
Learning to Walk from Three Minutes of Real-World
Data with Semi-structured Dynamics Models

Jacob Levy→
University of Texas at Austin
jake.levy@utexas.edu

Tyler Westenbroek→

University of Washington
westenbroekt@gmail.com

David Fridovich-Keil
University of Texas at Austin

dfk@utexas.edu

Abstract: Traditionally, model-based reinforcement learning (MBRL) methods
exploit neural networks as flexible function approximators to represent a priori
unknown environment dynamics. However, training data are typically scarce in
practice, and these black-box models often fail to generalize. Modeling archi-
tectures that leverage known physics can substantially reduce the complexity of
system-identification, but break down in the face of complex phenomena such as
contact. We introduce a novel framework for learning semi-structured dynamics
models for contact-rich systems which seamlessly integrates structured first prin-
ciples modeling techniques with black-box auto-regressive models. Specifically,
we develop an ensemble of probabilistic models to estimate external forces, condi-
tioned on historical observations and actions, and integrate these predictions using
known Lagrangian dynamics. With this semi-structured approach, we can make
accurate long-horizon predictions with substantially less data than prior methods.
We leverage this capability and propose Semi-Structured Reinforcement Learn-
ing (SSRL) a simple model-based learning framework which pushes the sample
complexity boundary for real-world learning. We validate our approach on a real-
world Unitree Go1 quadruped robot, learning dynamic gaits – from scratch – on
both hard and soft surfaces with just a few minutes of real-world data. Video and
code are available at: https://sites.google.com/utexas.edu/ssrl

Keywords: Model-Based Reinforcement Learning, Physics-Based Models

Figure 1: Unitree Go1 quadruped learning to walk from scratch using SSRL on hard ground (left) and memory
foam (right).

1 Introduction

Effective robotic agents must leverage complex interactions between the robot and its environment,
which are difficult to model using first principles. Model-based reinforcement learning (MBRL) is
a powerful paradigm for controller synthesis [1], wherein the robot learns a generative dynamics
model for the environment. The model can then be used to hallucinate synthetic rollouts [2], provid-
ing a source of data augmentation for policy optimization algorithms [3, 4, 5]. When the model is
accurate, it can generate long rollouts which extrapolate beyond the training data, accelerating pol-
icy learning substantially. However, in practice, the black-box neural network models favored in the

→These authors contributed equally.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://sites.google.com/utexas.edu/ssrl

Figure 2: The SSRL framework. A deterministic policy is used to collect data from the real world while a
stochastic policy is utilized in conjunction with the learned dynamics model to “hallucinate” short synthetic
rollouts which branch from this data. The model incorporates Lagrangian dynamics and encodes previous state
predictions, which are fed to external torque and noise estimators to predict future states. The synthetic data is
used with a model-free RL algorithm to update the policies.

MBRL literature struggle to generalize beyond the training data [6, 7, 8], and thus do not outperform
modern model-free alternatives [9, 10]. Currently, both paradigms are too inefficient and unreliable
to make learning new behaviors in the real world practical for many applications.

An appealing alternative is to leverage known physics to design structured model classes. This
general approach has been used for efficient system identification and controller synthesis across
many bodies of work, ranging from classic adaptive control techniques [11, 12, 13, 14] to more
recent physics-informed neural architectures [15, 16, 17]. However, these previous approaches do
not scale to the complexities of real-world learning for contact rich-systems such as walking robots
(Fig. 1). Indeed, modeling contact remains an open problem. Moreover, prior structured approaches
to learning contact dynamics make strong assumptions about what can be perceived with available
on-board sensors. For example, at inference time [18] requires access to a signed-distance repre-
sentation of potential contact surfaces. More generally, prior approaches generally assume access
to privileged state observations which make it possible to predict exactly when and where contact is
made [19, 15]. However, reliably estimating these quantities in the real-world using noisy on-board
sensors is another open area of research [20, 21, 22, 23, 24].

We ask: can we build a light-weight modeling framework which leverages known structure and is
implementable with onboard sensors? We answer this question in the affirmative by introducing
Semi-structured Reinforcement Learning (SSRL), a simple MBRL pipeline for contact-rich control
in the real-world (Fig. 2). For concreteness, we focus primarily on the quadruped depicted in Fig. 1
and aim to learn an effective locomotion controller entirely from scratch in the real world. We
consider the case where the robot’s observations only include proprioceptive measurements via joint
encoders, IMU measurements, and a global velocity estimator.

We inspire our approach by looking to the Lagrangian equation of motion for the robot:

M(q)q̈ + C(q, q̇) +G(q) = Bω + JTF e
+ ωd, (1)

where q and q̇ are the generalized coordinates and velocities of the robot, motor torques ω are dis-
tributed to the joints by the matrix B, F e represents contact forces generated by the environment
with J the resulting Jacobian, ωd represents parasitic damping torques, and M , C, and G are the
mass matrix, Coriolis and centrifugal forces, and gravity vector. Here, B,M,C, and G are deter-
mined by the geometry and inertial properties of the robot, which are known a priori. Thus, given
access to observations, we assume that the only unknown terms are JTF e and ωd.

We leverage the known Lagrangian structure of (1) by estimating these unknown terms with an es-
timator ω̂e(ht) → JTF e

+ ωd which is conditioned on a history ht of the available measurements,
enabling the model to infer information about hidden states of the environment such as the geometry
of the ground underfoot [25, 26]. We instantiate ω̂e as an ensemble of probabilistic models to help

2

Figure 3: Control architecture. The policy takes in a history of observations and outputs parameters to a gait
generator and offsets to the gait. The resulting foot positions are sent to an inverse kinematics solver which
computes desired joint angles for joint level PD controllers.

capture uncertainty in the predictions, as is commonplace in the MBRL literature [6, 27]. We then
introduce a novel inference procedure for making forward predictions, wherein the predictions made
by these semi-structured models are fed back into ω̂e in an auto-regressive fashion. The SSRL frame-
work leverages these predictions as a source of data augmentation to accelerate real-world policy
optimization, using a simple Dyna-style [3, 6] MBRL algorithm. Finally, we demonstrate that this
light-weight approach scales to the real-world, learning to walk on different terrains within a minute
and learning substantially more dynamic gates within a few minutes. This result outperforms recent
state-of-the-art real-world learning results for quadrupeds [28] by both a) requiring an order-of-
magnitude less real-world data and b) reaching substantially higher walking speeds.

