimator in the projected space, is considerably
more difficult than the expressions of Lemmas and For this reason, will be proceed by assuming
access to a sensitivity function which we will define lated in the section.

DEFINITION 7.1. (WEAK CORESETS FOR (k, 2)-LINE APPROXIMATION) Let X = {x1,...,2,} C R? be a set of
points. A weak e-coreset of X for (k,z)-line approximation is a weighted subset S C R? of points with weights
w: S = Rx>¢ such that

1
. i t.(X,L) < i t L)<(1 . i t. (X, L
Tre o e st L) < nin costa((Sw), L) < (L4 €) - i costa (X, L)
in R in RY in RY
DEFINITION 7.2. (SENSITIVITIES) Let n,d € N, and consider any set of points X = {z1,...,2,} C R?, as well

ask € N and z > 1. A sensitivity function o: X — Rsq for (k,z)-line approzimation in R? is a function which
satisfies that, for all v € X,
2 — poy ()13
sup ————————— < ().
L: k lines COStz(X’ L) )

in RY
The total sensitivity of the sensitivity function o is given by

S, = Z o(z).

zeX
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For a sensitivity function, we let ¢ denote the sensitivity sampling distribution, supported on X, which samples
x € X with probability proportional to o(x).

Similarly to before, we first give a lemma which narrows down the space of the optimal line approximations
for a set of points. the following lemma is a re-formulations of Lemma [5.3] and Lemma [6.3] catered to the case of
(k, z)-line approximation.

LEMMA 7.2. (THEOREM 3.1 AND LEMMA 3.3 OF [44]) Let d € N and S C R? be any set of points with weights
w: S — Rxg, ¢ € (0,1/2), and z > 1. There exists a subset Q C S of size O(log(1/¢)/e) and a line ¢ in R? within
the span of @ such that

cost, ((S,w),{€}) < (1 + &) min cost,((S,w), {¢'}).
LEMMA 7.3. (WEAK CORESETS FOR k-LINE APPROXIMATION [23, [49]) For any subset X = {z1,...,7,} C R?
and € € (0,1/2), let o denote a sensitivity function for (k,z)-line approzimation of X with total sensitivity S,
and let & its sensitivity sampling distribution.

o Let (S,w) denote the random (multi-)set S C X and w: S — R>q given by, for

m = poly(&,,k,1/e),

iterations, sampling € ~ & i.i.d and letting w(x) = 1/(mé(x)).
e Then, with probability 1 — o(1) over the draw of (S, w), it is an e-weak coreset for (k, z)-line approximation

of X.

We note that [23] and [49] only give a strong coreset for (k, z)-line approximation of poly(&,,k,d, 1/¢). For
example, Theorem 13 in [49] giving the above bound follows from the fact that the “function dimension” (see
Definition 3 of [49]) for (k,z)-line approximation is O(kd). However, Lemma implies that for any set of
points, a line which approximates the points is within a span of O(log(1/¢)/e) points. This means that, for
e-weak coresets, it suffices to only consider k lines spanned by O(klog(1/¢)/e), giving us a “function dimension”
of O(klog(1/e)/e).

7.2.2 The Important Events

DEFINITION 7.3. (THE EVENTS) Let X = {x1,...,2,} C R, and o be a sensitivity function for (k,z)-line
approzimation of X in RY, with total sensitivity S, and sensitivity sampling distribution 6. We consider the
following experiment,

1. We generate a sample (S,w) by sampling from & for m = poly(S,,k,1/e) i.i.d iterations * ~ & and set

w(zx) =1/(ms(x)).
2. Furthermore, we sample IL ~ Jg+, which is a Johnson-Lindenstrauss map R¢ — Rt
3. We let S" =TI(S) C R? denote the image of II on S.
The events are the following:
o E, : The weighted (multi-)set (S, w) is a weak e-coreset for (k, z)-line approzimation of X in RY.

e Ey : For any subset of O(log(1/¢)/e) points from S, the map I1: R — R* is an e-subspace embedding for
the subspace spanned by that subset.

o E3(B) : Let L' = {#),...,£.} denote k lines in R for optimal (k,z)-line approzimation of TI(X) in R
Then,

cost? ((TL(S), w),L’) < B cost?(II(X),L").
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LEMMA 7.4. Let X = {z1,...,2,} C R, and suppose (S,w) and I1: RY — R? satisfy events Ei, Ey and Ej.
Then,

