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Abstract

We study the e↵ect of Johnson-Lindenstrauss transforms in various projective clustering problems,
generalizing results which only applied to center-based clustering [40]. We ask the general question: for a
Euclidean optimization problem and an accuracy parameter " 2 (0, 1), what is the smallest target dimension
t 2 N such that a Johnson-Lindenstrauss transform ⇧ : Rd ! Rt preserves the cost of the optimal solution
up to a (1 + ")-factor. We give a new technique which uses coreset constructions to analyze the e↵ect of the
Johnson-Lindenstrauss transform. Our technique, in addition applying to center-based clustering, improves
on (or is the first to address) other Euclidean optimization problems, including:

• For (k, z)-subspace approximation: we show that t = Õ(zk2
/"

3) su�ces, whereas the prior best bound,
of O(k/"2), only applied to the case z = 2 [13].

• For (k, z)-flat approximation: we show t = Õ(zk2
/"

3) su�ces, completely removing the dependence on
n from the prior bound Õ(zk2 log n/"3) of [36].

• For (k, z)-line approximation: we show t = O((k log log n+ z + log(1/"))/"3) su�ces, and ours is the first
to give any dimension reduction result.

1 Introduction

The Johnson-Lindenstrauss lemma [35] concerns dimensionality reduction for high-dimensional Euclidean spaces.
It states that, for any set of n points x1, . . . , xn in Rd and any " 2 (0, 1), there exists a map ⇧ : Rd ! Rt, with
t = O(log n/"2) such that, for any i, j 2 [n],

1

1 + "
· kxi � xjk2  k⇧(xi)�⇧(xj)k2  (1 + ") · kxi � xjk2.(1.1)

From a computational perspective, the lemma has been extremely influential in designing algorithms for high-
dimensional geometric problems, partly because proofs show that a random linear map, oblivious to the data,
su�ces. Proofs specify a distribution Jd,t supported on linear maps Rd ! Rt which is independent of x1, . . . , xn,
for example, given by a t ⇥ d matrix of i.i.d N (0, 1/t) entries [32, 18], and show that a draw ⇧ ⇠ Jd,t satisfies
(1.1) with probability at least 0.9.

In this paper, we study the Johnson-Lindenstrauss transforms for projective clustering problems, building on
a line-of-work which gave dimension reduction results for center-based clustering [7, 13, 6, 40]. Our goal is to
reduce the dimensionality of the input of a more general projective clustering problem from d to t, with t ⌧ d,
without a↵ecting the cost of the optimal solution significantly. We map d-dimensional points to t-dimensional
points via a random linear map ⇧ such that the optimal cost in t-dimensions is within a (1 + ")-factor of the
optimal cost in the original d-dimensional space. We study this for a variety of problems, each of which is
specified by a set of candidate solutions Cd and a cost function. By varying the family of candidate solutions Cd
and the cost functions considered, one obtains center-based clustering problems (like k-means and k-median), as
well as subspace approximation problems (like principal components analysis), and beyond (like clustering with
subspaces). The key question we address here is:

∗
The full version of the paper can be accessed at https://arxiv.org/abs/2205.00371

†
Stanford University.

‡
University of Pennsylvania. Part of this work was done while Erik Waingarten was a postdoc at Stanford University, supported

by an NSF postdoctoral fellowship and by Moses Charikar’s Simons Investigator Award. Erik Waingarten is currently supported by

NSF CCF-2337993.

Copyright c© 2025 by SIAM
Unauthorized reproduction of this article is prohibited3172

D
ow

nl
oa

de
d 

03
/0

3/
25

 to
 1

65
.1

23
.2

29
.3

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2205.00371


Main Question: For a projective clustering problem, how small can t be as a function of the dataset
size n and the accuracy parameter ", such that the cost of the optimization is preserved up to (1± ")-
factor with probability at least 0.9 over ⇧ ⇠ Jd,t?

Our results fit into a line of prior work on the power of Johnson-Lindenstrauss maps beyond the original
discovery of [35]. These have been investigated before for various problems and in various contexts, including
nearest neighbor search [32, 27, 3], numerical linear algebra [43, 39, 50], prioritized and terminal embeddings
[21, 38, 42, 12], and clustering and facility location problems [7, 13, 36, 6, 40, 41, 33, 11, 34].

1.1 Our Contribution In the (k, j)-projective clustering problem with `z cost ([29, 1, 20, 19, 49, 36, 25, 47]),
the goal is to cluster a dataset X = {x1, . . . , xn} ⇢ Rd, where each cluster is approximated by an a�ne j-
dimensional subspace. Namely, we define an objective function for (k, j)-projective clustering problems with `z
cost on a dataset X, which aims to minimize

min
c2Cd

costz(X, c),

where the candidate solutions Cd consist of all k-tuples of j-dimensional a�ne subspaces. The cost function
costz(X, ·) maps each candidate solution c 2 Cd to a cost in R�0 given by the `z-norm of the vector of distances
between each dataset point x 2 X to its nearest point on one of the k subspaces. Intuitively, each point of the
dataset xi 2 X “pays” for the Euclidean distance to the nearest subspace in c 2 Cd, and the total cost is the
`z-norm of the n payments, one for each point.

There has been significant prior work which showed surprising results for the special case of (k, z)-clustering
(like k-means and k-median, which corresponds to (k, 0)-projective clustering with `z-cost) as well as for low-rank
approximation (which corresponds to (1, k)-projective clustering for non-a�ne subspaces with `2-cost) [7, 13, 6, 40].
It is important to note that the techniques in prior works are specifically tailored to the Euclidean optimization
problem at hand. For example, the results of [40], which apply for (k, 0)-clustering with `z-norm, rely on using
center points as the approximation and do not generalize to a�ne subspaces beyond dimension 0. The other result
of [13] for low-rank approximation uses the specific algebraic properties of the `2-norm which characterize the
optimal low-rank approximation but do not hold generally. In summary, these prior show that for (k, z)-clustering
and low-rank approximation, even though many pairwise distances among dataset points become highly distorted,
the cost of the optimization need not be significantly distorted.

Our Results. We show that (k, 0)-clustering with `z-norm and low-rank approximation are not isolated
incidents, but rather, part of a more general phenomenon. Our main conceptual contribution is the following:
we use algorithms for constructing coresets (via the sensitivity sampling framework of [23]) to obtain bounds on
dimension reduction. Then, the specific bounds that we obtain for the various problems depend on the sizes of
the coresets that the algorithms can produce. We can instantiate our framework to new upper bounds for the
following problems:

• (k, z)-Subspace Approximation. This problem is a restricted (1, k)-projective clustering problems with
`z-cost. We seek to minimize over a k-dimensional subspace S of Rd the `z-norm of the n-dimensional vector
where the coordinate i 2 [n] encodes the distance between xi and the closest point in S.1

• (k, z)-Flat Approximation. This problem is exactly the (1, k)-projective clustering problem with `z cost.
It is similar to (k, z)-subspace approximation, except we optimize over all a�ne subspaces.

• (k, z)-Line Approximation. This problem corresponds to (k, 1)-projective clustering with `z-cost. The
optimization minimizes over an arbitrary set L of k of 1-dimensional a�ne subspaces l1, . . . , lk (i.e., k lines
in Rd), the `z-norm of the n-dimensional vector where the coordinate i 2 [n] encodes the distance between
xi and the closest point on any line in L.

Concretely, our quantitative results are summarized by the following theorem.

1
This is a restricted version of projective clustering because subspaces are not a�ne and required to go through the origin.
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Target Dimension for Johnson-Lindenstrauss Transforms
Problem New Result Prior Best

(k, z)-subspace Õ(zk2/"3) O(k/"2), only z = 2 [13]

(k, z)-flat Õ(zk2/"3) Õ(zk2 log n/"3) [36]

(k, z)-line O((k log log n+ z + log(1/"))/"3) None

Figure 1: Comparison to Prior Bounds

Theorem 1.1. (Main Result—Informal) Let X = {x1, . . . , xn} ⇢ Rd be any dataset, and Jd,t denote a t⇥d
matrix of i.i.d entries from N (0, 1/t). Let Cd and Ct be candidate solutions for a projective clustering problem in
Rd and Rt, respectively. For any " 2 (0, 1), we have

Pr
⇧⇠Jd,t

����
minc02Ct cost(⇧(X), c0)

minc2Cd cost(X, c)
� 1

����  "

�
� 0.9(1.2)

whenever:

• (k, z)-subspace and (k, z)-flat approximation: Cd and Ct are all k-dimensional subspaces of Rd and Rt,
respectively; the cost measures the `z-norm of distances between points to the subspace; and, t = Õ(zk2/"3).
Similarly, the same bound on t holds for Cd and Ct varying over all a�ne k-dimensional subspaces.

• (k, z)-line approximation: Cd and Ct are all k-tuples of lines in Rd and Rt, respectively; the cost measures
the `z-norm of distances between points and the nearest line; and, t = O((k log log n+ z + log(1/"))/"3).

In all cases, the bound that we obtain is directly related to the size of the best coresets from the sensitivity sampling
framework, and all of our proofs follow the same format.2 Our proofs are not entirely black-box applications of
coresets, since we use the specific instantiations of the sensitivity sampling framework. We believe that any
improvement on the size of the best coresets will likely lead to quantitative improvements on the dimension
reduction bounds. However, improving our current bounds by either better coresets or via a di↵erent argument
altogether (for example, improving on the cubic dependence on ") seems to require significantly new ideas.

Remark 1.1. (High Probability Bounds) Theorems are stated with respect to probability 0.9 and can be made
arbitrarily close to 1 (by increasing the constant factor in the dimensionality t). For high-probability guarantees,
i.e., those which hold with probability 1� � for any � > 0, a straight-forward adaptation would incur extra factors
of O(log(1/�)). As we will see, one factor would come from ensuring randomized coreset constructions hold with
probability 1� �, and another factor to ensure the dimension reduction preserves distances (or subspaces spanned)
among coreset points with probability 1� �.

A Subtlety in “For-All” versus “Optimal” Guarantees. Our results focus on applying the Johnson-
Lindenstrauss transform and preserving the optimal cost, i.e., that the minimizing solution in the original and
the dimension reduced space have approximately the same cost. A stronger guarantee which one may hope for, a
so-called “for-all” guarantee, asks that after applying the Johnson-Lindenstrauss transform, every solution has its
cost approximately preserved before and after dimension reduction. We do not achieve “for all” guarantees, like
those appearing in [40]. However, we emphasize that various subtleties arise in what is meant by “a solution.”
In particular, prior work on dimension reduction and coresets parametrize to solutions di↵erently—the coreset
literature considers optimal centers, and [40] to partitions of inputs.

Consider the 1-medoid problem, a constrained version of the 1-means problem. The 1-medoid cost of a dataset
X is the minimum over centers c chosen from the dataset X, of the sum of squares of distances from each dataset
point x to c. The subtlety is: one can apply a Johnson-Lindenstrauss transform to t = O(log(1/")/"2) dimensions
and preserve the 1-means cost—for 1-medoid, we show that one cannot.

2
The reason we did not generalize the results to (k, j)-projective clustering with `z-cost with j > 1 is that these problems do not

admit small coresets [26]. Researchers have studied “integer (k, j)-projective clustering” where one restricts the input points to have

bounded integer coordinates, where small coresets do exists [20]. However, using this approach for dimension reduction would incur

additional additive errors, so we have chosen not to pursue this route.
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Theorem 1.2. (Johnson-Lindenstrauss for Medoid—Informal (see Theorem A.1)) For any t =
o(log n), applying a Johnson-Lindenstrauss transform to dimension t decreases the cost of the 1-medoid prob-
lem by a factor approaching 2.

Theorem 1.2 does not contradict the “for-all” guarantee of [40] because there, a candidate solution for (k, z)-
clustering refers to a partition of X into k parts and not a set of centers. For k = 1, there are many possible
centers but only one partition. For (k, z)-subspace and -flat approximation, an analogous issue arises. Consider
the 1-column subset selection problem, a constrained version of the subspace approximation problem, where one
must choose a 1-dimensional subspace going through a dataset point to approximate the entire dataset. The 1-
column subset selection cost of a dataset is the minimum over 1-dimensional subspaces spanned by a dataset point
of X, of the sum of squares of distances from each dataset point x to the projection onto the subspace. Similarly
to Theorem 1.2, a Johnson-Lindenstrauss transform does not preserve the cost of 1-column subset selection.

Theorem 1.3. (Johnson-Lindenstrauss for Column Subset Selection—Informal (see Theorem A.2))

For any t = o(log n), applying a Johnson-Lindenstrauss transform to dimension t decreases the cost of the
1-column subset selection problem by a factor approaching 3/2.

The above theorem does not contradict the “for-all” guarantee of [13] for similar reasons (which, in addition,
crucially rely on having z = 2, and which we elaborate on in Appendix A). For (k, z)-line approximation,
however, there is an interesting open problem: is it true that after applying a Johnson-Lindenstrauss transform
to t = poly(k log log n/"), for all partitions of X into k parts, the cost of optimally approximating each part with
a line has its cost preserved.

1.2 Related Work
Dimension Reduction. Our paper continues a line of work initiated by Boutsidis, Zouzias, and Drineas

[7], who first studied the e↵ect of a Johnson-Lindenstrauss transform for k-means clustering, and showed
that t = O(k/"2) su�ced for a (2 + ")-approximation. The bound was improved to (1 + ")-approximation
with t = O(k/"2) by Cohen, Elder, Musco, Musco, Persu [13], who also showed that t = O(log k/"2)
gave a (9 + ")-approximation. Becchetti, Bury, Cohen-Addad, Grandoni, Schwiegelshohn [6] showed that
t = O((log k + log log n) log(1/")/"6) su�ced for preserving the costs of all k-mean clusterings. Makarychev,
Makarychev, and Razenshteyn [40] improved and generalized the above bounds for all (k, z)-clustering. They
showed that t = O((log k + z log(1/") + z2)/"2) preserved costs to (1± ")-factor.

For subspace approximation problems, [13] showed that t = O(k/"2) preserves the cost of (k, 2)-subspace
approximation to (1+ ")-factor. In addition, [36] showed that O(zk2 log n/"3) preserved the cost of the (k, z)-flat
approximation to (1 + ")-factor.

Coresets. Coresets are a well-studied technique for reducing the size of a dataset, while approximately
preserving a particular desired property. Since its formalization in Agarwal, Har-Peled, and Varadarajan
[2], coresets have played a foundational role in computational geometry, and found widespread application in
clustering, numerical linear algebra, and machine learning (see the recent survey [22]). Indeed, even for clustering
problems in Euclidean spaces, there is a long line of work [4, 28, 2, 10, 37, 23, 49, 48, 24, 9, 46, 31, 5, 16, 14, 15,
8, 17, 30] exploring the best coreset constructions.

Most relevant to our work is the sensitivity sampling framework of Feldman and Langberg [23], which gives
algorithms for constructing coresets for the projective clustering problems we study. In light of the results of [23],
as well as the classical formulation of the Johnson-Lindenstrauss lemma [35], it may seem natural to apply coreset
algorithms and dimensionality reduction concurrently. However, this is not without a few technical challenges.
As we will see in the next subsection, it is not necessarily the case that coreset algorithms and random projections
“commute.” Put succinctly, the random projection ⇧ of a coreset of X may not be a coreset of the random
projection ⇧(X). Indeed, proving such a statement constitutes the bulk of the technical work.

1.3 Organization The following section (Section 2) overviews the high-level plan, since all our results follow
the same technique. To highlight the technique, the first technical section considers the case of (k, z)-clustering
(Section 4), where the technique of arguing via coresets shows to obtain t = O((log(k) + z log(1/"))/"2).
The remaining sections cover the technical material for (k, z)-subspace approximation (in Section 5), (k, z)-flat
approximation (in Section 6), and finally (k, z)-line approximation (in Section 7).
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2 Overview of Techniques

In this subsection, we give a high-level overview of the techniques employed. As it will turn out, all results in this
paper follow from one general technique, which we instantiate for the various problem instances.

We give an abstract instantiation of the approach. We will be concerned with geometric optimization problems
of the following sort:

• For each d 2 N, we specify a class of candidate solutions given by a set Cd. For example, in center-based
clustering, Cd may be given by a tuple of k points in Rd, corresponding to k centers for a center-based
clustering. In subspace approximation, the set Cd may denote the set of all k-dimensional subspaces of Rd.