2 Preliminaries and Problem Formulation

Notation: While the underlying dynamics of the robot evolve in continuous time according to the
differential equation (1), the policy acts in discrete time and we will use subscripts to denote discrete
time steps. The state of the robot st ↑ S captures the available proprioceptive states qt and their
velocities q̇t, available from joint encoders and IMU measurements. This does not include global
coordinates of the robot. We capture the state of the environment (or extrinsics) et ↑ E , which
includes non-proprioceptive information (such as the distance of the ground below the robot) and
the state of the ground underfoot (such as terrain deformation). The robot actions at ↑ A are the
outputs of neural network described below. The overall dynamics for the system are defined by:

Robot Transitions: st+1 ↓ ps(·|st, at, et) Environment Transitions: et+1 ↓ pe(·|st, at, et). (2)

To control this joint system, we will denote the policy the agent optimizes via at ↓ εω(·|st, ht),
where ht = (st↑1, . . . , st↑h) bundles the histories of state measurements and ϑ are parameters.

Control Architecture: We adopt the control architecture depicted in Fig. 3, similar to prior works
on RL-based locomotion [25, 29, 30]. We optimize a neural network policy εω(·|st, ht) conditioned
on previous observations which outputs (i) changes to parameters of a nominal gait generator that
outputs desired foot positions and (ii) offsets to these foot positions. The resulting targets are sent
to an inverse kinematics solver which computes desired joint positions. The joint targets are output
at 100Hz to low-level PD controllers for conversion to torques. Additional details are provided in
Appendix A.

Reinforcement Learning Problem: We formally frame the learning of a locomotion controller
in the real world in terms of a partially observable Markov decision process (POMDP) [31], de-
fined by the tuple (X ,A, p, r,!, O, ϖ). Here, X = S ↔ E is the overall state space for the system,
and p(·|st, at, et) = (ps(·|st, at, et), pe(·|st, at, et)) captures the joint robot-environment dynam-
ics. The space of observations ! consists of the states that can be measured, and the observation
distribution O(·|st, at, et) provides (noisy) estimates of the states from onboard sensors. The reward
function r(st, at, st+1) depends only upon the robot states and actions, and is therefore directly mea-
surable in the real world. We define the reward function to maximize the robot’s forward velocity,
maintain upright orientation, minimize angular rates, conserve energy, and avoid excessive torques.

3

Finally, we define a termination flag dt ↑ {0, 1} where dt = 1 when body roll or pitch exceed
limits. Exact definitions are found in Appendix A. Given an episode length T ↑ N, discount factor
ϖ ↑ (0, 1), and a distribution x0 over X of initial conditions for the system, the goal is to maximize
the expected discounted total reward: maxω E[

∑
T

t=0 ϖ
t
(1↗ dt) · r(st, at, st+1)].

3 Semi-structured Reinforcement Learning

A high-level overview of our method is presented in Fig. 2, outlined as follows: i) we learn an
ensemble of deterministic external torque estimators ω̂e which are conditioned on ht; ii) we then
integrate the torque predictions through the Lagrangian ODE (1), add a learned noise term to gener-
ate probabilistic 1-step predictions, and feed this prediction back into ht to produce auto-regressive
predictions over multiple steps iii) we fit this semi-structured representation of the dynamics using
multi-step prediction losses; and finally iv) predictions from these models are used as a source of
data augmentation for MBRL.

3.1 External Torque Estimators

We construct our approximations to the discrete-time probabilistic robot transition dynamics st+1 ↓
ps(·|st, at, et) by building on top of the deterministic Lagrangian dynamics (1) which we rewrite as:

M(q)q̈ + C(q, q̇) +G(q) = Bω + J(s, e)TF e
(s, e, ω) + ωd(s, e)︸ ︷︷ ︸
εe(s,e,ε)

, (3)

where we now explicitly denote the dependence of the contact Jacobian J(s, e), contact forces
F e

(s, e, ω), and dissipative terms ωd(s, e) on the state of the robot, environment, and low-level
torques supplied by the motor. As discussed in Section 1, identifying precise locations where con-
tact occurs on the robot can be extremely difficult from on-board measurements. Thus, instead of
inferring J and F e separately, we directly estimate ωe = JTF e

+ωd. We condition these estimates a
latent encoding zt = Eϑ(ht) of ht, which enables the network to infer information about the extrin-
sics et needed for predicting future states [26, 25]. Altogether, we use an ensemble of deterministic
models ωe → ω̄e,i

t
= Tϖi(st, at, zt) with tunable parameters ϱi.

3.2 Generating Forwards Predictions

We first describe how we generate a probabilistic 1-step prediction for the next state associated to
each of the torques estimates ωe → ω̄e,i

t
= Tϖi(st, at, zt). First, we let ωt = G(st, at) denote a zero-

order hold estimate for the low-level motor torques applied to the robot; here, G is a known map
which captures how the current state and action are processed by our control architecture (Fig. 3) to
produce low-level joint torques. The i-th deterministic next-state prediction is then given by s̄i

t+1 =

I(st, ωt, ω̄
e,i

t
), which captures how a chosen numerical integrator for the Lagrangian dynamics (1)

propagates st, ωt, and ω̄e,i
t

. We then add zero-mean Gaussian noise to s̄i
t+1 whose variance ”

i

t
=

N i

ϖi
(st, at, zt) is a diagonal Gaussian which is output by the same network predicting the i-th torque

estimate. Altogether, this constructs a probabilistic estimate for the next state:
Uncertainty-Aware State Predictions: ŝi

t+1 ↓ p̂i
ϖi
(·|st, at, ht) := N (s̄i

t+1,”
i

t
) (4)

The ensemble of probabilistic models {p̂i
ϖi
} is used to generate k-step predictions using Algo-

rithm 1, which adapts the method from [6] to our auto-regressive setting where future state predic-
tions are conditioned on the history ht. Given a state st and state history ht, to generate a synthetic
rollout we: (i) sample an action from the policy, (ii) randomly choose a model p̂i

ϖi
from the ensem-

ble, (iii) generate a next-state prediction ŝi
t+1 using (4), and iv) incorporate this prediction into ht+1

and repeat the previous steps until a k-step prediction has been generated.

