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Abstract
As interest in metadata-hiding communication grows in both

research and practice, a need exists for stronger abuse report-

ing features on metadata-hiding platforms. While message

franking has been deployed on major end-to-end encrypted

platforms as a lightweight and effective abuse reporting fea-

ture, there is no comparable technique for metadata-hiding

platforms. Existing efforts to support abuse reporting in this

setting, such as asymmetric message franking or the Hecate

scheme, require order of magnitude increases in client and

server computation or fundamental changes to the architec-

ture of messaging systems. As a result, while metadata-hiding

communication inches closer to practice, critical content mod-

eration concerns remain unaddressed.

This paper demonstrates that, for broad classes of metadata-

hiding schemes, lightweight abuse reporting can be deployed

with minimal changes to the overall architecture of the system.

Our insight is that much of the structure needed to support

abuse reporting already exists in these schemes. By taking a

non-generic approach, we can reuse this structure to achieve

abuse reporting with minimal overhead. In particular, we show

how to modify schemes based on secret sharing user inputs to

support a message franking-style protocol. Compared to prior

work, our shared franking technique more than halves the time

to prepare a franked message and gives order of magnitude

reductions in server-side message processing times, as well

as in the time to decrypt a message and verify a report.

1 Introduction

Public discussions on abuse reporting in messaging platforms

primarily focus on content moderation policy questions re-

garding what kinds of messages should and should not be

allowed. However, when it comes to reporting abuse on pri-

vate messaging platforms that provide end-to-end encryption

or hide metadata, important technical problems must be ad-

dressed before moderation policy decisions can be enforced.

In an unencrypted platform, a moderator can see the con-

tents of all messages, as well as the identities of their senders,

and can use this information to make decisions when a user

reports a message. When messages are end-to-end encrypted,

the moderator no longer sees the message contents, and a user

making a report must be able to demonstrate to the moderator

that the reported message actually corresponds to content sent

through the platform. The metadata-hiding setting poses an

even greater challenge, as the moderator sees neither message

contents nor the identities of message senders.

Message franking, first introduced by Facebook and used

in both WhatsApp and Messenger Secret Conversations, pro-

vides a lightweight solution to the problem of abuse report-

ing for end-to-end encrypted messages [29, 32, 25]. Unfor-

tunately, message franking schemes used in practice do not

work in the metadata-hiding setting. Proposals to handle abuse

reporting for metadata-hiding platforms include asymmetric

message franking (AMF) [44] and the Hecate scheme [33].

While these schemes provide strong security guarantees for

abuse reporting in the challenging metadata-hiding setting,

they come with performance overheads orders of magnitude

higher than the message franking used in practice.

This work takes a new approach to abuse reporting for

metadata-hiding communication. While previous solutions

have been designed to work generically for any metadata-

hiding platform, we take a non-generic approach that applies

to a specific class of private messaging schemes: schemes

based on additive secret sharing techniques. Given the large

number of proposed messaging schemes that use secret shar-

ing, as well as incipient deployments of other privacy preserv-

ing technologies based on secret sharing [19, 26, 5, 1, 2], this

family of approaches merits special attention. We show how

these schemes can use a message franking-style protocol with

minimal performance overhead.

At a high level, our scheme involves secret sharing the

message franking process. Message franking involves the

platform MACing a compactly committing encryption of a

message [29, 32], so we need to reproduce this efficiently in

a setting where the server serving as the moderator does not

have access to the whole message at the time a message is

processed by the platform. Our solution has the moderator
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• Accountability: Every message delivered through the

platform must be able to be reported to the moderator.

• Unforgeability: Users cannot be framed for sending

messages they did not send.

• Deniability: Only the moderator can verify the authen-

ticity of reported messages. If the contents of a report

are leaked, it would be impossible for a third party to

verify them.

As is the case in many metadata-hiding communication

schemes, we will assume that the servers operating the com-

munication system are trusted for availability but not for

security. That is, correctness of outputs will assume that the

servers cooperate with the protocol, but all our security defini-

tions will require security against actively malicious servers.

All our definitions additionally aim to protect against mis-

behavior by malicious or disruptive clients. In defining and

achieving security, we will assume pairwise secure connec-

tions (encrypted and authenticated) between servers via TLS,

which are generally already in use by the underlying commu-

nication protocol.

Accountability and anonymity. Before we move on, we em-

phasize that there are inherent tradeoffs between anonymity

and accountability, and that, in addition to the technical con-

siderations of how to build a shared franking scheme, it is

also important to consider whether and where such schemes

should be used. While our confidentiality definition will en-

sure that unreported messages enjoy the same privacy as in a

scheme that does not support abuse reports, adding the ability

to report a message to a moderator means that the moderator

can learn the identity of a message sender and the contents of

that message. Some metadata-hiding communication systems

provide anonymity for the sender even against the message

recipient. In these cases, shared franking would enable a mes-

sage recipient to reveal information to the moderator that the

recipient themself does not know, resulting in a greater cost

to privacy than in standard message franking for end to end

encrypted messaging. While this kind of disclosure may be

desirable in certain limited settings, it does not seem suitable

as a feature for general-purpose communication platforms. As

such, examples of metadata-hiding schemes discussed in this

paper provide unlinkability of message senders and receivers,

but do not necessarily hide the identity of message senders

from the receivers. This is not a technical limitation, but a

reflection of our priorities in building better private commu-

nication technology. However, a relevant technical limitation

of our scheme in the setting where the sender is anonymous

to the receiver is that a malicious receiver could potentially

collude with a malicious non-moderator server to reveal the

sender’s identity. This is not an issue in cases where the sender

and receiver already know each other’s identities.

2.1 Formalizing Shared Franking

Notation. Before formally stating the requirements of a

shared franking scheme, we briefly summarize some nota-

tion used throughout the paper. We use y← f (x) to denote

the assignment of the output of f (x) to the variable y, and

we use x←R S to denote assigning to x a uniformly random

element from the set S. The notation {} represents the empty

set. We use AO to indicate that A has oracle access to O. A

function negl(λ) is negligible if for all c > 0, there is an x0

such that for all x > x0, negl(x)< 1
xc . We sometimes omit the

security parameter λ when it is implicit from context.

We use [x] to denote an additive secret sharing of x. For

a message x split into N shares, we use [x]i, i ∈ {1, ...,N} to

denote each share. In particular, for an additive secret sharing

[x] = ([x]1, ..., [x]N) it holds that x = ΣN
i=1[x]i. Finally, we use

⊥ as a special character to indicate failure.

Throughout the paper, we use standard definitions of MACs,

PRGs, CPA-secure encryption, collision-resistance, random

oracles, and other widely used cryptographic primitives [13].

Syntax. A shared franking scheme consists of Send and

Receive algorithms to be run by clients sending or receiv-

ing messages, a processing protocol run by servers S1, ...,SN

who operate a metadata-hiding communication scheme, one

of which also serves a content moderator, and a Verify al-

gorithm used by the moderator to verify reports of abusive

messages sent through the platform. For our scheme, we

model the processing protocol with two functions, Process

and ModProcess. The Process algorithm is the algorithm

run by most of the servers participating in the protocol, and

the ModProcess algorithm is a variant of Process run by the

server serving as the platform’s moderator.

We assume that the users in a shared franking scheme have

access to a shared key kU produced according to the protocol

used in the underlying communication system, which they

will use to encrypt messages. During the processing protocol,

the moderator can include message context ctx with a mes-

sage, to be revealed again if a user later reports the message.

This is where the moderator can include information about

the sender of the message or a timestamp indicating when the

message was sent. Deployed message franking schemes use a

similar mechanism to give moderators relevant information

needed to judge reported messages [29].

We define the syntax of a shared franking scheme as fol-

lows.

Definition 2.1 (Shared Franking Scheme). A

Shared Franking Scheme consists of five algorithms

(Send,Process,ModProcess,Read,Verify). The syntax of a

shared franking scheme is defined with respect to message

space M , context space C , tag space T , user key space KU ,

and server key space KS as follows.

• Send(kU ,m,N) → (w1, ...,wN): This function takes a

user secret kU ∈KU , a message m ∈M , and an integer
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N indicating the number of servers to which the mes-

sage will be sent. The function returns a series of write

requests w1, ...,wN , each of which is sent to one of the

servers.