• There will be a cost function fd : Rd⇥Cd ! R�0 which, takes a point x 2 Rd and a potential solution c 2 Cd,
and outputs the cost of x on c. Continuing on the example on center-based clustering, fd may denote the
distance from a dataset point x 2 Rd to its nearest point in c. In subspace approximation, fd may denote
the distance from a dataset point to the orthogonal projection of that point onto the subspace c. For a
parameter z 2 N, we will denote the cost of using c for a dataset X ⇢ Rd by

costd,z(X, c) =

 
X

x2X

fd(x, c)
z

!1/z

.

For simplicity in the notation, we will drop the subscripts from the functions f and cost when they are clear
from context.

We let Jd,t denote a distribution over linear maps ⇧ : Rd ! Rt which will satisfy some “Johnson-Lindenstrauss”
guarantees (we will specify in the preliminaries the properties we will need). For concreteness, we will think of
⇧ ⇠ Jd,t given by matrix multiplication by a t ⇥ d matrix of i.i.d draws of N (0, 1/t). We ask, for a particular
bound on the dataset size n 2 N, a geometric optimization problem (specified by {Cd}d2N, fd and z), and a
parameter " 2 (0, 1), what is the smallest t 2 N such that with probability at least 0.9 over the draw of ⇧ ⇠ Jd,t,

1

1 + "
· min
c2Cd

cost(X, c)  min
c2Ct

cost(⇧(X), c)  (1 + ") · min
c2Cd

cost(X, c).(2.3)

The right-most inequality in (2.3) claims that the cost after applying ⇧ does not increase significantly, i.e.,
minc2Ct cost(⇧(X), c)  (1 + ")minc2Cd cost(X, c). This direction is easy to prove for the following reason. For
a dataset X ⇢ Rd, we consider the solution c⇤ 2 Cd minimizing cost(X, c⇤). We sample ⇧ ⇠ Jd,t and we find
a candidate solution c⇤⇤ 2 Ct which exhibits an upper bound on minc2Ct cost(⇧(X), c)  cost(⇧(X), c⇤⇤). For
example, in the center-based clustering, c⇤ 2 Cd is a set of k centers in Rd, and we may consider c⇤⇤ 2 Ct as the k
centers from c⇤ after applying ⇧. The fact that cost(⇧(X), c⇤⇤)  (1 + ")cost(X, c⇤) with high probability over
⇧ ⇠ Jd,t will follow straight-forwardly from properties of Jd,t. Importantly, the optimal solution c⇤ does not
depend on ⇧ ⇠ Jd,t. In fact, while we expect ⇧ : Rd ! Rt to distort some distances substantially, we can pick
c⇤⇤ 2 Ct so that too many distortions on these points is unlikely.

However, the same reasoning does not apply to the left-most inequality in (2.3). This is because the solution
c⇤⇤ 2 Ct which minimizes minc2Ct cost(⇧(X), c) depends on⇧. Indeed, we would expect c⇤⇤ 2 Ct to take advantage
of distortions in ⇧ in order to decrease the cost of the optimal solution. We proceed by the following high level
plan. We identify a sequence of important events defined over the draw of ⇧ ⇠ Jd,t which occur with probability
at least 0.9. The special property is that if ⇧ satisfies these events, we can identify, from c⇤⇤ 2 Ct minimizing
cost(⇧(X), c⇤⇤), a candidate solution c⇤ 2 Cd which exhibits an upper bound cost(X, c⇤)  (1+")cost(⇧(X), c⇤⇤).

We now specify how exactly we define, for an optimal c⇤⇤ 2 Ct (depending on ⇧), a candidate solution c⇤ 2 Ct
whose cost is not much higher than cost(⇧(X), c⇤⇤). For that, we will use the notion of coresets. Before the
formal definition, we note there is a natural extension of cost for weighted datasets. In particular, if S ⇢ Rd is
a set of points and w : S ! R�0 is a set of weights for S, then we will use cost((S,w), c) as 1/z-th power of the
sum over all x 2 S of w(x) · fd(x, c)z.

Definition 2.1. ((Weak)
3
Coresets, see also [22]) For d 2 N, let Cd denote a class of candidate solutions

and f : Rd⇥ Cd ! R�0 specify the cost of a point to a solution. For a dataset X ⇢ Rd and a parameter " 2 (0, 1),
a (weak) "-coreset for X is a weighted set of points S ⇢ Rd and w : S ! R�0 which satisfy

1

1 + "
· min
c2Cd

cost(X, c)  min
c2Cd

cost((S,w), c)  (1 + ") · min
c2Cd

cost(X, c).
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It will be crucial for us that these problems admit small coresets. More specifically, for the problems considered
in this paper, there exists algorithms which can produce small-size coresets from a dataset. In what follows, ALG
is a randomized algorithm which receives as input a dataset X ⇢ Rd and outputs a weighted subset of points
(S,w) which is a weak "-coreset for X with high probability. Computationally, the benefit of using coresets is
that the sets S tend to be much smaller than X, so that one may compute on (S,w) and obtain an approximately
optimal solution for X. For us, the benefit will come in defining the important events. At a high level, since S
is small, the important events defined with respect to ⇧ will only worry about distortions within the subset (or
subspace spanned by) S.

Consider the following approach:

1. We begin with the original dataset X ⇢ Rd, and we consider the solution c 2 Cd which minimizes cost(X, c).
The goal is to show that cost(X, c) cannot be much larger than cost(⇧(X), c⇤⇤), where c⇤⇤ 2 Ct minimizes
cost(⇧(X), c⇤⇤).

2. Instead of considering the entire dataset X, we execute ALG(X) and consider the weak "-coreset (S,w)
that we obtain. If we can identify a candidate solution c⇤ 2 Cd whose cost cost((S,w), c⇤)  (1 +
")cost(⇧(X), c⇤⇤), we would be done. Indeed, minc2Cd cost((S,w), c)  cost((S,w), c⇤), and the fact (S,w)
is a weak "-coreset implies minc2Cd cost(X, c)  (1 + ")minc2Cd cost((S,w), c).

3. Moving to a coreset (S,w) allows one to relate cost((S,w), c⇤) and cost((⇧(S),w), c⇤⇤) by considering the
performance of ⇧ on S. The benefit is that the important events, defined over the draw of ⇧ ⇠ Jd,t, set
t as a function of |S|, instead of |X|. A useful example to consider is requiring ⇧�1 be (1 + ")-Lipschitz
on the entire subspace spanned by S, which requires t = ⇥(|S|/"2). For the problems considered here, a
nearly optimal c⇤⇤ 2 Ct for (S,w) will be in the subspace spanned by S, so we may identify c⇤ 2 Cd whose
cost on (S,w) is not much higher than the cost((⇧(S),w), c⇤⇤) by evaluating ⇧�1(c⇤⇤) since c⇤⇤ lies inside
span(S).4

4. The remaining step is showing cost((⇧(S),w), c⇤⇤)  (1+")cost(⇧(X), c⇤⇤). In particular, one would like to
claim (⇧(S),w) is a weak "-coreset for ⇧(X) and use the right-most inequality in Definition 2.1. However,
it is not clear this is so. The problem is that the algorithm ALG depends on the d-dimensional representation
of X ⇢ Rd, and (⇧(S),w) may not be a valid output for ALG(⇧(X)). As we show, this does work for (some)
coreset algorithms built on the sensitivity sampling framework (see, [23, 9]).5

2.0.1 Sensitivity Sampling for Step 4 In the remainder of this section, we briefly overview the sensitivity
sampling framework, and the components required to make Step 4 go through. At a high level, coreset algorithms
in the sensitivity sampling framework proceed in the following way. Given a dataset X ⇢ Rd, the algorithm
computes a sensitivity sampling distribution �̃ supported on X. The requirement is that, for each potential
solution c 2 Cd, sampling from �̃ gives a low-variance estimator for costd,z(X, c)z. In particular, we let �̃(x) be
the probability of sampling x 2 X. Then, for any distribution �̃ and any c 2 Cd,

E
x⇠�̃


1

�̃(x)
· fd(x, c)z

costd,z(X, c)z

�
= 1.(2.4)

Equation 2.4 implies that, for any m 2 N, if S is m i.i.d samples from �̃ and w(x) = 1/(m�̃(x)), the expectation
of costd,z((S,w), c)z is costd,z(X, c)z. In addition, the algorithm designs �̃ so that, for a parameter T > 0,

sup
c2Cd

E
x⇠�̃

"✓
1

�̃(x)
· fd(x, c)z

costd,z(X, c)z

◆2
#
 T.(2.5)

If we set m � T/"2, (2.5) and Chebyshev’s inequality implies costd,z((S,w), c)z ⇡1±" costd,z(X, c)z for each c 2 Cd
with a high constant probability, and the remaining work is in increasing m by a large enough factor to “union

4
While the above results in bounds for t which are already meaningful, we will exploit other geometric aspects of the problems

considered to get bounds on t which are logarithmic in the coreset size. For center-based clustering, [40] showed that one may apply

Kirzbraun’s theorem. For subspace approximation, we use the geometric lemmas of [44].

5
We will not prove that with high probability over ⇧ and ALG(X), (⇧(S),w) is a weak "-coreset for ⇧(X). Rather, all we need is

that the right-most inequality in Definition 2.1 holds for (⇧(S),w) and ⇧(X), which is what we show.
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bound” over all c 2 Cd. There is a canonical way of ensuring �̃ and T satisfy (2.5): we first define � : X ! R�0,
known as a “sensitivity function”, which sets for each x 2 X,

�(x) � sup
c2Cd

fd(x, c)z

costd,z(X, c)z
, and T =

X

x2X

�(x),(2.6)

which is known as the “total sensitivity.” Then, the distribution is given by letting �̃(x) = �(x)/T .
We now show how to incorporate the map ⇧ ⇠ Jd,t, to argue Step 4. Recall that we let S denote m i.i.d

draws from �̃ and the weights be w(x) = 1/(m�̃(x)). We want to argue that, with high constant probability over
the draw of (S,w) and ⇧ ⇠ Jd,t, we have

costt,z((⇧(S),w), c⇤⇤)  (1 + ") · costt,z(⇧(X), c⇤⇤).(2.7)

First, note that the analogous version of (2.4) for costt,z(⇧(X), c) continues to hold. In particular, for any map
⇧ in the support of Jd,t and c⇤⇤ 2 Ct minimizing costt,z(⇧(X), c),

E
x⇠�̃


1

�̃(x)
· ft(⇧(x), c⇤⇤)z

costt,z(⇧(X), c⇤⇤)z

�
= 1.(2.8)

Hence, it remains to define �̃ satisfying (2.6) which also satisfies one additional requirement. With high probability
over ⇧ ⇠ Jd,t, we should have

E
x⇠�̃

"✓
1

�̃(x)
· ft(⇧(x), c⇤⇤)z

costt,z(⇧(X), c⇤⇤)

◆2
#
. T.(2.9)

The above translates to saying, for most ⇧ ⇠ Jd,t the variance of cost((⇧(S),w), c⇤⇤), when m = O(T/"2), is
small. Once that is established, we may apply Chebyshev’s inequality and conclude (2.7) with high constant
probability.6

2.0.2 The Circularity and How to Break It One final technical hurdle arises. While one may define the
sensitivity function �(x) to be exactly sup

c2Cd
fd(x, c)z/costd,z(X, c)z and automatically satisfy (2.6), it becomes

challenging to argue that (2.9) holds. In the end, the complexity we seek to optimize is the total sensitivity T , so
there is flexibility in defining � while showing (2.9) holds. In fact, sensitivity functions � which are computationally
simple tend to be known, since an algorithm using coresets must quickly compute �(x) for every x 2 X.

The sensitivity functions � used in the literature (for instance, in [23, 49]) are defined with respect to an
approximately optimal c 2 Cd (or bi-criteria approximation) for costd,z(X, c). Furthermore, the arguments used to
show these function satisfy (2.6), which we will also employ for (2.9), crucially utilize the approximation guarantee
on c 2 Cd. The apparent circularity appears in approximation algorithms and also shows up in the analysis here:

• For X ⇢ Rd, we identify the optimal c 2 Cd minimizing costd,z(X, c), and use c to define � : X ! R�0. The
fact that c 2 Cd is optimal (and therefore approximately optimal) allows us to use known arguments (in
particular, those in [49, 48]) to establish (2.6) and give an upper bound on T .

• We use the proof of the “easy” direction to identify a solution c0 2 Ct with costt,z(⇧(X), c0)  (1 +
")costd,z(X, c) (recall this was used to establish the right-most inequality in (2.3)). From the analytical
perspective, it is useful to think of �0 : ⇧(X) ! R�0 as the function one would get from defining a
sensitivity function like in the previous step with c0 instead of c. If we could show c0 2 Ct was approximately
optimal for ⇧(X), we could use [49, 48] again to argue (2.9). The circularity is the following. Showing
c0 2 Ct is approximately optimal means showing an upper bound on minc2Ct costt,z(⇧(X), c) in terms of
costt,z(⇧(X), c0). Since, we picked costt,z(⇧(X), c0) to be at most (1+")minc2Cd costd,z(X, c), this is exactly
what we sought to prove.

6
Since Steps 1–4 only argued about the optimal c⇤⇤ 2 Ct, there is no need to “union bound” over all c 2 Ct in our arguments.
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If “approximately optimal” above required c0 2 Ct be a (1 + ")-approximation to the optimal ⇧(X), we would
have a complete circularity and be unable to proceed. However, similarly to the case of approximation algorithms,
it su�ces to have a poor approximation. Suppose we showed c0 2 Ct was a C-approximation, then, increasing m
by a factor depending on C (which would a↵ect the resulting dimensionality t) would account for this increase
and drive the variance back down to "2. Moreover, showing c0 is a O(1)-approximation with probability at
least 0.99 over ⇧ ⇠ Jd,t, given Steps 1–4 is straight-forward. Instead of showing the stronger bound that
costt,z((⇧(S),w), c⇤⇤)  (1+")costt,z(⇧(X), c⇤⇤), we show that costt,z((⇧(S),w), c⇤⇤)  O(1)·costt,z(⇧(X), c⇤⇤).
The latter (loose) bound is a consequence of applying Markov’s inequality to (2.8).

In summary, we overcome the circularity by going through Steps 1–4 twice. In the first time, we show a
weaker O(1)-approximation. Specifically, we show that ⇧ ⇠ Jd,t preserves the cost of minc2Ct costd,z(⇧(X), c)
up to factor O(1). The first time around, we won’t upper bound the variance in (2.9), and we simply use
Markov’s inequality to (2.8) in order to prove a (loose) bound on Step 4. Once we’ve established the O(1)-factor
approximation, we are guaranteed that c0 2 Ct is a O(1)-approximation to minc2Ct costt,z(⇧(X), c). This means
that, actually, the sensitivity sampling distribution �̃ we had considered (when viewed as a sensitivity sampling
distribution for ⇧(X)) gives estimators with bounded variance, as in (2.9). In particular, going through Steps 1–4
once again implies that c0 2 Ct was actually the desired 1± "-approximation.

3 Preliminaries

We specify the properties we use from the distribution Jd,t. We will refer to these as “Johnson-Lindenstrauss”
distributions. Throughout the proof, we will often refer to Jd,t as given by a t ⇥ d matrix of i.i.d draws from
N (0, 1/t). The goal of specifying the useful properties is to use other “Johnson-Lindenstrauss”-like distributions.
The first property we need is that ⇧ : Rd ! Rt is a linear map, and that any x, y 2 Rd satisfies

E
⇧⇠Jd,t


k⇧(x)�⇧(y)k22
kx� yk22

�
= 1.

We use the standard property of Jd,t, that ⇧ preserves distances with high probability, i.e., for any x, y 2 Rd,

Pr
⇧⇠Jd,t

����
k⇧(x)�⇧(y)k22
kx� yk22

� 1

���� � "

�
 e�⌦("2t).

More generally, we use the conclusion of the following lemma. We give a proof when Jd,t is a t⇥ d i.i.d entries of
N (0, 1/t).