3.3 Approximate Maximum Likelihood Estimation

To train {p̂i
ϖ
}i, we maximize the joint-likelihood of state predictions along these synthetic rollouts

under the real-world data. Due to the Markov assumption (Section 2), the joint distribution of

4

Algorithm 1 Auto-Regressive State Predictions

1: Inputs hallucination buffer Dmodel, models {p̂i
ϖi
}, policy εω, start state s0, start history h0

2: for t = 0 . . . k ↗ 1 do
3: Sample action at ↓ εω(· | st, ht)

4: Randomly choose model i ↓ U [1, . . . , P] and predict next state ŝi
t+1 with (4)

5: Update state history ht+1 with ŝi
t+1 and st+1 ↘ ŝi

t+1
6: Compute reward rt and termination dt and add transition (st, at, rt, st+1, dt) to Dmodel

7: Return Dmodel

the next H states, starting at state st is ps(st+1:t+1+H | st, at:t+H , et:t+H) =
∏

H

j=0 ps(st+1+j |
st+j , at+j , et+j). Taking the negative log-liklihood yields our training objective for the i-th model:

L(ϱi) =
1

HNe

Ne↑H∑

t=h

H∑

j=0

[
s̄i
t+1+j

↗ st+1+j

]T (
”

i

t+j

)↑1 [
s̄i
t+1+j

↗ st+1+j

]
+ log det”

i

t+j
. (5)

Here, Ne is the size of a buffer of real-world transitions Denv, mean state predictions are propagated
deterministically according to s̄i

t+1 = Si
(s̄i

t
, at, ht), and each prediction s̄i

t
is used to update the

state history ht. For each state st in the buffer, (5) generates a synthetic rollout H steps long and
computes a loss related to how much the propagated states differ from the experienced states.

Remark 1. By optimizing the multi-step loss (5) end-to-end, we i) force the latent zt to encode
information about the environment which is necessary for making state predictions over long hori-
zons and ii) average out noisy state estimates and sudden changes in the external torques that occur
when the robot makes contact with the ground (Fig. 4). This leads to reliable long-horizon predic-
tions which are substantially more accurate than those generated by black-box models (Fig. 5).

3.4 Policy Optimization

Finally, we introduce the Semi-Structured Reinforcement Learning (SSRL) in Algorithm 2. This
policy optimization strategy is a Dyna-style algorithm [3, 6] which leverages model-predictions as
a source of data augmentation. Specifically, this approach branches hallucinated rollouts off real-
world trajectories to reduce the effects of model bias, and increases the length of these rollouts
throughout training as the model becomes more accurate. We perform many rounds of data gen-
eration and policy optimization after collecting real-world samples, and as depicted in Fig. 5 our
semi-structured model are able to make substantially more accurate predictions over long horizons
when data is scarce. Together, these features enable SSRL to push the sample complexity limits for
MBRL. We also found the following necessary for making real-world learning practical:

Deterministic Real-World Rollouts and Random Hallucinations. Steps in the real environment
are taken using a deterministic policy µω which simply outputs the mean action from the stochas-
tic policy εω. Black-box MBRL approaches typically need to inject random ‘dithering’ noise to
ensure their is enough exploration to obtain accurate models. However, we found that this led to
unacceptably erratic behavior in the real-world when paired with our policy class. Recent model-
free approaches for learning locomotion in the real-world [32] severely restrict the action space to
make stochastic exploration tractable, and thus severely limit the performance of resulting policies.
However, our semi-structured models have the right amount of inductive bias to accurately iden-
tify the dynamics when the real-world data set Denv is generated with deterministic exploration and
data is scarce. We do, however, use a stochastic policy εω to generate rich, diverse synthetic data
sets Dmodel for policy optimization. Specifically, policy parameters ϑ are trained with soft-actor
critic (SAC) [33], using a mixture of transitions from real-world and hallucination buffers Denv and
Dmodel.

5

Algorithm 2 SSRL : Policy Optimization with Semi-structured Dynamics Models
1: Initialize models p̂ϖi , policy εω, critics Qϑi

2: for Nepochs epochs do
3: Take NE steps in the environment deterministically with µω and add transitions to Denv

4: Train models p̂ϖi on Denv using loss (5)
5: Increase hallucination rollout length k according to predetermined schedule
6: for K hallucination updates do
7: for M model rollouts do
8: Sample state s0 uniformly from Denv and hallucinate with Algorithm 1
9: Perform G updates of policy εω using mixture of Denv and Dmodel at ratio rD

4 Experimental Results

4.1 Real-world Results

We demonstrate our approach through two real-world experiments where a Unitree Go1 quadruped
is trained from scratch to achieve maximum speed on both hard ground and memory foam.

Experimental setup. Training is performed from scratch in the real world over Nepochs = 18

epochs with NE = 1000 environment steps per epoch, totaling 18, 000 steps or 3.0min of real-
world interaction. We use an observation history length of h = 5, a multi-step loss horizon of
H = 4, and hallucinate synthetic rollouts for up to k = 20 steps; see Appendix D for hyperparam-
eters. To enhance plasticity, the model, actor, and critic are reset at 10, 000 steps [34]. Joint states
are measured via encoders, IMU data provides body orientation and angular velocity, and linear
velocity is acquired with a Vicon motion capture system. Neural networks are trained in JAX [35],
and low-level joint angle commands are sent via Unitree’s ROS interface [36]. We compute the
mass matrix, Coriolis terms, and gravity vector in (3) using the differentiable simulator Brax [37],
enabling gradient-based training of the semi-structured dynamics model with (5).

