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Abstract

Despite decades of progress, much remains unknown about successional trajectories of carbon
(C) cycling in north temperate forests. Drivers and mechanisms of these changes, including the
role of different types of disturbances, are particularly elusive. To address this gap, we
synthesized decades of data from experimental chronosequences and long-term monitoring at a
well-studied, regionally representative field site in northern Michigan, USA. Our study provides
a comprehensive assessment of changes in above- and belowground ecosystem components over
two centuries of succession, links temporal dynamics in C pools and fluxes with underlying
drivers, and offers several conceptual insights to the field of forest ecology. Our first advance
shows how temporal dynamics in some ecosystem components are consistent across severe
disturbances that reset succession and partial disturbances that slightly modify it: both of these
disturbance types increase soil N availability, alter fungal community composition, and alter
growth and competitive interactions between short-lived pioneer and longer-lived tree taxa.
These changes in turn affect soil C stocks, respiratory emissions, and other belowground
processes. Second, we show that some other ecosystem components have effects on C cycling
that are not consistent over the course of succession. For example, canopy structure does not
influence C uptake early in succession, but becomes important as stands develop, and the
importance of individual structural properties changes over the course of two centuries of stand
development. Third, we show that in recent decades, climate change is masking or overriding the
influence of community composition on C uptake, while respiratory emissions are sensitive to
both climatic and compositional change. In synthesis, we emphasize that time is not a driver of C
cycling; it is a dimension within which ecosystem drivers such as canopy structure, tree and

microbial community composition change. Changes in those drivers, not in forest age, are what
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control forest C trajectories, and those changes can happen quickly or slowly, through natural
processes or deliberate intervention. Stemming from this view and a whole-ecosystem
perspective on forest succession, we offer management applications from this work and assess its

broader relevance to understanding long-term change in other north temperate forest ecosystems.

1. Introduction

The general trajectories of carbon (C) stocks and sequestration rates over the course of secondary
succession in north temperate forests are well known. Rapid sequestration during the initial
decades after disturbance begins to decline later in the first century of stand development, while
standing C stocks continue to increase, potentially for centuries (Pan et al. 2011; Pregitzer and
Euskirchen 2004). However, there is considerable variation in these trends, evidenced by large
amounts of variance in age-C relationships within individual sites, sites that show the same
general patterns over very different timescales, and sites that depart from general trends
altogether (Birdsey et al. 2023; Bradford and Kastendick 2011; Keeton et al. 2011; Thom and
Keeton 2019). This variation indicates that our understanding of the factors controlling forest C
trajectories has room to grow; it also highlights the fact that forest age is far from the only thing

that influences C cycling over decade to century timescales.

Because all approaches to studying ecosystem succession struggle with its long timescales, sites
that combine multiple complementary approaches can make powerful contributions to our
understanding of the topic. Chronosequences have limitations, but as yet they are the only way to
empirically quantify C pools and fluxes over centuries (Wardle et al. 2012; Yanai et al. 2003).

The other empirical approach—long-term monitoring—allows for longitudinal observation and
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evaluation of trends inferred through chronosequences, but even the longest-running of such
studies cannot capture centuries-long trajectories of ecosystem succession (Eisen and Barker
Plotkin 2015; Fahey et al. 2005; Hoover et al. 2011; Novick et al. 2018). In combination, these
two approaches can identify patterns and mechanisms of successional change, but even still it
can be challenging to place their results in the context of north temperate forests more broadly.
Such context, however, is necessary to produce transferable insights based on mechanistic

understanding.

Long-term studies indicate several factors likely to control C stocks and sequestration rates over
successional timescales in north temperate forests. The importance of forest structure—
particularly canopy structure—to C cycling has often been demonstrated, though typically not
through a successional lens (Gough et al. 2019; Ishii et al 2004; Reich 2012). Where it has been
investigated as an ecosystem property that develops over the course of succession, increasing
canopy structural complexity has been shown to increase forest C uptake by increasing resource
use efficiency (Gough et al. 2022; Hardiman et al. 2013; Pan et al. 2013; Scheuermann et al.
2018). However, canopy structural complexity is to some extent linked to another important
driver of forest C: forest community composition (Pedro et al. 2017). Trees are the most readily
observed aspect of forest biotic communities, and their compositional change over time is used
almost synonymously with succession (although succession is a whole-ecosystem process). As a
driver, the composition of the tree community determines canopy functional traits that influence
many ecosystem processes, including C cycling (Fahey et al. 2019). Tree community
composition also affects forest C in other ways, including interspecific variation in hydraulic

strategies, wood density, aboveground vs. belowground C allocation, and interactions with the
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composition of other organismal communities, such as soil microbial communities (Abramoff

and Finzi 2016; Davidson et al. 2002; Prescott and Grayston 2013, Woodcock and Shier 2002).

Soil microbial communities in turn connect to a third major driver of forest C pools and fluxes:
soil biogeochemistry. Soil biogeochemistry in this sense encompasses successional changes in
soil properties such as pH (Compton et al. 1998; Flinn and Marks 2007), as well as the microbial
communities themselves and the C- and nutrient-transforming processes that they mediate
(Goodale and Aber 2001; Knelman et al. 2017; Lewis et al. 2014; Lovett et al. 2018). Nitrogen
(N) is particularly important among nutrients because it limits primary production in many north
temperate forests, and the forms of it available for plant and microbial uptake change over the
course of succession (Leduc and Rothstein 2010; Nave et al. 2009). Moreover, different
microbial taxa play different roles in mineralizing organic matter and releasing soil N (Phillips et
al. 2013). In acidic northern forest soils, ectomycorrhizal (EcM) fungi are major players in N
cycling, and EcM taxa that explore larger volumes of soil or produce organic matter
depolymerizing enzymes play more prominent roles as succession advances and a larger share of
soil N pool is held in less accessible organic forms (Chen et al. 2019; Hobbie et al. 2013; Leduc
et al. 2013). As yet, successional interactions between soil N availability, photobiont C supply,
and mycobiont enzyme production and N foraging are better characterized in boreal forest soils,
but are relevant to the N economy and C balance of temperate forest soils as well (Baldrian et al.
2023; Fosmark et al. 2024; Hay et al. 2015; Jorgensen et al. 2022). Research that places these
biogeochemical processes in the context of aboveground ecosystem dynamics (e.g., tree
community composition, canopy structure) is particularly needed to better understand succession

as a whole-ecosystem process.



131  In working towards the goal of transferable, predictive science, enumerating the factors that

132 influence forest C over succession is arguably less important than describing how these factors
133 operate holistically in ecosystems. Inspired by recent multi-decadal C cycling assessments from
134  intensively studied north temperate forests (Desai et al. 2022; Finzi et al 2020; Hollinger et al.
135  2021), we synthesize new data and past results from long-term monitoring and chronosequence
136  experiments at a well-studied site, the University of Michigan Biological Station (UMBS), in
137  northern Lower Michigan, U.S.A. Our analysis extends this body of work, investigating longer-
138  term successional changes spanning decades to centuries, by: (1) identifying trends and drivers
139  of major C pools and fluxes; (2) describing mechanisms by which they operate; (3) assessing
140  relevance to the ecology and management of north temperate forests. These objectives are

141 facilitated by several predictions that inform the C pools, fluxes, and drivers we focus on here.
142 First, we predict that successional development of forest structure regulates vegetation growth
143 and overall ecosystem C accumulation. Second, we predict that changes in aboveground (tree)
144  and belowground (microbial) community composition are coupled through successional time,
145  with corresponding influences on biogeochemical functioning. Third, we predict that concurrent
146  changes in composition and environmental drivers have influenced trends in ecosystem C uptake

147  and loss over recent decades.