Lemma 3.1. Let Jd,t denote a Johnson-Lindenstrauss distribution over maps Rd ! Rt given by a matrix
multiplication on the left by a t⇥ d matrix of i.i.d draws of N (0, 1/t). If t & z/"2, then for any x, y 2 Rd,

E
⇧⇠Jd.t

"✓
k⇧(x)�⇧(y)kz2
kx� ykz2

� 1

◆+
#
 (1 + ")z � 1

100
.7

Proof. We note that by the 2-stability of the Gaussian distribution, we have k⇧(x) � ⇧(y)k22 is equivalently
distributed as kgk22 ·kx�yk22, where g ⇠ N (0, It/t). Therefore, we have that for any � > 0 which we will optimize
shortly to be a small constant times ",

E
⇧⇠J (d,t)

"✓
k⇧(x)�⇧(y)kz2
kx� ykz2

� 1

◆+
#
 (1 + �)z � 1 + E

g⇠N (0,It/t)

⇥
(kgkz2 � (1 + �)z)+

⇤
.

Furthermore,

E
g⇠N (0,It/t)

h
(kgkz2 � (1 + �)z)+

i
=

Z 1

u:(1+�)z
Pr [kgkz2 � u] du =

z

2

Z 1

v:(1+�)2
Pr

⇥
kgk22 � v

⇤
· vz/2�1dv.

7
We use the notation (t)+ = max{t, 0}.
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We will upper bound the probability that kgk22 exceeds v by the Cherno↵-Hoe↵ding method. In particular, recall
that kgk22 when N (0, It/t) is distributed as a �2-random variable with t degrees of freedom, rescaled by 1/t, such
that the moment generating function of kgk22 has the following closed form solution whenever ↵ < t/2:

log

✓
E

g⇠N (0,It/t)

⇥
exp

�
↵kgk22

�⇤◆
= � t

2
log

✓
1� 2↵

t

◆
 ↵+

2↵2

t

In particular, for any ↵ < t/2, we may upper bound

z

2

Z 1

v:(1+�)2
Pr

⇥
kgk22 � v

⇤
vz/2�1  z

2
· exp

✓
↵+

2↵2

t

◆Z 1

v:(1+�)2
exp

⇣
�
⇣
↵� z

2
� 1

⌘
v
⌘
dv

 z

2↵� z � 2
· exp

✓
2↵2

t
� ↵�+ (1 + �)(z/2 + 1)

◆
<

�

100
,

by letting setting ↵ = t�/10 whenever t & z/�2. Setting � to be a small constant of " gives the desired guarantees.

Definition 3.1. (Subspace Embeddings) Let d 2 N and A ⇢ Rd denote a subspace of Rd. For " > 0, a map
f : Rd ! Rt is an "-subspace embedding of A if, for any x 2 A,

1

1 + "
· kf(x)k2  kxk2  (1 + ") · kf(x)k2.

Lemma 3.2. Let d 2 N and A ⇢ Rd be a subspace of dimension at most k. For ", � 2 (0, 1/2), let Jd,t denote
a Johnson-Lindenstrauss distribution over maps Rd ! Rt given by a matrix multiplication on the left by a t⇥ d
matrix of i.i.d draws of N (0, 1/t). If t ⇠ (k + log(1/�))/"2, then ⇧ ⇠ Jd,t is an "-subspace embedding of A with
probability at least 1� �.

4 Center-based (k, z)-clustering

In the (k, z)-clustering problems, for any set C ⇢ Rd of k points, and point x 2 Rd, we write

costz
z
(x,C) = min

c2C

kx� ckz2,

and for a subset X ⇢ Rd,

costz
z
(X,C) =

X

x2X

costz
z
(x,C) =

X

x2X

min
c2C

kx� ckz2.

We extend the above notation to weighted subsets, where for a subset S ⇢ Rd with (non-negative) weights
w : S ! R�0, we write costz

z
((S,w), C) =

P
x2S

w(x)minc2C kx � ckz2. The main result of this section is the
following theorem.

Theorem 4.1. (Johnson-Lindenstrauss for Center-Based Clustering) Let X = {x1, . . . , xn} ⇢ Rd be
any set of points, and let C ⇢ Rd denote the optimal (k, z)-clustering of X. For any " 2 (0, 1/2), suppose we let
Jd,t be the distribution over Johnson-Lindenstrauss maps where

t & log k + z log(1/")

"2
,

Then, with probability at least 0.9 over the draw of ⇧ ⇠ Jd,t,

1

1 + "
· costz(X,C)  min

C
0⇢Rt

|C0|=k

costz(⇧(X), C 0)  (1 + ")costz(X,C).

There are two directions to showing dimension reduction: (1) the optimal clustering in the reduced space is
not too expensive, and (2) the optimal clustering in the reduced space is not too cheap. We note that (1) is simple
because we can exhibit a clustering in the reduced space whose cost is not too high; however, (2) is much trickier,
since we need to rule out a too-good-to-be-true clustering in the reduced space.
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4.1 Easy Direction: Optimum Cost Does Not Increase

Lemma 4.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points and let C ⇢ Rd of size k be the centers of the
optimal (k, z)-clustering of X. We let Jd,t be the distribution over Johnson-Lindenstrauss maps. If t & z/"2,
then with probability at least 0.99 over the draw of ⇧ ⇠ Jd,t,

 
X

x2X

k⇧(x)�⇧(c(x))kz2

!1/z

 (1 + ")costz(X,C),

and hence,
min
C

0⇢Rt

|C0|=k

costz(⇧(X), C 0)  (1 + ") min
C⇢Rd

|C|=k

costz(X,C).

Proof. For x 2 X, let c(x) 2 C denote the closest point from C to x. We compute the expected positive deviation
from assigning ⇧(x) to ⇧(c(x)), and note that the costz(⇧(X),⇧(C)) can only be lower. Hence, if we can show

1

costz
z
(X,C)

E
⇧⇠Jd,t

"
X

x2X

(k⇧(x)�⇧(c(x))kz2 � kx� c(x)kz2)
+

#
. (1 + ")z � 1

100
,(4.10)

then by Markov’s inequality, we will obtain costz
z
(⇧(X),⇧(C))  (1 + ")zcostz

z
(X,C), and obtain the desired

bound when raising to power 1/z. This last part follows from Lemma 3.1.

4.2 Hard Direction: Optimum Cost Does Not Decrease We now show that after applying a Johnson-
Lindenstrauss map, the cost of the optimal clustering in the dimension-reduced space is not too cheap. This
section will be significantly more di�cult, and will draw on the following preliminaries.

4.2.1 Preliminaries

Definition 4.1. (Weak and Strong Coresets) Let X = {x1, . . . , xn} ⇢ Rd be a set of points. A (weak)
"-coreset of X for (k, z)-clustering is a subset S ⇢ Rd of points with weights w : S ! R�0 such that,

1

1 + "
· min
C⇢Rd

|C|k

costz(X,C)  min
C⇢Rd

|C|k

costz((S,w), C)  (1 + ") · min
C⇢Rd

|C|k

costz(X,C).

The coreset (S,w) is a strong "-coreset if, for all C = {c1, . . . , ck} ⇢ Rd, we have

1

1 + "
· costz(X,C)  costz((S,w), C)  (1 + ") · costz(X,C).

Notice that Definition 4.1 gives an approach to finding an approximately optimal (k, z)-clustering. Given
X ⇢ Rd, we find a (weak) "-coreset (S,w) and find the optimal clustering C ⇢ Rd with respect to the coreset
(S,w). Then, we can deduce that a clustering which is optimal for the coreset is also approximately optimal
for the original point set. A common and useful framework for building coresets is by utilizing the “sensitivity”
sampling framework.

Definition 4.2. (Sensitivities) Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as well
as k 2 N, z � 1. A sensitivity function � : X ! R�0 for (k, z)-clustering X in Rd is a function satisfying, that
for all x 2 X,

sup
C⇢Rd

|C|k

costz
z
(x,C)

costz
z
(X,C)

 �(x).

The total sensitivity of the sensitivity function � is given by

S� =
X

x2X

�(x).

For a sensitivity function, we let �̃ denote the sensitivity sampling distribution, supported on X, which samples
x 2 X with probability proportional to �(x).
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The following lemma gives a particularly simple sensitivity sampling distribution, which will be useful for
analyzing our dimension reduction procedure. The proof below will follow from two applications of the triangle
inequality which we reproduce from Claim 5.6 in [31].

Lemma 4.2. Let n, d 2 N and consider a set of points X = {x1, . . . , xn} ⇢ Rd. Let C ⇢ Rd of size k be optimal
(k, z)-clustering of X, and let c : X ! C denote the function which sends x 2 X to its closest point in C, and let
Xc ⇢ X be the set of points where c(x) = c. Then, the function � : X ! R�0 given by

�(x) = 2z�1 · kx� c(x)kz2
costz

z
(X,C)

+
22z�1

|Xc(x)|

is a sensitivity function for (k, z)-clustering X in Rd, satisfying

S� = 2z�1 + 22z�1 · k

Proof. Consider any set C 0 ⇢ Rd of k points, and let c0 : X ! C 0 be the function which sends each x 2 X to its
closest point in C 0. Then, we have

kx� c0(x)kz2  (kx� c(x)k2 + kc(x)� c0(x)k2)
z  2z�1kx� c(x)kz2 + 2z�1kc(x)� c0(x)kz2(4.11)

 2z�1kx� c(x)kz2 +
2z�1

|Xc(x)|
X

x2X

kc(x)� c0(x)kz2(4.12)

 2z�1kx� c(x)kz2 +
22(z�1)

|Xc(x)|
(costz

z
(X,C) + costz

z
(X,C 0)) ,(4.13)

where we used the triangle inequality and Hölder inequality in (4.11), and added additional non-negative terms
in (4.12), and we finally apply the triangle inequality and Hölder’s inequality once more in (4.13). Hence, using
the fact that C is the optimal clustering, we have

costz
z
(x,C 0)

costz
z
(X,C 0)

 2z�1 · kx� c(x)kz2
cost(X,C 0)

+
22(z�1)

|Xc(x)|

✓
costz

z
(X,C)

costz
z
(X,C 0)

+ 1

◆
 2z�1 · kx� c(x)kz2

costz
z
(X,C)

+
22z�1

|Xc(x)|
.

The bound on S� follows from summing over all x 2 X, noting the fact that
P

x2X
1/|Xc(x)| = k.

The main idea behind the sensitivity sampling framework for building coresets is to sample from a sensitivity
sampling distribution enough times in order to build a coreset. For this work, it will be su�cient to consider
the following theorem of [31], which shows that poly(k, 1/"z) draws from an appropriate sensitivity sampling
distribution su�ces to build strong "-coresets for (k, z)-clustering in Rd.

Theorem 4.2. ("-Strong Coresets from Sensitivity Sampling [31]) For any subset X = {x1, . . . , xn} ⇢
Rd and " 2 (0, 1/2). Let C ⇢ Rd of size k be the optimal (k, z)-clustering of X, and let �̃ denote the sensitivity
sampling distribution of Lemma 4.2.

• Let (S,w) denote a random (multi-)set S ⇢ X and w : S! R�0 given by, for m = poly(k, 1/"z) iterations,
sampling x ⇠ �̃ i.i.d and letting w(x) = 1/(m�̃(x)).

• Then, with probability 1� o(1) over the draw of (S,w), it is an "-strong coreset for X.

Theorem 4.3. (Kirszbraun theorem) Let Y ⇢ Rd1 and � : Y ! Rd2 be an L-Lipschitz map (with respect to
Euclidean norms on Rd1 and Rd2). There exists a map �̃ : Rd1 ! Rd2 which is L-Lipschitz extending �, i.e.,
�(x) = �̃(x) for all x 2 Y .

4.3 The Important Events We now define the important events which will allow us to prove that the optimum
(k, z)-clustering after dimension reduction does not decrease substantially. We first define the events, and then
we prove that if the events are all satisfied, then we obtain our desired lower bound.
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Definition 4.3. (The Events) Let X = {x1, . . . , xn} ⇢ Rd and C ⇢ Rd of size k be centers for an optimal
(k, z)-clustering of X, and �̃ is the sensitivity sampling distribution of X with respect to C as in Lemma 4.2. We
will consider the following experiment,

1. We generate a sample (S,w) by sampling from �̃ for m = poly(k, 1/"z) i.i.d iterations x ⇠ �̃ and set
w(x) = 1/(m�̃(x)).

2. Furthermore, we sample ⇧ ⇠ Jd,t which is a Johnson-Lindenstrauss map Rd ! Rt.

3. We let S0 = ⇧(S) ⇢ Rt denote the image of ⇧ on S.

The events are the following:

• E1 : The weighted (multi-)set (S,w) is a weak "-coreset for (k, z)-clustering X in Rd.

• E2 : The map ⇧ : S! S0, given by restricting ⇧ is (1 + ")-bi-Lipschitz.

• E3(�) : We let C0 ⇢ Rt of size k be the optimal centers for (k, z)-clustering ⇧(X) in Rt. The weighted
(multi-)set (⇧(S),w) satisfies

costz
z
((⇧(S),w),C0)  � · costz

z
(⇧(X),C0).

Lemma 4.3. Let X = {x1, . . . , xn} ⇢ Rd, and suppose (S,w) and ⇧ : Rd ! Rt satisfy events E1,E2 and E3(�),
then,

min
C

0⇢Rt

|C0|=k

costz(⇧(X), C 0) � 1

�1/z(1 + ")1+1/z
· min
C⇢Rd

|C|=k

costz(X,C).

Proof. Let C0 ⇢ Rt of size k denote the centers which give the optimal (k, z)-clustering of ⇧(X) in Rt. Then, by
E3,

costz
z
(⇧(X),C0) � (1/�) · costz

z
((⇧(S),w),C0).

Now, we use Kirszbraun’s Theorem, and extend ⇧�1 : Rt ! Rd in a (1 + ")-Lipschitz manner. Hence,

costz((⇧(S),w),C0) � 1

1 + "
· costz((S,w),⇧�1(C0)) � 1

1 + "
· min
C

00⇢Rd

|C00|=k

costz((S,w), C 00).

Finally, using the fact that (S,w) is an "-weak coreset, we may conclude that

costz
z
((S,w), C 00) � 1

1 + "
· costz

z
(X,C 00).

We now turn to showing that an appropriate setting of parameters implies that the events occur often. For
the first event, Theorem 4.2 from [31] implies event E1 occurs with probability 1 � o(1). We state the usual
guarantees of the Johnson-Lindenstrauss transform, which is what we need for event E2 to hold.

Lemma 4.4. Let S ⇢ Rd be any set of m points, and Jd,t denote the Johnson-Lindenstrauss map, with

t & logm

"2
.

Then, with probability 0.99 over the draw of ⇧ ⇠ Jd,t, ⇧ : S ! ⇧(S) is (1±")-bi-Lipschitz, and hence, E2 occurs
with probability 0.99.
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4.3.1 A Bad Approximation Guarantee

Lemma 4.5. (Warm-Up Lemma) Fix any ⇧ 2 Jd,t and let C 0 ⇢ Rt denote the optimal centers for (k, z)-
clustering of ⇧(X), then with probability at least 0.99 over the draw of (S,w) as per Definition 4.3,

X

x2S

w(x) · min
c2C0
k⇧(x)� ckz2  100 · costz

z
(⇧(x), C 0),

with probability at least 0.99. In other words, E3(100) holds with probability at least 0.99.

Proof. For any x 2 X, let c0(x) 2 C 0 denote the point in C 0 closest to ⇧(x). Then, we note

X

x2S

w(x) · k⇧(x)� c0(x)kz2 = E
x⇠S


1

�̃(x)
· k⇧(x)� c0(x)kz2

�
,(4.14)

so that in expectation over S, we have

E
S


E

x⇠S


1

�̃(x)
· k⇧(x)� c0(x)kz2

��
= E

x⇠�̃


1

�̃(x)
· k⇧(x)� c0(x)kz2

�
= costz

z
(⇧(X), C 0).

By Markov’s inequality, we obtain our desired bound.

Corollary 4.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points, and C ⇢ Rd of size k be centers for optimally
(k, z)-clustering X. For any " 2 (0, 1/2), let Jd,t be the Johnson-Lindenstrauss map with

t & z log(1/") + log k

"2
,

Then, with probability at least 0.97 over the draw of ⇧ ⇠ Jd,t,

1

1001/z(1 + ")1+1/z
· costz (X,C)  min

C
0⇢Rt

|C0|=k

costz(⇧(X), C 0).(4.15)

Proof. We sample ⇧ ⇠ Jd,t and (S,w) as per Definition 4.3. By Lemma 4.4, Lemma 4.5, Theorem 4.2, and
a union bound, we have events E1, E2, and E3(100) hold with probability at least 0.97. Hence, we obtain the
desired result from applying Lemma 4.3.