Results. Fig. 1 shows a time-lapse of rollouts as training progresses. After just 3.0min of real-world
data, the quadruped achieves an average velocity of 0.98m s

↑1 on hard ground and 0.53m s
↑1 on

memory foam (Fig. 4, right). Figure 4 (left) plots the reward per episode until the first termination
(dt = 1). Initially, the quadruped often falls, resulting in low rewards, but after 1.5min, the learned
policy becomes robust, and rewards increase. Despite the challenge of walking on memory foam,
where the robot’s feet sink deeply, forward velocity improves consistently in both terrains, demon-
strating our approach’s versatility to differing contact dynamics. To examine model accuracy, we
compare the learned external force predictions ω̄e,i

t
to real-world external force estimates ωe over one

second. We estimate the real-world external force with ωe = M(qt)q̈t + C(qt, q̈t) + G(qt) ↗ Bωt
where joint accelerations are estimated by finite differencing: q̈t = (q̇t+1↗q̇t)/#t and motor torques
ωt are estimated with the PD control law. Figure 4 (right) shows the learned external vertical force
predicted on the base of the robot. Notably, the predictions appear as smoothed versions of the ac-
tual torque estimates. This, when combined with the accuracy of our predictions over long-horizons
(Section 4.2) provides insight into why our approach enables such effective policy optimization [38].
Appendix B.1 provides plots for the force estimated on additional degrees of freedom for the robot.

4.2 Simulated Experiments

In addition to the results presented here, we provide extensive ablations on standard RL benchmarks
in Appendix C. Here, we investigate the following hypotheses:

Hypothesis 1. SSRL boosts performance and sample efficiency for MBRL in contact-rich settings.

Hypothesis 2. Training with a multi-step loss outperforms a single-step loss.

Hypothesis 3. Predictions from semi-structured dynamics models demonstrate greater accuracy
and improved generalization beyond training data compared to black-box models.

6

Figure 4: Real-world results. Left—SSRL efficiently performs policy optimization, even when data is scarce.
Center—With our approach, the quadruped steadily learns to walk faster. Right—Predicted and real external
vertical force acting on the robot base over one second of real-world data. Real forces are estimated by finite
differences. The predictions add noticeable smoothing to the real-world data.

Experimental setup. The simulation setup mirrors the real-world setup (Section 4.1), except roll-
outs are simulated in Brax [37]; parameters are detailed in Appendix D. To examine Hypothesis 1,
we perform policy optimization with SSRL (Algorithm 2) and compare its policy performance to
a baseline approach that utilizes the same optimization process but substitutes the semi-structured
dynamics model with a black-box model. We also benchmark against SAC [33], with an extended
run shown in Appendix B.6. To test Hypothesis 2, we repeat the prior experiment, except we train
the model with a single-step loss horizon (H = 1). To assess generalization (Hypothesis 3), we train
our semi-structured models and the black-box models from scratch over 3 minutes of saved simu-
lated data using 1- and 4-step losses. We then generate new data using a stochastic policy where
we lower the friction and ground contact stiffness by 25% in the simulator. We generate 20-step
synthetic rollouts from 400 randomly-sampled starting states within the new dataset and average the
prediction error ≃ŝt ↗ st≃/dim(st) over the 400 rollouts. All runs are repeated across 4 random
seeds.

Results. Shown in Fig. 5 (left), our semi-structured dynamics models outperform black-box models
in both sample efficiency and maximum reward, supporting Hypothesis 1. Even when data is scarce,
our semi-structured model generates more accurate synthetic rollouts during exploration, resulting
in significantly improved policy performance. We also observe in Fig. 5 (left) that, while black-box
models yield similar policy performance for both single- and multi-step losses, training our semi-
structured dynamics models with a multi-step loss results in improved performance over a single-
step loss, confirming Hypothesis 2. In Fig. 5 (right), we see that our semi-structured models produce
predictions 20 steps into the future that are significantly more accurate than black-box models. By
leveraging physics-based knowledge, our models generate synthetic rollouts that generalize better to
an unseen environment, confirming Hypothesis 3; additional experiments are found in Appendix B.

Figure 5: Left—SSRL achieves better policy performance compared to a baseline using black-box models.
Right—Prediction error for 20-step synthetic rollouts in an unseen environment showcases our method’s supe-
rior ability to generalize.

7

5 Related Work

Model-based RL. Our works builds on a wealth of prior works that use general function approxi-
mators and probabilistic modeling for black-box modeling [39, 6, 27]. Model-based reinforcement
learning algorithms either learn a model that is used for online planning [40, 27, 41] or Dyna-style
algorithms which hallucinate imagined rollouts for direct policy optimization [6, 3, 4]. Moreover,
significant attention been devoted to extending these strategies to learn latent representations for en-
vironments from available observations [2, 42]. However, these approaches do not leverage known
structure to accelerate learning. In contrast, there has been a substantial line of work which leverages
known structure to efficiently learn accurate models [15, 16, 17, 19, 15]. However, these approaches
generally require access to the full state of the system at inference time, which is impractical for real-
world learning for contact-rich with on-board perception. Thus, our semi-structured approach brings
the strengths of both paradigms to bear in a single framework. Finally, we also note related work
[43, 44, 38] which investigates smoothing out contact dynamics to make policy optimization more
tractable for difficult contact-rich problems. We found that our learned models naturally learned
smooth representations for the dynamics which generate accurate long-horizon predictions (Fig. 5).

Model-free RL. A parallel line of work [9, 10, 28] aims to make off-policy model-free algorithms
(which form the back-bone for our policy optimization strategy) more stable and efficient in low-
data regimes. These approaches introduce regularization techniques which enable the use of higher
update-to-data ratios without overfitting to the available data, matching the efficiency of model-
free methods such as the MBPO [6] algorithm that we build upon. These algorithmic advances are
generally orthogonal to our contribution, and thus in the future we plan to incorporate them into our
framework to further accelerate real-world learning.

Learning Locomotion Strategies in the Real World. Learning locomotion behaviors from scratch
directly in the real-world has primarily been studied in the context of model-free reinforcement
learning [45, 46, 32, 47], with a few works using black-box models in the context of model-based
reinforcement learning [48, 49]. Compared to these works, our semi-structured modeling approach
enable the robot to achieve more dynamic locomotion strategies than these previous approaches,
with just a fraction of the real-world samples. Specifically, our approach either achieves a signifi-
cantly higher walking speed than each of these approaches, or improves on their sample complexity
by approximately an order of magnitude (Fig. 4). Several other works investigate fine-tuning loco-
motion controllers trained in simulation to reduce the burden on real-world data [28, 50] – as we
discuss below, we hope to investigate this direction in the near future.