148 2. Methods

149 2.1 Study site- UMBS (45.56°, -84.72°) is in northern Lower Michigan, in the southeastern 1/3 of
150  the 261,000 km? Laurentian Mixed Forest Province of the USDA Forest Service ecosystem
151  classification framework (Cleland et al. 1997; McNab et al. 2007). The province has a humid

152  continental climate with cold winters and warm summers; at UMBS, mean annual temperature

153 (MAT; 6.90) and mean annual precipitation (MAP; 893 mm, including 284 cm snowfall; 1991-
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2020 for all parameters) fosters mixtures of warmer-temperate (e.g., oak, maple) and cold-
tolerant boreal (e.g., spruce, fir, birch) forest types. Land use and disturbance history is broadly
consistent throughout the province, where millennia of Native American ecosystem management
activities were displaced by clearcutting and uncontrolled wildfires beginning with Euro-
American colonization in the late 1800s and extending into the early 1900s (Lorimer 2001;
Rhemtulla et al. 2009; Whitney 1987). Modern forest management began in the mid-20"
century, and is more extensive than intensive: early-successional deciduous and mixed forests
are clearcut and regrown over 40-80 year rotations, longer-lived deciduous cover types
experience partial harvests at 10-20 year intervals, and upland conifers (mostly pines) are
managed with periodic thinning followed by regeneration harvests at 60-100 years of age (Bates

et al. 1993; Gahagan et al. 2015; Gerlach et al. 2002; Palik et al. 2003; Stone 2002).

A detailed description of the landscape setting and experimental design of UMBS (Nave et al.
2017) is summarized here. The regional Silurian and Devonian sedimentary bedrock lays buried
beneath 100-200 m of glacial and lacustrine sediments deposited during the late Pleistocene. The
highest elevations on the landscape are moraines of poorly-sorted till deposited directly by the
continental ice mass; these are exceeded in area by lower-lying outwash plains, which were
deposited by meltwater flowing away from ice margins. These landforms were modified during
regional glacial re-advances 12,600 -10,500 years before present, and, at the lowest elevations,
by lacustrine processes 4,300 - 3,000 years before present (Schaetzl et al. 2002; Nave et al.
2017b). Soils formed in till are mostly coarse-loamy Lamellic and Alfic Haplorthods (USDA
Subgroups), outwash soils are predominantly sandy Entic Haplorthods, and soils in the lowest
positions are predominantly Endoaquods, Endoaquents, and Haplosaprists (USDA Great Groups)

formed in lake-modified outwash sediments and Holocene organic deposits.
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Current vegetation at UMBS is the local result of the land use history that occurred across the
wider ecological province. Namely, clearcutting and wildfires between 1870-1923 replaced pre-
exploitation forests of long-lived species including red pine (Pinus resinosa), white pine (P.
strobus), eastern hemlock (7Tsuga canadensis), sugar maple (Acer saccharum), American beech
(Fagus grandifolia), and red oak (Quercus rubra) with mixed deciduous-conifer forests
dominated by early-successional taxa such as bigtooth aspen (Populus grandidentata) and paper
birch (Betula papyrifera) in xeric to mesic settings, and trembling aspen (P. tremuloides) and
balsam fir (4bies balsamea) in mesic to hydric settings. Most UMBS forestland is dominated by
early-successional taxa, which have been increasingly replaced by longer-lived species in the last
20-30 years, due to lack of disturbances or management (Gough et al. 2010). Isolated portions of
UMBS property were cut partially, or not at all, or were burned before cutting could occur and
therefore serve as older reference forests, with composition and structure that might be more
extensive today if not for the widespread disturbances of a century ago. Upland forests at UMBS
are broadly representative of the wider Laurentian Mixed Forest Province in terms of their

composition, growth rates, and disturbance history (Gough et al. 2007; Nave et al. 2017).

2.2 Experimental design- This study is based upon data collected through 2020 from several

long-term experimental designs at UMBS (Fig. 1), with unique aspects detailed below.

2.2.1. Chronosequences and old reference forests- Two experimental chronosequences, differing
in the type of stand-replacing disturbance, allow for the observation of stands ranging in age
from 22 — 109 years. All chronosequence stands are on sandy outwash plains and have similar
inherent soil properties. Individual chronosequence stands were established either by clearcut +
residue burning (known as the Burn Plots; Scheiner and Teeri 1981), or by a clearcut not

followed by an intentional residue fire. Because nearly all of the UMBS landscape experienced
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clearcutting and fire ~100 years ago, the difference between the two chronosequences is whether
they have experienced one stand-replacing cut-and-burn disturbance (hereafter 1x cut+burn) or
two stand-replacing cut-and-burn disturbances (2x cut+burn). In 2020, stand ages in the 1x
cut+burn chronosequence were 33, 48, 68, and 109 years old (reflecting clearcutting in 1987,
1972, 1952, and 1911, respectively); 2x cut+burn stands were 22, 40, 66, 72, and 84 years old

(clearcut + residue burning in 1998, 1980, 1954, 1948, and 1936, respectively).

The experimental chronosequences are complemented by observations of older reference stands,
some of which have been monitored since the 1940s (Fig. 1). The oldest of the three reference
stands reported here, Indian Point, is a hemlock-northern hardwoods forest with a long history of
Native American management (Albert and Minc 1987); it is uneven-aged, but in the area that has
been intensively monitored, dominant trees date to ca. 1830 (i.e., stand age = 190 years). The
two other old reference stands are pine-dominated, with canopy dominants dating to 1885 — 1890
(stand age = 130 years). One of these stands was partially cut and lightly burned; the best
available records (and site evidence) suggest the other was initiated after a stand-replacing fire.
Due to their unique disturbance histories and differences in soils, landforms, and topoclimate,
none of the three reference stands is an ideal representation of conditions that would be expected

on the paired chronosequences after additional decades of development (Nave et al. 2019).

In both the experimental chronosequences and the old reference stands, individual stands range
from just over 1 ha to more than 10 ha in size; in each stand, most data collection occurs within 3
plots, each 0.1 ha in size (except for 2 plots, 0.07 and 0.14 ha, in the 22-year-old “Burn Plot”).
Throughout the remainder of this paper, we use the term “stand” to describe an area of forest of a
known common age, composition, and disturbance, from one to several hectares in size. We

distinguish stands from plots, which are sampling units of logistical convenience, but note that in
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many stands, individual plots were arrayed to sample across measurable or visually apparent

spatial variation in ecosystem structure, disturbance severity, or to minimize edge effects. The
sole exception to the “stand” vs. “plot” terminology is the Burn Plots, which by this definition
consist of stands differing in ages, but whose name we reference (with capitalization) owing to

their immediate recognition for generations of UMBS researchers.

2.2.2 Flux towers- The other experimental design that we draw upon for this analysis consists of
paired reference and treatment flux towers known in the AmeriFlux Network as the US-UMB
(reference) and US-UMd (disturbed) core sites (Fig. 1). The reference tower has a ~100 ha
footprint and is supported by ground-based monitoring of ecosystem properties, C pools and
fluxes across an array of 81 permanent plots since 1997. The treatment tower, erected in 2006,
has a ~30 ha footprint where all of the aging, early-successional trees (aspen and birch) were
stem girdled in 2008 to accelerate an incipient successional transition to longer-lived taxa- a
process that has slowly unfolded in the reference footprint since that time. The treatment
footprint holds 22 permanent sampling plots. In each footprint, a single 1.1 ha plot surrounds the
flux tower, and the remainder of the plots (0.08 ha each) are located at 100 m intervals along
transects that radiate away from the tower. Within the scientific literature, comparisons of
ecosystem processes and C cycling between the reference and treatment footprints have
occasionally been reported as results of the Forest Accelerated Succession ExperimenT (FASET;
Nave et al. 2011). In this paper, we refer to the reference vs. treatment towers explicitly when
differentiating between slower natural background succession vs. experimentally accelerated
succession, or to FASET (as a paired design) when drawing inferences from the two footprints
collectively. Like the paired chronosequences, the footprints of both flux towers are located

principally on sandy, high-level outwash plains.
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2.3 Data collection methods- This paper synthesizes existing and presents previously
unpublished data collected over the last 40 years on the experimental designs described in
section 2.2. The following subsections provide overview descriptions; details are provided in

references cited here and in Appendix S1.