• Process(N, i,wi)→ (vi,w
′
i): This function takes the total

number of servers in the protocol, as well as the index

of the server running the function and the input for that

server. It returns the server’s output value vi as well as

an output w′i for the moderator server.

• ModProcess(N,kS,w1,ctx,(w
′
2, ...,w

′
N)) → v1: This

function is a variant of the Process function that is run

by the server serving as moderator. By convention, we

set the moderator to be S1. In addition to the number of

users and the server’s input, this function additionally

takes the moderator’s secret key kS ∈KS, the values w′i
for i ∈ {2, ...,N} from the other servers, and a context

input ctx ∈ C .

• Read(kU ,N,(v1, ...,vN)) → (m, t)/⊥: This function

takes a user secret kU ∈KU , an integer N indicating the

number of servers with which a message is shared, and

a series of server output values v1, ...,vN . The function

either recovers a message m ∈M and tag t ∈ T , or it

outputs ⊥ to indicate malformed server outputs.

• Verify(kS,N,m, t)→ ctx/⊥: This function takes a server

secret kS ∈KS, an integer N, a message m ∈M , and tag

t ∈ T . It outputs a context ctx ∈ C , or it outputs ⊥ to

indicate failed verification of the message/tag.

When a system uses shared franking, the user sending a

message runs the Send algorithm to prepare messages rather

than simply secret sharing – or encrypting and then secret

sharing – their message. Once the servers receive the shares

produced by Send, along with any other protocol-dependent

information, they run the Process or ModProcess algorithms

before doing any of the message processing used to deliver

messages in the underlying communication system. When

message shares are processed according to the design of the

underlying system and delivered to a receiver, the receiver

runs the Read algorithm to recover the message sent by the

sender. If a message receiver decides to report a message, it

sends the message m and tag t to the moderator, who runs

Verify to check that the reported message is authentic and to

recover relevant metadata.

A communication system compatible with shared franking

is one that takes shares of (potentially encrypted) messages

as inputs and then runs an interactive protocol between the

servers offering the service to deliver messages. This proto-

col (called Deliver below), involves somehow shuffling the

shares of messages in a way that the recipient of a message

can identify it but the servers cannot link message senders

and receivers. A simple example of such a scheme would be

an MPC-based shuffle followed by anonymous broadcast of

messages, where receivers do a linear scan of results to find

their intended message. More sophisticated systems, such as

MCMix [8], include mechanisms for senders and receivers

to download only their intended messages after a shuffle, dra-

matically reducing communication and eliminating the need

for trial decryptions. DC-net or DPF-based schemes [17, 30]

can also rely on either anonymous broadcast or a mechanism

for clients to privately determine where in a list of messages a

given message will be delivered. In all cases, the correctness

property provided by the underlying communication scheme

must be that shares output by the scheme are shares of the

same messages as the input shares, at least for the parts of

the shares that correspond to the messages themselves. It is

possible for additional protocol-dependent information to be

appended by the servers during processing to aid in retrieval,

but this is not relevant for the purposes of shared franking.

Correctness. The correctness definition for a shared franking

scheme requires that messages sent via the scheme can be

successfully read, and that the context the moderator retrieves

when verifying a report matches the context used when the

message was sent. Our definition of correctness, when re-

stricted to the single-server case where N = 1, corresponds to

a correctness definition for a conventional message franking

scheme.

Our correctness definition also accounts for the possibility

that the platform to which we add shared franking may do

some computation on the shared franking outputs before they

are returned to the user. For example, if the server outputs are

secret shares of some messages and the underlying platform

uses MPC to shuffle the messages before delivery, the final

messages may be re-randomized versions of the shares output

by the shared franking scheme.

We model the message delivery mechanism of the under-

lying protocol as an interactive protocol Deliver⟨⟩ between

N servers, where each server Si has a two-part input consist-

ing of a share [m]i of the message being sent and some extra

protocol-dependent data ei,

Deliver⟨S1([m]1,e1), ...,SN([m]N ,eN)⟩

→ (([m′]1,e
′
1), ...,([m

′]N ,e
′
N)),

subject to the condition that the shared message m is pre-

served, i.e., m = m′. Although a real scheme acts on multiple

messages at once, this description abstracts away other mes-

sages and routing logic but captures the impact on an individ-

ual message, which is the scope at which franking operations

take place. A shared franking scheme modifies the shares [m]
of the message, replacing them with the processed outputs vi

of the shared franking protocol.

Definition 2.2 (Correctness). We say that a shared franking

scheme satisfies correctness if for any λ,N ∈N, m∈M , ctx∈
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C , kU ∈KU , kS ∈KS and for some e1, ...eN , when we compute

(w1, ...,wN)← Send(kU ,m,N)

vi,w
′
i← Process(N, i,wi) for i ∈ {2, ...,N}

v1←ModProcess(N,kS,w1,ctx,(w
′
2, ...,w

′
N))

((v′1,e
′
1), ...,(v

′
N ,e
′
N))← Deliver⟨S1(v1,e1), ...,SN(vN ,eN)⟩

we have that

(m′, t)← Read(kU ,N,(v′1, ...,v
′
N))

where m′ = m, and

ctx′← Verify(kS,m, t)

where ctx′ = ctx.

2.2 Defining Security

This section describes the various security properties we

expect of a shared franking scheme. Following the discus-

sion here, formal definitions for each property appear in Ap-

pendix A.

Confidentiality. The primary confidentiality property re-

quired of a shared franking scheme is that it does not compro-

mise the privacy properties of the underlying metadata-hiding

communication platform, except when revealing metadata

stored in the context attached to a reported message. We

use metadata-hiding to refer to systems that render message

senders and receivers unlinkable to the platform. In secret

sharing based schemes, message senders start by directly con-

necting to the servers to upload message shares, at which

point the servers can identify the senders, as there is no need

for anonymity in that connection. Only after receiving the

messages do the servers process them in a way that breaks

the link between message senders and message recipients.

Our confidentiality definition is designed to ensure that the

security of the message processing cannot be compromised

by the addition of a tag to enable abuse reporting before mes-

sages are processed. This means that no server operating the

platform, and no user other than the intended recipient of a

message, can learn anything about the contents of a message

sent through the platform or about who sent a given message

through the platform. Since our work focuses on the case of

secret-shared data, we will capture this requirement via an

adversary who controls some strict subset of the N servers

operating the service.

Our security definition allows an adversary to pick a set M

of corrupted servers to control. In the security experiment, the

adversary is allowed to adaptively ask an honest user to send

the servers write requests for one of two messages m0,m1 of

the adversary’s choosing, and the adversary must determine

which message is sent after seeing the resulting write requests

wi. We say that a scheme has confidentiality if no efficient ad-

versary can distinguish between the two messages. This effec-

tively means that the view of the adversary while processing

messages for shared franking does not depend on the actual

messages sent in any way. After the shared franking process

is over, the security properties of the underlying messaging

scheme will ensure that an adversary cannot see the contents

of delivered messages or identify their senders. Our defini-

tion only requires that the additional message preprocessing

required for shared franking does not expose information that

could compromise users’ privacy.

One could imagine other supplemental confidentiality re-

quirements, such as requiring that a user’s message remains

confidential even against an adversary who controls all the

servers, or that the context string ctx does not leak to servers

other than the moderator. We do not formalize security def-

initions for these notions, but our scheme trivially satisfies

both. To protect message contents against compromise of all

servers, messages are encrypted via a CPA-secure encryp-

tion scheme before being secret shared. Our syntax prevents

the message context ctx from being sent directly from the

moderator to the other servers, and our scheme masks ctx

with pseudorandom bits before the moderator outputs it to the

underlying messaging protocol.

Accountability. Our accountability definition ensures that ev-

ery message sent through the system can be successfully veri-

fied if reported, even in the presence of malicious clients and

servers. In particular, an adversarial client or group of clients,

even if they collude with all the servers except the moderator,

cannot send a set of write requests where a message will be

successfully decrypted by the recipient but verification of that

message by the moderator will fail.