Direct Transfer From Simulation. There has also been recent and rapid progress directly transfer-
ring locomotion controllers from simulation zero-shot [51, 26, 25, 52, 53], using techniques such as
domain adaptation and domain randomization. In this paper we have focused on learning locomo-
tion controllers from scratch, in an effort to demonstrate the ability of our framework to substantially
adapt the behavior of the robot with small amounts of real-world data. However, in the future we
plan to fine-tune policies that have been trained using extensive simulated experience, improving the
performance of these policies in cases where they fail [28] but leveraging a better initialization for
the policy for real-world learning.

6 Limitations

This paper presents a novel framework for model-based reinforcement learning, which leverages
physics-informed, semi-structured dynamics models to enable highly sample-efficient policy learn-
ing in the real world. However there are several key limitations. First, our method requires ob-
servability of enough proprioceptive states to propagate the Lagrangian dynamics of the robot. Ad-
ditionally, relying solely on proprioception restricts the model’s ability to predict changes to the
environment such as the appearance of an obstacle or transitions between different ground surfaces.
In the future we plan to extend the current framework to include additional perceptual modalities
which can infer more about the state of the environment around the robot.

8

Acknowledgments

The authors would like to thank Trey Smith and Brian Coltin for their helpful insights and feedback.
This work was supported by a NASA Space Technology Graduate Research Opportunity under
award 80NSSC23K1192, and by the National Science Foundation under Grant No. 2409535.

References
[1] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement learn-

ing: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118, 2023.

[2] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019.

[3] R. S. Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

[4] R. S. Sutton, C. Szepesvári, A. Geramifard, and M. P. Bowling. Dyna-style planning with linear
function approximation and prioritized sweeping. arXiv preprint arXiv:1206.3285, 2012.

[5] H. Yao, S. Bhatnagar, D. Diao, R. S. Sutton, and C. Szepesvári. Multi-step dyna planning for
policy evaluation and control. Advances in neural information processing systems, 22, 2009.

[6] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. Advances in neural information processing systems, 32, 2019.

[7] T. Yu, G. Thomas, L. Yu, S. Ermon, J. Y. Zou, S. Levine, C. Finn, and T. Ma. Mopo: Model-
based offline policy optimization. Advances in Neural Information Processing Systems, 33:
14129–14142, 2020.

[8] T. Yu, A. Kumar, R. Rafailov, A. Rajeswaran, S. Levine, and C. Finn. Combo: Conservative
offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

[9] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning
fast without a model. arXiv preprint arXiv:2101.05982, 2021.

[10] T. Hiraoka, T. Imagawa, T. Hashimoto, T. Onishi, and Y. Tsuruoka. Dropout q-functions for
doubly efficient reinforcement learning. arXiv preprint arXiv:2110.02034, 2021.

[11] J.-J. E. Slotine and W. Li. On the adaptive control of robot manipulators. The international
journal of robotics research, 6(3):49–59, 1987.

[12] S. Sastry and M. Bodson. Adaptive control: stability, convergence and robustness. Courier
Corporation, 2011.

[13] T. Westenbroek, D. Fridovich-Keil, E. Mazumdar, S. Arora, V. Prabhu, S. S. Sastry, and C. J.
Tomlin. Feedback linearization for uncertain systems via reinforcement learning. In 2020
IEEE International Conference on Robotics and Automation (ICRA), pages 1364–1371. IEEE,
2020.

[14] G. Tao. Adaptive control design and analysis, volume 37. John Wiley & Sons, 2003.

[15] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu. Neural networks with physics-
informed architectures and constraints for dynamical systems modeling. In Learning for Dy-
namics and Control Conference, pages 263–277. PMLR, 2022.

[16] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho. Lagrangian neural
networks. arXiv preprint arXiv:2003.04630, 2020.

9

[17] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior
for deep learning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=BklHpjCqKm.

[18] S. Pfrommer, M. Halm, and M. Posa. Contactnets: Learning discontinuous contact dynamics
with smooth, implicit representations. In Conference on Robot Learning, pages 2279–2291.
PMLR, 2021.

[19] Y. Jiang, T. Zhang, D. Ho, Y. Bai, C. K. Liu, S. Levine, and J. Tan. Simgan: Hybrid simulator
identification for domain adaptation via adversarial reinforcement learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2884–2890. IEEE, 2021.

[20] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters, 3(4):3019–3026, 2018.

[21] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1430–1440, 2023.

[22] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Rloc: Terrain-aware
legged locomotion using reinforcement learning and optimal control. IEEE Transactions on
Robotics, 38(5):2908–2927, 2022.

[23] L. Manuelli and R. Tedrake. Localizing external contact using proprioceptive sensors: The
contact particle filter. In 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 5062–5069. IEEE, 2016.

[24] S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A survey on detection,
isolation, and identification. IEEE Transactions on Robotics, 33(6):1292–1312, 2017.

[25] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[26] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[27] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in neural information processing
systems, 31, 2018.

[28] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), pages 1593–1599. IEEE, 2022.

[29] G. Bellegarda and A. Ijspeert. Cpg-rl: Learning central pattern generators for quadruped loco-
motion. IEEE Robotics and Automation Letters, 7(4):12547–12554, 2022.

[30] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu. Safe reinforcement learning for legged
locomotion. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2454–2461. IEEE, 2022.

[31] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[32] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

10

https://openreview.net/forum?id=BklHpjCqKm

[34] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The primacy bias in deep
reinforcement learning. In International conference on machine learning, pages 16828–16847.
PMLR, 2022.

[35] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,
A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transfor-
mations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

[36] U. Robotics. Unitree ros to real. https://github.com/unitreerobotics/unitree_ros_
to_real, 2021.

[37] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–a differen-
tiable physics engine for large scale rigid body simulation. arXiv preprint arXiv:2106.13281,
2021.