2.3.1 Ecosystem C stocks- Inventories supporting the estimation of aboveground live tree,
standing dead tree, and coarse down woody debris C stocks are typically completed at 5-year
intervals in the experimental designs reported in this paper. At each census, permanent plots are
inventoried for all trees >1.37 m in height, which are identified to species and measured for
diameter at breast height. Aboveground biomass C stocks are calculated from these inventory
data using a combination of site-specific and generalized allometric equations (Nave et al. 2017)
and appropriate plot area expansion factors. For presentation and discussion, live trees are
grouped into short-lived deciduous (aspen, paper birch), long-lived deciduous (all other
deciduous taxa), and long-lived coniferous functional groups (all coniferous species found in
these plots are long-lived). Coarse down woody debris (DWD) is censused for dimensions,
density, and species on 3 subplots per 0.1 ha permanent plot, and scaled up using expansion
factors (Clay et al. 2022). Soil, coarse and fine root C stocks were inventoried in 2014 to a depth

of 1 m, as described in Nave et al. (2019). All data are publicly available (Nave et al. 2024).

2.3.2 Canopy structure- In this paper we report canopy structural parameters collected using
ground-based portable canopy LiDAR in the individual plots located in each chronosequence and
old reference forest stand. These parameters were collected along two perpendicular transects
(40 m each) in each plot (Fahey et al. 2019; Scheuermann et al. 2018). From the raw LiDAR
returns, we used the forestr package to compute three canopy structural parameters for analysis,

including leaf area index (LAI), mean maximum canopy height, and canopy rugosity (Hardiman
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et al. 2013; Atkins et al. 2018). These canopy structural data have been previously published
(Atkins 2002; Fahey et al. 2019; Scheuermann et al. 2018), but not used to address the specific

questions of the present synthesis.

2.3.3 Biometric C flux measurements- This paper reports four major C fluxes derived from plot-
based biometric measurements: wood net primary production (NPPw), soil respiration (Rs), fine
root production, and leaf litterfall. Wood NPP was calculated for all experimental
chronosequence and old reference forest stands as the change in woody biomass C between 2019
and 2014 census intervals, divided by the 5-year remeasurement interval. Soil respiration
measurements were made on in situ collars across a range of dates and soil temperatures each
year in the experimental chronosequence and old reference forest stands from 2014-2021, and
from 1998-2020 and 2008-2017 in the UMB and UMd tower footprints, respectively. Detailed
description of data collection and scaling to stand-level means is available in Clay et al. (2022)
and Appendix S1. Fine root production, measured in chronosequence and old reference stands
during the 2016-2019 growing seasons, is also described in Clay et al. (2022). Briefly, we used
plastic mesh cores packed with freshly sieved, root-free native soil in each stand to quantify
growing season root production (5-6 month) each year, averaged across all years within each

stand. Soil respiration and fine root production data are publicly available (Nave et al. 2024).

Leaf litterfall fluxes reported in this paper come from a temporally consistent subset of the 0.08
ha permanent plots in the reference (n=12, 1997-2019) and treatment (n=14, 2006-2019) flux
tower footprints. In each plot, the contents of individual traps (n=3) were aggregated into plot-
level total leaf litterfall, which was sorted by species and component, and used to calculate

annual means according to Gough et al. (2008).
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2.3.4 Tower-based CO: and water vapor fluxes- In this paper, we report annual values of gross
ecosystem C uptake (as gross primary production; GPP), gross ecosystem C emission (as
ecosystem respiration; Reco), and net ecosystem C uptake (as net ecosystem exchange; NEE)
from publicly available AmeriFlux data for the US-UMB (2000-2020) and US-UMd (2008-
2020) towers using the AmeriFlux-FLUXNET processed version of the data (Gough et al 2023a;
2023b). Annual values have been screened, gap-filled, and computed from the raw flux data
collected on the two towers according to FLUXNET methods described in Pastorello et al.
(2020). We also present growing season, midday (1100 — 1400 local time) ecosystem water use
efficiency (WUE) for reference (2001-2020) and treatment (2007-2020) towers (calculated from

the same AmeriFlux-FLUXNET data sources), computed only for non-gap-filled periods.

2.3.5 Soil C dynamics- We examine changes in soil C using two distinct datasets and approaches
to address two distinct questions. First, to assess soil C trajectories over a century of stand
development, we compiled data from five known sampling campaigns on the Burn Plots. Across
these campaigns, only O horizons were sampled consistently. Assuming differences in individual
judgment and specific sampling techniques, we used unweighted effect-size meta-analysis to
quantify the magnitude and temporal patterns of O horizon C stocks following cut+burn
disturbance. Statistical methods follow Nave et al. (2021). Second, to assess how soil C stocks
have changed in recent decades, we report results from a longitudinal re-sampling of an
unmanipulated reference area adjacent to the Burn Plots. This area of 1911-origin (clearcut +
unintentional residue fire) forestland was sampled in 1980, and again in 2009, providing an
opportunity to compare mineral soil C stocks by genetic horizon over a 29-year period,

independent of any disturbances other than the original region-wide cut+burn disturbance.
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2.3.6 Soil biogeochemistry and microbial communities- In this paper, we report results from a
systematic 2015 biogeochemical and microbial characterization of Burn Plots topsoils (A
horizons). These samples allowed for comparison of fungal communities, extracellular enzyme
activity, root biomass, microbial biomass C, soil N availability, soil C and N concentrations, pH,
and soil moisture across the 5 experimental stands comprising the 2x cut+burn Burn Plots (data
published in Nave et al. 2024). All preparation and most analysis steps were completed in the
UMBS Analytical Laboratory, with sequencing at the Microbial Systems Molecular Biology
Laboratory at the University of Michigan. Detailed methods are provided in Appendix S1. To
inform fungal N cycling aspects of these measurements, we collected fungal sporocarps in 2022
from paired plots (n=6 plots) in the reference and treatment flux tower footprints that received
5N tracer additions in 2010 (Nave et al. 2013). We analyzed these fungal samples by isotope
ratio mass spectrometry in the UMBS Analytical Laboratory in order to assess long-term N

foraging of several ectomycorrhizal (EcM) fungal taxa, using !°N-enrichment as an indicator.

2.3.7 Climatology and atmospheric deposition- Daily climatology and weekly atmospheric
deposition have been monitored since the late 1970s on the main campus of UMBS on the south
shore of 1,700 ha Douglas Lake (Fig. 1). We present MAT as the average of daily maximum and
minimum values and MAP as the sum of daily water-equivalent values (UMBS 2024). For
atmospheric deposition, we present annual total inorganic N deposition values, as obtained from

the National Atmospheric Deposition Program, of which UMBS is site M109.

2.4 Data analysis- This paper is intended to provide a holistic view of interactions between
ecosystem components over time, and how they influence C cycling. This required synthesizing
and analyzing many different types of data according to a range of approaches and techniques.

Analytical details are provided here, in Appendix S1, and in figure captions. The following
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narrative enumerates the specific statistical tests used to address each topic of interest;
parenthetical references to figures are provided to aid in connecting these statistical tests to the
results we present and the inferences we draw from them. To test for differences in total
ecosystem C stocks (and in individual pools) over succession (Fig. 2a), we treated each plot in
each chronosequence and old reference stand as an experimental unit, binned plots into 40-year
age classes, and used one-way ANOV As with Fisher’s Least Significant Difference post-hoc
tests to identify significant differences between age classes. Changes in composition over the
same 40-year age classes (Fig. 2b) are expressed as the proportion of aboveground live tree
biomass in each of three functional groups (short-lived deciduous, long-lived deciduous, long-
lived coniferous); these data are presented for visualization but are not analyzed statistically. To
test relationships between canopy structure and C uptake over succession (Fig. 3), we treated
each plot in each chronosequence and old reference stand as an experimental unit, selected NPPw
as the response variable, and used multiple linear regression to determine the predictive capacity
(as partial 1?) of leaf area index (LAI), maximum canopy height, and rugosity. We conducted
separate regressions for young (22-48 years; n=11), middle-aged (66-84 years; n=6), and old
(>100 years; n=12) stands. We standardized the values for the three structural parameters by
subtracting their means and dividing by their standard deviations. To examine successional
trajectories of growth and canopy production in taxonomic detail in recent decades (Fig. 4), we
treated individual plots in the reference and treatment tower footprints as experimental units,
selected leaf litterfall mass as the response variable, and used year as the predictor variable in
simple linear regressions to predict temporal trajectories in leaf production (total across all
species), and for individual species (red oak), genera (red +sugar maples), and functional groups