In our definition, the adversary is allowed to play the role

of any number of malicious clients and servers, except for

the moderator. The adversary controls the write requests, in-

termediate outputs, and context received by the moderator

and gets the moderator’s output share v1 in response to in-

puts of the adversary’s choosing. The adversary wins the

game if, after its interactions with the moderator, it can pro-

duce a user key k∗U , a context ctx∗, and write request w∗1, and

server outputs v∗2, ...,v
∗
N ,w

′
2, ...w

′
N , such that, after processing

via ModProcess, the Read algorithm can recover a non-⊥
message, but Verify either fails to verify or returns an incor-

rect ctx∗∗ ̸= ctx∗.

Unforgeability. Unforgeability requires that a malicious re-

porter cannot report messages or message contexts that were

not actually sent through the platform. This property differs

from accountability in that accountability protects against

malicious senders who wish to send unreportable messages

and abuse the platform without repercussions, whereas un-

forgeability protects against malicious receivers who wish to

produce false reports that frame honest senders.

In this definition, similar to the accountability definition,
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the adversary plays the role of any number of malicious clients

and servers, except the moderator. After being allowed to in-

teract with the moderator and receiving the moderator outputs

for any successfully delivered/verified message, the adversary

produces a new message and tag pair. The definition requires

that the adversary cannot produce successfully verifying tags

on new messages, and, moreover, the adversary cannot pro-

duce tags on already-sent messages that verify but return a

context different from the context used when the message was

originally sent.

Deniability. Deniability requires that only the moderator can

verify the authenticity of reported messages. This property

helps maintain the expectation that messages sent through

private channels are largely ephemeral and cannot verifiably

be exposed to third parties other than the moderator.

We do not formalize our own deniability definitions here,

as notions of deniability from prior work extend to our setting

in a straightforward way [44, 33, 40]. Instead, we briefly dis-

cuss some forms of deniability that a shared franking scheme

must achieve and return to these in the security analysis of

our scheme. See the asymmetric message franking work of

Tyagi et al. [44] for an extensive discussion of the potential

space of security definitions for deniability.

Following Tyagi et al., we consider three forms of deniabil-

ity, all three of which should be satisfied: receiver compromise

deniability, moderator compromise deniability, and universal

deniability. Each definition requires that there exist a forgery

algorithm that produces message, report pairs that are indis-

tinguishable from real ones, thus allowing users to deny that

they really sent or received a given message. The difference

between the three definitions lies in what information the

forgery algorithm can use in producing its forgery and in

what information the distinguisher is allowed to see. Univer-

sal deniability gives the forger and distinguisher access to

any public parameters of the system and the secret keys of

all users uninvolved in the message being denied. In receiver

compromise deniability, the forger and distinguisher addition-

ally receive the user secret key that encrypts and decrypts

the message being denied. In moderator compromise deni-

ability, the forger and distinguisher additionally receive the

moderator’s secret key.

3 Franking for Secret-Shared Messages

This section introduces our shared franking scheme. We be-

gin with background on conventional message franking. Our

scheme can be seen as a way to lift standard, single-server

message franking into the secret shared setting.

We will consider the message franking scheme used

by Facebook [29] using the abstractions introduced by

Grubbs et al. [32]. Roughly speaking, the scheme consists of

two components: a compactly committing encryption scheme

and a MAC. At its core, it consists of the platform MACing

part of an appropriately formatted ciphertext from the user

sending a message. This ciphertext, along with associated

context information, is revealed later in the event that the re-

ceiving user reports the message. Verifying the MAC when a

user reports a message allows the platform to record the con-

text for each message without the need for extensive metadata

collection and storage.

In this work, we will take advantage of the fact that, for

metadata-hiding communication schemes based on secret

sharing, the servers involved in the protocol can identify the

sender of a message at the time a message is sent, even though

they cannot identify the recipient or link senders and recipients

for any message. In secret sharing based schemes, message

senders start by directly connecting to the servers to upload

message shares (without need for any intermediate anonymity

layer), at which point the servers can identify the senders.

Only after receiving shares of messages do the servers process

them in a way that breaks the link between message senders

and message recipients. This allows the server acting as the

moderator to attach the necessary context, e.g., sender identity,

at the time a message is sent.

Our approach is fundamentally different from prior work

that extends content moderation to the metadata-hiding set-

ting (e.g., [44]). Whereas prior works use cryptographic tech-

niques to remove the involvement of the moderator from the

message delivery process, we find ways to render the modera-

tor’s involvement harmless. This results in increased perfor-

mance at the cost of only being applicable to schemes based

on secret sharing.

3.1 Background: Message Franking and Com-

pactly Committing Encryption

As mentioned above, a message franking scheme requires

compactly committing encryption. This is an encryption

where the ciphertext c = (c1,c2) can be thought of as con-

sisting of two components. Component c1 is a conventional

ciphertext, and c2 functions as a commitment to the under-

lying message, which a moderator can verify in the event

the message is reported. Compactness means that the size

|c2| of the committing component of the ciphertext must be

independent of the length |m| of the underlying encrypted

message m.

We restate the syntax for a compactly committing encryp-

tion scheme below. This is the same syntax introduced by

Grubbs et al. [32], except whereas they presented their def-

initions in terms of compactly committing AEAD schemes,

we present a syntax for compactly committing AE only. An

AEAD scheme allows for additional authenticated, unen-

crypted data to be associated with a ciphertext [41], but we

will not need this feature for our scheme. That said, although

we do not use the AEAD syntax for simplicity of presentation,

our scheme can easily be modified to accommodate additional

associated data should it be necessary.
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Definition 3.1 (Committing AE [32]). A committing AE

scheme CE = (Kg,Enc,Dec,Ver) is a four-tuple of algo-

rithms with the syntax described below. Associated to a

scheme is a key space K , message space M , ciphertext space

C , opening space Ko, and franking tag space T .

• Kg(1λ)→ k: This function takes a security parameter

and generates a key for use in the ccAE. We omit calls

to this function when the key is provided by the calling

context.

• Enc(k,m)→ (c1,c2): This function takes in a key k ∈K

and message m ∈M , and it returns a two part ciphertext

(c1,c2) where c1 ∈ C and c2 ∈ T .

• Dec(k,(c1,c2))→ (m, fo)/⊥ : This function takes a key

k ∈ K and a two part ciphertext (c1,c2) ∈ C ×T , and

it returns either ⊥ or a message m ∈M and a franking

opening fo ∈Ko.

• Ver(m, fo,c2) : 0/1 This function takes a message m ∈
M , an opening fo ∈Ko, and a tag c2 ∈ T , and it outputs

1 or 0 to indicate acceptance or rejection of a message,

respectively.

Our implementation uses the CtE1 scheme of Grubbs et al.,

which can be built entirely from standard primitives.

Grubbs et al. introduce sender and receiver binding security

definitions for committing AE that go beyond the standard

CPA-security and ciphertext integrity properties of authenti-

cated encryption and ensure the security of the committing

component of the ciphertext. See their work for a detailed

description of these definitions [32]. In this work, we use

SBadv and RBadv to denote the sender binding and receiver

binding advantage of an adversary against a ccAE scheme.

3.2 Our Shared Franking Protocol

This section describes the intuition and design choices for

our shared franking scheme. As a starting point, consider a

scheme where the client computes a ccAE ciphertext (c1,c2)
of the message it wishes to send, and secret shares it among

the N servers. As an optimization, we set the shares wi for

i ∈ {2, ...,N} to be short seeds which the servers can expand

into message shares, and only the share sent to the moderator

is a full-length message share. We now show how to build up

from this starting point to a shared franking scheme.

Secret sharing a MAC. In order to apply the intuition of mes-

sage franking to the secret shared setting, we need to compute

a MAC on a ccAE ciphertext in a way that is amenable to

computation on secret shared data.

One option for building a sharing-friendly MAC would

be to adopt a Carter-Wegman MAC [46] or a homomor-

phic MAC [7]. Unlike widely used standard MACs like

HMAC [12], the structure of these MACs allows efficient

distributed computation of MACs over secret-shared data us-

ing MPC. Unfortunately, this is only the case if every party

involved in the MAC computation holds the secret key for

the MAC. In the shared franking setting, only the modera-

tor holds the key, so a MAC cannot be computed by simply

aggregating computations done by the servers processing a

message. We can get around this by using a multiparty com-

putation protocol over an arithmetic circuit that computes the

MAC [31, 9, 24, 23], but this adds both communication and

computation costs that we wish to avoid.