[38] H. J. T. Suh, T. Pang, and R. Tedrake. Bundled gradients through contact via randomized
smoothing. IEEE Robotics and Automation Letters, 7(2):4000–4007, 2022.

[39] M. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the 28th International Conference on machine learning (ICML-
11), pages 465–472, 2011.

[40] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel. Value iteration networks. Advances in
neural information processing systems, 29, 2016.

[41] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. Jimenez Rezende, A. Puig-
domènech Badia, O. Vinyals, N. Heess, Y. Li, et al. Imagination-augmented agents for deep
reinforcement learning. Advances in neural information processing systems, 30, 2017.

[42] N. Hansen, H. Su, and X. Wang. TD-MPC2: Scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Oxh5CstDJU.

[43] T. Pang, H. T. Suh, L. Yang, and R. Tedrake. Global planning for contact-rich manipulation
via local smoothing of quasi-dynamic contact models. IEEE Transactions on robotics, 2023.

[44] A. Block, M. Simchowitz, and R. Tedrake. Smoothed online learning for prediction in piece-
wise affine systems. Advances in Neural Information Processing Systems, 36, 2024.

[45] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomotion.
In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, pages 2619–2624. IEEE, 2004.

[46] R. Tedrake, T. W. Zhang, and H. S. Seung. Stochastic policy gradient reinforcement learning
on a simple 3d biped. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3, pages 2849–2854. IEEE, 2004.

[47] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng. Learning cpg sensory
feedback with policy gradient for biped locomotion for a full-body humanoid. In AAAI, pages
1267–1273, 2005.

[48] S. Choi and J. Kim. Trajectory-based probabilistic policy gradient for learning locomotion
behaviors. In 2019 International Conference on Robotics and Automation (ICRA), pages 1–7.
IEEE, 2019.

[49] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and V. Sindhwani. Data efficient rein-
forcement learning for legged robots. In Conference on Robot Learning, pages 1–10. PMLR,
2020.

11

http://github.com/google/jax
https://github.com/unitreerobotics/unitree_ros_to_real
https://github.com/unitreerobotics/unitree_ros_to_real
https://openreview.net/forum?id=Oxh5CstDJU

[50] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry, and K. Sreenath. Lyapunov design for
robust and efficient robotic reinforcement learning. arXiv preprint arXiv:2208.06721, 2022.

[51] J. Hwangbo, C. D. Bellicoso, P. Fankhauser, and M. Hutter. Probabilistic foot contact esti-
mation by fusing information from dynamics and differential/forward kinematics. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 3872–
3878. IEEE, 2016.

[52] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[53] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforce-
ment learning for robust parameterized locomotion control of bipedal robots. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 2811–2817. IEEE, 2021.

[54] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033. IEEE,
2012.

12

A Implementation Details

In this appendix, we provide details of our implementation for the Unitree Go1 Quadruped, including
the observation and action spaces, the reward function, the termination condition, and the control
architecture.

A.1 Observation and Action Spaces

The observation space ! ⇐ R36 consists of the elements in Table 1. The x-axis of the base is the
forward direction, the y-axis is the leftward direction, and the z-axis is the upward direction. The
phase variable ς ↑ [0, 2ε) represents progression along the gait cycle and is defined as ςt = 2εt/Tϑ

mod (2ε) where Tϑ = 0.5 sec is the gait cycle period.

Observation Symbol Dimension
Quaternion orientation of the base φ 4
Joint angles qj 12
Base linear velocity (local frame) (vx, vy, vz) 3
Base angular velocity (local frame) (↼x,↼y,↼z

) 3
Joint speeds q̇j 12
Cosine of phase cosς 1
Sine of phase sinς 1

Table 1: Observation space.

The action space A ⇐ R9 outputs the change in nominal height for the gait generator and offsets to
nominal foot positions from the gait generator, as defined in Table 2.

Action Symbol Dimension Min. Max.
x-foot position changes #px 4 ↗0.15m 0.15m
y-foot position changes #py 4 ↗0.075m 0.075m
Change in gait generator nominal height #hGait 1 ↗0.1m 0.0m

Table 2: Action space.

A.2 Reward Function and Termination Condition

Reward Function. The reward function is a weighted sum of the terms in Table 3. We set the
weights and use exponentials in most of the terms to normalize the reward such that a forward
velocity of 1.0m s

↑1 with maximal values for all other terms will result in a reward of approximately
1.0 for a single time step. The roll φx, pitch φy , and yaw φz of the base are obtained from the base
quaternion φ. We define a⇒ b as the element-wise multiplication of vectors a and b. Actual torques
output from the joint-level PD controllers are not available; we estimate the torque applied at the
joint with (11). We define the following LinearLimit function which linearly penalizes the torque
applied at the j-th joint ω j when exceeding torque limits; within torque limits, the function is a
decaying exponential:

LinearLimit(ω j , ω jmin, ω
j

max) =






ω j ↗ ω jmin ↗ 1 if ω < ω jmin
↗ exp


↗ω j + ω jmin


if ω jmin ⇑ ω j < 0

↗ exp
[
ω j ↗ ω jmax

]
if 0 ⇑ ω j < ω jmax

↗ω j + ω jmax ↗ 1 if ω j ⇓ ω jmax.

(6)

13

Reward Term Expression Weight
Maximize forward velocity vx

t+1 0.42
Limit base yaw rate exp

[
↗(↼z

t+1)
2/0.2

]
0.11

Limit base roll exp
[
↗(φx

t+1)
2/0.25

]
0.05

Limit base pitch exp
[
↗(φy

t+1)
2/0.25

]
0.05

Limit base yaw exp
[
↗(φz

t+1)
2/0.07

]
0.11

Limit base side velocity exp
[
↗(vy

t+1)
2/0.01

]
0.11

Limit vertical acceleration exp
[
↗(vz

t+1 ↗ vz
t
)
2/0.02

]
0.03

Limit base roll rate exp
[
↗(φx

t+1 ↗ φx

t
)
2/0.001

]
0.03

Limit base pitch rate exp
[
↗(φy

t+1 ↗ φy

t
)
2/0.005

]
0.03

Limit energy exp


↗
q̇jt+1 ⇒ ωt+1


2

1
/450


0.05

Penalize excessive torques
∑

j
LinearLimit(ω j

t
, ω jmin, ω

j

max)/12 0.02
Table 3: Reward function terms. The reward at each time step is a weighted sum of these terms.