(early-successional species, i.e., aspen and birch). To test for successional trends in soil
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respiration (Fig. 5), we treated each chronosequence and old reference stand as an experimental
unit, and used simple linear regression to test for temporal trends (i.e., as a function of stand age)
in Rs fluxes and proportions. We ran separate regressions for annual vs. growing-season-only
trends, for each of the following fluxes and proportions: 1) total soil respiration [Rst], 2)
autotrophic soil respiration [Rsa], 3) heterotrophic soil respiration [Rsh], and 4) heterotrophic
proportion [Rsh/Rst]. To examine relationships between stand age, fine root production, and soil
respiration (Fig. 6), we conducted two regressions: first, stand age vs. mean growing season fine
root production (averaged to the stand level across all available years of ingrowth core
incubation); second, mean growing season fine root production vs. annual total soil respiration.
To examine long-term successional patterns in O horizon C stocks on the Burn Plots (section 3.2
narrative), we used unweighted effect size meta-analysis to test (1) for a significant effect of past
disturbance on C stocks using categorical meta-analysis and (2) whether O horizon C stock
changes vary significantly with time since disturbance using continuous meta-analysis. To test
for long-term changes in soil properties across the Burn Plots (Fig. 7a), we treated individual
stands as experimental units, selected A horizon %C, pH, and microbial biomass C as response
variables, and used stand age as the predictor variable in simple linear regressions. To test for
relationships between soil properties and biogeochemical function (Figs. 7b, ¢), we treated
individual Burn Plot stands as experimental units, selected a-glucosidase activity rate as the
response variable, and regressed it against %C and pH as predictor variables (respectively) using
simple linear regressions. To test for changes in fungal community composition over succession
on the Burn Plots (Fig. 8), we treated individual soil samples from each stand as experimental
units. In QIIME, we (1) identified fungal families driving community dissimilarity across stands

using ANCOM, (2) visualized fungal communities with a PCoA biplot, and (3) tested for
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statistical significance of community dissimilarity along a Bray-Curtis dissimilarity matrix. To
identify soil properties driving community dissimilarity (Fig. 9), we again selected individual
Burn Plots soil samples as experimental units and used a (1) dbRDA biplot to visualize
dissimilarity in soil properties across stand ages, and (2) forward stepwise regression, including
a-glucosidase activity, microbial biomass C and N, soil NHs-N availability, soil C and N
concentrations, pH, and water content as predictor variables, to identify statistically significant
predictors of variation in community dissimilarity. To test for significant differences in
competition for N among different EcM fungal families (Fig. 10), we treated individual plots in
the reference and treatment tower footprints as experimental units, selected the '°N value of bulk
fungal sporocarps from each family as the response variable, and used family as the predictor
variable in a one-way ANOVA. To test for significant changes in mineral C stocks in recent
decades (Fig. 11), we treated individual soil profiles as experimental units, selected total C stock
as the response variable, and used a two-way ANOVA to test for significant effects of horizon
(A, E, B), sampling year (1980, 2009), and their interaction on C stocks. To test for significant
temporal trends in GPP, Reco, NEE, and WUE (Figs. 12a-c), we used multiple linear regressions.
For each response variable, we ran a multiple regression model with year (continuous) and
treatment (dummy variable, coded relative to the reference footprint) to test for significant
temporal trajectories and significant differences between footprints. Flux timeseries were 2000-
2020 for the reference tower and 2008-2020 for the treatment tower. We used a paired t-test to
determine whether mean cumulative growing season soil respiration efflux differed in reference
vs. treatment tower footprints over the long-term timeseries. To test for significant temporal
changes in MAT and MAP (Figs. 12d, 12e) we ran simple linear regressions with year as the

predictor, for a 1980-2020 climatology period. To test for significant changes in atmospheric N
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405  deposition, we used piecewise regression to examine break-point timing and slope for annual

406  total inorganic N deposition values from the UMBS NADP station, 1980-2020.

407  In the case of all tests, we used data transformations as necessary to mitigate non-normality or
408  unequal variances, and set P<0.05 as the threshold for accepting test results as statistically

409  significant. In a limited number of cases and in the context of results significant at P<0.05, we
410  discuss several results with P>0.05 but P<.0.10 as marginal trends. We completed t-tests,

411 ANOVAs, and regressions in SigmaPlot 14.0 (SYSTAT Software, San Jose, CA US). We used
412  MetaWin 3.0 (Rosenberg 2022) to analyze Burn Plots soil C data. Data processing and analyses

413 of fungal community composition were completed in R and QIIME.

414 3. Results

415 3.1 Ecosystem C stocks and aboveground dynamics over succession- Total ecosystem C stocks in
416  UMBS upland forests increase over 200 years of succession (P<0.001), largely due to increases
417  in aboveground biomass (P<0.001), which exceed soil as the largest C pool by ~50 years of stand
418  development (Fig. 2a). Smaller C pools also show significant temporal dynamics, including

419  larger standing dead tree C stocks in the 40-80 and 80-120 year age classes (P<0.001), larger

420  O+A horizon C stocks in 120-160 and >160 year old stands, and larger DWD (P<0.001) and

421  smaller fine root (P=0.05) C stocks in >160 year old stands (Appendix S1). As this successional
422  increase in total ecosystem C unfolds, forest composition changes, with short-lived pioneer

423  species giving way to longer-lived deciduous or coniferous taxa (Figure 2b).

424  Rates of biomass increase (as NPPyw) also vary over succession, with the aspects of canopy
425  structure influencing NPPyw shifting over time (Fig. 3). Early in succession (plots in stands that

426  are 22-48 years old), NPPyw varies nearly four-fold between plots, but this variation is unrelated
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to structural parameters (multiple regression P>0.05). In middle-aged stands (66-84 years old)
NPPy is less variable among plots, and is significantly related (multiple regression P=0.03) to
canopy height (partial r>=0.72), leaf area index (partial >=0.21), and, to a lesser extent, canopy
rugosity (partial r>=0.04). Old stands (>100 years old) possess the widest between-plot variance
in NPPy, which is significantly related (multiple regression P=0.02) to leaf area index (1*=0.60),

and to a lesser extent canopy height and rugosity (both partial 12<0.05).

Leaf litterfall data from the flux tower footprints detail the changes in forest composition that
occur as pioneer species give way to longer-lived taxa at the close of the first century of
succession. In the reference tower footprint where background natural succession is ongoing, a
23-year decline in leaf production by early-successional aspen and birch (Fig. 4a; regression
P<0.001) has been offset by a significant increase by red oak (Fig. 4b; P<(0.001), maintaining
whole-canopy leaf production at the same level (Fig. 4a; regression P>0.05). Leaf production by
maple (primarily 4. rubrum, secondarily A. saccharum) has remained unchanged over this
interval (Fig. 4b; regression P>0.05). The 14-year litterfall record for the treatment tower
footprint reveals a pattern of compositional change that is functionally similar, but greater in rate
and magnitude. There, where the mortality of early-successional taxa was accelerated by stem
girdling (Fig. 4a), leaf production by oak and maple both increased significantly (Fig. 4c;
P<0.001 and P=0.03, respectively), albeit threefold more rapidly for oak, based on slope
coefficients for the two taxa. Indeed, oak transitioned from being subdominant to maple during
the first 5 years of litterfall collections in the treatment footprint, to consistently being the canopy

dominant in more recent years.

3.2 Belowground C, soil biogeochemistry, and microbial dynamics over succession- Soil

respiration is the largest loss term in the UMBS C budget, and is dominated by emissions during
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450  the growing season (Fig. 5). On an annual basis, total soil respiration (Rst) does not vary with
451  successional stage (P=0.29), but marginal decreases in autotrophic (Rsa; P=0.07) and increases
452  in heterotrophic (Rsh; P=0.06) components lead to an overall increase in the proportion of total
453  emissions that are heterotrophic (Figs. 5a, 5b). During the growing season, successional trends in
454  soil respiration are more evident, with Rst (P=0.04) and Rsa (P=0.03) declining with stand age,
455  and Rsh/Rst increasing with stand age (Figs. 5c, 5d). Growing season fine root production, which
456  is unrelated to stand age (Fig. 6a, P=0.22), is in fact a stronger predictor of Rst than stand age

457  itself (Fig. 6b; P<0.01).