1
min cost,(IT(X),L') > ————— - min cost,(X,L).
L’ k lines ( ( ) ) - ﬂl/z(l —+ 6)‘3 Lk %é’ges ( )
in R in

Proof. Let IT ~ J4+ and (S, w) be sampled according to Definition and suppose events Eq{, Ey and E3 all
hold. Let L' = {#},...,£,} denote the set of k lines for optimal (k, z)-line approximation of II(X) in Rf. Then,
by event Es, we have cost?((IL(S),w),L’) < 8- cost?(II(X),L’). Consider the partition of S into Sq,...,Sk
induced by the lines in L’ closest to II(S).

For each i € [k], we apply Lemmato II(S;) with weights w: S; — Rx>¢. In particular, there exists subsets
Q1 CSi,...,Qr C Sy, and k lines L” = {£7,..., £/} in R such that each line £; lie in the span of Q;, and

cost, ((TI(S), w), L") < (1 +¢) - cost, ((TL(S), w), L").

Event E5 implies that for each ¢ € [k] and each = € S, IT is an e-subspace embedding for the subspace spanned
by Q; U {z}. It is not hard to see, that there exists k lines H = {hy,...,h;} in R? such that for all z € S,

& = pn (@)l < (1+¢) - [TI(z) — per (TT())]l5,
and therefore,
cost, ((S,w),H) < (1 +¢) - cost, ((IL(S), w),L").
Lastly, (S,w) is a e-weak coreset for X, which means that

Lrgllm cost, (X, L) < (1+¢) - cost,((S,w), H).
e

Combining all inequalities gives the desired lemma. O

By now, we note that it is straight-forward to prove the following corollary, which gives a dimension reduction
bound which depends on the total sensitivity of a sensitivity function.

COROLLARY 7.1. Let X = {x1,...,2,} C R? be any set of points, and for k € N and z > 1, let 0: X — R>q
be a sensitivity function for (k,z)-line approzimation of X in R, For any e € (0,1/2), let Ju be the Johnson-
Lindenstrauss map with
t Z log(60'73k? 1/6) .
€
Then, with probability at least 0.97 over the draw of II ~ Jq 4,

1
O 1 Ll ) S i st 0,29
in R in R

7.3 A Sensitivity Function for (k,z)-Line Approximation We now describe a sensitivity function for
(k, z)-line approximation of points in R?. Similarly to the previous section, we consider a set of points
X = {z1,...,2,} C R% and we design a sensitivity function o: X — Rsq for (k,z)-line approximation of
X in R%. The sensitivity function should satisfy two requirements. The first is that we have a good bound on the
total sensitivity, &,, where the target dimension ¢ will have logarithmic dependence on &, (for example, like in
Corollary .

The second is that Es(1 + ¢) will hold with sufficiently high probability over the draw of IT ~ J;;. In
other words, we will proceed similarly to Lemmas and and show that, for the optimal (k, z)-line
approximation L’ of TI(X) in R?, sampling according to the sensitivity sampling distribution gives a low-variance
estimate for the cost of L.
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7.3.1 From Coresets for (k,c0)-line approximation to Sensitivity Functions Unfortunately, we do not
know of a “clean” description of a sensitivity function for (k, z)-line approximation, as was the case in previous
definitions. Certainly, one may define a sensitivity function to be o(x) = supy, cost?(x, L)/costZ(X, L), but then
arguing that E3(1 4 ¢) holds with high probability becomes more complicated. The sensitivity function which we
present follows the connection between sensitivity and £..-coresets [48].

DEFINITION 7.4. (c-CORESETS FOR (k,00)-LINE APPROXIMATION) Let Y = {y1,...,y,} C R? be any subset of
points, and ¢ > 1. A subset A CY is a c-coreset for (k,o0)-line approximation if the following holds:

o Let L ={ly,...,0} be any collection of k lines in RY, and r € R>q such that for ally € A,

inlly — <r
Igélg\\y pe(y)ll2 <7

o Then, for all x € X,

min [ly — pe(y)ll2 < er-

Note that the (k, co)-line approximation is the problem of minimum enclosing cylinder: we are given a set of
points Y, and want to find a set of k cylinders C1,...,C), C R? of smallest radius such that Y C Ule C;. Thus,
Definition aset A CY is a c-coreset for (k,co)-line approximation if, given any k cylinders which contain A,
increasing the radii by a factor of ¢ contains Y. The reason they will be relevant for defining a sensitivity function
is the following simple lemma, whose main idea is from [48)].