Instead, we have the moderator compute a MAC on the

secret shares of the message rather than directly on the mes-

sage itself. Since the shares, taken together, allow for recon-

struction of the messages, this is equivalent to MACing the

message directly. To avoid having the moderator see all the

message shares directly, we have each server send the mod-

erator a hash of its input share w′i← H(wi). The moderator

computes a MAC over its own share [c2]1 of c2, all the hashes

it receives, and the context string ctx for the message being

processed. Formally, the moderator computes

h← (w′2, ...,w
′
N)

σ←MAC.Sign(kS,([c2]1,h,ctx)).

Note that, as is the case in standard message franking, ap-

pending a MAC means messages sent through the shared

franking scheme will be longer than user-submitted cipher-

texts. To accommodate this, other servers generate sufficiently

long pseudorandom outputs from their write request seeds to

match the length of the moderator’s output. The moderator

also masks these outputs with randomness generated from a

seed provided by the user sending the message.

Reproducing shares. While MACing shares of a message

suffices to serve as a MAC on that message, MACing hashes

of shares of a message poses a problem for the correctness

of our scheme. In order to verify this MAC, the recipient

of a report needs the exact same shares that were used to

generate the MAC tag. But the shares of a message delivered

to the message recipient after passing through an MPC-based

metadata-hiding communication scheme will almost certainly

differ from the ones produced when a sender produces the

message.

We get around this problem by ensuring the recipient of a

message can reproduce the original shares used by the sender.

When sending a message, the randomness for producing each

share is generated from a seed r, and the sender includes r

in the ciphertext delivered to the platform. Specifically, the

sender computes

r←R {0,1}λ

c = (c1,c2)← ccAE.Enc(kU ,(m,r))

{si}i∈{1,...,N}← G(r)

[c]1← c⊕G(s2)⊕ ...⊕G(sN),
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where G is a PRG with suitable output lengths. Since the

message recipient can recover r, it can reproduce the original

shares used when the message was sent. These can in turn

be used to send the moderator the correct inputs to the MAC

produced when it was processing the message, fixing the cor-

rectness problem introduced by MACing hashes of message

shares instead of the message itself.

Adding accountability. The scheme as sketched thus far

suffices to provide confidentiality and unforgeability (via the

secret sharing and the MAC+ccAE combination), but account-

ability can easily be circumvented by a malicious user or

server:

• A malicious user could include an incorrect value r′

instead of r in the ccAE ciphertext.

• A malicious server could output a partially incorrect

secret share so that the MAC σ is corrupted and fails to

verify.

In order to achieve accountability, we need to ensure that

these kinds of misbehavior can be caught by the receiving user

in the Read algorithm, rather than only becoming apparent

when Verify fails after a user reads and reports a message.

This problem can be resolved via additional integrity

checks by receiving users to ensure messages can be veri-

fied by the moderator. In particular, we have the moderator

compute a hash σc on the same message as the MAC σ, but

with σ itself included at the end of the hash input. That is,

σc← H ′(kr, [c2]1,h,ctx,σ)

where the hash function H ′ is modeled as a random oracle.

This serves as a checksum on the values that will be verified

if a message is later reported.

The hash σc is masked and appended to the moderator’s

output, and the receiving user verifies σc when running Read

on a received message. The fact that messages are secret

shared means that σc is not visible to any party besides the

moderator until a message is read.

Observe that when we instantiate this scheme with a MAC

that also serves as a PRF, e.g., HMAC [12, 10, 11], the func-

tion H ′ has a pseudorandom input σ known only to the mod-

erator. Since the values of σ and σc are secret shared among

the servers, an adversary can only introduce additive offsets

to them between the time σc is generated and checked. Since

H ′ is modeled as a random oracle, an attacker has a negli-

gible chance of offsetting both σc and its inputs in such a

way that the checksum still verifies. Thus a receiving user

can recompute σc to verify for itself that σ will be accepted

during verification.

3.3 Formal Protocol Description

We formalize our protocol in Construction 3.2 below, includ-

ing details on message lengths and masking/unmasking that

were omitted in the explanation of the protocol above. We

present our scheme assuming the servers operate over bit

strings using the XOR operation, but the scheme generalizes

to additive secret sharing in an arbitrary abelian group.

Construction 3.2. Our N party shared franking protocol Π

appears in Figure 2 makes use of the following primitives to

send messages of length ℓ.

• A ccAE scheme ccAE(Kg,Enc,Dec,Ver) where Enc :

K ×M →{0,1}ℓ+ν1 ×{0,1}ν2 .

• A PRG G : {0,1}λ → {0,1}∗. We abuse notation and

truncate {0,1}∗ to the needed length of the PRG output

in each case where the PRG is used. We explicitly spec-

ify the length of the PRG output unless it’s clear from

context.

• Hash functions H : {0,1}λ′ → {0,1}λ′′ and H ′ :

{0,1}∗→{0,1}λ′′ modeled as random oracles. The pa-

rameters λ′,λ′′ = poly(λ) are derived from the security

parameter λ.

• A MAC scheme (Sign,Verify) with tag space {0,1}ν3

where the Sign algorithm is also a PRF.

We assume that the input ctx to ModProcess has a fixed,

publicly-known length denoted by |ctx|.

The correctness of this scheme follows from the correct-

ness of the underlying cryptographic tools used to build it,

namely the ccAE encryption scheme and the MAC scheme,

as well as the correctness of the underlying metadata-hiding

communication scheme. Recall that correctness is defined

(Definition 2.2) with respect to a scheme-dependent Deliver⟨⟩
protocol. In many schemes, this will involve some kind of

re-randomization or shuffling of the ciphertext shares sent to

the servers [8, 36, 27]. Our scheme remains correct regardless

of how this re-randomization happens because as long as the

correct message is reconstructed at the end, the moderator

can get the “original” shares the sender sent to the system by

deriving them from r. This means that the correctness of the

shared franking scheme only relies on the correctness of the

underlying metadata-hiding communication scheme, not on

the details of how it manipulates shares.

3.4 Security

We now briefly discuss the various security properties of our

scheme. Due to space limitations, proofs for the theorems

stated here appear in the full version of this paper.

Confidentiality. The confidentiality of our scheme relies on

the fact that the view of any subset of the servers simply con-

sists of secret shares of ciphertexts that the adversary, who

does not control all the servers, cannot reconstruct. Since the

secret shares are generated by several invocations of the PRG
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Send(kU ,m,N) :

r←R {0,1}λ

c = (c1,c2)← ccAE.Enc(kU ,(m,r))

{si}i∈{1,...,N}← G(r)

where |si|= λ for i ∈ {1, ...,N}

[c]1← c⊕G(s2)⊕ ...⊕G(sN)

w1← ([c]1,s1)

wi← si for i ∈ {2, ...,N}

output w1, ...,wN

Process(N, i,wi)

vi← G(wi)

where |vi|= ℓ+ν1 +ν2

+ |ctx|+ν3 +λ
′′

w′i← H(wi)

output vi,w
′
i

ModProcess(N,kS,w1,ctx,(w
′
2, ...,w

′
N)) :

([c]1,s1)← w1

([c1]1, [c2]1)← [c]1

h← (w′2, ...,w
′
N)

σ←MAC.Sign(kS,([c2]1,h,ctx))

u′1← G(s1), |u
′
1|= |ctx|+ν3 +λ

′′

σc← H ′([c2]1,h,ctx,σ)

output ([c]1,(u
′
1⊕ (ctx,σ,σc))

Read(kU ,N,(v1, ...,vN)) :

v← v1⊕ ...⊕ vN

(c1,c2,c3)← v

where |c1|= ℓ+ν1, |c2|= ν2,

and |c3|= |ctx|+ν3 +λ
′′

(m,r, fo)← ccAE.Dec(kU ,(c1,c2))

if (m,r, fo) =⊥, output ⊥

{si}i∈{1,...,N}← G(r), |si|= λ for i ∈ {1, ...,N}

(ui,u
′
i)← G(si) for i ∈ {2, ...,N}

where |ui|= ℓ+ν1, |u
′
i|= ν2 + |ctx|+ν3 +λ

′′

u′1← G(s1), |u
′
1|= |ctx|+ν3 +λ

′′

([c2]1,ctx,σ,σc)← (c2,c3)⊕ (0ν2 ,u′1)⊕u′2...⊕u′N

h← (H(s2), ...,H(sN))

if σc ̸= H ′([c2]1,h,ctx,σ),output ⊥

else output m,(r, fo, [c2]1,ctx,σ)

Verify(kS,N,m, t) :

(r, fo, [c2]1,ctx,σ)← t

{si}i∈{1,...,N}← G(r), |si|= λ for i ∈ {1, ...,N}

h← (H(s2), ...,H(sN))

ver←MAC.Verify(kS,([c2]1,h,ctx),σ)

(ui,u
′
i)← G(si) for i ∈ {2, ...,N}

where |ui|= ℓ+ν1, |u
′
i|= ν2

c2← [c2]1⊕u′2⊕ ...⊕u′N

ver′← ccAE.Ver((m,r), fo,c2)

if ver = 0 ∨ ver′ = 0, output ⊥; else output ctx

Figure 2: Our shared franking scheme (Construction 3.2).