4.3.2 Improving the Approximation In what follows, we will improve upon the approximation of
Corollary 4.1 significantly, to show that with large probability, E3(1 + ") holds. We let X = {x1, . . . , xn} ⇢ Rd

and denote C ⇢ Rd of size k to be the optimal (k, z)-clustering of X. As before, we let c : X ! C map each
x 2 X to the point center in C, and � : X ! R�0 be the sensitivities of X with respect to C as in Lemma 4.2,
and �̃ be the sensitivity sampling distribution.

We define one more event, E4, with respect to the randomness of ⇧ ⇠ Jd,t. First, we let Dx 2 R�0 denote
the random variable given by

Dx

def
=
k⇧(x)�⇧(c(x))k2
kx� c(x)k2

.(4.16)

Notice that when ⇧ consists of i.i.d N (0, 1/t), then tD2
x
is distributed as �2-random variable with t degrees of

freedom. We say event E4 holds whenever

X

x2X

D2z
x

· �(x)  100(k + 1)2z.(4.17)

Proposition 4.1. With probability at least 0.99 over the draw of ⇧ ⇠ Jd,t, event E4 holds.
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Proof. The proof will simply follow from computing the expectation of the left-hand side of (4.17), and applying
Markov’s inequality. In particular, for every x 2 X, by the two-stability of the Gaussian,

E
⇧⇠Jd,t

⇥
D2z

x

⇤
 2z.

The remaining part follows from the bound on S�.

Lemma 4.6. Let ⇧ 2 Jd,t be a Johnson-Lindenstrauss map where, for ↵ > 1, the following events holds:

1. Guarantee from Lemma 4.1:
P

x2X
k⇧(x)�⇧(c(x))kz2  ↵ · costz

z
(X,C).

2. Guarantee from Corollary 4.1: letting C 0 ⇢ Rt be the optimal (k, z)-clustering of ⇧(X), then
costz

z
(⇧(X), C 0) � (1/↵) · costz

z
(X,C).

3. Event E4 holds.

Then, if we let (S,w) denote m = poly(k, 2z, 1/",↵) i.i.d draws from �̃ and w(x) = 1/(m�̃(x)), with probability
at least 0.99,

costz
z
((⇧(S),w), C 0)  (1 + ") · costz

z
(⇧(X), C 0).

Proof. The proof follows the same schema as Lemma 4.5. However, we give a bound on the variance of the
estimator in order to improve upon the use of Markov’s inequality. Specifically, we compute the variance of a
rescaling of (4.14).

Var
S


E

x⇠S


1

�̃(x)
· k⇧(x)� c0(x)kz2
costz

z
(⇧(X), C 0)

��
 1

m
E

x⇠�̃

"✓
1

�̃(x)
· k⇧(x)� c0(x)kz2
costz

z
(⇧(X), C 0)

◆2
#

=
S�

m

X

x2X

✓
1

�(x)
· k⇧(x)� c0(x)k2z2
cost2z

z
(⇧(X), C 0)

◆
.(4.18)

By the same argument as in the proof of Lemma 4.2 (applying the triangle inequality twice),

k⇧(x)� c0(x)kz2
costz

z
(⇧(X), C 0)

 2z�1 · k⇧(x)�⇧(c(x))kz2
costz

z
(⇧(X), C 0)

+
22(z�1)

|Xc(x)|

✓
costz

z
(⇧(X),⇧(C))

costz
z
(⇧(X), C 0)

+ 1

◆
.(4.19)

Recall that we have the lower bound (2) and the upper bound (1). Hence, along with the definition of Dx in
(4.16) (we remove the bold-face as ⇧ is fixed), we upper bound the left-hand side of (4.19) by

↵ · 2z�1 · D
z

x
· kx� c(x)kz2

costz
z
(X,C)

+
22(z�1)

|Xc(x)|
�
↵2 + 1

�
 ↵2 · 2100z(Dz

x
+ 1) · �(x).

In particular, we may plug this in to (7.32) and use the definition of �(x). Specifically, one obtains the variance
in (7.32) is upper bounded by

S� · ↵4 · 2200z

m

X

x2X

(Dz

x
+ 1)2 · �(x)  4S2

�
· ↵4 · 2200z

m
+

4S� · ↵4 · 2200z

m

X

x2X

D2z
x

· �(x)

 1000S2
�
· ↵4 · 2300z

m
,

where in the final inequality, we used the fact that E4 holds. Hence, letting m be a large enough polynomial in
poly(k, 2z, 1/",↵) implies the variance is smaller than o("2), so we can apply Chebyshev’s inequality.

Corollary 4.2. Let X = {x1, . . . , xn} ⇢ Rd by any set of points, and C ⇢ Rd of size k be centers for optimally
(k, z)-clustering X. For any " 2 (0, 1/2), let Jd,t be the Johnson-Lindenstrauss map with

t & z log(1/") + log k

"2
.
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Then, with probability at least 0.92 over the draw of ⇧ ⇠ Jd,t,

1

(1 + ")1+2/z
· costz(X,C)  min

C
0⇢Rt

|C0|k

costz(⇧(X), C 0).

Proof. We sample ⇧ ⇠ Jd,t and (S,w) as per Definition 4.3. Note that by Theorem 4.2 and the setting of m,
event E1 holds with probability at least 0.99 over the draw of (S,w). By Lemma 4.1, Corollary 4.1, and Claim 4.1,
and the setting of m and t, the conditions (1), (2) and (3) of Lemma 4.6 hold with probability at least 0.95, with
↵ being set to a large enough constant, and hence event E3(1 + ") holds with probability at least 0.94. Finally,
event E2 holds with probability 0.99 by Lemma 4.4, and taking a union bound and Lemma 4.3 gives the desired
bound.

5 Subspace Approximation

In the (k, z)-subspace approximation problem, we consider a subspace R ⇢ Rd of dimension less than k, which
we may encode by a collection of at most k orthonormal vectors r1, . . . , rk 2 R. We let ⇢R : Rd ! Rd denote the
map which sends each vector x 2 Rd to its closest point in R, and note that

⇢R(x) = argmin
z2R

kx� zk22 =
kX

i=1

hx, rii · ri 2 Rd,

For any subset X ⇢ Rd and any k-dimensional subspace R, we let

costz
z
(X,R) =

X

x2X

kx� ⇢R(x)kz2 .

In this section, we will show that we may compute the optimum k-subspace approximation after applying a
Johnson-Lindenstrauss transform.

Theorem 5.1. (Johnson-Lindenstrauss for k-Subspace Approximation) Let X = {x1, . . . , xn} ⇢ Rd be
any set of points, and let R denote the optimal (k, z)-subspace approximation of X. For any " 2 (0, 1), suppose
we let Jd,t be the distribution over Johnson-Lindenstrauss maps where

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.9 over the draw of ⇧ ⇠ Jd,t,

1

1 + "
· costz(X,R)  min

R
0⇢Rt

dimR
0k

costz(⇧(X), R0)  (1 + ") · costz(X,R).

The proof of the above theorem proceeds in two steps, and models the argument in the previous section.
First, we show that the cost of the optimum does not increase substantially (the right-most inequality in the
theorem). This is done in the next subsection. The second step is showing that the optimum does not decrease
substantially (the left-most inequality in the theorem). The second step is done in the subsequent subsection.

5.1 Easy Direction: Optimum Cost Does Not Increase The first direction, which shows that the optimal
(k, z)-subspace approximation does not increase follows similarly to Lemma 4.1.

Lemma 5.1. Let X = {x1, . . . , xn} ⇢ Rd by any set of points and let R ⇢ Rd be optimal (k, z)-subspace
approximation of X. For any " 2 (0, 1), we let Jd,t be the distribution over Johnson-Lindenstrauss maps. If
t & z/"2, then with probability at least 0.99 over the draw of ⇧ ⇠ Jd,t,

X

x2X

k⇧(x)�⇧(⇢R(x))kz2  (1 + ") · costz(X,R),

and hence,
min
R

0⇢Rt

dimR
0k

costz(⇧(X), R0)  (1 + ") min
R⇢Rd

dimRk

costz(X,R).
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Proof. Note that ⇧ is a linear map, so if we let r1, . . . , rk 2 R denote k orthonormal unit vectors spanning
R, then ⇧(r1), . . . ,⇧(rk) 2 Rt are k vectors spanning the subspace ⇧(R). Furthermore, we may consider the
k-dimensional subspace

⇧(R)
def
=

(
kX

i=1

↵i ·⇧(ri) 2 Rt : ↵1, . . . ,↵k 2 R
)
.

Notice that for any x 2 Rd, by linearity of ⇧,

⇧(⇢R(x)) =
kX

i=1

hx� ⌧, rii ·⇧(ri) 2 ⇧(F ),

which means that we may always upper bound

min
R

0⇢Rt

dimR
0k

costz(⇧(X), R0) 
 
X

x2X

k⇧(x)�⇧(⇢R(x))kz2

!1/z

.(5.20)

It hence remains to upper bound the left-hand side of (5.20). We now use the fact that ⇧ is drawn from a
Johnson-Lindenstrauss distribution. Specifically, the lemma follows from applying Markov’s inequality once we
show

1

costz
z
(X,F )

E
⇧⇠Jd,t

"
X

x2X

(k⇧(x)�⇧(⇢F (x))kz2 � kx� ⇢F (x)kz2)
+

#
 (1 + ")z � 1

100
,

which follows from Lemma 3.1.

5.2 Hard Direction: Optimum Cost Does Not Decrease

5.2.1 Preliminaries In the (k, z)-subspace approximation problem, there will be a di↵erence between
complexities of known strong coresets and weak coresets. Our argument will only use weak coresets, which
is important for us, as strong coresets have a dependence on d (which we are trying to avoid).

Definition 5.1. (Weak Coresets for (k, z)-subspace approximation) Let X = {x1, . . . , xn} ⇢ Rd be a
set of points. A weak "-coreset of X for (k, z)-subspace approximation is a weighted subset S ⇢ Rd of points with
weights w : S ! R�0 such that,

1

1 + "
· min

R⇢Rd

dimRk

costz(X,R)  min
R⇢Rd

dimRk

costz((S,w), R)  (1 + ") · min
R⇢Rd

dimRk

costz(X,R).

Similarly to the case of (k, z)-clustering, algorithms for building weak coresets proceed by sampling
according to the sensitivity framework. We proceed by defining sensitivity functions in the context of subspace
approximation, and then state a lemma which gives a sensitivity function that we will use.

Definition 5.2. (Sensitivities) Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as well
as k 2 N and z � 1. A sensitivity function � : X ! R�0 for (k, z)-subspace approximation in Rd is a function
satisfying that, for all x 2 X,

sup
R⇢Rd

dimRk

kx� ⇢R(x)kz2
costz

z
(X,R)

 �(x).

The total sensitivity of the sensitivity function � is given by

S� =
X

x2X

�(x).

For a sensitivity function, we let �̃ denote the sensitivity sampling distribution, supported on X, which samples
x 2 X with probability proportional to �(x).
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We now state a specific sensitivity function that we will use. The proof will closely follow a method for
bounding the total sensitivity of [49]. The resulting weak "-coreset will have a worse dependence than the best-
known coresets for this problem; however, the specific form of the sensitivity function will be especially useful
for us. Specifically, the non-optimality of the sensitivity function will not significantly a↵ect the final bound on
dimension reduction.

Lemma 5.2. (Theorem 18 of [49]) Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as
well as k 2 N with k < d, and z � 1. Suppose R ⇢ Rd is the optimal (k, z)-subspace approximation of X in Rd.
Then, the function � : X ! R�0 given by

�(x) = 2z�1 · kx� ⇢R(x)kz2
costz

z
(X,R)

+ 22z�1 · sup
u2Rd

|h⇢R(x), ui|zP
x02X

|h⇢R(x0), ui|z

is a sensitivity function for (k, z)-subspace approximation of X in Rd, satisfying

S�  2z�1 + 22z�1(k + 1)1+z.

Proof. Consider any subspace R0 ⇢ Rd of dimension at most k. Then, for any x 2 X

kx� ⇢R0(x)kz2  kx� ⇢R0(⇢R(x))kz2  2z�1 (kx� ⇢R(x)kz2 + k⇢R(x)� ⇢R0(⇢R(x))kz2)

 2z�1

✓
kx� ⇢R(x)kz2
costz

z
(X,R)

· costz
z
(X,R) +

k⇢R(x)� ⇢R0(⇢R(x))kz2
costz

z
(⇢R(X), R0)

· costz
z
(⇢R(X), R0)

◆
.(5.21)

Notice that costz
z
(⇢R(X), R0)  2z�1(costz

z
(X,R)+costz

z
(X,R0)) by the triangle inequality and Hölder’s inequality,

and that costz
z
(X,R)  costz

z
(X,R0) since R is the optimal (k, z)-subspace approximation. Hence, dividing the

left- and right-hand side of (5.21) we have

kx� ⇢R0(x)kz2
costz

z
(X,R0)

 2z�1 · kx� ⇢R(x)kz2
costz

z
(X,R)

+ 22z�1 · k⇢R(x)� ⇢R0(⇢R(x))kz2
costz

z
(⇢R(X), R0)

.

It remains to show that, for any set of points Y ⇢ Rd (in particular, the set {⇢R(x) : x 2 X}), and any y 2 Y ,

sup
R

0⇢Rd

dimR
0k

ky � ⇢R0(y)kz2
costz

z
(Y,R0)

 sup
H⇢Rd

dimH=d�1

ky � ⇢H(y)kz2
costz

z
(Y,H)

= sup
u2Rd

|hy, ui|zP
y02Y

|hy0, ui|z .

In particular, note that for any subspace R0 ⇢ Rd of dimension at most k, there exists a (d � 1)-dimensional
subspace H ⇢ Rd containing R0 given by all vectors orthogonal to y � ⇢R0(y). In particular, costz

z
(Y,H) 

costz
z
(Y,R0) since R0 is contained in H, and ky � ⇢H(y)k2 = ky � ⇢R0(y)k2 by the definition of H. The bound

on the total sensitivity then follows from Lemma 16 in [49], where we use the fact that {⇢R(x) : x 2 X} lies in a
k-dimensional subspace.

We will use the following geometric theorem of [44] in our proof. The theorem says that an approximately
optimal (k, z)-subspace approximation lies in the span of a small set of points. We state the lemma for weighted
point sets, even though [44] state it for unweighted points. We note that adding weights can be simulated by
replicating points.

Lemma 5.3. (Theorem 3.1 [44]) Let d, k 2 N, and consider a weighted set of points S ⇢ Rd with weights
w : S ! R�0, as well as " 2 (0, 1) and z � 1. There exists a subset Q ⇢ S of O(k2 log(k/")/") and a k-
dimensional subspace R0 ⇢ Rd within the span of Q satisfying

costz((S,w), R
0)  (1 + ") min

R⇢Rd

dimRk

costz((S,w), R).

Lemma 5.2 gives us an appropriate sensitivity function, and Lemma 5.3 limits the search of the subspace to
just a small set of points. Similarly to the case of (k, z)-clustering, we can use this to construct weak "-coresets
for (k, z)-subspace approximation. The following theorem is Theorem 5.10 from [31]. We state the theorem with
the sensitivity function of Lemma 5.2.
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Theorem 5.2. (Theorem 5.10 from [31]) For any subset X = {x1, . . . , xn} ⇢ Rd and " 2 (0, 1/2), let �̃
denote the sensitivity sampling distribution from the sensitivity function of Lemma 5.2.

• Let (S,w) denote the random (multi-)set S ⇢ X and w : S! R�0 given by, for

m = poly((k + 1)z, 1/")

iterations, sampling x ⇠ �̃ i.i.d and letting w(x) = 1/(m�̃(x)).

• Then, with probability 1 � o(1) over the draw of (S,w), it is an "-weak coreset for (k, z)-subspace
approximation of X.