458  Soils data from the Burn Plots chronosequence reveal changes in C, biogeochemical, and

459  microbial properties over the course of succession. Categorical meta-analysis of the 5 known
460  sampling campaigns shows that O horizon C stocks were diminished by the clearcut+burn that
461  established these stands (-29%, bootstrapped confidence interval -14% to -42%), with no

462  temporal trend to imply recovery over the duration of the chronosequence (meta-regression,
463  P=0.74). In contrast to O horizons, topsoils appear to be recovering as stands develop over the
464  course of the chronosequence. Successional trends (Fig. 7a) include increased soil %C (P=0.03)
465  and microbial biomass C (P<0.01), and decreased pH (P=0.03). These trends have

466  biogeochemical consequences, with higher %C and lower pH being linked to higher rates of

467  cellulose-degrading enzyme activity (a-glucosidase; Figs. 7b, 7c; P=0.03).

468  Across the Burn Plots, successional changes in soil pH, %C, microbial biomass, and a-

469  glucosidase activity are accompanied by significant changes in fungal community composition
470  (Fig. 8; P=0.025). During the initial decades after disturbance, taxa in the EcCM Amanitaceae and
471  mixed saprotrophic/EcM Clavariaceae dominate. Stand development progresses through stages

472  dominated by EcM taxa in the Tricholomataceae and Russulaceae, and by a century of
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succession, the fungal community is dominated by EcM taxa in the Cortinariaceae (Fig. 8; see
Appendix S1 for specific taxa). This long-term fungal community shift is accompanied by the
topsoil property changes in Fig. 7, as well as increased moisture and root biomass, and a
successional decline in soil NHs-N availability (Fig. 9; P<0.05). Of all these soil properties, pH,
moisture, a-glucosidase activity, root biomass, and NH4-N availability are most strongly related

to shifts in the fungal community over the course of succession on the Burn Plots (Fig. 9).

Patterns from the Burn Plots are informed by two results from other experimental designs that
address fungal N cycling and soil C stocks. First, fungal sporocarp analyses from the decadal °N
tracer experiment in the ~110 year old forests of the flux tower footprints reveal that of the four
most frequently observed EcM families, sporocarps of taxa in the Cortinariaceae have
significantly higher °N enrichment (Fig. 10; P=0.01). Second, multidecadal soil monitoring in
the 1911-origin reference stand adjacent to the Burn Plots demonstrates significant declines in A
and E horizon C stocks in the last 30 years in this ~110 year old reference stand (Fig. 11; 1980

vs. 2009).

3.3 Ecosystem C fluxes and climate forcings- Two decades of flux tower observations reveal
significant changes in whole-ecosystem C fluxes and their environmental drivers (Fig. 12).
Ecosystem C uptake (GPP, negative=uptake) has become significantly more negative with time,
with no difference in the rate of change between reference and experimentally accelerated
succession footprints (Fig. 12a, lower portion). Concurrently, Reco has increased significantly in
the reference footprint, but not in the treatment footprint (Fig. 12a, upper portion). In both
footprints, WUE has increased concurrently with GPP, with no difference in the rate of increase
between footprints (Fig. 12b). In terms of net C balance, NEE has become more negative with

time in both footprints, but this increase in C sequestration has been significantly weaker in the
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background natural succession footprint due to the long-term increase in Reco (Fig. 12¢). Over the
common period of record, cumulative mean growing season Rst has been significantly larger in

the reference footprint than the treatment footprint (P<0.001, Appendix S1).

Changes in C and water fluxes observed in the past 10-20 years have been accompanied by
ongoing changes in climate and atmospheric deposition over the past 40 years. From 1980 to
2020, UMBS became significantly warmer (Fig. 12d) and wetter (Fig. 12¢), with increases of
+0.25° MAT and +5.0 cm MAP per decade. Over the same period, wet inorganic N deposition

declined significantly (-25%; Fig. 12f), primarily since the year 2000.

4. Discussion

4.1 Synthesis of ecosystem changes over succession

Our synthesis illustration (Fig. 13) integrates this multitude of ecosystem components, their
changes and interactions over the range of timescales and experimental designs at UMBS. This
illustration is a simplified representation of results reported above, which are parenthetically

referenced in the text below and complemented with UMBS-relevant citations.

Following stand-replacing disturbance on the sandy outwash plains of UMBS, aboveground
biomass accumulation is initially rapid and unrelated to canopy structural development (Figs. 2a,
3b, 13a). As stands approach mid-succession, vertical canopy development drives the
accumulation of aboveground biomass, which soon exceeds soil as the largest ecosystem C pool
(Figs. 2a, 3b). Increases in aboveground biomass C continue later into succession, where

between-stand variation in leaf area explains rates of continued increase (Figs. 2a, 3b, 13c).

Stand-replacing disturbance diminishes organic horizon C stocks (section 3.2, meta-analysis) for

100 years, but mineral soil C and related soil physicochemical, biogeochemical, and microbial
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properties begin to recover during the first century of succession. Recovery encompasses
increases in A horizon moisture, exchangeable acidity, root and microbial biomass, and Bs
horizon pedogenic iron concentrations, and decreases in A horizon pH, base cations, cation
exchange capacity, and soil N availability (Figs. 7a, 9, 13a; Nave et al. 2019; White et al. 2004).
These soil property changes have functional consequences including increased rates of a-
glucosidase activity and a successional increase in the heterotrophic fraction of soil respiration
(Figs. 7b, 7c, 5a, 5c, 13a), and are accompanied by long-term shifts in fungal and tree
community composition (Figs. 13a, 13b). Over this 100-year timescale, communities shift from
being dominated by short-lived aspen and birch with mixed saprotrophic/enzymatically weak
EcM fungal communities, to increased representation of longer-lived deciduous trees and fungal
communities dominated by EcM taxa in the Cortinariaceae, with known organic matter
decomposition abilities (Figs. 2b, 8, 13a, 13b; Bodeker et al. 2014; Kyaschenko et al. 2017). As
these compositional shifts unfold over decades, the heterotrophic fraction of total soil respiration
increases (Figs. 5a, 5¢). After a century of succession, combined O + A horizon C stocks recover

from stand-replacing disturbance (Fig. 13c).

By 100 years of succession after stand-replacing disturbance, aspen and birch have begun to die
out, at rates that naturally vary according to soil and landform properties, and in the case of the
experimental girdling disturbance, have been deliberately accelerated (Figs. 2b, 4a, 13b; Nave et
al. 2014). Similar to the Burn Plots but over a shorter timescale, accelerated aspen-birch
mortality in the treatment flux tower footprint causes a temporary increase in soil N and an
excursion from EcM to saprotrophic fungal taxa (Fig. 13b; Castillo et al. 2018; Nave et al.
2011a; 2013; 2014). Subsequently, oak outcompetes maple for canopy gaps and N, especially in

the treatment tower footprint, with its EcM associates in the Cortinariaceae proving highly
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competitive for N (Figs. 4a, 4b, 10, 13ab; Nave et al. 2013). In reference forests where gradual
background mortality of aspen and birch is ongoing (i.e., the reference flux tower footprint and
the 1911-origin reference stand adjacent to the Burn Plots), soil and total ecosystem respiration
increase as surface soil C stocks decline, weakening the C sink strength compared to the
experimentally accelerated succession footprint (Figs. 11, 12a top, 13b). In both footprints, GPP
and WUE exhibit ongoing increases with mean annual temperature and precipitation (Figs. 12a

bottom, 12b, 12d, 12¢).

Predictions of C cycling and its drivers through the end of a second century of succession are
hindered by the prospects of continued climate change and the unique conditions on which the
three old reference forests in our experimental design are found (Fig. 13¢). While some of the
more robust chronosequence trends may hold into the future, such as long-term aboveground
biomass increases, (Fig. 2a), others are less clear. For example, differences in LAI and NPPyw
between the ~130 year old pine-dominated stands on outwash and the ~190 year old hemlock-
hardwoods on moraine may be successional trends, or results of unique landform and soil

properties (Fig. 13c, Albert and Minc 1987; Nave et al. 2017; 2019; Scheuermann et al. 2018).