Termination Condition. The termination flag dt stops the accumulation of reward after the
quadruped falls and is defined by:

dt =


1 if |φx

t
| > ε/4 or |φy

t
| > ε/4

0 otherwise.
(7)

A.3 Control Architecture

Here, we give detailed specification of the control architecture introduced in Section 2. Referring
to the action space definition Table 2, the policy takes in the current observation and a history
of observations and outputs offsets to foot positions and a nominal height for the gait generator:
(#px

t
,#py

t
,#hGait

t
) ↓ εω(· | st, ht). The gait generator Gait : [0, 1)↔ R ⇔ R3 is open-loop and

generates for each leg, walking-in-place foot positions for the quadruped by computing vertical foot
position offsets from nominal standing foot positions:

Gait(ς̄l

t
;#hGait

t
) =


plstand +


0, 0, hSwing


1↗ cos


2ε ϑ̄

l
t↑r

Gait

1↑rGait


↗#hGait

t


if ς̄l ⇓ rGait

plstand + [0, 0,#hGait
t

] otherwise
(8)

where plstand ↑ R3 is the nominal standing foot position of the l-th leg, expressed in the local base
frame, hSwing = 0.09m is the gait peak swing height, and rGait = 0.5 is that fraction of the time feet
should remain in contact with the ground. The normalized phase ς̄l ↑ [0, 1) specifies the progress
of the l-th leg along its gait cycle and is calculated with:

ς̄l

t
=


ςt

2ε
+ 0.5 + bl


mod 1, (9)

where bl is the phase bias for the l-th leg; we use a value of 0 for the front-right and rear-left legs,
and a value of 0.5 for the front-left and rear-right legs. The desired positions of the l-th foot in the
local base frame are given by:

pt(#px,l
t
,#py,l

t
,#hGait

t
, ς̄l

t
) =


#px,l

t
,#py,l

t
, 0

+ Gait(ς̄l

t
;#hGait

t
), (10)

where #px,l
t

and #py,l
t

are the x- and y-foot positions offsets for the l-th foot from the policy. For
each foot, the desired foot positions (10) are computed and sent to an inverse kinematics solver to
produce desired joint angles qdes ↑ R12. The desired joint angles are sent to the joint level PD
controllers, where the desired torque outputs are:

ωt = Kp(q
des ↗ qj)↗Kpq̇

j , (11)

and we use proportional gain Kp = 112Nmrad
↑1 and derivative gain Kp = 3.5Nms rad

↑1.

14

B Additional Experiments

In this appendix, we present the results of additional experiments which demonstrate our model’s
ability to make accurate predictions far into the future, generalized to unseen training data, and
enable efficient training.

B.1 External Torque Estimate Validation

Contact forces are discontinuous in nature and can be difficult to learn. To this end, we validate the
learned external torque predictions ω̄e,i

t
by comparing them to estimates of the real-world external

torques ωe over one second of real-world data, presented in Fig. 6. Estimates of the real-world ex-
ternal torque are computed as ωe = M(qt)q̈t + C(qt, q̈t) + G(qt) ↗ Bωt where joint accelerations
are estimated by finite differencing: q̈t = (q̇t+1 ↗ q̇t)/#t and low-level motor torques ωt are es-
timated with the PD control law. The external forces acting on the floating base and the external
torques acting on the joints of the front-right leg are shown. Our learned external torque predictions
closely align with the estimated actual external torques. Notably, the predictions appear as smoothed
versions of the actual torque estimates. Finite differencing of the velocity measurement introduces
noise into the actual torque estimates while our multi-step loss learning process inherently smooths
the predictions.

Figure 6: Predicted external forces and actual external force estimates over one second of real-world
data for the floating base and the joints of the front-right leg. Our learned external torque predictions
closely align with the estimated actual external torques.

B.2 Model Rollout Accuracy

Here, we examine the accuracy of trajectories generated from learned models and the ability of the
model to generalize beyond the available training data. First, we train our semi-structured models
and the black-box models from scratch over 3 minutes of saved simulated data using 1- and 4-
step losses. Using the trained models, 20-step synthetic rollouts are generated from 400 randomly-
sampled starting states within the data. The average prediction error ≃ŝt ↗ st≃/dim(st) at each
time step t is averaged over the 400 trajectories. This is repeated for 4 random seeds where the
best results from the 1- or 4-step losses for each model type are recorded. We then repeat this
experiment for the real-world dataset. Finally, the experiment is repeated again, except we generate

15

a new simulated dataset using a stochastic policy and on altered terrain: friction and ground contact
stiffness are lowered by 25%. For this final case, the saved models from the first case are evaluated
on this new dataset. The results for these 3 experiments are presented in Fig. 7. For all cases,
our semi-structured models produce predictions 20 steps into the future that are significantly more
accurate than black-box models. The results from the last experiment demonstrate our model’s
superior ability to generalize to an unseen environment where noise is added to actions.

Figure 7: Prediction error for 20-step synthetic rollouts using our semi-structured dynamics models
and the black-box models where the best results from the 1- or 4- step losses are presented. Pre-
diction error is averaged over 400 trajectories. Plots show the mean and standard deviation over 4
random seeds.

B.3 Robustness to Errors in the Lagrangian Dynamics

In this experiment, we demonstrate that SSRL performance is robust against errors in a priori knowl-
edge of the robot’s inertial properties which are used to construct the Lagrangian dynamics (1). To
simulate these modeling errors, we randomly vary each link’s mass by ±25% and each joint’s damp-
ing by ±50% for the Go1 environment used for simulated data collection. The remainder of the setup
is per Section 4.2 and runs are repeated across 4 random seeds. The results are presented in Fig. 8;
even when there are errors in the a priori knowledge of the robot’s inertial properties, policy perfor-
mance is similar to runs with no errors. Our external torque estimators (Section 3.1) learn to predict
forces to compensate for these errors, resulting in the similar performance.

Figure 8: Our approach is robust to errors in a priori knowledge of the robot’s inertial properties.