5.3 The Important Events Similarly to the previous section, we define the important events, over the
randomness in ⇧ such that, if these are satisfied, then the optimum of (k, z)-subspace approximation after
dimension reduction does not decrease substantially. We first define the events, and then we prove that if the
events are all satisfied, then we obtain our desired approximation.

Definition 5.3. (The Events) Let X = {x1, . . . , xn} ⇢ Rd, and �̃ the sensitivity sampling distribution of X
from Lemma 5.2. We consider the following experiment,

1. We generate a sample (S,w) by sampling from �̃ for m = poly(kz, 1/") i.i.d iterations x ⇠ �̃ and set
w(x) = 1/(m�̃(x)).

2. Furthermore, we sample ⇧ ⇠ Jd,t, which is a Johnson-Lindenstrauss map Rd ! Rt.

3. We let S0 = ⇧(S) ⇢ Rt denote the image of ⇧ on S.

The events are the following:

• E1 : The weighted (multi-)set (S,w) is a weak "-coreset for (k, z)-subspace approximation of X in Rd.

• E2 : The map ⇧ : Rd ! Rt satisfies the following condition. For any choice of O(k2 log(k/")/") points of
S, ⇧ is an "-subspace embedding of the subspace spanned by these points.

• E3(�) : Let R0 ⇢ Rt denote the k-dimensional subspace for optimal (k, z)-subspace approximation of ⇧(X)
in Rt. Then,

costz
z
((⇧(S),w),R0)  � · costz

z
(⇧(X),R0).

Lemma 5.4. Let X = {x1, . . . , xn} ⇢ Rd, and suppose (S,w) and ⇧ : Rd ! Rt satisfy events E1, E2, and E3(�).
Then,

min
R

0⇢Rt

dimR
0k

costz(⇧(X), R0) � 1

�1/z(1 + ")3
· min

R⇢Rd

dimRk

costz(X,R).

Proof. Consider a fixed ⇧ and (S,w) satisfying the three events of Definition 5.3. Let R0 ⇢ Rt be the k-
dimensional subspace which minimizes costz

z
(⇧(X),R0). Then, by event E3(�), we have costz

z
((⇧(S),w),R0) 

�·costz
z
(⇧(X),R0). Now, we apply Lemma 5.3 to (⇧(S),w), and we obtain a subsetQ ⇢ S of sizeO(k2 log(k/")/")

for which there exists a k-dimensional subspace R00 ⇢ Rt within the span of ⇧(Q) which satisfies

 
X

x2S

w(x) · k⇧(x)� ⇢R00(⇧(x))kz2

!1/z

= costz((⇧(S),w), R00)  (1 + ") · costz((⇧(S),w),R0).

Note that R00 is a k-dimensional subspace lying in the span of ⇧(Q). For any x 2 S, we will use the fact that E2 is
satisfied to say that ⇧ is an "-subspace embedding of the subspace spanned by Q[{x}. This will enable us to find
a subspace U ⇢ Rd of dimension k whose cost of approximating (S,w) is at most (1 + ") · costz((⇧(S),w), R00).

Specifically, we write v1, . . . , vk 2 Rt, as orthogonal unit vectors which span R00. Because R00 lies in the span
of ⇧(Q), there are vectors u1, . . . , uk 2 Rd in the span of Q which satisfy

v` = ⇧(u`) 2 Rt for u` =
X

y2Q

c`,yy 2 Rd.
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Hence, the subspace U given by the span of all vectors in U is a k-dimensional subspace lying in the span of Q.
For x 2 S, we may write the coe�cients �`(x) = h⇧(x), v`i, and we may express projection ⇢R00(⇧(x)) 2 Rt as

⇢R00(⇧(x)) =
kX

`=1

�`(x) · v` = ⇧

0

@
X

y2Q

 
kX

`=1

�`(x)c`,y

!
· y

1

A = ⇧

 
kX

`=1

�`(x)u`

!
.

which is a linear combination of Q. By event E2, ⇧ is an "-subspace embedding of the subspace spanned by
Q [ {x}, so

kx� ⇢U (x)k2 

�����x�
kX

`=1

�`(x)u`

�����
2

 (1 + ")k⇧(x)� ⇢R00(⇧(x))k2.

Combining the inequalities, we have

costz ((S,w), U)  (1 + ") · costz ((⇧(S),w), R00) ,

and finally, since (S,w) is a "-weak coreset, we obtain the desired inequality.

We note that event E1 will be satisfied with su�ciently high probability from Theorem 5.2. Furthermore,
event E2 is satisfied with su�ciently high probability from the following simple lemma. All that will remain is
showing that event E3(�) is satisfied.

Lemma 5.5. Let S ⇢ Rd be any set of m points and ` 2 N, and let Jd,t denote the Johnson-Lindenstrauss map,
with

t & ` logm

"2
.

Then, with probability 0.99 over the draw of ⇧ ⇠ Jd,t, ⇧ is an "-subspace embedding for all subspaces spanned by
` vectors of S.

Proof. There are at most
�
m

`

�
subspaces spanned by ` vectors of S. If ⇧ is a subspace embedding for all of them,

we obtain our desired conclusion. We use Lemma 3.2 with � to be a su�ciently small constant factor of 1/m`

and union bound.

5.3.1 A Bad Approximation Guarantee

Lemma 5.6. (Warm-Up Lemma) Fix any ⇧ 2 Jd,t and let R0 ⇢ Rt denote the k-dimensional subspace for
optimal (k, z)-subspace approximation of ⇧(X) in Rt. Then, with probability at least 0.99 over the draw of (S,w)
as per Definition 5.3,

X

x2S

w(x) · k⇧(x)� ⇢R0(⇧(x))kz2  100 · costz
z
(⇧(X), R0).

In other words, event E3(100) holds with probability at least 0.99.

Proof. Similarly to the proof of Lemma 4.5, we compute the expectation of the left-hand side of the inequality
and use Markov’s inequality.

E
S


E

x⇠S


1

�̃(x)
· k⇧(x)� ⇢R0(⇧(x))kz2

��
= E

x⇠�̃


1

�̃(x)
· k⇧(x)� ⇢R0(⇧(x))kz2

�
= costz

z
(⇧(X), R0).(5.22)

Corollary 5.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points. For any " 2 (0, 1/2), let Jd,t be the Johnson-
Lindenstrauss map with

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.97 over the draw of ⇧ ⇠ Jd,t,

1

1001/z(1 + ")3
· costz(X,R)  min

R
0⇢Rt

dimR
0k

costz(⇧(X), R0).
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Proof. We sample ⇧ ⇠ Jd,t and (S,w) as per Definition 5.3. By Theorem 5.2 and Lemma 5.6, and a union
bound, events E1 and E3(100) hold with probability at least 0.98. Event E2 occurs with probability at least 0.99
by apply Lemma 5.5 with m = poly(kz, 1/") and ` = O(k2 log(k/")/"). Hence, we apply Lemma 5.4.

5.3.2 Improving the Approximation We now improve on the approximation of Corollary 5.1 in a fashion
similar to that of Subsection 4.3.2. We will show that with large probability, E3(1 + ") holds. We let
X = {x1, . . . , xn} ⇢ Rd and R ⇢ Rd be the subspace of dimension k for optimal (k, z)-subspace approximation of
X in Rd. As before, we let � : X ! R�0 be the sensitivities of X with respect to R (as in Lemma 5.2), and �̃ be
the sensitivity sampling distribution.

We define one more events, E4 with respect to the randomness in ⇧ ⇠ Jd,t. Let Dx 2 R�0 denote the
random variable given by

Dx

def
=
k⇧(x)�⇧(⇢R(x))k2
kx� ⇢R(x)k2

.(5.23)

We say event E4 holds whenever
X

x2X

D2z
x

· �(x)  100 · 2z ·S�,(5.24)

which holds with probability at least 0.99 over the draw of ⇧ ⇠ Jd,t, similarly to the proof of Claim 4.1 and
Lemma 5.2.

Lemma 5.7. Let ⇧ 2 Jd,t be a Johnson-Lindenstrauss map where, for ↵ > 1, the follows events hold:

1. Guarantee from Lemma 5.1:
P

x2X
k⇧(x)�⇧(⇢R(x))kz2  ↵ · costz

z
(X,R).

2. Guarantee from Corollary 5.1: letting R0 ⇢ Rt be the optimal (k, z)-subspace approximation of ⇧(X), then
costz

z
(X,R)  ↵costz

z
(⇧(X), R0).

3. Event E4 holds.

Then, if we let (S,w) denote m = poly(kz, 1/",↵) i.i.d draws from �̃ and w(x) = 1/(m�̃(x)), with probability at
least 0.99,

costz
z
((⇧(S),w), R0)  (1 + ") · costz

z
(⇧(X), R0).

Proof. Again, the proof is similar to that of Lemma 4.6, where we bound the variance of the estimator to apply
Chebyshev’s inequality. In particular, we have

Var
S


E

x⇠S


1

�̃(x)
· k⇧(x)� ⇢R0(⇧(x))kz2

costz
z
(⇧(X), R0)

��
 S�

m

X

x2X

✓
1

�(x)
· k⇧(x)� ⇢R0(⇧(x))k2z2

cost2z
z
(⇧(X), R0)

◆
.(5.25)

Similarly to the proof of Lemma 4.6, we will upper bound

k⇧(x)� ⇢R0(⇧(x))kz2
costz

z
(⇧(X), R)

as a function of �(x) and Dx (given by (5.23) without boldface as ⇧ is fixed). Toward this bound, we simplify
the notation by letting yx = ⇢R(x) 2 Rd and Y = {yx : x 2 X}. Then, since ⇧ : Rd ! Rt is a linear map, for any
x 2 X

sup
v2Rt

|h⇧(yx), vi|zP
x02X

|h⇧(yx0), vi|z  sup
u2Rd

|hyx, ui|zP
x02X

|hyx0 , ui|z .(5.26)

In particular, if we let M 2 Rn⇥d be the matrix given by having the rows be points yx 2 Y , then writing ⇧ 2 Rd⇥t,
we have M⇧ 2 Rn⇥t is the matrix whose rows are ⇧(yx); in particular, one may compare the left- and right-hand
sides of (5.26) by letting u = ⇧v 2 Rd. Thus, we have

k⇧(x)� ⇢R0(⇧(x))kz2  k⇧(x)� ⇢R0(⇧(yx))kz2  2z�1 (k⇧(x)�⇧(yx)kz2 + k⇧(yx)� ⇢R0(⇧(yx))kz2)

 2z�1

✓
Dz

x
· kx� yxkz2
costz

z
(X,R)

· costz
z
(X,R) +

k⇧(yx)� ⇢R0(⇧(yx))kz2
costz

z
(⇧(Y ), R0)

· costz
z
(⇧(Y ), R0)

◆
.(5.27)
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We may now apply the triangle inequality, as well as (1) and (2), and we have

costz
z
(⇧(Y ), R0)  2z�1

 
costz

z
(⇧(X), R0) +

X

x2X

k⇧(x)�⇧(yx)kz2

!

 2z�1 (costz
z
(⇧(X), R0) + ↵ · costz

z
(X,R))  2z�1(1 + ↵2) · costz

z
(⇧(X), R0).(5.28)

Finally, we note that, similarly to the proof of Lemma 5.2,

k⇧(yx)� ⇢R0(⇧(yx))kz2
costz

z
(⇧(Y ), R0)

 sup
v2Rt

|h⇧(yx), vi|zP
x02X

|h⇧(yx0), vi|z .(5.29)

Continuing to upper-bound the left-hand side of (5.27) by plugging in (5.26), (5.29) and (5.28),

k⇧(x)� ⇢R0(⇧(x))kz2
costz

z
(⇧(X), R0)

 2z�1

✓
Dz

x
↵ · kx� yxkz2

costz
z
(X,Y )

+ 2z�1(↵2 + 1) sup
u2Rd

|hyx, ui|zP
x02X

|hyx0 , ui|z

◆

 Dz

x
· (↵2 + 1) · �(x).

In particular, the bound on the variance in (5.25) is at most

S�

m
· 24z(↵2 + 1)2

X

x2X

D2z
x
�(x)  S2

�

m
· 25z(↵2 + 1),

so letting m = poly(kz, 1/",↵) gives the desired bound on the variance.

Corollary 5.2. Let X = {x1, . . . , xn} ⇢ Rd be any set of points, and let R ⇢ Rd be the subspace for optimal
(k, z)-subspace approximation of X. For any " 2 (0, 1/2), let Jd,t be the Johnson-Lindenstrauss map with

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.92 over the draw of ⇧ ⇠ Jd,t,

1

(1 + ")3+1/z
· costz(X,R)  min

R
0⇢Rt

dimR
0k

costz(⇧(X), R0).

Proof. We sample ⇧ ⇠ Jd,t and (S,w) as per Definition 5.3. Again, Theorem 5.2 guarantees that E1 occurs with
probability at least 0.99 over the draw of (S,w). By Lemma 5.1, Corollary 5.1 and (5.24), the condition (1), (2),
and (3) are satisfied with probability at least 0.95, so we may apply Lemma 5.7 and have E3(1 + ") holds with
probability at least 0.94. Finally, event E2 holds with probability at least 0.99 by Lemma 5.5. Taking a union
bound and applying Lemma 5.4 gives the desired bound.

6 k-Flat Approximation

In the (k, z)-flat approximation problem, we consider subspace R ⇢ Rd of dimension less than k, which we may
encode by a collection of at most k orthonormal vectors r1, . . . , rk 2 R, as well as a translation vector ⌧ 2 Rd.
The k-flat specified by R and ⌧ is given by the a�ne subspace

F =
�
x+ ⌧ 2 Rd : x 2 R

 
.

We let ⇢F : Rd ! R denote the map which sends each x 2 Rd to its closest point on F , and we note that

⇢F (x) = argmin
y2F

kx� yk22 = ⌧ +
rX

i=1

hx� ⌧, riiri

For any X ⇢ Rd, we let

costz
z
(X,F )

def
=

X

x2X

kx� ⇢F (x)kz2 .

In this section, we show that we may find the optimal k-flat approximation after applying a Johnson-Lindenstrauss
map. The proof will be almost exactly the same as the (k, z)-subspace approximation problem. Indeed, it only
remains to incorporate a translation vector.
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Theorem 6.1. (Johnson-Lindenstrauss for k-Flat Approximation) Let X = {x1, . . . , xn} ⇢ Rd be any
set of points, and let F ⇢ Rd denote the optimal (k, z)-flat approximation of X. For any " 2 (0, 1), suppose we
let Jd,t be a distribution over a Johnson-Lindenstrauss maps where

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.9 over the draw of ⇧ ⇠ Jd,t,

1

1 + "
· costz(X,F )  min

F
0
k-flat

in Rt

costz(⇧(X), F 0)  (1 + ") · costz(X,F ).

6.1 Easy Direction: Optimum Cost Does Not Increase

Lemma 6.1. Let X = {x1, . . . , xn} ⇢ Rd by any set of points and let F ⇢ Rd be the optimal (k, z)-flat
approximation of X. We let Jd,t be the distribution over Johnson-Lindenstrauss maps. If t & z/"2, then with
probability at least 0.99 over the draw of ⇧ ⇠ Jd,t,

X

x2X

k⇧(x)�⇧(⇢F (x))kz2  (1 + ") · costz
z
(X,F ),

and hence,
min

F
0
k-flat

in Rt

costz(⇧(X), F 0)  (1 + ") · costz(X,F ).

The proof follows in a similar fashion to Lemma 4.1 and Lemma 5.1. In particular, there is a natural definition
of a k-flat ⇧(F ) ⇢ Rt, and the proof proceeds by upper bounding the expected dilation of k⇧(x)�⇧(⇢F (x))kz2.

6.2 Hard Direction: Optimum Cost Does Not Decrease

6.2.1 Preliminaries The proof in this section follows similarly to that of (k, z)-subspace approximation.

Definition 6.1. (Weak Coresets for (k, z)-flat approximation) Let X = {x1, . . . , xn} ⇢ Rd be a set of
points. A weak "-coreset of X for (k, z)-flat approximation is a weighted subset S ⇢ Rd of points with weights
w : S ! R�0 such that,

1

1 + "
· min
F k-flat
in Rd

costz(X,F )  min
F k-flat
in Rd

costz((S,w), F )  (1 + ") · min
F k-flat
in Rd

costz(X,F )

Definition 6.2. (Sensitivities) Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as well as
k 2 N and z � 1. A sensitivity function � : X ! R�0 for (k, z)-flat approximation in Rd is a function satisfying
that, for all x 2 X,

sup
F⇢Rd

k-flat

kx� ⇢F (x)kz2
costz

z
(X,F )

 �(x).