LEMMA 7.5. (SENSITIVITIES FROM ¢-CORESETS FOR. (k, c0)-LINE APPROXIMATION (SEE LEMMA 3.1 IN [48]))
Let X = {z1,...,2,} C R? be any set of points and k € N, z > 1. Let L = {{y,...,{x} be the k lines in R? for
optimal (k, z)-line approzimation of X, and let Y = {y, € R? : x € X} where y, = pe(z)(x). For c > 1, let the
function o: X — R>q be defined as follows:

o Let Ay, As, ..., As denote a partition of Y where each A; is a c-coreset for (k,o00)-line approzimation of
v (Ui 4n).
o For each x € X, where y, € A; we let

B O i 1 - BNPC S

. cost?(X, L) i
Then, o is a sensitivity function for (k,z)-line approximation, and the total sensitivity
G,=0 (22Z -c-logn - max|Ai|>
i€[s)

Proof. Suppose z € X and y, € A;. Consider any set L' = {£},...,¢}} of k lines in R%. The goal is to show that

minE/EL’ ||Jj - pf/(m)Hg < 0'(.’13)

(7.:30) cost?(X, L) -

We will first use Holder inequality and the triangle inequality, as well as the fact that y, € A; in order to write
the following:

min 12— po (@)l5 < 27w = yalls + 277 puin g — po ()

(7.31) < 25 Y|z — gl + 2571 (costz(y, Ly 9,) .
i
The justification for (7.31) is the following: for every j <, A; is a c-coreset for (k, oo)-line approximation of a
set of points which contains y,. Therefore, if mingcr/ ||yz — per (yz)|l2 = r, there must exists a point u € A; with
mingcr ||u — per(w)|l2 > r/c. Suppose otherwise: every u € A; satisfies ming e/ [[u — per(u)||2 < r/c. Then, the
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k cylinders of radius r/c contain A;, so increasing the radius by a factor of ¢ contains y,. However, this means
minger: ||yz — per(yz)||2 < ¢+ r/c < r, which is a contradiction.
Hence, we always have that y, € A; satisfies
. c
min ||y, — per (Yo )3 < costZ(Y,L') - —.
veL
Continuing on upper-bounding (7.31), we now use the fact cost?(Y, L’) < 2*7L.cost?(X, L) +2*!.cost?(X, L') <
2%cost? (X, L") because cost?(X, L) is the optimal (k, z)-line approximation. Therefore,

c

min [lz = po(@)]3 < 277" lz = gall5 + 2771 - - costi(X, L),

so dividing by cost?(X, L’) and noticing that cost?(X, L) < cost?(X, L") implies ¢ is a sensitivity function.
The bound on total sensitivity then follows from

Go =) o(@) =Y Y ol@)=2"""4+2""1> |4 5 =0 (222 'C'?é?s>]<|14i| 'logn> ;
=1

zeX i=1x€Ay

since s < n. |

7.3.2 A simple coreset for (k,c0)-line approximation of one-dimensional instances Suppose first,
that a dataset Y = {yi,...,¥,} lies on a line in R?, and let Cy,...,C} be a collection of k cylinders. Then, the
intersection of the cylinders with the line results in a union of k intervals on the line. If we increase the radius
of each cylinder C1,...,Cf by a factor of ¢, the lengths of the intervals are scaled by factor of ¢ (while keeping
center of interval fixed). We first show that, for any Y = {y1,...,y,} which lie on a line, there exists a small
subset @ C Y such that: if I1,..., I} is any collection of k intervals which covers @, then increasing the length of
each interval by a factor of 3 (while keeping the center of the interval fixed) covers Y.

LEMMA 7.6. There exists a large enough constant ¢; € R>o such that the following is true. Let Y = {y1,...,yn}
be a set of points lying on a line in R?, and k € N. There exists a subset Q C 'Y which is a 3-coreset for (k,c0)-line
approzimation of size at most (c; logn)k.