G, security primarily reduces to the security of G. The only

messages sent in the confidentiality experiment that are not

secret shared are outputs of queries to H, so we additionally

bound the probability that the adversary queries the random

oracle at any point that overlaps with a query made by an hon-

est server, ensuring that these random oracle outputs cannot

help the adversary.

Theorem 3.3. If we assume that G is a secure PRG and model

H as a random oracle, then our shared franking scheme (Con-

struction 3.2) satisfies sharing confidentiality (Definition A.1).

In particular, for every confidentiality adversary A that

attacks Π and makes at most QRO random oracle queries to

H, there exists a PRG distinguishing adversary B such that

for every λ,N,Q, and NM < N,

CONFadv(A ,Π,λ,N,Q,NM)

≤ 4Q ·PRGadv(B,G,λ)+2Q · (N−NM) ·
QRO

2λ′
.

Accountability and unforgeability. The accountability of

our scheme follows from the sender binding of the ccAE

scheme and the hardness of forging a correct tag σc. Sender

binding requires that an adversary cannot send a message

(m,r) that successfully decrypts but does not pass ccAE.Ver.
Modeling H ′ as a random oracle, an information-theoretic

argument can be made that an adversary forges a valid σc

with at most negligible probability in λ.

Unforgeability is ensured by the MAC σ and the ccAE

verification checks in Verify. In order for a forged message to

pass MAC verification, the adversary must either forge a new

MAC tag, or find a collision in H, because an output of H is

part of the message being MACed. If the adversary instead

finds a new opening for the ccAE ciphertext, this would break

the receiver binding of the ccAE scheme.

Theorem 3.4. Assuming we model H ′ as a random ora-

cle, that MAC is a correct MAC where MAC.Sign is also

a PRF, and that ccAE satisfies sender binding, our shared

USENIX Association 33rd USENIX Security Symposium    3213



franking scheme Π (Construction 3.2) has accountability

(Definition A.2).

In particular, for every accountability adversary A that at-

tacks our protocol Π, there exists collision-finding adversary

B , a PRF adversary C , and sender binding adversary D such

that for every λ,N,Q

ACCTadv(A ,Π,λ,N,Q)

≤ CRadv(B,H ′,λ)+PRFadv(C ,MAC.Sign,λ)

+SBadv(D,ccAE,λ)+negl(λ).

Theorem 3.5. Assuming that MAC is an existentially un-

forgeable MAC, that H is a collision-resistant hash function,

and that ccAE satisfies receiver binding, our shared frank-

ing scheme Π (Construction 3.2) has unforgeability (Defini-

tion A.3).

In particular, for every unforgeability adversary A that

attacks our protocol Π, there exist unforgeability, collision-

finding, and receiver binding adversaries B , C , and D such

that for every λ,N

FORGadv(A ,Π,λ,N)≤

MACadv(B,MAC,λ)+CRadv(C ,H,λ)+RBadv(D,ccAE,λ).

Deniability. As mentioned in Section 2.2, our scheme must

achieve three kinds of deniability: universal deniability, re-

ceiver compromise deniability, and moderator compromise

deniability. Since we do not formalize these notions in our

setting, we sketch the forgery algorithms required to satisfy

each definition. All three forms of deniability rely only on the

deniability of the underlying ccAE encryption scheme and

MAC to an adversary who does not know their secret keys.

In particular, a formal proof would rely on an anonymity

property of our encryption and MAC schemes – that two ci-

phertexts or MACs produced by different random keys should

appear indistinguishable to an adversary who does not know

the keys. Our implementation uses schemes (AES-GCM and

HMAC-SHA256) that satisfy a pseudorandomness property

that implies the required anonymity definition.

To produce a universal forgery – one that appears valid

to a distinguisher who does not have the key kU used to en-

crypt/read a message or the moderator key kS – the forger

can sample random keys k′U and k′S and use them to run the

Send and Process, and ModProcess operations. The outputs

of these operations will appear indistinguishable from the

results of the same process using the real keys kU and kS to an

adversary who does not know the keys. Receiver compromise

deniability requires a forgery algorithm that has access to the

key kU used to send/receive a message but not the moderator

key kS. The forger for this definition behaves just like the

universal forgery forger, but it uses the keys kU ,k
′
S instead

of generating a random kU . Finally, the forger for moderator

compromise deniability, who has access to kS but not kU , uses

a random k′U but the real kS in generating its forgery.

4 Integration with Metadata-Hiding Commu-

nication Schemes

This section discusses how our protocol from Section 3 can

be integrated into various kinds of metadata-hiding communi-

cation platforms that rely on secret sharing.

4.1 Schemes based on MPC

Our shared franking protocol integrates directly with

metadata-hiding communication schemes based on MPC that

use additive secret sharing. In an MPC-based scheme, users

send shares of messages to the servers. The servers use MPC

to shuffle the shares and prepare them for delivery to their

intended recipients. To integrate shared franking into these

schemes, users send messages to the servers via the Send

algorithm of the shared franking scheme, incorporating any

client-side preprocessing of the messages before secret shar-

ing. Then the servers run the shared franking protocol before

they run the underlying message processing and delivery al-

gorithm. After a message’s shares are made available to users,

a message recipient retrieves the relevant shares according

to the underlying messaging protocol and then recovers the

message via our read algorithm. The report algorithm does

not make use of the metadata-hiding communication func-

tionality and therefore does not need to be integrated directly

into the underlying messaging system. Recent schemes in this

category that use additive secret sharing include MCMix [8],

Ruffle [4], and Clarion [27], which is based on the secret

shared shuffle work of Chase et al. [16].

Schemes based on threshold secret sharing. Our approach

can be integrated with schemes that use threshold secret shar-

ing [42], such as Asynchromix [36] or RPM [35], in a limited

way. If a fixed subset of the servers processes each batch

of messages, and this subset is known to the moderator and

the message receiver, our scheme can be used. However, this

means using shared franking would require giving up some of

the security and robustness properties of these schemes. For

example, Asynchromix aims to achieve robustness against

malicious servers who may stop responding to messages or

go offline during protocol execution. On the other hand, we

assume that servers are trusted for availability but not for

privacy. This means that while shared franking as described

here can be useful for protocols that use threshold sharing

to allow a subset of a potentially large number of servers to

process user messages, further work is needed to strengthen

the security guarantees of shared franking to handle robust-

ness against malicious servers for availability in addition to

privacy.

4.2 Schemes Based on DC-nets

A number of recent schemes combine a DC-net approach [17,

21, 47, 22], or a DC-net augmented with distributed point func-
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tions (DPFs) [30, 14, 15] to improve scalability [20, 28, 39, 6].

Our shared franking scheme does not apply to these schemes

directly, but we can adapt the scheme to work in this setting

too. This results in higher computation and communication

costs between servers, but not between users and the servers.

Background: Private writing with DC-nets and DPFs. Be-

fore describing our scheme, we briefly summarize aspects of

DC-nets and DPFs that will be relevant for our purposes. We

will be focusing on the setting where the work of the DC-net

is outsourced to a small number of servers rather than the

original DC-net setting where a number of clients run the

DC-net among themselves [17]. Since the most widely-used

and efficient DPF construction only applies for two servers,

we focus on the two-server setting.