The total sensitivity of the senstivity function � is given by

S� =
X

x2X

�(x).

For a sensitivity function, we let �̃ denote the sensitivity sampling distribution, supported on X, which samples
x 2 X with probability proportional to �(x).

The sensitivity function we use here generalizes that of the previous section. In particular, the proof will
follow similarly, and we will defer to the arguments in the previous section.
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Lemma 6.2. Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as well as k 2 N with k < d
and z � 1. Suppose F ⇢ Rd is the optimal (k, z)-flat approximation of X in Rd. Then, the function � : X ! R�0

given by

�(x) = 2z�1 · kx� ⇢F (x)kz2
costz

z
(X,F )

+ 22z�1 · sup
u2Rd

�2R

|h⇢F (x), ui � �|zP
x02X

|h⇢F (x0), ui � �|z

is a sensitivity function for (k, z)-flat approximation of X in Rd, satisfying

S�  2z�1 + 22z�1(k + 2)1+z.

Proof. Consider any k-flat F 0 ⇢ Rd, given by a subspace R ⇢ Rd of dimension at most k, and a translation
⌧ 2 Rd. As in the proof of Lemma 5.2,

kx� ⇢F 0(x)kz2
costz

z
(X,F 0)

 2z�1 · kx� ⇢F (x)kz2
costz

z
(X,F )

+ 22z�1 · k⇢F (x)� ⇢F 0(⇢F (x))kz2
costz

z
(⇢F (X), F 0)

.

We now have that for any Y ⇢ Rd, and any y 2 Y ,

sup
F

0⇢Rd

k-flat

ky � ⇢F 0(y)kz2
costz

z
(Y, F 0)

 sup
⌧2Rd

sup
u2Rd

|hy � ⌧, ui|zP
y02Y

|hy0 � ⌧, ui|z .

Finally, for each y 2 Y ⇢ Rd, we may consider appending an additional coordinate and consider y⇤ 2 Rd+1 where
the d+ 1-th entry is 1. Then, by linearity

sup
⌧2Rd

sup
u2Rd

|hy � ⌧, ui|zP
y02Y

|hy � ⌧, ui|z = sup
v2Rd+1

|hy⇤, vi|zP
y02Y

|hy0⇤, vi|z ,

and the bound on the total sensitivity follows from Lemma 5.2.

In the (k, z)-subspace approximation section, we used a lemma (Lemma 5.3) to narrow down the approximately
optimal subspaces to those spanned by at most O(k2 log(k/")/") points. Here, we use a similar lemma in order
to find an approximately optimal translation vector ⌧ 2 Rd, which is spanned by a small subset of points.

Lemma 6.3. (Lemma 3.3 [45]) Let d, k 2 N, and consider a weighted set of points S ⇢ Rd with weights
w : S ! R�0, as well as " 2 (0, 1) and z � 1. Suppose F ⇢ Rd is the optimal (k, z)-flat approximation of
X, encoded by a k-dimensional subspace R ⇢ Rd and translation vector ⌧ 2 Rd. There exists a subset Q ⇢ S of
size O(log(1/")/") and a point ⌧ 0 2 conv(Q) such that the k-flat

F 0 =
�
⌧ 0 + y 2 Rd : y 2 R

 

satisfies
costz((S,w), F

0)  (1 + ") · costz((S,w), F ).

Theorem 6.2. ("-Weak Coresets for k-Flats via Sensitivity Sampling) For any subset X =
{x1, . . . , xn} ⇢ Rd and " 2 (0, 1/2), let �̃ denote the sensitivity sampling distribution.

• Let (S,w) denote the random (multi-)set S ⇢ X and w : S! R�0 given by, for

m = poly((k + 2)z, 1/")

iterations, sampling x ⇠ �̃ i.i.d and letting w(x) = 1/(m�̃(x)).

• Then, with probability 1 � o(1) over the draw of (S,w), it is an "-weak coreset for (k, z)-subspace
approximation of X.
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6.3 The Important Events The important events we consider mirror those the subspace approximation
problem. The only event which would change is E2, where we require ⇧ to be an "-subspace embedding for all
subsets of O(k2 log(k/")/") + O(log(1/")/") points from S. This will allow us to incorporate the translation ⌧ 0

from Lemma 6.3.

Definition 6.3. (The Events) Let X = {x1, . . . , xn} ⇢ Rd, and �̃ the sensitivity sampling distribution of X
of Lemma 6.2. We consider the following experiment,

1. We generate a sample (S,w) by sampling from �̃ for m = poly(kz, 1/") i.i.d iterations x ⇠ �̃ and set
w(x) = 1/(m�̃(x)).

2. Furthermore, we sample ⇧ ⇠ Jd,t, which is a Johnson-Lindenstrauss map Rd ! Rt.

3. We let S0 = ⇧(S) ⇢ Rt denote the image of ⇧ on S.

The events are the following:

• E1 : The weighted (multi-)set (S,w) is a weak "-coreset for (k, z)-flat approximation of X in Rd.

• E2 : The map ⇧ : Rd ! Rt satisfies the following condition. For any choice of O(k2 log(k/")/") points of
S, ⇧ is an "-subspace embedding of the subspace spanned by these points.

• E3(�) : Let F0 ⇢ Rt denote the optimal (k, z)-flat approximation of ⇧(X) in Rt. Then,

costz
z
((⇧(S),w),F0)  � · costz

z
(⇧(X),F0).

Lemma 6.4. Let X = {x1, . . . , xn} ⇢ Rd, and suppose (S,w) and ⇧ : Rd ! Rt satisfy events E1, E2, and E3(�).
Then,

min
F

0
k-flat

in Rt

costz(⇧(X), F 0) � 1

�1/z(1 + ")4
· min
F k-flat
in Rd

costz(X,F ).

Proof. Consider a fixed ⇧ and (S,w) satisfying the three events of Definition 5.3. Let F 0 ⇢ Rt be the k-flat
which minimizes costz

z
(⇧(X), F 0). Suppose that F 0 is specified by a k-dimensional subspace R0 and a translation

⌧ 0. Then, by event E3(�), we have costz
z
((⇧(S),w), F 0)  � · costz

z
(⇧(X), F 0). Now, we apply Lemma 6.3 to

(⇧(S),w), and we obtain a subset Q ⇢ S of size O(log(1/")/") for which there exists a translation vector ⌧ 00 2 Rt

within the conv(⇧(Q)) such that k-flat F 00 given by ⌧ 00 and R0 satisfies

 
X

x2S

w(x) · k⇧(x)� ⇢F 00(⇧(x))kz2

!1/z

= costz((⇧(S),w), F 00)  (1 + ") · costz((⇧(S),w), F 0).

Furthermore, by Lemma 5.3 to the weighted vectors (⇧(S)� ⌧ 00,w),8 there exists a subset Q0 ⇢ ⇧(S)� ⌧ 00 of size
O(k2 log(k/")/") and a k-dimensional subspace R00 ⇢ Rd within the span of Q0 such that the k-flat F 000 specified
by R00 and ⌧ 00 satisfies

 
X

x2S

w(x) · k⇧(x)� ⇢F 000(⇧(x))kz2

!1/z

= costz((⇧(S),w), F 000)  (1 + ")2 · costz((⇧(S),w), F 0).

Recall that (i) R00 is a k-dimensional subspace lying in the span of ⇧(Q0), (ii) ⌧ 00 2 Rt is within conv(⇧(Q)), and
(iii) for any x 2 S, ⇧ is an "-subspace embedding of the span of Q [Q0 [ {x}. Similarly to Lemma 5.4, we may
find a k-flat U such that for every x 2 S,

kx� ⇢U (x)k2  (1 + ")k⇧(x)� ⇢F 000(⇧(x))k2,

and hence
costz((S,w), U)  (1 + ") · costz((⇧(S),w), F 000).

Finally, since (S,w) is a "-weak coreset, we obtain the desired inequality.

8
Here, we are using the short-hand ⇧(S)� ⌧ 00

def
=

�
⇧(x)� ⌧ 00 2 Rt

: x 2 S
 
.
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As in the previous section, events E1 and E2 hold with su�ciently high probability. All that remains is
showing that E3(1 + ") holds with su�ciently high probability. We proceed in a similar fashion, where we first
show a loose approximation guarantee, and later improve on it.

Lemma 6.5. Fix any ⇧ 2 Jd,t and let F 0 ⇢ Rt denote the k-flat for optimal (k, z)-flat approximation of ⇧(X) in
Rt. Then with probability at least 0.99 over the draw of (S,w) as per Definition 6.3,

X

x2S

w(x) · k⇧(x)� ⇢F 0(⇧(x))kz2  100 · costz
z
(⇧(X), F 0).

In other words, event E3(100) holds with probability at least 0.99.

Corollary 6.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points. For any " 2 (0, 1/2), let Jd,t be the Johnson-
Lindenstrauss map with

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.97 over the draw of ⇧ ⇠ Jd,t,

1

1001/z(1 + ")4
· min
F⇢Rd

k-flat

costz(X,F )  min
F

0⇢Rt

k-flat

costz(⇧(X), F 0).

6.3.1 Improving the approximation The improvement of the approximation, follows from upper bounding
the variance, as in the (k, z)-clustering problem, and the (k, z)-subspace approximation problem. In particular, we
show that E3(1+ ") holds. Fix X = {x1, . . . , xn} ⇢ Rd and F ⇢ Rd be the optimal (k, z)-flat approximation of X
in Rd. The sensitivity function � : X ! R�0 specified in Lemma 6.2 specify the sensitivity sampling distribution
�̃.

We let E4 denote the following event with respect to the randomness in ⇧ ⇠ Jd,t. For each x 2 X, we let
Dx 2 R�0 denote the random variable

Dx

def
=
k⇧(x)�⇧(⇢F (x))k2
kx� ⇢F (x)k2

,

and as in (5.23) and (5.24), event E4, which occurs with probability at least 0.99, whenever

X

x2X

D2z
x

· �(x)  100 · 2z ·S�.

Lemma 6.6. Let ⇧ 2 Jd,t be a Johnson-Lindensrauss map where, for ↵ > 1, the following events hold:

1. Guarantee from Lemma 6.1:
P

x2X
k⇧(x)�⇧(⇢F (x))kz2  ↵ · costz

z
(X,F ).

2. Guarantee from Corollary 6.1: letting F 0 ⇢ Rt be the optimal (k, z)-flat approximation of ⇧(X), then
costz

z
(X,F )  ↵costz

z
(⇧(X), F 0).

3. Event E4 holds.

Then, if we let (S,w) denote m = poly(kz, 1/",↵) i.i.d draws from �̃ and w(x) = 1/(m�̃(x)), with probability at
least 0.99,

costz
z
((⇧(S),w), F 0)  (1 + ") · costz

z
(⇧(X), F 0).

Proof. We similarly bound the variance of

VarS


E

x⇠S


1

�̃(x)

k⇧(x)� ⇢F 0 (⇧(x)) kz2
costz

z
(⇧(X), F 0)

��
 S�

m

X

x2X

✓
1

�(x)
· k⇧(x)� ⇢F 0(⇧(x))kz2

cost2z
z
(⇧(X), F 0)

◆
.
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It is not hard to show, as in the proof of Lemma 5.7, that writing yx = ⇢F (x) 2 Rd and Y = {yx : x 2 X}, that

k⇧(x)� ⇢F 0(⇧(x))kz2
costz

z
(⇧(X), F 0)

 2z�1↵Dz

x
· kx� ⇢F (x)kz2
costz

z
(X,F )

+ 22z�2(1 + ↵2) sup
v2Rt

µ2R

|h⇧(yx), vi � µ|zP
x02X

|h⇧(yx0), vi � µ|z ,

and similarly to before, we have

sup
v2Rt

µ2R

|h⇧(yx), vi � µ|zP
x02X

|h⇧(yx0), vi � µ|z  sup
u2Rd

�2R

|hyx, ui � �|zP
x02X

|hyx0 , ui � �|z .

This implies that the variance is at most

24z�2 · S�↵4

m
·
X

x2X

D2z
x

· �(x)  "2

by setting m = poly((k + 2)z, 1/",↵) to be large enough when E4 holds, and we apply Chebyshev’s inequality.

Corollary 6.2. Let X = {x1, . . . , xn} ⇢ Rd be any set of points, and let F ⇢ Rd be the optimal (k, z)-flat
approximation of X. For any " 2 (0, 1/2), let Jd,t be the Johnson-Lindenstrauss map with

t & z · k2 · polylog(k/")
"3

.

Then, with probability at least 0.92 over the draw of ⇧ ⇠ Jd,t,

1

(1 + ")4+1/z
· costz(X,F )  min

F
0⇢Rt

k-flat

costz(⇧(X), F 0).

7 k-Line Approximation

In the (k, z)-line approximation problem, we consider a collection of k lines in Rd. A line is encoded by a vector
v 2 Rd and a unit vector u 2 Sd�1, where we will write

`(v, u) =
�
v + t · u 2 Rd : t 2 R

 
.

For a single line ` encoded by v and u, we write ⇢` : Rd ! R as the orthogonal projection of a point onto `, i.e.,
the closest vector which lies on the line, where

⇢`(x) = argmin
y2`

kx� yk22 = v + hx� v, uiu.

For any set of k lines, L = {`1, . . . , `k}, and a point x 2 X, we write

costz
z
(x, L) = min

`2L

kx� ⇢`(x)kz2,

and for any dataset X ⇢ Rd and set of lines L, we consider the map ` : X ! L which sends a point x to its
nearest line in L. Then, we write

costz
z
(X,L) =

X

x2X

kx� ⇢`(x)(x)kz2,

as the cost of representing the points in X according to the k lines in L. In this section, we show that we may
find the optimal (k, z)-line approximation after applying a Johnson-Lindenstrauss map. Specifically, we prove:
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Theorem 7.1. (Johnson-Lindenstrauss for (k, z)-Line Approximation) Let X = {x1, . . . , xn} ⇢ Rd be
any set of points, and let L = {`1, . . . , `k} denote a set of lines in Rd for optimally (k, z)-line approximation of
X. For any " 2 (0, 1), suppose we let Jd,t be a distribution over Johnson-Lindenstrauss maps where

t & k log log n+ z + log(1/")

"3
.

Then, with probability at least 0.9 over the draw of ⇧ ⇠ Jd,t,

1

1 + "
· costz(X,L)  min

L
0
k lines
in Rt

costz(⇧(X), L0)  (1 + ") · costz(X,L).

7.1 Easy Direction: Optimum Cost Does Not Increase

Lemma 7.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points and let L = {`1, . . . , `k} be a set of k lines in Rd

for optimal (k, z)-line approximation of X, and for each x 2 X, let `(x) 2 L be the line assigned to x. We let
Jd,t be the distribution over Johnson-Lindenstrauss maps. If t & z/"2, then with probability at least 0.99 over the
draw of ⇧ ⇠ Jd,t,  

X

x2X

k⇧(x)�⇧(⇢`(x)(x))kz2

!1/z

 (1 + ") · costz(X,L),

and hence,
min

L
0
k lines
in Rt

costz(⇧(X), L0)  (1 + ") · costz(X,L).

By now, there is a straight-forward way to prove the above lemma. For each set of k lines L = {`1, . . . , `k}
in Rd, there is an analogous definition of k lines ⇧(L) in Rt. Hence, we use the two-stability of the Gaussian as
in previous sections to upper bound the cost costz(⇧(X),⇧(L)).

7.2 Hard Direction: Optimum Cost Does Not Decrease

7.2.1 Preliminaries At a high level, we proceed with the same argument as in previous sections: we consider
a sensitivity function for (k, z)-line approximation of X in Rd, and use it to build a weak coreset, as well as argue
that sensitivity sampling is a low-variance estimator of the optimal (k, z)-line approximation in the projected
space. The proof in this section will be significantly more complicated than the previous section. Defining the
appropriate sensitivity functions, which will give a low-variance estimator in the projected space, is considerably
more di�cult than the expressions of Lemmas 4.2, 5.2, and 6.2. For this reason, will be proceed by assuming
access to a sensitivity function which we will define lated in the section.