4.2 Detailed discussion of ecosystem components

4.2.1 Aboveground wood production and canopy structure- Our finding that the canopy metrics
that drive aboveground growth change over the course of succession (Fig. 2) addresses the first
of the predictions enumerated at the close of the Introduction. In young stands, canopy structural
complexity does increase with age, but it is not the driving force for aboveground growth.
Instead, the severity of the stand-establishing disturbance may be a more important determinant
of between-stand variation in NPPw (Scheuermann at al. 2018). Canopy structural control of

NPPw becomes stronger in middle aged stands, evidenced by low residual variance in the
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structure — NPPy relationship, and suggests that the rate at which a deeper canopy develops
fundamentally constrains NPPw during this period of rapid vertical growth, possibly involving a
tradeoff between vertical growth and lateral crown expansion (i.e., increased LAI). Beyond a
century of development, variation in LAI explains the majority of the variance in NPPy. This
may indicate that as rates of overstory tree vertical growth begin to slow with succession, canopy
stratification (including the developing understory) becomes more important to whole-canopy

photosynthetic C fixation (Murphy et al. 2023).

4.2.2 Soil C — microbial interactions over succession- Soil C stocks and microbial communities
were profoundly altered by region-wide stand-replacing disturbances a century ago, but have
begun to recover during the century of succession that has unfolded since. The meta-analytic
reduction in O horizon C stocks that we report (-29%, section 3.2) falls in the range of losses
reported in meta-analyses of harvest and fire for temperate forest soils generally (Nave et al.
2010; 2011b), but is larger than typical in the Lake States (Nave et al. 2021). This may reflect a
compound effect of the second (experimental) cut-and-burn disturbance applied to create each
Burn Plot (i.e., chronosequence stand) throughout the 20" century, which is in addition to the
landscape-wide cutting and fires that occurred in the latter 19" through early 20" centuries
(Gough et al. 2007). In contrast to persistently diminished O horizons, A horizons across the
Burn Plots appear to be recovering, with %C, microbial biomass C, and pH showing significant
relationships with stand age (Fig. 7a). These results independently confirm a previously reported
decrease in topsoil pH across the Burn Plots (Nave et al. 2019), and add mechanistic insight by
revealing that as topsoils begin their post-disturbance recovery of acidity and organic matter, the

microbial community and its enzymatic functions (Fig. 7b, 7c) follow suit.
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4.2.3 Coupled tree-fungal compositional-functional changes- Our synthesis of results from the
Burn Plots and FASET reveals that stand-replacing and partial disturbances induce microbial and
N cycling responses that are similar in pattern, but different in timescale and magnitude. On the
Burn Plots, clearcutting + fire causes soil N availability and nitrophilic fungi (EcM and
saprotrophs) to increase abruptly, then decline over 100 years as N-foraging EcM decomposers
in the Cortinariaceae rise in dominance (Figs. 8, 9; Birkebak et al. 2013; Bodeker et al. 2014;
Chen et al. 2019; Kyaschenko et al. 2017; Nave et al. 2019; White et al. 2004). Similarly, in
FASET, the pulse of aspen and birch mortality in the treatment footprint led to a 2-4 year
increase in soil N availability relative to the reference footprint, accompanied by a decline in
EcM and an increase in saprotrophic fungi (Castillo et al. 2018; Nave et al. 2011a; 2013; 2014).
Since that time, EcM fungi and their N uptake have recovered, with taxa in the Cortinariaceae
outcompeting taxa in the Amanitaceae, Boletaceae, and Russulaceae for the ecosystem '°N tracer
that was applied during the disturbance period (Fig. 10). Based on their strong decomposing
enzyme production, the shift in the fungal community towards the Cortinariaceae would seem to

favor increased rates of soil C mineralization and CO2 emission.

Successional changes in microbial communities and their functions go hand-in-hand with
changes in tree community composition and functioning, addressing our second prediction
(coupled aboveground-belowground compositional-functional linkages). Increases in the
enzymatically proficient Cortinariaceae may mean that these EcM taxa are increasing the ability
of longer-lived hosts (primarily red oak) to access less available forms of soil N (Jorgensen et al.
2022; Leduc et al. 2013; Lindahl et al. 2021). Indeed, red oak has outcompeted red maple for soil
N during the successional transition out of aspen-birch dominance (Nave et al. 2013), has higher

foliar N concentrations (Nave et al. 2009), rates of stomatal conductance, photosynthesis, and
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sap flux (Gough et al. 2021; Matheny et al. 2017). These acquisitive vs. conservative traits may
underpin the multi-decadal trends in canopy production by the two species. Over this period, oak
has had the clear competitive advantage (Fig. 4), especially in the treatment footprint, where
water and N availability were elevated for 2-4 years following experimentally accelerated aspen
mortality (He et al. 2014; Nave et al. 2014). Compared to the aspen they are replacing, however,
oak and maple both have lower rates of photosynthesis and stomatal conductance, and lower
foliar N concentrations (Gough et al. 2021; Nave et al. 2009). Thus, this successional transition
to longer-lived species may have longer-term consequences for functions such as water use, C

uptake and respiratory emissions at the ecosystem scale.

4.2.4 Ecosystem C fluxes, net balance, and environmental drivers- Over the course of succession,
compositional change from aspen to longer-lived tree taxa with lower photosynthetic rates would
seem to favor reduced whole-canopy GPP. Decades of monitoring in the flux tower footprints
shows that the opposite has occurred (Fig. 12). This addresses our third prediction and implies
that external forcings, such as warming and wetting, are overriding compositional influences on
successional trajectories of C cycling, at least on the uptake side. On the emissions side, the
picture is more complex. Respiratory emissions should be decreasing with succession in the
tower footprints, because the longer-lived taxa replacing aspen and birch have higher C use
efficiency (less C respired per unit C fixed; Gough et al. 2021), and the chronosequences suggest
long-term declines in Rst and Rsa with age (Fig. 5). Counter to that prediction, Reco has remained
stable in the treatment footprint where composition has changed rapidly over the last decade, and
increased in the reference footprint. Some of this increase in Reco in the reference footprint has
been due to increased Rst emissions, which have been larger than in the treatment footprint in the

last 1-2 decades (section 3.3 and Appendix S1). These elevated respiratory losses are consistent
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with surface soil C stock declines observed over recent decades in the 110 year old Burn Plot
reference stand, which is in all regards similar to the UMB reference footprint (Fig. 11).
Collectively, these patterns imply an overarching, climate-driven increase in respiratory
emissions, which is being canceled out in the treatment footprint by rapid successional change to

tree taxa with lower specific respiration rates.

Though it is unclear whether climate or composition has the stronger influence on its constituent
fluxes, the increasing C sink strength (NEE) over time in both footprints indicates that GPP has
increased more rapidly than Reco (Fig. 12). This strengthening C sink over the past 1-2 decades of
succession has been concurrent with increased WUE in both footprints, due in part to the
replacement of aspen and birch with oak and maple, which have higher WUE (Matheny et al.
2014). However, similar trends in NEE and WUE are occurring in other humid north temperate
forests where compositional change is less likely to be a substantial mechanism, implying a role
for broader environmental drivers such as warming, wetting, COz fertilization, and N
oligotrophication (Finzi et al. 2020; Groffman et al. 2018; Hollinger et al. 2021; Keenan et al.
2013). The key takeaway from this trend is thus much the same as for respiratory emissions:
there is evidence for a broader climatic influence on ecosystem C balance and water use, and an
influence of successional change in composition. Unfortunately, our experimental design cannot

parse these factors as independent drivers.