Proof. The construction is recursive. Let £ be the line containing Y, and after choosing an arbitrary direction on
{, let y1,...,y, be the points in sorted order according to the chosen direction.

The set @ is initially empty, and we include @ < {y1,Y[n 21, ¥n}- Suppose that |y1 —yrn/21ll2 > |Yrn/21 = Ynll2
(the construction is symmetric, with y; and y, switched otherwise). We divide Y into two sets, the subsets
Yo = {y1,--»Yns2)} and Yr = {yrn/21,-- -+ ¥n}. Then, we perform three recursive calls: (i) we let Q1 be a
3-coreset for (k,oco)-line approximation of Yz, (ii) we let Q2 be a 3-coreset for (k — 1, 00)-line approximation of
Y7, and (iii) we let Q3 be a 3-coreset for (k — 1, 00)-line approximation of Y. We add Q1, @2, and Q3 to Q.

The proof of correctness argues as follows. Let C1,...,Ck be an arbitrary collection of k cylinders which
covers ). The goal is to show that increasing the radius of C,...,Cy by a factor of 3 covers Y. Let I1,..., I be
the intervals given by I; = ¢ N C;. We let the indices u,v € [k] be such that I, is the first interval which contains
y1, and I, the last interval which contains y,. We note that I; U --- U I covers Q. We must show that if we
increase the length of each interval by a factor of 3, we cover Y. We consider three cases:

e Suppose there exists an index i* € [k] such that y; and yr,/e) both lie in the interval [;-. Recall
ly1 — yrny21ll2 > |9rn/21 — Ynll2, and all points are contained within y; and y,. Hence, when we increase
the length of I;» by a factor of 3 while keeping center fixed, y; and y,, lie in the same interval, and thus
cover Y.

e Suppose y1 and yp, /27 lie in different intervals, but there exists ¢* such that yr,, /o1 and yy lie in the interval
I;<. Then, since all points of Y between yr, /o1 and yp,, ;= covers Yg. Since I, ..., I} covers Q1 and Q1 is
a 3-coreset for (k, 00)-line approximation of Y}, increasing the length of each interval by a factor of 3 covers
Y7, and therefore all of Y.
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® Suppose Y1, Y, /2] and yy, all lie in different intervals. Then, since y; and yp, /21 are not on the same interval,
the k — 1 intervals Uie[k]\{u} I; covers Q2. Similarly, yr,, /27 and y,, are not on the same interval, so the k —1
intervals Uie[k}\ (v} i covers Q3. Since Q2 is a 3-coreset for (k — 1, 00)-line approximation of Y7, increasing
the radius of each interval by a factor of 3 covers all of Y7,. In addition, Q3 is a 3-coreset for (k — 1, 00)-line
approximation of Yg, so increasing length of intervals by a factor of 3 covers Yg.

This concludes the correctness of the coreset, and it remains to upper bound the size. Let f(k,n) € N be an
upper bound on the coreset size of (k, c0)-line approximation of a subset of size n. We have f(1,n) = 2, since any
single interval which covers y; and y,, covers everything in between them. By our recursive construction, we have

By a simple induction, one can show f(k,n) is at most (c; logn)* when k > 2, for large enough constant ¢; and
large enough n. O
7.3.3 The coreset for points on k lines and the effect of dimension reduction

LEMMA 7.7. There exists a large enough constant ¢c; € R>o such that the following is true. LetY = {y1,...,yn}
be a set of points lying on k lines in RY. There exists a subset Q C'Y which satisfies the following two requirements:

1. Q is a 3-coreset for (k,00)-line approxzimation of Y size at most k(cylogn)F.
2. If11: RY — R? is a linear map, then 11(Q) is a 3-coreset for (k,oc)-line approzimation of TI(Y').

Proof. Let Yi,...,Y) be the partition of Y into points lying on the lines ¢1, ..., ¢} of R?, respectively. We may
write each line ¢; by two vectors u;,v; € R?, and have

b ={u;+t v, .t €R}.

Let @; be the 3-coreset for (k, co)-line approximation of Y; specified by Lemma We let @ be the union of all
Q;. Item [1] follows from Lemma [7.6] since we are taking the union of k coresets.