Definition 7.1. (Weak Coresets for (k, z)-Line Approximation) Let X = {x1, . . . , xn} ⇢ Rd be a set of
points. A weak "-coreset of X for (k, z)-line approximation is a weighted subset S ⇢ Rd of points with weights
w : S ! R�0 such that

1

1 + "
· min
L k lines
in Rd

costz(X,L)  min
L k lines
in Rd

costz((S,w), L)  (1 + ") · min
L k lines
in Rd

costz(X,L)

Definition 7.2. (Sensitivities) Let n, d 2 N, and consider any set of points X = {x1, . . . , xn} ⇢ Rd, as well
as k 2 N and z � 1. A sensitivity function � : X ! R�0 for (k, z)-line approximation in Rd is a function which
satisfies that, for all x 2 X,

sup
L: k lines

in Rd

kx� ⇢`(x)(x)kz2
costz

z
(X,L)

 �(x).

The total sensitivity of the sensitivity function � is given by

S� =
X

x2X

�(x).
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For a sensitivity function, we let �̃ denote the sensitivity sampling distribution, supported on X, which samples
x 2 X with probability proportional to �(x).

Similarly to before, we first give a lemma which narrows down the space of the optimal line approximations
for a set of points. the following lemma is a re-formulations of Lemma 5.3 and Lemma 6.3 catered to the case of
(k, z)-line approximation.

Lemma 7.2. (Theorem 3.1 and Lemma 3.3 of [44]) Let d 2 N and S ⇢ Rd be any set of points with weights
w : S ! R�0, " 2 (0, 1/2), and z � 1. There exists a subset Q ⇢ S of size O(log(1/")/") and a line ` in Rd within
the span of Q such that

costz((S,w), {`})  (1 + ") min
`
0 line
in Rd

costz((S,w), {`0}).

Lemma 7.3. (Weak Coresets for k-Line Approximation [23, 49]) For any subset X = {x1, . . . , xn} ⇢ Rd

and " 2 (0, 1/2), let � denote a sensitivity function for (k, z)-line approximation of X with total sensitivity S�

and let �̃ its sensitivity sampling distribution.

• Let (S,w) denote the random (multi-)set S ⇢ X and w : S! R�0 given by, for

m = poly(S�, k, 1/"),

iterations, sampling x ⇠ �̃ i.i.d and letting w(x) = 1/(m�̃(x)).

• Then, with probability 1� o(1) over the draw of (S,w), it is an "-weak coreset for (k, z)-line approximation
of X.

We note that [23] and [49] only give a strong coreset for (k, z)-line approximation of poly(S�, k, d, 1/"). For
example, Theorem 13 in [49] giving the above bound follows from the fact that the “function dimension” (see
Definition 3 of [49]) for (k, z)-line approximation is O(kd). However, Lemma 7.2 implies that for any set of
points, a line which approximates the points is within a span of O(log(1/")/") points. This means that, for
"-weak coresets, it su�ces to only consider k lines spanned by O(k log(1/")/"), giving us a “function dimension”
of O(k log(1/")/").

7.2.2 The Important Events

Definition 7.3. (The Events) Let X = {x1, . . . , xn} ⇢ Rd, and � be a sensitivity function for (k, z)-line
approximation of X in Rd, with total sensitivity S� and sensitivity sampling distribution �̃. We consider the
following experiment,

1. We generate a sample (S,w) by sampling from �̃ for m = poly(S�, k, 1/") i.i.d iterations x ⇠ �̃ and set
w(x) = 1/(m�̃(x)).

2. Furthermore, we sample ⇧ ⇠ Jd,t, which is a Johnson-Lindenstrauss map Rd ! Rt.

3. We let S0 = ⇧(S) ⇢ Rt denote the image of ⇧ on S.

The events are the following:

• E1 : The weighted (multi-)set (S,w) is a weak "-coreset for (k, z)-line approximation of X in Rd.

• E2 : For any subset of O(log(1/")/") points from S, the map ⇧ : Rd ! Rt is an "-subspace embedding for
the subspace spanned by that subset.

• E3(�) : Let L0 = {`01, . . . , `
0
k
} denote k lines in Rt for optimal (k, z)-line approximation of ⇧(X) in Rt.

Then,

costz
z
((⇧(S),w),L0)  � · costz

z
(⇧(X),L0).
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Lemma 7.4. Let X = {x1, . . . , xn} ⇢ Rd, and suppose (S,w) and ⇧ : Rd ! Rt satisfy events E1,E2 and E3.
Then,

min
L

0
k lines
in Rt

costz(⇧(X), L0) � 1

�1/z(1 + ")3
· min
L k lines
in Rd

costz(X,L).

Proof. Let ⇧ ⇠ Jd,t and (S,w) be sampled according to Definition 7.3, and suppose events E1,E2 and E3 all
hold. Let L0 = {`01, . . . , `

0
k
} denote the set of k lines for optimal (k, z)-line approximation of ⇧(X) in Rt. Then,

by event E3, we have costz
z
((⇧(S),w),L0)  � · costz

z
(⇧(X),L0). Consider the partition of S into S1, . . . ,Sk

induced by the lines in L0 closest to ⇧(S).
For each i 2 [k], we apply Lemma 7.2 to ⇧(Si) with weights w : Si ! R�0. In particular, there exists subsets

Q1 ⇢ S1, . . . ,Qk ⇢ Sk and k lines L00 = {`001 , . . . , `
00
k
} in Rt such that each line `00

i
lie in the span of Qi, and

costz((⇧(S),w),L00)  (1 + ") · costz((⇧(S),w),L0).

Event E2 implies that for each i 2 [k] and each x 2 S, ⇧ is an "-subspace embedding for the subspace spanned
by Qi [ {x}. It is not hard to see, that there exists k lines H = {h1, . . . ,hk} in Rd such that for all x 2 S,

kx� ⇢hi(x)k2  (1 + ") · k⇧(x)� ⇢`00i (⇧(x))k2,

and therefore,

costz((S,w),H)  (1 + ") · costz((⇧(S),w),L00).

Lastly, (S,w) is a "-weak coreset for X, which means that

min
L k lines
in Rd

costz(X,L)  (1 + ") · costz((S,w),H).

Combining all inequalities gives the desired lemma.

By now, we note that it is straight-forward to prove the following corollary, which gives a dimension reduction
bound which depends on the total sensitivity of a sensitivity function.

Corollary 7.1. Let X = {x1, . . . , xn} ⇢ Rd be any set of points, and for k 2 N and z � 1, let � : X ! R�0

be a sensitivity function for (k, z)-line approximation of X in Rd. For any " 2 (0, 1/2), let Jd,t be the Johnson-
Lindenstrauss map with

t & log(S�, k, 1/")

"3
.

Then, with probability at least 0.97 over the draw of ⇧ ⇠ Jd,t,

1

1001/z(1 + ")3
min

L k lines
in Rd

costz(X,L)  min
L

0
k lines
in Rt

costz(⇧(X), L0)

7.3 A Sensitivity Function for (k, z)-Line Approximation We now describe a sensitivity function for
(k, z)-line approximation of points in Rd. Similarly to the previous section, we consider a set of points
X = {x1, . . . , xn} ⇢ Rd, and we design a sensitivity function � : X ! R�0 for (k, z)-line approximation of
X in Rd. The sensitivity function should satisfy two requirements. The first is that we have a good bound on the
total sensitivity, S�, where the target dimension t will have logarithmic dependence on S� (for example, like in
Corollary 7.1).

The second is that E3(1 + ") will hold with su�ciently high probability over the draw of ⇧ ⇠ Jd,t. In
other words, we will proceed similarly to Lemmas 4.6, 5.7, and 6.6 and show that, for the optimal (k, z)-line
approximation L0 of ⇧(X) in Rt, sampling according to the sensitivity sampling distribution gives a low-variance
estimate for the cost of L0.
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7.3.1 From Coresets for (k,1)-line approximation to Sensitivity Functions Unfortunately, we do not
know of a “clean” description of a sensitivity function for (k, z)-line approximation, as was the case in previous
definitions. Certainly, one may define a sensitivity function to be �(x) = sup

L
costz

z
(x, L)/costz

z
(X,L), but then

arguing that E3(1+ ") holds with high probability becomes more complicated. The sensitivity function which we
present follows the connection between sensitivity and `1-coresets [48].

Definition 7.4. (c-coresets for (k,1)-line approximation) Let Y = {y1, . . . , yn} ⇢ Rd be any subset of
points, and c � 1. A subset A ⇢ Y is a c-coreset for (k,1)-line approximation if the following holds:

• Let L = {`1, . . . , `k} be any collection of k lines in Rd, and r 2 R�0 such that for all y 2 A,

min
`2L

ky � ⇢`(y)k2  r.

• Then, for all x 2 X,
min
`2L

ky � ⇢`(y)k2  cr.

Note that the (k,1)-line approximation is the problem of minimum enclosing cylinder: we are given a set of

points Y , and want to find a set of k cylinders C1, . . . , Ck ⇢ Rd of smallest radius such that Y ⇢
S

k

i=1 Ci. Thus,
Definition 7.4, a set A ⇢ Y is a c-coreset for (k,1)-line approximation if, given any k cylinders which contain A,
increasing the radii by a factor of c contains Y . The reason they will be relevant for defining a sensitivity function
is the following simple lemma, whose main idea is from [48].

Lemma 7.5. (Sensitivities from c-coresets for (k,1)-line approximation (see Lemma 3.1 in [48]))

Let X = {x1, . . . , xn} ⇢ Rd be any set of points and k 2 N, z � 1. Let L = {`1, . . . , `k} be the k lines in Rd for
optimal (k, z)-line approximation of X, and let Y = {yx 2 Rd : x 2 X} where yx = ⇢`(x)(x). For c � 1, let the
function � : X ! R�0 be defined as follows:

• Let A1, A2, . . . , As denote a partition of Y where each Ai is a c-coreset for (k,1)-line approximation of

Y \
⇣S

i�1
i0=1 Ai0

⌘
.

• For each x 2 X, where yx 2 Ai we let

�(x)
def
= 2z�1 · kx� yxkz2

costz
z
(X,L)

+ 22z�1 · c
i
.

Then, � is a sensitivity function for (k, z)-line approximation, and the total sensitivity

S� = O

✓
22z · c · log n ·max

i2[s]
|Ai|

◆

Proof. Suppose x 2 X and yx 2 Ai. Consider any set L0 = {`01, . . . , `0k} of k lines in Rd. The goal is to show that

min`02L0 kx� ⇢`0(x)kz2
costz

z
(X,L0)

 �(x).(7.30)

We will first use Hölder inequality and the triangle inequality, as well as the fact that yx 2 Ai in order to write
the following:

min
`02L0

kx� ⇢`0(x)kz2  2z�1kx� yxkz2 + 2z�1 min
`02L0

kyx � ⇢`0(yx)kz2

 2z�1kx� yxkz2 + 2z�1
⇣
costz

z
(Y, L0) · c

i

⌘
.(7.31)

The justification for (7.31) is the following: for every j  i, Aj is a c-coreset for (k,1)-line approximation of a
set of points which contains yx. Therefore, if min`02L0 kyx � ⇢`0(yx)k2 = r, there must exists a point u 2 Aj with
min`02L0 ku� ⇢`0(u)k2 � r/c. Suppose otherwise: every u 2 Aj satisfies min`02L0 ku� ⇢`0(u)k2 < r/c. Then, the
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k cylinders of radius r/c contain Aj , so increasing the radius by a factor of c contains yx. However, this means
min`02L0 kyx � ⇢`0(yx)k2 < c · r/c < r, which is a contradiction.

Hence, we always have that yx 2 Ai satisfies

min
`02L0

kyx � ⇢`0(yx)kz2  costz
z
(Y, L0) · c

i
.

Continuing on upper-bounding (7.31), we now use the fact costz
z
(Y, L0)  2z�1 ·costz

z
(X,L)+2z�1 ·costz

z
(X,L0) 

2zcostz
z
(X,L0) because costz

z
(X,L) is the optimal (k, z)-line approximation. Therefore,

min
`02L0

kx� ⇢`0(x)kz2  2z�1 · kx� yxkz2 + 22z�1 · c
i
· costz

z
(X,L0),

so dividing by costz
z
(X,L0) and noticing that costz

z
(X,L)  costz

z
(X,L0) implies � is a sensitivity function.

The bound on total sensitivity then follows from

S� =
X

x2X

�(x) =
sX

i=1

X

x2As0

�(x) = 2z�1 + 22z�1
sX

i=1

|Ai| ·
c

s0
= O

✓
22z · c ·max

i2[s]
|Ai| · log n

◆
,

since s  n.

7.3.2 A simple coreset for (k,1)-line approximation of one-dimensional instances Suppose first,
that a dataset Y = {y1, . . . , yn} lies on a line in Rd, and let C1, . . . , Ck be a collection of k cylinders. Then, the
intersection of the cylinders with the line results in a union of k intervals on the line. If we increase the radius
of each cylinder C1, . . . , Ck by a factor of c, the lengths of the intervals are scaled by factor of c (while keeping
center of interval fixed). We first show that, for any Y = {y1, . . . , yn} which lie on a line, there exists a small
subset Q ⇢ Y such that: if I1, . . . , Ik is any collection of k intervals which covers Q, then increasing the length of
each interval by a factor of 3 (while keeping the center of the interval fixed) covers Y .

Lemma 7.6. There exists a large enough constant c1 2 R�0 such that the following is true. Let Y = {y1, . . . , yn}
be a set of points lying on a line in Rd, and k 2 N. There exists a subset Q ⇢ Y which is a 3-coreset for (k,1)-line
approximation of size at most (c1 log n)k.

Proof. The construction is recursive. Let ` be the line containing Y , and after choosing an arbitrary direction on
`, let y1, . . . , yn be the points in sorted order according to the chosen direction.

The set Q is initially empty, and we include Q {y1, ydn/2e, yn}. Suppose that ky1�ydn/2ek2 � kydn/2e�ynk2
(the construction is symmetric, with y1 and yn switched otherwise). We divide Y into two sets, the subsets
YL = {y1, . . . , ybn/2c} and YR = {ydn/2e, . . . , yn}. Then, we perform three recursive calls: (i) we let Q1 be a
3-coreset for (k,1)-line approximation of YL, (ii) we let Q2 be a 3-coreset for (k � 1,1)-line approximation of
YL, and (iii) we let Q3 be a 3-coreset for (k � 1,1)-line approximation of YR. We add Q1, Q2, and Q3 to Q.

The proof of correctness argues as follows. Let C1, . . . , Ck be an arbitrary collection of k cylinders which
covers Q. The goal is to show that increasing the radius of C1, . . . , Ck by a factor of 3 covers Y . Let I1, . . . , Ik be
the intervals given by Ii = ` \Ci. We let the indices u, v 2 [k] be such that Iu is the first interval which contains
y1, and Iv the last interval which contains yn. We note that I1 [ · · · [ Ik covers Q. We must show that if we
increase the length of each interval by a factor of 3, we cover Y . We consider three cases:

• Suppose there exists an index i⇤ 2 [k] such that y1 and ydn/2e both lie in the interval Ii⇤ . Recall
ky1 � ydn/2ek2 � kydn/2e � ynk2, and all points are contained within y1 and yn. Hence, when we increase
the length of Ii⇤ by a factor of 3 while keeping center fixed, y1 and yn lie in the same interval, and thus
cover Y .

• Suppose y1 and ydn/2e lie in di↵erent intervals, but there exists i⇤ such that ydn/2e and yn lie in the interval
Ii⇤ . Then, since all points of YR between ydn/2e and yn, Ii⇤ covers YR. Since I1, . . . , Ik covers Q1 and Q1 is
a 3-coreset for (k,1)-line approximation of YL, increasing the length of each interval by a factor of 3 covers
YL, and therefore all of Y .
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• Suppose y1, ydn/2e and yn all lie in di↵erent intervals. Then, since y1 and ydn/2e are not on the same interval,
the k�1 intervals

S
i2[k]\{u} Ii covers Q2. Similarly, ydn/2e and yn are not on the same interval, so the k�1

intervals
S

i2[k]\{v} Ii covers Q3. Since Q2 is a 3-coreset for (k � 1,1)-line approximation of YL, increasing
the radius of each interval by a factor of 3 covers all of YL. In addition, Q3 is a 3-coreset for (k� 1,1)-line
approximation of YR, so increasing length of intervals by a factor of 3 covers YR.