B.4 Modeling Uncertainty

Here, we examine the benefit of using the noise estimator and an ensemble of models. The noise es-
timator prevents overfitting to noise and using an ensemble of models captures epistemic uncertainty

16

[27]. We plot the training performance over 4 random seeds for 3 test cases: (i) using the proba-
bilistic ensemble described in Section 3.1, (ii) removing the noise estimators, and (iii) removing the
noise estimators and the ensemble. The results are presented in Fig. 9; the highest performance is
obtained with our probabilistic ensemble.

Figure 9: Training performance when removing the noise estimators and removing both the noise
estimators and ensemble.

B.5 Additional Simulated Terrain Experiments

To further demonstrate the versatility of our approach on varying contact surfaces, we perform addi-
tional experiments in simulation. Within the simulator, we vary the friction coefficient and contact
time constant which determines the stiffness of contact. We perform additional training runs for
friction coefficients of 0.3 and 0.8, and contact time constants of 0.06 and 0.12; the friction and time
constant used for all other simulated experiments in this paper are 0.6 and 0.02 respectively. As
depicted in Fig. 10, we find that our method still yields favorable performance even under varying
simulated contact conditions.

Figure 10: Training performance of our method with varying simulated contact conditions.

B.6 SAC Performance

State-of-the-art real-world quadrupedal locomotion results where policies are trained from scratch
[32] utilized SAC-like agents which directly take actions in the environment. However, highly
restricted action spaces were required to obtain stable training behavior with 20 minutes of training
data. In contrast, we use action spaces which are more in line with standard quadruped results
[25, 29, 30]. This enables faster and more dynamic gaits, but also leads to a challenging optimization
problem for SAC. Here, we repeat the experiment of Section 4.2, but we allow the SAC training to
run for many more samples and present the results in Fig. 11. Even though SAC now converges, it
takes 250 times more interaction with the environment than our method.

17

Figure 11: Training curves when running SAC to convergence; SAC requires 250 times more inter-
action with the environment than our method.

C Simulated Benchmark Experiments

To demonstrate the versatility of our approach, we perform additional simulated experiments us-
ing standard, contact-rich, benchmark environments [54] commonly used to evaluate reinforcement
learning (RL) algorithms.

Experimental setup. We use the standard MuJoCo [54] environments Hopper, Walker2d, and Ant,
which have been implemented as part of Brax [37]. Similar to the quadruped, each of these envi-
ronments feature a floating-base robot with articulated limbs which make and break contact with
the ground to produce motion. However, unlike the Go1 environment, these environments lack
structured controllers. Instead, the outputs from the policy are only scaled linearly before being
directly applied as torques on the joints. To test Hypothesis 1 and Hypothesis 2, we compare our
semi-structured approach trained with a multi-step loss (H = 4) to the black-box approach from
Section 4.2 trained with the single-step loss (H = 1). In both of these cases, the agent acts determin-
istically within the environment per Algorithm 2. We also benchmark against SAC [33], allowing
the agent to act stochastically in the environment for this algorithm only. The hyperparameters used
for training are found in Appendix D and all runs are repeated for 4 random seeds.

Results. The results of these experiments are presented in Fig. 12. We observe a significant per-
formance improvement when utilizing our semi-structured models trained with a multi-step loss,
compared to the black-box approach trained with a single-step loss, confirming Hypothesis 1 and
Hypothesis 2. These results demonstrate that our approach works not only with the Go1 environ-
ment, but also with other contact-rich environments with unstructured controllers.

Figure 12: Simulated benchmark results. Better performance is achieved when using our semi-
structured dynamics models and a multi-step loss. Plots show the mean and standard deviation for
episodic rewards.

18

D Experiment Hyperparameters

Table 4 contains the hyperparameters used with our approach; these hyperparameters were also used
with the approach that incorporated black-box models. Table 5 contains the SAC hyperparameters
used for our approach, the black-box approach, and standard SAC.

Hyperparameter Go1 (real world) Go1 (simulated) Benchmarks
Epochs, Nepochs 18 40 80
Environment steps per epoch, NE 1000
Hallucination updates per epoch, K 10 ⇔ 1, 000 over epochs 0 ⇔ 4

Model rollouts per hallucination update, M 400

Synthetic rollout length, k
1 ⇔ 20

over epochs
0 ⇔ 10

1 ⇔ 45

over epochs
0 ⇔ 15

Real to synthetic data ratio, rD 0.06
Gradient updates per hallucination update, G 40 60 20
State history length, h 5 1
Multi-step loss horizon, H 4 1 or 4
Model learning rate 1↔ 10

↑3

Model training batch size 200
Table 4: Hyperparameters for our approach and the baseline approach with black-box models. x ⇔
y over epochs a ⇔ b denotes a clipped linear function, i.e. at epoch i, f(i) = clip(x +

i↑a

b↑a
(y ↗

x), x, y).

Hyperparameter Go1 (real world) Go1 (simulated) Benchmarks
Learning rate 2↔ 10

↑3
3↔ 10

↑3

Discount factor, ϖ 0.99
Batch size 256
Target smoothing coefficient, ω 1↔ 10

↑3
5↔ 10

↑3

Actor network (MLP) width ↔ depth 512↔ 2 256↔ 2

Critic network (MLP) width ↔ depth 512↔ 2 256↔ 2

Table 5: SAC hyperparameters used for our approach, the black-box approach, and standard SAC.

19

	Introduction
	Preliminaries and Problem Formulation
	Semi-structured Reinforcement Learning
	External Torque Estimators
	Generating Forwards Predictions
	Approximate Maximum Likelihood Estimation
	Policy Optimization

	Experimental Results
	Real-world Results
	Simulated Experiments

	Related Work
	Limitations
	Implementation Details
	Observation and Action Spaces
	Reward Function and Termination Condition
	Control Architecture

	Additional Experiments
	External Torque Estimate Validation
	Model Rollout Accuracy
	Robustness to Errors in the Lagrangian Dynamics
	Modeling Uncertainty
	Additional Simulated Terrain Experiments
	SAC Performance

	Simulated Benchmark Experiments
	Experiment Hyperparameters