We now argue Item [2| Since II is a linear map, and every point in Y; lies on the line ¢;, there exists a map
t: Y; = R where each y € Y; satisfies

y =u; +t(y)-v; € R and thus, O(y) = I(u;) + t(y) - T(v;) € R

In other words, TI(Y;) lies within a line in R*. We note that the relative order of points in II(Y;) remains the
same, since for any two points y,y’ € Y;,

ITI(y) — Ty )2 = [t(y) =t (vl My = y'll2 = [E) — £ - vill2-
We note that the construction of Lemma [7.6| only considers the order of points in Y;, as well as the ratio of
distances. Therefore, executing the construction of Lemma [7.6]on the points II(Y;) returns the set I1(Q;). |

COROLLARY 7.2. Let Y = {y1,...,yn} C R be a set of points lying on k lines in RY.

o Let Ay, ..., Ay denote a partition of Y where each A; is a 3-coreset for (k, 00)-line approzimation of Y from
Lemma |Z7 on the set Y \ 5| Air.

o LetII: R — Rt be any linear map.
For any set of k lines L' = {¢},...,0}.} in R, if y € A;, we have

R 3
IE(y) = prr(IL(y))ll2 < costZ(IL(Y), L) - —-
Proof. The proof follows from applying the same observation of Lemma to II(A;), which is a 3-coreset for
(k, 00)-line approximation by Lemma Namely, for every j < 4, the set II(A;) is a 3-coreset for (k,oo)-line
approximation of a set containing y. Thus, if |y — pr/(y)||2 = 7, there must be a set of at least i points ¢’ € Y
where ||y — pr(y)l2 = 7r/3. O
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7.4 Improving the approximation We now instantiate the sensitivity function of Lemma and use
Corollary and Lemma in order to improve on the approximation. Similarly to before, we show that
event E5(1+¢) occurs with sufficiently high probability over the draw of IT and (S, w) by giving an upper bound
on the variance as in Lemma [£.6] Lemma and Lemma [6.6]

Fix X = {x1,...,2,} C R and let L = {{1,...,¢;} be the optimal (k, z)-line approximation of X in R%.
For z € X, we let y, € R? be given by y, = py(y)(z), and we denote the set Y = {y, : # € X}. The sensitivity
function o: X — R>¢ is specified by Lemma Recall that we first let Aq,..., A; denote a partition Y, where
A; is the 3-coreset for (k, co)-line approximation of Y from Lemma For x € X with y, € A;, we have

3

17— yall3 4922712
-

= 2 .
o (@) cost?(X, L)

We let E4 denote the following event with respect to the randommess in IT ~ J;;. For each z € X, we let
D, € R> denote the random variable

D, — ITL(z) — I (py(ay () ||27
2 — poca) (@)|l2

and as in previous sections, event E4, which occurs with probability at least 0.99, whenever
> DZ.o(x) <100-2° - &,.
rET

LEMMA 7.8. Let Il € Jy+ be a Johnson-Lindenstrauss map where, for o > 1, the following events hold:

e Guarantee from Lemma ' Y owex IM(x) = T(peezy(2))|I3 < - costZ(X, L).

e Guarantee from Corollary[7.1: letting L' = {¢},... 4} be the optimal (k,z)-line approzimation fo I1(X),
then cost?(X, L) < a - costZ(I1(X), L').

o Fvent E4 holds.

Then, if we let (S,w) denote m = poly((logn)¥,1/¢, ), i.i.d draws from & and w(x) = 1/(mé(z)), with probability
at least 0.99,
costZ((TI(S),w), L") < (1 +¢) - costZ (II(X), L').

Proof. We bound the variance,

1 U@ - pp@)3]] _ S, 1 (@) — o ()]
{aw) costZ(TI(X), L) ”S m Z(a(m) cost?* (TI(X), ') )

(7.32) Varg { E
w8 zeX
We note that, as before, we will apply Holder’s inequality and the triangle inequality, followed by Corollary

Specifically, suppose x € X with y, € A;, then,

() = pr (W(2)) |5 < 2°7-DF - llo = pr(@)ll5 +2°7" - [IT(yz) — pr (M(ya)) 3

3
<2771 DE o = pr(@)llf + 277 costZ(I(Y), L) - 5

222—2 .3
<2771-D -l = pr(@) 5 + = (cost(T(X), L) + cost (I(X), TI(Y))) .