One factor that may be influencing respiratory emissions at UMBS is non-native earthworms.
Most of the earthworm taxa present at UMBS in recent decades have been present since the
early- to mid-1900s, but changes in their spatial distribution and community composition have
occurred (Crumsey et al. 2014). One of the more notable changes has been the expansion of

Lumbricus terrestris, which directly consumes and vertically redistributes larger quantities of
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655  surface leaf litter than other taxa (Crumsey et al. 2015). On balance, L. ferrestris and other taxa,
656  including those that consume and redistribute mineral soil organic matter, have a small negative
657  effect on soil C at UMBS (Crumsey et al. 2013). This implies that declining soil C stocks and
658  increasing soil and ecosystem respiration is due, in some part, to the activity of these organisms.
659  Overall, earthworm spatial distribution and community structural will likely continue to change
660  over time at UMBS, in a patch dynamic influenced by factors such as road proximity, soil

661  texture, and tree community composition (Crumsey et al. 2014). As these changes unfold,

662  earthworm dietary preferences may interact with forest successional dynamics to affect C cycling
663  outcomes, as maple leaf litter is much preferred, and more quickly consumed, than oak litter

664  (Crumsey et al. 2013).

665 4.3 Context and broader relevance to north temperate forest ecosystems and their management-
666  Our study is both representative and unique, in ways that help to understand its relevance to C
667  cycling in other north temperate forests. In composition, UMBS is broadly representative, as the
668  aspen-birch cover type is the most extensive at the site and across the broader Laurentian Mixed
669  Forest Province (Nave et al. 2017; Ruefenacht et al. 2008). In age, UMBS is unique: regionally,
670  aspen-birch forests tend to be younger, because their persistence depends on large-scale

671  disturbance or management that has not occurred at UMBS (Carson et al. 2023; Friedman and
672  Reich 2005). In terms of broader relevance, many general patterns we report here are similar to
673  other empirical studies across the U.S. Lake States, Northeast, and adjacent Canada. These

674  include a strengthening C sink in a maturing forest over recent decades (Finzi et al. 2020;

675  Hollinger et al. 2021), successional increases in ecosystem C stocks that are driven by

676  aboveground biomass (Alban and Perala 1992; Keeton et al. 2011), and long-term recovery of

677  soil properties following disturbance (Poirier et al. 2016; Roy et al. 2021). However, for every
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one of these general patterns, there are studies in the same region that show divergent or more
nuanced trends (Arain et al. 2022; Desai et al. 2023; Gao et al. 2018; Prest et al. 2014; Wang et
al. 2014). This highlights that site specifics such as disturbance and management history can
obscure or override generally predictable successional trends and drivers (Ford and Keeton 2017;

Hoover 2011; Kern et al. 2021; Latty et al. 2004).

In the north temperate forest literature, the lack of any one consistent successional C trajectory or
set of drivers reflects diversity in forest ecosystems, including in the ways that they have been
managed or otherwise altered by people. Accepting this diversity and the uncertainty that it
introduces into future forest functioning is part of forest management. In this context, the many
drivers that influence C cycling can then become explicit targets for manipulation when C is a
management objective. Managing forests means much more than managing their age, e.g., by
clearcutting to restart, or allowing to “mature” by leaving them untouched. Directly and
indirectly, managing forests means manipulating structure (above and belowground),
composition (plants and microbes), and relationships between ecosystem components, including
their functional and biogeochemical outcomes. Taking this ecological view of forest
management, and setting aside the notion that forest age is a driver itself, we offer several

management applications relevant to north temperate forests.

The most timely management application of our results emerges from the decadal trends in C
uptake and emissions in the two flux tower footprints. In the treatment footprint, the intentional
killing of over one-third of the live trees has had a paradoxical effect: an increase in C
sequestration. There, altering forest composition redistributed resources (access to light, soil N)
from resource-demanding to resource-efficient taxa. This action decreased canopy structural

complexity—a driver usually positively associated with C sequestration (Gough et al. 2021;
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Hardiman et al. 2011; Thom and Keeton 2020)—and nonetheless increased C sequestration,
implying a greater role for N than light limitation of C uptake. In contrast, in the reference
footprint, natural succession towards an older and more structurally complex condition has been
accompanied by a weaker increase in C sink strength, due to a concurrent increase in respiratory
losses. Collectively, this difference between footprints implies that partial harvests to manipulate
composition may be a way to simultaneously increase within-forest C sequestration, while
removing C that would otherwise be respired and instead storing it in harvested wood products
(Gahagan et al. 2015; Powers et al. 2011). Our results suggest such treatments will be most
effective where there is a wide difference in resource efficiency between the dominant trees that
are removed, and the codominant or suppressed trees that are released, with greater trait diversity
in released species facilitating climate adaptation and C mitigation (Clark and D’ Amato 2021;

Thom et al. 2021; Wiechmann et al. 2022).

Our findings provide a belowground view on the typically aboveground-focused work of
managing forests. We show that predictable tree community composition changes over
succession are linked to concurrent changes in soil properties and microbial communities.
Whether severe and stand-replacing or partial and patchy, disturbances that kill trees accelerate
the N cycle and shift the fungal community from low-N EcM fungi that are strong decomposers,
to more nitrophilic EcM and saprotrophic fungi. These shifts can be subtle and short-lived, as in
the experimental girdling that accelerated succession in FASET, or more persistent, as in the
clearcut harvest + fire of the Burn Plots, where fundamental soil properties are still changing
many decades later. In both cases, aboveground dynamics (tree growth, community composition)
have successional implications for belowground processes, including root production, soil CO2

emissions, and long-term soil C stock changes.
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The final management consideration of our synthesis emerges from its landscape context. At
4,000 ha, UMBS is large enough to host multiple experimental designs on the same kind of
“site”—sandy outwash plains—yet also large enough that its landscape holds other ecosystem
types where findings from these study sites do not apply. Thus across UMBS and other humid
temperate glaciated landscapes with mosaics of mixed hardwood-conifer forests, our results will
be most relevant on drier landforms and soils with lower nutrient availability. On more
productive landforms and soils, successional patterns and C cycle trajectories may be different,
or similar but for different underlying reasons. Drawing management applications from this and
other long-term studies will therefore be most effective when disturbances and succession are
seen as whole-ecosystem processes, with bottom-up and belowground factors given equal weight
to the plant communities that usually capture the most attention (Barnes et al. 1982). Vegetation
treatments to achieve C cycle objectives can then be optimized to the kinds of ecosystems where
they are most likely to be effective. For example, our results imply that partial harvests to release
codominant or overtopped oak can increase ecosystem C sequestration, but that this outcome is
most likely on drought-prone, low-nutrient soils where its water- and N-acquisitive traits make it
best suited to capitalizing on release from competition. On more mesic, productive soils,
treatments to release maple and capitalize on its high levels of water and C use efficiency may be
more effective at increasing C sequestration. Still other management strategies, approaches, and
tactics may be needed to balance C with other objectives in other settings. In this way, moving
beyond stand-level thinking to landscape management mosaics can diversify the composition,
structure, connectivity, climate adaptation capacity, and C management strategies of larger

forested areas (Ontl et al. 2020; Thom and Keeton 2020). Ultimately, as climate, disturbance

33



746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

regimes, and species distributions continue to change, management must be conducted in this

larger context in order to maintain forest functions- and in some areas, forests at all.

4.4 Key unknowns- Our work struggles with several limitations, and also highlights several areas
in need of future research. Its most significant limitation emerges from its greatest strength, in
the sense that so many experimental designs and datasets can be brought to bear on so many
aspects of the ecosystem at a single site. While this allows for a holistic view of C cycling and its
drivers, the lack of consistency in individual studies precludes an elegant, balanced synthetic
analysis. The resulting narrative synthesis is as complex as the ecosystem itself, and in
simplifying this complexity for clearer communication, we have minimized attention to potential
issues such as stand-level variation in disturbance histories and the disconnect between
inferences from a 20-year flux record vs. a 200-year chronosequence. The spatial and temporal
distribution of past clearcutting and fire at UMBS is more nuanced than we communicate here,
and in focusing on what is consistent across disturbance types, we overlook the potential that
localized past events may be influencing the results we report (Cooper 1981; D’ Amato et al.
2017; Farmer 1958; Kilburn 1957). Similarly, we emphasize consistencies, rather than
differences between the decadal patterns of succession in the flux tower footprints and the
centuries-long continuum of chronosequence and old reference stands. Notably, our NEP
estimates over these longer timescales indicate that only one of these stands is definitively a C
sink (Clay et al. 2022), a result which is at odds with tower-based observations showing a

consistent C sink over time.