This family of schemes generally has servers maintain

shares DA and DB of a database D = DA +DB, where the

database is a vector of n elements of some finite abelian group

G, i.e., D ∈G
n. To privately write a message m to an entry j

in the database, a client prepares secret shared vectors xA,xB

such that x = xA + xB = m · e j, where e j represents the jth

standard basis vector: a length-n vector of all zeros except for

a 1 in the jth position. To process a write, the servers compute

DA← DA + xA DB← DB + xB.

Since the shares xA,xB appear random to the servers, they

cannot tell which entry of the shared database D is modi-

fied by a given write. After processing many messages, the

servers merge their shares DA and DB to recover the modified

database. This allows a number of clients to write messages

into the database without the servers learning who wrote

which message. To protect against denial of service attacks by

malicious users, clients generally include lightweight proofs

alongside their shares xA,xB to convince the servers that they

are sending shares of a vector with only one non-zero en-

try [22, 20, 28].

The approach above is not efficient because it requires a

client to send n group elements to each server to write a mes-

sage. DPFs are a mechanism that “compress” the vectors xA

and xB into a much more concise representation that takes ad-

vantage of the fact that most entries of these vectors are really

shares of zero. A DPF allows a client to create two small func-

tion shares fA and fB : {1, ...,n}→G such that fA( j) = xA, j

and fB( j) = xB, j. Now clients can send a small function share

to each server, and the servers can recover xA,xB on their own

by evaluating fA( j), fB( j) for j ∈ {1, ...,n}. Importantly, the

representations of the function shares fA and fB are concise,

i.e., they require fewer bits to represent than xA and xB. Ob-

serve that this operation slightly increases computation costs

on the servers, but it dramatically lowers the communication

cost on the client, which is more likely to be a bottleneck in a

communication-constrained setting.

Integration challenges. Let us see why we cannot integrate

shared franking into DC-net schemes the same way we did

with MPC. Shared franking involves a step where the servers

append a share of additional data c3 to the messages sent by

users. But in a DC-net scheme, the servers do not know which

entry of a database a user has modified. If the servers append

shares of c3 to every entry in the database every time a user

sends a message, they will end up increasing the length of

each entry until it is linear in the number of messages sent.

This is clearly impermissible from a performance perspective,

as it dramatically increases server storage costs and requires

clients to download gigantic message shares when recovering

a message.

In order to make shared franking compatible with a DC-

net scheme, we need a way for the servers to blindly append

shares of c3 to the correct entry in D, while adding shares of 0

to other entries. We achieve this with a slight modification to

the structure of messages sent by users and with the addition

of a small MPC. In particular, the servers will compute a

multiplication on secret-shared values for each entry in D.

Shared franking for DC-nets. First, if we are to use shared

franking in the DC-net setting, we need to modify the behavior

of Send so that instead of creating additive shares of c1,c2, it

creates shares of an n-entry vector x such that every entry of x

has the form (c1,c2,c3) where c1 ∈ {0,1}
ℓ+ν1 , c2 ∈ {0,1}

ν2 ,

and c3 ∈ Fq where Fq is a prime order finite field. When the

user wishes to write a message into the j∗th entry on the

servers, the jth entry of x contains

(c1,c2,1 ∈ Fq) if j = j∗, and

(0ℓ+ν1 ,0ν2 ,0 ∈ Fq) otherwise.

Note that c1,c2 remain bit strings, whereas the 0/1 val-

ues appended to each row are interpreted as elements of

a finite field and are secret shared as elements of the field,

not bit strings. Thus the shares of the jth entry in the secret

shared vector x that are sent to the ith server have the form

[c1, j]i, [c2, j]i, [b j]i, where ([c1, j]i, [c2, j]i) ∈ {0,1}
ℓ+ν1+ν2 and

[b j]i ∈ Fq is a share of zero or one. As is the case in the stan-

dard shared franking scheme, all servers except the moderator

can receive a single seed si. Seed si can in turn be expanded

into seeds si j, j ∈ {1, ...,n}, one for each entry x j ∈ x.

Putting aside distinctions between bit strings and field

elements for a moment, when servers process messages,

they run Process and ModProcess separately for each en-

try x j, j ∈ {1, ...,n}. That is, ignoring the role of [b j] for now,

the non-moderator servers run

Process(N, i,si j) for each j ∈ {1, ...,n},

and the moderator runs

ModProcess(N,kS,s1 j,ctx,(w
′
2 j, ...,w

′
N j))

for each j ∈ {1, ...,n}.

The only change we need to make in the computation of

these functions is that we expect the components the servers
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append to the end of the shares of the ccAE ciphertext, which

merge to form c3 in Read, are an element of Fq instead of

{0,1}|ctx|+ν3+λ′′ . This means that some portion of the output

of the PRG G needs to be interpreted as an element of Fq,

as does the tuple (ctx,σ,σc). This is easily accomplished if

we set q close to a power of 2, as these values are random or

random-looking values (ctx is not necessarily random but can

be encrypted by the platform). This means both the relevant

PRG outputs and (ctx,σ,σc) will already be a valid represen-

tation of an integer mod q with all but negligible probability.

If the string (ctx,σ,σc) is too long for a single element of

Fq, we can either use a larger choice of q or, for performance

reasons, represent it as multiple elements of Fq.

Blindly appending shares. After processing each row in x as

described above, the servers will hold shares

([c1, j], [c2, j], [c3, j]) for each j ∈ {1, ...,n}.

Since most of the entries of x are all zeros, we will have that

(c1, j,c2, j) = 0ℓ+ν1+ν2 for j ̸= j∗.

In order to append the correct tag c3, j∗ at the end of the j∗th

entry and to not interfere with the tag at the end of other

rows when updating the database D, we need to replace [c3, j]
with [c′3, j], where c′3, j = c3, j when j = j∗ and c′3, j = 0 ∈ Fq

otherwise. This is where we will use the shares [b j].
For each entry j, the servers will do a small MPC to com-

pute the product [c′3, j]← [b j] · [c3, j], using Beaver triples [9]

to multiply secret-shared values. Since b j = 1 if and only if

j = j∗, the products c′3, j will satisfy the requirement that

c′3, j = c3, j when j = j∗ and c′3, j = 0 otherwise. After a

message-independent preprocessing phase among the servers,

each Beaver multiplication requires a small amount of com-

munication and computation among the servers. The commu-

nication and computation for all the multiplications can be

done in parallel. This increases costs on the servers but has

no effect on client-side performance. We do not describe the

widely-used Beaver multiplication technique here, but it is

summarized in many excellent online resources, e.g., [43, 48].

5 Implementation and Evaluation

We implemented the shared franking construction described

in Section 3. Our implementation is written in C and uses

OpenSSL for standard cryptographic primitives.

We instantiate our PRG G with AES in CTR mode, and

our MAC scheme with HMAC-SHA256. Our ccAE scheme,

following the CtE1 scheme of Grubbs et al. [32], requires

an AEAD scheme and a commitment scheme. We use AES-

GCM for the AEAD scheme and HMAC-SHA256 for the

commitment, where the commitment randomness serves as

the HMAC key. Field operations are computed modulo

2256−189, the largest 256-bit prime [3]. OpenSSL supports

hardware acceleration for evaluating AES, so our implemen-

tation benefits from this feature by default. Finally, we instan-

tiate our hash functions H,H ′ with SHA256. Since all the

metadata-hiding communication systems we have discussed

require sending fixed-length messages to avoid leaking size

information about messages, SHA256 will be indifferentiable

from a random oracle in this restricted setting [37, 18].

We evaluated our implementation using a machine with a

11th Gen Intel(R) Core(TM) i7-11700K @ 3.60G processor

running Ubuntu 20.04. We evaluated our scheme on message

lengths of up to 1,020 Bytes in 20 Byte increments, and we

varied the number of servers from 2 to 10 for each message

length. We fixed the length of the ctx string used by the mod-

erator at 32 bytes for all our experiments. All reported results

for our scheme are averages taken over 1,000 runs.