We note that from (7.8)) and (7.8), we have cost?(I[(X),I1(Y)) < acost?(X, L) < a?cost?(II(X), L’). So the above
simplifies to

[ (z) — pr (I(2))][3

i1 pr T =pL@)5 | p2oe 3(1+07)
cost?(II(X), L") i

* cost?(X, L) )
< (D} +1+a%)-o(x).

IN
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We now continue upper bounding (7.32]), where the variance becomes less than

2 4
S, Dz+1_|_0[22.03;ggoio‘7
m x

m
zeX

since event E4 holds. Since &, < poly(2%?, (logn)*), we obtain our desired bound on the variance by letting m
be a large enough polynomial of (logn)*, a, and 1/e. d

COROLLARY 7.3. Let X = {x1,...,2,} C R? be any set of points, and let L = {{1,...,4;} be the optimal set of
k lines for (k,z)-line approzimation of X. For any € € (0,1/2), let Ja be the Johnson-Lindenstrauss map with

;> kloglogn + z + log(1/e)

Then, with probability at least 0.92 over the draw of II ~ Jq .,

min cost, (II(X), L’ —
L'k lines ( ( ) ) (1+ 5)3+1/z
in R

Y

-cost, (X, L).

A On preserving “all solutions” and comparisons to prior work

This section is meant for two things:

1. To help compare the guarantees of this work to that of prior works on (k, z)-clustering of [40] and (k, 2)-
subspace approximation [13], expanding on the discussion in the introduction. In short, for (k, z)-clustering,
the results of [40] are qualitatively stronger than the results obtained here. In (k, 2)-subspace approximation,
the “for all” guarantees of [L3] are for the qualitatively different problem of low-rank approximation. While
the costs of low-rank approximation and (k,2)-subspace approximation happen to agree at the optimum,
the notion of a candidate solution is different.

2. To show that, for two related problems of “medoid” and “column subset selection,” one cannot apply the
Johnson-Lindenstrauss transform to dimension o(logn) while preserving the cost. The medoid problem is a
center-based clustering problem, and column subset selection problem is a subspace approximation problem.
The instances we will construct for these problems are very symmetric, such that uniform sampling will give
small coresets. These give concrete examples ruling out a theorem which directly relates the size of coresets
to the effect of the Johnson-Lindenstrauss transform.

Center-Based Clustering Consider the following (slight) modification to the center-based clustering
problems known as the “medoid” problem.

DEFINITION A.1. (1-MEDOID PROBLEM) Let X = {z1,...,z,} C R? be any set of points. The 1-medoid problem
asks to optimize
. 2
min > |z — [l3.
zeX

Notice the difference between 1-medoid and 1-mean: in 1-medoid the center is restricted to be from within the
set of points X, whereas in 1-mean the center is arbitrary. Perhaps surprisingly, this modification has a dramatic
effect on dimension reduction.

THEOREM A.1. For large enough n,d € N, there exists a set of points X C R? (in particular, given by the n-basis
vector {e1,...,e,} C R™) such that, with high probability over the draw of II ~ J4, where t = o(logn),

. _ 2
min > [z — cf3

reX
>2—o(1).
min II(x) — |2
C/GH(X)Ig(” ( ) HQ
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Theorem [A.T gives very strong lower bound for dimension reduction for k-medoid, showing that decreasing
the dimension to any o(logn) does not preserve (even the optimal) solutions within better-than factor 2. This is
in stark contrast to the results on center-based clustering, where the 1-mean problem can preserve the solutions
up to (1 £ e)-approximation without any dependence on n or d. The proof itself is also very straight-forward:
each II(e;) is an independent Gaussian vector in RY, and if t = o(logn), with high probability, there exists an
index i € [n] where ||II(e;)||3 = o(1). In a similar vein, with high probability >, [TI(e;)||3 < (1 + o(1))n. We
take a union bound and set the center ¢ = Il(e;) for the index i where |[II(e;)||3 = o(1). By the pythagorean
theorem, the cost of this 1-medoid solution is at most (1 + o(1))n. On the other hand, every 1-medoid solution
in X has cost 2(n — 1).