This concludes the correctness of the coreset, and it remains to upper bound the size. Let f(k, n) 2 N be an
upper bound on the coreset size of (k,1)-line approximation of a subset of size n. We have f(1, n) = 2, since any
single interval which covers y1 and yn covers everything in between them. By our recursive construction, we have

f(k, n)  3 + f(k, n/2) + 2 · f(k � 1, n/2).

By a simple induction, one can show f(k, n) is at most (c1 log n)k when k � 2, for large enough constant c1 and
large enough n.

7.3.3 The coreset for points on k lines and the e↵ect of dimension reduction

Lemma 7.7. There exists a large enough constant c1 2 R�0 such that the following is true. Let Y = {y1, . . . , yn}
be a set of points lying on k lines in Rd. There exists a subset Q ⇢ Y which satisfies the following two requirements:

1. Q is a 3-coreset for (k,1)-line approximation of Y size at most k(c1 log n)k.

2. If ⇧ : Rd ! Rt is a linear map, then ⇧(Q) is a 3-coreset for (k,1)-line approximation of ⇧(Y ).

Proof. Let Y1, . . . , Yk be the partition of Y into points lying on the lines `1, . . . , `k of Rd, respectively. We may
write each line `i by two vectors ui, vi 2 Rd, and have

`i = {ui + t · vi : t 2 R} .

Let Qi be the 3-coreset for (k,1)-line approximation of Yi specified by Lemma 7.6. We let Q be the union of all
Qi. Item 1 follows from Lemma 7.6, since we are taking the union of k coresets.

We now argue Item 2. Since ⇧ is a linear map, and every point in Yi lies on the line `i, there exists a map
t : Yi ! R where each y 2 Yi satisfies

y = ui + t(y) · vi 2 Rd and thus, ⇧(y) = ⇧(ui) + t(y) ·⇧(vi) 2 Rt.

In other words, ⇧(Yi) lies within a line in Rt. We note that the relative order of points in ⇧(Yi) remains the
same, since for any two points y, y0 2 Yi,

k⇧(y)�⇧(y0)k2 = |t(y)� t(y0)| · k⇧(vi)k2, ky � y0k2 = |t(y)� t(y0)| · kvik2.

We note that the construction of Lemma 7.6 only considers the order of points in Yi, as well as the ratio of
distances. Therefore, executing the construction of Lemma 7.6 on the points ⇧(Yi) returns the set ⇧(Qi).

Corollary 7.2. Let Y = {y1, . . . , yn} ⇢ Rd be a set of points lying on k lines in Rd.

• Let A1, . . . , As denote a partition of Y where each Ai is a 3-coreset for (k,1)-line approximation of Y from
Lemma 7.7 on the set Y \

S
i�1
i0=1 Ai0 .

• Let ⇧ : Rd ! Rt be any linear map.

For any set of k lines L0 = {`01, . . . , `0k} in Rt, if y 2 Ai, we have

k⇧(y)� ⇢L0(⇧(y))k2  costz
z
(⇧(Y ), L0) · 3

i
.

Proof. The proof follows from applying the same observation of Lemma 7.5 to ⇧(Aj), which is a 3-coreset for
(k,1)-line approximation by Lemma 7.7. Namely, for every j  i, the set ⇧(Aj) is a 3-coreset for (k,1)-line
approximation of a set containing y. Thus, if ky � ⇢L0(y)k2 = r, there must be a set of at least i points y0 2 Y
where ky0 � ⇢L0(y0)k2 � r/3.
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7.4 Improving the approximation We now instantiate the sensitivity function of Lemma 7.7, and use
Corollary 7.1 and Lemma 7.4 in order to improve on the approximation. Similarly to before, we show that
event E3(1+ ") occurs with su�ciently high probability over the draw of ⇧ and (S,w) by giving an upper bound
on the variance as in Lemma 4.6, Lemma 5.7, and Lemma 6.6.

Fix X = {x1, . . . , xn} ⇢ Rd, and let L = {`1, . . . , `k} be the optimal (k, z)-line approximation of X in Rd.
For x 2 X, we let yx 2 Rd be given by yx = ⇢`(x)(x), and we denote the set Y = {yx : x 2 X}. The sensitivity
function � : X ! R�0 is specified by Lemma 7.5. Recall that we first let A1, . . . , As denote a partition Y , where
Ai is the 3-coreset for (k,1)-line approximation of Y from Lemma 7.7. For x 2 X with yx 2 Ai, we have

�(x) = 2z�1 · kx� yxkz2
costz

z
(X,L)

+ 22z�1 · 3
i
.

We let E4 denote the following event with respect to the randomness in ⇧ ⇠ Jd,t. For each x 2 X, we let
Dx 2 R�0 denote the random variable

Dx =
k⇧(x)�⇧

�
⇢`(x)(x)

�
k2

kx� ⇢`(x)(x)k2
,

and as in previous sections, event E4, which occurs with probability at least 0.99, whenever

X

x2x

D2z
x

· �(x)  100 · 2z ·S�.

Lemma 7.8. Let ⇧ 2 Jd,t be a Johnson-Lindenstrauss map where, for ↵ > 1, the following events hold:

• Guarantee from Lemma 7.1:
P

x2X
k⇧(x)�⇧(⇢`(x)(x))kz2  ↵ · costz

z
(X,L).

• Guarantee from Corollary 7.1: letting L0 = {`01, . . . , `0k} be the optimal (k, z)-line approximation fo ⇧(X),
then costz

z
(X,L)  ↵ · costz

z
(⇧(X), L0).

• Event E4 holds.

Then, if we let (S,w) denote m = poly((log n)k, 1/",↵), i.i.d draws from �̃ and w(x) = 1/(m�̃(x)), with probability
at least 0.99,

costz
z
((⇧(S),w), L0)  (1 + ") · costz

z
(⇧(X), L0).

Proof. We bound the variance,

VarS


E

x⇠S


1

�̃(x)
· k⇧(x)� ⇢L0(⇧(x))kz2

costz
z
(⇧(X), L0)

��
 S�

m

X

x2X

✓
1

�(x)
· k⇧(x)� ⇢L0(⇧(x))k2z2

cost2z
z
(⇧(X), L0)

◆
.(7.32)

We note that, as before, we will apply Hölder’s inequality and the triangle inequality, followed by Corollary 7.2.
Specifically, suppose x 2 X with yx 2 Ai, then,

k⇧(x)� ⇢L0(⇧(x))kz2  2z�1 ·Dz

x
· kx� ⇢L(x)kz2 + 2z�1 · k⇧(yx)� ⇢L0(⇧(yx))kz2

 2z�1 ·Dz

x
· kx� ⇢L(x)kz2 + 2z�1 · costz

z
(⇧(Y ), L0) · 3

i

 2z�1 ·Dz

x
· kx� ⇢L(x)kz2 +

22z�2 · 3
i

(costz
z
(⇧(X), L0) + costz

z
(⇧(X),⇧(Y ))) .

We note that from (7.8) and (7.8), we have costz
z
(⇧(X),⇧(Y ))  ↵costz

z
(X,L)  ↵2costz

z
(⇧(X), L0). So the above

simplifies to

k⇧(x)� ⇢L0(⇧(x))kz2
costz

z
(⇧(X), L0)

 2z�1 ·Dz

x
· kx� ⇢L(x)kz2

costz
z
(X,L)

+ 22z�2 · 3(1 + ↵2)

i

 (Dz

x
+ 1 + ↵2) · �(x).
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We now continue upper bounding (7.32), where the variance becomes less than

S�

m

X

x2X

�
Dz

x
+ 1 + ↵2

�2 · �(x) . S2
�
· ↵4

m
,

since event E4 holds. Since S�  poly(22z, (log n)k), we obtain our desired bound on the variance by letting m
be a large enough polynomial of (log n)k, ↵, and 1/".

Corollary 7.3. Let X = {x1, . . . , xn} ⇢ Rd be any set of points, and let L = {`1, . . . , `k} be the optimal set of
k lines for (k, z)-line approximation of X. For any " 2 (0, 1/2), let Jd,t be the Johnson-Lindenstrauss map with

t & k log log n+ z + log(1/")

"3
.

Then, with probability at least 0.92 over the draw of ⇧ ⇠ Jd,t,

min
L

0
k lines
in Rt

costz(⇧(X), L0) � 1

(1 + ")3+1/z
· costz(X,L).

A On preserving “all solutions” and comparisons to prior work

This section is meant for two things:

1. To help compare the guarantees of this work to that of prior works on (k, z)-clustering of [40] and (k, 2)-
subspace approximation [13], expanding on the discussion in the introduction. In short, for (k, z)-clustering,
the results of [40] are qualitatively stronger than the results obtained here. In (k, 2)-subspace approximation,
the “for all” guarantees of [13] are for the qualitatively di↵erent problem of low-rank approximation. While
the costs of low-rank approximation and (k, 2)-subspace approximation happen to agree at the optimum,
the notion of a candidate solution is di↵erent.

2. To show that, for two related problems of “medoid” and “column subset selection,” one cannot apply the
Johnson-Lindenstrauss transform to dimension o(log n) while preserving the cost. The medoid problem is a
center-based clustering problem, and column subset selection problem is a subspace approximation problem.
The instances we will construct for these problems are very symmetric, such that uniform sampling will give
small coresets. These give concrete examples ruling out a theorem which directly relates the size of coresets
to the e↵ect of the Johnson-Lindenstrauss transform.

Center-Based Clustering Consider the following (slight) modification to the center-based clustering
problems known as the “medoid” problem.

Definition A.1. (1-medoid problem) Let X = {x1, . . . , xn} ⇢ Rd be any set of points. The 1-medoid problem
asks to optimize

min
c2X

X

x2X

kx� ck22.

Notice the di↵erence between 1-medoid and 1-mean: in 1-medoid the center is restricted to be from within the
set of points X, whereas in 1-mean the center is arbitrary. Perhaps surprisingly, this modification has a dramatic
e↵ect on dimension reduction.

Theorem A.1. For large enough n, d 2 N, there exists a set of points X ⇢ Rd (in particular, given by the n-basis
vector {e1, . . . , en} ⇢ Rn) such that, with high probability over the draw of ⇧ ⇠ Jd,t where t = o(log n),

min
c2X

X

x2X

kx� ck22

min
c02⇧(X)

X

x2X

k⇧(x)� c0k22
� 2� o(1).
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Theorem A.1 gives very strong lower bound for dimension reduction for k-medoid, showing that decreasing
the dimension to any o(log n) does not preserve (even the optimal) solutions within better-than factor 2. This is
in stark contrast to the results on center-based clustering, where the 1-mean problem can preserve the solutions
up to (1 ± ")-approximation without any dependence on n or d. The proof itself is also very straight-forward:
each ⇧(ei) is an independent Gaussian vector in Rt, and if t = o(log n), with high probability, there exists an
index i 2 [n] where k⇧(ei)k22 = o(1). In a similar vein, with high probability

P
n

i=1 k⇧(ei)k22  (1 + o(1))n. We
take a union bound and set the center c0 = ⇧(ei) for the index i where k⇧(ei)k22 = o(1). By the pythagorean
theorem, the cost of this 1-medoid solution is at most (1 + o(1))n. On the other hand, every 1-medoid solution
in X has cost 2(n� 1).

We emphasize that Theorem A.1 does not contradict [40, 6], even though it rules out that “all candidate
centers” are preserved. The reason is that the notion of “candidate solution” is di↵erent. Informally, [40] shows
that for any dataset X ⇢ Rd of n vectors and any k 2 N, " > 0, applying the Johnson-Lindenstrauss map ⇧ ⇠ Jd,t

with t = O(log(k/")/"2) satisfies the following guarantee: for all partitions of X into k sets, (P1, P2, . . . , Pk), the
following is true:

kX

`=1

min
c
0
`2Rt

X

x2P`

k⇧(x)� c0
`
k22 ⇡1±"

kX

`=1

min
c`2Rd

X

x2P`

kx� c`k22.

The “for all” quantifies over clusterings (P1, . . . , Pk) is di↵erent (as seen from the 1-medoid example) from the
“for all” over centers c1, . . . , ck.

Subspace Approximation The same subtlety appears in subspace approximation. Here, we can consider
the 1-column subset selection problem, which at a high level, is the medoid version of subspace approximation.
We want to approximate a set of points by their projections onto the subspace spanned by one of those points.

Definition A.2. (1-column subset selection) Let X = {x1, . . . , xn} ⇢ Rd be any set of points. The 1-
column subset selection problem asks to optimize

min
S=span({xi})

xi2X

X

x2X

kx� ⇢S(x)k22

Again, notice the di↵erence between 1-column subset selection and (k, 1)-subspace approximation: the
subspace S is restricted to be in the span of a point from X. Given Theorem A.1, it is not surprising that
Johnson-Lindenstrauss cannot reduce the dimension of 1-column subset selection to o(log n) without incurring
high distortions.

Theorem A.2. For large enough n, d 2 N, there exists a set of points X ⇢ Rd such that, with high probability
over the draw of ⇧ ⇠ Jd,t where t = o(log n),

min
S=span(x)

x2X

X

x2X

kx� ⇢S(x)k22

min
S

0=span(⇧(x))
x2X

X

x2X

k⇧(x)� ⇢S0(⇧(x))k22
� 3/2� o(1).

The proof is slightly more involved. The instance sets d = n + 1, and sets X = {x1, . . . , xn} where
xi = (en+1 + ei)/

p
2. For any subspace S spanned by any of the points xi, via a straight-forward calculation,

the distance between xj and ⇢S(xj) is
p
3/4 when j 6= i, and therefore, the cost of 1-column subset selection

in X is 3/4 · (n � 1). We apply dimension reduction to t = o(log n) and we think of g1, . . . , gn+1 2 Rt

as the independent Gaussian vectors given by ⇧(e1), . . . ,⇧(en+1). As in the 1-medoid case, there exists an
index i 2 [n] for which kg

i
k22 = o(1), and notice that when this occurs, ⇧(xi) is essentially g

n+1/
p
2 (because

k⇧(xi) � g
n+1/

p
2k2 = o(1)). Letting S be the subspace spanned by ⇧(xi), we get that the distance between

the projection k⇧(xj)� ⇢S(⇧(xj))k22 is at most kg
j
k22/2+ o(1). This latter fact is because the subspace spanned

by S is essentially spanned by g
n+1. Therefore, the cost of the 1-column subset selection of ⇧(X) is at most

n/2(1 + o(1)).
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As above, Theorem A.2 does not contradict [13], even though it means that “all candidate subspaces” are
preserved needs to be carefully considered. The notion of “candidate solutions” is di↵erent. In the matrix notation
that [13] uses, the points in X are stacked into rows of an n ⇥ d matrix (which we denote X). A Johnson-
Lindenstrauss map ⇧ is represented by a d⇥ t matrix, and applying the map to every point in X corresponds to
the operation X⇧ (which is now an n⇥ t matrix). [13] shows that if ⇧ is sampled with t = O(k/"2), the following
occurs with high probability. For all rank-k projection matrices P 2 Rn⇥n, we have

kX � PXk2
F
⇡1±" kX⇧� PX⇧k2

F
.

Note that when we multiply the matrix X on the left-hand side by P , we are projecting the d columns of X to a
k-dimensional subspace of Rn. This is di↵erent from approximating all points in X with a k-dimensional subspace
in Rd, which would correspond to finding a rank-k projection matrix S 2 Rd⇥d and considering kX �XSk2

F
. In

the matrix notation of [13], the dimension reduction result for (k, 2)-subspace approximation says that

min
S2Rd⇥d

rank-k
projection

kX �XSk2
F
⇡1±" min

S
02Rt⇥t

rank-k
projection

kX⇧�X⇧S0k2
F
.(A.1)

At the optimal S 2 Rd⇥d and the optimal P 2 Rn⇥n, the costs coincide (a property which holds only for z = 2).
Thus, [13] implies (A.1), but it does not say that the cost of all subspaces of Rd are preserved (as there is a type
mismatch in the rank-k projections on the left- and right-hand side of (A.1)).
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