Appendix B briefly reports the results from repeating our

evaluation on GCP to get performance numbers for a lower-

end server. There, we also use GCP to confirm that the perfor-

mance characteristics of our scheme remain similar when run

in a networked setting.

Evaluation results. Figure 3 shows the running time of each

operation in our shared franking scheme as the message size

increases from 40 Bytes to 1,020 Bytes. All operations take

under ten microseconds, with the Send and Read exhibiting

the most rapid increase in computation time as the message

length increases. Their cost comes primarily from producing

the ccAE encryption of the message, which includes both

encrypting the message and computing a commitment over

it, both of which depend on the entire length of the message.

Verification of messages also depends on the entire message

length because the verifier needs to verify the ccAE tag on the

message. Finally, the cost of processing a message, either for

the moderator or for any other server, is extremely low and

does not require any cryptographic or arithmetic operations

that depend on the length of the message, other than expand-

ing a PRG seed to the required length, which benefits from

hardware acceleration.

Increasing the number of servers results in behavior similar

to increasing the message length, as seen in Figure 4. Once

again, Send and Read exhibit the highest costs and increase in

costs because they primarily consist of operations that depend

on the message length as well as the number of servers. Since

processing a message on a non-moderating server is identical

as the number of servers increases and processing a message

as the moderator is almost identical (it only involves MACing

a message 32 bytes longer for each server), these operations

are largely unaffected by an increase in the number of servers.

We conclude that shared franking adds very little computa-

tional overhead to metadata-hiding communication schemes,

with the majority of the cost incurred by clients or in the report

verification process, neither of which affect the critical path

of message delivery on the server side. The communication

overhead is also small, increasing the data sent from the client

to the moderator server by 124 Bytes, and requiring only 16
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Figure 4: Running time of each operation as
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ations on the critical path for message delivery

run the fastest and do not noticeably increase

in cost with the number of servers.

Send Read Verify

AMF 489B 489B 489B

Hecate 380B 484B 380B

Our Work 124B 204B 144B

Plain Franking 92B 156B 128B

Figure 5: Comparison of communication costs

for clients in AMF [44], Hecate [33], shared

franking (our work), and plain message frank-

ing [29]. Communication costs are the over-

head beyond the cost of sending the message

itself. Costs for send/read in shared franking

are the cost per server and do not include

the additional 32 Byte hash sent from each

processing server to the moderator. The addi-

tional communication cost for Send for each

additional server in shared franking is 16B.

bytes sent to each other server, regardless of message length.

The data retrieved from each server to read a message is the

message length plus 204 Bytes, and a report consists of 144

Bytes in addition to the message itself.

We conclude the evaluation of our scheme by estimating

the cost of the extension to DC-nets discussed in Section 4.2.

This scheme adds a Beaver multiplication for each of the n

elements of the DC-net. The Beaver multiplication adds one

communication round to the protocol, as well as a preprocess-

ing phase to generate the Beaver triples to aid in fast online

multiplication. On our test machine, online evaluation of a

single Beaver multiplication for 128 bits of data, which is

more than sufficient for our scheme, takes 0.75µs (average

of 1M runs, written in Go). Our scheme requires the cost of

the Beaver multiplication and the normal processing protocol

to be repeated n times to process each message. The small

additional per-multiplication cost means that while shared

franking remains an excellent choice for DC-net deployments

with small anonymity sets – e.g., anonymous chat for partici-

pants in a class, seminar, or online community of limited size

– large, general-purpose messaging platforms may opt for a

different solution.

Comparison to prior work. We are aware of two prior works

that extend message franking to the metadata-hiding setting:

the asymmetric message franking (AMF) of Tyagi et al. [44],

and the Hecate scheme of Issa et al. [33]. AMF can be added

as a drop-in solution on top of any metadata-hiding messag-

ing scheme where message delivery/retrieval only requires a

single message from the client to the server(s), but it uses ex-

pensive proofs of knowledge to achieve this. Hecate achieves

significantly improved performance, but requires an additional

message-independent round trip between a user and the mod-

erator before sending a message. AMF and Hecate both also

allow for third-party moderation, which our scheme and plain

message franking do not support. In the setting of secret-

Hecate Shared Franking Plain Franking

Preprocess 29.5µs N/A N/A

Send 16.4µs 6.4µs 3.7µs

Process 15.7µs 1.6µs 1.1µs

or 0.4µs

Read 100.1µs 5.2µs 2.1µs

Verify 102.8µs 3.3µs 2.6µs

Figure 6: Computation time for various operations in Hecate [33],

shared franking (our work), and plain message franking [29] on 1 KB

messages. We report numbers for shared franking with two servers,

and include the times for both the moderator and non-moderator

servers to process messages.

sharing based schemes, our solution is a drop-in approach

similar to AMF, but it also outperforms both AMF and Hecate.

We view the three works as exploring different areas in the de-

sign space of message franking, and quantitative comparisons

between them are not necessarily apples-to-apples. AMF is

the most general and the most costly. Hecate matches the

generality of AMF and significantly improves performance

while changing the model to add another round trip (which

can be run in a message-independent preprocessing phase).

Our performance improves on both prior schemes, but it is

restricted to schemes based on secret sharing. We believe this

is a valuable point in the design space given the large body of

work that uses secret sharing approaches to hide metadata.

To measure how shared franking compares quantitatively

to prior work, we re-ran the benchmarks for Hecate and AMF

(using the original Hecate implementation and a faster Rust

implementation of AMF [38]) on our evaluation machine. We

also implemented an instantiation of Facebook-style “plain”

message franking [29] using the same cryptographic primi-

tives and implementations as our scheme so we can compare

to techniques deployed in practice.
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Our instantiation of shared franking reduces the client com-

munication overhead to process a message and report it com-

pared to both AMF and Hecate, and approaches the report size

of messages reported in a plain franking scheme. Figure 5

summarizes the communication costs of each scheme.

Figure 6 compares the performance of shared franking with

Hecate and plain franking. Compared to Hecate, shared frank-

ing reduces the computation cost to send a message by 2.6×
and the cost to read a message or verify a reported message

by 19× and 31.0× respectively. The reduction in total time

to process a message on the server, including time on both

the servers in our implementation, is 22.6×. If we instantiate

Hecate with a separate message-independent preprocessing

phase per message, the online performance improvement of

using our scheme is 7.9×. Our performance numbers are also

more than an order of magnitude faster than those reported for

AMF, which took about 230µs for each of sending, reading,

and verifying a message.

Our performance improvements come from the fact that

shared franking does not use any public key cryptography,

whereas Hecate makes use of signatures and AMF uses zero

knowledge proofs of knowledge. We can avoid these more

expensive tools by taking advantage of the fact that, in the set-

ting of secret-shared messages, the servers know the identity

of message senders when they send a shared message. Thus

we can use lightweight techniques more akin to those of stan-

dard message franking for E2EE messaging rather than the

public key tools previously used in metadata-hiding schemes.

6 Conclusion and Future Work

We have shown how to add lightweight abuse reporting on top

of metadata-hiding communication platforms based on secret

sharing. Our scheme only requires symmetric cryptographic

primitives and can be adapted to a broad family of communi-

cation platforms that use diverse underlying techniques. Our

results show that relying on some existing structure provided

by a communication platform – in this case the presence of

secret sharing – can dramatically reduce the cost of adding

support for abuse reporting functionality.

While this work focuses on building shared franking

schemes to enable reporting abusive messages, the same tech-

nique can potentially be applied to build related private mod-

eration capabilities as well. Recent works aimed at combating

misinformation and disinformation on private messaging plat-

forms have studied the problem of message traceback or

source tracking [45, 40, 34, 33]. In these works, the goal of a

report is not to identify the immediate sender of a message,

but rather to find the the user who originated a piece of widely

forwarded misinformation. An interesting opportunity for fu-

ture work lies in extending our ideas to these kinds of schemes.

In principle, our approach seems applicable to a broad class

of protocols where the platform does not need to know the

identity of the message recipient at the time it is processing a

message. The path traceback scheme of Tyagi et al. [45] and

the tree-linkable source tracking of Peale et al. [40] fall into

this category, so it may be possible to efficiently extend these

schemes to work in the secret shared setting as well.
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A Formal Security Definitions

Definition A.1 (Sharing Confidentiality). We define the

shared franking confidentiality experiment

CONF[A ,Π,λ,N,Q,NM,b]

with respect to a stateful adversary A who makes at most Q

queries to an oracle OhonProcess, shared franking scheme Π,

security parameter λ, number of servers N ∈ N, number of

malicious servers NM such that NM < N, and a bit b ∈ {0,1}.
The experiment proceeds as follows. We will use M to denote

the message space for Send.