We emphasize that Theorem E does not contradict [40} [6], even though it rules out that “all candidate
centers” are preserved. The reason is that the notion of “candidate solution” is different. Informally, [40] shows
that for any dataset X C R? of n vectors and any k € N, ¢ > 0, applying the Johnson-Lindenstrauss map IT ~ Tt
with ¢t = O(log(k/c)/e?) satisfies the following guarantee: for all partitions of X into k sets, (P1, P, ..., Py), the
following is true:

k
Z min > [T(w) = cjll3 ~se Z min > [z cel3:
= < TEPy .LEPZ
The “for all” quantifies over clusterings (P,..., Py) is different (as seen from the 1-medoid example) from the
“for all” over centers cq,...,c.

Subspace Approximation The same subtlety appears in subspace approximation. Here, we can consider
the 1-column subset selection problem, which at a high level, is the medoid version of subspace approximation.
We want to approximate a set of points by their projections onto the subspace spanned by one of those points.

DEFINITION A.2. (1-COLUMN SUBSET SELECTION) Let X = {z1,...,7,} C R?% be any set of points. The 1-
column subset selection problem asks to optimize

) - Z lz = ps ()3

S= span {a:

Again, notice the difference between 1l-column subset selection and (k,1)-subspace approximation: the
subspace S is restricted to be in the span of a point from X. Given Theorem [A.1] it is not surprising that
Johnson-Lindenstrauss cannot reduce the dimension of 1-column subset selection to o(logn) without incurring
high distortions.

THEOREM A.2. For large enough n,d € N, there exists a set of points X C R? such that, with high probability
over the draw of II ~ J4 4 where t = o(logn),

min, Z lz = ps ()12

S=span(z
zeX
>3/2—o(1).
min — pPs’
oo 2 (T(2)
The proof is slightly more involved. The instance sets d = n + 1, and sets X = {x1,...,2,} where

x; = (ent1 +€)/ V2. For any subspace S spanned by any of the points x;, via a straight-forward calculation,
the distance between z; and pg(z;) is \/3% when j # i, and therefore, the cost of 1-column subset selection
in X is 3/4-(n —1). We apply dimension reduction to t = o(logn) and we think of g,,...,9,.; € R
as the independent Gaussian vectors given by II(e1),...,II(e,+1). As in the 1-medoid case, there exists an
index i € [n] for which ||g;||3 = o(1), and notice that when this occurs, II(z;) is essentially g,,,,/v2 (because
ITI(2;) — gny1/V2[|2 = o(1)). Letting S be the subspace spanned by II(z;), we get that the distance between
the projection || II(z;) — ps(II(x;))|3 is at most ||g;[3/2 + o(1). This latter fact is because the subspace spanned
by S is essentially spanned by g,,, ;. Therefore, the cost of the 1-column subset selection of II(X) is at most
n/2(1+ o(1)).
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As above, Theorem [A.2 does not contradict [13], even though it means that “all candidate subspaces” are
preserved needs to be carefully considered. The notion of “candidate solutions” is different. In the matrix notation
that [13] uses, the points in X are stacked into rows of an n X d matrix (which we denote X). A Johnson-
Lindenstrauss map IT is represented by a d X ¢ matrix, and applying the map to every point in X corresponds to
the operation XTI (which is now an n x t matrix). [13] shows that if IT is sampled with t = O(k/e?), the following
occurs with high probability. For all rank-k projection matrices P € R"*™ we have

IX — PX|[5 =14 | XTI~ PXII|[%.

Note that when we multiply the matrix X on the left-hand side by P, we are projecting the d columns of X to a
k-dimensional subspace of R™. This is different from approximating all points in X with a k-dimensional subspace
in R, which would correspond to finding a rank-k projection matrix S € R and considering || X — X S||%. In
the matrix notation of [13], the dimension reduction result for (k,2)-subspace approximation says that

(A.1) min || X — XS|% ~e. min [ XTT— XTLS||7.
SER'Xd SleRtxt
prg?gé(t_i’gn prg?gg,(t-i]gn

At the optimal S € R?*? and the optimal P € R™*", the costs coincide (a property which holds only for z = 2).
Thus, [13] implies (A.1), but it does not say that the cost of all subspaces of R? are preserved (as there is a type
mismatch in the rank-k projections on the left- and right-hand side of (A.1)).
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