One of the key unknowns in this study is the degree to which several unaddressed belowground
processes and C fluxes vary over successional time. In this work, we are limited to relatively

coarse metrics of belowground C cycling, such as soil respiration and fine root production. More
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detailed investigations of processes such as root exudation, fungal hyphal production, and
bacterially-mediated C and nutrient transformations would result in more mechanistic inferences
into microbial and biogeochemical drivers of belowground C cycling over succession. This is
particularly true for N cycling processes, given the likelihood that this site’s strong N limitation

will only increase with COz fertilization and N oligotrophication (Groffman et al. 2018).

Another key unknown in our study is the broader spatial (and longer-term temporal) relevance of
our results pertaining to the ecophysiology and growth trajectories of red oak. The similarity of
oak’s increase at UMBS and the long-term Harvard Forest AmeriFlux site (Finzi et al. 2020),
concurrent with the increasing C sink strength at both sites, implies a potential connection
between composition and C cycling functions, not to mention a bright future for oak. In contrast,
a recent synthesis of oaks in the context of climate change indicates more complex, and likely
negative prospects for the genus. Namely, the same acquisitive traits that have facilitated oak’s
competitive rise at these humid sites predispose them to decline as warming continues and vapor
pressure deficit increases (Novick et al. 2022). Here, there are clear management implications for
how drought, pests and pathogens, and C cycling interact in oak forests throughout the East. As
climate change and other pressures continue to increase, management interventions such as
thinning and prescribed fire may be necessary to support oak persistence, while accepting novel
structures, reduced densities, and increased mortality as inevitable (Clark et al. 2022, Isaacson et
al. 2023; Refsland et al. 2020). As conditions continue to change, further research will be needed
to examine the ecological mechanisms by which management affects composition and C cycling,

across a range of structures and successional stages, in oak and other forest types.
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Figure Captions

Figure 1. The UMBS landscape. Map shows the locations of plots within the paired
chronosequence stands (1x cut+burn and 2x cut+burn) and old reference forests, as well as the
US-UMB (reference, to west) and US-UMd (treatment, to east) flux tower plot networks.

Shading indicates landscape-level physiography. Inset: UMBS’ regional location.

Figure 2. Panel A: Total ecosystem C stocks and their distribution among pools, for plots in
both chronosequences and the three old reference forests. Individual plots have been binned into
40-year age classes. Bars are means, errors are standard deviations, and letters denote significant
differences between means (Fisher’s L.S.D.; overall ANOVA P<0.001). See Appendix S1 for
statistical test results. Panel B: Proportions of total aboveground live tree biomass for three
functional tree groups, by 40-year age class (presented for qualitative patterns but not statistically

analyzed).

Figure 3. Panel A: NPPy (mean and standard error) vs. stand age for young (22-48 years),
middle-aged (66-84 years), and old (>100 years) stands. Panel B: For a multiple regression
model for each age category, the proportion of variance in NPPw explained by individual
structural parameters, including leaf area index (LAI; blue), mean maximum canopy height (Max
Height; orange), and canopy rugosity as variance of combined vertical and horizontal leaf
distributions throughout the canopy (Rugosity; green). The residual (unexplained) variance in
each regression model (young, mid, old) is plotted in gray. Panel C: Standardized structural
parameter values and NPPy rates for individual plots in young, middle-aged, and old stands.
Structural parameters significantly related to NPPw are indicated with enlarged points and best-fit

lines.
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Figure 4. Long-term annual leaf litter production in reference and treatment (accelerated
succession) tower footprints. Leaf litter production is shown for all vs. only early-successional
species (panel A), and for Q. rubra vs. Acer spp. (panels B, C). Points plotted are means and
standard errors for litterfall collections in 10-14 plots per footprint. Best fit lines indicate
statistically significant relationships between year and leaf litterfall flux. Note differences in the

period of record for reference (1997-2019) vs. treatment (2006-2019) footprints.

Figure 5. Soil CO:z emissions as a function of stand age. Panel A: Annual total soil respiration
(RstA) flux and the proportion of the total from heterotrophic sources (Rsh/Rst). Panel B:
Annual autotrophic (RsaA) and heterotrophic (RshA) soil respiration fluxes. Panel C: Growing
season total soil respiration (RstGS) flux and the proportion of the total from heterotrophic
sources. Panel D: Growing season autotrophic (RsaGS) and heterotrophic (RshGS) soil
respiration fluxes. Values presented are stand-level means across the 2014-2021 growing
seasons. Statistics are for simple linear regression, with best-fit lines added for statistically
significant relationships with stand age. In panels A and C, filled circles are Rst fluxes and open
circles are Rsh/Rst proportions. In panels B and D, green triangles are Rsa fluxes and purple

squares are Rsh fluxes.

Figure 6. Panel A: Growing season fine root production as a function of stand age. Panel B:
Growing season fine root production vs. annual total soil respiration. Points plotted are stand-
level means across all available years of observation; P and r* values are for simple linear

regression.

Figure 7. Panel A: Relationships between stand age and A horizon properties including total C
(%, filled triangles) and microbial biomass C (mg kg'!, open triangles) concentrations, and pH

(filled circles). Panel B: relationship between A horizon %C and pH. Panel C: Relationship
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between A horizon pH and a-glucosidase activity. In each panel, r* and P values are presented

for simple linear regressions relating the individual variables.

Figure 8. Principal coordinates analysis biplot of fungal community dissimilarity across A
horizon soil samples from the Burn Plots. Points and ellipses are color-coded according to stand
ages (in years, as of 2015 when samples were collected). Ellipses represent 95% confidence
intervals for each stand, and vectors represent the top 5 families responsible for community

dissimilarity.

Figure 9. Distance based redundancy analysis biplot of fungal community and soil property
dissimilarity across A horizon soil samples from the Burn Plots. Points and ellipses are color-
coded according to stand ages (in years, as of 2015 when samples were collected). Ellipses
represent 95% confidence intervals for each stand, and vectors represent the soil properties that

were significantly related to community dissimilarity in a forward stepwise regression model.

Figure 10. '°N signatures of sporocarps collected from '*N-labeled plots in reference and
treatment footprints. Plots were labeled with >'NH4Cl in 2010; sporocarps were collected in
2022. Plotted are means and standard errors for 5-15 sporocarps per family, with significant

differences (P<0.05; Fisher’s LSD) between families indicated with letters.

Figure 11. Mineral soil carbon stocks, by genetic horizon, for soil profiles sampled in 1980 and
2009 in an area of unmanipulated 1911-origin reference forest adjacent to the Burn Plots. Plots
show means and standard errors; difference of means is significant (P<0.05) for A and E

horizons.

Figure 12. Panels A-C: Ecosystem C fluxes and water use efficiency, for reference (filled

circles) and treatment (open circles) footprints. C fluxes follow eddy-covariance sign
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conventions, such that uptake is negative (GPP, NEE) and emissions are positive (Reco). To aid in
visualization, timeseries lines connect individual annual values in each plot. Significance of year
and treatment are denoted in each panel, with r* values provided when only year is significant,
and the adjusted R? provided when year and treatment are both significant. Panels D-F: Mean
annual temperature (D), precipitation (E), and bulk inorganic N deposition (F) at UMBS, 1980-
2020, with regression P and r* values. Climatologic variables are averaged from daily
observations from a weather station on the main campus, adjacent to Douglas Lake. Atmospheric

deposition data are from the National Atmospheric Deposition Program (UMBS site ID MI109).

Figure 13. Synthesis of ecosystem changes over successional time. The three columns (A, B, C)
correspond to the three experimental designs described in section 2.2, which correspond to three
semi-discrete developmental phases that collectively span 200 years of succession. Column A
shows trends inferred through the paired chronosequences (particularly the Burn Plots) over the
first century of stand development. Column B corresponds to FASET, the paired comparison of
background reference vs. experimentally accelerated succession footprints, over a 2-decade
period from stand age ~90-100. Column C highlights the three old reference forests, with ages
ranging from 130 years for the two pine-dominated stands to approximately 200 years in the
uneven-aged hemlock-northern hardwoods stand. See section 4.1 for accompanying narrative.

[lustration by Jennifer Kalejs.

56