CONF[A ,Π,λ,N,Q,NM,b] :

M← A(λ,N,NM)

where M ⊂ {1, ...,N}, |M|= NM(else output 0)

b′← AOhonProcess(λ,N,M)

if b′ = b : output 1; else : output 0

OhonProcess(kU ,m0,m1) :

if b = 0 : (w1, ...,wN)← Send(kU ,m0,N)

else : (w1, ...,wN)← Send(kU ,m1,N)

malw← (wi)i∈M

if 1 /∈M : output (malw,⊥)

else :

vi,w
′
i← Process(N, i,wi) for i ∈ {2, ...,N}\M

honw′← (w′i)i∈{2,...,N}\M

output (malw,honw′)

We define the confidentiality advantage of A as

CONFadv(A ,Π,λ,N,Q,NM)

=
∣

∣

∣
Pr
[

CONF[A ,Π,λ,N,Q,NM,0] = 1
]

−Pr
[

CONF[A ,Π,λ,N,Q,NM,1] = 1
]

∣

∣

∣
.

We say that a shared franking scheme Π satisfies εconf -

confidentiality if for all efficient adversaries A , security pa-

rameters λ ∈ N,and N ∈ N, it holds that

CONFadv(A ,Π,λ,N,Q,NM)≤ εconf(λ).

We say that Π has confidentiality if εconf(λ)≤ negl(λ).

Definition A.2 (Accountability). We define the accountability

experiment ACCT[A ,Π,λ,N,Q] with respect to an adversary

A who makes at most Q queries to an oracle Overification,

shared franking scheme Π, security parameter λ, and number

of servers N ∈ N. The experiment is defined as follows.

ACCT[A ,Π,λ,N,Q] :

win← 0

kS←
R KS

AOfrank,OVerification(λ,N)

output win

Ofrank(w1,w
′
2, ...,w

′
N ,ctx) :

v1←ModProcess(N,kS,w1,ctx,(w
′
2, ...,w

′
N))

output v1

Overification(k
∗
U ,w

∗
1,v
∗
2, ...,v

∗
N ,w

′
2, ...,w

′
N ,ctx

∗) :

v∗1←ModProcess(N,kS,w
∗
1,ctx

∗,(w′2, ...,w
′
N))

res← Read(k∗U ,N,(v∗1, ...,v
∗
N))

output 0 if res=⊥

(m∗, t∗)← res

ctx∗∗← Verify(kS,m
∗, t∗)

win← 1 if ctx∗∗ =⊥ ∨ ctx∗∗ ̸= ctx∗

output win, res

We define the accountability advantage of A as

ACCTadv(A ,Π,λ,N,Q) = Pr
[

ACCT[A ,Π,λ,N,Q] = 1
]

,

and we say that the shared franking scheme Π satisfies

εacct−accountability if for all efficient adversaries A , secu-

rity parameters λ ∈ N, and N ∈ N, it holds that

ACCTadv(A ,Π,λ,N,Q)≤ εacct(λ).

We say that Π has accountability if εacct(λ)≤ negl(λ).

Definition A.3 (Unforgeability). We define the unforgeability

experiment FORG[A ,Π,λ,N] with respect to an adversary A ,

shared franking scheme Π, security parameter λ, and number

of servers N ∈ N. The experiment is defined as follows.

FORG[A ,Π,λ,N] :

win← 0

kS←
R KS

T ←{}

AOsend,Overification(λ,N)

output win

Osend(kU ,w1,v2, ...,vN ,w
′
2, ...,w

′
N ,ctx) :

v1←ModProcess(N,kS,w1,ctx,(w
′
2, ...,w

′
N))

(m′, t)← Read(kU ,N,(v1, ...,vN))

if (m′, t) =⊥ : output ⊥

ctx′← Verify(kS,m
′, t))

if ctx′ =⊥ : output ⊥

T ← T ∪{(m′,ctx′, t)}

output v1

Overification(m
∗, t∗) :

ctx∗← Verify(kS,m
∗, t∗)
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Hecate Shared Franking Plain Franking

Preprocess 61.3µs N/A N/A

Send 36.1µs 30.1µs 21.6µs

Process 32.0µs 15.7µs 12.9µs

or 2.2µs

Read 215.8µs 27.7µs 17.6µs

Verify 222.9µs 31.2µs 27.8µs

Figure 7: Computation time for various operations in Hecate [33],

shared franking (our work), and plain message franking [29] on 1 KB

messages. We report numbers for shared franking with two servers,

and include the times for both the moderator and non-moderator

servers to process messages.

win← 1 if ctx∗ ̸=⊥ ∧ (m∗,ctx∗, t∗) /∈ T

output win,ctx∗

We define the unforgeability advantage of A as

FORGadv(A ,Π,λ,N) = Pr
[

FORG[A ,Π,λ,N] = 1
]

,

and we say that the shared franking scheme Π satisfies

εforg−unforgeability if for all efficient adversaries A , security

parameters λ ∈ N, and N ∈ N, it holds that

FORGadv(A ,Π,λ,N)≤ εforg(λ).

We say that Π has unforgeability if εforg(λ)≤ negl(λ).

B Additional Evaluation Data

We repeated our evaluation on GCP, and Figure 7 shows a

version of Figure 6 with data from the GCP evaluation. The

GCP evaluation was run on a e2-standard-4 instance using

Ubuntu 22.04.

On this instance, the cost of shared franking approaches

that of plain franking, with all aspects of the protocol taking

less than 1.6× the time of the corresponding plain franking

operations. Repeating the evaluation on a lower-end server

shows that, while the performance gap between the systems

is reduced, a large gap remains between the time it takes for

our scheme and Hecate to (pre-)process a message and verify

reports to the moderator – the main server-side operations.

Client-side sending time is much closer between the two

schemes, but the gap in time to read messages remains large

as well.

To verify that the performance characteristics of our scheme

remain consistent when deployed in a networked setting, we

also ran the processing phase of our scheme between servers

located on the east and west coast. The server code for this

evaluation is written in Go but uses our C implementation for

the shared franking operations.
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Figure 8: Processing time, including network costs, as number of

servers increases. Since the primary latency bottleneck in this setting

is the network, the server processing time is mostly flat around the

ping time between the servers. The overall processing time from

the client’s perspective – including time spent setting up a TLS

connection to the moderator, waiting for the servers to receive and

process the message, and reading the result – are about 4.1-4.2× the

ping time, reflecting the number of east/west network round trips in

our evaluation setup. Times are averages of 10 runs of the protocol.

Our setup consists of one server on the east coast behaving

as the moderator, a number of servers on the west coast (sim-

ulated by a single larger server) playing the role of the other

servers, and another server on the west coast playing the role

of the client. All messages from or to the client are sent to

the moderator with the message encrypted under the receiv-

ing party’s public key. This ensures that all the servers can

receive their shares in the same order and also maximizes the

communication cost between servers because all messages

are sent between the east and west servers. There is no direct

communication between the servers and client simulated on

the west coast.

We had our e2-standard-4 GCP instance running in the

us-east-4b zone simulating the moderator, an e2-standard-16

GCP instance running in the us-west1-c zone playing the role

of the other servers, and an e2-standard-2 GCP instance in the

us-west1-c zone playing the role of the client. The ping time

between the east and west servers was 55.7ms. To isolate the

performance characteristics of the shared franking scheme

itself, our evaluation does not shuffle, mix, or otherwise run an

anonymous message delivery process on the message shares

sent to the servers. The servers only compute the processing

stage of the shared franking protocol and send back the results

to the moderator, who then runs the modProcess algorithm

and returns the resulting shares to the client.

The results of this experiment, shown in Figure 8, demon-

strate that, for unloaded servers, our scheme does not incur

notable additional costs as the number of servers increases.

The cost to the client increases very slightly due to the re-

quirement that the client decrypt the messages it has received

from each of the servers.
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